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ABSTRACT 

 

The ability to reason scientifically about evidence is an important skill for many 

everyday decisions, ranging from whom to choose in the next presidential election to 

whether or not to immunize your child. Evidence for the importance of scientific 

reasoning can be found in continued attempts to improve the teaching of reasoning skills 

within the educational system. However, in order to develop effective strategies for 

reasoning about scientific evidence, it is important to understand lay conceptions about 

what it means for something to be “scientific”. In the present work, I examine the 

influence that reductionist evidence – that is, evidence that comes from micro-level 

processes, such as biological or neurological processes – has on perceptions of scientific 

validity. Across eight experiments, I demonstrate that reductionist evidence tends to be 

viewed as more explanatory and more conclusive than comparable evidence from macro-

level processes, such as psychological processes. Interestingly, the preference for 

reductionist information does not go away with education. In fact, people with greater 

scientific literacy are even more likely to assume that reductionist information is superior 

to macro-level information. I interpret this finding as evidence that the preference for 

reductionist information is not irrational, but instead an expected consequence of 

traditional science curricula. I demonstrate several important implications of reductionist 

preference. For example, this preference increases the likelihood of making causal 

inferences from the results of research studies that suggest micro-level – as opposed to 
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macro-level – mechanisms, and it can decrease the size of the sample one needs to feel 

confident in accepting conclusions from these studies. I relate these findings to current 

pervasive issues in the scientific community, such as publication biases and the 

prevalence of underpowered studies utilizing reductionist approaches. I also discuss 

educational strategies that could encourage holistic thinking about science – specifically, 

emphasizing science as a tool for thinking strategically about everyday phenomena, 

regardless of the level of analysis, rather than a collection of discrete facts obtained by 

the use of technology and equipment.
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 CHAPTER 1

Introduction 

 
Much of the behavioral science that lay readers are exposed to aims to influence 

their behavior in some way (e.g., “Set Goals and You May Just Live Longer”, “The Eyes 

are the Window to Your Potential Soulmate”, “To Work Better, Work Less”), and how 

readers evaluate the science is likely to have a significant influence on the decision they 

make from it. Frequent claims are made without solid scientific justification, and careful 

evaluations of popular science help combat the influence of misleading evidence. Lay 

readers’ everyday scientific reasoning skills, however, are not what they should be – for 

example, a recent Gallup poll revealed that 75% of Americans hold at least one 

pseudoscientific belief (Moore, 2005). Moreover, even if one has the tools to reason 

scientifically, scientific reasoning is an effortful process (Evans, 2003; Schiffrin & 

Schneider, 1977; Sloman, 1996) and the degree to which one employs such skills can be 

influenced by a number of factors, both dispositional and contextual (Cacioppo & Petty, 

1982; Frederick, 2005; Lord, Ross, Lepper, 1979; Stanovich & West, 1997). Given the 

large influx of research reports that grace news feeds on a daily basis, many making 

claims that aim to change people’s behavior or beliefs in some way, it is important to 

understand the assumptions people hold about the kinds of evidence that confer scientific 

legitimacy. In the context of research evaluation, the present work examines how 

contextual factors – specifically, the level of analysis at which the evidence or 
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explanation is reported – and individual differences affect judgments of perceived 

scientific validity and explanation quality.  

Everyday Scientific Reasoning 

 Research has examined the influence of several dispositional factors on everyday 

scientific reasoning, such as the ability to coordinate theory and evidence (Kuhn, 2001), 

the ability to reason independently of prior beliefs, (Stanovich & West, 1997), and the 

ability to apply statistical reasoning to everyday situations (Nisbett, Fong, Lehman, & 

Cheng, 1987). Given that most people encounter scientific information online in the 

context of media reports, recent work has also examined how various features of 

scientific reports influence readers’ evaluations of scientific quality. For example, 

research has found that the inclusion of scholarly references, use of the passive voice, and 

the presence of a methods section makes a report seem more scientific (Thomm & 

Bromme, 2012). More specifically, some work has found that the type of methods 

reported can influence evaluations of the research. For example, research has suggested 

that the presence of neuroscience can make a scientific explanation seem better and the 

presence of a mathematical equation can make a research study seem higher in quality 

(Eriksson, 2012; Weisberg, Keil, Goodstein, Rawson, and Gray, 2008). These findings 

raise the possibility that the evidential level of analysis is an important factor to which 

people attend. It is possible that people may inherently value reductionist evidence more 

so than evidence from a higher level of analysis. Although some research suggests this 

may be the case, a more thorough examination is needed. Furthermore, if it is the case 

that people value micro-level information more than macro-level information, it is 

important to know whether this preference is driven by superficial cues and cognitive 
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laziness or a deliberate conclusion that micro-level information is superior. 

Distinguishing between these possibilities could inform mitigation strategies. In this 

dissertation, I aimed to gain insight into people’s assumptions about micro- and macro-

level information and examine how individual differences interact with evidential level of 

analysis to influence scientific reasoning. 

Levels of Analysis 

One assumption people may have is that evidence that results from a micro-level 

process, such as a biological or neurological process, as opposed to a macro-level 

process, such as a psychological process, confers more legitimacy to a phenomenon. 

People typically have little direct experience with micro-level processes, and processes at 

this level often require formal training to fully understand. In contrast, people have 

extensive experience with macro-level processes such as physical and mental states, so 

much so that they often develop their own theories about how these processes work (e.g., 

Olson & Bruner, 1996). The validity of an explanation or piece of evidence does not 

necessarily depend on its level of analysis. However, the public fascination with 

neuroscience and genetics, and the tendency to use evidence from these fields to 

legitimize certain phenomena (O’Connor, Rees, & Joffe, 2012; Racine, Bar-Ilan, & Illes, 

2005), suggests that micro-level evidence may be perceived as fundamentally superior to 

macro-level evidence. Such an assumption could pose challenges to everyday scientific 

reasoning. For example, consumers could be duped by pseudoscientific claims that 

appeal to micro-level processes to boost their perceived legitimacy. Currently there are a 

number of “brain-training” programs aimed at improving cognitive function. In their 

advertising, some of these programs claim to be based on neuroscience – an example of 



	
  

	
   4	
  

utilizing micro-level processes to legitimize the program. However, evidence that such 

programs accomplish what they claim to is mixed, so the use of neuroscience as a 

marketing tool in this instance is potentially misleading (Chancellor & Chatterjee, 2011). 

Whether the suggestion of a micro-level basis improves the perceived validity of these 

claims is an important research question to address. 

Causal Reasoning and Explanation 

Judgments of scientific validity involve making causal attributions for a set of 

factors and a target effect; therefore, before one can address the effect of reductionist 

information on perceptions of scientific validity and explanation quality, it is important to 

understand why reductionist information could affect causal reasoning in the first place. 

One reason is that moving the level of analysis from the macro- to the micro-level could 

appear to uncover the causal pathways that give rise to a phenomenon. In other words, 

people may believe that micro-level evidence or explanations provide more information 

about mechanism than do macro-level evidence/explanations. People pay great attention 

to mechanism when making causal attributions (Newsome, 2003). For example, when 

people must identify which of several factors caused an effect, researchers have found 

that people’s decisions rely more on the mechanistic relationship of each factor to the 

target effect than the degree of covariation between each factor and the target effect 

(Ahn, Kalish, Medin, & Gelman, 1995). Further evidence for the importance of 

mechanism can be seen in a series of juror decision making studies in which verdicts (a 

causal judgment) depend on how well the evidence fits into a coherent story (Pennington 

& Hastie, 1986, 1992). When given evidence about a hypothesized factor and a target 

effect, people have a natural tendency to construct a coherent story about how that factor 
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could have elicited the effect (Ahn & Bailenson, 1996). Although the importance of 

mechanism for causal inference is well established, it is unclear whether the level of 

analysis at which the mechanism takes place influences the perceived validity of the 

phenomenon at hand. Thus, an important question addressed in this dissertation is 

whether people are more likely to believe in a phenomenon when they are given a micro-

level, as opposed to a macro-level, mechanism.  

Studies examining genetic attributions and stereotype endorsement provide some 

evidence that micro-level information may be more likely to elicit causal judgments than 

macro-level information. Genetic evidence is often used as an explanation for group 

differences – such as gender and racial differences – on a number of human attributes. 

