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Influence of Age, Reproductive Cycling Status, and Menstruation
on the Vaginal Microbiome in Baboons (Papio anubis)
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The vaginal microbiome is believed to influence host health by providing protection from pathogens
and influencing reproductive outcomes such as fertility and gestational length. In humans, age-
associated declines in diversity of the vaginal microbiome occur in puberty and persist into
adulthood. Additionally, menstruation has been associated with decreased microbial community
stability. Adult female baboons, like other non-human primates (NHPs), have a different and highly
diverse vaginal microbiome compared to that of humans, which is most commonly dominated
by Lactobacillus spp. We evaluated the influence of age, reproductive cycling status (cycling vs. non-
cycling) and menstruation on the vaginal microbiome of 38 wild-caught, captive female olive baboons
(Papio anubis) by culture-independent sequencing of the V3-V5 region of the bacterial 16S rRNA
gene. All baboons had highly diverse vaginal microbial communities. Adult baboons had significantly
lower microbial diversity in comparison to subadult baboons, which was attributable to decreased
relative abundance of minor taxa. No significant differences were detected based on cycling state or
menstruation. Predictive metagenomic analysis showed uniformity in relative abundance of
metabolic pathways regardless of age, cycle stage, or menstruation, indicating conservation of
microbial community functions. This study suggests that selection of an optimal vaginal microbial
community occurs at puberty. Since decreased diversity occurs in both baboons and humans at
puberty, this may reflect a general strategy for selection of adult vaginal microbial communities.
Comparative evaluation of vaginal microbial community development and composition may elucidate
mechanisms of community formation and function that are conserved across host species or across
microbial community types. These findings have implications for host health, evolutionary biology,
and microbe-host ecosystems. Am. J. Primatol. 77:563-578, 2015. © 2015 Wiley Periodicals, Inc.
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INTRODUCTION

The term “microbiome,” in the context of host—
microbial interactions, refers to the microbial
community at a particular body site in combination
with the genetic information encoded by this
community [Cho & Blaser, 2012]. The normal
mucosal microbiome of humans and animals is
believed to benefit host health through protection
from pathogens and contribution to critical host
functions including immune education, metabolism,
and epithelial development [Ding & Schloss, 2014;
Lozupone et al., 2012; Ravel et al., 2013; Sartor &
Mazmanian, 2012]. The study of mucosal microbial
communities has undergone a revolution over the
past 10-15 years with the implementation of
culture-independent, high throughput sequencing
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methods [Foster et al., 2012]. These DNA sequence-
based techniques generate a more complete picture

Contract grant sponsor: Michigan Institute for Clinical and
Health Research Endowment; contract grant number:
UL1TRO000433; contract grant sponsor: NIH;
contract grant number: K12 HD 065257-01.

*Correspondence to: Ingrid L. Bergin, Unit for Laboratory
Animal Medicine, 2800 Plymouth Road, B36-G177, University
of Michigan, Ann Arbor 48109, MI. E-mail: ingridbe@med.
umich.edu

Received 21 August 2014; revised 22 December 2014; revision
accepted 23 December 2014

DOLI: 10.1002/ajp.22378
Published online 12 February 2015 in Wiley Online Library
(wileyonlinelibrary.com).



564 / Uchihashi et al.

of microbial communities than was possible with
culture-based methods, since the majority of all
bacterial species identifiable by DNA-based techni-
ques are non-cultivable [Foster et al., 2012].

The vaginal microbiome represents a mucosal
microbial community that is subject to frequent
environmental perturbations due to pathogen expo-
sure and physiologic fluctuations inherent to the
reproductive cycle [Farage et al., 2010; Gajer et al.,
2012; Hickey et al., 2012; Zhou et al., 2004]. A
“microbial community” consists of the composition of
species in an ecologically grouped, multispecies
assemblage of bacteria, considered with respect to
taxonomy and relative abundance [Konopka, 2009].
The “normal” vaginal microbial community of
healthy women is classically defined by a predomi-
nance of Lactobacillus spp. Lactobacillus ferment
glycogen into lactic acid, generating a low vaginal pH
that is thought to prevent colonization and prolifera-
tion of potentially pathogenic organisms [Hickey
et al., 2012; Linhares et al., 2011; O’Hanlon et al.,
2011]. This community structure is not, however,
universal to all primates. Although female non-
human primates (NHPs) undergo similar reproduc-
tive physiological changes, they have a higher
vaginal pH and significantly different vaginal
microbial community composition than women
[Hashway et al., 2014; Rivera et al., 2010,2011;
Spear et al., 2010, 2012; Stumpfet al., 2013; Yildirim
et al., 2014]. Specifically, the NHP vaginal micro-
biome has much greater diversity and a striking
paucity of lactobacilli in comparison to that of
women. Host-species was recently shown to be the
most significant factor influencing vaginal microbial
composition in a comparative analysis of humans
and eight species of NHPs, yet inter-species host
microbial community differences are not entirely
explained by host phylogenetic differences [Rivera
etal., 2010; Yildirim et al., 2014]. Furthermore, there
is inter-individual variation within host species. In
humans, approximately 27% of healthy,
asymptomatic adult women have vaginal microbial
communities that are not Lactobacillus dominant,
and are highly diverse [Ravel et al., 2011]. For
women with a Lactobacillus dominant vaginal
microbiome, different species of Lactobacillus may
predominate [Ravel et al., 2011]. In baboons, a recent
study on a small number of baboons evaluated over 6
months showed that inter-animal variation exceeded
intra-animal variation over the course of the study
[Hashway et al., 2014].

