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ABSTRACT. For right-censored survival data, it is well-known that the mean survival time can be
consistently estimated when the support of the censoring time contains the support of the survival
time. In practice, however, this condition can be easily violated because the follow-up of a study is
usually within a finite window. In this article, we show that the mean survival time is still estimable
from a linear model when the support of some covariate(s) with non-zero coefficient(s) is unbounded
regardless of the length of follow-up. This implies that the mean survival time can be well estimated
when the support of linear predictor is wide in practice. The theoretical finding is further verified
for finite samples by simulation studies. Simulations also show that, when both models are correctly
specified, the linear model yields reasonable mean square prediction errors and outperforms the
Cox model, particularly with heavy censoring and short follow-up time.

Key words: censored linear regression, empirical process theory, Gehan weights, mean survival
time, unbounded covariate support

1. Introduction

Estimating mean survival time becomes increasingly important, especially in oncology studies.
For example, Zhao et al. (2011) proposed to use patient’s mean survival time as the clinical
outcome for the evaluation of optimal personalized treatment in lung cancer clinical trials. In
some circumstances, the restricted mean survival time has been used to either compare the
treatment effects or predict the individual patient’s survival outcomes. However, it depends
on the choice for the upper limit time 7*, and it is often difficult to explain the restriction
part to clinicians or patients, whereas the unrestricted mean survival time provides an intuitive
and straightforward interpretation. Another motivation for the mean survival time estimation
comes from health economics studies, where the analysis of cost-effectiveness usually requires
the estimation of mean lifetimes under different treatments. See, for example, Etzioni et al.
(1999) and Paltiel ez al. (2009).

The linear regression model for censored survival data, as an important alternative to the
Cox model (Cox, 1972), has been extensively studied in recent years, see, for example, Ritov
(1990), Tsiatis (1990), Wei et al. (1990), Ying (1993), Jin et al. (2003), & Ding & Nan (2011),
among many others. This type of model appeals in many ways (Cox & Oakes, 1984): it models
the failure time directly and thus has a more intuitive interpretation, it may provide more accu-
rate summary of the data when Cox’s proportional hazards assumption is violated, and more
importantly, it can be used to predict the failure time in a straightforward way.

Obviously, a good mean survival time estimation/prediction requires a good estimator
for the intercept parameter in a linear model. The study of such a linear model has primar-
ily focused on the slope parameter estimation. Commonly used estimating methods for slopes
include the Buckley—James method (Buckley & James, 1979) that imputes the censored failure
time using mean residual given covariates and the rank-based method (Prentice, 1978; Tsiatis,
1990; Ying, 1993, among many others), that is derived by using linear rank tests for the right
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censored data. Ritov (1990) showed that the class of weighted rank-based estimating functions
of Tsiatis (1990) is asymptotically equivalent to the class of Buckley—James estimating functions
on transformed residuals.

The estimation of intercept parameter when the error distribution is unspecified, however,
has not been thoroughly studied mostly because of the finite follow-up time in practice so
that the intercept is usually believed to be underestimated. Buckley & James (1979) claimed
that in general, the intercept can not be consistently estimated. In some of their simula-
tions, however, Heller & Simonoftf (1990) and Schneider & Weissfeld (1986) found that the
intercept can sometimes be estimated quite well. Without the presence of covariates, using
an integration by parts argument with a truncation technique, Susarla & Van Ryzin (1980)
showed that when the support of censoring time distribution contains the support of fail-
ure time distribution together with appropriate assumptions for the tail probability, the mean
failure time estimation based on a Kaplan—-Meier-type estimator is consistent almost surely
under random censoring. Using the reverse martingale approach, Stute & Wang (1993) estab-
lished more general strong consistency results including the mean failure time estimation.
On the basis of the work of Susarla et al. (1984) and Susarla & Van Ryzin (1980), Wang
et al. (2008) conjectured that the intercept can be consistently estimated when the supports
of some covariates are not restricted to finite intervals. In this article, we confirm such a
conjecture by formally establishing the consistency result for the intercept estimator. This
result makes the estimation of mean survival time possible under a linear regression model
when some covariate multiplied by its non-zero regression coefficient, or in general, the
linear predictor (8o X), has a wide support in a practical setting. This wide support condi-
tion excludes the case when all the regression covariates are categorical with finite number
of categories.

In a linear model, the intercept estimation is equivalent to the mean failure time estimation
on the residual scale if true values of the slope parameters are given. In reality, however, the
slope parameters need to be estimated, which dramatically complicates the study of asymp-
totic properties of the intercept estimation. For the consistency of intercept estimation when
slopes are estimated, we are only aware of Lai & Ying (1991) who assumed bounded covariates,
bounded support of the failure time distribution and wider support of the censoring time dis-
tribution. The latter assumption, however, is often violated in practice because of the nature of
limited follow-up time in, for example, most of the human disease studies. Instead of assuming
wider support of the censoring time distribution, we consider the setting that the supports of
some covariates with non-zero coefficients are not restricted to finite intervals, which requires
additional consideration on the slope estimation because its theoretical developments to date
have been primarily under the assumption of bounded covariates. The unbounded covariate
support is a technical condition and approximates the practical situation where the ranges of
the explanatory covariates are wide.

