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ABSTRACT: In genetics, pleiotropy describes the genetic effect of a single gene on multiple phenotypic traits. A common
approach is to analyze the phenotypic traits separately using univariate analyses and combine the test results through multiple
comparisons. This approach may lead to low power. Multivariate functional linear models are developed to connect genetic
variant data to multiple quantitative traits adjusting for covariates for a unified analysis. Three types of approximate F-
distribution tests based on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s Lambda are introduced to test for
association between multiple quantitative traits and multiple genetic variants in one genetic region. The approximate F-
distribution tests provide much more significant results than those of F-tests of univariate analysis and optimal sequence
kernel association test (SKAT-O). Extensive simulations were performed to evaluate the false positive rates and power
performance of the proposed models and tests. We show that the approximate F-distribution tests control the type I error
rates very well. Overall, simultaneous analysis of multiple traits can increase power performance compared to an individual
test of each trait. The proposed methods were applied to analyze (1) four lipid traits in eight European cohorts, and (2) three
biochemical traits in the Trinity Students Study. The approximate F-distribution tests provide much more significant results
than those of F-tests of univariate analysis and SKAT-O for the three biochemical traits. The approximate F-distribution
tests of the proposed functional linear models are more sensitive than those of the traditional multivariate linear models that
in turn are more sensitive than SKAT-O in the univariate case. The analysis of the four lipid traits and the three biochemical
traits detects more association than SKAT-O in the univariate case.
Genet Epidemiol 39:259–275, 2015. © 2015 Wiley Periodicals, Inc.
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Introduction

In genetics, pleiotropy describes the genetic effect of a single
gene on multiple phenotypic traits [Razeto-Barry et al., 2011;
Stearns, 2010; Williams, 1957]. For instance, phenylketonuria
is a human disease that affects multiple systems but is caused
by one gene defect. The disease can cause mental retardation,
seizures, and reduced hair and skin pigmentation, and can be
caused by any of a large number of mutations in a single gene
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that codes for the enzyme phenylalanine hydroxylase. Basi-
cally, a pleiotropic gene may have an effect on multiple traits
simultaneously. The underlying mechanism of pleiotropy is
the effect of a gene on metabolic pathways that affect different
phenotypes. The phenotypic traits caused by pleiotropy are
often correlated due to the genetic correlations, which need
to be dealt with properly [Solovieff et al., 2013].

Pleiotropy is common and pervasive in the genome
[Sivakumaran et al., 2011]. In a viewpoint published recently,
the authors found that the American College of Medical Ge-
netics and Genomics (ACMG) recommended a list of 56
genes for which incidental findings should be sought and re-
ported in clinical exome and genome sequencing [Kocarnik
and Fullerton, 2014]. Of the 56 ACMG genes, 43 (77%)
had multiple associated phenotypes listed, with an average
of 3.5 phenotypes per gene. Hence, it is important to study
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pleiotropy and to develop novel statistical methods to analyze
pleiotropic traits.

One way to analyze the phenotypic traits caused by
pleiotropy is to analyze the traits one by one. This approach
may lead to low power since it ignores the extra informa-
tion obtained by combining multiple traits in one unified
analysis [Kiezun et al., 2012; Manolio et al., 2009]. In the
literature, statistical methods for simultaneous analysis of
multiple traits are available. However, the research focus on
association analysis between a single nucleotide polymor-
phism (SNP) and multiple traits [Ferreira and Purcell, 2009;
Jung et al., 2008; Klei et al., 2008; O’Reilly et al., 2012; Wu
et al., 2013; Yan et al., 2013; Zheng et al., 2012]. In this article,
we are interested in a combined association analysis between
a pleiotropic gene rather than a single SNP and multiple
quantitative traits. A genetic region may contain multiple
genetic variants (usually a large number of variants identi-
fied by high throughput sequencing technology) that jointly
affect the phenotypic traits. Therefore, the problem is to an-
alyze multiple traits and high dimensional variant data. The
question is how to build models that can effectively be used to
test the association between the traits and the variants in one
combined test, instead of many tests of association between
one trait and one variant a time.

In a genome-wide association study (GWAS), the genome
is scanned by testing for association of millions of individual
SNPs with the trait [Manolio et al., 2009; McCarthy et al.,
2008]. This strategy suffers from low power and multiple
comparison problems [Dudbridge and Gusnanto, 2008].
There has been great interest in developing gene-based or
region-based association tests. For instance, burden tests and
kernel-based approaches were developed to analyze rare vari-
ants [Bansal et al., 2010]. Burden tests collapse rare variants
in a genetic region to be a single variable that is used to test
for association with the phenotypes [Han and Pan, 2010; Li
and Leal, 2008; Madsen and Browning, 2009; Morgenthaler
and Thilly, 2007; Morris and Zeggini, 2010; Price et al., 2010;
Zawistowski et al., 2010]. The kernel-based tests aggregate
the association between variants and phenotypes via a kernel
matrix adjusting for covariates, which measures the similarity
between individuals [Lin and Schaid, 2009; Mukhopadhyay
et al., 2010; Neale et al., 2011; Wessel and Schork, 2006]. It is
noteworthy that the sequence kernel association test (SKAT)
and its optimal unified test (SKAT-O) have higher power
than quite a few burden tests [Lee et al., 2012; Wu et al.,
2011].

In Fan et al. [2013] and Luo et al. [2012], functional lin-
ear models were proposed to model the genetic effect as a
smooth function. Luo et al. [2012] developed χ2-distributed
score statistics to test the association at the gene level and Fan
et al. [2013] used F -distributed tests adjusting for covariates.
Fan et al. [2013] showed that the F -tests are more powerful
than the popular SKAT and SKAT-O. In this paper, we build
multivariate functional linear models to test the association
between the multiple traits and the multiple variants in a ge-
netic region. One motivation is the superior performance of
the functional linear models in analyzing a single quantitative

trait, and this merit should be useful for analyzing multiple
traits.

In addition to burden tests and kernel-based approaches to
analyze rare variants, several gene-based association test pro-
cedures are available in the literature to test for association
between one or multiple traits and variant data [Guo et al.,
2012; Lehne et al., 2011; Li et al., 2011; Purcell et al., 2007;
Wang et al., 2007; Zhang et al., 2010]. In these procedures,
the genetic data are viewed as discrete variables and the ge-
netic effects are modeled as discrete coefficients of individual
genetic markers such as SNPs. In Fan et al. [2013] and Luo
et al. [2012], the genetic effects were treated as a function
of genetic positions of the genetic markers and genetic data
were viewed as stochastic functions [Ross, 1996]. Therefore,
the philosophy of functional linear models is different from
that of the other approaches. Most likely, the functional lin-
ear models can better use the linkage disequilibrium (LD)
information of the dense genetic data, which leads to high
power level while controlling type I error rates accurately.

To apply functional data analysis techniques to gene-based
association analysis of complex diseases, the challenge is to
build models and test statistics properly. We need to develop
valid hypothesis testing procedures to test the association
[Fan et al., 2013, 2014]. To our knowledge, Kong et al. [2014]
is the only paper to deal with the hypothesis testing of func-
tional linear models, except for Fan et al. [2013, 2014]. Kong
et al. [2014] calculates type I error rates at a 0.05 level, by us-
ing 5,000 simulated replicates. In short, there has been very
limited research on the hypothesis testing of functional re-
gression models. Since we target both candidate gene and
genome-wide analysis, we need more research to build valid
test statistics which perform well and control false positives
rigorously. It is noteworthy that likelihood ratio tests (LRT)
were found to inflate type I error rates in both Fan et al.
[2013] and Kong et al. [2014], while F-distributed tests gen-
erated accurate type I error rates. Therefore, it is not obvious
or straightforward to apply classical testing procedures since
we need to make sure that type I error rates are properly con-
trolled in genetics studies. In summary, the research is very
novel and the problem is important.

The organization of the paper is as follows. We first in-
troduce the theoretical multivariate functional linear models
and their revised version for analyzing real data, and build
approximate F-test statistics to test association based on mul-
tivariate analysis theory. The proposed methods are applied
to analyze (1) lipid traits in eight European cohorts, and (2)
biochemical traits in the Trinity Students Study. Simulation
analysis is performed to evaluate the false positive rates and
power performance of the proposed models and tests.

