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CHAPTER 1  
Introduction 

 
Significance of protein interactions 

Proteins play a central role in the functioning of the cell. Most of the proteins function in 

collaboration with other proteins and bio-molecules (DNA, RNA, small molecules). Protein 

complexes, i.e. ensembles of interacting proteins, play a mechanistic role in several basic 

biological processes. For example, the transcription pre-initiation complex in eukaryotes, which 

comprises of several transcription initiation factors and RNA polymerase II, is responsible for 

transcribing DNA to mRNA [2]. The translation of mRNA to proteins in eukaryotes is carried out 

by the ribosomal complex, comprising several ribosomal sub-units [3]. Similarly, the 

proteasome complex that degrades damaged proteins in the cell also comprises of several 

intricately arranged protein sub-units. Such protein complexes are typically held together by 

‘stable’ protein interactions. On the other hand, several weak and transient interactions are 

responsible for various signaling mechanisms in the cell. These signaling mechanisms play a 

‘regulatory’ role by modulating basic biological processes. For example, histone de-acetylases 

(HDACs) regulate gene expression by de-acetylating histones [4]. The protein kinase Hpo (and 

other members of the Hippo pathway) control organ development in mammals by modulating 

the cell cycle and other related biological processes [5]. The Wnt family proteins transmit 

messages from outside the cell (through surface receptors) and control embryonic 

development by modulating cell proliferation and migration [6]. Suffice to say, that protein 

interactions are central to almost every biological process in the cell. Accordingly, protein 

interaction maps can help unravel the mechanisms of several underlying biological processes. 

The molecular basis of disease can be understood by a comparative analysis of protein 

interactions in normal versus disease states. This approach is particularly relevant to cancer, 
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where cells undergo transformation and evolve by ‘rewiring’ the underlying protein interaction 

networks. Accordingly, identifying and inactivating the master regulators in the cancerous cells 

is a promising strategy for rational drug discovery.  Kinases, which regulate several biological 

processes by phosphorylating proteins, are thus the favorite targets in cancer [7]. In summary, 

generating high quality protein interaction maps can help in developing new therapies for 

diseases such as cancer, in addition to providing a unique insight to underlying biological 

processes in the cell.  

Detecting protein interactions 

Several experimental approaches have been developed for detecting protein interactions. Here, 

we briefly discuss two popular high throughput methods – the yeast two-hybrid assay [8] and 

affinity purification mass spectrometry (AP-MS) [9] . 

Yeast two-hybrid 

This protein-fragment compensation assay reports the physical interaction between two 

interacting proteins through the expression of a reporter gene. Briefly, the binding domain and 

the activation domain of a transcription factor that activates the expression of a reporter gene 

are fused separately to each of the two proteins that are being tested. If the proteins interact 

physically, the binding and activation domains are placed in close proximity, thus driving the 

expression of the reporter gene. This simple approach can easily be multiplexed to generate a 

high experimental throughput. However, the approach also suffers from several issues 

including a high false positive rate. Although popular during the past decade, it has now been 

replaced by affinity purification mass spectrometry as the method of choice for detecting 

protein interactions. 

Affinity purification mass spectrometry 

In AP-MS, a protein complex is affinity purified in its native form and analyzed on a mass 

spectrometer (Figure 1-1).  The typical experimental workflow involves a) affinity purification of 

protein complexes, b) protein identification and quantitation using tandem mass spectrometry 

and c) identifying bona fide interactions from AP-MS data. Advances in protein mass 

spectrometry and standardization of purification protocols have placed AP-MS as the method 
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of choice for identifying protein interactions. Each of the components of the experimental 

workflow is discussed in detail below. 

 

Figure 1-1: Overview of affinity purification mass spectrometry (using epitope tagged baits). 

(a, b) Protein complexes of interest are purified using epitope tagged bait proteins. (c) The purified complex is 
analyzed using protein mass spectrometry. (d) Data is processed to identify and quantify proteins. Protein lists 
(prey) are scored to identify bona fide interactions (main text). 
 

Affinity purification of protein complexes 

The process involves purifying a protein complex using an antibody targeted against one of the 

members of the complex, called the ‘bait’. The antibody is immobilized on what is called the 

‘affinity support’. After cell lysis, the sample is incubated with the immobilized antibody and 

washed under mild conditions. The protocol is optimized to ensure that the protein complex is 

not disrupted during sample processing.  Washing removes unbound proteins, leaving the bait 

and its interacting partners (i.e., the protein complex) behind. Elution buffers are then used to 

release the complex back into solution. Co-eluting proteins are identified and quantified using 

protein mass-spectrometry (described below). 
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The two common flavors of affinity purification are a) immuno-purification and b) epitope tag-

based affinity purification. In immuno-purification assays, the antibody is targeted directly 

against the bait protein. In epitope tag-based AP experiments, the bait protein is clonally 

modified to express an epitope tag and antibodies are targeted against the epitope tag. Epitope 

tags are short peptide sequences for which high-affinity antibodies are available. Popular 

epitope tags include FLAG, GFP, HA, His, TAP and c-Myc1. In general, tag-based protocols do not 

have the problem of (antibody) cross reactivity, since the epitope tags have strong affinity to 

their antibodies.  

Epitope tag based protocols can further be classified into two important sub-categories - single 

step and tandem affinity purification. In tandem affinity purification, elute from the first 

purification is subjected to a second affinity purification.  Tandem AP typically uses a fusion tag 

that is cleavable at the junction. Single step protocols involve a single washing step, whereas 

tandem protocols involve two. Accordingly, tandem protocols tend to generate cleaner 

samples. However, additional washes eliminate weak and transient interactions and reduce the 

sensitivity of measurement. The phrases ‘tag-based AP-MS’ and ‘AP-MS’ are used 

interchangeably in literature. Throughout this thesis ‘AP-MS’ means ‘epitope tag-based AP-

MS’, unless specified otherwise. 

In theory, AP protocols are meant to capture ‘native’ complexes. However, a few caveats exist. 

It is a common practice to over-express the bait protein in order to amplify interactions. 

Whether over-expression preserves native conditions needs to be taken into consideration.  

Also, cell lysis brings together proteins that are otherwise localized to different organelles. 

Accordingly, proteins that do not natively interact may do so in the lysate. Notwithstanding 

these caveats, affinity purification can largely be considered as a powerful approach to profile 

native interactions. 

                                                      
1 http://www.sigmaaldrich.com/content/dam/sigma-aldrich/docs/Sigma-Aldrich/Brochure/1/epitope-tags-in-
protein-research.pdf 
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Protein identification and quantitation using tandem mass spectrometry 

Peptides are more amenable for analysis on a mass spectrometer than intact proteins. Hence a 

shotgun approach is adapted, where proteins are enzymatically cleaved to generate peptides 

that are then analyzed on a mass spectrometer [10]. Trypsin is commonly used for protein 

digestion. Mass spectrometers cannot handle complex samples; hence the peptide mixture is 

typically processed through an online chromatographic separation before it is introduced into 

the mass spectrometer. Tandem mass spectrometry is the standard approach to sequence 

peptide ions. The first step (MS1) involves isolating a single species of peptide ions using ‘mass 

filters’. The second step involves fragmenting the isolated ‘parent’ ions and accurately 

measuring the mass (actually, mass to charge ratio) of the fragment ions (MS2). The instrument 

alternates between MS1 and MS2 cycles and hence the name ‘tandem mass spectrometry’.  The 

duty cycle varies from instrument to instrument. It is easy to see that the instrument ‘samples’ 

peptide ions for sequencing. To avoid over sampling abundant peptide species, a data 

dependent acquisition (DDA) strategy is adapted. DDA strategy typically works by ‘excluding’ 

continuously eluting peptide ions for repeated sequencing beyond a certain number of times. 

DDA strategy can be subject to technical variation depending on chromatography conditions 

and the sample complexity. A more recent approach to protein mass spectrometry is based on 

a data independent strategy (DIA). This approach opens up the isolation window of MS1 to 

include a wider range of peptide ion species, rather than trying to isolate a single species of 

peptide ions for fragmentation. While DIA approach can sequence greater number of peptides, 

it generates chimeric spectra that are difficult to interpret. 

Spectral data (MS1 and MS2) for each sequenced peptide is computationally interpreted to 

identify the composition and sequence of amino acids [11]. The typical approach is referred to 

as the ‘database search’. Here, each ‘experimental’ spectrum is compared to a set of 

‘theoretical’ spectra generated from a database of known peptide sequences. The best hit is 

assigned to each spectrum. Popular search engines such as SEQUEST [12] , X! Tandem [13]  and 

Mascot2 have their own scoring functions to compare experimental and theoretical spectra. 

                                                      
2 http://www.matrixscience.com/ 
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Peptide-to-spectrum matches (PSMs) are then filtered to identify the high confidence hits. 

PeptideProphet [14] is one of the popular algorithms that take a statistical approach to filter 

PSMs. It converts raw scores generated by the search engine to a discriminant score. The 

distribution of the discriminant score is modelled using the expectation maximization (EM) 

algorithm to derive the distribution of true and incorrect hits. It then uses Bayes theorem to 

assign a probability score for each PSM. In other words, PeptideProphet [15] puts peptide 

confidence scores on a standardized (probability) scale.  

A question arises as to how to filter PSMs in order to generate a list of high confidence PSMs. 

Typically, the cut-offs are chosen to keep the overall false discovery rate (FDR) low, typically ≤ 

5%. Decoy sequences are used to estimate the FDR for a given cut-off [16].  Decoys are 

hypothetical peptide sequences that are unlikely to be present in the sample and hence 

represent false hits. Decoy-based FDR is estimated by appending an equal number of decoy 

sequences to the protein/peptide sequence database used for database search (described 

earlier). PSMs are scored as described above and peptide probabilities are generated using 

PeptideProphet. The FDR for a selected probability cut-off is estimated as the percentage of 

decoy sequences that pass the cut-off.   

In shotgun proteomics experiments, the presence/absence of proteins in the sample is inferred 

using the list of high confidence peptides. ProteinProphet is a popular algorithm for protein 

inference that treats each high confidence peptide as independent evidence of its parent 

protein and uses the following approach to derive a protein probability (i.e., probability that a 

protein was present in the sample). Again the error rates can be estimated using decoy 

sequences. An in-depth discussion of the error rates can be found here [16]. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃. =  1 − �(1 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖) 

Quantitation of peptide and protein abundance  

There are two principle approaches to peptide and protein quantitation – labelling based and 

label free[17]. ‘Stable isotope labeling by amino acids in cell culture (SILAC)’ [18] and ‘isobaric 

tags for relative and absolute quantitation (iTRAQ)’ [19] are examples of labeling based 
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approaches. Spectral counting and peptide ion intensity based quantitation are examples of 

label free quantitation.  

In SILAC, the cells are metabolically labelled to incorporate ‘heavy’ amino acids, i.e., amino 

acids comprising higher isotopes of carbon (13C).  In iTRAQ, the peptides from each sample are 

chemically modified using isobaric tags containing a reporter molecule. In both approaches, the 

samples from two or more sources are mixed and analyzed in a single experiment. In the case 

of SILAC, differences in protein abundances between the groups being tested is proportional to 

the differences between ‘heavy’ and ‘light’ peptides obtained from each source. In case of 

iTRAQ, peptide fragmentation releases the reporter ion from each isobaric tag, the intensity of 

which can be used for relative quantitation. Multiplexing samples helps reduce the technical 

variability.  Both approaches use ion intensities for quantitation, which is in general sensitive 

compared to the spectral counting approach (detailed below). However, labelling based 

approaches are resource intensive. Also, iTRAQ suffers from labelling biases. 

Label free approaches attempt to directly estimate peptide and protein abundances from 

spectral data. The popular spectral counting approach simply uses the number of high quality 

spectra assigned to a peptide as a semi-quantitative estimate of the peptide abundance. In 

peptide ion intensity based quantitation, the area under the curve (AUC) of the extracted ion 

chromatogram (XIC) is typically used to estimate peptide abundances. Spectral counting is 

robust and easy to compute, but is less sensitive compared to intensity based quantitation. 

Peptide ion intensity based quantitation is more sensitive, but involves sophisticated 

computation that requires careful interpretation.  

In all shotgun approaches, protein abundances are estimated using peptide abundances. It is 

often the case that several peptides map to multiple proteins, making the process of protein 

abundance estimation less than trivial. Such issues have been discussed by Fermin et al., in 

their software tool, ABACUS that processes the output of PeptideProphet and ProteinProphet 

to generate spectral abundance estimates. Due to inherent ambiguity in peptide identification 

and quantitation, juxtaposing data from multiple experiments may result in a sparse spectral 

count matrix. ABACUS implements heuristic protein selection criterion that helps overcome 
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some of those problems. Similar approaches can be applied to derive protein abundance using 

peptide ion intensity based quantitation. Throughout this thesis, we use spectral counting as 

the sole quantitation approach for estimating peptide and protein abundances. The methods 

presented here can, however, be extended to peptide ion intensity based quantitation. 

Identifying bona fide interactions from AP-MS data 

In an ideal world, affinity purification protocols are expected to selectively isolate protein 

complexes from the sample. However, what we see in practice is a modest to high ‘enrichment’ 

of the protein complex. This implies that the enriched sample has significant amount of 

interactions that are not bona fide members of the complex. Such ‘background’ interactions are 

largely due to proteins that stick to the affinity support, epitope tag and/or the matrix/column. 

Interactions that are not bona fide are also commonly referred to as ‘non-specific interactions’ 

or ‘non-specific background’. The phrase ‘non-specific’ is used to emphasize that they are not 

specific to the bait or the complex. As alluded to briefly earlier, stringent washing helps reduce 

such non-specific background, but it results in the loss of weak and transient interactions. On 

the other hand, less thorough washing leads to higher background and a proportionally higher 

false positive rate. However, it is better suited to capture weak and transient interactions. A 

plausible solution for this conundrum is to use a liberal purification regimen and develop 

alternative strategies to distinguish bona fide interactions from the non-specific background. 

We discuss several such strategies in this thesis. 

Some of the early strategies for distinguishing bona fide interactions are a) application of 

frequency filters and b) simple background subtraction using negative controls. The background 

profile in AP experiments depends on the experimental protocol. In large scale studies 

comprising several AP-MS experiments performed using the same protocol; non-specific 

interactions are likely to be observed more frequently than bona fide interactions. Accordingly, 

the frequency of detection of a prey across multiple experiments can be used to distinguish 

bona fide interactions from non-specific background. The background subtraction approach 

requires negative controls (Figure 1-2). Negative controls are mock AP-MS purifications that do 

not contain the bait. In epitope tag-based approaches, tag-only purifications and experiments 
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performed using a control protein (e.g. green fluorescent protein) are typically used as negative 

controls. Both these scoring approaches are based on the presence/absence of prey proteins in 

a sample and do not utilize their abundance estimates. Accordingly, they incorrectly estimate 

the ‘enrichment’ / ‘specificity’ of interactions and discard some bona fide interactions. 

 

Figure 1-2: Identifying bona fide interactions using negative controls. 

(a) Schematic representation of the composition of a protein complex comprising an epitope tagged bait protein 
and its interacting partners (prey). In addition to the ‘bait’ and ‘prey’ proteins, several non-specific, background 
interactors exist in the purified sample. (b) Schematic representation of a tag-only purification that profiles the 
background interactions. (c) Schematic representation of a mock AP-MS purification with a control protein. (b) and 
(c) are typically used as negative controls and are used for background subtraction from an AP-MS experiment. 

 
Advances in mass spectrometry over the past two decades have resulted in an enhanced ability 

to quantitate peptides and proteins (see ‘Quantitation of peptides and proteins’).  Accordingly, 

current approaches for distinguishing bona fide interactions from the background are based on 

‘scoring’ interactions using abundance estimates. Several such scoring schemes are discussed in 

chapter 2.  

Overview of thesis 

This thesis is devoted to developing a computational and informatics framework for systematic 

analysis of AP-MS data (Figure 1-3). It comprises of two processing pipelines and two 

repositories as detailed below. 
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In Chapter 2, we present a pipeline for scoring protein interactions (SPrInt). The ‘enrichment 

scoring module’ and the ‘specificity scoring module’ form the core of SPrInt. The enrichment 

scoring module implements SAINT [20] and a newly developed empirical fold change (FC) score. 

Both these scoring functions estimate the enrichment of a prey in the true purification, 

compared to negative controls; highly enriched prey are potentially bona fide. The specificity 

scoring module implements CompPASS [21] and a newly developed enrichment specificity 

score (EScore). Both these scoring functions estimate the specificity of a prey to one or a few 

bait purifications in a data set; highly specific preys are potentially bona fide. While the 

computation of enrichment scores requires negative controls, specificity scores can only be 

calculated in medium/large scale data sets comprising several bait purifications. In summary, 

SPrInt is a versatile tool that can score interactions from a wide variety of data sets. Integrated 

visualization tools help in filtering data and identifying high confidence interactions (HCIs). Such 

HCIs are pieced together to generate protein interaction networks. 

 

Figure 1-3: Computational and Informatics framework for analysis of AP-MS data. 