The causes of these group differences likely involve a number of interacting factors, both 

sociocultural (macro-level) and genetic (micro-level). Several research studies have 

demonstrated that people are more likely to endorse group stereotypes if they read a 

genetic explanation for group differences (Bastian & Haslam, 2006; Brescoll & 

LaFrance, 2004; Keller, 2005). In other words, people are more likely to make the 

inference that belonging to a certain group causes a particular outcome if the suggested 

mechanistic pathway is genetic. 

If micro-level mechanisms are perceived as being of higher quality or more valid 

than macro-level mechanisms, it is reasonable to assume that micro-level information 

could improve the quality of a scientific explanation. Indeed, Weisberg et al. (2008) 

found that the presence of micro-level information – in this case, neuroscience details – 

significantly improved the perceived quality of explanations for psychological 

phenomena. In their study, Weisberg and colleagues presented participants with 
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descriptions of 18 psychological phenomena and an accompanying explanation. They 

manipulated whether the quality of the explanation was bad (circular) or good and also 

whether the explanation involved irrelevant neuroscience information or not. 

Interestingly, irrelevant neuroscience information had the largest effect on bad 

explanations. Given the importance of mechanism in understanding causation, one reason 

for this dissociation may lie in the relative contribution the neuroscience information 

made to the causal structure of the explanation. More specifically, the good explanations 

already identified a causal – albeit behavioral – mechanism, so the inclusion of 

neuroscience information made less of a contribution for these explanations than it did 

for the bad explanations, which did not identify a causal mechanism at all.  

Whether neuroscience or other micro-level information also improves the 

perceived validity of a phenomenon has yet to be addressed in the literature. There are 

important differences between judging explanation quality and scientific validity. 

Explanation quality is a retrospective judgment that could be primarily driven by whether 

a mechanism was identified; it is possible that the level of analysis of the mechanism 

(micro vs. macro) may not matter as much as whether a mechanism was identified at all. 

The findings in Weisberg et al. (2008) could be explained by this hypothesis, and the 

present work tests this hypothesis directly. Perceived validity, however, is a prospective 

judgment similar to causal attribution but in a slightly stronger form. Validity implies that 

causation is not due to error but is a true reflection of the real world. The degree to which 

neuroscience information, or other micro-level information, affects perceptions of 

scientific validity is important because these perceptions have significant implications for 

everyday decision-making.  
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The Gap Between Perceived and Real Understanding 

Although people might believe that micro-level mechanisms result in better 

explanation quality, the reality is that most people do not understand micro-level 

pathways; therefore, it is unlikely that the perception of explanatory depth translates to 

real understanding of causation for the lay consumer. For example, most people acquire 

their knowledge about genetics from the popular media (Dar-Nimrod & Heine, 2011), so 

they are unlikely to have a real understanding of the suggested genetic mechanisms 

underlying group differences. Thus, the assumption that micro-level information 

improves explanation quality creates fertile ground for being influenced by 

pseudoscientific jargon. 

Although people are unlikely to fully understand micro-level mechanisms, their 

perceived understanding could still be high. Support for this assertion comes from 

Rozenblit and Keil (2002), who demonstrated an illusion of explanatory depth. Rozenblit 

and Keil (2002) found that people initially overestimate their knowledge of how devices 

work, and only after being forced to delineate the step-by-step mechanism do their 

estimates decrease and become more accurate indicators of their level of knowledge. The 

literatures on overconfidence (Dunning, Griffin, Milojkovic, & Ross, 1990; Fischhoff, 

Slovic, & Lichtenstein, 1977) and the feeling of knowing (Koriat, 1993) provide 

additional examples of this dissociation between real and perceived performance. As 

suggested by the findings from Weisberg et al. (2008), it is possible that the level of 

analysis of an explanation could influence perceived understanding of a phenomenon, 

even if it does not increase real understanding. Furthermore, if readers think they have a 
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mechanistic understanding of a phenomenon, they might be likely to believe the 

phenomenon is valid, as well. 

Neuroscience Information 

One type of reductionist information the current work focuses on is neuroscience 

information. A few studies have looked at the effect of neuroscience information on 

scientific reasoning, but there are a number of unanswered questions. As previously 

discussed, Weisberg and colleagues demonstrated that irrelevant neuroscience 

information can make bad explanations of psychological phenomena seem better. 

Michael, Newman, Vuorre, Cumming, & Garry (2013) recently ran a series of five 

replications of this study and estimated the effect size of neuroscience information to be 

0.40, 95% CI [0.23, 0.57]. Another type of study has focused on the effect of brain 

images, rather than neuroscience text (McCabe & Castel, 2008). McCabe and Castel had 

their participants read three fictional articles about brain imaging studies (accompanied 

by a brain image, a bar graph, or nothing else) and asked them to rate the writing quality, 

the aptness of the article’s title, and the scientific reasoning in the article. The presence of 

a brain image improved ratings of writing quality and scientific reasoning. More recent 

studies, however, have been unable to replicate these findings (Gruber & Dickerson, 

2012; Hook & Farah, 2013; Michael et al., 2013). Hook and Farah (2013) found no main 

effect of brain images on research evaluations but predicted that the influence of brain 

images could be moderated by dualistic beliefs – specifically, people who think of the 

mind and brain as separate entities may be the ones who are fascinated to see evidence 

that the brain is involved in complex cognitive and emotional phenomena. However, they 

found that dualistic beliefs did not predict the effect of brain images on research 
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evaluations. Furthermore, a recent meta-analysis comprising the original data from 

McCabe and Castel (2008), as well as data from 10 replications which used a mixture of 

media (online vs. paper), subject pools (Mechanical Turk, undergraduates, high school 

students, general public) and compensation strategies ($0.30, $0.50, course credit, movie 

voucher, no compensation), found that brain images exerted little to no influence on 

credibility (Michael et al., 2013).  

While the previous set of findings may seem contradictory, an important 

difference between the Weisberg et al. (2008) studies and the brain image studies is that 

the brain image studies were primarily testing the effect of adding a brain image to an 

article that already contained neuroscience language, whereas the Weisberg et al. (2008) 

studies were testing the effect of adding neuroscience language to an explanation of a 

behavioral phenomenon. The null effects of brain images may simply indicate that they 

do not provide additional value beyond that provided by neuroscience language. 

Importantly, the explanations that were most affected by neuroscience in the Weisberg et 

al. (2008) studies were those which did not identify a causal mechanism but simply 

explained the phenomenon by restating the results. Thus, it is unclear whether macro-

level information would elicit similar effects if it could be construed as a causal 

mechanism. The relative influence of neuroscience or other micro-level evidence 

compared to evidence from a macro-level process has yet to be investigated.  

Another shortcoming in previous studies examining the influence of neuroscience 

information is that they did not control for several important factors that are likely to 

affect research evaluations. As Table 1.1 illustrates, the outcome variables of the fictional 

research studies and the ways in which neuroscience information was integrated into the 
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fictional research studies have been inconsistent across studies, which could contribute to 

the mixed findings. One goal of this dissertation was to systematically manipulate these 

features of the research study and examine whether they moderate the influence of 

neuroscience and other micro-level information. Finally, another important factor that has 

been neglected in several previous research studies is the role of individual differences. 

Although some studies have examined the roles of dualistic beliefs (Hook & Farah, 2013) 

and analytical thinking (Fernandez-Duque, Evans, Colton, & Hodges, in press) in 

predicting susceptibility to neuroscience information – and failed to find significant 

relationships – a broader examination is needed. 

 

Table 1.1  
Stimulus Features in Previous Neuroscience Studies 

 

Individual Differences in Reasoning 

 Although previous studies suggest that micro-level information might be 

perceived more favorably than macro-level information, the influence of micro-level 

information on any one individual is likely moderated by a number of factors. This 

Paper Type of Integration Outcome Variable Subjects

Weisberg et al. (2008) Explanation 16 cognitive, 2 non-
cognitive Human Neuroscience text vs. no additional text Quality of 

explanations

McCabe & Castel (2008) Evidence & 
Explanation Cognitive Human

Brain image vs. bar graph vs. text; brain 
image vs. topographical maps; Brain 

image vs. text

Credibility & 
reasoning

Gruber & Dickerson (2008) Evidence Pseudo-cognitive Human No image vs. several different types of 
images, including brain

Credibility & 
reasoning

Hook & Farah (2013) Evidence 2 cognitive, 4 non-
cognitive Human Brain image vs. bar graph vs. control 

photo
Credibility & 

reasoning

Diekmann et al. (in press) Evidence Non-cognitive Human Neuroscience text vs. no additional text Interestingness

Fernandez-Duque et al. (2014) Explanation

16 cognitive, 2 non-
cognitive (used stimuli 
from Weisberg, et al. 