Materials and Methods

Consider n individuals who are sequenced in a genomic
region that has m variants. For each individual, we assume
that there are L quantitative trait phenotypes, L ≥ 1. In Fan
et al. [2013], functional linear models were built to perform
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association analysis between the m genetic variants and each
phenotypic trait individually. In this article, the research goal
is to model association between the m genetic variants and
the L phenotypic traits as a whole. We assume that the m
variants are located in a region with ordered genetic posi-
tions 0 ≤ t1 < · · · < tm = T. To make the notation simpler, we
normalize the region [t1, T] to be [0, 1]. For the i-th individ-
ual, let yi� (� = 1, 2, . . . , L ) denote her/his quantitative traits,
G i = (X i(t1), . . . , X i(tm))′ denote her/his genotypes of the m
variants, and Z i = (zi1, . . . , zic )′ denote her/his covariates.
Hereafter in this article, ′ denotes the transpose of a vector or
matrix. For the genotypes, we assume that X i(tj ) (= 0, 1, 2)
is the number of minor alleles of the individual at the j -th
variant located at the position tj .

Traditional Multivariate Linear Models

We assume that the quantitative traits are normally dis-
tributed. To model the relationship between the �-th trait
and the m variants, one may perform a canonical correlation
analysis by following multivariate linear model

yi� = α�0 + Z ′
iα� +

m∑
j =1

X i(tj )β�j + εi�, � = 1, 2, . . . , L , (1)

where α�0 is the overall mean, α� = (α�1, . . . , α�c )′ is a c × 1
column vector of regression coefficients of covariates, β�j is
the genetic effect of genetic variant j , and εi� is an error term.
For each i, the error vector εi = (εi1, . . . , εiL )′ is normally
distributed with a mean vector of zeros and a L × L variance-
covariance matrix �. Moreover, ε1, . . . , εn are assumed to be
independent.

The analysis of model (1) can be readily done using the
manova() function in R, which allows both multiple SNPs
and multiple phenotypes to be analyzed jointly as well as
the incorporation of covariates. Before fitting the model (1),
the QR decomposition can be applied to the genotype data
to remove the redundancy. One problem of the model (1)
is that it may not be powerful when the number of genetic
variants is large. Moreover, the model (1) can only model the
LD between the traits and each of the genetic variants as well
as the pair-wise LD between the genetic variants, but it can
not model higher order LD among the genetic variants [Jung
et al., 2008].

Beta-Smooth Only Multivariate Functional Linear Models

In this paper, we propose the following model to build the
relation between the �-th trait and the m variants

yi� = α�0 + Z ′
iα� +

m∑
j =1

X i(tj )β�(tj ) + εi�, � = 1, 2, . . . , L ,

(2)

where β�(tj ) is the genetic effect at the genetic position tj ,
and the other terms are similar to those in the multivariate
linear regression model (1). It is noteworthy that there is only
one difference between model (1) and model (2). That is, the

genetic effect coefficient β�j in model (1) does not depend on
the genetic position tj , while β�(tj ) in model (2) depends on
the genetic position tj .

In the model (2), β�(tj ) is introduced as the genetic ef-
fect at the position tj . In this article, we assume that the
genetic effect function β�(t) is a function of the genetic
position t. Therefore, β�(tj ), j = 1, 2, . . . , m, are the val-
ues of function β�(t) at the m variant positions. The ge-
netic effect function β�(t) is assumed to be smooth. One
may expand it by B-spline or Fourier or linear spline ba-
sis functions. Formally, let us expand the genetic effect
function β�(t) by a series of K β basis functions ψk(t), k =

1, . . . , K β as β�(t) = (ψ1(t), . . . , ψK β
(t))(β�1, . . . , β�K β

)′ =

ψ(t)′β�, where β� = (β�1, . . . , β�K β
)′ is a vector of coef-

ficients β�1, . . . , β�K β
and ψ(t) = (ψ1(t), . . . , ψK β

(t))′. We
consider three types of basis functions: (1) linear spline ba-
sis ψ(t) =

(
1, t, (t – κ3)+, . . . , (t – κK β

)+

)′
, where κ3, . . . , κK β

are knots in the interval [0, 1], and (t – κk)+ indicates if t is
larger than κk, i.e. (t – κk)+ = 0 if t ≤ κk and 1 if t > κk; (2)
the B-spline basis: ψk(t) = B k(t), k = 1, . . . , K β; and (3) the
Fourier basis: ψ1(t) = 1, ψ2r+1(t) = sin(2πrt), and ψ2r(t) =

cos(2πrt), r = 1, . . . , (K β – 1)/2. Here for the Fourier basis,
K β is taken as a positive odd integer [de Boor, 2001; Ferraty
and Romain, 2010; Horváth and Kokoszka, 2012; Ramsay
et al., 2009; Ramsay and Silverman, 2005].

Replacing β�(tj ) by the expansion, the model (2) can be
revised as

yi� = α�0 + Z ′
iα� +

⎡
⎣ m∑

j =1

X i(tj )
(
ψ1(tj ), . . . , ψK β

(tj )
)
⎤
⎦

× (β�1, . . . , β�K β
)′ + εi�

= α�0 + Z ′
iα� + W′

iβ� + εi�, (3)

where W′
i =

∑m
j =1 X i(tj )

(
ψ1(tj ), . . . , ψK β

(tj )
)
. In the model

(2) and its revised version (3), we use the raw genotype
data G i = (X i(t1), . . . , X i(tm))′ directly in the analysis. In
addition, we assume that the genetic effect function β�(t)
is smooth. Hence, the models are called beta-smooth only
approach.

General Multivariate Functional Linear Models

In this section, we build standard functional linear models
to connect genetic variants to the phenotypic traits [Ramsay
and Silverman, 2005]. The model (2) is one version of func-
tional linear models and is easy to understand. To introduce
the standard functional linear models, we view the i-th in-
dividual’s genotype data as a genetic variant function (GVF)
as X i(t), t ∈ [0, 1], in addition to treating the genetic effects
as functions β�(t). Notice that the sample includes n discrete
realizations or observations G i = (X i(t1), . . . , X i(tm))′ of the
human genome. By using the genetic variant information G i ,
we may estimate the related genetic variant function X i(t),
which will be discussed below. To relate the genetic variant
functions to the phenotypic traits adjusting for covariates,
we consider the following multivariate functional linear
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model

yi� = α�0 + Z ′
iα� +

∫ 1

0
X i(t)β�(t)dt + εi�, � = 1, 2, . . . , L ,

(4)

where β�(t) is the genetic effect of genetic variant function
X i(t) at the position t, and the other terms are similar to
those in the beta-smooth only model (2). In the above model,
the integration term

∫ 1
0 X i(t)β�(t)dt is used to replace the

summation term
∑m

j =1 X i(tj )β�(tj ) in the beta-smooth only
model (2). It turns out that model (2) performs very similarly
to the model (4) in our real data analysis and simulation
studies.

Estimation of Genetic Variant Function. To estimate the
genetic variant functions X i(t) from the genotypes G i , we use
two methods: (1) an ordinary linear square smoother; (2) a
functional principal component analysis (FPCA) technique
[Fan et al., 2013; Goldsmith et al., 2011]. The ordinary linear
square smoother method assumes that the genetic variant
functions are smooth, while no smoothness is assumed by
the FPCA technique. In the following, we briefly describe the
two approaches.

Let φk(t), k = 1, . . . , K , be a series of K basis functions,
such as the B-spline basis and Fourier basis functions.
Let � denote the m by K matrix containing the values
φk(tj ), where j ∈ 1, . . . , m. Using the discrete realizations
G i = (X i(t1), . . . , X i(tm))′, we may estimate the genetic vari-
ant function X i(t) using an ordinary linear square smoother
as follows [Ramsay and Silverman, 2005, Chapter 4]

X̂ i(t) = (X i(t1), . . . , X i(tm))�[�′�]–1φ(t), (5)

where φ(t) = (φ1(t), . . . , φK (t))′. To introduce the main idea
of FPCA, let �X (s, t) be the covariance function of the ge-
netic variant functions. Note that the covariance function
�X (s, t) can be estimated by the observed genotype data G i =

(X i(t1), . . . , X i(tm))′, i = 1, 2 . . . , n [Ramsay and Silverman,
2005; Horváth and Kokoszka, 2012]. Let

∑∞
k=1 λkφk(s)φk(t) be

the spectral decomposition of �X (s, t), where λ1 ≥ λ2 ≥ · · ·
are the nonincreasing eigenvalues and φk(t), k = 1, 2, . . . , are
the corresponding orthonormal eigenfunctions. An approx-
imation for X i(t), based on a truncated Karhunen–Loève
expansion, is

X̂ i(t) = (c i1, . . . , c iK )φ(t), (6)

where K is the truncation lag, c ik =
∫ 1

0 X i(t)φk(t)dt, and again
φ(t) = (φ1(t), . . . , φK (t))′. Also notice that c ik can be esti-
mated by the observed genotype data.