(a) Protein complexes are purified using affinity purification and analyzed using mass spectrometry. (b) Protein 
identification and quantitation is performed using the transproteomic pipeline (TPP). (c) SPrInt is a tool for scoring 
interactions (chapter 2). (d) CRAPome is a database of standardized negative controls that assist in scoring 
interactions. CRAPome is created using negative controls processed systematically through TPP and annotated 
using a controlled vocabulary (chapter 4). (e) PInt is a tool for reconstruction of protein interaction networks using 
high confidence interactions generated by SPrInt and prior knowledge from IRefIndex.  (f) Several AP-MS data sets 
are processed through SPrInt and scored interactions are stored in a repository that can assist in the 
reconstruction of protein interaction networks (RePrInt). The database allows systematic aggregation and 
standardized processing of AP-MS data. The associated tools provide novel approaches for network reconstruction 
(chapter 5). 
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In chapter 3, we present PInt, a tool for reconstruction and analysis of protein interaction 

networks. The tool provides several options for integrating prior knowledge with user-

generated data. Such integration of prior knowledge facilitates enhanced interpretation of 

networks generated from small scale data sets. Medium and large scale networks are better 

understood when they are dissected to identify the constituent network modules. PInt 

implements a streamlined approach to identify and zoom into subnetworks. In summary, PInt is 

an integrated and versatile tool for network generation and analysis. 

The performance of enrichment scoring schemes is dependent on the availability of good 

negative controls. In many small scale studies, such high quality negative controls are not 

available. Fortunately, negative controls are largely bait independent. Hence, aggregating 

negative controls from multiple AP-MS studies can increase coverage and improve the 

characterization of background associated with a given experimental protocol. This motivated 

the creation of the publicly available repository of standardized negative controls, called the 

Contaminant Repository for Affinity purification (CRAPome). The database and associated tools 

are presented in Chapter 4.  

The availability of a standardized pipeline for systematic analysis of AP-MS data provides us 

with a unique opportunity to create a repository of protein interactions (RePrInt).  Almost all of 

the currently available public protein interaction databases follow a manual/automatic curation 

approach to aggregate protein interactions. Inherent limitations of both manual and automatic 

curation lead to high false positive rates and/or reduced scope of interactions. RePrInt takes a 

completely data-driven approach that is based on aggregating raw spectral data and making 

available uniformly scored protein interactions. A novel network reconstruction algorithm has 

been developed to generate comprehensive interaction maps. The algorithm lays a particular 

emphasis on identifying bona fide interactions that are weak and transient. Such interactions, 

by their very nature, are not expected to be high scoring and may fail to qualify as bona fide in 

typical network reconstruction approaches. A new scoring function (RScore) has been 

developed to ‘merge’ evidence from multiple data sets, when available. RScore is particularly 
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useful in boosting the confidence of bona fide weak/transient interactions. The creation and 

utility of RePrInt (and associated computational tools) is presented in Chapter 5.  
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CHAPTER 2  
SPrInt: A Framework for Scoring Protein 

Interactions from Affinity Purification Mass 
Spectrometry Data 

 

 

Introduction 

Affinity purification mass spectrometry (AP-MS) is a powerful technology for analyzing protein-

protein interactions [22]. In the commonly used tag-based AP-MS approach, protein complexes 

are purified using antibodies directed against the epitope tag of a clonally modified member of 

the complex (also called the ‘bait’) and analyzed on a mass spectrometer. While the co-

purifying proteins (also called the ‘prey’) comprise the bona fide members of the complex, the 

process also generates significant amount of non-specific background interactions [1]. 

Accordingly, identifying bona fide protein interactions from AP/MS data is a challenging task.  

Several informatics strategies have been developed to score interactions and filter out the 

background. In small and medium-scale data sets comprising of one or a few bait purifications, 

scoring is typically based on the comparison of the ‘true’ purification with negative controls 

generated in parallel. In large-scale data sets comprising multiple bait purifications, the 

specificity of prey to bait purification can also be used to distinguish genuine interactions from 

non-specific background contaminants. We present here SPrInt, an online tool for scoring 

protein interactions from AP/MS data. The ‘enrichment’ scoring module of SPrInt provides two 

models (empirical fold change FC Score and SAINT [20]) to compare the true purifications with 

negative controls. The ‘specificity/network’ scoring module also provides two scoring models 

(new EScore and previously published CompPASS [21, 23]) to generate metrics of specificity 

that assist in filtering out the background. SPrInt generates several visualizations of the scored 

Parts of this chapter have been published by the author in Nature Methods [1]. 
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interactions that assist the user in filtering the data.  An integrated network reconstruction tool 

(PInt, described in chapter 3) facilitates the creation and visualization of protein interaction 

networks using bona fide interactions and prior knowledge. SPrInt is also integrated with the 

CRAPome database [1], a large repository of standardized negative controls that can assist in 

improving the scoring outcomes. The tool was originally developed as workflow 3 of the 

CRAPome database, but has been improved ever since its original publication. All tools are 

publicly available at www.crapome.org . 

Methods 

Design and implementation of SPrInt 

SPrInt was designed in the model-view-controller architectural framework [24] and is available 

as a web service. The user interface (UI) was developed using Drupal, an open-source PHP-

based web framework, and MySQL and SQLite databases. The pipeline for processing user input 

data and computing interaction scores was developed using Python. The visualization module 

that generates summary reports of scored interactions was developed using the google 

visualization API. The system is deployed on a server managed by the University of Michigan 

Medical School Information services (MSIS) using Apache, an open source web server. The UI 

facilitates uploading the user data, selecting various analysis options and computing scores. 

User analyses (referred to here as ‘user jobs’) are managed using TORQUE, an open source 

computing resource manager, and are processed on a first-come, first-served basis. Processing 

user jobs via TORQUE enables streamlined utilization of server resources and enhances the 

stability of the system. SAINT analysis is computationally intensive and is hence executed on 

FLUX, a shared high-performance computing service at the University of Michigan. Robust 

system integration between the web server and FLUX was designed in a fire-and-forget 

approach that minimizes connection failures (Appendix A). In this approach, the web server 

‘fires’ a processing request to FLUX and ‘forgets’. FLUX picks up a request, processes it on a 

first-come, first-served basis and sends the results back to the web server. A daemon on the 

web server receives the results and presents them to the user. In addition to professional data 

backup and system management, both FLUX and MSIS provide on-demand scalability of 

http://www.crapome.org/
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computing resources. The modular design of the software system facilitates easy expansion of 

functional capabilities of SPrInt, like incorporating new scoring and visualization modules. 

Details of the software architecture are provided in Appendix A. 

Scoring modules 

SPrInt comprises two scoring modules: enrichment- and specific- based. The enrichment scoring 

module implements an empirical scoring function (FC score [1]) and a probabilistic scoring 

model (SAINT [20]). The specificity scoring module implements two empirical scoring functions: 

EScore (unpublished) and CompPASS [21]. Each of the functions is described in detail below, 

with an emphasis on their relevance and applicability. 

Interaction scoring: FC score 

The primary FC score (FC-A, or just FC) can be considered an alternative to SAINT scoring 

described in [20]. It is computed for each bait-prey interaction pair (initially separately for each 

biological replicate of the bait). It is defined as the ratio of the normalized spectral count of 

protein i in purification with bait j, Ti,j , to the average normalized spectral count of that protein 

across the negative controls (user controls or selected CRAPome controls), Ci, calculated as 

follows. 

𝑭𝑭𝒊,𝒋 =  
𝑇𝑖,𝑗 +  𝛼
𝐶𝑖 +  𝛼

 , 𝑤ℎ𝑒𝑒𝑒 𝑖 = 𝑝𝑝𝑝𝑝, 𝑗 = 𝑏𝑏𝑏𝑏 

The normalized spectral counts are computed as 𝑇𝑖,𝑗 =  𝑆𝐶𝑖,𝑗
𝑁𝑗

, where the normalization factor 𝑁𝑗 

is the sum over all proteins identified in the experiment with bait j,  𝑁𝑗 =  ∑ 𝑆𝑆𝑖,𝑗𝑖  . Similarly, 

the counts are normalized in each negative-control experiment x = 1 through n, 𝐶𝑖,𝑥 =  𝑆𝑆𝑖,𝑥
𝑁𝑥

 , 

before the averaged normalized count across all n controls, 𝐶𝑖 =  1
𝑛

 ∑ 𝐶𝑖,𝑥, is computed. A small 

background factor α is added to prevent division by 0, calculated as  𝛼 =  𝛽
𝑎𝑎𝑎(𝑁𝑥)

 , where 

𝑎𝑎𝑎(𝑁𝑥) is the average normalization factor across all n negative controls. The parameter β is 

by default set to 1. When the bait protein is analyzed in multiple biological replicates, the FC 
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scores computed independently for each bait replicate are averaged to arrive at the final FC 

score. 

The secondary, more conservative FC score (FC-B) can be used in addition to SAINT or the 

primary FC-A score for improved detection of several classes of challenging contaminants. It is 

computed as described above, except that 𝐶𝑖 is computed by averaging the three highest 

normalized spectral counts across all controls (by default, using the combined set of selected 

CRAPome controls and the user controls, when available). Furthermore, in the case of biological 

replicates for the bait protein, the final FC-B score is computed by default as the geometric 

mean of the FC scores for each replicate. 

Interaction scoring: SAINT 

SAINT was described in [20]. Here the data were analyzed using SAINT options ‘LowMode = 0, 

MinFold = 0, Normalize = 1.’ In general, SAINT performance varies depending on the choice of 

options, especially MinFold (requiring a certain minimum fold change as a part of probability 

calculation) and Normalize (normalization to the total spectral count in each experiment). 

SAINT runs with the options specified above slightly outperform SAINT results with other 

options applied to these data sets (data not shown). When the bait protein is analyzed in 

multiple biological replicates, SAINT probabilities computed independently for each bait 

replicate are averaged, and the average probability (AveP) is reported as the final SAINT score. 

For in-depth discussion of these options, see ref. [25]. SPrInt also allows alternative 

specifications for combining biological replicates (for example, geometric mean as a more 

conservative approach). 

SAINT has been shown to perform well when using a sufficient number of matching negative 

controls (ideally, at least 3–5 controls) showing a high degree of reproducibility. At the same 

time, SAINT can be sensitive to changes in the spectral count distributions of a given protein in 

either the controls or the bait samples, and its performance may thus be affected if the bait 

sample quality is poor or the negative controls are heterogeneous. SAINT is also 

computationally intensive. 
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Interaction scoring: EScore 

The EScore can be considered as an alternative to CompPASS score described in [21, 23]. It is 

computed for each interaction in medium/large scale data sets. EScore of a bait-prey pair is 

defined as the ratio of its log transformed FC score to the average, log transformed FC score of 

the same prey across all baits in the data set. Missing values are represented by zero fold 

change. A small background factor (µ) is added to both the numerator and denominator, to 

serve as a smoothing factor [26]. It is calculated as the average log transformed FC for the 

entire data set.  The log transformation of the FC values is computed as 𝑙𝑙𝑙2(1 + 𝑥) as 

opposed to 𝑙𝑙𝑙2(𝑥) in order to achieve a positive, monotonic transformation. 

𝐸𝐸𝐸𝐸𝐸𝐸(𝑖, 𝑗) =
log2(1 + 𝐹𝐹𝑖,𝑗) +  𝜇
∑ log2(1 + 𝐹𝐹𝑖,𝑗)𝑗 +  𝜇

 ; 𝑖 = 𝑝𝑝𝑝𝑝, 𝑗 = 𝑏𝑏𝑏𝑏  

𝑤ℎ𝑒𝑒𝑒 𝜇 =
1
𝑁

 �log2(1 + 𝐹𝐹𝑖,𝑗)
𝑖,𝑗

 , 𝑁 = 𝑡𝑡𝑡𝑡𝑡 𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

The EScore has similarities to the FC score in the sense that the protein abundance of true 

purification (𝑇𝑖,𝑗) is replaced with the fold change score (𝐹𝐹𝑖,𝑗), and the estimated abundance 

across negative controls (𝐶𝑖) is replaced by the average fold change of a prey across all the 

baits.  In other words, we attempt to estimate the extent to which the fold change of a bait-

prey pair is higher than the average fold change of the prey across all baits in the data set. Both 

FC-A and FC-B can be used for computing the EScore, the choice of which depends on the data 

set. In general, the difference between the two is minimal owing to the log transformation 

applied to the fold change values. In the case of the test data sets, the EScore was generated 

using FC-B. 

Interaction scoring: CompPASS 

CompPASS was originally described in [23]. An improved version was subsequently described in 

[21]. The un-normalized WD score described in [21] is implemented in SPrInt, with one minor 

modification; the SPrInt implementation uses the average spectral abundance of an interaction 

as opposed to total spectral abundance (see below).  



18 
 

𝑊𝑊𝑖,𝑗 =  �(𝜆𝜆)𝑝 ∗  𝑥𝑖,𝑗  

𝜆 =  
𝑁
𝑓𝑖

 ;    𝜔 =  
𝜎𝑗
𝑥𝚤�

 

𝑥𝑖,𝑗 = 𝑎𝑎𝑎. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑐𝑐𝑐𝑐𝑐 𝑜𝑜 𝑝𝑝𝑝𝑝 𝑖 𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤ℎ 𝑏𝑏𝑏𝑏 𝑗 

𝑓𝑖 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜 𝑝𝑝𝑝𝑝 𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝑎 𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 

𝑝 = 𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑓𝑓𝑓 𝑏𝑏𝑏𝑏 𝑗 

𝜔 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 𝑜𝑜 𝑝𝑝𝑝𝑝 𝑖 

The WD-CompPASS score can be interpreted as follows. The score for a bait-prey pair is (a) 

directly proportional to the average prey abundance (𝑥𝑖,𝑗), (b) inversely proportional to the 

frequency of identification of the prey across the data set (𝑓𝑖) and (c) directly proportional to 

the number of times it is identified reproducibly in biological replicates (𝑝). The weighting 

factor (𝜔) is the coefficient of variation of the prey across the data set and can be interpreted 

as a metric of specificity. In summary, CompPASS combines metrics of abundance (𝑥𝑖,𝑗), 

specificity (𝜆, 𝜔) and reproducibility (𝑝) to score an interaction. The final score includes a square 

root transformation, to reduce its range. 

Comparison to literature data 

To rapidly benchmark scoring performance and to provide users with a view of the new data in 

the context of previously published results, a mapping of the interactions to those deposited in 

the iRefIndex repository [27] (V 9.0) is provided. iRefIndex was selected because of its 

comprehensiveness in the number of interactions annotated and the relative ease of download 

and data mapping.  The database is created by aggregating protein interactions from several 

primary interaction databases, including “BIND, BioGRID, CORUM, DIP, HPRD, InnateDB, IntAct, 

MatrixDB, MINT, MPact, MPIDB, MPPI and OPHID”3. Aggregated interactions are de-duplicated 

and systematically mapped to unique identifiers using the Secure Hash Algorithm. Each entry 

from the database is then mapped to a pair of genes (interacting proteins) using an in-house 
                                                      
3 http://irefindex.org/wiki/index.php?title=iRefIndex 
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mapping tool. Entries identified as ‘complex’ are excluded from this mapping. Owing to 

uncertain quality of previously reported interactions involving ribosomal proteins, which are 

among the most common contaminating proteins in AP-MS experiments, we excluded all RPL 

and RPS proteins from the computation of ROC curves shown in Figure 2-3. 

Preparation of test data 

Two data sets, generated by the Gingras Lab (University of Toronto, CA), were used to illustrate 

the ‘enrichment’ scoring module of the SPrInt pipeline. The first data set (referred to here as 

DS1) has two biological replicates for each of the following four baits. RAF1 is a 

serine/threonine kinase that binds to Ras, several chaperones and 14-3-3 proteins [28, 29]. 

EIF4A2 is a translation initiation factor that is part of the EIF4F complex, which bridges the 

mRNA cap structure to the ribosome via the EIF3 complex [30]. WASL (also known as N-WASP) 

belongs to the Wiskott-Aldrich syndrome (WAS) family of proteins, involved in transduction of 

signals from receptors on the cell surface to the actin cytoskeleton[31]. Finally, MEPCE, the 7SK 

snRNA methylphosphate capping enzyme, interacts with numerous transcriptional and RNA-

processing proteins[32]. The second data set (referred to here as DS2) has two biological 

replicates using ORC2L as the bait protein. Both data sets used a common set of negative 

controls. 

Data for DS1 and DS2 was generated as follows. Cloning and expression of EIF4A2, RAF1 and 

MEPCE has been previously described[33]. WASL and ORC2L were amplified by PCR from 

Mammalian Gene Collection constructs BC052955 and BC014834, respectively, and were 

cloned into pcDNA5-FRT-Flag (using EcoRI/NotI for WASL and AscI/NotI for ORC2L), and the 

junctions were sequenced. The primers used were WASL_5′EcoRI, GATCGAATTCATGAGCTCCGTCCAGCAGC; 

WASL_3′NotI, GATCGCGGCCGCTCAGTCTTCCCACTCATCATCATC; ORC2L_5′AscI, 

GATCGGCGCGCCAATGAGTAAACCAGAATTAAAGGAAGAC; ORC2L_3′NotI, GATCGCGGCCGCTCAAGCCTCCTCTTCTTCC. The resulting 

vectors were stably co-transfected with the Flp-recombinase–expressing vector pOG44 into Flp-

In T-REx 293 cells (Invitrogen). Selection of stable transformants (single clones), clonal 

expansion, induction of protein expression and AP-MS were performed essentially as described 

in ref. [33] using Flag M2 agarose beads (Sigma). Two biological replicate analyses of each bait 



20 
 

were performed, alongside six negative controls (cells expressing the tag alone). All samples 

were analyzed on an LTQ mass spectrometer coupled to an online C18 reversed-phase column. 

The detailed protocol is no. 48 in the CRAPome database.  

The data generated for DS1 and DS2 (see above) were processed separately as follows. The 

mass spectrometry data were searched using the X! Tandem/TPP/ABACUS pipeline [34]. 