This article is organized as follows. In Section 2, we present the strong consistency prop-
erty of an intercept estimator under the assumption of unbounded covariates. In Section 3, we
present both in probability and almost sure consistency as well as asymptotic normality results
for the Gehan-weighted rank-based slope estimators without assuming bounded covariates. In
Section 4, we conduct simulation studies by varying the covariate support and the truncation
time under different error distributions with different sample sizes. We also compare the failure
time prediction performance with the Cox model under the standard extreme value error distri-
bution for which both models fit the data correctly. In Section 5, we provide an application to
the Mayo primary biliary cirrhosis (PBC) study for illustration. We provide some concluding
remarks in Section 6. Proofs of the technical results rely on modern empirical process theory
and are included in the Supporting information.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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2. Intercept estimation

Consider the linear regression model:
Ti=ao+X/Bo+¢, i=1,....n, 2.1

where ¢;, i = 1,...,n are independent and identically distributed (i.i.d.) with zero mean. The
response variable 7; for the ith subject is the failure time (possibly transformed by a known
monotone function). When 77 is subject to right censoring, we only observe (¥;, A;, X;), where
Y; = min(7;, C;), C; is the censoring time (possibly transformed by the same function that
yields 7;) and A; = 1(T; < C;). Here, we assume that (X;,C;),i = 1,...,n are i.i.d. and
independent of ;.

Throughout the sequel, we consider one-dimensional B¢ just for notational simplicity. All
the results in this article hold for multiple-dimensional S¢. Denote the parameter space for
by B, an arbitrary subset of the real line. For any 8 € 3, we denote

egi =T; —BXi, eoi =T —PoXi =00+,
and
€g.i =Yi —BXi, €0 =Y —PoX;.

Here, eg,; are the failure times in the residual scale with B¢ replaced by 8, €g,; are the corre-
sponding observed times in the residual scale for a fixed B, and eg ; are the error terms that
have absorbed the intercept in model (2.1). We use F and G to denote the distribution func-
tions of ¢ ; and C;, and f and g to denote their density functions, respectively. Now we adopt
the empirical process notation of van der Vaart & Wellner (1996). In particular, for a function
f of arandom variable U that follows distribution P, we denote

Pf = [ 0 dP. Buf =n"' Y FUD. Guf =02 P,

i=1

and refer all the details to the reference. Seteg = ¥ — fX and €9 = Y — BoX. Define

HO(B.s) = Pul{l(ep < 5. A = 1)}, HO(B,s) = P{l(eg <s5.A = 1)}; 2.2)

and
HP(B.5) = Pul{l(ep = )} h'V(B.5) = P{l(ep = 5)}. (2.3)
Because g = Eep,; = ffooo t dF(t), if the slope Bo is known, then a natural estimator of

ao is given by

@ = / ~ t dF, (1), (2.4)

—0o0

where £}, (¢) is the Kaplan—Meier estimator of the distribution function F(¢) of eg = T — o X .
In a regression setting, however, 8¢ is unknown and hence needs to be estimated. Let 8, be an
estimator of Bo, a direct extension of (2.4) yields the estimator of interest:

e A
&, 5 :/ tdF, 5 (). 2.5)
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where ﬁn,,g(t) is the Kaplan—Meier estimator of the distribution function Fg(t) of
eg = T — BX, which is given by

A Aj/n }
F,p(t)y=1- l—— 5. (2.6)
g i:el;lgt { Hr(ll)(lgﬁeﬁ,i)

Note that the aforementioned estimator does not automatically provide a consistent estimator
of Fg(t) because T — X and C — BX are not independent except when 8 = . We will follow
the method of Lai & Ying (1991) to show that ﬁn,B,, (t) converges to F(z) when f?n converges
to Bo with certain polynomial rate.

Susarla et al. (1984) showed that the aforementioned &n’ B is identical to the Buckley—James
estimator of a for a fixed B,,. When there is no covariates (equivalently B = 0) or Bq is given,
Stute & Wang (1993) and Susarla & Van Ryzin (1980) studied the asymptotic properties of the
mean survival time estimator (2.4). They provided the following key sufficient condition:

{t : t € thesupportof T — BoX} C {t : ¢t € the support of C — Bo X} 2.7)

for the consistency of (2.4). Now we replace B¢ by its estimator ﬁ » and want to show the consis-
tency of (2.5). The proof of Stute & Wang (1993) for the consistence of the mean survival time
estimation makes use of the martingale theory that cannot be directly adopted here because of
the dependence between T — BX and C — BX when B # Bo. We shall use the empirical pro-
cess theory as well as the properties of stochastic integrals with censored data in Lai & Ying
(1988) together with the delicate controlling of the tail fluctuations used by Lai & Ying (1991)
and Ying (1993) to show the desirable result.
First, we introduce the following regularity conditions:

Condition 1. The covariates X; are i.i.d. random variables with a finite second moment.
Condition 2. The error eg’s density f and its derivative f are bounded and satisfy

/—o; (f(t)/f(l))z f@t) dt < .

Condition 3. The conditional density of C given X is uniformly bounded for all possible
values of X, that is,

sup  gejx(t| X =x) < oo,

XEX, tEC

where X and C denote the support of X and C, respectively.