With respect to specific bacterial composition at
the phylum level, Firmicutes predominate in both
the human and baboon adult vaginal microbiome, yet
the species-level composition of this phylum differs in
these hosts [Hashway et al., 2014; Rivera et al., 2010,
2011; Stumpfet al., 2013; Yildirim et al., 2014]. In the
baboon, the vaginal Firmicutes consist of a diverse
array of the anaerobic, polyphyletic class Clostridia,
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while in the majority of humans, vaginal Firmicutes
are comprised almost entirely of the genus Lactoba-
ctllus, within the class Bacilli [Hashway et al., 2014;
Rivera et al., 2010, 2011; Spear et al., 2010, 2012;
Stumpfet al., 2013; Yildirim et al., 2014]. In addition,
the baboon vaginal microbiome has a greater
representation of other phyla, including Fusobac-
teria (a phylum that includes many species patho-
genic in humans), Bacteroidetes, Proteobacteria,
Actinobacteria, and others that are minimally
represented in the majority of adult women [Hash-
way et al., 2014; Rivera et al., 2010, 2011; Spearet al.,
2010, 2012; Stumpfet al., 2013; Yildirim et al., 2014].
Evolutionary or ecological factors influencing the
establishment of a higher diversity vaginal micro-
biome in the baboon and other NHP species are not
known, nor is it known whether this community
changes over the lifetime of the animals.

Both baboons and humans must contend with
greater potential for pathogen exposure with post-
pubertal onset of sexual activity. In women, age-
related changes in the vaginal microbiome are
correlated with levels of estrogen [Farage et al.,
2010; Hickey et al., 2012]. In young children, the
vaginal microbiome consists of a diverse mixture of
aerobes, strict anaerobes, and enteric organisms
[Hammerschlag et al., 1978; Hickey et al., 2012]. This
changes during adolescence to the lower diversity,
Lactobacillus-predominant community of adulthood
[Gajer et al., 2012; Hammerschlag et al., 1978;
Lamont et al., 2011; Ravel et al., 2011; Zhou et al.,
2004]. Community shifts and decreased stability
have been correlated with menstruation in humans
[Gajer et al., 2012; Hickey et al., 2013; Lopes dos
Santos Santiago et al., 2011]. Additionally, follicular
phases (higher estradiol) of the menstrual cycle have
been associated with higher levels of community
stability [Gajer et al., 2012]. The effects of age or
reproductive cycle—associated microbial changes in
NHPs have not been extensively investigated. In
particular, it is unknown whether the age and cycle-
dependent alterations seen in humans are unique.
Evaluation of the NHP vaginal microbiome in
relation to life cycle or reproductive cycle stages
may provide comparative insight into strategies used
by host-microbial ecosystems to cope with the
hormonal alterations and increased potential patho-
gen exposure associated with sexual maturity.

In this study, we evaluated the vaginal micro-
biome of wild-caught, captive olive baboons (Papio
anubis) with respect to age and reproductive cycle
phase. Olive baboons share many anatomic and
physiologic reproductive features with humans,
including non-seasonal sexual receptivity and a
relatively straight cervical canal, in contrast to the
seasonal sexual receptivity and tortuous cervical
canal of the rhesus macaque (Macaca mulatta) [Fox,
2002; VandeBerg et al., 2008]. These features may
lead to increased potential exposure to pathogens. To
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our knowledge, alterations of the baboon vaginal
microbiome with respect to age or reproductive cycle
have not been evaluated. The specific objective of this
study was to characterize differences in the vaginal
microbial community of wild-caught, captive ba-
boons based on age, reproductive cycle stage, and
menstruation. Based on human studies, we hypoth-
esized that adult baboons would have decreased
microbial diversity, potentially due to selection for
the optimal mixture of bacteria necessary for host
health during reproductive life.

METHODS

Humane Care Guidelines and Regulatory
Oversight

All aspects of live animal work in this study were
approved by the Institutional Review Committee
(IRC) at the Institute of Primate Research (IPR) in
Karen, Kenya (approval number IRC/03/12). The
IRC policies for humane animal care and use adhere
to the 3R’s [Russell & Burch, 1959], pertinent
Kenyan law (Cap 360: Prevention of Cruelty to
Animals Act), and the International Guiding Princi-
ples for Biomedical Research Involving Animals
(CIOMS, ICLAS 2012). These principles are consis-
tent with the Principles for the Ethical Treatment of
Non-Human Primates (American Society of Prima-
tology). This study received an off-site exemption
from the University Committee for the Care and Use
of Animals (UCUCA).

Study Site and Population

This study was conducted at the IPR, which was
selected based upon our successful previous collab-
orations [Bell et al., 2011; Bergin et al., 2013] and the
availability of a large population of wild-origin,
genetically diverse baboons. Additionally, this insti-
tute has extensive expertise in the care and use of
baboons, particularly in the context of reproductive
disease models [Chai et al., 2007; D’Hooghe et al.,
2004; Nyachieo et al., 2009]. IPR is a non-profit
institution first established in 1960 and is a WHO
collaborating center, an African ANDI Center of
Excellence in Preclinical Research, an Associate
Partner of the European Union Primate Network
(EUPRIM), and has statutory compliance and regis-
tration with the NITH Office for Laboratory Animal
Welfare (foreign institution assurance # A5796-01).

The study population initially consisted of 49
female olive baboons (Papio anubis). Animals were
each sampled once during the period of July 17 and
18, 2012, coinciding with scheduled surveillance for
tuberculosis (TB). TB testing is a routine screening
procedure for NHPs, and all the baboons in this study
tested negative for TB. The population represented a
convenience sample of the available animals and was

not pre-selected for age or reproductive cycle stage.
The animals were uniquely identified by tattoos and
are identified in this study as Baboon 1, 2, 3, ..., 49.
Additional metadata consisted of weight, estimated
age, menstrual cycle stage, reproductive state, and
physical and cervical examination findings.

Housing and Health Status

Animals in the main colony were housed in
outdoor group enclosures consisting of one male and
multiple females under ambient temperature
and humidity. Protection from weather conditions
and wildlife was provided by the enclosure roofing
and natural bedding materials, and the wire-
enclosure and perimeter fencing. The animals were
fed monkey biscuits, and fresh fruits and vegetables.
Animals in quarantine had been trapped from
various sites in Kenya under permit from the Kenyan
Wildlife Service. In brief, wild baboons reported to
the Kenyan Wildlife Service as nuisance animals
were trapped using baited live traps. Animals were
transported to IPR and housed in quarantine for
90 days in small groups for acclimation, disease
surveillance, and conditioning for endo and ectopar-
asites. The animals in this study were healthy
without symptoms of infectious disease and none
had been recently treated with antibiotics.