MS/MS spectra were searched against RefSeq protein sequence database version 47 (ref. [35]; 

H. sapiens), appended with an equal number of decoy sequences, using X! Tandem [13] with k-

score plug-in. MS/MS spectra were searched using a precursor-ion mass tolerance of −1 to +4 

Da (average mass) window. Cysteine carbamylation (C + 57.0215) and methionine oxidation (M 

+ 15.9949) were specified as variable modifications. The search results were processed using 

PeptideProphet [14] and then further processed using ProteinProphet [36] to create protein 

summary files. All the PeptideProphet results generated from individual experiments were 

processed together using ProteinProphet to generate a single protein summary file (protXML 

file). This combined protXML file, as well as the pepXML and protXML files from each individual 

experiment, were then processed using ABACUS [37] to generate a combined spectral count 

matrix using default parameters (accepting proteins with at least one peptide having 

PeptideProphet probability of 0.99 or greater and protein probability as computed by 

ProteinProphet of 0.9 or greater). Each row in the filtered ABACUS file represented a protein 

group from the combined protXML file, with a single accession number selected among 

indistinguishable protein entries forming that group. Spectral counts for the representative 

proteins were extracted from pepXML files for each individual experiment. The FDR for the 

combined protein list was less than 1% as estimated using decoy sequences. The filtered 

ABACUS file was manually modified to generate a matrix formatted SPrInt input file (see ‘Data 

formats’). Data were uploaded to the SPrInt pipeline and analyzed using the enrichment scoring 

module. The resulting input data matrices for both DS1 and DS2 can be downloaded from 

http://www.crapome.org/?q=suppdata . 

Two medium/large scale data sets were used to illustrate the ‘Specificity/Network’ scoring 

module of SPrInt. The first large scale data (referred to here as DS3) was from ‘Interlaboratory 

http://www.crapome.org/?q=suppdata


21 
 

reproducibility of large-scale human protein-complex analysis by standardized AP-MS’ by 

Varjosalo et al., Nature Methods (2013) [38]. The data was downloaded from peptide atlas 

(PASS00117) and processed using X! Tandem/TPP/ABACUS as described above (for DS1 and 

DS2). Since the data was collected on a LTQ Orbitrap XL mass spectrometer, precursor-ion mass 

tolerance of 100 p.p.m. was used for X! Tandem search. The second large scale data set 

(referred to as DS4) is from ‘A quantitative chaperone interaction network for exploring the 

wiring of cellular protein folding pathways’ [39]. For DS4, processed data was directly obtained 

from the authors, who generated the SPrInt input file (list format) using ProHits [40], their 

laboratory information management system. The details of data processing can be found in 

their original manuscript. 

Data Formats 

User data can be uploaded to SPrInt in either the list or the matrix format. The ‘list’ formatted 

input file (Figure 2-1 a) needs to contain fields for each interaction: ‘Bait Name (BAIT column)’, 

‘Experiment Name (AP Name column)’, ‘Prey Name (Prey column)’ and ‘Spectral Count (SPC 

column)’. Each row in this file lists the spectral count (SPC column) for each protein (referenced 

in Prey column) in purification with a particular bait protein (bait protein/gene identifier is 

referenced in the BAIT column). When multiple biological replicates for the same bait are 

available, they are distinguished using different text strings in the AP Name column (for 

example, ‘R1’, ‘R2’, etc.). Negative control runs are specified by the text string ‘CONTROL’ or 

‘CTRL’ in the BAIT column (and named differently in the AP Name column: for example, ‘UC1’, 

‘UC2’, etc.). The ‘matrix’ formatted input file (Figure 2-1 b) must have a column for each affinity 

purification (AP). The AP names (i.e. column names) must be unique. The first column of the 

matrix is reserved for prey names (PROTID column). Each prey is represented in a separate row. 

Every cell in the matrix contains the spectral count for the corresponding bait-prey pair in each 

AP experiment. Missing data is represented with zero counts. The second row of the matrix is 

reserved for annotating the AP names (i.e., column names specified in the first row). In this 

row, the bait name is specified against the corresponding AP experiment.  Negative controls are 

annotated as ‘CONTROL’ or ‘CTRL’. 
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Access to SPrInt 

SPrInt and other tools (CRAPome, PInt and RePrInt) were implemented as an integrated system, 

on a common software platform. All the tools can be accessed at http://www.crapome.org/. 

SPrInt requires user registration to maintain data integrity and privacy. Users can access the 

results of previously performed analyses, until they are purged by the system administrator. 

 

Figure 2-1: Input file formats for SPrInt. 

Input file formats for SPrInt. a) List format. In the list format, each interaction is specified in a separate row using 
the Bait Name, AP Name, Prey Name and Spectral Counts (SPC). b) Matrix format. In the matrix format, spectral 
count values from each experiment are specified in a separate column. Each row is represented by a single prey 
protein. The second row is used to annotate the AP names (main text). 

Results and Discussion 

Creation of the SPrInt processing pipeline 

The analysis pipeline of SPrInt is shown (Figure 2-2 a). Users upload their data and score 

interactions using the ‘enrichment’ scoring module and/or the ‘specificity/network’ scoring 

module. Optionally, users can also include negative controls from the CRAPome repository 

(chapter 4) to supplement their own negative controls. Relevant CRAPome controls can be 

selected with the help of controlled vocabulary used to annotate experiments (Figure 2-2b). 

Each analysis, referred to as a ‘user job’, can be visualized and downloaded. An integrated 

network reconstruction and visualization tool, PInt, is used for network generation and analysis. 

PInt is described in chapter 3 of this thesis. 

http://www.crapome.org/
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Uploading user data and quality control: User data can be formatted in the list or the matrix 

format (Methods) and uploaded for analysis through the graphical user interface (Figure 2-2 c). 

The input data consists of one or multiple AP-MS experiments, ideally including biological 

replicates. The validity of any analysis is contingent on the quality of input data; hence SPrInt 

generates three important quality metrics to identify and weed out low quality AP-MS 

experiments (Figure 2-2 d). First, data (spectral counts) from each experiment are visualized 

using box plots; with the bait counts highlighted using a red asterisk symbol. A good AP 

experiment is expected to recover the bait protein with reasonably high counts. This box plot 

provides a visual cue on the success of an AP experiment. Second, common contaminants (e.g. 

keratins, tubulins) must not dominate the total yield in an experiment. If data is collected in the 

data dependent acquisition mode, the dominance of such contaminants indicates that the real 

interactors were not sampled and sequenced adequately. Venn diagrams indicating the fraction 

of data that can be attributed to common contaminants in each experiment assist in 

determining the quality of the sample. Finally, the similarity among replicates for each bait 

purification helps in choosing the appropriate strategy for combining scores (Methods). Scatter 

plot generated using replicates assists in determining the replicate similarity. While we 

recommend that the users ensure the availability of adequate number of negative controls in 

each data set, we have shown that standardized negative controls from the CRAPome database 

can assist in discriminating true interactors and contaminants (chapter 2).  

Scoring interactions and visualizing results. Enrichment analysis is performed using the 

significance analysis of interactome (SAINT) score [20, 25, 41] and/or a simpler fold-change (FC) 

calculation (detailed below). The specificity analysis is performed using CompPASS [21, 23] and 

EScore (detailed below). The options for all the scoring functions can be specified through the 

GUI (Figure 2-2 e, f). User jobs are queued and processed on a first-come, first-served basis. The 

results of completed jobs are presented in a tabular format and can be downloaded as a tab-

delimited file. Previously reported interactions documented in the interaction database 

aggregator iRefIndex (V 9.0; ref. [27]) are also mapped onto user data. Summary graphical 

views of the data are provided for each bait protein (Figure 2-2 g) or for all baits combined, 

enabling the user to view their data at a glance. These visualizations, especially the ROC curves 
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generated using comparisons with literature data (Methods), can assist the users to determine 

appropriate cutoffs to filter the data. The network reconstruction tool (PInt) can be launched 

from this results page (‘View Network in PInt’ hyperlink) and interaction maps can be generated 

(Figure 2-2 h). 

Analysis of small scale data sets 

Eliminating background contaminants in small scale data sets is based on enrichment scores 

that compare true purifications with negative controls.  The enrichment scoring module of 

SPrInt implements two complementary scoring strategies, both based on quantitative 

comparisons of abundance levels (estimated using spectral counts) of co-precipitating proteins 

(prey) in purifications with bait proteins against the distribution of prey abundances across a set 

of negative controls (Methods). SAINT, described previously [25, 41-43], performs advanced 

statistical modeling of the input bait-prey spectral count data and reports a posterior 

probability of true interaction. A simpler FC calculation is based on the ratio of average 

normalized spectral counts in bait purifications to negative controls. FC scoring is customizable 

and, in addition to the calculation of the standard FC score (referred to as primary score, or FC-

A), involves the computation of a secondary, more stringent score (FC-B; see below). Both FC 

and SAINT calculations are run in parallel, allowing specification of key model parameters via 

the user interface[25]. A comparison of their relative performances for each of the tested baits 

can be assessed by a receiver operating characteristic (ROC) analysis. These curves are 

generated automatically by the SPrInt pipeline for every analysis. 

The analysis of a small scale data set using SPrInt is illustrated here with the help of two data 

sets, DS1 and DS2 (see ‘preparation of test data’). DS1 consists of two biological replicates of 

each of the following four baits: RAF1, EIF4A2, WASL and MEPCE. MEPCE and EIF4A2 have 

many documented interactors [27], whereas WASL and RAF1 have fewer known interactors; all 

proteins provide challenges for background definition because of their association with 

polypeptides with contaminant-like behavior (chaperones, cytoskeletal proteins, RNA-binding 

proteins and so on; Table 4-3). DS2 consists of two biological replicates for ORC2L bait. In 
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addition, six matching controls (user controls) were generated that are applicable to both DS1 

and DS2. Data was processed as described (Methods) and interactions were scored using SPrInt. 

The results generated by DS1 were evaluated by plotting ROC curves based on the information 

extracted from iRefIndex [27]. The protein interaction list (all four baits combined) was sorted 

on the basis of either the SAINT probability or the FC-A score computed using the six user 

controls (Figure 2-3 a). Although SAINT outperformed the FC-A score on this data set, both 

scoring schemes were able to efficiently recapitulate known interactions from the literature. 

Both scores also tracked very similarly for most of the proteins analyzed (Figure 2-3 b), with 

SAINT essentially providing a statistical conversion of the FC score onto the probability scale via 

the mixture-model analysis of the underlying spectral count distributions. We further visualized 

the performance of the interaction scores by plotting the distribution of scores (histograms) 

separately on the basis of iRefIndex annotation, which showed that high-scoring interactions 

(SAINT probability above 0.9, FC score above 4) are clearly enriched for previously reported 

interactions (Figure 2-3 c, d). The SPrInt interface provides (both separately for each analyzed 

bait and for all baits combined) an ROC and a histogram view (with mouse-over function), 

which enables the user to explore the reported interactions at different scores for SAINT or FC 

and assists in establishing appropriate thresholds. 

One issue affecting the scoring of AP-MS data is the existence of contaminants (for example, 

myosin and the proteins that co-purify with it) that are usually present in small amounts across 

most controls but that can spike to high abundance in some controls (or across batches of 

purifications), making detection of the true interactors much more difficult. Such contaminants 

are normally 'diluted out' when multiple experiments are used for FC calculation, or even SAINT 

analysis (Figure 2-4 a). To assist in the identification of these 'rare' contaminants, we 

implemented a more conservative FC score, FC-B, that is automatically calculated to 

supplement normal scoring using SAINT or the FC-A score (Methods and Figure 2-4 a). We 

applied this more stringent scoring scheme to DS2, which, through visual inspection of the 

results, was found to contain large quantities of myosin contamination. Although SAINT is 

capable of identifying true interactors in successful experiments, as exemplified by EIF4A2 of 
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DS1 (Figure 2-4 b; note the relatively good agreement between the SAINT score and FC-B 

score), it assigned a high probability to myosins and associated proteins in the ORC2L samples 

(Figure 2-4 c). By contrast, the FC-B scores readily distinguished between these contaminants 

and true interaction partners (ORC3, ORC4 and ORC5 are in iRefIndex [27], and LRWD1 is 

reported in PubMed [44]). Notably, the SPrInt interface enables rapid visualization of the 

samples likely affected by this type of low-frequency contaminants by providing comparisons 

between FC-B and SAINT or FC-A (Figure 2-2 g). 

Analysis of medium/large scale data sets 

The background contaminant profile is largely dependent on the experimental protocol and less 

on the bait protein itself. Accordingly, when several bait purifications are performed under 

similar experimental conditions, bona fide interactions are more specific than contaminants. 

Hence metrics of specificity of a prey to one or few baits can be used to determine whether the 

prey is promiscuous interactor or not.  Several scores have been developed in the past including 

HGScore [45], MiST [46] and CompPASS [21, 23]. In addition to such scores, we developed a 

simple yet robust enrichment specificity score (EScore) that estimates specificity based on a 

primary enrichment score (Methods). The ‘Specificity/network’ scoring module of SPrInt 

implements EScore and CompPASS. While EScore is based on the FC scores (generated by the 

‘enrichment scoring’ module of SPrInt), CompPASS can be computed directly using the spectral 

count values. In that context, these scores can be considered complementary to each other and 

are generated in parallel by SPrInt. 

The utility of specificity scores is illustrated here with the help of two medium/large scale data 

sets (DS3 and DS4, see ‘Preparation of test data’). DS3 is from an inter-laboratory study 

comprising of 32 human kinases [38].  Only the subset of data generated by the group at ETH 

Zurich (ETHZ) is used here. DS4 is a non-typical data set that profiles the  chaperone network 

(HSP-90 interactome) [39]. Only the subset of data generated using FLAG-AP purification (VS1) 

is used here. Being ‘sticky’ proteins themselves, chaperones have a high propensity to manifest 

as non-specific interactions in typical AP-MS experiments. As scavenging proteins, they also 

interact with a several proteins in the cell, including common contaminants such as tubulins. 



27 
 

While the ETH samples were purified using a two-step (tandem) protocol, the HSP-90 samples 

were generated using single step purification. Both data sets have at least two biological 

replicates for each bait purification and more than six negative controls.  

Both DS3 and DS4 were first subjected to enrichment scoring. Even after stringent thresholds 

(SAINT ≥ 0.9 and empirical FC-A ≥ 4) were applied to filter the data, several prey that have a 

high propensity for non-specific interaction (such as tubulins, keratins and ribosomal processing 

proteins) were found in the filtered list. While it is possible that the negative controls in the 

analysis were not able to accurately model the background profile of such proteins, they may 

well be genuine interactors. Typically, they are manually excluded from the analysis on a case 

by case basis. Fortunately, medium/large scale data sets lend themselves for additional scoring 

using specificity metrics. A combination of EScore and CompPASS scores was able to distinguish 

such promiscuous and non-specific interactions from specific and potentially bona fide 

interactions (Figure 2-5). As expected, common contaminants (tubulins, keratins and ribosomal 

proteins) scored low in both DS3 and DS4 (black triangles in Figure 2-5 a, b respectively).  DS4 is 

a non-typical data set that characterizes the HSP-90 interactome. As scavenging proteins, they 

interact with several proteins in the cell, including common contaminants in AP-MS 

experiments (Table 4-3). As expected, the same set of common contaminants that scored low in 

DS3 were relatively high scoring in DS4. Taken together, these observations indicate that a 

combination of EScore and CompPASS, which employ metrics of specificity to score 

interactions, can be used to differentiate bona fide interactions from promiscuous and non-

specific background contaminants in large/medium scale data sets. 

Additional confirmation of the performance of specificity scores is provided by the fact that 

trypsin, which was found in high quantities across several bait purifications but not in negative 

controls in the HSP-90 data set (DS4), scored low on both EScore and CompPASS (Figure 2-5 b). 

Trypsin is used in sample preparation to digest proteins and is not a part of the cell lysate. It is 

typically removed manually before scoring interactions, but is used here for validating the 

performance of the scores. 
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Figure 2-2: SPrInt pipeline and the graphical user interface. 

(a) Overview of the SPrInt pipeline. CRAPome controls are selected (optional), data is uploaded and interactions 
are scored online using the ‘enrichment’ and/or ‘specificity/network’ scoring modules. Results are visualized and 
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filtered interactions are used for network reconstruction using PInt (main text). (b) The graphical interface for 
selecting CRAPome controls is shown. Desired controls are selected with the help of CVs. (c) Data is uploaded in 
either list or matrix format (see ‘Data formats’). (d) Several visualizations are generated to assess the quality of 
input data (main text). (e, f) The options for enrichment and specificity scoring functions are specified through the 
graphical user interface. User requests are processed on a first-come, first-served basis. The status of a submitted 
job is displayed on the user interface (‘Status’). (g) Scored interactions are visualized online. ROC curves (panel 1), 
and distribution of scores (panels 2) assist in determining appropriate cut-offs. Each interaction is also plotted 
against two selected scores to easily identify high scoring interactions (panel 3). Users can mouse over the points 
on the plot to view the details. The actual data is also presented in a tabular format (panel 4). PInt can be launched 
from the results screen (‘View Network in PInt’ hyperlink in the top right corner). (h) PInt interface (see chapter 3).  
 

 

Figure 2-3: Enrichment scoring functions of SPrInt illustrated on a four-bait data set. 

(a) Comparison between the FC-A and SAINT for interactions scored using negative-control runs (n = 6) provided by 
the user; the receiver operating characteristic is based on the interactions in iRefIndex. Note that when SAINT 
scores are identical, ties are broken by the FC-A score. Selected SAINT probability or FC-A score thresholds are 
represented by triangles and circles, respectively. (b) The relationship between SAINT probability and FC score is 
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well represented by a sigmoid function (dashed curve). (c,d) Histogram visualization of the data presented in b can 
help with data exploration and threshold selection.  