Condition 4. The error eg has a finite second moment, that is, £ eé < 00.

Condition 1 is different to the common assumption of bounded covariates in Lai & Ying
(1991), Tsiatis (1990), & Ying (1993), and many others. Here we only assume finite second
moment. Hence, even with a short follow-up time, the support of the censoring time in the
residual scale can be extended to infinity provided that the support of X is the real line and
Bo # 0, which yields that the supports of eg and C —Bo X are equivalent, and thus, the sufficient
condition (2.7) is satisfied. This requirement is for theoretical justification, whereas in practice,
wide support for X works reasonably well. Condition 2 is exactly the same as condition 2 in
Ying (1993). Condition 3 implies condition 3 in Ying (1993) as well as condition (3.5) in Lai &
Ying (1991). Condition 4 implies condition 4 in Ying (1993) where 6y = 2.

In the following theorems 2.1 and 2.2, we omit the constants in front of the rate expressions
to further simplify the notation.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Theorem 2.1. Suppose conditions 1-3 hold and define

dh(o)(ﬂ,u)} 2.8)

FB.t)=1 —GXP{_/ust hD (B, u)

where h'Q (B, u) and h'V (B, u) are given in (2.2) and (2.3), respectively. Then for every & > 0,
with probability 1, we have

sup {|Fn.5(z) —FB.0)|: BB HLVPB.1)> n—f} -0 (n—%“a) , (2.9)
and
sup {IF(ﬂ, )= F@®)]:|B—PBol <n 3¢ hV(B.1) > n—"“} =0mn™®), (2.10)

where I:",,,g(t) is given in (2.6). Consequently, for every 0 < & < X with probability 1, we have

sup {| £ p (1) = F(1)] 18 = Bol = n™ 2, H{D (B.1) = n™*} = 0 ™). 2.11)

Introduced by Lai & Ying (1991), F(B,t) defined in (2.8) is an important intermediate quan-
tity. On the one hand, it is the limit of the Kaplan—Meier estimator ﬁn, g(t) for a fixed B; on
the other hand, it equals to F(t), the true distribution function of ep, when g is replaced by the
true slope Bo in (2.8). The biggest difference between theorem 2.1 and lemma 2 of Lai & Ying
(1991) is that we do not require bounded covariate support.

Theorem 2.2. Suppose conditions 1-4 hold and additionally assume Bo # 0 and that the support
of X is the whole real line, that is, fx (x) > 0 for all —o0o < x < co. Define

Ty = sup{t : H{V(B.1) = ™%, 18 — ol < n =%}, 2.12)

and let ﬁngg(t) = 1fort > Ty. Then for every 0 < & <, with probability 1, we have

e A
sup{‘/ tdF, g(t)—ao
—00

218 — Pol Sn_3€} =o(1). (2.13)

It is clearly seen from theorem 2.2 that &, A given in (2.5) is a consistent estimator of the

intercept op when ﬁn is consistent with a polynomial convergence rate. This requires a good
estimator of the slope parameter fg # 0 under conditions 1-4 as well as the assumption of
unbounded support for X. In the next section, we show that such an estimator can be obtained
by the Gehan-weighted rank-based estimating method.

3. Slope estimation with unbounded covariate support

Define
HP (B.5) =Pu{l(eg = )X} and hP(B,5) = P{l(eg = 5)X}. 3.1)

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Then the general rank-based estimating function of Tsiatis (1990) is given by
H? e
P, {wn(ﬁ,em {X— A Bep) | L (3.2)
Hy (B, EB)

where w; (B, s) is a weight function and H,gl)(,B,s) = P,{l(eg = s)} is defined in (2.3). We
consider the Gehan weight function w,, (8,s) = H\" (B, s) in (3.2), which yields the following
estimating function:

W (B 1V 1) = Ba {[HD (Bep)X — HP (Bep)| A (3.3)

It is well-known that the aforementioned estimating function is a discrete (Kalbfleisch &
Prentice, 2002) and monotone function (Fygenson & Ritov, 1994) of 8, and can be solved
by linear programming (Jin et al., 2003; Lin et al, 1998) or by a Newton-type algorithm
(Yu & Nan, 20006).

3.1. Convergence in probability and asymptotic normality

The reason of assuming bounded covariates and/or truncated residual time in the current litera-
ture is to bound the denominator H,(,I)(,B, €p) in (3.2) away from zero. Such an issue disappears
in (3.3) when the Gehan weight function is used. Without concerning bounding the denomina-
tor away from zero, we can follow the same proofs in Nan et al. (2009) to obtain the following
results. Details are thus omitted here but referred to Ding (2010).

Proposition 3.1. Suppose conditions 1-3 hold. Assume that Bo € B is the unique root of
(B, h2D) =P {[hV(B.ep)X —hP(B,ep)] A}.

(1) The approximate root /én satisfying
U, (ﬁn, Hy(ll) (31’!7 ) ) H,SZ) (Bn, )) =o0p(1)

is a consistent estimator of Bo.