(2008)

Human

Brain image + neuroscience text vs. 
neuroscience text only vs. no additional 

text ; neuroscience text vs. social science 
text vs. no additional text; neuroscience 

text vs. hard science text vs. social science 
text

Quality of 
explanations

Features of Fictional Research study
Comparison of Interest Outcome Variable(s) 

of Interest
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section reviews four important factors that contribute to individual differences in 

reasoning: prior beliefs, flexibility in thinking, Type 2 processing, knowledge, and 

essentialist beliefs. The experiments that follow investigate the influence of each of these 

factors on preferences for micro-level information. 

Prior Beliefs 

Much research has shown that personal theories or prior beliefs can influence 

one’s depth of reasoning. Lord, Ross, and Lepper (1979) recruited participants who were 

either proponents or opponents of capital punishment, a polarizing issue. Participants 

read a description of a research study that was either supportive (found a decrease in 

murder rates) or not supportive (found an increase in murder rates) of capital punishment. 

One of the key findings Lord, Ross, and Lepper found was that participants were more 

convinced by the research study that was congruent with their prior attitudes. Similarly, 

Klaczynski and Narasimham (1998) found that people used sophisticated thinking 

strategies to disconfirm evidence that contradicted their religious beliefs. Findings such 

as these have been interpreted as theory-motivated reasoning, which means that people 

evaluate evidence in a way that upholds their prior theories of the world (Klaczynski, 

2000). Specifically, people who disagree with a claim tend to be more critical of it and 

engage analytical processes, and people who agree with a claim are less likely to be 

critical of it and more likely to process it heuristically. Motivated reasoning is common in 

everyday reasoning situations, so it is conceivable that prior beliefs and/or experiences 

relating to a research article’s claim could affect whether people evaluate the information 

analytically or heuristically. As a result, the type of reasoning an individual uses could 

affect his/her susceptibility to reductionist information. In the experiments that follow, 
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participants were typically asked to indicate their beliefs about the claim(s) being made in 

the research article prior to reading it. 

Cognitive Flexibility 

Although prior beliefs tend to affect the depth of reasoning one will use to 

evaluate evidence, they do not affect everyone. Some individuals are skilled at reasoning 

in a more objective way, independent of their own personal beliefs. The tendency to do 

this can be measured by the Actively Open-Minded Thinking Scale (AOT; Stanovich & 

West, 1997). This 41-item scale asks about people’s ability to think flexibly and be open 

to new information, regardless of what they personally believe. A high score on the AOT 

scale reflects more sophisticated thinking dispositions; specifically, it indicates a 

motivation to have accurate beliefs, even if that means changing one’s current beliefs. 

Although AOT performance is correlated with cognitive ability, the two constructs are 

separable. Performance on the AOT predicts data-driven thinking during argument 

evaluation tasks, even after partialling out the variance associated with cognitive ability 

(Stanovich & West, 1997). Given that people who score highly on the AOT scale are 

more likely to reason in a data-driven, as opposed to a belief-driven way (Stanovich & 

West, 1997), it is possible that these people might be less influenced by reductionist 

information. 

Type 2 Processing 

The Cognitive Reflection Test (CRT; Frederick, 2005) is a widely used measure 

of one’s ability to suppress an intuitive response, resulting from heuristic processing, in 

favor of a more deliberate response. This test consists of three items that tend to elicit 

automatic, but incorrect, answers. The correct answer requires more thinking than it 
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initially seems. The CRT is correlated both with cognitive ability (Frederick, 2005; 

Toplak, West, & Stanovich, 2011) and rational thinking measures such as syllogism 

problems with belief bias (Toplak, West, & Stanovich, 2011). CRT performance also 

predicts performance on many heuristics and biases tasks (Cokely & Kelley, 2009; 

Frederick, 2005; Toplak, West, & Stanovich, 2011). Importantly, Toplak and colleagues 

found that the CRT predicts rational thinking and performance on heuristics and biases 

tasks after partialling out the variance associated with assessments of intelligence, 

thinking dispositions, executive functions, and cognitive skills. Thus, people who score 

highly on the CRT can be categorized as people who are more likely to engage in 

rational, analytic thinking. If reductionist information is processed heuristically, it is 

possible that people who score highly on the CRT would be less influenced by 

reductionist information. 

Knowledge 

Education and knowledge are important indicators of reasoning ability. Previous 

research suggests that domain-relevant knowledge might inoculate one against the 

influence of neuroscience. Weisberg et al. (2008) administered their stimuli to an expert 

population, defined as individuals who had completed an advanced degree in cognitive 

psychology or a related field, and found that they were not influenced by irrelevant 

neuroscience information. It is possible that people who have higher methodological 

and/or scientific knowledge may base their evaluations more on the research 

methodology and less on the extraneous information suggesting micro- or macro-level 

processes. If so, these individuals may be less influenced by micro-level information. The 

stimuli used in the current work mostly involved research findings, so I expected that 
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individuals’ knowledge of science and methodological principles would be an important 

predictor of their ability to reason about the evidence. The present work examined the 

influence of several different types of knowledge: methodological knowledge, as 

indicated by familiarity with principles such as random assignment, selection bias, and 

sample size; brain knowledge, as indicated by basic neuroanatomy questions from 

introductory psychology textbooks; and scientific knowledge, as indicated by knowledge 

about basic biology and physics. 

Essentialist Beliefs 

Research suggests that some people believe human attributes result from 

inalterable underlying essences (Gelman, 2003). For example, someone with strong 

essentialist beliefs might be more likely to believe that gender differences on a variety of 

domains are due to biological, rather than social, causes. Essentialist beliefs have been 

found with regard to a variety of human attributes, including social categories (Dar-

Nimrod & Heine, 2011; Mahalingam, 2003) and personality (Halsam, Bastian, & Bissett, 

2004). Bastian and Haslam (2006) developed an 18-item Biological Essentialism Scale 

which assesses the extent to which participants hold essentialist beliefs. More 

specifically, the scale measures the extent to which a person believes that human traits 

are determined biologically, that traits are discrete, and that traits can be determined 

quickly. People who have strong essentialist beliefs may also be more likely to reduce 

complex human attributes to a reductionist cause. If so, it is conceivable that people with 

strong essentialist beliefs would show stronger preferences for micro-level information.  
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Processes Underlying the Neuroscience Effect 

 Some research studies have tried to examine the processes underlying the 

neuroscience effect. Weisberg et al. (2008) suggested that neuroscience could act as a 

seductive detail, distracting people from paying attention to other methodological details 

present in the study, but this possibility has yet to be tested empirically. Another 

possibility could be that people simply prefer language that sounds technical, but extant 

research suggests that this is not the case. Fernandez-Duque et al. (in press) gave people 

the descriptions of the same phenomena used in Weisberg et al. (2008) and had them read 

explanations based on social science, neuroscience, or another hard science. The hard 

science information was essentially technical jargon and did not clearly relate to the 

psychological phenomenon being studied, whereas the neuroscience information was also 

technical but was arguably related to the psychological phenomenon in a more 

straightforward way. Fernandez-Duque and colleagues found that neuroscience 

explanations were still more satisfying than hard science explanations, suggesting that 

technical language is not enough to elicit the effect. Instead, another factor may be at play 

– people may believe that the brain is the best explanation for mental phenomena. Hook 

and Farah (2008) ruled out the possibility that dualistic beliefs moderate the neuroscience 

effect, and Fernandez-Duque et al. (in press) found that analytical thinking did not protect 

against the neuroscience effect.  