Revised Multivariate Functional Linear Model. First, con-
sider the case of expanding X i(t) by the ordinary linear square
smoother. As in the beta-smooth only case, the genetic effect
β�(t) is expanded by a series of basis functions ψk(t), k =

1, . . . , K β, as β�(t) = (ψ1(t), . . . , ψK β
(t))(β�1, . . . , β�K β

)′ =

ψ(t)′β�. Replacing X i(t) in (4) by X̂ i(t) in (5) and β�(t)
by the expansion, we have a revised functional linear

model

yi� = α�0 + Z ′
iα� +

[
(X i(t1), . . . , X i(tm))�[�′�]–1

∫ 1

0
φ(t)ψ ′(t)dt

]
β� + εi�

= α�0 + Z ′
iα� + W′

iβ� + εi�, (7)

where W′
i = (X i(t1), . . . , X i(tm))�[�′�]–1

∫ 1
0 φ(t)ψ ′(t)dt. In

the above revised regression model, one needs to calculate
�[�′�]–1 and

∫ 1
0 φ(t)ψ ′(t)dt in order to get Wi . In the statis-

tical packages R or Matlab, there are readily available codes
to calculate them [Ramsay et al., 2009].

In the case of FPCA, we denote W′
i = (c i1, . . . , c iK )

∫ 1
0 φ(t)

ψ ′(t)dt, where (c i1, . . . , c iK ) and φ(t) are given by (6), and
ψ(t) = (1, t, (t – κ3)+, . . . , (t – κK β

)+)′ is a vector of linear
spline basis functions to expand the genetic effect functions.
Then, the revised model in the case of FPCA is

yi� = α�0 + Z ′
iα� + W′

iβ� + εi�. (8)

Approximate F -distribution Tests of Association

Consider the multivariate linear model (1) and the re-
vised regression models (3), (7), and (8). Models (7) and
(8) are multivariate multiple linear regressions that model
the genetic effect of genetic variant functions for the L
phenotypic traits simultaneously adjusting for covariates.
To test the association between the m genetic variants and
the quantitative traits as a group, the null hypothesis is
H0 : β� = (β�1, . . . , β�K β

)′ = 0, � = 1, . . . , L . We may test the
null H0 : β1 = · · · = βL = 0 by approximate F-distribution
tests based on Pillai–Bartlett trace, Hotelling–Lawley trace,
and Wilks’s Lambda using standard statistical approaches
[Anderson, 1984; Fox, 2008; Fox and Weisberg, 2011; Morri-
son, 2005; Rao, 1973].

If we only have one quantitative trait, i.e. L = 1, the three
approximate F-distribution tests based on Pillai–Bartlett
trace, Hotelling–Lawley trace, and Wilks’s Lambda are equiv-
alent to the F-test statistics of the standard multiple linear
regression. Thus, the models proposed in this article and the
related approximate F-distribution tests extend the models
and the F-test statistics in Fan et al. [2013].

Parameters of Functional Data Analysis

In the data analysis and simulations, we used the functional
data analysis procedure in the statistical package R. We use
two functions in library fda of R package as follows to create
basis:
basis = create.bspline.basis

(norder = order, nbasis = bbasis)
basis = create.fourier.basis

(c(0,1), nbasis = fbasis)
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The three parameters were taken as order = 4, bbasis = 15,
fbasis = 25 in all data analysis and simulations to ensure that
the type I error rates were properly controlled. Specifically,
the order of B-spline basis was 4, and the number of basis
functions of B-spline was K = K β = 15; the number of
Fourier basis functions was K = K β = 25. In the data analysis
and simulations of FPCA, the number of knots of the linear
spline basis was taken as K β = 10 and the truncation lag
K = 20. To ensure that the results are valid and stable, we
tried a wide range of parameters that 10 ≤ K = K β ≤ 25
and the results are very close to each other (data not
shown).

Application to Real Data

Lipid Traits in Eight European Cohorts

We analyzed lipid traits from eight European cohorts,
where five are from Finland [Finland United States Investi-
gation of NIDDM Genetics (FUSION Stage 2) [Scott et al.,
2007], FIN-D2D 2007 (D2d-2007) [Kotronen et al., 2010],
The Finnish Diabetes Prevention Study (DPS) [Tuomilehto
et al., 2001], METabolic Syndrome in Men (METSIM) [Stan-
cakova et al., 2009], and The Dose Responses to Exercise
Training Study (DRs EXTRA) [Kouki et al., 2012], two are
from Norway [Nord-Trondelag Health Study 2 and Tromso
4 (HUNT and Tromso) [Holmen et al., 2003; Jacobsen et al.,
2012], and one from Germany [The DIAbetes GENetic Study
(DIAGEN)] [Schwarz et al., 2006]. The two Norwegian
cohorts were combined into one study for a joint analysis.
The genotype data were from Metabochip genotyping, which
was designed to fine map regions that have been associated
with metabolic traits [Altshuler et al., 2010]. For each cohort,
54,741 genetic variants were genotyped, located in 97 genetic
regions across the 22 autosomes. For our analysis, we utilized
the existing literature as a reference for gene selection and
found that 22 gene regions were fine mapped [Li et al.,
2014; Liu et al., 2014; Morris et al., 2012; Scott et al., 2012;
Voight et al., 2010; Zeggini et al., 2008]. We used Builder
Mar. 2006 (NCBI36/hg18) to determine gene positions and
5 kb was used to extend the gene region on each side of a
gene. The summary of 22 genes and the number of genetic
variants in each gene region are given in Supplementary
Table S1.

Four lipid traits were analyzed: high-density lipoprotein
(HDL) levels, low-density lipoprotein (LDL) levels, triglyc-
erides (TG), and total cholesterol (CHOL). The sample sizes
for each combination of seven studies and four trait are pro-
vided in Supplementary Table S2. For each trait, inverse nor-
mal rank transformation was performed to ensure that the
normality assumption was valid. For all studies except for
METSIM, age, sex, and type 2 diabetes status were used as
covariates. For METSIM, age and type 2 diabetes status were
used as covariates since no female was included in the study.
A significance threshold of P < 3.1 × 10–6 was taken from Liu
et al. [2014] (corresponding to 0.05/16,153 and allowing for
the number of genes tested therein).

Table 1 reports significant results of association analysis of
five European studies in the regions of APOE and LDLR genes.
At the significance threshold of P < 3.1 × 10–6, we detected
association at APOE in the five European studies: D2d-2007,
FUSION Stage 2, Norway, DIAGEN, and METSIM. At LDLR,
association was detected in one study of METSIM. For the
studies of D2d-2007 and FUSION Stage 2, two traits (LDL
and CHOL) and their bivariate combination (LDL, CHOL)
showed association with APOE by our F-approximation
tests as well as SKAT-O. For the studies of Norway, DIAGEN,
and METSIM, LDL and the trivariate combination (LDL,
TG, CHOL) were associated with APOE. For the study
of Norway, CHOL and bivariate combinations of (LDL,
TG), (LDL, CHOL), and (TG, CHOL) were associated with
APOE.

For the studies of DIAGEN and METSIM, neither TG nor
CHOL showed significant association with APOE at the sig-
nificance threshold of P < 3.1 × 10–6. However, the bivari-
ate combinations and trivariate combinations were signifi-
cantly associated with APOE. The bivariate combination (TG,
CHOL) also showed association with APOE in the DIAGEN
study despite the fact that neither TG nor CHOL was signif-
icant in the univariate analysis. For the gene LDLR, CHOL
showed a significant association while LDL did not; the bi-
variate combination (LDL, CHOL) also was significantly as-
sociated with LDLR.

In general, our F-approximation tests are more sensitive
than the F-approximation tests of the multivariate linear
model (1) which in turn is more sensitive than SKAT-O in
the univariate case. SKAT-O only detected association of two
traits (LDL and CHOL) with APOE in two studies, D2d-2007
and FUSION Stage 2. In comparison, the F-approximation
tests of the multivariate linear model (1) detected more as-
sociation than SKAT-O in the univariate case between two
traits (LDL and CHOL) and APOE in the study of Nor-
way. Generally, the P -values of our F-approximation tests
are smaller than those of the F-approximation tests of the
multivariate linear model (1). In the study of DIAGEN, the
F-approximation tests of the multivariate linear model (1)
did not detect any association between LDL [or (TG, CHOL)]
and APOE. In the METSIM study, the F-approximation tests
of the multivariate linear model (1) did nor detect any associ-
ation between LDL [or (LDL, CHOL) or (LDL, TG, CHOL)]
and APOE, and between CHOL and LDLR.