(2) Suppose that \P(ﬂ,h(l)(ﬁ,-),h(z)(ﬁ,-)) is differentiable with bounded and con-
tinuous  derivative Wg (B,hV(B,-),h®(B,-)) in a neighbourhood of Po, and
that \PB (ﬁo,h(l)(ﬂo,-),h(z)(ﬁo,-)) is non-singular. Then for an approximate root

Bn satisfying
W (o D (B ) 2 () = 00 (17172).

we have that n'/ z(ﬁn — Bo) is asymptotically normal with the following asymptotic
representation.

n'/2 (By = Bo) = Gu lm (Bo.co: A. X)) + 0, (1),

where

m(Bo.€o: A, X)

= [~ (B0, Bo.9. P (Bo.)) ) {[HV(Bo. )X 1 (Bo.)] A (3.4)

—/[l(eo > 1)X]dPey a2, 1) + /[1(60 > 1)]x dPey, A, x (1, l,x)}.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Proposition 3.1 implies that |3n —Bol = 0,(n™3%) forany 0 < & < % with probability
approaching 1. Hence, we have that &, 4, converges to ao in probability by theorem 2.2.

3.2. Almost sure convergence with polynomial rate

Following theorem 5 in Ying (1993), the almost sure consistency of the Gehan-weighted rank-
based slope estimator ,én with a polynomial rate can also be achieved under the unbounded
covariate support assumption, which leads to the strong convergence of the intercept estimator
&n,ﬁn from theorem 2.2.

Proposition 3.2. Suppose all the assumptions in theorem 2.2 hold, and additionally, we assume
that the tail probability of X satisfies

P(IX|>t) < Mt% exp(—nt?), (3.5)

for some constants M > 0, |6] < oo, n > 0, and y > 0. Then with probability 1, the estimator
/§n satisfying U, (ﬁn, H,(,l)(ﬁAn, Y, H,(lz) (ﬁn, )) = o(n""2) almost surely converges to Bo with
a polynomial rate, that is, |;§n — Bol = o(n™ V2% almost surely for every & > 0.

The exponential tail probability bound (3.5) implies condition 1 in Ying (1993), which is
max; <, | X;| = o(n®) almost surely for every ¢ > 0. This is because for every ¢t > 0, we have

P (max|X,-| > t) =1-P (max|X,-| < t)
I1<n 1<n

1-[1—=P(X|>0)]"

1—[1 =M% exp(—=nt")]"

IA

A

nMt? exp(—nt?),

where the last inequality holds because (1 — 5)"” > 1 —ns for 0 < s < 1. Therefore, for every
fixedt > 0and ¢ > 0,

[e.e] (e}

P (max|x,-| > ngt) < Y nMn®0)? exp{—n(n°1)”} < co.
i<n
n=1 n=1
Then by the Borel-Cantelli lemma, P (lim,—oon ®max;<,|X;| =0) = 1, that is,
max; <, | X;| = o(n?) almost surely. As we mentioned earlier, our conditions 2—4 imply con-

ditions 24 in Ying (1993). Furthermore, Ying (1993) pointed out that Gehan weights satisfy
his condition 5 and his equation (4.7). Hence, the conclusion in proposition 3.2 follows directly
from his equation (4.8) in his theorem 5. The detailed argument is thus omitted. The expo-
nential tail probability condition holds for many commonly used distributions, for example,
normal, Weibull, and extreme value distributions.

4. Simulations
4.1. Intercept estimation

We conduct extensive simulations to investigate the finite sample performance of the intercept
estimation under different scenarios. Failure times are generated from the following model:

T:2—|—X1+X2—|—§.

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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This is a submodel of Jin et al. (2006), Zeng & Lin (2007), & Ding & Nan (2011) in their
simulations. Five different error distributions are considered, which are (i) ¢ ~ N(0,0.5%);
(i1)) ¢ ~ Gumbel(—0.5y,0.5) that has mean zero, where y is the Euler constant; (iii) { ~
Laplace(0,0.5); (iv) ¢ ~ Logistic(0,0.5); and (v) ¢ ~ t(0,df = 30). In each scenario, X is
Bernoulli with p = 0.5, and X5 is continuous. We investigate three different distributions of X»:
(1) X2 ~ N(0,1); (il)) Xo ~ U(—2,2); and (iii)) X ~ U(—0.5,0). The censoring distribution is
C ~ U(0,5) A1, here 7 is a truncation time that reflects the length of follow-up time. We choose
v = 1.5 and t = 4 to yield censoring rate ranges (76%, 88%) and (45%, 52%), respectively. We
simulate 1000 runs for each setting and report the simulation results in Table 1 for two different
sample sizes: 100 and 400. Under each scenario, we also compute the asymptotic bias of the
intercept estimate in the following way. The intercept is the mean residual time, which equals to
the area under the residual survival function S(ep). When the support of the residual censor-
ing time (C — BoX) is shorter than the support of the residual survival time (eo = T — BoX),
that is,

a =sup(C — BoX) < b =sup(T — BoX),

the survival function of the residual time is estimable up to a, with S(a) > 0. Then to calculate
the intercept, the survival function will be forced to drop down to zero beyond a. Hence, the
asymptotic bias of the intercept is the area under S(eg) between a and b, that is, f ah S(eg) deo.

