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Evaluation of treatment efficacy using a
Bayesian mixture piecewise linear model
of longitudinal biomarkers

Lili Zhao,*" Dai Feng,” Brian Neelon® and Marc Buyse?*°

Prostate-specific antigen (PSA) is a widely used marker in clinical trials for patients with prostate cancer.
We develop a mixture model to estimate longitudinal PSA trajectory in response to treatment. The model accom-
modates subjects responding and not responding to therapy through a mixture of two functions. A responder is
described by a piecewise linear function, represented by an intercept, a PSA decline rate, a period of PSA decline,
and a PSA rising rate; a nonresponder is described by an increasing linear function with an intercept and a PSA
rising rate. Each trajectory is classified as a linear or a piecewise linear function with a certain probability, and
the weighted average of these two functions sufficiently characterizes a variety of patterns of PSA trajectories.
Furthermore, this mixture structure enables us to derive clinically useful endpoints such as a response rate and
time-to-progression, as well as biologically meaningful endpoints such as a cancer cell killing fraction and tumor
growth delay. We compare our model with the most commonly used dynamic model in the literature and show
its advantages. Finally, we illustrate our approach using data from two multicenter prostate cancer trials. The R
code used to produce the analyses reported in this paper is available on request. Copyright © 2015 John Wiley
& Sons, Ltd.
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1. Introduction

Prostate-specific antigen (PSA), a serine protease normally produced in the prostate, is a widely used
marker in clinical trials for patients with prostate cancer. Typically, it becomes elevated when the prostatic
epithelium undergoes malignant transformation. The longitudinal trajectory for PSA levels is often non-
linear in clinical trials. PSA levels are conventionally categorized as complete response, partial response,
no change, or progressive disease [1]. For instance, a partial response is determined if the PSA level is
decreased by at least 50% from the baseline level, and remained under 50% of the baseline level for
at least 28 days. However, using these categorized endpoints often leads to biased estimates [2] and
underpowered comparisons [3-5].

In this paper, we propose the use of continuous longitudinal PSA data to evaluate treatment effects.
Motivated by a phase III multicenter prostate cancer trial [1], we observe that, in many cases, there is
a decline in PSA immediately after therapy followed by a rise in the recurrence of the cancer, and the
decline in PSA represents that a subject responded to therapy. There has been extensive literature on fit-
ting such nonlinear PSA trajectories using a piecewise linear model (PWL) with a random change point
[6-9]. Similar PWL models have been applied to other studies related to HIV [10], cognitive function
[11], AIDS [12], and xenograft experiments [13]. However, we also observe that not all patients have
a decline in PSA following therapy. For these patients, the longitudinal PSA data increase until disease
progression as a sign of not responding to therapy. Therefore, it is important for a model to accommodate
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Figure 1. Hypothetical nonlinear prostate-specific antigen (PSA) trajectories following treatment. Each curve is

an average over 1000 curves simulated from a mixture model with a mixture probability, p, ranging from O to 1,

at a 0.2 interval, a fixed intercept at 7, and fixed normal distributions for the random change point, slope before
and after the change point.

both of these trajectories for responders and nonresponders. The most commonly seen mixture model
in the literature consists of a mixture of a one-parameter intercept-only function and a three-parameter
PWL function [10, 14-16]. These two functions are probably adequate to model longitudinal trajectories
in their contexts. For example, a flat trajectory is expected for controls in the ovarian cancer screen-
ing study [14]. However, they will not be appropriate for modeling longitudinal efficacy biomarkers
following treatment.

To accommodate responders and nonresponders, we consider a model with an additional slope param-
eter in both the PWL and linear functions. This additional parameter allows an initial decline in PSA
among responders or a linear increase among nonresponders. For a responder, the PSA trajectory is
described by a PWL function, represented by an intercept, a PSA decline rate, a period of PSA decline,
and a PSA rising rate. For a nonresponder, the trajectory is described by an increasing linear function
with an intercept and a PSA rising rate. Using Bayesian inference, a subject’s trajectory is classified into
a linear or a PWL function with a certain probability. This probability estimates how likely it is that the
subject responds to therapy. Furthermore, this additional slope parameter offers a greater flexibility for
modeling a variety of patterns of nonlinear PSA trajectories as indicated in Figure 1. This figure depicts
hypothetical PSA trajectories simulated from our mixture model with a mixture probability ranging from
0to 1, at 0.2 interval. When the mixture probability is 0, the trajectory is an increasing linear function of
time; when the mixture probability is 1, the trajectory is a PWL function with a decline phase. Different
mixture probabilities between 0 and 1 result in different patterns of PSA trajectories.

In addition to providing a sufficient fit to nonlinear trajectories, this mixture structure also enables us to
derive clinically useful endpoints such as a response rate and time-to-progression, as well as biologically
meaningful endpoints, such as a cancer cell killing fraction and tumor growth delay.