 

 

Figure 2-4: Utility of FC B in filtering sporadic contaminants. 

(a) Illustration of the consequences of averaging all spectral counts instead of selecting the top three maximal 
values for scoring protein-protein interactions. Protein A represents a contaminant in the purification scheme that 
is detected with variable counts across the 15 selected controls (the intensity of shading is proportional to the 
spectral counts). By contrast, protein B is a contaminant detected with similar counts across all selected controls. 
The FC-A calculation averages the counts across all controls, whereas the more stringent FC-B score takes the 
average of the top three highest spectral counts for the abundance estimate. The resulting FC-A and FC-B scores 
are represented schematically, where a larger circle indicates a higher fold change, with FC-A and FC-B assigning a 
similar score to protein B but not to protein A. (b) Comparison of SAINT & FC-B scoring with good bait samples. 
Note that only the top of the map (the interactions with SAINT probability ≥0.9) are displayed. (c) Same as b for 
bait samples (ORC2L) contaminated with myosin: the more stringent fold-change score FC-B helps in discriminating 
between true interaction partners (labeled “ORC complex”) and contaminants (labeled “myosins”). 
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Figure 2-5: Specificity scoring functions of SPrInt illustrated using two medium scale data sets. 

(a) Using specificity scores to identify promiscuous, non-specific interactors illustrated using DS3 (Methods). The 
EScore and CompPASS scores of highly enriched interactions (SAINT 0.9 or higher and FC-A 4 or higher) are shown 
here. Red dots indicate that the interaction was documented in iRefIndex database. The blue dots correspond to 
high scoring interactions that were not documented in iRefIndex (Methods). The black triangles are common 
contaminants (tubulins, keratins and ribosomal proteins). (b) Utility of specificity scores illustrated using DS4 
(Methods). The inverted purple triangles correspond to trypsin, a common contaminant in AP-MS experiments. It 
is used here as a positive control, to demonstrate the performance of specificity scores (main text). In both data 
sets, common contaminants (represented by black triangles) have high enrichment scores, but relatively low 
specificity scores. The same set of common contaminants are relatively high scoring in DS4 (b) compared to DS3 
(a). This observation is attributed to the non-typical nature of DS4, which profiles the HSP-90 interactome (main 
text). 
 

Concluding Remarks 

SPrInt is a freely available versatile tool for scoring interactions and can handle a wide variety of 

AP-MS data sets. An integrated network reconstruction and visualization tool (PInt) helps 

generate and visualize interaction maps. The pipeline is also integrated with the CRAPome 

repository, which makes available standardized negative controls. The performance of 

enrichment scoring models can potentially be improved by using CRAPome controls.  An easy-

to-use web interface facilitates rapid analysis and visualization, even for those who may be new 

to mass spectrometry.  
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SPrInt currently uses spectral counts as the sole quantitation. While spectral count data has its 

own advantages, there is a growing interest in using peptide ion intensity to measure protein 

abundance. Accordingly, scoring models that can optimally process intensity data, such as 

SAINT-MS1 [47], need to be incorporated into SPrInt. In addition, strategies to use both spectral 

counts and peptide ion intensity in parallel to score interactions need to be developed. 

iRefIndex database is currently used to rapidly benchmark scored interactions. Additional 

databases, including the RePrInt database described in chapter 5, need to be incorporated to 

expand the scope of prior knowledge. The pipeline also needs to be improved to accept user 

provided list of interactions to enable the processing of special data sets, such as host-viral 

interactomes. 

Contributions 

This work is the result of collaboration between the Nesvizhskii Lab (Univ. of Michigan, Ann 

Arbor) and the Gingras Lab (Univ. of Toronto, CA). Bioinformatics pipelines/methods were 

developed by Dattatreya Mellacheruvu, under the guidance of Dr. Alexey Nesvizhskii. 

Dattatreya Mellacheruvu and Zachary Charles Wright (Application programmer (sr), Univ. of 

Michigan, Ann Arbor) implemented the system. 
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CHAPTER 3  
PInt: A tool for analysis of Protein Interaction 

Networks 
Introduction 

Protein-interaction networks (PINs) provide a blue print of the underlying biological 

mechanisms of the cell. They also assist in functional interpretation of differentially expressed 

genes/proteins from other studies that compare normal cells with disease/mutant variants. 

Reconstruction of protein interaction networks essentially involves piecing together bona fide 

protein interactions. SPrInt (presented in chapter 2) is a versatile tool for scoring interactions; 

high scoring interactions (HCIs) are potentially bona fide. We present here PInt, a tool for 

reconstructing and visualizing PINs using HCIs generated by SPrInt. Both tools are tightly 

integrated; PInt is launched from the user interface of SPrInt. 

Small scale data sets generate incomplete interaction maps. Hence, integration of prior 

knowledge is critical for the analysis of such small scale networks. However, extracting relevant 

prior knowledge is not straightforward, owing to the fact that biological molecules (here 

proteins and core protein complexes) often have multiple roles/functions within the cell and 

are hence shared among several sub networks. PInt provides two models for extracting relevant 

prior knowledge (which we call the ‘network context’) from publicly available protein 

interaction databases.  

PINs generated from medium/large scale data sets comprehensively profile the landscape of 

the interactome. The task of interpreting such complex networks can be simplified by 

narrowing down to the sub-network of interest. PInt provides a mechanism to identify and 

zoom into tightly connected sub-networks. Further, all networks generated by PInt can be 

downloaded in the portable ‘graphml’ format, for analysis using more sophisticated tools.  
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Reconstruction and analysis of biological networks (in this case PINs) is often a semi-manual 

and iterative process. Accordingly, computationally intensive (and hence time consuming) 

network queries of PInt are optimized. A simple to use web interface, streamlined network 

analysis framework and a software design that minimizes latency enable PInt to serve as a 

powerful tool for the generation, rapid visualization and analysis of protein interaction 

networks from AP-MS data. Additionally, PInt can also create quantitative networks by 

qualifying the edges with enrichment/specificity scores generated by SPrInt. 

PInt is an important component of a suite of computational tools (SPrInt, PInt, CRAPome and 

RePrInt) for analyzing AP-MS data. Post publication, it will be publicly available at 

www.crapome.org. 

Methods 

Design and implementation of PInt 

The design principles of PInt are similar to that of SPrInt described in chapter 2. The user 

interface was developed using Drupal and MySQL and SQLite relational databases. The 

processing pipeline is developed using Python and SQLite. Network generation is performed 

using the ‘networkx’ library of Python and a ‘graphml’ file is generated. This output file can be 

downloaded and imported to advanced network analysis tools like GraphViz, Cytoscape [48], 

etc. In order to facilitate rapid visualization, PInt also generates browser embedded network 

visualization using Cytoscape web [4]. Prior knowledge represented in iRefIndex database is 

stored in neo4j4, an open source persistent graph database, which is designed to optimize the 

performance of network queries.  PInt is hosted on a virtual server managed by the Medical 

School information Services (MSIS) of the University of Michigan. Apart from providing 

professional maintenance and backup services, the computing infrastructure managed by MSIS 

can easily be upgraded and scaled. 

                                                      
4 http://neo4j.com/ 

http://www.crapome.org/
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Generating a database of interactions from literature 

iRefIndex [27] is an aggregator of protein interactions from various primary sources and was 

used to represent the set of interactions from literature (prior knowledge).  The interaction file 

(V 9.0) was downloaded and parsed using an in-house Python script. Protein IDs are mapped to 

their gene name(s) using ID-to-gene name mappings downloaded from the ensemble ‘BioMart’ 

database and a list of interactions was generated, where the proteins are referenced by their 

gene names. When multiple gene names map to one (or both) of the members of an 

interaction, the entry is duplicated corresponding to each (mapped) gene symbol. The process 

generates a redundant list and inflates the size of the database, but is helpful to resolve issues 

with mapping ‘user’ data to prior knowledge. Common contaminants (tubulins, keratins and 

ribosomal proteins; Table 4-3) are excluded during the process. While this helps in reducing a 

large number of false positives, it may also exclude a few genuine interactions. Protein 

complexes represented in iRefIndex were also omitted, pending analysis on whether the spoke 

model or the matrix model is better suited for representing such complexes. Finally, the list of 

interactions is stored in neo4j. The nodes are indexed to accelerate queries against the 

database. Data is refreshed periodically (approximately on a half yearly basis) using updated 

iRefIndex files and ID mappings. 

Generating the network context 

Two approaches to generate a network context were implemented in PInt. The first approach 

(which we refer to as the ‘simple’ approach) involves querying the neo4j database (see 

‘Generating a database of interactions from literature’) using a list of proteins relevant to the 

network of interest. This list is generated manually by the user and provided as an input 

through the user interface (‘include nodes’ field, Figure 3-1 b). Interactions in the database that 

connect any two proteins in the list are used to generate the network context. In other words, 

this approach attempts to connect proteins in the input list with direct links (edges). A more 

comprehensive approach (which we call the ‘scaffolding’ approach) is to use a set of nodes 

(referred to here as the ‘seed’ nodes) to generate a network by connecting each seed node 

with every other seed node with either a direct link or the shortest path between them. In 
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other words, the scaffolding approach attempts to connect seed nodes either directly or by 

introducing new nodes.  Such new nodes are also referred to as ‘white’ nodes in STRING-db. 

Using bait-bait cluster gram to identify sub-networks 

For our purposes, sub-networks comprise of closely related baits. We define relatedness of two 

baits as the degree of shared interactions between them. For every data set analyzed using 

PInt, cluster analysis is used to identify sub-networks. First, scored interactions are filtered to 

generate a list of high confidence interactions (HCIs). Interactions with a high SAINT probability 

(≥ 0.9) are defined to be HCIs. A bait-prey matrix is generated using this list of interactions. Each 

bait-prey pair in this matrix is represented by its square root transformed average spectral 

count value. The square root transformation helps reduce the range of spectral count values. In 

addition to implicitly normalizing the data, it also reduces the variance in the data set.  A bait-

bait matrix is then generated, where each cell (Ci,j) in this matrix is represented by the 

correlation between columns i and j in the bait-prey matrix. In other words, the correlation 

between two baits is used to generate the bait-bait matrix. This bait-bait matrix is clustered 

using Gene Cluster 3.0 [49] with correlation as the similarity metric and average linkage as the 

clustering method. The clustered matrix is visualized as a heat map, generated using Java 

Treeview [50]. 

Preparation of test data 

Two data sets were used to illustrate the reconstruction of protein interaction networks using 

PInt. The first data set (referred to here as DS5) was from “Nuclear import of histone 

deacetylase 5 by requisite nuclear localization signal phosphorylation”, by Greco et al., 

Molecular & Cellular Proteomics (2011) [51]. Only a fraction of the entire data was taken to 

represent a typical small scale data set. Briefly, two biological replicates of eGFP tagged HDAC5 

protein, stably expressed in HEK293 cells, was affinity purified and analyzed on an LTQ Orbitrap 

XL mass spectrometer over a 90 minute gradient. Two negative controls (tag-only purifications) 

were also included.  

The second data set (referred to here as DS6) was from “The functional interactome landscape 

of the human histone deacetylase family” by Joshi et al., Molecular Systems Biology (2013) [4]. 
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This data set comprises of affinity purification experiments of eleven Histone deacetylases 

(HDACs) and represents a typical medium/large scale data set. Briefly, stable CEM-T cells were 

used to express eGFP tagged bait proteins. Affinity purification is carried out using anti bodies 

conjugated to magnetic (dyna) beads. Samples were analyzed on an LTQ-Orbitrap Velos mass 

spectrometer over a 90 minute gradient. At least two biological replicates were included for 

each bait purification. The data set also included six negative controls (tag-only purifications).  

Each data set was processed separately using the X! Tandem/TPP/ABACUS pipeline as described 

earlier (‘Preparation of test data (DS1)’, Chapter 2), except for the following differences. The 

UniProt sequence database (H. sapiens) was used for searching MS/MS spectra and the 

precursor mass tolerance was specified as 100 p.p.m. The ABACUS output file was manually 

edited to generate the matrix formatted SPrInt input file (see ‘Data formats’, Chapter 2) and 

scored online.  

Results and Discussion 

Creation of PInt 

The pipeline for reconstruction of interaction networks using PInt is shown in Figure 3-1 a. The 

graphical user interface for the pipeline is shown in Figure 3-1 b. First, interactions are scored 

using SPrInt (as described in chapter 2). A list of high confidence interactions is generated by 

filtering the output generated by SPrInt (step 1). The filtering options can be specified through 

the GUI (Figure 3-1 b, 1). In step 2, a subset of baits is selected (Figure 3-1 b, 2) to narrow down 

the analysis to a sub-network. The bait-bait cluster gram, displayed as a heat map, can be used 

to select closely related baits and hence the corresponding sub-network (see ‘Using bait-bait 

cluster gram to identify sub-networks’). By default, all baits are selected. This is an optional step 

and is not relevant for small scale data sets. In step 3, a ‘network context’ is generated using 

prior knowledge (see ‘Generating network context’). This is also an optional step and may not 

be necessary for medium/large scale data sets as detailed below. Currently, iRefIndex database 

is used to represent prior knowledge, but the system can easily include other databases. The 

parameters for generating the network context (Figure 3-1 b, 3) include ‘seed nodes’, ‘include 

nodes’, ‘include edges’, ‘exclude nodes’ and ‘exclude edges’. ‘Seed nodes’ is used to generate a 
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network context using the ‘scaffolding’ approach (see ‘Generating network context’). ‘Include 

nodes’ is used to generate a network context using the ‘simple’ approach (see ‘Generating 

network context’). Users can specify nodes that need to be excluded from an analysis using the 

‘exclude nodes’ option. This feature is useful when it is necessary to manually exclude certain 

proteins (such as ribosomal proteins) from an analysis. Similarly, a list of interactions can be 

(manually) appended to the prior knowledge generated from iRefIndex using the ‘include 

edges’ option.  This feature is useful when iRefIndex does not document interactions that are 

relevant to an analysis. It is also possible that our parsing scripts may omit a few interactions 

documented in iRefIndex (see ‘Generating a database of interactions from literature’). In step 3, 

high confidence interactions generated from the user data are merged with the network 

generated from prior knowledge. Optionally, the resulting network can be pruned. The options 

for pruning the network (such as excluding nodes with a small degree and limiting the prior 

knowledge by the number of supported publications) are specified through the GUI (Figure 3-1 

b, 4). Pruning allows narrowing down the network to its core-components. The output 

(interaction map) is displayed using Cytoscape web, an embedded plugin for viewing networks 

on a browser (Figure 3-1 b, 5). 

 

Figure 3-1: PInt pipeline and the graphical user interface. 
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(a) PInt processing pipeline. (b) Graphical user interface. Step 1: Interactions are scored using SPrInt (chapter 2) 
and filtered to identify high confidence interactions. The options for filtering are shown in (b-1). Step 2:  Baits are 
(optionally) selected using the heat map shown in (b-2). Sub networks can be created by selecting closely related 
baits. Step 3: A network context is generated. The options for generating network context are shown in (b-3) and 
explained in the main text. Step 4: User generated network is merged with literature derived network (prior 
knowledge). Step 5: Networks are visualized online using Cytoscape web. 

Analysis of small scale networks 

Networks generated using small scale data sets present an incomplete (biological) picture. In 

the case of our small-scale test data set (DS5), the network generated from high confidence 

interactions in user data (SAINT ≥ 0.9) was too simplistic to elucidate the mechanistic role of 

HDAC5 in the cell.  This is a good example when integration with prior data significantly 

enhances the interpretability of user data. It turns out that reconstruction of protein interaction 

networks in higher mammals is a distributed enterprise, involving several small-scale analyses. 

Hence, there is a strong case for a tool that provides a framework for systematic integration of 

prior knowledge into a small scale analysis. A ‘simple’ network context (see ‘Generation of 

network context’) derived by specifying a list of relevant proteins (in this case, HDACs 1-11) is 

shown (Figure 3-2 b). The network context extracted using the scaffolding approach (see 

‘Generation of network context’) generates a more comprehensive picture (Figure 3-2 c). The 

combined network generated by integrating high confidence interactions from user data with a 

network context generated using the scaffolding approach is shown (Figure 3-2 d). As expected, 

this combined network is more interpretable due to the inclusion of several important 

members of the HDAC complex, the RNA processing complex and the PP2A system (Figure 3-2 

c). 

It is important to note that the network context generated in step 3 is biased towards the input 

proteins provided by the user. Such a bias is not necessarily un-warranted. Small scale analyses 

are usually performed to explore a specific biological question, so it may be advantageous to 

interpret the collected data in the same context. 

Analysis of medium/large scale networks 

Baits in large/medium-scale networks are typically selected to explore the landscape of a 

certain biological phenomenon (e.g. Kinase signaling). Accordingly, a network context exists 
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implicitly for such networks and deriving one from prior knowledge (using ‘simple’ or 

‘scaffolding’ approach) is redundant. Scale, however, introduces complexity into any network 

analysis. Hence, the ability to dissect the network and zoom into smaller sub-networks is of 

prime importance for the analysis of medium/large scale networks. Sub-networks can be 

derived based on the bait-bait similarity (see ‘Generation of network context’). In the case of 

our medium/large scale test data set (DS6), the full network (Figure 3-3 a) projects a relatively 

complex picture. The bait-bait similarity analysis suggests two groups in the data (Figure 3-3 b). 