Biochemical Traits in the Trinity Students Study

We performed a pleiotropy analysis of 36 SNP variants
in one enzyme gene region on three biochemical traits (de-
noted by A, B, and C) in a sample of 2,232 individuals from
the Trinity Students Study. Since the raw traits were not nor-
mally distributed, we transformed the three traits by inverse
normal rank transformation. We adjusted for three factors:
gender, another chemical compound known to affect these
biochemical traits as a continuous covariate, and a dichoto-
mous covariate to indicate if supplements containing these
biochemical factors was used.
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Table 1. Results of association analysis of lipid traits in five European studies in the regions of APOE and LDLR genes using the
F -approximation based on Pillai–Bartlett trace

P -values of the F-approximation based on Pillai-Bartlett Trace

Basis of both GVF and β�(t) Basis of beta-smooth only

Study Gene Traits B-sp basis Fourier basis FPCA B-sp basis Fourier Basis
Multivariate
Model (1)

P-values
of SKAT-O

D2d-2007 APOE LDL 1.89 × 10–25 9.02 × 10–25 3.47 × 10–23 1.89 × 10–25 9.02 × 10–25 2.85 × 10–24 5.87 × 10–13

CHOL 9.09 × 10–18 3.01 × 10–17 1.27 × 10–16 9.09 × 10–18 3.01 × 10–17 7.97 × 10–17 1.72 × 10–9

LDL, CHOL 1.21 × 10–20 2.08 × 10–19 1.90 × 10–19 1.21 × 10–20 2.08 × 10–19 7.91 × 10–19 X
FUSION APOE LDL 4.34 × 10–10 2.24 × 10–11 3.15 × 10–10 4.34 × 10–10 2.24 × 10–11 3.42 × 10–11 8.61 × 10–14

Stage 2 CHOL 1.34 × 10–12 4.92 × 10–13 3.18 × 10–12 1.34 × 10–12 4.92 × 10–13 8.70 × 10–13 1.64 × 10–12

LDL,CHOL 1.20 × 10–7 1.29 × 10–8 4.65 × 10–8 1.20 × 10–7 1.29 × 10–8 1.75 × 10–8 X
Norway APOE LDL 3.79 × 10–28 1.90 × 10–27 7.15 × 10–26 3.79 × 10–28 1.90 × 10–27 6.05 × 10–27 6.21 × 10–6

TG 5.69 × 10–4 3.94 × 10–4 6.80 × 10–5 5.69 × 10–4 3.95 × 10–4 6.55 × 10–4 5.55 × 10–2

CHOL 2.12 × 10–14 6.15 × 10–14 2.46 × 10–13 2.12 × 10–14 6.15 × 10–14 1.35 × 10–13 3.00 × 10–3

LDL,TG 1.42 × 10–25 8.16 × 10–25 9.55 × 10–25 1.42 × 10–25 8.16 × 10–25 4.72 × 10–24 X
LDL,CHOL 8.12 × 10–29 1.64 × 10–27 6.88 × 10–28 8.12 × 10–29 1.64 × 10–27 6.70 × 10–27 X
TG,CHOL 5.32 × 10–20 1.46 × 10–19 1.46 × 10–20 5.32 × 10–20 1.46 × 10–19 6.08 × 10–19 X
LDL,TG,CHOL 1.18 × 10–24 3.06 × 10–23 1.13 × 10–24 1.18 × 10–24 3.06 × 10–23 1.68 × 10–22 X

DIAGEN APOE LDL 7.84 × 10–7 3.31 × 10–6 5.82 × 10–6 7.84 × 10–7 3.31 × 10–6 5.76 × 10–6 2.37 × 10–1

TG 3.51 × 10–3 8.53 × 10–3 1.09 × 10–3 3.51 × 10–3 8.53 × 10–3 1.23 × 10–2 7.59 × 10–2

CHOL 1.91 × 10–3 5.61 × 10–3 1.77 × 10–2 1.91 × 10–3 5.61 × 10–3 7.38 × 10–3 4.73 × 10–1

LDL,TG 1.78 × 10–8 1.76 × 10–7 2.76 × 10–8 1.78 × 10–8 1.76 × 10–7 4.47 × 10–7 X
LDL,CHOL 1.24 × 10–9 1.44 × 10–8 5.06 × 10–8 1.24 × 10–9 1.44 × 10–8 3.24 × 10–8 X
TG,CHOL 2.99 × 10–6 2.49 × 10–5 6.76 × 10–6 2.99 × 10–6 2.49 × 10–5 4.51 × 10–5 X
LDL,TG,CHOL 1.81 × 10–10 4.43 × 10–9 1.83 × 10–9 1.81 × 10–10 4.43 × 10–9 1.19 × 10–8 X

METSIM APOE LDL 1.85 × 10–5 1.98 × 10–5 9.71 × 10–7 1.85 × 10–5 1.98 × 10–5 3.45 × 10–5 1.25 × 10–4

TG 2.80 × 10–2 3.43 × 10–2 7.66 × 10–2 2.80 × 10–2 3.43 × 10–2 3.96 × 10–2 4.04 × 10–1

CHOL 1.87 × 10–2 1.84 × 10–2 4.33 × 10–3 1.87 × 10–2 1.84 × 10–2 2.73 × 10–2 5.43 × 10–2

LDL,TG 2.70 × 10–7 3.45 × 10–7 1.47 × 10–7 2.70 × 10–7 3.45 × 10–7 7.77 × 10–7 X
LDL,CHOL 3.87 × 10–5 5.63 × 10–5 2.84 × 10–6 3.87 × 10–5 5.63 × 10–5 9.45 × 10–5 X
LDL,TG,CHOL 1.09 × 10–6 2.08 × 10–6 8.30 × 10–7 1.09 × 10–6 2.08 × 10–7 3.91 × 10–6 X

LDLR LDL 1.72 × 10–4 2.20 × 10–5 9.42 × 10–6 1.72 × 10–4 2.20 × 10–5 4.01 × 10–5 1.50 × 10–2

CHOL 3.47 × 10–4 2.97 × 10–6 1.31 × 10–5 3.47 × 10–4 2.97 × 10–6 5.67 × 10–6 5.79 × 10–3

LDL,CHOL 3.24 × 10–5 2.99 × 10–7 2.02 × 10–6 3.24 × 10–5 2.99 × 10–7 7.83 × 10–7 X

Notes: The associations that attain a threshold significance of P < 3.1 × 10–6 are highlighted in bold [Liu et al. 2014]. The results of “Basis of both GVF and β�(t)” were based on
smoothing both GVF and genetic effect functions β�(t) of model (7), the results of “FPCA Approach” were based on FPCA approach of model (8), the results of “Basis of
beta-Smooth Only” were based on smoothing β�(t) only approach of model (3), and the P-values of SKAT-O were based of R Package SKAT. GVF, genetic variant function.

In Fan et al. [2013], the three traits were analyzed indi-
vidually and the results were compared with both SKAT and
SKAT-O. In this article, we analyzed four combinations of the
three traits: three bivariate combinations (A, B), (A, C), (B,
C), and one trivariate combination (A, B, C). We tested the
association between the transformed individual traits and
the 36 SNPs by approximate F-test statistics of bivariate and
trivariate linear models using B-spline basis, Fourier basis,
and linear spline basis functions. For convenience of compar-
ison, we also present the results of the univariate functional
linear models of Fan et al. [2013], as well as those of
SKAT-O.

Table 2 presents the P -values of the F-approximation tests
based on the Pillai–Bartlett trace for the SNP data of the
enzyme gene of the Trinity Students Study. We present the
results of four combinations of the three traits on the bottom
of the Table 2: (A, B), (A, C), (B, C), and (A, B, C). The four
combinations of (A, B), (A, C), (B, C), and (A, B, C) provided
much stronger results than those of univariate analysis indi-
vidually since the P -values of the approximate F-distribution
test statistics in the bottom four columns of Table 2 were
much smaller than the F-test statistics of the individual uni-
variate analyses of the three traits, A, B, and C. For all three
traits, A, B, and C, the results of the univariate F-distributed
tests are far better than those of SKAT-O [Table 2 and Fan

et al., 2013]. Again, the P -values of our F-approximation
tests are smaller than those of the F-approximation tests of
the multivariate linear model (1).

Summary and Observation of Real Data Analysis

In summary, our association analyses of lipid traits and
biochemical traits reveal that we may get a better picture by
carrying out both univariate association analysis and multi-
variate pleiotropy analysis. Although the univariate analysis
of separate traits may provide useful information despite
not reaching a rigorous significance level like P < 3.1 × 10–6,
combining the phenotypic traits into a multivariate analysis
can produce stronger results, often reaching the genome-wide
association threshold.