The remainder of this article is organized as follows. In Section 2, we develop a Bayesian mixture
hierarchical longitudinal model, derive clinically and biologically meaningful endpoints, and address the
nonconstant variance issue. In Section 3, we present simulation studies and compare our mixture model
with a commonly used dynamic model. Finally, in Section 4, we analyze the prostate cancer trial. We
conclude the article with a brief discussion.

2. Mixture model

Let Vij be the log, observed PSA data of subjecti (i = 1,---,n) at time tlj(j =1,---,n,). Log transforma-
tion is commonly used to obtain linear profiles before and after the nadir (the lowest PSA measurement),
and the base 2 logarithms are related to PSA doubling times [8]. The observed PSA data are measured with
error, and can be described by y; = He it € where g;; ~ N(0, ¢?). An unobserved indicator z; is included
in the mean function to distinguish responders and nonresponders. If z; =1, subject i is a responder, and
the mean function of the log, PSA profile is described by a PWL function, which is given by
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where functions x, is defined as max(x, 0). Here, a; is the log, measurement at baseline, 7; is the unob-
served change point (period of PSA decline), b,; is the rate of decline in PSA, and b,; is the PSA rising
rate. If z; = 0, subject i is a nonresponder, and the mean function is reduced to a linear function

Subject i has four parameters (a;, by;, 7;, by;) with z; = 1, and only has two parameters (a;, b,;) with z; = 0.

2.1. Hierarchical structure

Both mean functions in (1) and (2) include the subject-specific intercept, a;, which represents the base-
line data (log, transformed) common to all treatment groups. Hence, we will borrow strength across
all subjects (in all treatment groups) for estimation of this parameter. Specifically, for i = 1,---,n,
we consider

a;|a, aﬁ ~N (a,o-i)

where a and 05 are the population-level parameters. Borrowing the most information across all subjects
and all treatment groups will gain precision in parameter estimations.

The log, PSA decline rate b; and period of decline 7; are specific to z; = 1, and it is very likely that
they are affected by treatments. Therefore, we only allow pooling information across subjects with z; = 1
in the same treatment group for the estimation of these parameters. Let g; be the treatment applied to

subject i outof k = 1, ..., K treatments (hence, g; € {1, ..., K}); we consider
bilbrg, 03 7= 1 (ﬁlk, )I(bll <0) 3)
Tlﬂ,g, =1~ N (o 02,) I(z; > 0) 4)

where B, iy, O b ,and 0 . are treatment-level parameters. The restrictions of by; < 0 and 7; > 0 suggest
that the log, PSA proﬁle for aresponder is characterized by an initial PSA decline followed by a rebound
of PSA.

The parameter b,; also appears in both z; = 1 and z; = 0. It represents a log, PSA growth rate when
z; = 0 and a regrowth rate when z; = 1. To allow comparisons between treatment arms, we consider

b2i|ﬁ28i’ ng,g,» ~N (ﬂZk’ Gizk) )
Additionally, indicators z; (i = 1, - -, n) are assumed to follow a Bernoulli distribution given by
z; ~ Bern (ng P, ) (6)
where n, is the number of subjects and P, is the response rate in treatment g; (gl {1,...,K}).

The hierarchical structures from (3)—(6) allow us to directly make comparisons between treatment
groups using treatment-level parameters such as Py, B, U.x Pox-

2.2. Posterior computation

The Markov chain Monte Carlo (MCMC) procedure for estimating the posterior distributions is imple-
mented by repeatedly drawing samples from the full conditional distributions of the parameters. The
full conditional distributions for all parameters except 7; and z; are straightforward to compute because
of the conjugacy, assuming posterior distributions are normal for the mean parameters and gamma for
the precision parameters. The slice sampling algorithm developed by Neal [17] is used in sampling the
change point 7;. Updating the class indicator z; requires an algorithm that can move between different
parameter spaces, that is, between a space with two parameters (a;, b,;) and a space with four parameters
(a;, by;, 7, by;). We apply the pseudo-prior method of Carlin ef al. [18] and the reversible-jump procedure
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of Green [19] that allow such moving. Details of the calculation are given in Appendix A. With the prior
restrictions in (3) and (4), these algorithms can move between z; = 0 and z; = 1 efficiently. When no
change point is present in the trajectory, 7; is not identifiable [20], and in this situation, the algorithm will
randomly pick a positive 7;. With the constraint of b,; < 0 and 7; > 0, the algorithm is able to correctly
identify the pattern of z; = 0 because of the absence of a negative pre-nadir slope.

2.3. Endpoints for drug efficacy

An important feature of our mixture model is its capability to derive clinically useful endpoints such as
the response rate and time to PSA progression (TTP).