 Through an in-depth look at individual differences and systematic manipulations 

of the features of the fictional research studies, this work sheds light on the processes 

underlying the preference for micro-level information. Specifically, I provide insight into 

whether the influence of micro-level information is due to heuristic thinking or 
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deliberative strategies. For example, Experiments 2.1 through 3.2 (Chapters 2 and 3) 

directly assessed whether neuroscience information acts as a seductive detail. If so, this 

might suggest that the influence of neuroscience is due to an attentional bias. 

Experiments 2.1 through 3.2 (Chapters 2 and 3) also investigated the relationship 

between micro-level preferences and sophisticated thinking dispositions, as measured by 

the CRT and AOT scales. If people who have less sophisticated thinking dispositions are 

the ones who are more influenced by micro-level information, this might suggest that it is 

a result of a heuristic reasoning process; in contrast, if people who have more 

sophisticated thinking dispositions are more influenced by micro-level information, this 

might suggest that the valuation of micro-level information is the result of a deliberative 

strategy. Similarly, Experiments 2.1 through 4.2 (Chapters 2, 3, and 4) examined the 

influence of various types of knowledge: methodological knowledge, brain knowledge, 

and scientific literacy. If knowledge acts as an inoculation, this might again suggest that 

the preference is due to a heuristic reasoning process, whereas if knowledge is associated 

with greater micro-level preference, this suggests a more deliberative process. Finally, 

Experiments 2.1 through 3.4 (Chapters 2 and 3) examined the role of prior beliefs and 

prior behavior. Given that people are more likely to be critical of information that they do 

not already believe in, and less critical of information that they do believe in, assessing 

the influence of prior beliefs on micro-level preference will provide further insight into 

how micro-level information affects scientific reasoning.   

 Understanding whether the appeal of micro-level information is due to heuristic 

or deliberative processes is important for several reasons. If the preference is due to a 

heuristic process, this might suggest that the preference depends heavily on the context 
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and, in situations where one is at risk for committing a bias, one can take efforts to adopt 

a more deliberative mindset and evaluate the evidence more objectively. Indeed, many 

strategies exist for mitigating other cognitive biases, and strategies could likely be 

developed for overcoming the influence of alluring micro-level information. It might also 

be the case that individual differences in rational thinking abilities, such as AOT and 

CRT performance, can mitigate the influence of micro-level information. If, however, the 

preference for micro-level information is due to a deliberative process, it suggests that 

this effect is due not to cognitive laziness but beliefs about the validity of evidence that 

comes from different scientific fields. If this is the case, it could be challenging to 

mitigate the influence of micro-level information when it is not an appropriate criterion to 

use for judging scientific validity. 

Research Questions 

 In this work, I addressed several research questions. Experiments 2.1 through 3.2 

(Chapters 2 and 3) examined the influence of neuroscience information compared to 

irrelevant information or psychology information on perceptions of mechanistic 

understanding and scientific validity. These studies also investigated the interplay of prior 

beliefs, AOT, CRT, and methodological knowledge. Experiment 3.3 (Chapter 3) 

examined the influence of neuroscience information on mechanistic understanding and 

scientific validity compared to other technical, but not brain-based information, and also 

examined the role of scientific literacy. Experiment 3.4 (Chapter 3) examined whether the 

influence of neuroscience information on perceived mechanistic understanding and 

scientific validity is limited to phenomena that are explicitly cognitive in nature. 

Experiment 4.1 (Chapter 4) examined the extent to which individuals prefer micro-level 
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information across a variety of research scenarios, and whether the way in which the 

micro-level information is integrated into the research study influences ratings of 

perceived quality and understanding. Finally, Experiment 4.2 (Chapter 4) investigated the 

implications of micro-level preferences by examining whether they decrease the number 

of subjects one needs in a research study to be sufficiently confident in its conclusion.     
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 CHAPTER 2

Explaining the Alluring Influence of Neuroscience Information on Scientific 

Reasoning 

 

Introduction 

The New York Times recently featured an article arguing that people are not 

merely addicted to their iPhones, but actually feel love for them in the same way they feel 

love for a significant other (Lindstrom, 2011). This conclusion was based on an fMRI 

experiment that found similar levels of insular cortex activity when individuals thought 

about their significant others and when they thought about their iPhones. Explaining 

behavior by citing data from neuroscience has become a common trend in the media. The 

degree to which neuroscience evidence is particularly alluring has been a hot topic in 

research on scientific reasoning. Specifically, some work has suggested that providing 

neuroimaging data or irrelevant neuroscience explanations makes readers more likely to 

believe, and be less critical of, scientific information (McCabe & Castel, 2008; Weisberg, 

Keil, Goodstein, Rawson, & Gray, 2008). Thus, one of the potential consequences of 

highlighting neuroscience information is that it may persuade individuals to believe a 

claim to be more valid than what the evidence actually implies.  

Although some recent studies have found that neuroscience information or images 

affect readers’ evaluations of scientific studies, others have not found neuroscience to 

have a significant impact (Farah & Hook, 2013; Green & Cahill, 2012; McCabe & 
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Castel, 2008; Weisberg et al., 2008). For example, although one experiment found 

significant effects of brain images on judgments of reasoning (McCabe & Castel, 2008), 

another found brain images to be no more influential than other types of images (Gruber 

& Dickerson, 2012). One possible reason for this discrepancy is that individual factors 

may influence how, or even whether, neuroscience information affects judgments. For 

instance, previous research on reasoning finds that individuals’ prior beliefs predict the 

tendency to engage in belief-biased reasoning. In situations where the presented evidence 

is incongruent with one’s prior beliefs, individuals may be more motivated to be critical 

and, therefore, less susceptible to the influence of neuroscience. Additional factors like 

scientific knowledge and thinking dispositions are also related to how individuals reason 

about claims, and those with more knowledge and sophisticated thinking styles may be 

less influenced by the presence of neuroscience information. In this experiment, we shed 

light on inconsistencies in the literature by exploring how the influence of neuroscience 

information may be moderated by individuals’ prior beliefs and their dispositions towards 

critical thinking.  

The Influence of Neuroscience Information on Reasoning 

 Several recent studies have suggested that neuroscience information can influence 

the way people evaluate scientific evidence. Weisberg et al. (2008) found that including 

an irrelevant sentence that contained neuroscience information made individuals evaluate 

poor explanations more favorably. Similarly, McCabe & Castel (2008) found that 

pictures of brain activations, compared to bar graphs or topographical brain maps, 

presented with a news article made individuals give higher ratings of the article’s 

scientific reasoning quality. Similar findings have been found in practical contexts, such 
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as jury decision-making (Green & Cahill, 2012). However, more recent studies have only 

found trivial effects of neuroscience (Hook & Farah, 2013; Michael, Newman, Vuorre, 

Cumming, & Garry, 2013).  

Several explanations have been offered for the potential effect of neuroscience. 

One possibility offered by Weisberg et al. (2008) is that neuroscience information acts as 

a seductive detail. Literature on seductive details reveals that text that is considered 

fascinating but irrelevant can actually impair one’s ability to encode the important details 

of instructional material (Harp & Mayer, 1998; Rey, 2012). People tend to view 

neuroscience with fascination (Tallis, 2012) and, if it acts as a seductive detail, it is 

possible that neuroscience may distract people from paying due attention to other 

important details of a research study. Alternatively, another explanation may be that 

people prefer a reductionist explanation of complex phenomena (Keil, 2006; McCabe & 

Castel, 2008; Weisberg et al., 2008). For example, Keil (2006, p. 242) discusses an 

“illusion of explanatory depth” in which people can be misled into thinking they 

understand how complex systems work when they can visualize parts of that system. In 

other words, the concrete nature of neuroscience explanations may lead to a false sense of 

clarity and understanding, heightening its perceived value. To clarify the mechanism by 

which neuroscience information influences the evaluation of scientific evidence, the 

present studies test the possibility that irrelevant neuroscience information impairs the 

recognition of flawed evidence and/or increases perceived understanding of a 

phenomenon. 
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Prior Beliefs and Reasoning 

 Prior beliefs have a robust influence on our tendency to be critical of new 

information. Lord, Ross, & Lepper (1979) showed that, when giving participants the 

same data summaries from empirical studies, those who were initially in favor of the 

claim rated the study as more convincing evidence than those who disagreed with the 

claim. Other research has found similar effects; for example, people who receive 

preference-inconsistent information are more likely to give sophisticated and skeptical 

responses than those who receive preference-consistent information (Ditto & Lopez, 