These groups correspond to class I and class II HDAC networks respectively. The corresponding 

sub-networks (Figure 3-3 d, e) present a simpler picture compared to the full network (Figure 

3-3 a). A pruned version of the full network was generated by retaining only those nodes with 

at least two connections (Figure 3-3 c). As expected, nodes in this pruned network are highly 

connected. An initial analysis suggests that important players in the landscape of HDAC 

interactome are highlighted by pruning the network. A more detailed analysis is needed to 

examine the effects of pruning from a biological point-of-view, which is beyond the scope of 

current work. 

Contributions 

This work is the result of collaboration between the Nesvizhskii Lab (Univ. of Michigan, Ann 

Arbor) and the Gingras Lab (Univ. of Toronto, CA). Bioinformatics pipelines/methods were 

developed by Dattatreya Mellacheruvu, under the guidance of Dr. Alexey Nesvizhskii. 

Dattatreya Mellacheruvu and Zachary Charles Wright (Application programmer (sr), Univ. of 

Michigan, Ann Arbor) implemented the system. 
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Figure 3-2: Analysis of a small scale network using PInt. 

(a) Interaction network of HDAC5 generated from a small scale data set (DS5).  (b) Network context derived using 
‘simple’ approach (Methods). HDACs 1-11 were provided as the input. (c) Network context derived using the 
‘scaffolding’ approach (Methods). HDACs 1-11 were specified as the ‘seed’ nodes (Methods). Scaffolding approach 
generates a more comprehensive picture by introducing new nodes (shown in blue). (d) Combined network 
generated from user data and prior knowledge. 
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Figure 3-3: Analysis of a medium/large scale network using PInt. 

(a) Network generated using high confidence interactions (SAINT ≥ 0.9) from a medium scale data set(DS6) 
comprising eleven baits (HDACs 1-11). (b) Bait-bait similarity assessed using cluster grams. The data is visualized as 
a heat map. Two clusters are clearly visible. (c, d) Sub-networks corresponding to clusters 1 and 2 shown in b). (e) 
A pruned network created using the full data set, but by excluding nodes with degree < 2. Pruning highlights critical 
nodes in the network (Methods). 
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CHAPTER 4  
 CRAPome: The Contaminant Repository for 

Affinity Purification Mass Spectrometry Data 
 

 

Introduction 

AP-MS has become a widely used approach for the identification of protein-protein interactions 

[22]. In most cases, however, a large number of nonspecific interactors (here referred to as 

'background contaminants', or 'contaminants') are co-purified with bait proteins and identified 

by mass spectrometry. Methods to discern bona fide interacting partners from background 

contaminants are thus essential. In the case of affinity purification using epitope-tagged 

proteins, this distinction is often aided by the inclusion of negative-control purifications, 

typically consisting of one or more mock purifications using the same support resin and cell line 

but without expression of the polypeptide(s) of interest ('bait' proteins). These controls (when 

isotope labeling [52-55] is not used) can be considered universal, meaning that they are useful 

for filtering the background from any bait protein subjected to the same purification scheme [9, 

42, 53, 56-58]. 

A question arises when designing and performing AP-MS experiments as to how to use previous 

knowledge regarding background contaminants to best score interaction data. Small variations 

in the sample or sample preparation may influence the recovery of proteins, including 

contaminants. It is therefore not uncommon for a negative-control experiment to fail to 

capture a complete set of contaminants owing to undetected variations at one or more 

experimental steps. This issue is compounded by the fact that low-abundance peptides (and 

hence proteins) may not be reliably detected in a given mass spectrometry analysis. Analyzing 

Contents of this chapter have been published by the author in Nature Methods [1]. 
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one or a few negative-control samples will thus generally not allow for a comprehensive 

characterization of background contaminants for a given purification regime. 

Here we present the CRAPome, a web-accessible resource that stores and annotates negative 

controls generated by the proteomics research community and enables their use for scoring 

AP-MS data. Users employ an intuitive graphical user interface to explore the database by 

either querying one protein at a time or downloading background contaminant lists for selected 

experimental conditions. The repository is tightly integrated with SPrInt (chapter 2), a versatile 

tool for scoring protein interactions. Users can select relevant CRAPome controls to augment 

their own negative controls for scoring interactions. We also describe here, the database 

structure and composition and provide examples of the use of this resource to filter 

contaminants with properly chosen controls. The CRAPome accommodates a variety of 

purification schemes. Though it currently contains only H. sapiens, S. cerevisiae and E. coli data, 

it will be expanded to include other species. 

Methods 

Design and architecture of the CRAPome repository 

The CRAPome interface was developed using Drupal, an open-source PHP-based web 

framework, and MySQL and SQLite databases. The processing pipeline for adding data to the 

database and querying/extracting data from the database was developed using Python and 

SQLite. The actual data for each experiment ('data'; Figure 4-1), such as the protein/gene 

accession numbers, the sequences of the identified peptides, peptide probabilities and the 

spectral counts, are stored in a SQLite database. The attributes used to annotate the 

experimental conditions (metadata) are stored in a separate MySQL database. The separation 

of data and metadata is performed for the convenience of developing the web interface, which 

allows annotation of experiments (management of metadata) directly by data contributors, 

whereas the processing and management of the data themselves is performed by the database 

administrator. Further details of the software design are provided in Appendix A. 
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In order to keep the annotation of data consistent, the attributes and values that describe the 

experimental conditions are predefined. The corpus of these attributes (and their values) is 

referred to as the 'controlled vocabularies', or CVs (Table 4-1). In addition to the CVs, each 

experiment deposited in the CRAPome repository is also annotated with a detailed description 

of the experimental protocol that enables users to obtain additional details about the 

experiments. 

 

Figure 4-1: Schema of the CRAPome database. 

Meta data is stored in MySQL database, where as the data is stored in SQLite database. The separation allows 
streamed processing and annotation of experiments (main text). 

Processing of mass spectrometry data and population of the CRAPome database 

Data sets were obtained from the contributing laboratories in the .raw or .mgf file formats. The 

files were converted to the open mzXML file format and further processed using the X! 

Tandem/Trans-Proteomic Pipeline (TPP) suite of tools [14, 15, 34]. For the initial release (V 1.0), 

MS/MS spectra were searched against RefSeq protein sequence database version 47 (ref. [35]; 

H. sapiens) or SGD ORF protein sequence database orf_trans.20100105.fasta (S. cerevisiae), 

appended with an equal number of decoy sequences, using X! Tandem[13] with k-score plug-in. 

For the purposes of simplicity and uniformity, we developed two standard parameter templates 

for processing using X! Tandem and TPP, which were applied to data generated on low– or 

high–mass accuracy instruments, respectively. MS/MS spectra were searched using a 

precursor-ion mass tolerance of 100 p.p.m. (monoisotopic mass) or using −1 to +4 Da (average 

mass) windows for high– and low–mass accuracy instruments, respectively. All other database 
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search parameters were identical: cysteine carbamylation (C + 57.0215) and methionine 

oxidation (M + 15.9949) were specified as variable modifications. The search results were 

processed using PeptideProphet (high–mass accuracy data were analyzed using the high–mass 

accuracy binning option) and then further processed using ProteinProphet to create protein 

summary files. For each experiment, all contributing data (multiple gel-band fractions, technical 

replicates, etc.) were combined to generate a single set of PeptideProphet and ProteinProphet 

output files (pepXML and protXML files, respectively).  

One of the submitted data sets [59] consisted of a very large number (300) of negative controls 

in which proteins were separated using 1D SDS-PAGE. In a fraction of these experiments, only 

selected bands were analyzed using MS. To avoid the problem of data inconsistency due to 

missing MS data for a subset of gel fractions, and to reduce the total number of entries in the 

CRAPome representing this data set, we combined the individual experiments from this data 

set to generate ten composite experiments (protocol no. 66; experiments CC185–CC194). 

To build the CRAPome database, we extracted spectral counts from protXML files using an in- 

house software tool. For each protein in the protXML file, peptide-to-spectrum matches with a 

probability ≥0.9 were extracted. The cumulative sum of the spectral assignments for these 

peptides constituted the spectral count for the corresponding protein. The spectral count was 

computed for each protein in the output file regardless of whether peptides mapping to a given 

protein could also map to other proteins. We note that this represents a deviation from the 

conventional approach of performing stringent false discovery rate (FDR) filtering and removing 

redundant or inconclusive, i.e., not supported by unique peptides, protein identifications [36]. 

(The results of such stringent filtering are described below; see ‘Global analysis and reduced 

gene counts.’) The liberal approach for creating protein summaries for each experiment taken 

here in fact enables a conservative approach for scoring protein interactions. As discussed in 

ref. [57], it ensures that the spectral counts of proteins from homologous families such as 

keratins, tubulins and actins are not underestimated owing to the ambiguities related to the 

identification of shared peptides. Finally, RefSeq protein accession numbers were mapped to 

official gene identifiers using Ensembl BioMart [60] tools and were displayed as corresponding 
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gene symbols (entries with NP accession numbers only; proteins with XP numbers and those 

with NP accession numbers that cannot be mapped to gene symbols are presently not visible in 

the database). When multiple proteins mapped to the same gene entry, the maximum spectral 

count among these proteins was selected as the spectral count for that gene. These data 

provided the basis of the CRAPome accessible online and were used to calculate redundant 

gene counts shown in Table 4-2. 

Quality control 

As part of the process of creating the database, the CRAPome administrator performs a quality-

control check of the database search results. Experiments containing only a few identifications 

(fewer than 10 gene symbols with nonzero counts) are removed automatically, and 

experiments with 10–50 gene symbols are inspected in more detail. Furthermore, all negative-

control experiments generated using the same protocol are inspected for consistency, and 

inconsistent samples are removed. Last, possible carryover issues are identified and referred to 

the data depositors for further inspection. From the 402 experiments submitted to the 

CRAPome, 42 experiments were excluded on the basis of these quality-control steps. 

Integrated scoring tool (SPrInt) 

The pipeline for scoring interactions (SPrInt) and CRAPome are built on a common software 

platform and are tightly integrated. SPrInt is described in chapter 2. Relevant CRAPome 

controls, selected using CVs, are passed as an input to SPrInt. Data is extracted from the 

CRAPome database and used for scoring interactions. 

Global analysis of CRAPome and reduced gene counts 

To allow a more informative analysis of the contaminant profiles and comparison with other 

data, we processed all pepXML and protXML files generated as described above using a more 

conventional set of filtering thresholds. All pepXML files used to generate the CRAPome 

repository (human data subset in version 1.0, 343 files) were processed together using 

ProteinProphet to generate a single protein summary file (protXML file). This combined 

protXML file, as well as the pepXML and protXML files for each individual experiment, were 

then processed using ABACUS [37] to generate a combined spectral count matrix using default 
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parameters (accepting proteins with at least one peptide having PeptideProphet probability of 

0.99 or greater and protein probability as computed by ProteinProphet of 0.9 or greater). Each 

row in the filtered ABACUS file represented a protein group from the combined protXML file, 

with a single accession number selected among indistinguishable protein entries forming that 

group. Spectral counts for the representative proteins were extracted from pepXML files for 

each individual experiment. The FDR for the combined protein list was less than 1% as 

estimated using decoy counts. The resulting spectral count matrix was used to compute 

similarity scores to generate the cluster gram (see below) and to analyze the global properties 

of the data such as frequency of identification across the entire data set (Table 4-2, 'reduced 

gene count'). 

Gene Ontology (GO) enrichment analysis was performed on the reduced list, and only the top 

25% most abundant proteins in each experiment were considered (1,427 genes in total). The 

analysis was done using the online DAVID tool [61], with the analysis restricted to level 3 

biological process (BP), molecular function (MF), or cellular component (CC). 

To generate the cluster gram (Figure 4-4), we first computed experiment-experiment similarity 

scores using the cosine function from square root–transformed spectral counts (data from 

protocol no. 66 (ref. [59]) were excluded from this analysis; see above). For computing the final 

cluster gram, we required that each experiment had at least two additional experiments with a 

similarity score of 0.7 or higher. The final cluster gram was generated using Cluster 3.0 software 

[49], with single-linkage clustering using Pearson correlation (un-centered) as the similarity 

measure. The cluster gram was visualized using Tree View software [50]. 

Contaminant propensity as a function of protein abundance 

To generate the list of proteins and protein abundances in the HEK293 whole-cell lysate, we 

used publicly available data taken from ref. [62]. Raw mass spectrometry data for this cell line 

were downloaded from the original publication and processed as described above (see “Global 

analysis and reduced gene counts”). For each identified protein (representative protein per 

group; see above) in the filtered ABACUS file, the summed spectral count across the four 

biological replicates was taken as a measure of the protein abundance in the cell line. A global 
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histogram of protein abundances was then generated by binning (Figure 4-4 a). The background 

contaminant propensity was then calculated as a fraction of HEK293 cell line–identified 

proteins in each spectral count bin that were also detected in at least one HEK293 experiment 

in the CRAPome. For this comparison, we selected CRAPome (V 1.0) experiments having the 

‘Cell Line’ attribute value ‘HEK293’ only and queried protein accession numbers identified in the 

HEK293 whole-cell lysate against the CRAPome HEK293 identified proteins. We then plotted the 

‘fraction in CRAPome’ as a function of protein abundance (binned spectral counts). 

Preparation of test data sets 

The utility of CRAPome database is illustrated using a typical small scale data (DS1, described in 

chapter 2). Briefly, the data set comprises two biological replicates of each of the following four 

baits: MEPCE, RAF1, WASL and RAF1. Six negative controls, i.e., tag-only purifications, were also 

included. The data was processed as described earlier (see “Preparation of test data”, chapter 

2). 

Access to CRAPome 

The CRAPome can be accessed at http://www.crapome.org/. No registration is required to 

access the database. However, registered users can save selected lists of controls (Figure 4-2 c). 

The database and experimental protocols can be downloaded as text files from the website 

(http://crapome.org/?q=Download). 

Results and Discussion 

Creation of the CRAPome Repository 

The CRAPome database is a web-accessible (http://www.crapome.org/) repository of negative 

control AP-MS experiments (both published [33, 42, 51, 56, 58, 59, 63-76] and unpublished) 

associated with detailed protocols and controlled vocabularies (CVs; Table 4-1) used to organize 

the data. Data contributors first submit raw mass spectrometry files (Figure 4-2 a), which are 

processed using a uniform data analysis pipeline and by several quality-control checks 

(Methods) before the association of metadata (CVs and text-based protocols). These annotated 

negative-control runs form the core of the repository. The initial version (V 1.0, March 2013) 

http://crapome.org/?q=Download
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comprised 360 experiments contributed by 12 laboratories, of which the bulk of the data (343 

experiments) were generated using human cell lines. This large data set covers many of the 

most commonly used AP-MS protocols. For each experiment, mapping of the protein identifiers 

to the HUGO gene nomenclature committee (HGNC) gene symbol is performed, and spectral 

count information is parsed to the relational database (Methods). The database is expandable, 

and new data are added to the CRAPome using the same deposition and annotation process. 

New protocols and CVs will adapt the database to new experimental workflows. 

Attribute Name Attribute Values 

Organism human 
Cell/tissue type HEK293, HeLa, U2OS, PBMC, Jurkat, CEM-T, MRC-5, LS174 

Cell/tissue subtype none, HEK293T, HEK293 Flp-In T-REx, Jurkat-Flp-In 

Drug treatment aphidicolin, rapamycin, nocodazole, MG132, none, IFN-beta, DMSO, okadaic acid, 
doxycycline+thymidine, tetracycline+thymidine, thymidine+nocodazole 

Subcellular fractionation total cell lysate, total lysate+chromatin, nuclear fraction, cytosolic fraction 

Epitope tag FLAG, HA, GFP, TAP, HaloTag, Strep-HA 

Control protein RFP, GFP, FLAG, mCherry, tag alone, untransfected, uninduced, NLS-RFP 

AP steps single, tandem 

Affinity approach 1 M2 anti-FLAG, anti-GFP camel, anti-GFP rabbit, HA-7 anti-HA, HaloLink, IgG, 
Streptactin, 2xFLAG, SBP, anti-GFP mouse 

Affinity support 1 agarose, magnetic (dynabead), magnetic (agarose coated), nano-magnetic, 
microMACS 

Affinity approach 2 none, M2 anti-FLAG, anti-GFP camel, anti-GFP rabbit, calmodulin, HA, 2xHA, HA-7 
anti-HA, anti-GFP mouse 

Affinity support 2 none, agarose, magnetic bead (dynabead), magnetic beads, agarose coated, 
nano-magnetic beads, microMACS 

Fractionation SDS-PAGE, 1D LC-MS, MudPIT, RP-RP, GeLC 

Instrument type Velos-Orbitrap, LTQ-Orbitrap, LTQ, LCQ, LTQ-FT, 5600 TripleTOF 

 
Table 4-1: Controlled vocabulary for annotating experiments (V 1.0). 

Graphical user Interface 

End users access the database via a web interface (Figure 4-2 c, d). After selecting the organism 

of interest (currently H. sapiens, S. cerevisiae or E. coli), the database can be queried in two 

ways (called “user workflows”). 
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1. Query selected proteins. In workflow 1, users submit queries consisting of protein or gene 

identifiers and retrieve summaries of the occurrence of queried entries. An expanded view 

summarizes the conditions and protocols in which the protein has been identified, associated 

with spectral count information (Figure 4-2 c). 

2. Create contaminant lists. Workflow 2 generates background lists from a subset of the 

CRAPome controls. In this case, the user simply selects the list of desired controls (filtered using 

CVs and protocol details; Figure 4-2 d) and downloads the resulting tables of contaminants. 