The first covariate setting corresponds to the unbounded covariate support. The asymptotic
bias of the intercept estimator, denoted by &, is zero in this setting, because a = b = oo
and S(eo) is an integrable function (thus, [ ab S(eo) deg = 0). It is clearly seen that the bias of
the intercept estimator is minimal even with the shorter truncation time r = 1.5 for all error
distributions. The bias is also very small in the second covariate setting, where the support of
X> is bounded, but wide. The asymptotic bias 8 is also very close to zero for each case under
this wide support setting. The bias becomes noticeable when the support of X» gets narrower
in the third setting with truncation time t = 1.5, which is consistent with the asymptotic bias
8« . With the longer truncation time t = 4, which is close to the setting of Lai & Ying (1991)
who assumed wider censoring time support, the bias of the intercept estimator is negligible
for all error distributions and covariate supports. The bias for the slope estimators is minimal
for most of the simulation settings except for the binary covariate X; under the third setting
(X2 ~ U(—0.5,0)) with Normal and Gumbel errors when the follow-up time is short. This is
possibly because when the censoring rate is very high (> 85%), the probability to observe a
non-zero value of X under the uncensored case is very small (about 7.5% or less); therefore,
the estimation for 8 did not perform well in this case.

For the shorter follow-up setting with © = 1.5, Fig. 1 displays the Kaplan—Meier curves of
the estimated residual survival time 7; — ﬂn 1Xi1 — /3,1 2X; » under five error distributions,
where each curve is obtained from a sample with size n = 400. From left to right, the three
panels correspond to X» ~ N(0,1), Xo ~ U(-2,2), and X, ~ U(—0.5,0), respectively. It is
clearly seen that whenever the survival curve is close to zero at the right tail, the corresponding
intercept estimator in Table 1 has minimal bias. We notice from our intensive simulations that a
satisfactory intercept estimator (bias < 5%) can be obtained when the right tail of the Kaplan—
Meier curve goes below 0.15. This provides a practical rule of thumb for having a sense of
adequacy of the intercept estimation.

In Section 3, we have shown the asymptotic normality of the Gehan-weighted rank-based
method (for the slope estimator) with unbounded covariate support. Current theory for other
estimating methods, for example, the standard Buckley—James estimator (Buckley & James,
1979) or the modified Buckley—James estimator (Ying, 1993), requires bounded covariate

© 2014 Board of the Foundation of the Scandinavian Journal of Statistics.
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Fig. 1. K-M plots of the estimated residual survival time (T — ,BA,MX] - f}n,zXz) under T = 1.5. Each
column corresponds to one of the five error distributions given in Table 1. (a)-(e): X2 ~ N(0, 1); (D-():
X5 ~ U(-2,2); (k)~(0): X2 ~ U(—0.5,0).
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Table 1. Summary of the simulation statistics

Err.  Cen. n =100 n =400

dist rate o B B> o B1 B> S

X> ~ N(0,1)

(a) 0.837  2.00 (0.22) 1.02(0.27) 1.01(0.18) 2.00(0.10) 1.00(0.12) 1.00 (0.08) 0
0.51%  2.00 (0.09) 1.00(0.14) 1.00(0.08) 2.00(0.04) 1.00(0.07) 1.00(0.04) 0

(b) 0.827  1.96 (0.19) 1.02(0.24) 1.01(0.15) 1.98(0.10) 1.00(0.10) 1.00 (0.07) 0
0.51%  2.00(0.1 1) 1.01(0.14) 1.00(0.08) 2.00(0.05) 1.00(0.07) 1.00 (0.04) 0

(c) 0.827  1.99 (0.28) 1.04(0.39) 1.02(0.25) 1.99(0.13) 1.00(0.18) 1.00(0.11) 0
0.51%  2.00 (0.12)  1.00(0.17)  1.00(0.09) 2.00 (0.06) 1.00(0.08) 1.00 (0.04) 0

(d) 0.807  1.97 (0.30) 1.04(0.40) 1.02(0.26) 1.97(0.14) 1.01(0.18) 0.99(0.11) 0
0.51%  1.99 (0.16) 1.00(0.23) 1.00(0.12) 2.00(0.07) 1.00(0.11) 1.00 (0.06) 0

(e) 0.787  1.95 (0.30) 1.03(0.39) 1.03(0.23) 1.96(0.15) 1.02(0.19) 1.00(0.11) 0
0.51%  1.99 (0.11)  1.00(0.26) 1.01(0.14) 1.99(0.05) 1.00(0.13) 1.00(0.07) 0

X ~U(-2,2)

(@ 0.79T  2.03(0.24) 1.01(0.24) 1.02(0.18) 1.99(0.10) 1.00 (0.11) 1.00 (0.08) 0*
0.52%  2.01(0.09) 1.00(0.14) 1.00(0.07) 2.00(0.04) 1.00(0.07) 1.00 (0.03) 0*

(b) 0.78"  1.98(0.21) 1.01(0.21) 1.02(0.16) 1.98(0.10) 0.99 (0.10) 0.99 (0.07) —0.01
0.51%  2.00(0.11) 1.00(0.14) 1.00 (0.07) 2.00(0.05) 1.00(0.07) 1.00 (0.03) 0*