1992), and people are more likely to use statistical principles such as base rates and the 

law of large numbers when the attainment of a desired solution requires that they do so 

(Ginossar & Trope, 1987; Sanitioso & Kunda, 1991). Dual process explanations suggest 

that belief-biased reasoning results from activation of the heuristic system when evidence 

is congruent with personal beliefs and the analytic system when evidence is incongruent 

(Evans, 2003; Klaczysnki, 2000; Kunda, 1990;). As such, people with congruent beliefs 

might be especially likely to use neuroscience information (even if irrelevant), as 

additional evidence to support their point of view, without considering whether that 

evidence actually improves the claim. Additionally, given that individuals are more likely 

to be critical of claims they do not agree with, it is possible that holding incongruent prior 

beliefs inoculates one against any potential influence of neuroscience. Although prior 

beliefs share an important relationship with reasoning, they have been largely ignored in 

studies looking at the influence of neuroscience information. 
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Thinking Dispositions and Reasoning 

 Another factor relevant to understanding how neuroscience information 

influences reasoning is individual thinking dispositions. Individuals differ in their ability 

to be flexible in their thinking and consider evidence that contradicts their beliefs. For 

example, research suggests that individuals high in actively open-minded thinking are 

less susceptible to being influenced by their prior beliefs (Stanovich & West, 1997). 

Additionally, individuals differ in their ability to override automatic responses and 

engage in deliberative processing and this ability predicts performance on numerous 

classic heuristics and biases tasks (Toplak, West, & Stanovich, 2011). Both of these 

thinking dispositions are related to reasoning abilities and may influence the extent to 

which individuals are affected by neuroscience information and prior beliefs. 

Overview 

We conducted two experiments to examine the influence of irrelevant 

neuroscience information on lay reasoning in the context of public news reports about a 

scientific finding. Experiment 2.1 assessed the influence of neuroscience information on 

news article evaluations among participants who already had prior beliefs (either 

congruent or incongruent) about the claim, controlling for individual differences in 

thinking dispositions and knowledge. Experiment 2.2 controlled for the number of words 

in the news article and measured evaluations for individuals with congruent, incongruent, 

and neutral prior beliefs. To address potential processes by which irrelevant neuroscience 

information affects evaluations, Experiment 2.2 tested whether neuroscience distracts 

people from attending to important details, increases one’s feeling of understanding, or 

both.  
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Experiment 2.1 

The goal of Experiment 2.1 was to examine the influence of neuroscience 

information on scientific reasoning after controlling for other variables that affect 

everyday reasoning. We predicted that prior beliefs (congruent/incongruent with the 

claim), knowledge of methodological principles, and thinking dispositions (e.g., the 

ability to think flexibly and the ability to override prepotent responses) would predict 

how favorably participants evaluate the evidence (Klaczynski, 2000; Stanovich & West, 

1997; Toplak, West, & Stanovich, 2011), and that more consistent effects of neuroscience 

information would emerge after accounting for the unique variance associated with these 

factors.  

Method 

Participants 

 The experiment was conducted online through Amazon’s Mechanical Turk, a 

crowdsourcing system in which thousands of users can complete tasks for monetary 

compensation and that has been shown to yield high-quality data (Buhrmester, Kwang, & 

Gosling, 2011). Participants were 201 adults (110 females; median age = 30; range = 18-

72) from the U.S. Participants were told that they would spend 10-15 minutes reading a 

brief news clipping and answering some questions. Participants were then given a URL 

that randomly assigned them to the neuroscience (n = 103) or control (n = 98) condition. 

Five participants were removed for indicating that they spent little effort on the tasks in 

the experiment. Approximately half of the participants (n = 100 and 110, respectively) 

had earned a four-year college degree and reported having taken a statistics class at some 

point in their education. Additionally, the majority of participants (n = 158, 176, and 183, 
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respectively) reported being at least somewhat familiar with the principles of the 

scientific method and the importance of random samples and the law of large numbers. 

Participants were compensated $0.80. 

Materials and Procedure 

 We constructed a news-like article that introduced a type of claim often 

encountered in media reports of scientific studies. The article claimed that listening to 

music while studying was beneficial for learning and provided evidence to support that 

claim. Similar to Klaczysnki (2000), the evidence consisted of a study with a significant 

sampling error: the participants in the fictitious study self-selected themselves into the 

two conditions, creating a clear selection bias (see Figure 2.1.1).  

 

Figure 2.1.1. Research study description seen by all participants. 

Should you listen to music while studying?
By Sam Katz, science writer
Updated 8:20 AM EST, November 3, 2011

         Many people think listening to music is 
         beneficial, and researchers have become 
         interested in whether listening to music 
         actually helps students’ ability to pay 
         attention and learn information. A recent 
         study was conducted in a typical college 
         classroom. The professor asked for 
volunteers to be a part of a music listening group. This group would be 
required to listen to music while studying or attending lecture throughout 
the semester; they would be encouraged to listen to as much music as 
much as possible. Seventy five percent of the class volunteered to be in 
this group. The rest of the class was required to avoid listening to any kind 
of music while studying. At the end of the semester, the members of the 
music listening group consistently had higher exam scores for each of the 
three exams than the members of the non-music listening group. These 
results suggest that music listening actually helps one’s ability to study 
and, thus, has a positive impact on learning. 
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Participants in both conditions read the research study description. Similar to the 

approach used by Weisberg et al. (2008), the neuroscience condition saw the research 

study description preceded by the following two sentences that contained neuroscience 

jargon but did not provide any clear explanation for the effect described in the research 

study: 

Years of neuroscience research have made it clear that listening to music 
is associated with distinct neural processes. Functional MRI scans reveal 
that listening to music engages cortical areas involved in music and 
sound perception, and this activation is thought to be present even while 
doing other tasks, such as studying or learning new information. 
 

Prior beliefs measure. Before reading the article, participants were first screened 

about their prior beliefs about the claim and were asked to choose one from the following 

list: a) listening to music has a negative impact on studying/learning; b) listening to music 

has no impact on studying/learning; c) listening to music has a positive impact on 

studying/learning; d) I have no expectation about the relationship between listening to 

music and studying/learning. Participants who chose option (a) or (b) were classified as 

having incongruent prior beliefs (n = 98) and those who chose (c) were classified as 

having congruent prior beliefs (n = 98). Participants who chose option (d) were not 

eligible for the study (n = 85). Prior beliefs were coded such that a higher score indicated 

congruent prior beliefs. 

Evaluation measures. After reading the article, participants rated the quality of 

the article (1 = Very poor, 5 = Very good), the quality of the research study (1 = Very 

poor, 5 = Very good), and how convincing the article was as evidence of the claim (1 = 

Completely unconvincing, 7 = Completely convincing). Participants were also asked to 

justify their convincingness ratings in their own words. The first author (blind to 
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condition) and an independent rater (blind to both condition and hypotheses) coded 

whether these open-ended justifications mentioned the methodological flaw. Inter-rater 

agreement was good (Kappa = .73, p < .001). 

Thinking disposition measures. After reading the article, participants completed 

the 41-item Actively Open-Minded Thinking (AOT) scale (Stanovich & West, 1997) and 

the three-item Cognitive Reflection Test (CRT; Frederick, 2005). High scores on the 

AOT scale indicate more flexible and open-minded thinking dispositions, and high scores 

on the CRT reflect an ability to engage in deliberative over automatic processing.  

Knowledge measure. Finally, participants completed the following series of 

questions measuring overall knowledge and familiarity with scientific reasoning 

principles: 1) Are you familiar with the general principles of the scientific method? (1 = 

Not at all familiar, 5 = Very familiar); 2) What is the highest grade or year of school you 

completed? (1 = Elementary school only, 9 = Advanced graduate work or Ph.D); 3) Are 

you familiar with the idea that, for the purpose of research, one must have a large enough 

sample size to draw generalizations about the results? (1 = Not at all familiar, 5 = Very 

familiar); 4) Are you familiar with the idea that, for the purpose of research, one must 

select a random sample of participants from the population of interest? (1 = Not at all 

familiar, 5 = Very familiar). To create an overall knowledge score, scientific method, 

sample size, random sample, and education variables were all converted to z-scores and 

the average was computed. 