As defined in most clinical protocols with a PSA endpoint, a subject is classified as a responder if the
subject experiences a decline in PSA following treatment, although the reduction threshold varies across
protocols. In our mixture model, the log, PSA profile of subject i is classified as z; = 0 or z; = 1 at each
MCMC iteration, and the proportion of times the profile is classified as z; = 1 (corresponds to a PWL
function) across all MCMC iterations estimates the probability that subject is a responder. Clinically,
this probability may help guide physicians in developing individualized treatments. For a treatment k, its
response rate P, can be calculated using z; (Vi; g; = k) by the beta-binomial conjugacy as shown in (6).
This P, is the preferred endpoint of response rate in phase II trials.

Additionally, we derive the TTP endpoint as a X% increase in PSA taking the nadir (smallest value)
as reference. We define TTP, (k =1,---,K,) as

TTP, = Pypiyy + logy(1 + X %)/ @)

At the subject level, TTP is the sum of two time periods: the time from the start of treatment to nadir and
the time from nadir to progression. The first time period is the period of PSA decline, 7;, if z; = 1 and
zero otherwise; the second time period, by simple algebra, equals to log,(1 + X%)/b,,. At the treatment
level, TTP, is defined in a similar fashion except that subject-level parameters are replaced by treatment-
level parameters as shown in (7), in which the averaged treatment responding time is estimated as
weighted by P,, the proportion of responders in treatment k.

If PSA is a surrogate for tumor size such that a decline (increase) of PSA values indicates regression
(growth) of the tumor. Also, if treated tumors can be assumed to regrow at the same rate as untreated
tumors (i.e., fo; = -+ = Pox = P,) [21,22], we can define cancer cell killing fraction (KF), a cell
surviving fraction (LSF), and a tumor growth delay (TGD), respectively, as

LSF, = =Py X (B> — Biy)s
KF, = 1 — 2L5F,

These clinical and biological endpoints are all defined as a function of our model parameters. Using
MCMC draws of model parameters, these endpoints can be easily calculated and compared between
treatment groups.

2.4. Nonconstant error variance

Because laboratory assays are known to have reduced precision at lower levels, we are concerned with the
assumption that var(y;) = 2. To check this assumption, we modeled the log, variance as a linear function
of the observed y; [8,23]. Additionally, to improve model performance, we normalized longitudinal data

of subject i by its baseline value, y;;, specifically, £; ~ N (0, aizj), where
log, (oé) =0’ — 2r(y;; — yin)

If r = 0, data have a variance ¢, which is independent of the marker value; if r > 0, the measurement
variance decreases with the increasing marker level, and vice versa. Further details on MCMC sampling
are given in Appendix B.
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3. Simulation studies

3.1. Performance of our mixture model

We carried out simulations to investigate the performance of our proposed mixture model defined in
Section 2 (denoted as the mixture model). We simulated two groups, each containing 40 subjects, with
each subject having measurements at baseline, for 2 weeks, monthly for 6 months, and at a 3-month
interval until the second year. The true parameter values were chosen to mimic the real data example,
given by the following:

e a; ~N(7,2%) and 6> = 0.4%.

« AL P, = 0.6, by; ~ N(—0.8,0.16)), 7. ~ N(3,1.52), by, ~ N(0.4,0.12). Arm II: P, = 0.8, by, ~
N(=1.2,0.16%), 7; ~ N(5,1.5%), by; ~ N(0.2,0.1%). In both arms, b, is truncated below zero and z;
and b,; are truncated above zero.

In the simulations, data were truncated at a progression point, determined on the basis of a moving aver-
age of three consecutive values of PSA. Progression was defined as an increase in PSA equal to, or larger
than, 50% above the lowest prior moving average. This increase has to be either the last determination in
the patient follow-up, or maintained for at least 28 days [1]. Based on this rule and the previously cho-
sen parameters, the average median number of measurements per subject across 80 subjects is 7 (ranges
from 2 to 13 ).

The models were implemented in R. We generated 5000 Gibbs samples with a burn-in of 2000 itera-
tions. N(0, 100) priors were used for the mean parameters except that y. ~ N(4, 100). Gamma(0.01, 0.01)
priors were used for the precision parameters, and a noninformative prior, Beta(0.5, 0.5), was used for P,
(k =1,---,K). The posterior estimates from the reversible-jump procedure and pseudo-prior approach
were very similar; therefore, we only reported the estimation from the reversible-jump procedure. To
improve the computation speed, a table lookup method was used in the indexing operation, and vector-
ized computation was used wherever possible. Table I shows the true values of the parameters (True),
estimated mean (Mean), standard deviation (SD), square root of mean square error (SqQrMSE), and 95%
coverage probability (CP), based on 1000 simulated trials. These results indicate that the mixture model
performed well for the estimation of all parameters. In Appendix D, we also present simulation results for
data simulated from a different set of parameters, which resemble the real data example, and the model
also performed well as shown in Table D.2.