The results of beta-smooth only are identical or similar to
those of smoothing both the genetic variant functions X i(t)
and the genetic effect function β�(t) in Tables 1 and 2. There-
fore, whether the genetic variant functions are smoothed
or not does not have much impact on the results as noted
in Fan et al. [2013, 2014]. We also analyzed the data by
the F-approximation tests based on the Wilks’s Lambda and
Hotelling–Lawley trace. The results of F-approximation tests
based on the Wilks’s Lambda and Hotelling–Lawley trace are
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Table 2. Results of association analysis of three traits of the Trinity Students Study in the region of an enzyme gene using the
F -approximation based on Pillai–Bartlett trace

P -values of the F-approximation based on Pillai–Bartlett trace

Basis of both GVF and β�(t) Basis of beta-smooth only

Traits B-spline basis Fourier basis FPCA B-spline basis Fourier basis
Multivariate

Linear Model (1)
P-values

of SKAT-O

A 1.73 × 10–13 7.89 × 10–13 1.54 × 10–15 1.73 × 10–13 7.89 × 10–13 2.84 × 10–12 2.16 × 10–10

B 3.44 × 10–13 1.80 × 10–11 1.58 × 10–13 3.44 × 10–13 1.80 × 10–11 1.23 × 10–10 2.72 × 10–5

C 1.11 × 10–11 9.91 × 10–10 8.67 × 10–11 1.11 × 10–11 9.91 × 10–10 3.78 × 10–9 1.25 × 10–5

(A, B) 2.14 × 10–20 3.14 × 10–18 3.00 × 10–21 2.14 × 10–20 3.14 × 10–18 7.67 × 10–17 X
(A, C) 1.08 × 10–17 9.53 × 10–16 9.29 × 10–18 1.08 × 10–17 9.53 × 10–16 4.46 × 10–15 X
(B, C) 6.54 × 10–15 9.51 × 10–12 1.19 × 10–14 6.54 × 10–15 9.51 × 10–12 1.05 × 10–10 X
(A, B, C) 2.30 × 10–21 5.87 × 10–18 3.74 × 10–21 2.30 × 10–21 5.87 × 10–18 1.56 × 10–16 X

Notes: The associations that attain a threshold significance of P < 3.1 × 10–6 are highlighted in bold [Liu et al. 2014]. The results of “Basis of both GVF and β�(t)” were based on
smoothing both GVF and genetic effect functions β�(t) of model (7), the results of “FPCA Approach” were based on FPCA approach of model (8), the results of “Basis of
beta-Smooth Only” were based on smoothing β�(t) only approach of model (3), and the P -values of SKAT-O were based of R Package SKAT. GVF, genetic variant function

similar to those of Table 2, although the P -values are slightly
different (data not shown).

Empirical Genetic Effects of Genetic Variants

To understand the genetic effect of genetic variants, we use
the three biochemical traits in The Trinity Students Study as
an example. Figure 1 shows genetic effect coefficients β�j of
the multivariate linear model (1) and genetic effect functions
β�(t) of functional linear models (3) and (7) against the ge-
netic position. In the plots (a1), (a2), and (a3), the genetic
effect coefficients β�j of model (1) are shown. In the plots
(b1), (b2), and (b3), the genetic effect functions β�((t) of
model (3) are shown. In the plots (c1), (c2), and (c3), the
genetic effect functions β�((t) of model (7) are shown. In
the plots (a1), (a2), and (a3) of Figure 1, the genetic effect
coefficients are large for quite a few variants. The genetic ef-
fect functions β�((t) shown in the plots (b1), (b2), (b3), (c1),
(c2), and (c3) show that the genetic effects are large in wide
regions.

In addition, we analyzed the four lipid traits and the three
biochemical traits by using each single variant versus some
phenotype combinations reported in Tables 1 and 2. The
results are reported in supplementary files. For instance, the
file Trinity (A,B,C) manova.csv contains manova() results
of the three biochemical trait combination (A, B, C) vs. each
SNP. For each case, multiple variants are associated with the
traits. Hence, a combined analysis using multiple variants
simultaneously makes sense.

A Simulation Study

Simulations were performed to evaluate the performance
of the proposed methods when sample sizes range from 500
to 2,000. As in Lee et al. [2012] and Wu et al. [2011], the cutoff
of rare variants was taken as minor allele frequency (MAF)
< 0.03. We used the sequence data used in Lee et al. [2012]
and Wu et al. [2011] for two scenarios in empirical power and
type I error calculations: (1) the causal variants are all rare; (2)
the causal variants are both rare and common. The sequence
data are with European ancestry from 10,000 chromosomes

covering 1 Mb regions using the calibrated coalescent model
programmed in COSI [Schaffner et al., 2005]. Specifically, the
sequence data were generated using COSI’s calibrated best-
fit models, and the generated European haplotypes mimick
CEPH Utah individuals with ancestry from northern and
western Europe in terms of site frequency spectrum and LD
pattern [Fig. 4 in Schaffner et al., 2005; The International
HapMap Consortium, 2007]. Genetic regions of 3 kb length
were randomly selected in the simulations for type I error
calculation and power calculations.

Type I error Simulations. To evaluate whether the pro-
posed models and tests control false positive rates accurately,
we generated phenotype datasets by using the model

y1 = 0.5z1 + 0.5z2 + ε1,

y2 = 0.3z1 + 0.7z2 + ε2, (9)

y3 = 0.6z1 + 0.4z2 + ε3,

where z1 is a dichotomous covariate taking values 0 and 1
with a probability of 0.5, z2 is a continuous covariate from
a standard normal distribution N(0, 1), and (ε1, ε2, ε3)′ fol-
lows a normal distribution with a mean vector of 0 and a
3 × 3 variance-covariance matrix

� =

⎛
⎝ 1.00 0.60 –0.35

0.60 1.00 –0.45
–0.35 –0.45 1.00

⎞
⎠ . (10)

The 3 × 3 variance-covariance matrix � is taken from an
empirical analysis of the three traits of The Trinity Students
Study. To obtain genotype data, 3 kb subregions were ran-
domly selected in the 1 Mb region and the ordered geno-
types were these genetic variants in the 3 kb subregions. For
the scenario that the causal variants are all rare, only rare
variants were used; and for the scenario that the causal vari-
ants are both rare and common, all variants in the selected
subregions were used. Notice that the trait values are not re-
lated to the genotypes, and so the null hypothesis holds. The
sample sizes of the datasets were taken as 500, 1,000, 1,500,
2,000, respectively. For each sample size case, 106 phenotype–
genotype datasets were generated to fit the proposed models
and to calculate the approximate F-test statistics and related
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Figure 1. The genetic effect coefficients β�j of multivariate linear model (1) and genetic effect functions β�(t ) of functional linear models (3)
and (7) against the genetic position t for the three biochemical traits in the trinity students study. In the plots (a1), (a2), and (a3), the genetic effect
coefficients β�j of model (1) are shown. In the plots (b1), (b2), and (b3), the genetic effect functions β�((t ) of model (3) by B-spline basis functions
are shown. In the plots (c1), (c2), and (c3), the genetic effect functions β�((t ) of model (7) by B-spline basis functions are shown.

P -values. Then, an empirical type I error rate was calculated
as the proportion of 106 P -values that were smaller than a
given α level (i.e. 0.05, 0.01, 0.001, and 0.0001, respectively).

Empirical Power Simulations. For empirical power sim-
ulations, we assumed that 10% or 5% of the variants were
causal. We considered two scenarios: (1) the causal variants
are all rare, i.e. the causal variants’ MAF < 0.03, and (2) the
causal variants are both rare and common. Again, we ran-
domly selected 3 kb subregions to obtain causal variants for
the phenotype values. Once a 3 kb subregion was selected
from the 1 Mb region, a subset of P causal variants located
in the 3 kb subregion was then randomly selected to obtain
ordered genotypes (X (t1), . . . , X (tp )). Then, we generated
the quantitative traits by

y1 = 0.5z1 + 0.5z2 + β11X (t1) + · · · + β1p X (tp ) + ε1,

y2 = 0.3z1 + 0.7z2 + β21X (t1) + · · · + β2p X (tp ) + ε2, (11)

y3 = 0.6z1 + 0.4z2 + β31X (t1) + · · · + β3p X (tp ) + ε3,

where z1, z2, and (ε1, ε2, ε3)′ are the same as in the type I error
model (9), and the βs are additive effects for the causal vari-
ants defined as follows. We used |βij | = c i| log10(MAF j )|/2,
where MAF j was the MAF of the j -th variant. When 10% of
the variants were causal, c1 = log(7), c2 = log(6), c3 = log(5),
respectively; when 5% of the variants were causal, c1 =

log(10), c2 = log(8.5), c3 = log(7), respectively. For each set-
ting, 1,000 datasets were simulated to calculate the empirical
power levels as the proportion of P -values that are smaller
than a given α level (i.e. 0.05, 0.01, and 0.001, respectively).