Results 

 Overall, participants were poor at identifying the methodological flaw, regardless 

of whether neuroscience information was present. Forty participants (20.4%) mentioned 
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the methodological flaw when explaining their ratings of convincingness, and this 

percentage did not differ significantly between the neuroscience and control conditions 

(17.8% vs. 23.1%, respectively, Χ2(1, N = 196) = 0.56, p = .4). Group means for the three 

evaluation measures can be seen in Table 2.1.1. 

 

Table 2.1.1 
Group Means for Evaluation Measures 

Condition n Quality of Study 
Quality of 

Article 
Convincingness 

Control 95 2.81 (1.07) 3.30 (0.90) 3.94 (1.76) 
Neuroscience 101 3.13 (1.04) 3.63 (0.84) 4.24 (1.75) 
Note. Standard deviations in parentheses. 

 

In order to examine the influence of neuroscience information on reasoning, we 

conducted a multivariate analysis of variance (MANOVA) on the three evaluation 

measures. This revealed an overall effect of condition, F(3,192) = 2.73, p < .05; 

Hotelling’s T2 = .04, partial η2 = .04. Neuroscience resulted in higher ratings of article 

quality, t(194) = -2.63, p < .01, d = .37, and ratings of study quality, t(194) = -2.16, p < 

.05, d = .30. Neuroscience did not have a significant effect on convincingness, t(194) = -

1.19, p = .23. 

 To control for individual differences, we constructed three regression models 

predicting ratings of convincingness, quality of the article, and quality of the study, with 

knowledge, prior beliefs, AOT, and CRT entered as covariates (Table 2.1.2). Condition 

became a significant predictor of convincingness, study quality ratings, and article quality 

ratings. In all cases, the presence of neuroscience resulted in more favorable evaluations. 

As expected, prior beliefs significantly predicted all three types of evaluations. 



	
  

	
   34	
  

Incongruent beliefs about the claim resulted in less favorable evaluations and congruent 

beliefs resulted in more favorable evaluations. In addition, participants with more 

methodological knowledge and higher scores on the AOT and CRT scales consistently 

gave less favorable evaluations.  

 

Table 2.1.2  
Regression Models Predicting Evaluation Measures After Controlling for Individual 
Differences 

 

Note. Model 1 Fit: F(5, 188) = 14.42, p < .001, R2 = .27. Model 2 Fit: F(5, 188) = 6.86, p < .001, R2 = .15. 
Model 3 Fit: F(5, 188) = 11.46 p < .001, R2 = .23. Cohen’s f2 is a measure of local effect size and 
represents the proportion of variance uniquely accounted for by one predictor, above and beyond all other 
predictors (Cohen, 1988). Cutoff values for small, medium, and large effects are .02, .15, and .35, 
respectively. 

 

There was a significant interaction between CRT and condition for predicting 

convincingness ratings (B = 0.36, se(B) = 0.17, p < .05) and a marginal interaction 

between CRT and condition for predicting study quality (B = 0.19, se(B) = 0.11, p = .07). 

To investigate the nature of the interaction for convincingness ratings, we compared the 

influence of condition on convincingness ratings for individuals with the lowest CRT 

score (score of 0) and the highest CRT score (score of 3). Among individuals with the 

lowest CRT score, condition had no effect on ratings (M = 4.78, SD = 1.41 for control 

condition, M = 4.61, SD = 1.72 for neuroscience condition, t(75) = 0.48, p = .63). 

Predictor f2 B)(se) f2 B)(se) f2

Condition:)Neuroscience .02 0.36)(0.11) .04 0.40)(0.13) .04

Prior)beliefs .17 0.33)(0.11) .04 0.39)(0.13) .04
Methodological)
knowledge .03 D0.12)(0.08) .01 D0.27)(0.10) .03
AOT .04 D0.20)(0.09) .02 D0.40)(0.11) .03
CRT .04 D0.11)(0.05) .03 D0.14)(0.05) .06

B)(se)
0.44)(0.22)

1.26)(0.21)

p
)<.01

<.01

)).16D0.41)(1.16)
D0.46)(0.18)
D0.27)(0.09)

p
<.05

<.001

<.01
<.05
<.01

<.05
<.05

<.001
<.05

p

<.01

<.01

<.01

Model)1

DV:)Convincing Quality)of)the)Article

Model)2 Model)3

Quality)of)the)Study
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However, among individuals with the highest CRT score, convincingness ratings were 

significantly higher for the neuroscience condition (M = 4.0, SD = 1.67) than for the 

control condition (M = 3.1, SD = 1.33), t(49) = -2.02, p < .05). There was no evidence of 

interactions between other individual difference measures (prior beliefs, knowledge, and 

AOT) and the presence of neuroscience (p’s ranged from .23 to .79).  

Discussion 

Experiment 2.1 showed that neuroscience information had some effect on all three 

of the evaluation measures after individual differences were taken into account. 

Individual differences in prior beliefs, methodological knowledge, and thinking 

dispositions were consistently significant predictors of article evaluations, and the effect 

sizes were small-to-moderate. Interestingly, this experiment suggested that the influence 

of neuroscience is relatively independent of individual differences. This was surprising, 

since individual differences were expected to play a significant role in the way people 

responded to irrelevant neuroscience information. The only case in which this was true 

was for convincingness ratings, where there was a significant interaction between 

condition and CRT score. However, our prediction was that individuals with more 

sophisticated thinking dispositions would be less influenced by neuroscience information 

and, if anything, we found some evidence of the opposite: although higher CRT scores 

led to lower convincingness ratings for the control condition, convincingness ratings 

remained relatively high in the neuroscience condition, regardless of CRT score.  

Experiment 2.1 also showed that participants were relatively poor at identifying 

the methodological flaw, as less than a quarter cited the selection bias in their 

justification of their convincingness rating. Performance was equally poor for both 
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conditions, which provides some preliminary evidence against the possibility that 

neuroscience simply distracts people from attending to the methodological details of a 

research study. We test this distraction hypothesis more directly in Experiment 2.2. 

 It should be noted that, consistent with a recent meta-analysis (Michael et al., 

2013), the effect sizes of neuroscience were small. However, it is possible that these 

effect sizes were a result of our sample selection. We limited our sample to people who 

were already convinced one way or the other about the effect of music on studying, 

expecting to find that the influence of neuroscience would be exaggerated in these 

groups. We found no evidence that prior beliefs exacerbate the influence of neuroscience; 

instead, it is possible that people with strong prior beliefs are simply less influenced by 

additional information. As such, the effects of neuroscience may be more pronounced 

among participants who have no prior expectation of how listening to music should affect 

studying/learning. Experiment 2.2 addresses this issue by including participants with 

congruent, incongruent, or neutral prior beliefs about the claim. 

Finally, a limitation of Experiment 2.1 was that the article in the neuroscience 

condition contained more words, so it is unclear whether an increase in ratings was due to 

the neuroscience jargon or simply because more information was present. A proper 

control for word count is needed to rule out this possibility. Additionally, regarding the 

lack of interactions between condition and individual differences, it is possible that we 

neglected to include other relevant individual difference measures in the model. For 

example, it is possible that the influence of neuroscience may be present only for people 

do not have adequate knowledge about the brain.  We address this possibility in 

Experiment 2.2.  
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Experiment 2.2 

Experiment 2.2 had four objectives: 1) eliminate the potential confound of article 

word count, 2) examine whether the effect of irrelevant neuroscience is greater among 

participants with neutral prior beliefs compared to participants with congruent and 

incongruent prior beliefs, 3) examine whether irrelevant neuroscience distracts people 

from attending to the details of the research methodology, and 4) test the possibility that 

irrelevant neuroscience inflates one’s feeling of understanding a behavioral phenomenon.  

Methods 

Participants 

Four hundred U.S. participants were recruited from Amazon’s Mechanical Turk 

(188 females; median age = 31; range = 18-72). Six participants were excluded for 

indicating that they spent little effort on the experiment and five participants were 

excluded for having completed a previous version of the experiment; thus, all participants 

were seeing the stimuli for the first time.  Approximately half of the participants (48.5%) 

reported that they had attained a four-year college degree. Additionally, fifty four percent 

of participants reported having taken at least one basic statistics or research methodology 

course, and most people reported being familiar with the principles of the scientific 

method, random sampling, and the importance of sample size (79.6%, 91.2%, and 94.0%, 

respectively). 