3.2. Performance of the tumor growth inhibition model

In the literature, models to estimate longitudinal efficacy biomarkers following treatment are very limited.
Dynamic models are the only models used to estimate longitudinal data (specifically, tumor size data)
following treatment. These models assume that a nonlinear tumor growth profile is a result of two latent
processes: a cell-growing process and a cell-killing process induced by drug exposure. Because PSA
can be considered as a surrogate of tumor size, dynamic models can serve as alternative models for
longitudinal PSA data. Among all dynamic models in the literature [24-28], the most commonly used

Table I. Parameter estimation and performance statistics using
the mixture model based on 1000 simulated datasets.
Parameter Arm  True Mean SD  SqrtMSE CP
a 7 6.99 0.28 0.28 89
P I 0.6 0.56 0.07 0.08 96
1I 0.8 0.79 0.07 0.07 95
I -0.8 -0.85 0.10 0.11 94
b II -1.2 —-1.21 0.08 0.08 94
1 3 3.18 0.33 0.38 93
He I 5 503 028 0.28 94
I 0.4 0.39 0.03 0.03 92
b, I 0.2 020 0.03 0.03 94

SD, standard deviation; SqrMSE, square root of mean square error;
CP, coverage probability.

Copyright © 2015 John Wiley & Sons, Ltd. Statist. Med. 2015, 34 1733-1746
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model was proposed by Claret et al. [26-28]. It is referred to as the tumor growth inhibition (TGI) model.
The TGI model is described by the differential equation

dy,(t)
7 = KLiy,-(t) - KDO,- exp(—=4;0)y;(t)  y,(0) = yy;
where y,(?) is the PSA measurement at time ¢ for subject i and y;(¢) is described as a result of two latent
processes: a growing process with a rate of K; and a killing process with a rate of Ky, exp(—4;7), which
decreases exponentially with time (according to 4, ;) from an initial rate of Ky, [26].

This differential equation can be shown (details in Appendix C) to be equlvalent to

Ky,
log(y;(1) = log(y;(0)) + K. 1 + T(exp(—/lit) -1

l

where lognormal distributions are assumed for K , K , and A; as specified in [26].

It is advisable to assume that the baseline data are also measured with error. We therefore modified the
previous model by replacing log(y;(0)) with a random parameter a; (i = 1, - - -, n), which can be thought
as unobserved true values at baseline. This model is denoted as TGI(a).

Following Claret et al. [26], the period of PSA decline (z;) can be calculated as

~ log (KDO,.) —log (KLi)
=
1

1

It is noteworthy that z; is negative when K, < K . Therefore, the TGI model provides an estimate of
7; for all trajectories including the one without a dechne phase. In contrast, the mixture model provides
an estimate of 7; only when z; = 1.

We used the same simulation strategy to investigate the performance of the TGI and TGI(a) model.
Again, true parameter values were chosen to mimic the real data example, given by the following:

e 4, ~ N(7,22) and 0% = 0.4

* Arm I: 4, ~ LN(-0.3,0.5%), KDO, ~ LN(-04,0.5%), KL,. ~ LN(-1.2,0.5%). Arm II: Ao~
LN(-0.5,0.5%), Kpo, ~ LN(0.4, 0.5%), K; ~ LN(-1.5,0.5%). LN denotes the lognormal distribu-
tion.

The distribution of g, is the same as in the mixture model. Following the calculation in [26], we esti-
mated the posterior median (i.e., exp(a) in LN(a, b)) for each parameter. Based on the choices of the
previous parameters, the average median number of measurements per subject across 80 subjects is 6
(ranges from 2 to 13). The models were implemented in WinBUGS 1.4. N(0, 100) priors were used for
the mean parameters, and Gamma(0.01, 0.01) priors were used for the precision parameters. Both models
provided accurate estimates for model parameters except 4, and the bias of A was large especially in the
TGI model (see Table D.1 in Appendix D). Because the TGI(a) was better from the simulation study and
also coincides with the generated data (i.e, the TGI(a) model considers that baseline data are generated
with errors), we compared the mixture model to the TGI(a) model in the next section.