Quantitative parameters, including the occurrence of identification across selected controls and 

the average spectral counts across selected controls in which the protein was detected, are 

included (a maximum of 30 experiments can be viewed online; the entire data set can be 

downloaded as a tab-delimited file from http://www.crapome.org/). Registered users can also 

save the selected list of controls for future use. 

Using CRAPome to score interactions 

We tested whether the controls deposited in the CRAPome could be used for scoring 

interactions in the absence of user controls. Although we recommend always using at least 

some user controls for scoring interactions, there are certainly cases in which such controls do 

not appropriately model the background. Controls from the repository were thus selected on 

the basis of the CVs and protocols. We identified two relevant control sets from two different 

laboratories that fulfilled our criteria (HEK293 cells, Flag tag, single-step purification on M2 

agarose) which contained 10 (set 1; CRAPome protocol no. 56) and 11 (set 2; CRAPome 

protocol no. 26) experiments, respectively. Using ROC analysis, we showed that each of these 

sets of controls performed very similarly to the user controls in both SAINT (Figure 4-3 a) and FC 

(Figure 4-3 b) calculations. 
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Figure 4-2: Creation of CRAPome database and the graphical user interface. 

(a) Creation of the CRAPome. (1) Contributors to the CRAPome submit raw mass spectrometry files for negative-
control runs as well as detailed experimental protocols and mapping information. (2) Raw mass spectrometry files 
are first converted to mzXML and analyzed by X! Tandem and the Trans-Proteomic Pipeline (TPP); counts are 
extracted for protein quantification, and the CRAPome administrator performs a quality-control check (Methods). 
(3) Released high-quality runs (data) are associated with experimental descriptions and protocols (metadata) by 
the CRAPome administrator in consultation with the data provider. (4) The CRAPome database is queried by 
external users via the web interface.  (b) Overview of the data in CRAPome (V 1.0). (c) Overview of the CRAPome 
workflow 1. (1) Proteins are queried against the CRAPome by inputting one of several identifiers, which are 
mapped to corresponding gene symbols. Different views enable exploration of the contaminant profile of each 
queried protein, either as a summary table (2) or in graphical formats (3). (d) Overview of the CRAPome workflow 
2 that is used to generate lists of contaminant proteins. Desired controls are selected, with the help of CVs. Data 
are displayed in a tabular format and can be downloaded as a text file. 
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Figure 4-3: Scoring protein interactions using controls from the CRAPome (V 1.0)  with SAINT. 

Scoring protein interactions using controls from the CRAPome with SAINT (a) and FC-A (b): user controls (n = 6) are 
compared to two sets of controls from the CRAPome, selected according to the CVs (set 1 = 10 controls; set 2 = 11 
controls). 

Characterization of CRAPome 

We mined the database to determine (i) which proteins have a higher propensity to be 

contaminants and (ii) how background proteins differ according to experimental conditions. 

First, to understand whether the abundance level of a protein in a sample increases the 

propensity of the protein to be a contaminant, we plotted the proteins reported in the 

CRAPome repository (restricting the analysis to HEK293 cells, by far the most common human 

cell line in the CRAPome) against a list of proteins ranked by their abundance estimates on the 

basis of whole-proteome analysis of HEK293 cell lysate [62]. We observed a clear relationship 

between the abundance of a protein in HEK293 and its detection in at least one of the HEK293 

experiments in the CRAPome database (Figure 4-4 a). We next analyzed the frequency of 

detection of individual proteins in the CRAPome (mapped to gene names, as throughout this 

manuscript). Using stringent filtering (protein false discovery rate <1%), 4,449 non redundant 

protein groups (or 7,782 gene names without compression of the data; Methods) were 

identified. Of these, 14 proteins were detected in >90% of all experiments, and 89 were 

detected in >50% of the experiments: percentages that qualified these proteins as ubiquitous 
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contaminants (Table 4-2). These include keratins, cytoskeletal proteins such as tubulins and 

actins, and high-abundance proteins including translation elongation factors and histones 

(Table 4-3). Other proteins were not detected consistently across all purifications but were 

abundant (in terms of total spectral counts) across the database: these were notably enriched 

for several functional categories, predominantly those associated with RNA functions. However, 

a large fraction of the proteins present in the CRAPome were detected in only a small fraction 

of experiments: 3,571, or 80% of the proteins in the CRAPome, were found in ≤10% of the 

experiments. 

Frequency in 
CRAPome (%) 

Redundant gene 
counts 

Reduced gene 
counts 

>90 15 14 
>75 37 30 
>50 110 89 
>20 504 463 
>10 898 878 
≤10 6,884 3,571 
Total 7,782 4,449 

 
Table 4-2: Frequency of detection across CRAPome database (V 1.0). 

Data are for H. sapiens. The two counts are computed at different frequencies. (i) “Redundant” gene counts are 
based on a generous estimation of shared peptides: in this case, each protein or gene to which a given peptide is 
matched is counted as a contaminant. (ii) “Reduced” gene counts are based on a more stringent definition of 
protein/gene parsimony, as described in Methods.  
 
To further explore the contaminant propensity of the proteins in the CRAPome, we computed 

the similarity of all experiments (restricting the analysis to human data only), generating a heat 

map (Figure 4-4b and Methods). The data clustered primarily according to experimental 

conditions (though there was a bias in the type of background detected across different 

laboratories). Several of the clusters could be further separated into sub-clusters, as 

exemplified by the “Flag HeLa agarose” cluster, which showed a clear separation based on 

subcellular fractionation (cytoplasmic or nuclear) performed before AP-MS (Figure 4-4 c). Using 

our analysis of the most important determinants of background behavior as a basis, we 

annotated all experiments in the CRAPome (V 1.0) using 14 categories of CVs (Table 4-1), which 

can be used to select experiments that are most similar to those in a query set. Complete 
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protocol descriptions of the experiments are also provided by selecting the desired protocol 

number. 

 

Figure 4-4: Characterization of CRAPome (V 1.0). 

Relationship between the detection of a given protein in the CRAPome and its protein abundance. The abundance 
distribution in HEK293 cells was calculated from shotgun mass spectrometry data (Methods). The left axis indicates 
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the number of proteins identified at each of the spectral count abundances (green circles; green dashed line shows 
fit to data); the right axis indicates the fraction of the proteins at a given binned abundance in the CRAPome 
database (blue triangles). (b) Similarity clusters of all experiments. All experiments in the CRAPome were scored 
for similarity in their contaminant profiles according to a cosine function: the size of each cluster represents the 
number of experiments with strong similarity. Selected similarity clusters are indicated alongside their 
composition. (c) Cluster 9, described in b as Flag-tagged agarose in HeLa cells, can be further defined as two sub-
clusters on the basis of subcellular fractionation performed before the affinity purification (cytoplasmic and 
nuclear fractions); other clusters can also be refined. (d) Example of epitope-tag specificity for selected proteins 
and genes. (e) Spectral count distribution of the proteins in d across the entire data set. Spectral count bins are 
shown for all nonzero experiments. The highest spectral count boundary for each bin is shown.  
 

To illustrate the different contaminant propensities of individual proteins, and the need to 

account for not only the overall frequency of detection in the data set but also the 

experimental conditions, we analyzed the frequency distribution of four proteins with two 

types of epitope tags, Flag and GFP (Figure 4-4 d). Tubulin-β (TUBB) was detected across nearly 

all of the experiments, irrespective of the epitope tag. By contrast, the serine/threonine kinase 

STK38 co-purified in nearly all Flag experiments but not in GFP experiments, whereas the tumor 

suppressor protein p53 (TP53) was detected predominantly in GFP-based affinity purification 

protocols. The serine/threonine phosphatase PPP4C was not detected at a high frequency in 

experiments performed with either of these epitope tags (it was identified in 3 of 343 

experiments across the entire database). Frequency and experimental conditions are also 

clearly insufficient to describe contaminant propensity: abundance measures are also critical. 

For instance, if a protein is detected at a high frequency but low abundance (that is, a low 

number of spectral counts in a high number of mass spectrometry runs) in the CRAPome but is 

detected with a high spectral count in bait purifications performed by a user, it is more likely to 

be a true interactor than if it were always detected with high abundance in the CRAPome. To 

illustrate this concept, we compared the nonzero values in Figure 4-4 d for the four proteins, 

but we specifically examined spectral count distributions (binned values). This analysis revealed 

that whereas TUBB and STK38 were often present in very high counts in the CRAPome, TP53 

was usually detected with much lower spectral counts (Figure 4-4 e). Such comparisons can be 

easily accessed via the CRAPome user interface (workflow 1). They also provide the basis for 

statistical or empirical scoring of interactions described in SPrInt (chapter 2). 
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Gene family Example gene symbols 
Heat-shock proteins HSPA1A, HSPA8, HSPA2 
Keratins KRT1, KRT10, KRT2 
Tubulins TUBA1B, TUBA3C, TUBB 
Actins ACTB, ACTA2, ACTBL2 
Elongation factors EEF1A, EEF1A2 
Histones HIST1H1C, H2AFX, HIST2H2BE 
Ribonucleoproteins HNRNPK, HNRNPU, HNRNPH1 
Ribosomal proteins RPS3, RPS18, RPL23 

 
Table 4-3: Most Frequently detected protein families across the CRAPome (V 1.0). 

Shown are the most frequently detected protein families, alongside some of the most frequently detected 
representative genes (H. sapiens data, V 1.0). 
 

Concluding Remarks 

Although lists of contaminating proteins have been reported in the past [53, 77, 78] there has 

been no central repository for this type of data or freely available software tools for using these 

lists. The CRAPome facilitates access to a standardized (in terms of protein identification 

pipeline, ID mapping, abundance measures and so on) set of negative-control experiments, 

organized via CVs based on experimental considerations. The freely accessible user interface is 

intuitive and informative, even for those who may be new to mass spectrometry. 

We are currently using spectral counts as the sole quantification tool in the repository, but 

extension of the system to other types of quantification (especially that based on peptide ion 

intensity, which is becoming possible as high–mass resolution instruments are increasingly 

being used for AP-MS experiments) may help to further discriminate between background 

contaminants and true interactors. We expect a constant stream of negative-control data to be 

deposited in the CRAPome. As contributors continue depositing their data in the repository, 

robustness in scoring will increase, and in-depth characterization of contaminant behavior will 

be possible. The CRAPome can be used as a retrospective tool to analyze AP-MS data, and it will 

be instrumental to curators of protein-protein interaction databases. It should also assist with 

establishing guidelines regarding the scoring and annotation of such data. Widespread adoption 

of the CRAPome (by experimentalists, computational biologists, database curators and 
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reviewers alike) will improve the overall quality of AP-MS protein interaction data, addressing 

one of the key challenges in proteomics research. 
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CHAPTER 5  
RePrInt: A Repository of Protein Interactions 

Generated from Affinity Purification Mass 
Spectrometry Data 

Introduction 

Interaction databases are central for creating comprehensive protein interaction networks. 

These databases typically store lists of interactions that are aggregated from various sources, 

including those derived from literature and processed high-throughput data sets. While some 

databases like HPRD [79] solely depend on manual curation methodologies, others like DIP [80] 

employ automated procedures such as text mining. Meta databases such as iRefIndex [27, 81] 

and IntAct [81] aggregate data from several other databases and facilitate the consolidation of 

available information. In addition to providing scores that indicate the confidence of an 

interaction, these databases also maintain the data provenance. Standardized data formats 

have facilitated easy exchange of information between databases. 

In spite of serious efforts to develop and maintain well curated protein interaction databases, 

high false positive rates have been reported among several of them. On the other hand, there is 

also an ever increasing demand to expand the coverage of interactome captured by these 

databases, notwithstanding several limiting factors such as under sampling of the interactome 

itself. While the false positive rates are generally low in manually curated databases, they are 

labor-intensive and hence limited in their scope. Computational curation methodologies help in 

expanding the scope of a database, but they also inflate error rates due to inherent algorithmic 

limitations. Prediction based approaches are limited by the availability of training data and 

accuracy of prediction models.  

Contemporary interactome analyses are increasingly being performed using high-throughput 

approaches. In particular, AP-MS has emerged as an efficient, sensitive and high throughput 
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approach to survey protein interactions[82]. With several AP-MS analyses being performed 

regularly, a data-driven strategy can now be adapted for creating protein interaction databases. 

Such a strategy circumvents the need for manual/computer curation and associated problems. 

We present here RePrInt, a repository of protein interactions created using systematically 

aggregated spectral data from several AP-MS studies. All data sets are systematically annotated 

using standardized controlled vocabularies and processed uniformly to identify and quantitate 

proteins in the sample. Interactions are then scored using SPrInt (chapter 2) and saved in a 

database. The compendium of such scored interactions forms the core of RePrInt, which is 

publicly accessible through a graphical user interface.  

RePrInt implements a new score (RScore) to ‘merge’ evidence from multiple data sets, when 

available. It also provides a novel pipeline to create comprehensive interaction networks. Post 

publication, the repository and associated tools will be publicly available at www.reprint-

apms.org .  

Methods 

Design and architecture of RePrInt 

RePrInt was implemented by leveraging the infrastructure developed for CRAPome (chapter 4) 

and SPrInt (chapter 2). Briefly, the user interface was built using Drupal, MySQL and SQLite. The 

pipeline to populate the RePrInt database was created using Python and SQLite. The workflow 

for creating interaction maps using RePrInt data was created using the ‘networkx’ library of 

Python. The user interface is deployed using Apache, an open source web server, on virtual 

servers managed by the Medical School Information Services of the University of Michigan 

(MSIS). Details of the software design and implementation are presented in Appendix A.  

Processing of mass spectrometry data and population of RePrInt database 

Each data set considered for RePrInt is processed separately as follows. The raw files are 

converted to the open mzXML file format and further processed using the X! Tandem/ 

TPP/ABACUS suite of tools [14, 15, 34]. H. sapiens data is searched against RefSeq protein 

sequence database version 56 (ref. [35]) appended with an equal number of decoy sequences, 

http://www.reprint-apms.org/
http://www.reprint-apms.org/
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using X! Tandem [13] with k-score plug-in. For the purposes of simplicity and uniformity, two 

standard parameter templates are used for processing data using X! Tandem and TPP 

depending on the mass accuracy of the instrument (low or high). MS/MS spectra are searched 

using a precursor-ion mass tolerance of 100 p.p.m. (monoisotopic mass) or using −1 to +4 Da 

(average mass) window for high– and low– mass accuracy instruments, respectively. All other 

database search parameters are kept identical: cysteine carbamylation (C + 57.0215) and 

methionine oxidation (M + 15.9949) are specified as variable modifications. The search results 

are processed using PeptideProphet (high–mass accuracy data are analyzed using the high–

mass accuracy binning option) and then further processed using ProteinProphet to create 

protein summary files. All pepXML files in the data set are processed together using 

ProteinProphet to generate a single protein summary file (protXML file). This combined 

protXML file, as well as the pepXML and protXML files for each individual experiment, are then 

processed using ABACUS [37] to generate a combined spectral count matrix using default 

parameters (accepting proteins with at least one peptide having PeptideProphet probability of 

0.99 or greater and protein probability as computed by ProteinProphet of 0.9 or greater). Each 

row in the filtered ABACUS file represents a protein group from the combined protXML file, 

with a single accession number selected among indistinguishable protein entries forming that 

group. Spectral counts for the representative proteins are extracted from pepXML files for each 

individual experiment. It is ensured that the FDR for the combined protein list is low (less than 

5%) as estimated using decoy counts. The ABACUS output file is then (manually) edited to 

generate the corresponding SPrInt input file in the matrix format (Methods, Chapter 2). This 

input file generated for each data set is uploaded to SPrInt and interactions are scored online. 

The results for each data set are manually inspected by an expert analyst. Standardized metrics 

for quality control are still under development. When a data set produces reasonable results, it 

is annotated using the admin interface (Appendix B), assigned a data set ID and marked for 

inclusion in RePrInt.  

An in-house Python script is used to aggregate scored interactions of all data sets marked for 

RePrInt. The (SPrInt) results file for each data set is parsed and a master list of interactions is 

generated. All necessary information such as the confidence scores, spectral abundance values, 
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and meta-data are also included for each interaction. RePrInt assigns a unique ID for each 

interaction and references both bait and prey proteins by their corresponding gene names. The 

mappings from protein ID to its gene name(s) are downloaded from Ensembl BioMart [60]. 

When multiple gene names map to either the prey or the bait protein, the interaction is 

duplicated to generate a redundant list. All data is finally stored in a SQLite database. The bait 

and prey columns are indexed to enable faster queries on the database. 

Interaction scoring: RePrInt score 

RePrInt score (RScore) is defined as the probability that the observed interaction is a true 

interaction. When multiple data sets profile the same interaction, each can be considered as an 

independent evidence for the interaction. Accordingly, the overall probability that the observed 

interaction is true is computed using the following formula.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑖 = 1 − � (1 − 𝑝𝑖)
𝑛

𝑖=1
 

𝑤ℎ𝑒𝑒𝑒 𝑝𝑖 𝑖𝑖 𝑡ℎ𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑡ℎ𝑎𝑎 𝑡ℎ𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑖𝑖 𝑡𝑡𝑡𝑡 𝑖𝑖 𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑖 

Currently, SAINT is the only scoring model that generates a probability score. Accordingly, 

RScore is computed using the SAINT score.   