Materials and Procedure 

The protocol for Experiment 2.2 was similar to Experiment 2.1. Participants were 

randomly assigned to the neuroscience (n = 204) or control (n = 185) condition and read 

a research study summary. Preceding the research summary was a paragraph that either 
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contained neuroscience jargon (neuroscience condition) or described the popularity of 

listening to music while studying (control condition). The additional paragraph in the 

control condition is presented below: 

Although some people prefer to work in silence, many people opt to 
listen to music while working or studying. In fact, due to the increased 
mobile access to music, a brief glimpse into a library or coffee shop will 
reveal dozens of individuals poring over their laptops and books with 
earphones wedged into their ears. 
 
 In contrast to the articles used in Experiment 2.1, both articles contained the same 

number of words (220). Participants were compensated $1.10. 

 Prior beliefs measure. We assessed prior beliefs at the beginning of the 

experiment using the same questions from Experiment 2.1. Participants were categorized 

as having congruent (n = 99), incongruent (n = 98), or neutral (n = 192) beliefs about the 

claim that listening to music improves studying/learning.  We predicted that neuroscience 

would be most influential for participants with neutral prior beliefs. 

 Evaluation measures. In addition to rating study quality, article quality, and 

convincingness of the article, participants also rated the quality of the scientist (“Please 

rate the quality of the scientist who conducted the study described in the article”) and 

how well they understood why music might have an influence on learning (“On a scale of 

0 to 100, how well did this article help you understand WHY music may have an impact 

on learning/studying?”). If participants have a preference for reductionist explanations, 

we predicted that neuroscience language, even if irrelevant, would make them think they 

have a better understanding of the phenomenon. The ratings for all five dependent 

variables were done on a sliding scale that ranged from 0 to 100% to allow more 

flexibility in responses. 
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Participants also justified their convincingness ratings in their own words and 

responses were coded according to whether the methodological flaw was mentioned, in 

the same manner as in Experiment 2.1. Inter-rater agreement was excellent (Kappa = .94, 

p < .001). 

 Individual differences. We again collected measures of AOT, CRT, and 

methodological knowledge. Additionally, because the influence of neuroscience may 

depend on how much knowledge of the brain one has, we included five questions about 

neuroanatomy, collected from introductory psychology textbook companion websites 

(Morris & Maisto, 2002; Schacter, Gilbert, & Wegner, 2009). The questions used are 

listed in the Appendix. The brain knowledge score was computed by summing the 

number of questions they answered correctly (M = 2.37, SD = 1.26). 

Recall measure. To test the possibility that neuroscience information distracts 

people from recalling the details of the study, we measured participants’ free recall of the 

study they read about at the beginning of the experiment, following a typical protocol 

used in seductive details literature (see Harp & Mayer, 1997). We identified four main 

idea units in the study description: 1) Participants in the study volunteered/self-selected 

into the conditions, 2) 75% of the class was in the music listening condition, 3) The 

students who listened to music received higher grades, and 4) The conclusion that 

listening to music improves studying. Participants received a ‘1’ for each main idea unit 

they were able to recall, and points were summed for a total possible score of 0-4. A 

primary rater (blind to the condition) coded all responses, and reliability was measured by 

having a second rater (blind to the hypotheses and condition), code 75% of the responses 

(Kappa = 0.72, p <.001). 
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Results 

Overall, 34% of participants identified the methodological flaw in the research 

study, and this percentage did not differ between the neuroscience and control conditions 

(M = 32.8% and M = 37.5%, respectively, X2(1, N = 389) = .52, p > .4). The mean 

evaluation scores for each condition can be seen in Table 2.2.1. A MANOVA on the five 

evaluation measures revealed a significant overall effect of condition, F(5, 382) = 20.49, 

p < .001; Hotelling’s T2 = .26, partial η2 = .21. There were significant effects of 

neuroscience on ratings of scientist quality, t(386) = -4.59, p < .001, d = .46 and self-

assessed understanding of the mechanism by which music might impact learning, t(386) 

= -9.27, p < .001, d = .94. In other words, the presence of neuroscience information 

increased perceived understanding of the mechanism underlying the effect. Neuroscience 

also had a marginal effect on ratings of article quality, t(386) = -1.82, p = .06, d = .18, 

and no effect on ratings of study quality or convincingness (t(386) = -1.01, p = .31 and 

t(386) = -1.23, p = .21, respectively).  

 

Table 2.2.1  
Group Means for Evaluation Measures 

Condition n Quality 
of Study 

Quality 
of Article 

Convincing 
Quality of 
Scientist 

Understanding 
of Mechanism 

Control 185 54.11  
(23.17) 

67.74  
(17.53) 

53.42 
(22.30) 

44.04 
(23.78) 

20.25  
(25.82) 

Neuroscience 203 56.44  
(21.95) 

70.90  
(16.61) 

56.17  
(21.37) 

54.41  
(20.59) 

46.48  
(29.51) 

Note. Standard deviations in parentheses. 

 

As in Experiment 2.1, we constructed separate linear regression models predicting 

each of the evaluation measures and controlling for differences in AOT, CRT, prior 
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beliefs, methodological knowledge, and brain knowledge. The pattern remained the 

same; the presence of neuroscience predicted ratings of article quality, scientist quality, 

and mechanistic understanding. In all cases, the addition of neuroscience information 

increased ratings, and the effect size was medium-to-large for the mechanistic 

understanding variable. Condition was not a significant predictor for ratings of study 

quality or convincingness. The full models for these measures are presented in Table 

2.2.2. 

Table 2.2.2  
Regression Models Predicting Evaluation Measures After Controlling for Individual 
Differences 

 

Note. Model 1 Fit: F(6, 378) = 9.18, p < .001, R2 = .12. Model 2 Fit: F(6, 378) = 8.40, p < .001, R2 = .11.  
Model 3 Fit: F(6, 378) = 10.12, p < .001, R2 = .13. Model 4 Fit: F(6, 378) = 12.18, p < .001, R2 = .16.  
Model 5 Fit: F(6, 378) = 29.49, p < .001, R2 = .31.  

  

As expected, being more knowledgeable about methodological principles and 

having more sophisticated thinking dispositions (measured by AOT and CRT) resulted in 

less favorable evaluations for all measures. Prior beliefs were positively associated with 

ratings of convincingness, such that having congruent beliefs led to higher ratings. 

Surprisingly, knowledge of the brain did not predict evaluations. Additionally, there were 

no significant interactions between condition and brain knowledge, methodological 

knowledge, AOT, or CRT (p’s ranged from .17 to .88).  

Predictor f2 B)(se) f2 B)(se) f2 B)(se) f2 B)(se) f2

Condition:)Neuroscience .00 3.08)(1.65) .01 2.20)(2.15) .00 10.29)(2.14) .05 26.12)(2.60) .26

Prior)beliefs .02 0.67)(1.17) .00 2.37)(1.52) .00 2.39)(1.51) .01 1.44)(1.85) .00
Methodological)
knowledge .04 F3.94)(1.16) .02 F7.05)(1.51) .06 F7.66)(1.50) .07 F5.68)(1.84) .01
AOT .01 F4.55)(1.39) .02 F5.54)(1.81) .03 F4.69)(1.80) .02 F12.44)(2.20) .07
CRT .01 F1.92)(0.70) .01 F2.27)(0.91) .02 F0.89)(0.90) .00 F2.19)(1.10) .00
Brain)knowledge .00 0.65)(0.66) .00 0.08)(0.86) .00 0.01)(0.85) .00 F1.01)(1.04) .00

B)(se)
2.66)(2.10)

4.54)(1.48)

p
)).06

).56

))<.001

0.29)(0.83)

F6.55)(1.47)
F3.32)(1.76)
F2.32)(0.88)

p
)).20

<.01

<).001
).06
<.01
).72

<.01
<.01
)).32

<.01
<.01
<.05
)).91

p
))))<.001

)).11

))<.001
).01
)).32
)).98

p

)).12

)).30

))<.001
<.001
<).05
).29

Model)1

DV:)Convincing Quality)of)the)Article

Model)2 Model)3

Quality)of)the)Study

Model)4

Quality)of)the)Scientist

Model)5
Mechanistic)

Understanding
p

))<.001

)).43
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To provide an overall test of our hypothesis that the influence of neuroscience is 

larger for those with neutral prior beliefs, we first re-coded the prior beliefs measure 

assigning a ‘0’ to participants with neutral prior beliefs and a ‘1’ for participants with 

either congruent or incongruent beliefs. We ran a MANOVA on all five evaluation 

measures with condition, beliefs, and the beliefs x condition interaction entered as 

predictors and found no significant interaction between beliefs and condition, F(5, 380) = 

0.65, p = .66; Hotelling’s T2 = .01, partial η2 = .01. Looking more specifically at all three 

prior beliefs groups, Figure 2.2.1 shows the ratings of the five evaluation measures 

broken down by each beliefs group – congruent, incongruent, and neutral. As Figure 

2.2.1 illustrates, the effect of neuroscience is substantial for ratings of scientist quality 

and mechanistic understanding, regardless of prior beliefs.  