3.3. Comparison of the mixture model and the TGI(a) model

We fitted the mixture model and TGI(a) model to the data generated in Section 3.1 and the data gen-
erated in Section 3.2 (under the TGI(a) model), which resulted in four analyses (a combination of two
models and two datasets). We used three Bayesian model comparison criteria to compare the mixture
model and the TGI(a) model: (1) a modified deviance information criterion (DIC;) [29], (2) a Watanabe—
Akaike information criterion (WAIC) [30], and (3) a log-pseudo marginal likelihood (LPML) [31]. DIC,4
is preferred in our setting over the standard DIC proposed by Spiegelhalter ez al. [32] because it correctly
reflects the effective number of parameters in mixture models. LPML is a cross-validated leave-one-
out measure of a model’s ability to predict the data. It is valid for small and large samples and does
not suffer from a heuristic justification based on large sample normality. WAIC was proposed recently
and can be viewed as an improvement on the standard DIC, and it also approximates Bayesian cross-
validation [33]. The best model should have the smallest DIC; and WAIC, and the largest LPML.
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Table II. Model comparisons.

Data from mixture Data from TGI(a)
Models DIC; WAIC LPML DIC; WAIC LPML
Mixture 710 778 —440 754 744 —449
TGI(a) 1095 1162 —630 690 711 —422
% times Mixture is better 100 100 100 30 29 34

DIC;, deviance information criterion; WAIC, Watanabe—Akaike information criterion;
LPML, logpseudo marginal likelihood; TGI, tumor growth inhibition.

Not surprisingly, on average TGI(a) model was the best for the data that were simulated from the
TGI(a) model, and the mixture model was the best for the data that were simulated from the mixture
model, as shown in Table II (the best diagnostic statistics are highlighted). But it appears that the mixture
model was more robust than the TGI(a) model (the differences in the diagnostic statistics were between
27 and 64 for data from the mixture model and between 190 and 385 for data from the TGI(a) model).
It is also important to note that, for data that are simulated from the TGI(a), the mixture model was also
chosen to be the best model 29-34% of the times.

4. Application

We applied the mixture model, and the TGI and TGI(a) models to two multicenter trials for patients with
advanced (metastatic) prostate cancer [1]. An experimental retinoic acid metabolism-blocking agent,
liarozole, was compared with the antiandrogenic drugs, cyproterone acetate and flutamide. As in previ-
ous analyses of these data [1], we combined data from the two trials and make no distinction between the
antiandrogenic drugs. Patients in both trials were in relapse after first-line endocrine therapy. We included
485 patients in our analyses, 249 treated with liarozole and 236 treated with antiandrogenic drugs. Assess-
ments of PSA were undertaken before the start of treatment, for 2 weeks, monthly for 6 months, and at a
3-month interval until treatment discontinuation or death. The number of PSA measurements per subject
ranges from 2 to 19 (median is 6).

All priors were the same as in the simulation study. Based on the prior knowledge that PSA progression
occurred within 6 months and the assumption that change point occurs about 2 months earlier than the
progression time, we selected 4 as the mean for the normal prior for y, (i.e.,u, ~ N(4,100)). These priors
were quite vague relative to the likelihood. A sensitivity analysis to investigate the effect of the prior
distributions on the parameter estimates was performed. The effect on the final estimates of increasing
the variance of the prior distribution was assessed. For example, increasing the variance of the prior
normal distribution (e.g., G o-ﬁ o- , and 0'2) from 100 to 1000 had a negligible effect on the posterior
distribution of their estlmates Tins mdlcates that the priors employed were sufficiently vague relative to
the likelihood, so that the prior had minimal effect on the posterior estimates.

We generated 30,000 Gibbs samples with a burn-in of 10,000 iterations, and we then used 2000 iter-
ations obtained from every 10th iteration for computing all posterior estimates, including the posterior
mean and the highest probability density (HPD) intervals. It took about 6 h for the PSA data to execute on
an Intel Xeon 3.10 GHz 4 GB RAM, x64 Linux computer (Santa Clara, CA, USA). The MCMC chains
mixed well, and the convergence of the MCMC sampling algorithm was further checked using several
diagnostic procedures as recommended by Cowles et al. [34].

In the first step, we verified the assumption of a constant variance by calculating a 95% HPD interval
for the parameter r, as defined in Section 2.4. The interval covered zero, suggesting r was not significantly
different from zero and a constant variance was assumed in the analysis later in the text.

Table IIT suggests that both the Mixture and TGI(a) models are reasonable choices for the fit of PSA
data. Specifically, the mixture model is preferred for the liarozole arm, and the TGI(a) is preferred for
the antiandrogens arm, and the TGI model seems to be the worse choice for both arms.