Preparation of test data 

The process of generating comprehensive interaction maps using the network reconstruction 

algorithm (workflow 3) of RePrInt is illustrated with the help of three data sets. All three data 

sets targeted the mammalian Hippo pathway in H. sapiens. The first data set (DS7) was from 

“Protein Interaction Network of the Mammalian Hippo Pathway Reveals Mechanisms of Kinase-

Phosphatase Interactions” by Couzens et al., Science Signaling (2013)[5]. Data generated from 

FLAG AP-MS experiments were considered for this analysis. Briefly, 21 FLAG tagged bait 

proteins were stably expressed in lp-In 293 T-REx or Flp-In HeLa T-REx cell lines, affinity purified 

and analyzed on an LTQ mass spectrometer under two conditions - treated with okadaic acid 

and otherwise. Two biological replicates were generated for each bait purification. 15 negative 

controls were also included. Okadaic acid (OA), a potent inhibitor of serine and threonine 

phosphatases, resulted in an increased phosphorylation of some of the targeted baits. Four of 
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the negative controls generated included GFP as the control protein, while the rest were flag-

only purifications.  In summary, DS7 is a comprehensive data set that attempts to profile the 

interactions of several important proteins related to the Hippo pathway. 

The second data set (DS8) was taken from “modular control of the co-activator YAP1” by Hauri 

et al., Molecular systems biology (2013) [83].  Here, 34 Strep-HA tagged bait proteins were 

stably expressed in HEK Flp‐In 293 T‐Rex cells, affinity purified and analyzed on an LTQ Orbitrap 

XL mass spectrometer. Two biological replicates were included for each bait purification. More 

than sixty negative controls (Strep-HA‐GFP or Strep-HA‐RFP‐NLS) generated in their laboratory 

were used to score interactions. 

The third data set (DS9) was taken from “Defining the Protein–Protein Interaction Network of 

the Human Hippo Pathway” by Wang et al., Molecular & Cellular Proteomics (2014) [84]. In this 

data set, 32 clonally modified bait proteins expressing an SBP triple tag construct in 293T cells 

were tandem affinity purified and analyzed on an LTQ velos instrument. 31 unrelated bait 

purifications were used as negative controls. 

All three data sets were downloaded from public repositories: DS7 from massive 

(MSV000078450), DS8 from peptide atlas (PASS00281) and DS9 from proteome exchange 

(PXD000415). Data was processed as per the procedure described above (‘Processing of mass 

spectrometry data and population of RePrInt database’). The FDR in the filtered results 

generated by ABACUS for each of the data sets was <1%. Each data set was scored 

independently using SPrInt with default parameters. 

Access to RePrInt  

As described in earlier chapters, SPrInt, PInt, CRAPome and RePrInt were implemented as an 

integrated system, on a common software platform. Post publication, the repository and tools 

will be available at http://www.reprint-apms.org. While querying and downloading data 

(workflows 1 and 2) are available anonymously, workflow 3 requires user registration. Users 

can access previous analyses until they are purged by the system administrator (after an 

advanced notification). 

http://www.reprint-apms.org/
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Figure 5-1: Creation of RePrInt and the graphical user interface. 

(a) RePrInt processing pipeline. 1) Raw data is collected and processed uniformly using the X! 
Tandem/TPP/ABACUS pipeline (Methods). 2) Interactions are scored using SPrInt. 3) The quality of interactions is 
assessed manually. 4) Data sets that pass quality control check are annotated using the admin interface. 5) 
Processed results are submitted to RePrInt database. (b) Querying interactions or workflow 1 (main text). (c) 
Downloading data or workflow 2 (main text). (d) Pipeline for generating protein interaction networks (workflow 3). 
(i) Illustration of the algorithm for network reconstruction. First, high confidence interactions are selected using 
various scores generated by SPrInt (S1). The cut-offs are relaxed to generate ‘borderline interactions’ (S2, main 
text). Borderline interactions are subjected to topological filtering before they are merged with the high scoring 
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interactions. (ii) Topological filtering criterion. Interactions that complete a network motif are more likely to be 
true than other borderline interactions. The triangle, quadrilateral motifs are shown. Similarly, interactions that 
interconnect members of a complex are also more likely to be true than other borderline interactions. (iii) 
Simulation showing the RePrInt score (Methods) as a function of SAINT probabilities from two hypothetical data 
sets. RePrInt score is shown on the color scale (red=1, white=0). The gradual curving of bands illustrates that 
RePrInt can be used as a ‘soft’ cut-off, by merging evidence from multiple data sets (main text). 

Results and Discussion 

Creation of RePrInt 

The RePrInt database is intended to be a web-accessible (http://www.reprint-apms.org/) 

repository of scored interactions from AP-MS experiments (both published and unpublished). 

The pipeline for populating the RePrInt database is shown in Figure 5-1 a. In step 1, data is 

aggregated in the form of raw mass spectrometry files, which is processed uniformly using the 

X! Tandem/TPP/ABACUS pipeline (Methods). In step 2, each data set is scored online using 

SPrInt with default parameters. Standardized negative controls from the CRAPome database 

are included in the analysis of a data set, when necessary. In step 3, the results generated by 

SPrInt are manually inspected for quality control. When a data set meets the quality check 

criterion, it is marked for annotation. In step 4, experiments are annotated as described in 

Appendix B.  Both CRAPome (chapter 4) and RePrInt follow the same approach for annotating 

experiments. Briefly, the meta-data consists of three components: a) provenance of the data, b) 

bait description and c) the experimental protocol. The details of where and when the data was 

generated constitute the data provenance. The amino acid sequence, UniProt/RefSeq accession 

IDs and associated gene symbols are used to describe the bait protein. The experimental 

protocol is described using a standardized set of attributes, also known as ‘controlled 

vocabulary (CV)’. The cell line, epitope tag, affinity approach and support are some of the 

important attributes in the CV (Table 4-1). Free text annotation is also included to 

accommodate any descriptions that the CV may not capture adequately. Once annotated, the 

data set is submitted to the RePrInt database. In step 5, processed results (i.e., scored 

interactions generated by SPrInt) of submitted data sets are parsed and stored in a SQLite 

database. The repository is currently under development and includes at least 6 large/medium 

scale data sets.  
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Graphical user interface 

End users access the RePrInt database through a web interface (Figure 5-1 b, c). After selecting 

the organism of interest (currently H. sapiens), the database can be queried/accessed in two 

ways (called ‘user workflows’). A third workflow helps in creating interaction maps using 

RePrInt data. The user interface of workflow 3 is under development. 

Workflow 1: Query interactions. Here, users query the database using a list of protein or gene 

identifiers and retrieve scored interactions (Figure 5-1 b). As mentioned earlier, interactions in 

RePrInt are stored as pairs of bait-prey proteins. Accordingly, users can specify (through the 

GUI) whether the query should consider the input list of proteins as prey and/or bait. The 

results are displayed as a list of interactions. Protein abundances in bait purifications and the 

corresponding negative controls are shown along with the SPrInt and RePrInt scores. A 

hyperlink (orange arrow in Figure 5-1 b) to the SPrInt results page of the source data assists the 

user in interpreting/evaluating the confidence score of an interaction in the context of the 

original data. In other words, a fine level of detail is available to the user in addition to a brief 

summary.  

Workflow 2: Download interaction lists. This workflow allows users to select subsets of 

experiments and download lists of scored interactions (Figure 5-1 c). The GUI allows users to 

select data sets of interest by filtering on the controlled vocabulary.  

Workflow 3: Generate interaction networks. Here, users can generate interaction maps using 

scored interactions available in the RePrInt database. After selecting data sets of interest, users 

specify parameters for network reconstruction and generate interaction maps. The pipeline for 

network generation is detailed below. Networks can be downloaded as lists of interactions or in 

the portable ‘graphml’ file format.  

Using RePrInt to generate interaction networks 

In a typical setting, scored interactions are filtered to generate a list of ‘high confidence 

interactions’ (HCIs), which are then used to generate interaction maps.  Stringent filtering of 

scored interactions reduces the false positive rate among HCIs, however it limits the inclusion 

of weak and transient interactions. By their very nature, weak and transient interactions result 
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in correspondingly low prey abundances. Accordingly, the confidence scores for such weak 

interactions are low. This makes the task of identifying bona fide weak/transient interactions 

quite challenging. As a first step in the direction for creating comprehensive protein interaction 

networks, we devised a novel strategy to ‘rescue’ bona fide interactions that barely miss the 

filtering criterion (referred to here as ‘borderline interactions’). Our pipeline uses a two step 

procedure for network reconstruction (Figure 5-1 d, (i)). First, a high-confidence network is 

generated using stringently filtered HCIs. The network is then expanded to include borderline 

interactions. It is common knowledge that relaxing the filtering criterion can potentially inflate 

the error rate (i.e., false positive identifications). Hence, we devised a ‘topological’ filter to 

prune the list of borderline interactions and preferentially include those that are more likely to 

be bona fide.  We reasoned that interactions which complete a network motif (such as triads, 

tetrads or protein complexes (Figure 5-1 d, (ii)) are more likely to be bona fide than others. 

Filtered borderline interactions are appended to the high confidence interactions to generate 

the final network. Optionally, prior knowledge from the iRefIndex database is mapped to the 

final network. 

A single experimental protocol may not capture all the interacting partners of a bait in an AP-

MS experiment. Hence, it is a common practice to repeat an AP-MS experiment in slightly 

altered experimental conditions, in order to increase the coverage. Also, signaling pathways 

and networks are often studied by multiple groups due to their relevance to drug discovery. 

Accordingly, several protein interactions are often surveyed by multiple data sets. When the 

goal is generate a comprehensive interaction network, a question arises as to how to ‘merge’ 

evidence from multiple sources. The simple approach is to assign the maximum confidence 

score across data sets to each interaction. However, weak and transient interactions, which 

score low across the board, do not get selected in this approach. Hence we developed RScore 

(Methods), which computes the confidence of an interaction by treating each data set as an 

independent experiment/trial. It can be proved analytically that RScore is greater than the 

maximum SAINT score. Its ability to serve an ‘aggregator’ of evidence is illustrated below, using 

a hypothetical example. 
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Figure 5-2: Hippo pathway generated from three data sources. 

Hippo network generated by merging high scoring interactions from three data sets (DS7, DS8 and DS9). Manual 
inspection indicates that network recapitulates important aspects of Hippo network. 
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Consider two interactions profiled across two data sets. The first interaction has SAINT 

probabilities 0.78 and 0.79 from each data set respectively. The second interaction has SAINT 

probabilities 0.80 and 0.75 respectively. When a list of high confidence interactions is 

generated by applying a ‘hard’ cut-off of SAINT ≥ 0.8, the second interaction would pass the 

cut-off, whereas the first would not.  Intuitively, the difference between them seems to be a 

numerical artifact (owing to several reasons such as technical and biological variation among 

samples, the discrete nature of spectral count values and the granularity of scores themselves). 

Combining evidence using RScore generates comparable confidence scores for both the 

interactions (0.953 and 0.950 respectively). Hence a filtering approach that uses RScore is more 

likely to capture both the interactions.  

We further evaluated the behavior of RScore using simulated data sets (Figure 5-1 d (iii)). 

RScore is plotted as a function of two hypothetical data sets that generate SAINT scores P1 and 

P2 for each interaction.  The gradual curving of the threshold (colored bands in the heat map) 

indicates that RScore behaves like a ‘soft’ cut-off, by aggregating evidence from the two 

constituent data sets. The simulation suggests that RScore is a better metric to ‘rescue’ weak 

and transient interactions than the traditional approach of using maximum SAINT probability. 

The utility of the RePrInt database and network reconstruction strategy is illustrated using 

three data sets targeting the HIPPO pathway, namely DS7, DS8 and DS9. The ‘high quality’ 

network was generated using stringently filtered interactions (SAINT ≥ 0.9, FC-A ≥ 4 and FC-B ≥ 

2). A less stringent filtering criterion was applied (RScore ≥ 0.85) to generate a list of 

‘borderline’ interactions. The topological filtering criterion was defined as the ability of a 

borderline interaction to generate a triangle subgraph in the high-quality network (generated in 

step 1). Borderline interactions that passed the topological filter were then merged with the 

high confidence network. The iRefIndex database was queried with the nodes (proteins) in the 

final network and prior knowledge was mapped to the final network. If an interaction was 

reported in iRefIndex database, the edge was colored red (otherwise blue). The network 

generated using this algorithm resulted in a comprehensive interaction map (Figure 5-2) that 

includes several important members of the HIPPO pathway. The topological filter prunes a vast 
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percentage of interactions (Figure 5-3). 20% of interactions in the pruned network were 

reported in iRefIndex database, compared to 15% in the network that is not pruned. Taken 

together, these results indicate that the two-step approach for network generation creates 

comprehensive networks while controlling the error rates. The nature of interactions excluded 

by the pruning operation needs to be evaluated further.  

 

Figure 5-3: Utility of topological filtering. 

Concluding Remarks 

Although several protein interaction databases exist, there is no central repository for storing 

uniformly processed AP-MS data. The wide spread adaptation of AP-MS as the technology of 

choice for surveying protein interactions and the availability of a central repository of 

systematically annotated and uniformly processed AP-MS data provides a platform for in-depth 

interactome analyses. Periodic reprocessing of data using updated sequence databases and 

scoring functions facilitates greater utilization of raw (spectral) data. The availability of 

standardized negative controls in the integrated CRAPome repository can potentially improve 

the scoring of challenging AP-MS data sets.  

At a basic level, the network reconstruction workflow is similar to other publicly available tools 

such as GeneMania [85] and STRINB Db [86]. However, there are two key differences. First, the 

availability of uniformly scored protein interactions provides greater control over filtering the 
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data in order to identify HCIs. Second, quantitative interaction networks can be generated by 

assigning a weight (such as the FC Score) to each edge in the network. 

As with the CRAPome database, RePrInt also uses spectral counts as the sole quantification 

tool, but extension of the system to other types of quantitation (especially that based on 

peptide ion intensity) can help identify those interactions that weren’t identified using spectral 

count data. 

The RePrInt database is easily scalable. With large volumes of AP-MS data being generated 

regularly, the repository can play a central role in comprehensively profiling the landscape of 

protein interactions. 

Contributions 

This work is the result of collaboration between the Nesvizhskii Lab (Univ. of Michigan, Ann 

Arbor) and the Gingras Lab (Univ. of Toronto, CA). Bioinformatics pipelines/methods were 

developed by Dattatreya Mellacheruvu, under the guidance of Dr. Alexey Nesvizhskii. 

Dattatreya Mellacheruvu and Zachary Charles Wright (Application programmer (sr), Univ. of 

Michigan, Ann Arbor) implemented the system. 
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CHAPTER 6  
Conclusions and Future Directions 

 

Summary of the thesis 

The introduction (chapter 1) for the thesis provided a brief overview of the significance of 

protein interactions in biology and discussed several important aspects of affinity purification 

mass spectrometry (AP-MS), a powerful technology to survey native protein interactions in the 

cell. A brief description of the sample preparation and different flavors of APMS were 

described. The processing of mass spectrometry data was detailed, with a focus on open source 

tools such as X! Tandem, PeptideProphet, ProteinProphet and ABACUS. Finally, the ubiquitous 

presence of non-specific background interactions in AP-MS data and the need for an 

informatics solution to identify bona fide interactions were discussed. 

Chapter 2 of the thesis presented a standardized pipeline (SPrInt) for identifying bona fide 

interactions from AP-MS data. Two basic strategies for scoring interactions were described; 

enrichment and specificity scoring. While specificity scoring can only be performed on 

medium/large scale data sets comprising several bait purifications, enrichment scoring requires 

negative controls generated in parallel. Each module implements two scoring functions that 

are, in general, complementary to each other. While one of the scoring functions in each 

module was described earlier in literature, the other is a novel implementation by the author. 

The tool also generates several visualizations of the data that help in interpreting the results. In 

summary, the author and colleagues have created a versatile tool that is capable of processing 

a wide variety of AP-MS data sets. Its simple-to-use graphical user interface enables 

experimentalists to rapidly analyze their data. Greater acceptance and adaptation of the tool by 

the research community will implicitly facilitate standardized data processing practices. 
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Chapter 3 of the thesis presented PInt, an integrated tool for network reconstruction using high 

scoring, bona fide protein interactions. Small scale AP-MS data sets can not capture the 

landscape of an interactome; hence systematic integration of prior knowledge is essential for 

the analysis of such networks. PInt provides two strategies for extracting prior knowledge, 

referred to as the ‘network context’. On the other hand, it is often the case that networks 

generated from medium/large scale data sets look like hairballs and are difficult to interpret. 

PInt provides a strategy to dissect such networks into constituent modules, thus enhancing 

their interpretability. Further, options for network pruning help identify core network modules. 

Biological network analysis is often an iterative and semi-manual process; hence integrated 

tools for scoring interactions and network reconstruction are invaluable for systematic, end-to-

end network analysis. 

Chapter 4 of the thesis presented CRAPome, a repository of standardized negative controls 

generated from several AP-MS data sets.  High quality negative controls that profile the non-

specific background in AP-MS data are not always readily available. Fortunately, negative 

controls in epitope-tag based AP-MS experiments are bait-independent; hence they can 

potentially be re-used as long as the experimental conditions remain the same. Systematic 

annotation using controlled vocabularies enables the selection of suitable CRAPome controls 

that can included in a SPrInt analysis. The utility of such standardized negative controls was 

demonstrated using a benchmark data set. The graphical user interface of CRAPome allows 

querying (using protein/gene lists) the database to generate ‘contaminant profiles’ on-the-fly. 

While several large laboratories have the practice of aggregating negative controls, CRAPome is 

the first international effort to create a central repository of standardized negative controls. 

The database is easily expandable and has been steadily growing ever since its original 

publication. 