(c) 0.78"  2.02(0.30) 1.02(0.32) 1.04(0.25) 1.99(0.14) 1.00(0.15) 1.00(0.11) —0.01
0.51%  2.00(0.12) 1.00(0.17) 1.00(0.09) 2.00 (0.06) 1.00 (0.08) 1.00 (0.04) 0*

d 0777 1.99(0.30) 1.02(0.36) 1.03(0.25) 1.98(0.15) 1.00(0.17) 1.00(0.11) —0.02
0.51%  2.00(0.16) 1.00(0.23) 1.00(0.11) 2.00(0.08) 1.00 (0.11) 1.00 (0.05) 0*

(e) 0.76"  1.96(0.29) 1.02(0.36) 1.03(0.23) 1.95(0.14) 1.01(0.18) 1.00(0.11) —0.04
0.52%f  1.99(0.18) 1.00(0.27) 1.00(0.13) 2.00 (0.09) 1.00 (0.13) 1.00 (0.06) 0*

X> ~ U(—0.5,0)

(@ 0.887 1.81(0.28) 0.74(0.28) 1.06(0.74) 1.80(0.28) 1.11(0.29) 1.00(0.34) —0.20
0.45F  2.00(0.14) 1.00(0.13) 0.99 (0.44) 2.00 (0.07) 1.00 (0.06) 1.00(0.22)  0*

(b) 0857 1.77(0.21) 0.78(0.36) 1.07(0.58) 1.75(0.11) 1.20(0.42) 1.01(0.29) —0.25
0.45F  1.99(0.16) 1.00(0.13) 1.00 (0.48) 2.00 (0.07) 1.00 (0.06) 1.00(0.22)  0*

(¢ 0867 1.80(0.40) 0.95(0.40) 1.10(1.18) 1.75(0.21) 1.06(0.30) 1.01(0.52) —0.25
0.45F  1.99(0.18) 1.00(0.15) 0.99 (0.56) 2.00 (0.08) 1.00 (0.06) 1.00 (0.26)  0*

(d 0817 1.68(042) 1.04(0.39) 1.04(1.18) 1.66(0.19) 1.02(0.21) 1.01(0.51) —0.35
0.46%  1.99(0.24) 1.00(0.21) 0.99 (0.76) 2.00 (0.11) 1.00 (0.11) 1.00 (0.35)  0*

(e 0797  1.61(040) 1.03(0.38) 1.03(1.15) 1.59(0.20) 1.01(0.18) 1.01(0.52) —0.41
0.46%  1.98(0.28) 1.00(0.25) 0.98 (0.87) 2.00(0.14) 0.99 (0.13) 1.01(0.42)  0*

The empirical mean (standard deviation) for both the intercept and slope parameters are provided.
The asymptotic biases of the intercept estimator (8y) are also presented. (i) ¢ ~ N(0,0.52);
(i) ¢ ~ Gumbel(—0.5y,0.5); (iii) ¢ ~ Laplace(0,0.5); (iv) ¢ ~ Logistic(0,0.5); and (v)
. ~T(,df =30).

fr=1.5.

it=4.

*Value € (—0.01, 0).

support. Thus, we conduct a simulation study to compare these three methods under differ-
ent settings. We choose the smooth weight function p(n?t — ¢) in the modified Buckley—James
estimator (Ying, 1993) as

0, ifntt—c <0
p(n*t —c) = {cos (m(n*t —c — 1))+ 1}/2, if 0 < n*t —¢ < 1

1, ifn*t—c>1
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with ¢ = 2 and A = 0.9, which satisfies the twice differentiability condition. Failure times are
generated from the model T = 2 + X + ¢ with ¢ ~ N(0,0.5%). We consider two covariate
settings: (i) unbounded with X ~ N(0, 1) and (ii) bounded with X ~ U(—1, 1). The censoring
distribution is C ~ U(0,4) A 7. Similar to the first set of simulations, we choose t = 1 and
7 = 3 to yield high and moderate censoring rates. We simulate 1000 runs for each setting and
report the simulation results in Table 2 for two different sample sizes: 100 and 400.

For short follow-up time (z = 1) and unbounded covariate support (X ~ N(0, 1)), the
Gehan-weighted slope estimators have negligible bias under both sample sizes, while the stan-
dard and modified Buckley—James slope estimators have noticeable biases under both sample
sizes, with smaller biases from the modified Buckley—James method. The corresponding inter-
cept estimators under three methods have the same trend in terms of bias. With bounded
covariate, the Gehan-weighted slope estimator and the modified Buckley—James slope estima-
tor have the similar biases (negligible under bigger sample size), which are smaller than the bias
from the standard Buckley—James slope estimator. For the corresponding intercept estimators,
the Gehan-weighted method yields the smallest biases, whereas the standard Buckley—James
method yields the largest biases. When the follow-up time is long (z = 3), with either
unbounded or bounded covariate, all three methods yield virtually unbiased estimators for
both intercept and slope.