Sample Collection

Animals were sedated with an intramuscular
injection of a mixture of 9.5 mg/kg ketamine (Rotex
Medica, GMBH, Tritau, Germany) and 0.5 mg/kg
xylazine (Rompun", Bayer, Pittsburg, PA). Animals
were weighed and underwent physical examination,
including rectoabdominal bimanual uterine palpa-
tion, and cervical evaluation using a vaginal specu-
lum. None of the animals had signs of reproductive or
systemic diseases. With the animal in ventral
recumbency, vaginal swab samples (Copan 307C,
UTM™ minitip flocked swabs, Copan Diagnostic,
Inc., Murrieta, CA) were taken by rolling the dry
swab on the sides and dorsal wall of the distal vagina
(approx. 2.5-5em from the introitus). The swabs
were placed in liquid Amies media and stored on ice
for approximately 30 min to 1hr, then moved to
storage at —70°C. The samples were transported
under controlled temperature conditions (dry ice) by
a commercial sample shipper (World Courier, New
Hyde Park, NY) to the University of Michigan for
DNA extraction and analysis.

Metadata and Subgroup Identification

Animals were categorized into adults or sub-
adults based on body weight and physical appear-
ance. Overall, body weights for adults were higher
than subadults; 80% of subadults weighed less than
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11kg, which was the lowest weight for any of the
adults included in this study (weight range: sub-
adults =9.2-13.5kg, adults = 11-19 kg). Additional-
ly, animals were characterized as adults if they had
evidence of previous pregnancy (based on cervical
morphology) or lactation (presence of elongated
nipples [Altmann et al., 1981]). One animal could
not be accurately classified as adult or subadult and
was excluded from the age comparison.

Reproductive cycle phase was assessed based on
perivulvar swelling at the time of the examination by
an experienced observer using a modification of an
established system [VandeBerg et al., 2008]. In brief,
non-cycling animals had flat perivulvar and perianal
skin (stage 0). Animals in the pre-ovulatory (follicu-
lar) phase of the menstrual cycle had increasing
perivulvar swelling and turgidity (stage 1-3) reach-
ing maximal swelling at the time of ovulation (stage
4). The luteal (secretory) phase of the cycle was
represented by decreasing turgidity of the perivulvar
skin (stage 5-6) culminating in menstruation (stage
7) with evidence of blood. Pregnancy (stage 8) was
determined by abdominal or rectoabdominal palpa-
tion [Tardif et al., 2012].

For subgroup comparison based on age, 23 of the
38 total animals for which sequence was available
were utilized (Table I). These represented 14
reproductively mature, non-pregnant adult, and nine

TABLE I. Characteristics of the 38 Wild-Caught,
Captive Baboons

Number of animals

Category (total N =38)

Estimated age®
Adults
Subadults
Menopausal
Unknown

Cycle stage
Cycle 0 (non-cycling)
Cycle 1 (follicular phase)
Cycle 2 (follicular phase)
Cycle 3 (follicular phase)
Cycle 4 (ovulation)
Cycle 5 (luteal phase)
Cycle 6 (luteal phase)
Cycle 7 (menstruation)
Pregnant
Unknown
Menopausal

Lactating

Weight
<11lkg 8
11-12.9kg 8
13-14.9kg 10
15-16.9kg 6
>17kg 6

]
el ]
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2See methods for description of age estimation.
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subadult (peripubertal) animals. The remaining
animals were excluded due to pregnancy (N =3),
lactation (N=10), old age (menopausal, N=1) or
inability to estimate age (N=1). For subgroup
comparison based on reproductive cycle, 31 of the
38 total animals were utilized (Table I). These
represented 12 cycling (stages 1-7) and 19 non-
cycling (stage 0) animals. The remaining animals
were excluded due to pregnancy (IN=3), unknown
cycle stage (N = 3) or old age (menopausal, N =1). For
comparison based on menstruation, 12 of the total 38
animals were utilized (Table I). These represented
three menstruating (stage 7) and nine non-menstru-
ating (stage 1-6) animals. The remaining animals
were excluded due to pregnancy (IN=3), unknown
cycle stage (N=3), old age (N=1) or non-cycling
state (stage 0, N=19).

DNA Extraction

Extraction of DNA from vaginal swab tips was
performed with the Biomek ®FX" (Beckman Coulter,
Inc., Indianapolis, IN), a laboratory automated work
station to optimize the accuracy and the efficiency of
the isolation process. A Mo Bio PowerSoil™- htp 96
Well Soil DNA Isolation Kit (Mo Bio Laboratories,
Inc., Carlsbad, CA) was used due to its previously
demonstrated suitability for vaginal microbial sam-
ples [Hashway et al., 2014] and high purity of the
isolated DNA (http://www.mobio.com/).

Amplification and Sequencing of 16S rRNA
Genes

Amplification of a 660bp fragment of the
hypervariable V3-V5 region of the 16S rRNA
gene was performed using primer A (adapter A+
barcode + 926R) and primer B (adapter B+ 357F)
according to the protocol from the Human Micro-
biome Project (HMP) Consortium (http:/www.
hmpdacc.org/doc/16S_Sequencing_SOP_4.2.2 pdf)
and as previously described [Hashway et al.,
2014] with modifications as follows. To maximize
the amount of specifically amplified DNA, a
touchdown PCR strategy [Don et al., 1991; Hecker
& Roux, 1996; Korbie & Mattick, 2008] and more
cycles (total 40 cycles) were used. One micro liter
of extracted DNA and 0.2 pM each of primer A and
primer B were used under the following thermal
cycler conditions: 95°C for 2 min; 20 cycles of 95°C
(20 sec), annealing temperatures starting at 60°C
(30sec) and decreasing by 0.5°C per cycle until
reaching 50°C, followed by elongation at 72°C
(5min). This was followed by 20 additional cycles
of 95°C (20sec), 50°C (30sec), and 72°C (5min).
The final product was held at 4°C. Sample
purification and library construction were per-
formed as previously described [Hashway et al.,
2014]. Sequencing was performed using the Roche
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454 GS FLX Titanium platform following the
manufacturer’s instructions (Roche 454 Life Sci-
ences, Branford, CT).