Chapter 5 of the thesis presented RePrInt, a repository of protein interactions from AP-MS 

data. While existing protein interaction databases aggregate ‘curated’ lists of high confidence 

interactions, RePrInt takes a data drive approach by aggregating raw spectral data and making 

available uniformly scored protein interactions. Two other important contributions are the 
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creation of a novel scoring scheme (RScore) to ‘merge’ evidence from multiple data sets and a 

novel network reconstruction algorithm. By their very nature, several weak and transient 

interactions are not ‘high scoring’. Accordingly, they often are discarded as noise. RScore and 

the network reconstruction algorithm can help rescue such bona fide interactions without 

inflating the error rates. RePrInt also facilitates retrospective and periodic re-processing of AP-

MS data with updated sequence databases and scoring schemes. The repository is easily 

scalable and has the potential to develop as a prime source for interactome data.  

Impact on research community 

 

 

Figure 6-1: Impact on research community. 

The map shows the geographic locations from where CRAPome was accessed. Areas in dark blue (e.g. the USA) 
correspond to geographic locations with relatively high usage (data collected using Google Analytics). The pie chart 
shows the fraction of returning visitors (approx. 55%). The tables describe the current status of the database (V 
1.1). 
 
Since its publication, CRAPome and SPrInt (originally, workflow #3 of CRAPome) have been used 

extensively by several research groups (Figure 6-1). The repository is actively supported by 

several laboratories that have regularly contributed data and assisted in annotating 

experiments (Table 6-1).  The website has had more than 67000 page views and more than 500 

registered users as on October, 2014; (data collected using Google Analytics). The pipeline for 
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scoring interactions has been used more than 2000 times, with some researchers using the 

results directly in their publications (e.g. Figure 1A in ref. [87]).  The original publication has 

been cited approximately 60 times (Google Citation count retrieved in December, 2014). A new 

release of the repository and associated tools is forthcoming in the first quarter of 2015. In 

summary, CRAPome has generated significant interest and is being widely adapted by the 

research community.  
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Table 6-1: List of contributors for the CRAPome repository (V 1.0). 

Utility of interaction networks in biological data analysis 

As described in chapter 1, biological networks are blue prints of the underlying biological 

processes. While networks generated from AP-MS data represent the landscape of physical 

interactions, those generated using approaches such as genetic screens [88] represent 

functional interactions. Other low throughput methods are also typically used to reconstruct 

what are commonly referred to as the ‘pathways’. In addition to providing an insight into the 

underlying mechanisms, especially cell signaling, these networks are indispensable for the 

interpretation of high-throughput biological data sets. The utility of interaction networks in 

biological data analysis is illustrated using two specific analyses performed by the author and 

colleagues. Both studies were related to elucidating the regulation of pseudohyphal/invasive 

growth in yeast [89]. S. cerevisiae, when subjected to environmental stress such as nitrogen 

deprivation, undergoes dramatic and reversible morphological transformation to form 

multicellular, elongated cells that resemble hyphae. Such a transformation may lead to invasive 
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growth and formation of bio-films. This dimorphic behavior is also observed in other virulent 

organisms like Candida albicans, and is hence an interesting phenomenon to study. 

Signaling cascades regulating invasive growth in yeast:  In this study, a genome wide analysis 

was performed by over-expressing 4909 genes (one at a time) and measuring the resulting 

morphological changes under normal vegetative growth conditions [90]. 551 genes responsible 

for invasive/pseudohyphal growth were identified in this screen. Following analysis was 

performed for the functional interpretation of this resulting gene set. First, enriched KEGG 

pathways[91] were identified using the DAVID functional analysis tool [61]. The resulting 

pathways (MAPK signaling, Cell progression and Meiosis) had a high degree of overlapping gene 

sets, hence they were parsed using an in-house tool and visualized as a single network. Genes 

responsible for pseudohyphal growth were highlighted. Network visualization indicated that 

signaling cascades involving of Kss1 and Hog1 genes link the MAPK (signaling) pathway to cell 

cycle and meiosis pathways.  These cues lead to further (biological) analyses, which helped 

elucidate the role of Hog1 in the regulation of pseudohyphal growth in yeast. 

Role of SKS1 in the regulation of pseudohyphal growth in yeast. Here, the role of 

serine/threonine-protein kinase (sks1) as a link between pseudohyphal growth and glucose 

signaling pathways was investigated using quantitative phosphoproteomics [92]. 

Phosphopeptides from wild type cells were compared to those from  sks1-K39R (kinase 

dead) mutant cells using SILAC (stable isotope labeling by/with amino acids in cell culture), 

grown under nitrogen/glucose limitation. The set of differentially expressed phosphoproteins 

(identified using differentially expressed phosphopeptides) were functionally interpreted using 

network analysis as follows. First, physical and genetic interactions among the members of the 

(KEGG) glycolysis, MAPK signaling and cell cycle pathways (reported in KEGG[91], BioGrid [93] 

and GeneMania [85]) and sks1 were used to generate a network scaffold. Both MAPK signaling 

and cell cycle pathways were known to be required for pseudohyphal growth in wild type cells 

and were hence selected for network generation. The resulting network indicated that sks1 is 

strongly interconnected with the glycolysis pathway. 
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Future directions 

Projects discussed in this thesis created a computational and informatics frame work for the 

analysis of AP-MS data. Following are some potential improvements in the near future.  

Using peptide ion intensity based quantitation. The tools and repositories presented here use 

spectral counts as the sole quantitation metric for scoring interactions. While spectral count 

data is robust, peptide ion quantitation is more sensitive [17, 94]. Both spectral count based 

quantitation and peptide ion intensity based quantitation can be generated in parallel. The 

models and databases presented here need to be extended to incorporate peptide ion intensity 

based quantitation. Further study is needed to understand (a) the similarities between the two 

approaches and (b) the advantages of each approach to identify bona fide protein interactions. 

Analyzing the dynamic interactome. A majority of current interactome studies focus on profiling 

the landscape of protein interactions. These studies generate a static picture of the 

interactome. In reality, the interactome is dynamic. Data generated using the typical data 

dependent acquisition (DDA) strategy may not have the necessary sensitivity to study the 

dynamic interactome. However, newer approaches such as AP-SWATH are beginning to gain 

popularity for such analyses [95, 96]. Models for scoring interactions presented in this thesis 

need to be extended to handle such data. Accurate methods for data normalization that are 

critical for the analysis of differential and dynamic interactions also need to be developed. 

Expanding the scope of RePrInt. The computational framework for analysis of protein 

interactions using tag-based AP-MS can be extended to similar approaches, such as 

immunoprecipitation mass spectrometry (IP-MS) and the analysis of RNA-protein interactions 

using AP-MS [9, 97, 98]. While the experimental principle in all these approaches is the same, 

i.e. purifying a bio-molecule complex and analyzing the constituent proteins using mass 

spectrometry, the data generated varies significantly. The sources of non-specific background 

interactions also vary significantly based on the experimental approach. For example, a major 

source of non-specificity in IP-MS protocols is the anti-body cross reactivity [99]. Similarly, 

sequence and structural homology of RNA molecules is a source of non-specificity in the 
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purification of RNA-protein complexes using RNA as the bait. In summary, data processing 

pipelines need to be tailored for each experimental approach. 

Integrating data from complementary approaches. In addition to AP-MS, several 

complementary approaches for profiling protein-protein interactions are being developed 

actively. There is significant interest in prediction based methods [100] and structural mass 

spectrometry [101]. Integration of data from such technologies into the models for scoring 

interactions and network reconstruction can significantly improve the results. Also, proteo-

genomic approaches for the processing of spectral data can facilitate deep profiling of the 

interactome [102]. 

Creating disease specific interactomes. Most of the interactome data is generated using cell 

lines, which are derived from various disease states. While the current effort is to generate a 

composite interactome, future studies need to focus on disease specific interactomes.  A 

comparison of several disease specific interactomes can lead to novel drug targets. 

Creating a composite bio-molecule interaction database. Current interactome analyses are 

largely unidimensional, in the sense that profile a single type of interaction (protein-protein, 

RNA-protein, etc.) in any given analysis. The cell however functions as a single unit, which 

includes intricate interactions among multiple (types of) bio-molecules. Accordingly, all 

interactome data needs to be integrated to generate a composite bio-molecule interaction 

database. 
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Appendix A  
Software Manual 

 

1. Introduction 

All the software tools discussed in this thesis have been developed on a common software 

platform and are tightly integrated. We outline here the important elements of the software 

design and development. All software tools used here are ‘open source’ and hosted on virtual 

servers managed by the University of Michigan Medical School Information Services (MSIS) and 

FLUX, the university wide high performance compute cluster.  

Three software environments, namely sandbox, development and production, enable 

streamlined project execution. The sandbox is used for developing proof-of-concept 

applications and testing new features. Once the design is finalized, it is implemented in the 

development environment. There is no separate ‘test’ environment, as is usually the case in 

enterprise systems. Instead, testing happens in the development environment before it is 

readied for a release. A ready-for-release version is re-christened as the new production version 

by pointing the production URL to the ready-for-release version. The release management plan 

includes syncing user-data and meta-data (see below). 

2. Design paradigm 

All software is designed in the model-view-controller architectural framework (Figure A-1). This 

framework facilitates modular software development. 

The database layer supports (a) the repo-data, i.e. protein lists with spectral abundance values 

extracted from raw spectral files, (b) the meta-data, i.e. experimental conditions described 

using controlled vocabularies and free text, and (c) the user-data, i.e. user uploaded input files 

and scored interactions. Repo-data and user-data are stored in SQLite databases. The meta-

data is stored in a MySQL database. The database schema of CRAPome database is shown in 
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Figure 4-1. The RePrInt schema is essentially the same. Meta-data is populated through the 

graphical user-interface (see below). User-data is stored in SQLite databases by controller 

scripts. CRAPome data is populated using in-house Python scripts. RePrInt data is first 

generated using SPrInt, which is then used to populate the RePrInt database (see chapter 5). 

 

Figure A-1: Software design paradigm. 

The controller scripts are the link between the graphical user interface and the database layers. 

Its major functions include: (a) generating formatted results and summary statistics directed 

against the CRAPome and RePrInt databases (chapters 4 and 5 respectively), (b) computing 

SPrInt scores (chapter 2) and (c) generating and displaying PInt networks (chapter 3). All these 

scripts were developed in the Python programming language. 

The graphical user-interface (GUI) is developed using Drupal, a PHP-based web development 

framework. Drupal was originally intended to be a content management system, but current 

versions have all the essential features of a web framework. Drupal provides all the basic 

features of a web-enabled software tool, such as the login module, access control, etc. The GUI 

provides an interface to: (a) populate the meta-data, (b) access the repo- and meta- data and 

(c) access the SPrInt and PInt pipelines. Graphical visualizations generated by SPrInt are 

rendered using the Google Visualization API. Networks generated by PInt are rendered using 

Cytoscape web. 

3. Software architecture diagram 
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The software architecture diagram indicating various components and their interconnections is 

shown (Figure A-2).  

 

Figure A-2: Software architecture diagram.  

The GUI, developed in Drupal, is highlighted in red. Controller scripts, developed in Python, are shown in a box 
with a grey background. Databases are represented with cylinders and interfaces are indicated with double headed 
arrows. Data files are indicated using cascaded squares. The ‘ADMIN INTERFACE’ accepts meta-data and populates 
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the Meta-data DB. The ‘USER INTERFACE’ provides access to the CRAPome and RePrInt databases and SPrInt and 
PInt pipelines. ‘Analysis pipeline’ generates scored interactions and networks. The ‘CRAPome processing pipeline’, 
developed in Python extracts protein and peptide lists from processed spectral data and populates the ‘CRAPome 
DB’. The ‘RePrInt pipeline’ extracts scored interactions corresponding to RePrInt data sets and populates the 
‘RePrInt DB’. The ‘Analysis pipeline’ interacts with ‘HPC cluster’, i.e. FLUX, and facilitates processing of 
computationally intensive jobs (see ‘System integration’). 
 

4. System integration 

A fire-and-forget approach is used to design the system integration components, between the 
web server and the university wide high performance compute cluster (FLUX) (Figure A-3). An 
NFS mountable disk drive that is visible to both the web server and FLUX serves as a conduit 
between the systems. The web server has an ‘inbox’ (IN) and an ‘outbox’ (OUT) on the conduit. 
A data file that needs to be processed on FLUX is placed in the outbox. A daemon, i.e. a 
program that runs every second, on FLUX monitors the outbox for new input files, picks them 
up and processes the data. The results are placed in the inbox. A daemon on the web server 
monitors the inbox, picks up new results and presents them to the user. 

 

 

Figure A-3: Overview of system integration. 

 

5. Processing user requests (jobs) 

User data is processed using TORQUE, an open source computing resource management 
system. The job execution pipeline is shown in Figure A-4.  The GUI facilitates uploading user 
data, selecting analysis options and submitting a request to process their data (job).  Each 
request is stored in a ‘userJob’ table. A daemon, i.e. a program that runs every one second, 
monitors the table for new requests, and submits the job to TORQUE. The queuing system of 
TORQUE processes user requests one at a time, on a first-come, first-served basis. Processed 
results are stored in a SQLite database (see ‘Design paradigm’ and ‘Software architecture 



84 
 

diagram’). The queue also updates the user job table when a job is completed. The results of 
the completed jobs (data tables and visualization) can be viewed on the GUI. 

 

Figure A-4: Overview of user job execution. 
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Appendix B  
Annotator Manual 

 
1. Overview 

CRAPome and RePrInt are repositories of affinity purification coupled with mass spectrometry 

(AP-MS) experiments. An annotator is usually the contributor of mass spectrometry data.  

Contributors first submit raw mass spectrometry files to the CRAPome/RePrInt administrator.  

The administrator processes the data through X! Tandem/TPP/ABACUS/SPrInt pipeline and 

performs a basic quality check (see Chapters 4, 5). Experiments that pass the quality control 

checks are annotated as follows.  

2. Annotation procedure 

Annotation is a four step process (Figure B-1). First a ‘data set’ entry is created, which captures 

the provenance of the data. Second, an entry for each bait in the data set is created, as needed. 

Third, a protocol is defined using controlled vocabularies. Finally, an experiment entry is 

created for each experiment. The corresponding data set, bait and protocol records are 

associated to each experiment. Each of these steps is illustrated in the following sections. 

 

Figure B-1: Overview of annotation procedure. 
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3. Accessing the system as an annotator 

Annotators are assigned a higher level of privileges than regular registered users.  They can 

create data sets, baits, protocols and link protocols to experiments.  Annotator-level login 

access can be requested by emailing the CRAPome administrator.  The screens that allow an 

annotator to add/edit experiments and protocols is shown (Figure B-2, Figure B-3).  

 

Figure B-2: Experiment view (annotator login) 
 

 

Figure B-3: Protocol view (annotator login) 
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4. Managing controlled vocabularies 

Each experiment is annotated using a pre-defined set of controlled vocabularies(Figure B-4). 

Annotators can only use pre-defined CVs; new CVs are added by the system administrator. 

 

Figure B-4: Controlled vocabularies (annotator login).  
 

5. Adding data sets 

A data set record is intended to capture the data provenance. The screen for adding a dataset is 

shown (Figure B-5 a). Primary information, such as who generated the data and when is 

captured here. 

 

6. Adding baits 

A bait record is intended to capture the full details of the bait protein. Primary information, 

such as the sequence, accession number and gene name are captured (Figure B-5 b). When 

modified baits are used for affinity purification, the reference sequence is indicated in the 

‘Original Sequence’ field. 
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Figure B-5: Adding data sets and baits (annotor login).  

 

7. Adding protocols 

A protocol record is intended to capture the experimental conditions.  Annotators can add/edit 

protocols according to the guidelines shown in Figure B-6. 

 

Figure B-6: Guidelines for adding new protocols (annotator login).  

A protocol description has two parts: A) defining the set of controlled vocabularies, i.e., 

attributes and values (Figure B-7) and B) providing free form text to capture additional details 

(Figure B-8). The system warns the annotator when a protocol is duplicated. 
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Figure B-7: Creating new protocol; part A: define controlled vocabulary (annotator login).   
 

 

Figure B-8: Creating new protocol; part B: adding protocol details (annotator login).  

Add information details pertaining to the biological material (How were the cells grown and harvested? How was 
the recombinant protein expressed? Has a subcellular fractionation been performed?), the affinity purification 
step, the procedure for preparing the peptides (including fractionation at the protein or peptide level when 
applicable), and details of the LC-MS/MS analysis.  If the Method has been published, add citations in the 
“Publication reference” box. 
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8. Adding experiments 

An experiment record primarily captures the file name and associated data set, bait and 

protocol. It is often the case that the system administrator defines the experiment record with 

dummy protocol information, while the annotator ‘edits’ a record to update the annotation 

(Figure B-9, Figure B-10). Data set, bait and protocol records that are defined separately (see 

above) and linked to an experiment (Figure B-11). 

 

Figure B-9: Experiment view (annotator login).  

Clicking on “edit” on the right enable linking a protocol to the experiment.  
 

 

Figure B-10: Editing experiments to associate protocol (annotator login).  

Data entered by the administrator is greyed out.  Select a protocol to link to the experiment. Create new protocols 
as needed, as described above.  
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Figure B-11: Linking protocol to experiments using the ‘Select Protocol’ drop down menu (annotator login).  
 

9. Deleting meta data 

To avoid accidental deletion of data, annotators are restricted to adding and editing meta-data 

that are assigned to their lab. A lab is assigned to the annotator at the time of login generation. 

The status (e.g. newly defined, ready-for-release, obsolete, etc.) of every meta-data (i.e., data 

set, bait, protocol and experiment) is indicated by the annotator. Obsolete records are purged 

by the system administrator periodically. 
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