4.2. Failure time prediction

We also compare the survival time prediction accuracy of the linear model with the Cox model
via simulations. In order to have a fair comparison, we generate data from the following model:

T =X + eo, @.1)

e

where eg follows the standard extreme value distribution with F () = 1—e™ " Ttis well-known

that such a model setting fits both the linear regression model and the Cox model. In model

Table 2. Comparison of three methods for estimating both the slope and the intercept parameters

Cen. rate oGH Bcu aBy BB AMBJ BumBr
n =100
(a) X ~ N(0,1)
0.847 2.00(0.27) 1.01(0.19) 1.79(0.20) 0.85(0.15) 1.83(0.20) 0.88(0.15)
0.52% 2.00(0.08) 1.01(0.08) 1.97(0.07) 0.97(0.07) 1.98(0.07) 0.99 (0.08)
b)X ~U(-1,1)
0.92F 1.87(0.45) 1.10(0.54) 1.65(0.29) 0.85(0.35) 1.68(0.28) 0.89(0.34)
0.52% 2.00(0.07) 1.00(0.12) 1.99(0.07) 0.98 (0.11) 1.99(0.07) 0.99 (0.12)
n =400
() X ~ N(0,1)
0.847 1.98 (0.14)  0.99 (0.08) 1.91(0.11) 0.93(0.07) 1.93(0.11) 0.96 (0.08)
0.52% 2.00(0.04) 1.00(0.05) 1.99(0.04) 0.99(0.04) 1.99(0.04) 1.00(0.04)
by X ~U(-1,1)
0.92F 1.81(0.18) 1.01(0.22) 1.75(0.15) 0.95(0.19) 1.79(0.17)  0.99 (0.20)
0.52% 2.00(0.03)  1.00(0.06) 2.00(0.03) 0.99 (0.06) 2.00(0.03) 1.00 (0.06)
The true regression function is T = 2 + X + ¢ with ¢ ~ N(0,0.52). Sample sizes are # = 100 and
n = 400.
GH , Gehan-weighted estimator; BJ, Buckley-James estimator; M BJ, modified Buckley—James estima-
tor.
fr =1.0.
it = 3.0.
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(4.1), we have g = Eeg = —y and B = 1, where y is the Euler constant. Note that we only
use a single covariate for illustrative purpose.

We generate censoring time from C ~ U(—3,3) A 7, where 7 is a fixed truncation time
taking different values in order to generate different censoring rates. As in the first simulation
study, covariate X is generated from three distributions: N(0, 1), U(-2,2), and U(—1,1) to
represent three scenarios of the covariate support (unbounded, bounded but wide, bounded
but narrow). For each simulation setting, two independent data sets are generated, namely
the training set and the test set, at each simulation run. Both the linear model and the Cox
model are fitted using the training set, and survival times are predicted for the test set using the
fitted models.

For the linear model, the predicted survival time for subject i in the test set with covariate
X is calculated as TA’Z.LR = E(T; X)) = an + B,%RXZ.*, where ,BAnLR is solved by the Gehan-
weighted rank-based estimating equation and &,, is estimated from (2.5). For the Cox model,
the predicted survival time is calculated by

Filor = /r d [1 —exp{—Ao,n(t)eﬁﬁ‘“X?}],

where Ag_,(7) is the Breslow estimator of the baseline cumulative hazard function Ag(t),
whereas 85 is the partial likelihood estimator. We use the following measure to determine the
prediction accuracy:

Table 3. Comparison of prediction accuracy

Sample size

Cen. 200 2000
X T rate Linear Cox Linear Cox
(a) -2 0.83 0.86 (1.93) 0.33 (4.96) 0.98 (1.67) 0.33 (4.96)
—1 0.69 0.96 (1.72) 0.58 (2.86) 1.00 (1.65) 0.58 (2.85)
0 0.55 0.99 (1.68) 0.84 (1.97) 1.00 (1.65) 0.84 (1.96)
1 0.45 0.99 (1.67) 0.97 (1.71) 1.00 (1.65) 0.97 (1.70)
3 0.42 1.00 (1.67) 1.00 (1.67) 1.00 (1.65) 1.00 (1.65)
OLS (1.66) (1.65)
(b) -2 0.82 0.85(1.95) 0.32(5.27) 0.96 (1.72) 0.31(5.27)
-1 0.67 0.96 (1.73) 0.54 (3.08) 1.00 (1.65) 0.54 (3.07)
0 0.54 0.99 (1.69) 0.81 (2.06) 1.00 (1.65) 0.80 (2.05)
1 0.46 0.99 (1.67) 0.96 (1.72) 1.00 (1.65) 0.96 (1.71)
3 0.42 0.99 (1.67) 1.00 (1.67) 1.00 (1.65) 1.00 (1.65)
OLS (1.66) (1.65)
(© -2 0.86 0.69 (2.41) 0.38 (4.37) 0.74 (2.24) 0.38 (4.37)
—1 0.72 0.95(1.76) 0.68 (2.45) 0.97 (1.70) 0.67 (2.44)
0 0.55 0.99 (1.68) 0.93 (1.78) 1.00 (1.65) 0.93 (1.77)
1 0.44 1.00 (1.67) 1.00 (1.67) 1.00 (1.65) 1.00 (1.65)
3 0.41 1.00 (1.67) 1.00 (1.66) 1.00 (1.65) 1.00 (1.65)
OLS (1.66) (1.65)

Relative mean prediction accuracy to the case without censoring is listed. Empirical mean of M SE, are
given in parentheses. M SE , obtained from ordinary least squares (OLS) is also listed.

(a): X ~ N(0,1).

(b): X ~U(-2,2).