Sequence Processing

All sequence processing and microbial communi-
ty analyses were performed using commands within
the software program mothur (version 1.31.2 and
1.33.3), according to the Schloss SOP as of Octo-
ber 2014 (http:/www.mothur.org/wiki/454_SOP)
[Schloss et al., 2009; Schloss et al., 2011]. Sequences
with <200 bases, ambiguous bases, homopolymers
>8 bases, or erroneous barcodes were removed.
Sequences were aligned against those in a SILVA
reference alignment using the Needleman-Wunsch
and NAST algorithms [Pruesse et al., 2007; Schloss,
2009]. Sequences not sharing defined alignment
space were removed. The UCHIME algorithm was
used to identify chimeras [Edgar et al., 2011].
Sequences were classified using the Wang method
(at an 80% confidence cutoff) with the Ribosomal
Database Project (RDP) reference files (train-
set9_032012.pds.fasta and trainset9_032012.pds.
tax) [Wang et al., 2007]. Sequences classified as
“Chloroplast”, “Mitochondria” or “unknown king-
dom” were removed. Sequences were then sub-
sampled to normalize the numbers of sequences in
each sample before data analysis.

Data Analysis

Microbial community analysis was undertaken
using an operational taxonomic unit (OTU) ap-
proach. This approach involves grouping based on
a priori sequence similarity, thus avoiding bias
introduced by species assignation from sequence
databases. Sequences were clustered into OTUs
using a difference of 3% to define OTUs (approxi-
mately at the level of species differences). Microbial
diversity is based upon species richness, defined as
the number of OTUs present, and species evenness,
defined as the proportion or relative abundance of
different OTUs. Diversity was estimated by the
Shannon diversity index, which is proportional to
the natural logarithm of the relative abundance of
each OTU [Magurran, 1988]. Microbial community
richness was evaluated using the observed number
of OTUs (S,s), and the Chaol richness estimator
[Chao, 1984]. The latter is an estimate of expected
richness in a given bacterial community and is
predicted from the frequencies of rare OTUs present
[Chao et al., 2009]. Evenness was determined by
calculating the Shannon evenness score (Shannon
equitability score) from the Shannon diversity index.
Unpaired t tests (GraphPad Prism version 6.02 for
Windows, GraphPad Software, San Diego, CA) were
used to compare richness, evenness, and diversity
using a 95% confidence interval. Unpaired ¢-tests

were also used to compare specific phylum-level
relative abundances between groups. A Dirichlet
Multinomial Mixtures (DMM) model [Holmes et al.,
2012] was used to identify community types based on
OTUs alone. OTU-based comparison was performed
by construction of a distance matrix of the dissimi-
larity (1-similarity) between microbial communities
and the Yue & Clayton measure of dissimilarity was
calculated using the 0y calculator [Yue & Clayton,
2005]. The Yue Clayton measure is a comparison of
community similarity that accounts for relative
abundance of OTUs as well as community member-
ship (the particular OTU or species). Results of the
fyc dissimilarity calculation were visually repre-
sented by principal coordinates analysis (PCoA) and
statistical significance was evaluated by analysis of
molecular variance (AMOVA) [Anderson, 2001].
Significance of AMOVA was defined as P <0.05,
after Bonferroni correction for multiple compari-
sons. Phylogeny-based comparison of microbial
communities was performed by weighted and un-
weighted UniFrac analysis [Lozupone & Knight,
2005; Lozupone et al.,, 2007]. Significance was
defined as P < 0.05, after Bonferroni correction for
multiple comparisons. Additionally, microbial com-
munity function was evaluated by predictive meta-
genome (microbial DNA) analysis using PICRUSt
(Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States). PICRUSt is
a recently developed phylogeny-based computation-
al tool that predicts the functional capacity of
microbial communities by correlation of the species
present to reference databases of microbial genomes
[Langille et al., 2013]. OTUs were normalized by 16S
rRNA copy number, and KEGG (Kyoto Encyclopedia
of Genes and Genomes) orthologs (KOs) were
predicted [Langille et al., 2013; Muto et al., 2013].
The information obtained from PICRUSt was fur-
ther processed by HUMAaN (The HMP Unified
Metabolic Analysis Network) to predict functional
metabolic pathways [Abubucker et al., 2012]. Meta-
bolicpathways (modules) were then grouped into
larger categories wusing the KEGG module
database (http://www.genome.jp/kegg/module.html)
[Mutoet al., 2013].

RESULTS

Microbial Community Sequence Metrics: All
Samples

Vaginal microbial swabs were obtained at a single
time point from 49 wild-caught, captive olive baboons
(Papio anubis). The characteristics of the study
population are summarized in Table I and described
in the methods. The structure of the vaginal microbial
community for each animal was determined by
sequencing the V3-V5 region of the 16S rRNA-
encoding gene. Of the 49 vaginal samples, 11 yielded
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insufficient DNA for sequence analysis, likely due to
insufficient bacteria present in the original sample or
deterioration of DNA in samples after freeze—thaw.
After quality control, a total 0f 423,023 sequence reads
were generated from the remaining 38 samples. The
mean length of sequence was 256.8 bases (range 249—
270, median 257). The complete data set was
subsampled to 2,107 sequences per animal, repre-
senting the minimum number of sequences in any
animal that passed quality control. Each sample
yielded a mean of 42.1+29.3 (mean+SD) OTUs
(median=35.7, range 18.7-196.0), with sequence
differences of 3% defining an OTU. Since the total
number of unique OTUs across all baboons in the
dataset was 781, each baboon vaginal microbial
community represented a highly individualized sub-
set within the potential species pool for this anatomic
site. To determine whether the observed OTUs
adequately reflected the true number of OTUs, we
calculated the mean Chaol estimate of richness, a
rarefaction curve, and the average Good’s coverage.
The Chaol estimate was 56.1 +41.3 (median = 46.16,
range 22.4-255.0), indicating slight underrepresen-
tation. The rarefaction curve (measure of sampling
sufficiency) showed a plateau in the majority of
samples at the level of subsampling (~2100 sequen-
ces), except for two outliers (baboon 1 and 2) (data not
shown). Nevertheless, the average Good’s coverage
[Good, 1953] (where “perfect” coverage=1) was
0.995+0.005 (median=0.996, range=0.974—
0.998), indicating that the true number of OTUs
was adequately represented.