Type I Error Simulation Results

In our simulations, we calculated the empirical type I error
rates for the approximate F-distribution test statistics based
on Pillai–Bartlett trace, Hotelling–Lawley trace, and Wilks’s
Lambda. For the F-approximation test statistics based on
the Pillai–Bartlett trace, the empirical type I error rates are
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Table 3. Empirical type I error rates of the approximate F -distribution tests based on Pillai–Bartlett trace, when the causal variants
are all rare

Basis of both GVF and β�(t) Basis of beta-smooth only

Traits
Sample

size
Nominal

level α B-sp basis Fourier basis FPCA B-sp basis Fourier basis

(y1, y2, y3) 500 0.05 0.049282 0.049516 0.049293 0.049195 0.049204
0.01 0.009733 0.009693 0.009622 0.009624 0.009702
0.001 0.001002 0.000994 0.000980 0.001009 0.001004
0.0001 0.000095 0.000075 0.000108 0.000083 0.000093

1,000 0.05 0.050011 0.049819 0.050006 0.050015 0.049966
0.01 0.009851 0.009859 0.009909 0.009945 0.009826
0.001 0.000948 0.000904 0.000952 0.000910 0.000948
0.0001 0.000083 0.000090 0.000101 0.000082 0.000084

1,500 0.05 0.049846 0.050224 0.049697 0.049762 0.049856
0.01 0.009845 0.010014 0.009838 0.009850 0.009810
0.001 0.000954 0.001003 0.000964 0.000909 0.000949
0.0001 0.000096 0.000010 0.000088 0.000097 0.000096

2,000 0.05 0.049693 0.049824 0.049889 0.049695 0.049681
0.01 0.009900 0.009846 0.009897 0.009926 0.009897
0.001 0.000989 0.000992 0.000969 0.001003 0.000989
0.0001 0.000110 0.000105 0.000097 0.000094 0.000110

(y1, y2) 500 0.05 0.049681 0.049472 0.049346 0.049573 0.049645
0.01 0.009778 0.009907 0.009569 0.009763 0.009772
0.001 0.000943 0.000961 0.000957 0.000959 0.000957
0.0001 0.000101 0.000086 0.000098 0.000099 0.000104

1,000 0.05 0.049793 0.049820 0.049460 0.049938 0.049808
0.01 0.009785 0.009740 0.009958 0.009922 0.009784
0.001 0.000966 0.000990 0.000920 0.000938 0.000961
0.0001 0.000098 0.000099 0.000092 0.000079 0.000095

1,500 0.05 0.050169 0.049950 0.049825 0.049801 0.050154
0.01 0.009881 0.009938 0.009812 0.009925 0.009885
0.001 0.000960 0.001010 0.000964 0.000961 0.000958
0.0001 0.000099 0.000101 0.000090 0.000109 0.000010

2,000 0.05 0.049463 0.049961 0.049920 0.049857 0.049463
0.01 0.009974 0.009931 0.010001 0.010122 0.009970
0.001 0.001011 0.001014 0.000980 0.001023 0.001010
0.0001 0.000098 0.000109 0.000086 0.000113 0.000098

(y1, y3) 500 0.05 0.049204 0.049216 0.049195 0.049222 0.049189
0.01 0.009713 0.009889 0.009728 0.009886 0.009717
0.001 0.000998 0.000928 0.001031 0.000998 0.000998
0.0001 0.000091 0.000096 0.000090 0.000099 0.000090

1,000 0.05 0.050154 0.050095 0.050087 0.050063 0.050098
0.01 0.009961 0.009991 0.009986 0.010047 0.009962
0.001 0.001010 0.000970 0.001030 0.000977 0.001020
0.0001 0.000092 0.000102 0.000108 0.000097 0.000097

1,500 0.05 0.049919 0.050195 0.049950 0.049533 0.049929
0.01 0.009863 0.010141 0.009930 0.009982 0.009859
0.001 0.000999 0.000981 0.000985 0.000977 0.000994
0.0001 0.000110 0.000095 0.000109 0.000099 0.000107

2,000 0.05 0.049750 0.049626 0.049673 0.049641 0.049791
0.01 0.009928 0.009844 0.009865 0.009813 0.009937
0.001 0.000981 0.000960 0.000957 0.000965 0.000981
0.0001 0.000098 0.000087 0.000098 0.000105 0.000098

Notes: The results of “Basis of both GVF and β�(t)” were based on smoothing both GVF and genetic effect functions β�(t) of model (7), the results of “FPCA approach” were
based on the FPCA approach of model (8), and the results of “Basis of beta-smooth only” were based on the smoothing β�(t) only approach of model (3).

reported in Table 3 for the scenario that the causal variants are
all rare, and Table 4 for the scenario that the causal variants
are both rare and common. The results of three combinations
of traits are reported, two bivariate combinations (y1, y2)
and (y1, y3), and one trivariate combination (y1, y2, y3). For
each entry of empirical type I error rates, we generated 106

datasets. Results of four different α = 0.05, 0.01, 0.001, and
0.0001 nominal levels were reported.

For the approximate F-distribution test statistics based on
the Pillai–Bartlett trace of the multivariate functional lin-
ear models, all empirical type I error rates are around the

nominal α levels (columns 4–8 of Tables 3 and 4). Therefore,
the approximate F-distribution test statistics control type I er-
ror rates correctly over all sample sizes and all significance lev-
els. Thus, the approximate F-distribution test statistics can be
useful in whole genome and whole exome association studies.
Notice that the proposed methods control type I error rates
accurately for moderate sample size cases of 500. The em-
pirical type I error rates for the approximate F-distribution
tests based on Hotelling–Lawley trace and Wilks’s Lambda
are similar to those of the approximate F-distribution tests
based on Pillai–Bartlett trace (data not shown).
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Table 4. Empirical type I error rates of the approximate F -distribution tests based on Pillai–Bartlett trace, when the causal variants
are both rare and common

Basis of both GVF and β�(t) Basis of beta-smooth only

Traits
Sample

size
Nominal

level α B-sp basis Fourier basis FPCA B-sp basis Fourier basis

(y1, y2, y3) 500 0.05 0.049276 0.049309 0.049354 0.049172 0.049258
0.01 0.009762 0.009775 0.009700 0.009746 0.009790
0.001 0.000932 0.000948 0.000916 0.000958 0.000954
0.0001 0.000084 0.000077 0.000075 0.000091 0.000076

1,000 0.05 0.049608 0.049845 0.049651 0.049669 0.049811
0.01 0.009775 0.009781 0.009818 0.009771 0.009812
0.001 0.000947 0.000963 0.001013 0.000943 0.000971
0.0001 0.000089 0.000102 0.000081 0.000090 0.000104

1,500 0.05 0.049501 0.050344 0.049806 0.049521 0.050273
0.01 0.009954 0.009984 0.009865 0.009942 0.009987
0.001 0.000988 0.000977 0.000962 0.000990 0.000993
0.0001 0.000107 0.000101 0.000093 0.000106 0.000095

2,000 0.05 0.049660 0.049636 0.049661 0.049672 0.049679
0.01 0.009869 0.010023 0.009904 0.009872 0.010014
0.001 0.000957 0.001042 0.000968 0.000956 0.001045
0.0001 0.000097 0.000107 0.000103 0.000097 0.000109

(y1, y2) 500 0.05 0.049599 0.049487 0.049746 0.049512 0.049432
0.01 0.009807 0.009784 0.009733 0.009821 0.009825
0.001 0.000982 0.000956 0.000945 0.000977 0.000978
0.0001 0.000109 0.000090 0.000080 0.000109 0.000091

1,000 0.05 0.049727 0.049620 0.050035 0.049759 0.049642
0.01 0.009847 0.009777 0.009820 0.009851 0.009731
0.001 0.001011 0.000976 0.000938 0.001010 0.000972
0.0001 0.000098 0.000126 0.000093 0.000099 0.000126

1,500 0.05 0.049868 0.049992 0.049918 0.049875 0.049984
0.01 0.010013 0.009943 0.009946 0.010005 0.009948
0.001 0.001009 0.000997 0.000966 0.001002 0.001002
0.0001 0.000089 0.000100 0.000096 0.000090 0.000099