(©): X ~U(-1,1).
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n

MSE, = % > (1 - Ti)z, 4.2)

i=1

where 7 is either TA"Z.LR or Tl.c‘”‘ depending on which model is used and T;* is the true survival
time for the i th subject in the test set. Two sample sizes for the training data set are considered:
n = 200 and n = 2000, and 1000 runs are conducted for each simulation setting. We consider
a sample size of 10,000 for the test data set in all scenarios. The results are summarized in
Table 3. For each scenario, we calculate the relative prediction accuracy to the case without
censoring, that is, the ratio of the empirical mean M SE , under no censoring to that under each
corresponding censored case, in addition to reporting the empirical mean of M SE, (given in
parentheses). Note that ¢ > 3 implies no truncation. The M SE, obtained from ordinary least
squares is also listed for each no-censoring scenario.

From Table 3, we see that the linear model is much less sensitive to the truncation time,
especially for wide covariate support, for example, X ~ N(0,1) and X ~ U(-2,2), where the
linear model yields almost perfect prediction error regardless of truncation time. The linear
model performs uniformly better than the Cox model. The Cox model does extremely poorly
in cases with heavy truncation. This is not surprising because the baseline hazard function in
the Cox model is not estimable after the last observation time (< 7) in the training set. The

(a) (b)
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Fig 2. The predicted survival time versus the true survival time for data generated from model (4.1) with
X ~ N(0,1) and n = 2000. (a): linear model with t = —2; (b): linear model with T = 0; (c¢): Cox model
with T = —2; and (d): Cox model with T = 0. Constant 8 was added to shift all the simulated survival
times to positive values.
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convention is to set the failure time distribution function to be 1 after that time point. This
introduces bias when predicting the survival time, and obviously, the bias becomes more severe
when the follow-up time is shorter. The difference between the two models is clearly seen from
Fig. 2. The two models perform equally well when there is no censoring (Table 3).

5. A real data example

We consider the well-known Mayo PBC study as an illustrative example (Fleming &
Harrington, 1991, app. D.1). The data contain information about the survival time and prog-
nostic factors for 418 patients. Jin ez al. (2003) and Jin er al. (2006) fitted the accelerated
failure time model with five covariates, namely age, log(albumin), log(bilirubin), edema, and
log(protime). They estimated slope parameters for those covariates using rank-based and least
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Fig 3. (a): K-M plot of the estimated residual survival time for the PBC data. (b): Predicted survival time
versus the observed time points (in the logarithm scale) for the PBC data. Circle: individual who failed;
triangle: individual who was censored. Subjects 87 and 293 are two potential outliers.
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squares methods. We consider the same model. The slope parameters are estimated by Gehan-
weighted rank-based approach, and the intercept estimator is obtained by (2.5). The estimated
coefficients for the five prognostic factors are (—0.025, 1.498, —0.554, —0.904, —2.822) with esti-
mated standard errors (0.005, 0.479, 0.052, 0.234, 0.923), which are similar to those reported
in Jin et al. (2003). The intercept estimator is 8.692. The right tail of the Kaplan—Meier curve
of the residual survival time almost touches zero (Fig. 3A), which indicates a valid intercept
estimation from (2.5) for the PBC data.

We then perform the leave-one-out cross-validation to check the prediction performance
of the model. Figure 3B shows the predicted survival time against the observed time in
the logarithm scale. The circles correspond to the patients who failed, and the triangles
correspond to the patients who were censored. The figure suggests that the accelerated failure
time model provides a reasonable prediction of the survival time for this data set with most of
the censored subjects having predicted survival times above the 45-degree line, except for a few
subjects who might be outliers. For example, subject 87 (circled in Fig. 3B) was a 37-year-old
woman with quite good prognostic status: no edema, good albumin (4.4), low bilirubin (1.1),
and moderate protime (10.7). Yet she survived for no longer than roughly half a year. Sub-
ject 293, on the other hand, was a 57-year-old woman with poor prognostic status. In spite of
low albumin (2.98), high bilirubin (8.5), and protime (12.3), and edema resistent to diuretics,
she remains alive after more than 3.5 years. This same subject was also detected as an outlier
in the residual plot for the covariate edema from a Cox model for the same data (Fleming &
Harrington, 1991, p. 184).

6. Concluding remarks

In practice, the mean survival time can be well estimated when the follow-up time is long or the
covariate range is wide (even with a short follow-up time). The first situation corresponds to the
well-known technical condition that the support of the censoring time contains the support of
the survival time and the second situation corresponds to the technical condition of unbounded
covariate support that we have established in this article.

Model checking is very important in data analysis. For the linear model, one can follow the
method developed for the Cox model by visualizing the cumulative sums of the martingale-
based residuals to assess how unusual the observed residual patterns would be, see, for example,
Lin et al. (1996, 1993).

Bias and variance trade-off plays an important role in assessing prediction errors, which
requires knowing the asymptotic joint distribution of both the intercept and slope parameter
estimators. We do not pursue it here. We also want to point out that any prediction beyond the
follow-up time needs to be interpreted cautiously because it lacks empirical verification without
obtaining new data with extended follow-up.

The asymptotic distribution of the intercept estimator is still unknown. However, a trimmed
mean can be estimated at n!/2-rate with an asymptotically normal distribution. We refer to
Ding (2010) for details.
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