Microbial Community Descriptive Features:
All Baboons

The bacterial phyla present at a relative abun-
dance of >1% in the animals in this study are shown
in Figure 1A. The three most abundant phyla across
all baboons were Bacteroidetes (26.12+17.45%),
Fusobacteria (24.16 £21.85%), and Firmicutes
(32.724+23.08%) (mean +SD). Ten of 38 (26.3%)
animals had >10% abundance of Tenericutes,
Proteobacteria, or Spirochetes, which are phyla
consisting of mostly anaerobic or facultative anaero-
bic bacteria [Brenner et al., 2005; Gupta et al., 2013;
Whitman, 2010]. A variable number (range 0-35.8%
per baboon) of sequences could not be assigned to a
phylum and remained unclassified based on the
sequence fragment available and the available
reference database. Within Firmicutes, the polyphy-
letic class Clostridia (76.9+23.3%, range 10.0—
98.8%) predominated over the class Bacilli
(14.8 £18.2%, range 0-65.4%), which includes the
genus Lactobacillus (Fig. 1B).

Further descriptive analysis was undertaken at
the genus level. A mean of 28.53 + 10.28 (range 17—
80) genera were present in each baboon. The
bacterial genera present at a relative abundance of
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>1% in the animals in this study are shown in
Figure 1C. The average number of genera present at
>1% in any animal was 10.24 +4.04. The top 20
genera averaged across all animals are shown in
Table II. Lactobacilli were present in only 16% of
animals and at prevalence of 1.25 4 3.34% (range 0—
14.95%).

Baboon vaginal microbial communities were
evaluated for a priori segregation into community
types by attempting to identify community types
using Dirichlet Multinomial Mixtures (DMM)
[Holmes et al., 2012]. For DMM, there was no
statistically significant segregation into distinct
community types (data not shown). A 6yc distance
matrix was generated and visualized using principal
coordinates analysis (PCoA). The first two of 36 PCoA
(Principal Coordinates Analysis) axes were plotted
(Fig. 2A), which represent 20.4% (axis 1) and 8.6%
(axis 2) of the data variance. Since no significant
community types could be identified by DMM, no
significant a priori segregation into community types
is present.

Community Analysis within Subgroups: Age,
Reproductive Cycle, Menstruation

We next performed further evaluation for segre-
gation into community types between predefined
subgroups of animals (see Methods Section and
Table I). Specifically, vaginal microbial communities
were compared between reproductively mature, non-
pregnant, non-lactating adults (NV=14) and suba-
dults (peripubertal, N =9), between cycling (stages
1-7, N=12) and non-cycling or resting phase (stage
0, N =19) animals, and between menstruating (stage
7, N=3) and cycling but non-menstruating (stages
1-6, N =9) animals (Fig. 3).

Community Analysis Within Subgroups:
Membership and Community Structure

Vaginal microbial community structures within
each subgroup (age, reproductive cycle, menstrua-
tion) were compared by calculation of the OTU-based
Oyc dissimilarity measure (Table III). There were no
significant differences in community structures
within any of the subgroups. 6y¢ dissimilarity was
visualized via PCoA plots for each subgroup, which
showed that animals did not cluster based on age,
cycle stage, or menstruation (Fig. 2B-D). Addition-
ally, community structures were compared via
weighted and unweighted UniFrac (phylogeny-based
analysis). No significance was detected using un-
weighted UniFrac analysis (Table III), yet significant
differences were detected in all groups examined
using weighted UniFrac analysis. Weighted UniFrac
and Yue Clayton dissimilarity index emphasize
relative abundance of taxa [Chen et al., 2012], while
unweighted UniFrac emphasizes membership.
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Fig. 1. A,B: Phylum-level relative abundance within vaginal microbial communities of all 38 baboons (A) and average relative
abundance for the Phylum Firmicutes at class level (B). A: The phyla >1% are individually represented. Individual animal numbers are
indicated on the x-axis. “Unclassified” refers to OTUs not identifiable at the phylum level by comparison of available sequence to
available phylogenetic databases. B: Clostridia is the predominant class in Firmicutes in baboons instead of Bacilli, which includes
Lactobacillus. Whiskers indicate the range. Within the box, the central horizontal line indicates median, and top and bottom lines
indicate 75th percentile and 25th percentile of relative abundance, respectively. C: Genus-level relative abundance within vaginal
microbial communities of all 38 baboons. Only the genera >1% are individually represented in this graph. Genera are color coded by
phylum, and are represented by yellow (Firmicutes), green (Bacteroidetes), red (Fusobacteria), orange (Actinobacteria), dark blue
(Proteobacteria), light blue (Spirochetes) and purple (Tenericutes). White includes unclassified bacteria and minor phyla (all the genera
present at <1% were grouped here). Individual animal numbers are indicated on the x-axis. “Unclassified” refers to OTUs not identifiable
below the indicated level by comparison of available sequence to existing phylogenetic databases. “Unclassified” bacteria at the phylum
level were grouped with “minor phyla” (phyla present <1%).
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TABLE II. Twenty Most Prevalent Genera in Vaginal
Microbial Communities of 38 Wild-Caught, Captive
Baboons

% total % animals with

Genus sequences® this genus®
Prevotella 14.05 71
Sneathia 6.06 34
Fusobacterium 4.06 45
Peptostreptococcus 3.73 42
Porphyromonas 3.56 42
Anaerococcus 2.71 26
Treponema 2.24 18
Bacteroides 2.10 24
Peptoniphilus 2.01 45
Helcococcus 1.50 21
Parvimonas 141 32
Mobiluncus 1.39 26
Lactobacillus 1.25 16
Acholeplasma 1.18 21
Lactococcus 1.07 24
Cronobacter 0.81 5
Aerococcus 0.75 13
Facklamia 0.74 11
Streptococcus 0.70 11
Unclassified 38.21 100

#Average fraction of sequences across 38 baboons.
PFraction of baboons with >1% of total sequences.