Posterior estimates from the Mixture and TGI(a) models are displayed in Table IV. This Table shows
that both models provided very close estimates for a and 6%. A 95% HPD interval was calculated for the
difference in each parameter between liarozole and antiandrogens (denoted by difference in the table); if
the interval does not cover zero for a parameter, the two arms are considered to be significantly different
for that parameter (denoted by *). Both models show that Liarozole was more effective. In the mixture
model, while the response rate in liarozole was similar to antiandrogens (~ 40%), patients treated with
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Table III. Model comparisons.
Antiandrogens Liarozole
Models DIC, LPML WAIC DIC, LPML WAIC
Mixture 1758 —1125 1998 1771 —1086 1950
TGI(a) 1697 -1070 1884 1842 —1124 2021
TGI 2020 -1192 2179 1965 —1140 2104

DIC;, deviance information criterion; WAIC, Watanabe—Akaike information crite-
rion; LPML, logpseudo marginal likelihood; TGI, tumor growth inhibition.

Table IV. Posterior mean and 95% HPD intervals in prostate cancer trials using
the mixture model and TGI(a) model.
Common Parameters
Mixture 0.46 (0.45,0.48)
TGI(a) c 0.46 (0.45,0.48)
Mixture 7.10 (6.91,7.28)
TGI(a) * 7.04 (6.84,7.21)
Different Parameters
Antiandrogens Liarozole Difference
Mixture P 0.40(0.33,0.48) 0.43(0.35,0.50) (—0.08,0.13)
i 2.02(1.57,2.46) 4.09(3.28,4.96) (1.12,3.07)*
B -0.76(-0.97,-0.57)  —0.74(-0.90,-0.59)  (-0.25,0.27)
b, 0.37(0.33,0.42) 0.35(0.32,0.39) (=0.07,0.04)
TTP 2.39(2.15,2.67) 3.41(2.94,3.87) (0.46,1.53)*
KF 0.46(0.38,0.55) 0.73(0.63,0.82)) (0.13,0.39)*
TGD 2.50(1.90,3.18) 5.30(3.95,6.81) (0.28,4.48)*
TGl(a) A 0.97(0.42,1.73) 0.82(0.39,1.41) (—1.24,0.79)
Kpo 0.26(0.09,0.42) 0.62(0.40,0.97) (0.08,0.79)*
K, 0.27(0.22,0.32) 0.34(0.29,0.40) (0.00,0.15)*

HPD, highest probability density; TGI, tumor growth inhibition; TTP, time to progression;
TGD, tumor growth delay; KF, killing fraction.

liarozole responded to therapy significantly longer than those treated with antiandrogenic drugs, which
led to a significantly prolonged TTP and greatly increased cancer cell killing fraction, as well as a longer
tumor growth delay. In the TGI(a) model, the initial drug-killing rate was higher in liarozole, and the
tumor growth rate was also marginally higher in liarozole. The estimates using the TGI model were
similar to that of the TGI(a) model except that K is not significant in the TGI model.

Figure 2 displays the estimated PSA trajectories on the observed data for nine selected subjects. All
three models fit the data reasonably well. The mixture model was noticeably better for subject G and
slightly worse for subject I. Based on the mixture model, each fitted curve was estimated by a weighted
average of a linear function and a PWL function. The weight (mixture probability) is shown on top of
each panel, which indicates how likely it is that the subject responds to therapy. For instance, patient A
is a responder, patient D is a nonresponder, and patient F is a responder with a 48% probability. It is also
important to note that the fitted curve is not limited to a linear or PWL function; for instance, patients A,
B, and C had a quadratic fitted curve, and patients F and [ had a fitted curve with a slower increasing linear
function followed by a rapidly increasing linear function. These nine subjects represent different patterns
of PSA trajectories, and they were selected for illustrative purposes. We want to emphasize that the model
fit all 485 subjects fairly well (plots are available upon request). It is worth mentioning that profiles with
two data points (such as patient H) should be interpreted with caution. If the two data points are far apart
in time, it is unknown if there was a PSA decline between the two time points. In this study, there are
only a few such subjects, and the two time points were reasonably close; otherwise, these subjects should
be excluded before using the mixture model.

Lastly, we assessed the goodness of fit of each model using a quantitative measure based on posterior
predictive checks. The predicted values were obtained from the posterior predictive distribution for each
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Figure 2. log, prostate-specific antigen profiles for nine selected patients in the prostate cancer trial. The horizon-
tal axis is the months at which PSA are measured. Each plot represents one patient denoted by A, B, C, - - -, I. The
circles are the observed data. The percentage on the top of each panel represents a mixture probability, that is, the
proportion of times that the trajectory is classified as a piecewise linear function. TGI, tumor growth inhibition.
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Figure 3. Ninety-five per cent confidence intervals of predicted log, prostate-specific antigen reduction at the last
measurement relative to baseline (a), or relative to the second measurement (b), compared with observed values
(vertical lines).

posterior sample from the MCMC algorithm. Figure 3 suggests that the mixture model fits the PSA data
better than the TGI and TGI(a) models. In the TGI(a) model, the observed 25% quartile and median were
above the 95% confidence intervals of predictive distribution of the model; in the TGI model, the observed
75% quartile is below the 95% confidence interval. In contrast, the observed median and quartiles (25%
and 75% quartiles) for the mixture model were all well within the 95% confidence intervals.
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5. Discussion