2,000 0.05 0.049785 0.050148 0.050102 0.049811 0.050090
0.01 0.010006 0.009923 0.009908 0.009999 0.009932
0.001 0.001037 0.001016 0.000979 0.001036 0.001015
0.0001 0.000106 0.000094 0.000097 0.000106 0.000095

(y1, y3) 500 0.05 0.049691 0.049598 0.049754 0.049757 0.049519
0.01 0.009734 0.009874 0.009773 0.009755 0.009925
0.001 0.000914 0.000923 0.000976 0.000925 0.000920
0.0001 0.000095 0.000083 0.000089 0.000097 0.000089

1,000 0.05 0.049754 0.050020 0.049954 0.049743 0.050016
0.01 0.010023 0.010007 0.009983 0.010012 0.009965
0.001 0.000972 0.001001 0.001023 0.000976 0.001014
0.0001 0.000085 0.000096 0.000088 0.000083 0.000108

1,500 0.05 0.049688 0.050607 0.049659 0.049719 0.050506
0.01 0.009953 0.010013 0.009880 0.009956 0.010013
0.001 0.000966 0.001021 0.000992 0.000966 0.001013
0.0001 0.000100 0.000107 0.000103 0.000099 0.000105

2000 0.05 0.049685 0.049387 0.049816 0.049686 0.049378
0.01 0.009975 0.009861 0.009697 0.009965 0.009863
0.001 0.000972 0.000994 0.000991 0.000974 0.000987
0.0001 0.000082 0.000108 0.000101 0.000083 0.000106

Notes: The results of “Basis of both GVF and β�(t)” were based on smoothing both GVF and genetic effect functions β�(t) of model (7), the results of “FPCA approach” were
based on the FPCA approach of model (8), and the results of “Basis of beta-smooth only” were based on the smoothing β�(t) only approach of model (3).

Statistical Power of the Proposed Tests and SKAT-O

We compared the power performance of the proposed
approximate F-distribution tests of bivariate and tri-variate
models with the performance of F-tests of univariate models
and SKAT-O based on the simulated COSI sequence data.
Using B-spline basis functions, the empirical power levels
of the approximate F-distribution tests of model (3) based
on Pillai–Bartlett trace are reported in the figures both in
the main text and in the Supplementary Materials, as well as
those of F-tests and SKAT-O using the trait values of y1 at
α = 0.01.

For the trait y1, 20%/80% causal variants had nega-
tive/positive effects in Figures 2–5. In the Supplementary
Figures S1–S4, all causal variants had positive effects for the
trait y1. In the Supplementary Figures S5, S6, S7, and S8,
50%/50% causal variants had negative/positive effects for
the trait y1. For the trait y2 in each figure, all causal variants
had positive effects in the top graphs [(a1), (a2), and (a3)],
20%/80% causal variants had negative/positive effects in the
middle graphs [(b1), (b2), and (b3)], and 50%/50% causal
variants had negative/positive effects in the bottom graphs
[(c1), (c2), and (c3)]. For the trait y3 in each figure, all
causal variants had positive effects in the left column graphs
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Figure 2. The empirical power of the approximate F-distribution test of model (3) using B-spline basis based on Pillai–Bartlett trace and SKAT-O
at α = 0.01, when causal variants were only rare and 10% of the variants were causal. For the trait y1, 20%/80% causal variants had negative/positive
effects; pct2 represents the percentage of negative effect causal variants for trait y2; and pct3 represents the percentage of negative effect causal
variants for trait y3.

[(a1), (b1), and (c1)], 20%/80% causal variants had nega-
tive/positive effects in the middle column graphs [(a2), (b2),
and (c2)], and 50%/50% causal variants had negative/positive
effects in the right column graphs [(a3), (b3), and
(c3)].

In Figures 2, 3, and Supplementary Figures S1, S2, S5, and
S6, the causal variants are only rare variants. In Figures 4,
5, and Supplementary Figures S3, S4, S7, and S8, the causal

variants can be both rare and common. In the legend of
all the figures, “(y1, y2, y3)” represents the empirical power
bar when all three traits (y1, y2, y3) are used for a trivariate
analysis, “(y1, y2)” represents the empirical power bar when
two traits (y1, y2) are used for a bivariate analysis, “(y1, y3)”
represents the empirical power bar when two traits (y1, y3)
are used for a bivariate analysis, “y1” represents the empirical
power bar when only one trait y1 is used for a univariate
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Figure 3. The empirical power of the approximate F-distribution test of model (3) using B-spline basis based on Pillai–Bartlett trace and SKAT-O
at α = 0.01, when causal variants were only rare and 5% of the variants were causal. For the trait y1, 20%/80% causal variants had negative/positive
effects; pct2 represents the percentage of negative effect causal variants for trait y2; and pct3 represents the percentage of negative effect causal
variants for trait y3.

analysis, and “SKAT-O” represents the power level of the
trait y1 by SKAT-O.

As documented in Fan et al. [2013], the F-distributed test
statistics of univariate y1 functional linear models have much
higher power levels than SKAT-O. The power levels of the ap-
proximate F-distribution tests of bivariate (y1, y2), (y1, y3),
and trivariate (y1, y2, y3) models are generally higher than

those of the F-tests of univariate y1 models. Therefore, it is
advantageous to perform multivariate analysis to gain power.
Note the power levels of the approximate F-distribution
tests of bivariate (y1, y2) models were similar to or slightly
lower than those of the F-tests of univariate y1 models,
when all the causal variants had positive effects in the top
graphs [(a1), (a2), and (a3)] or 20%/80% causal variants had
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Figure 4. The empirical power of the approximate F-distribution test of model (3) using B-spline basis based on Pillai–Bartlett trace and SKAT-O
at α = 0.01, when causal variants were both rare and common and 10% of the variants were causal. For the trait y1, 20%/80% causal variants had
negative/positive effects; pct2 represents the percentage of negative effect causal variants for trait y2; and pct3 represents the percentage of
negative effect causal variants for trait y3.

negative/positive effects in the middle graphs [(b1), (b2),
and (b3)] for the trait y2 in Supplementary Figures S1–
S4. This is mainly due to a high correlation 0.6 between
traits y1 and y2, and the degrees of freedom of the ap-
proximation F-distribution tests of bivariate models are
higher than those of the univariate F-tests. When the
correlation decreases, one may gain power by perform-
ing bivariate and trivariate analyses after compensating for

higher degrees of freedom of the approximate F-distribution
tests.

The empirical power levels of the approximate F-
distribution tests of model (3) based on Hotelling–Lawley
trace and Wilks’s Lambda are similar to those of the approx-
imate F-distribution test based on Pillai–Bartlett trace (data
not shown). In our empirical power calculations, we also used
Fourier basis functions for model (3), which provided similar
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Figure 5. The empirical power of the approximate F-distribution test of model (3) using B-spline basis based on Pillai–Bartlett trace and SKAT-O
at α = 0.01, when causal variants were both rare and common and 5% of the variants were causal. For the trait y1, 20%/80% causal variants had
negative/positive effects; pct2 represents the percentage of negative effect causal variants for trait y2; and pct3 represents the percentage of
negative effect causal variants for trait y3.

results to those reported in the figures. In addition, we have
performed empirical power calculations using model (7) and
FPCA model (8). The results are similar to those based on
model (3). In short, the performance of the F-approximate
distributions of models (3), (7), and (8) is very stable and
robust, no matter whether it is based on Pillai–Bartlett trace,
or Hotelling–Lawley trace, or Wilks’s Lambda.

Discussion

In this paper, we develop multivariate functional linear
models and hypothesis testing procedure to test association
between multiple quantitative traits and multiple genetic
variants in one genetic region. We first introduce a simple
beta-smooth only model (2) and its revised version (3) by
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using the genetic data directly, which assumes that the ge-
netic effects β�(t) are smooth functions while no assumption
is made about the genetic data. Treating the genetic data
as stochastic functions (i.e. genetic variant functions), we
propose model (4) to connect the stochastic functions to
phenotype adjusting for covariates. By using modern state-
of-the-art functional data analysis techniques, the observed
high dimension genetic variant data are used to estimate the
genetic variant functions based on B-spline or Fourier basis
functions or FPCA [de Boor, 2001; Ferraty and Romain, 2010;
Horváth and Kokoszka, 2012; Ramsay et al., 2009; Ramsay
and Silverman, 2005]. Then, the estimated genetic variant
functions are used to build multivariate linear regressions (7)
and FPCA model (8) for practical applications. Three types
of approximate F-distribution tests based on Pillai–Bartlett
trace, Hotelling–Lawley trace, and Wilks’s Lambda are in-
troduced to test association between multiple quantitative
traits and multiple genetic variants using standard multi-
variate analysis theory [Anderson, 1984; Fox, 2008; Fox and
Weisberg, 2011; Morrison, 2005; Rao, 1973].