Therefore, we only considered differences that were
detectable by all three methods as significant.

Community Analysis Within Subgroups:
Richness, Evenness, and Shannon Diversity
Index

Community parameters of diversity, richness,
and evenness within each subgroup were evaluated
(Table IV). The Shannon diversity index, was
significantly lower in the adults than in subadults
(P=0.035). Microbial community diversity is depen-
dent on both the richness (number of OTUs) and
evenness (relative abundance of OTUs) within a
microbial community. The decreased diversity seen
in the adult baboons was due to decreased communi-
ty evenness rather than changes in richness, as
reflected by significantly lower Shannon evenness
scores in the adults (P =0.028) but no difference in
observed OTUs (S,,s) or predicted richness (Chaol
richness estimator). In the reproductive cycle and
menstruation subgroups, there were no significant
differences in richness (OTUs and Chao 1 richness
estimator), evenness (Shannon evenness scores) or
diversity (Shannon diversity index) (Table IV).

Community Analysis Within Subgroups:
Relative Abundance of Specific Phyla

The vaginal microbial communities of each
subgroup were evaluated with respect to relative
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abundance at the phylum level. The same three
phyla (Firmicutes, Bacteroidetes, and Fusobacte-
ria) predominated in each subgroup (Fig. 3). The
phyla present in lower abundances included Ten-
ericutes, Proteobacteria, Spirochetes, and “unclas-
sified” phyla, which represented OTUs that could
not be matched at the phylum level. For the age
subgroup, the lower abundance phyla, when con-
sidered together, were present in significantly
higher abundance in subadult than adult animals
(P=0.027) (Fig. 3A). Additionally, the major phy-
lum Bacteroidetes was present in lower abundance
in subadult than in adult animals (P=0.045),
consistent with overall greater evenness across
phyla in the subadults. In the menstruation or
reproductively cycling subgroups, there were no
differences in relative abundance for any phyla
(Fig. 3B and C).

Metagenomic Evaluation: Comparison by
Predicted Functional Content

To this point, we had evaluated the vaginal
microbial community by its structure (membership
and relative abundance) and by measures of diversi-
ty. The overall picture was of highly diverse
microbial communities with high inter-individual
variation between baboons, in marked contrast to the
low diversity, relatively uniform, Lactobacillus-
dominant vaginal microbial community of humans.
One possible explanation for the apparently high
inter-individual variation in baboons is that a variety
of microbial communities could perform the same
functional roles in this environmental niche. If this is
the case, comparison across baboons based on
functional analysis might reveal greater uniformity
than is evident by community analysis.

Analysis of predicted functional content of
microbial communities was performed using
PICRUSt and HUMAaN to calculate the relative
abundances of predicted functional metabolic path-
ways (modules) [Abubucker et al., 2012; Langille
et al., 2013; Muto et al., 2013]. Surprisingly, despite
the inter-individual variation and high diversity that
had been evident in comparing community struc-
tures, the relative abundance of the majority of
modules was strikingly similar across the animals
(Fig. 4A). Additionally, comparison of the adults
(N =14) and subadults (N =9) showed no significant
difference in the average relative abundance of any of
the modules (unpaired ¢-test, P>0.05, data not
shown). The individual modules are identified and
their relative abundances (mean+ SD) across all
baboons are shown in Figure 4B. Although these data
must be interpreted with caution, as they reflect
predicted rather than measured function, these
findings suggest that varying microbial community
compositions can potentially serve the same func-
tional role.
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Fig. 2. A-D: PCoA of 0y distances between baboon vaginal bacterial communities. Variance explained by the first two axes (Axis 1 and
2) are shown in the figures. The number of axes generated were 36 (all animals), 21 (age comparison), 29 (cycle stage comparison) and 10
(menstruation comparison). A: All 38 animals. Although there is some visual separation of data on axis 1 and 2, these were not
statistically confirmed as true clusters using Dirichlet Multinomial Mixtures (see text). B: Age comparison including adults (N =14, red
circle) and subadults (N =9, blue triangle). C: Cycle stage comparison including cycling (N = 12, red circle) and non-cycling (N = 19, blue
triangle) animals. D: Menstruation comparison including menstruating (N =3, red circle) and non-menstruating (N =9, blue triangle)
animals. There were no significant differences between groups by AMOVA performed on 6y¢ distances (P < 0.05, see Tables).

DISCUSSION

The goal of this study was to evaluate the
influence of age, reproductive cycle stage, and
menstruation on the vaginal microbiome of wild-
caught, captive baboons. The differences in microbial
compositions between baboons and humans are
significant despite the similarities between these
species in anatomical structures and reproductive
physiology. The broad significance of evaluating the
effects of age and reproductive cycle in the baboon
vaginal microbiome, with comparison to the human
vaginal microbome, is the potential to understand

differing strategies by which host-microbial ecosys-
tems adapt to these physiologic stages.

Our results corroborated earlier findings that the
vaginal microbiome of the baboon is highly diverse as
compared to humans [Hashway et al., 2014; Rivera
et al., 2010, 2; Stumpf et al., 2013]. Although cross-
study comparisons must be viewed with caution, the
average number of OTUs (at 3% difference) per
baboon in this study was 42.1. The average number of
OTUs (at 3% difference) previously reported in
asymptomatic women was 25 [Oakley et al., 2008].
Interestingly, the average OTUs for baboons in our
study was lower than that previously reported in

Am. J. Primatol.