In this article, we extended existing mixture models to estimate nonlinear PSA trajectories following
treatment by introducing a mixture structure consisting of a linear function and a PWL function. These
two functions have an important clinical implication: a responder is described by a PWL function and a
nonresponder is described by a linear function. The model is able to classify each subject as a responder
or nonresponder with a certain probability. Using this probability as a weight, the weighted average of
the two trajectories sufficiently characterizes a variety of patterns of PSA trajectories. Furthermore, this
mixture structure enables us to derive clinically useful endpoints such as a response rate and TTP, as well
as biologically meaningful endpoints such as a cancer cell killing fraction and tumor growth delay.

A major limitation of dynamic models is its inability to classify the PSA trajectories; therefore, it
provides an estimate of the PSA decline period even when this period does not exist. We illustrated the
advantage of our model through simulation studies and an actual clinical trial data, and conclude that it is
an attractive alternative to dynamic models for longitudinal PSA data following treatment. The proposed
mixture model is generalizable to many other diseases when longitudinal efficacy biomarker data are
available (for example, CD125 in ovarian cancer and circulating tumor cells in various solid tumors).
Additionally, this model allows the inclusion of covariates for the estimation of the change point, log,
PSA value at the change point, and log, PSA rates of change before and after the change point. For
instance, the mean of 7;, 4, can be modeled as a linear function of the treatment groups and patient-level
covariates.

The model can also incorporate data that fall below the limit of detection. Such data are not observed
in the prostate cancer trials, but they are likely to occur in most clinical trials. For example, subjects
with complete response have data that are below the limit of detection. Such data can be considered left-
censored, and their values are less than a threshold. In the posterior sampling, these data can be sampled
from a truncated normal distribution as illustrated in [13].

In this article, we used partial follow-up data on PSA for patients who dropped out of the study before
PSA progression by assuming uninformative dropout. Appropriate adjustment is needed if the dropout is
informative of the PSA trajectory, and the inclusion of some time-dependent covariates may potentially
be useful for this adjustment.

Appendix A: Posterior computation

The MCMC procedure for estimating the posterior distributions was implemented by repeatedly drawing
samples from the full conditional distributions of the parameters. The full conditional distributions for
all parameters except 7; and z; are straightforward to compute due to the conjugacy, assuming posterior
distributions are normal for the mean parameters and gamma for the precision parameters.

A.l. Sampling ;

The likelihood function is only continuous but not differentiable in 7;. Skates et al. [14] and Pauler et al.
[7] propose the use of an approximation of the likelihood to obtain a proposal density in the Metropolis—
Hastings algorithm. We found that the slice sampling algorithm developed by Neal [17] is more efficient
in sampling the change point 7;. In the slice sampling algorithm, the lower limit is zero and the slice width
is 0.2.

A.2. Sampling z;

Updating the class indicator z; of whether or not there is a treatment responding period is not straightfor-
ward, because different values of z; imply different parameter spaces. If z; = 0, two parameters (a; and
b,;) will need to be updated; if z; = 1, four parameters (a;, by;, 7;, and b,;) will need to be updated. Hence,
sampling from the full conditional distribution of z; requires an algorithm that can move between z; = 0
and z; = 1. We applied two procedures that allow such moving between models, the reversible-jump
procedure of Green [19] and the pseudo-prior method of Carlin et al. [18] . In both procedures, we took
p(z;=1)=p(;=0)= % as a priori. In the reversible-jump procedure, prior densities of 7; and b; were
chosen as their proposal densities to propose a move to z; = 1. Specifically, we generated a candidate
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bt ~N (ﬁlk, o, ) I(b); < 0) and a candidate 7 ~ N (g, 6%) I(uy > 0), and the move was accepted
1k l T
with probability

min{likelihood ratio X prior ratio X proposal ratio X Jacobian, 1}

Because the proposal densities are their prior distributions, prior ratio X proposal ratio = 1, and the
Jacobian was also equal to 1 because b}, and 7 were generated directly from proposal distributions.
Therefore, the acceptance probability is reduced to the minimum of likelihood ratio and 1,

l (yilai, bi. 7! by, 0-2)
min L ! ,1
l (Yilai’ b, 0'2)

where [(.) is the likelihood of longitudinal data of subject i (i.e., y; = (¥, - *,;,)- The acceptance
probability for a proposed move from z; = 1 to z; = 0 is the inverse of the previous pfobability.