The proposed methods were applied to analyze four lipid
traits in eight European cohorts and three biochemical traits
in data from the Trinity Students Study. The approximate
F-distribution tests provided much more significant results
than those of F-tests of univariate analysis and SKAT-O for
the three biochemical traits. The analysis of the four lipid
traits and the three biochemical traits detected more asso-
ciation than SKAT-O in the univariate case. Generally, the
approximate F-distribution tests of the proposed functional
linear models are more sensitive than those of traditional
multivariate linear models (1) which in turn are more sensi-
tive than SKAT-O in the univariate case. In this paper, we only
detected association between three lipid traits (LDL, CHOL,
and TG) and two genes (APOE and LDLR). It is possible that
more significant results could be detected in a metaanalysis by
a combining multiple studies in a unified analysis. However,
the multivariate functional linear models of metaanalysis
are not well-studied in terms of type I error and power
performance evaluation. More research is necessary in the
future.

Extensive simulations were performed to evaluate the false
positive rates and power performance of the proposed mod-
els and tests. To evaluate if the approximate F-distribution
tests control false positive rates accurately, four nominal levels
were used, i.e. α = 0.05, 0.01, 0.001, 0.0001, and five sample
sizes were taken, i.e. n = 500, 1, 000, 1, 500, 2, 000. For each
combination of a nominal level and a sample size, 106 datasets
were generated to calculate the empirical type I error rates.
Therefore, our evaluation is very extensive. Since the em-
pirical type I error rates are all around the nominal levels, in
particular at α = 0.0001, the proposed models and the related
approximate F-tests can be used in both whole genome or
whole exome association studies and candidate gene analysis.
We show that the approximate F-distribution tests control the
type I error rates very well. Generally, simultaneous analysis
of multiple traits can increase power performance compared
to an individual test of each trait unless the traits are strongly
correlated. The proposed multivariate functional linear

models lead to a combined analysis of the multiple traits,
and the proposed procedure reduces the number of tests
compared to the individual trait analysis.

In addition to the three types of the approximate F-
distribution tests, we actually evaluated the approximate F-
distribution test based on Roy’s maximum root, and spherical
F-test as well as its corrected versions [Box, 1954; Green-
house and Geisser, 1959; Huynh and Feldt, 1976]. However,
they all inflated type I error rates. Hence, we did not perform
power comparisons for them. In conclusion, the approximate
F-distribution tests based on Pillai–Bartlett trace, Hotelling–
Lawley trace, and Wilks’s Lambda are recommended for data
analysis of the genetic community.

In this article, we used three traits in the simulation study
and analyzed four lipid traits and three biochemical traits
in the data analysis. In some settings, it is likely that a gene
might affect a larger number of traits such as imaging data.
This problem needs in-depth investigations in future studies.

Acknowledgment

Two anonymous reviewers and the editors, Dr. Shete and Dr. Cordell, pro-
vided very good and insightful comments for us to improve the manuscript.
We greatly thank the European cohort investigators and the Trinity Students
Study (NICHD, NHGRI, Trinity College, Dublin and the Health Research
Board of Ireland) investigators for letting us analyze the data and use them
as examples. Dr. Stringham and Dr. Teslovich kindly sent us the data of the
European cohorts and patiently answered many questions about the cohorts,
and we greatly appreciated them. This study was supported by the Intramu-
ral Research Program of the Eunice Kennedy Shriver National Institute of
Child Health and Human Development (Ruzong Fan, Yifan Wang, Aiyi Liu,
and James L. Mills), and by the Intramural Research Program of the Na-
tional Human Genome Research Institute (Alexander F. Wilson and Joan E.
Bailey-Wilson), National Institutes of Health, Bethesda, MD. We thank Dr.
Seunggeun Lee who sent us their simulation program of SKAT and sequence
data generated by Dr. Yun Li using program COSI. This study utilized the
high-performance computational capabilities of the Biowulf Linux cluster
at the National Institutes of Health, Bethesda, MD (http://biowulf.nih.gov).

Computer Program. The methods proposed in this paper are imple-
mented by using procedure of functional data analysis (fda) in the statisti-
cal package R. The R codes for data analysis and simulations are available
from the web http://www.nichd.nih.gov/about/org/diphr/bbb/software/fan/
Pages/default.aspx

References

Altshuler DM, Lander ES, Ambrogio L, Bloom T, Cibulskis K, Fennell TJ, Gabriel SB,
Jaffe DB, Shefler E, Sougnez CL. 2010. A map of human genome variation from
population scale sequencing. Nature 467:1061–1073.

Anderson TW. 1984. An Introduction to Multivariate Statistical Analysis, Second Edition.
New York: John Wiley & Sons.

Bansal V, Harismendy O, Tewhey R, Murray SS, Schork NJ, Topol EJ, Frazer KA. 2010.
Accurate detection and genotyping of SNPs utilizing population sequencing data.
Genome Res 20: 537–545.

Box GEP. 1954. Some theorems on quadratic forms applied in the study of analysis of
variance problems, I. effect of inequality of variance in the one-way classification.
Annal Math Stat 25(2):290–302.

de Boor C. 2001. A Practical Guide to Splines, revised version. Applied Mathematical
Sciences 27. New York: Springer.

Dudbridge F, Gusnanto A. 2008. Estimation of significance thresholds for genome-wide
association scans. Genet Epidemiol 32(3):227–234.

Fan R, Wang Y, Mills JL, Wilson AF, Bailey-Wilson JE, Xiong M. 2013. Functional linear
models for association analysis of quantitative traits. Genet Epidemiol 37: 726–742.

Fan R, Wang Y, Mills JL, Carter TC, Lobach I, Wilson AF, Bailey-Wilson JE, Weeks
DE, and Xiong M. 2014. Generalized functional linear models for case-control
association studies. Genet Epidemiol 38: 622–637.

Ferraty F, Romain Y. 2010. The Oxford Handbook of Functional Data Analysis. New
York: Oxford University Press.

Genetic Epidemiology, Vol. 39, No. 4, 259–275, 2015 273



Ferreira MAR, Purcell SM. 2009. A multivariate test of association. Bioinformatics 25:
132–133.

Fox J. 2008. Applied Regression Analysis and Generalized Linear Models, Second Edition.
Los Angeles: Sage.

Fox J, Weisberg S. 2011. An R Companion to Applied Regression, Second Edition. Los
Angeles: Sage.

Goldsmith J, Bobb J, Crainiceanu CM, Caffo B, Reich D. 2011. Penalized functional
regression. J Comput Graph Stat 20: 830–851.

Greenhouse SW, Geisser S. 1959. On methods in the analysis of profile data. Psychome-
trika 24: 95–112.

Guo X, Liu Z, Wang X, Zhang H. 2012. Genetic association test for multiple traits at
gene level. Genet Epidemiol 37: 122–129.

Han F, Pan W. 2010. A data-adaptive sum test for disease association with multiple
common or rare variants. Hum Hered 70: 42–54.
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Keinänen-Kiukaanniemi S, Laakso M, Louheranta A, Rastas M and others. 2001.
Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with
impaired glucose tolerance. N Engl J Med 344: 1343–1350.

Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP, Zeggini E,
Huth C, Aulchenko YS, Thorleifsson G and others. 2010. Twelve type 2 diabetes
susceptibility loci identified through large-scale association analysis. Nat Genet 42:
579–589.

Wang K, Li M, Bucan M. 2007. Pathway-based approaches for analysis of genome-wide
association studies. Am J Hum Genet 81(6):1278–1283.

Wessel J, Schork NJ. 2006. Generalized genomic distance-based regression methodology
for multilocus association analysis. Am J Hum Genet 79: 792–806.

Williams GC. 1957. Pleiotropy, natural selection, and the evolution of senescence.
Evolution 11: 398–411.

274 Genetic Epidemiology, Vol. 39, No. 4, 259–275, 2015



Wu C, Zheng G, Kwak M. 2013. A joint regression analysis for genetic association
studies with outcome stratified samples. Biometrics 69: 417–426.

Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. 2011. Rare-variant association testing
for sequencing data with the sequence kernel association test. Am J Hum Genet 89:
82–93.

Yan T, Li Q, Li Y, Li Z, Zheng G. 2013. Genetic association with multiple traits in the
presence of population stratification. Genet Epidemiol 37(6):571–580.

Zawistowski M, Gopalakrishnan S, Ding J, Li Y, Grimm S, Zöllner S. 2010. Extend-
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