572 / Uchihashi et al.

3 Adults (N=14)

A 3
£ 100- @3 Subadults {N=9)
g « s
< 80-
£ 1
(=%
£ 601
k 5
s 40-
5
£ 20
Q
=%
2 3 T L] L]
o ) ] 2 4
Adults (N=14) Subadults (N=9) & o 3° &é‘ Q@
» ¢ & * D=
< & P=0.045
S & wp=027
7 «

3 Cycling (N=12)

B 9 .
£ 100+ EB Non-cycling (N=19)
E
35
= 80+
=
[
\ £ o
Q
\ o
‘5 40+
s
£ 20+
o
o
e 0 T e tr et
o & & 2 ‘é@
Cycling (N=12) Non-cycling (N=19) & F & &
RS N 2 £
Q\(@ \0{ (960 \‘96
& > =
C = O Menstruating (N=3)
£ 100+ Bl Non-menstruating {(N=9)
€
= 80
=
c
é 60+
47.05% @
5 40-
g
£ 204 +
e
ﬂ- 0
g v T T T 0l
> @ &
o‘;@ -66‘& 6‘0*\ S
Menstruating (N=3) Non-menstruating (N=9) ‘4:\‘ & o &
&N & ) s
2 < &
[ Firmicutes
@@ Bacteroidetes
@@ Fusobacteria
(3O Actinobacteria
Bl Protecbacteria
[ Spirochaetes
@@ Tenericutes
B Unclassified
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P-values are reported.
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TABLE III. Vaginal Microbial Community Structure Comparisons Within Subgroups

Subgroup comparison AMOVA?* UniFracunweightedb UniFracyeighted”
Age (adult vs. subadult) P=0.25 P=0.429 P <0.05
Cycle (menstruating vs. non-menstruating) P=0.84 P=0.487 P <0.05
Cyecle (cycling vs. non-cycling) P=0.48 P=0.959 P <0.05

20yc dissimilarity index, OTU-based comparison.
Punweighted UniFrac, phylogeny-based comparison.
‘weighted UniFrac, phylogeny-based comparison.

women with bacterial vaginosis (61) [Oakley et al.,
2008]. However, the wide inter-individual range of
OTUs per baboons (18.7-196.0) and the large
number of total identified OTUs (781) showed that
there is great variation in the “normal” microbial
community in this species.

Recently, attempts have been made at applying
theories of microbial ecology towards the interpreta-
tion of differences in host-microbial ecosystems
[Costello et al., 2012; Hickey et al., 2012; Robinson
et al., 2010; Stumpfet al., 2013; Yeoman et al., 2011].
In terms of vaginal microbial diversity, humans
appear distinct among primates. A recent survey of
the vaginal microbiome across nine primate species
(including human) showed that only humans had a
marked preponderance of Lactobacillus at this site
[Yildirim et al., 2014]. One explanation for this
difference is that NHPs may rely on a different
predominant mechanism of protection from patho-
gens in the vagina. Specifically, rather than antimi-
crobial effects of lactic-acid derived low pH, baboons
and other NHPs may rely on high diversity as a
means of competitive niche exclusion. In environ-
mental microbial ecology, high community diversity
is classically associated with greater overall ecosys-
tem stability [Hickey et al., 2013; McCann, 2000;
Robinson et al., 2010]. Two principles that contribute
to this effect are functional redundancy and comple-
mentary resource use. Functional redundancy refers
to functional overlap between some community
members so that ecosystem stability is maintained
in case of species loss [McCann, 2000; Rosenfeld,
2002]. Complementary resource use, on the other
hand, refers to the occupation of separate functional
or microenvironmental “niches” by different mem-

bers within the ecosystem, thus decreasing resource
competition by any one member [McCann, 2000;
Yachi & Loreau, 2007]. By a combination of these
strategies, high diversity communities may competi-
tively exclude invasive outside species.

If high community diversity and niche exclusion
were the major protective strategies used for patho-
gen protection in the vaginal microbiome, it might be
expected that puberty and the onset of sexual activity
would be associated with an increase in microbial
diversity. Instead, we found a decrease in diversity
between the vaginal communities of adults and
subadult animals, corresponding to a decrease in
species evenness. A similar directional change,
although of greater magnitude, is seen in humans.
While the vaginal microbiome of young, pre-pubertal
girls is highly diverse, the peri-pubertal decline in
diversity eventually results in the Lactobacillus-
dominant community state seen in most adult
women [Hammerschlag et al., 1978; Hickey et al.,
2012; Linhares et al., 2011; Yamamoto et al., 2009].
This would seem to contradict the theories above and
suggest that lower diversity is advantageous in the
post-pubertal environment. One potential explana-
tion is that maintaining a high diversity community
may be an energy-expensive strategy, particularly in
a low-resource environment such as the relatively
nutrient-poor vaginal ecosystem [Stumpf et al.,
2013]. The energy costs can be tempered by the
principle of competitive inhibition, which indicates
that fewer species are necessary to maintain ecosys-
tem stability if the species present represent a larger
variance in function [McCann, 2000; Yachi & Loreau,
2007]. Thus, selection occurring at puberty may
represent pruning of potential community members

TABLE IV. Vaginal Microbial Community Parameter Comparisons® Within Subgroups

Shannon diversi%yk index®
Adult (W=14) 2.05+0.4

Subadult (N =9) 2.54 £0.58"
Menstruating (N =3) 1.99+0.95
Non-menstruating (N =9) 2.02+0.43
Cycling (N=12) 2.02+0.55
Non-cycling (N =19) 2.24+0.54

OTU Chaol (richness) Shannon evenpess
38.7+17.6 55.44+32.9 0.57+0.11

42.1+135 54.0 +20.2 0.69+0.13"
36.8+7.84 54.0 +23.8 0.554+0.24
33.2+11.8 45.0+17.4 0.58+0.09
34.14+10.7 4724184 0.574+0.13
37.94+11.6 47.4+14.1 0.634+0.13

2Data reported as mean + SD.
lv’Shannon diversity index is logarithmically proportional to true diversity.
"P=0.035.