The prior densities of 7; and b,; were also chosen to be their pseudo-prior densities. As the name
suggests, a pseudo-prior is not really a prior but only a conveniently chosen linking density, required to
define completely the joint model specification. In other words, we augmented the trajectory under z; = 0
by defining a probability distribution for a hypothetical b, and z;. These variables have no meaningful
interpretation under z; = 0, and they are only introduced to match the parameter dimensions. The full
conditional distributions of b,; and 7; are

_ il ez =1) g7l = 1) if 7= 1
G AMS AP {g(bT,"Ti*IZizo) ifz,=0

where g (b, 77|z =0) = N (ﬂw o, )I(b]i <0 XN (10,0'20) I(u,, > 0). When z; = 1, we generate
1 1k T

b}, and 7 from the usual full conditional given data; when z; = 0, we generate b}, and 7" from their

pseudo-prior densities g(b},, 7 '|z; = 0). In this case, when the pseudo-priors are their prior densities,

we have

1(yila,, b} 77 by 02)

1

PE=1 1(yila;, b} 77 by 02) + 1 (yila, by 02)

Hence, the pseudo-prior method generates z; as a discrete random variable of O or 1, in contrast to the
Metropolis step in the reversible-jump procedure.

Appendix B: Sampling the nonconstant variance

In Section 2.4, we modeled the variance as a function of the observed y;;, that is,

e.~N (O, 0':2.>

y

The full conditional distributions of ¢2 and r are

Zf\i n 1 N n
[1/62| -] = Gamma (0.01 + %,0.01 +3 D /v 6y = )

i=1 j=1

=
=

1 r
f@r|-- ) xexp {r log(v;;/vy) — o= Z (vl-j/vl-l)2 Oy — ,uz’_’l-j)z}
i=1 j=1 i=1 j=1
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We sampled r by means of the adaptive Metropolis—Hastings algorithm [35]. The normal proposal
density was centered at the previous value, and the variance in the proposal was ‘refined’s by using the
empirical covariance from an extended burn-in period.

Appendix C: Implementation of the TGI model

dy,(t)
- K, yi(t) = Kpo, exp(=4;0)y;(r) and y;(0) = yy;
dy(t) 1
Tm = KL,‘ - KDO,» exp(—/ll-t)
dlog(y;(1))
— — K, — Kpo, exp(=4if)

Ko,
log(yi(t)) = KLit + T eXp(—/lil) +cC

1

Kpo, K,
log(y;(0)) = T +c¢ = c=log(y0) - T

l 1

Therefore,

Kby,
log(y;(1)) = log(y;(0)) + K 1 + T(CXP(—/II-I) -1

1

In the TGI model, K; , Kj, , and A; were assumed to be lognormally distributed.

Appendix D: Additional simulation results

Simulation results using the TGI and TGI(a) models are presented in Table D.1.
Data were simulated from true parameters in the succeeding text, and simulation results from the
mixture model are shown in Table D.2.

« AmI: P, = 04, by; ~ N(—0.5,0.12), 7, ~ N(4,1.5%), by, ~ N(0.35,0.1%). ArmII: P, = 0.6, b, ~
N(=0.75,0.162), 7; ~ N(2,12), by, ~ N(0.35,0.1%).

Table D.1. Parameter estimation and performance statistics using TGI
and TGI(a) models based on 1000 simulated datasets.

Parameter Arm True baseline Mean SD SqrtMSE  CP

a 7  TGI(a) 6.99 0.22 0.22 95

A I 0.74 TGI(a) 1.96  10.99 11.06 93

TGI 6.43  86.86 87.04 85

I 0.61 TGI(a) 0.67 0.15 0.16 93

TGI 0.67 0.15 0.17 91

% I 0.67 TGI(a) 0.99 3.33 3.34 96

Do TGI 2.79 32.18 32.25 92

I 1.49 TGI(a) 1.54 0.22 0.23 94

TGI 1.54 0.22 0.22 93

K I 0.30 TGl(a) 0.29 0.07 0.07 90

L TGI 0.29 0.06 0.00 90

I 022 TGI(a) 0.21 0.04 0.03 92

TGI 0.22 0.03 0.00 92

TGI, tumor growth inhibition; SD, standard deviation; SqrMSE, square root
of mean square error; CP, coverage probability.
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Table D.2. Parameter estimation and performance statistics
using the mixture model based on 1000 simulated datasets.
Parameter Arm True Mean SD  SqrtMSE CP
a 7 6.97 0.31 0.31 85
p 1 0.4 042 0.06 0.07 97
11 0.6 0.55 0.07 0.08 97
5 I -0.5 -0.49 0.05 0.05 98
! 11 -0.75 -=0.75 0.09 0.09 97
1 4 3.96 045 0.46 95
He i 2 221 024 032 92
8 I 0.35 0.35 0.03 0.03 90
2 1 0.35 0.34 0.03 0.03 90
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