“P=0.028 (P-values only reported for statistically significant comparisons).
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Fig. 4. A: Predicted metagenomic functions for all 38 babo

on samples. The heat map shows the relative abundance of predicted gene

pathways for all animals (V= 38). Columns represent individual animals and rows represent individual gene pathways (Modules). The
color bars below indicate subgroups (adult vs. subadult, cycling vs. non-cycling, and menstruating vs. non-menstruating) in which
individual animals were included. B: Predicted metagenomic functions for all 38 baboon samples. Relative abundance of functional
metabolic pathways (shown as KEGG modules) was calculated using HUMAaN and grouped into major functional categories. Bar

graphs represent average relative abundance of pathways
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down to the number necessary to occupy available
environmental niches but minimize cost of excessive
functional redundancy. One disadvantage of our
study was that only peripubertal animals were
available for evaluation. Evaluation at an earlier
time point (pre-pubertal animals) may have detected
larger effects and provided a better assessment of
puberty as a critical time point in the formation of the
vaginal microbial community.

Interestingly, there were no significant differ-
ences in vaginal microbial community structures
correlated with menstruation or cycle stage using
two of three measures (Yue Clayton dissimilarity
index and unweighted UniFrac vs weighted
UniFrac). In women, highest community constancy
has been associated with estrogen-dominated peri-
ods (follicular phase) of the reproductive cycle
[Gajer et al., 2012]. In addition, menses has been
associated with decreased community stability, yet
not with altered diversity [Gajer et al., 2012; Hickey
et al., 2013; Lopes dos Santos Santiago et al., 2011].
In our study, interpretation of menstruation and
cycling data was challenging for several reasons.
First, sampling was limited to the distribution of
reproductive cycle stages present in the animals at
a single time point. Thus, only three animals were
in menses at the time of sampling, resulting in a
small group size that likely made it difficult to
detect any but the most extreme differences.
Similarly, small numbers of animals in each stage
of the menstrual cycle necessitated grouping into
cycling and non-cycling animals. More precise
animal grouping within the reproductive cycle
may have enabled detection of more nuanced
differences with reproductive cycle phase. With
these caveats in mind, our results suggest that
reproductive cycle hormonal fluctuations are not
major influences on the composition of vaginal
microbial communities in the baboon.

With respect to specific composition at the
genus level, the vaginal microbiome of the seem-
ingly healthy baboons in this study contained many
taxa associated with the dysbiotic state of “bacterial
vaginosis” (BV) in women, a condition correlated
with vaginal discharge, higher susceptibility to
sexually transmitted infections, and preterm birth
[Gajer et al., 2012; Marrazzo et al., 2010; Ravel
et al., 2011; Romero et al., 2004]. For example, the
genera Prevotella (most abundant genus in baboons
for this study), Sneathia, and Mobiluncus are
typically considered pathogenic in women, yet
were not associated with discharge or other signs
of disease in baboons in this study. However, the
presence of pathogenic species does not necessarily
correlate with disease. For example, many appar-
ently healthy, asymptomatic women with highly
diverse vaginal microbial communities would meet
clinical criteria of BV due to the presence of
increased strict anaerobes, higher vaginal pH,

and decreased numbers of lactobacilli [Oakley
et al.,, 2008; Ravel et al., 2011, 2013; Yildirim
et al., 2014]. Furthermore, our sequence data did
not permit evaluation to the species or subspecies
level. For instance, numerous Fusobacterium were
present. This is a genus that contains pathogenic
species and has been detected in women with BV
[Twin et al., 2013]. However, Fusobacterium nucle-
atum is a commensal in the oral cavity, and has
been associated with induction of antimicrobial and
immunomodulatory peptides in oral epithelium
[Yin & Dale, 2007]. It is thus possible that, at the
species level, members of the diverse taxa of the
baboon vaginal microbiome are actually contribut-
ing to ecosystem stability or protective interactions
with the immune system. It is also possible that
some baboons in our study, despite the absence of
clinical signs, are in a disease susceptible state. For
example, Treponema was found in 6/9 (66.7%)
subadult animals and 7/14 (50%) adult animals.
Although we were unable to speciate Treponema in
this study, Treponema pallidum has been found as
a naturally occurring pathogen associated with
necroulcerative genital lesions in wild baboons in
Tanzania [Harper et al., 2012]. Future evaluation
using full length 16S rRNA sequencing and
bacterial culture may contribute to species identifi-
cation and determining whether these species play
a pathogenic or commensal role.

Despite the high inter-individual differences
among baboons, the microbial communities looked
similar across all animals when functionality was
investigated using a predictive method (PICRUSt)
[Langille et al., 2013]. This method has not been
validated for baboon-origin microbial communities
and it is possible that there are inaccuracies based on
comparison to available databases. Additionally,
these findings represent predicted functionality,
not actual gene expression data. The results never-
theless raise the possibility that compositionally
different microbial communities have similar func-
tions, as previously demonstrated in the intestinal
tract [Theriot et al., 2014]. Additionally, some women
lacking vaginal lactobacilli have been shown to have
similar levels of lactic acid production by other
bacteria, such as Streptococcus spp. or Atopobium
spp. [Farage et al., 2010; Gajer et al., 2012; Lamont
etal., 2011]. The future use of gene expression data to
complement community structure data may uncover
functional similarities that are not evident when
comparing community structure alone.

Our results indicate that, although the overall
baboon vaginal microbiome is diverse, there is a
significant decrease in diversity in adults versus
subadult animals due to reduction in the percentage
of the lower abundance taxa. This may represent
peripubertal host selection of a community structure
optimized for post-pubertal host health. Additional-
ly, analysis of predicted functional pathways
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suggests that there is some functional equivalence
across the seemingly disparate communities seen in
individual baboons. Future studies in baboons or
other NHPs focusing on microbial species-level
comparisons and evaluation of gene expression
patterns may contribute to greater understanding
of the mechanisms employed by a high diversity
vaginal microbiome in supporting adult reproductive
functions and host health.
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