 

Figure 2.2.1. Means of Each Evaluation Measure, by Condition and Prior Beliefs 
Subgroup. CB = Congruent prior beliefs. IB = Incongruent prior beliefs. NB = Neutral 
prior beliefs. Bars represent standard errors of the mean. 
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 To assess whether participants in the neuroscience condition were distracted from 

the methodological details of the study, we compared the recall of the methodological 

flaw (that participants self-selected into the study conditions) for both conditions. There 

was not a significant difference in the recall of the flaw between the control (M = .42, SD 

= .49) and neuroscience (M = .37, SD = .48) conditions, t(386) = 1.03, p = .29. We also 

looked more generally at the total number of main idea units recalled in both conditions, 

and again found no difference between the control (M = 2.04, SD = 1.16) and 

neuroscience (M = 1.90, SD = 1.06) conditions, t(386) = 1.11, p = .26. These results 

suggest that neuroscience did not interfere with participants’ ability to recall the key 

points of the research study.  

Discussion 

 Experiment 2.2 showed a general effect of neuroscience information, even after 

controlling for the number of words in the articles. In particular, neuroscience increased 

ratings of scientist quality by 10% and improved mechanistic understanding by 26%. 

Similar to Experiment 2.1, we found that individual differences such as prior beliefs, 

knowledge, and thinking dispositions predicted evaluations. However, we again found no 

evidence to suggest that one’s prior beliefs about a claim (whether congruent, 

incongruent, or neutral) moderate the effect of neuroscience. 

Somewhat surprisingly, brain knowledge did not predict evaluations. It is possible 

that the questions we selected to measure brain knowledge were too difficult for 

participants, although we reasoned that many people would have had exposure to these 

brain knowledge questions in any introductory biology or psychology class. Nevertheless, 

future studies could explore different measures of brain knowledge. Experiment 2.2 also 
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replicated the finding from Experiment 2.1 that participants in both the neuroscience and 

control condition perform equally poorly at identifying the methodological flaw in the 

study, suggesting that neuroscience is not particularly distracting. Experiment 2.2 

provided further evidence against the distraction hypothesis by showing that neuroscience 

did not affect the ability to recall the details of the study. 

General Discussion 

 The present experiment investigated the influence of neuroscience information on 

evaluations of scientific evidence after controlling for individual differences. Overall, we 

found an effect of irrelevant neuroscience on evaluations that is small for subjective 

ratings such as article quality, study quality, and convincingness of the evidence. 

However, we did find moderate-to-large effects for ratings of scientist quality and 

mechanistic understanding.  

The small effects of neuroscience information on subjective ratings are consistent 

with recent literature (Farah & Hook, 2013; Hook & Farah, 2013; Michael et al., 2013), 

but the large effect on understanding of the mechanism represents a novel finding. This 

self-assessed understanding of the mechanism provides insight into how irrelevant 

neuroscience information may influence the way people are thinking about the relevant 

variables in the study. Specifically, the indication that participants’ understanding 

improved suggests that they are making causal associations between listening to music 

and quality of studying; as such, the fact that neuroscience information increased these 

ratings of understanding suggests that it may be influencing participants’ understanding 

about causation in the experiment. Future studies should further explore this effect on 

causal understanding. 
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Interestingly, we found no evidence to suggest that the influence of neuroscience 

interacts significantly with individual difference measures. Consistent with research on 

belief-biased reasoning (Klaczynski, 2000; Lord, Ross, & Lepper, 1979), participants 

with congruent prior beliefs were more convinced by the evidence than participants with 

incongruent prior beliefs, regardless of whether neuroscience was present. We reasoned 

that having neutral prior beliefs would allow for more movement in the evaluations and a 

potentially bigger effect size of neuroscience; however, Experiment 2.2 showed that this 

was not the case. Additionally, although methodological knowledge and thinking 

dispositions often predicted evaluations, we found no evidence to suggest that having 

more knowledge or more sophisticated thinking styles mitigated the influence of 

irrelevant neuroscience information. 

 Another goal of the present research was to investigate potential mechanisms for 

the effect of neuroscience information on reasoning and critical thinking. We tested the 

possibility that neuroscience behaves as a seductive detail (cf. Rey, 2012), but found little 

evidence to suggest that neuroscience itself distracts people from paying attention to the 

methodological aspects of the article. A minority of participants were able to identify the 

methodological flaw in the article, regardless of condition; additionally, performance on 

the recall measure was comparable for both conditions. Instead, we found evidence to 

suggest that the reductionist nature of neuroscience information may mislead people into 

thinking they are getting more information than they actually are. Although the 

neuroscience information in the present experiment was not particularly relevant or 

informative, participants indicated that it increased their understanding of the relationship 

between listening to music and studying, suggesting that they do not understand the 
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limitations of inferences made from neuroimaging evidence. It is also worth noting that 

this effect may not be specific to neuroscience. For example, Eriksson (2012) 

demonstrated that meaningless mathematical equations made journal abstracts more 

likely to be accepted. Taken together, these results support the notion that reductionist 

explanations, even if not fully understood, appear to be providing valuable information 

and may even convince people that they understand a phenomenon better.  

 Given the popularity of neuroimaging and the attention it receives in the press, it 

is important to understand how people are weighting this evidence and how it may or 

may not affect people’s decisions. While the effect of neuroscience is small in cases of 

subjective evaluations, its effect on the mechanistic understanding of a phenomenon is 

compelling. Future studies should continue to examine the extent to which this is a 

neuroscience-specific effect or, more generally, an effect of any kind of concrete or 

reductionist explanation.  
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Appendix 

Brain Knowledge Questionnaire 

 

 

 

 

Question Source 

1. Functional neuroimaging (fMRI) directly measures the:  
a) Neural activity of the brain during a specific task 
b) Activity of oxygenated hemoglobin in the blood in the brain 

and body 
c) Electrical activity in the brain 
d) Different function of the brain’s two hemispheres. 

*Note. Both (a) and (b) were accepted as correct answers. 
Schacter, 
Gilbert, & 
Wegner 
(2011)  

2. The hippocampus, amygdala, and hypothalamus are all part of the: 
a) limbic system 
b) brainstem 
c) cerebral cortex 
d) association areas 
e) somatosensory cortex 

3. The occipital lobe receives and interprets __________________ 
information. 

a) pain 
b) auditory 
c) visual 
d) bodily position 

 

Morris & 
Maisto 
(2011) 

4. What structure connects the two hemispheres of the brain and 
coordinates their activities? 

a) amygdala 
b) reticular formation 
c) corpus callosum 
d) hippocampus 

5. A single long fiber extending from the cell body that carries outgoing 
messages is called a/an: 

a) axon 
b) nerve 
c) terminal 
d) dendrite 
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 CHAPTER 3

Seeing Behavior Through the Brain: Evidence of Neurorealism 

 

Introduction 

In the media, fMRI data are commonly referenced as meaningful neural correlates 

of complex human behaviors (e.g., “Political Views Tied to Brain Structure”, "Do Sad 

Movies Make You Cry? Blame Your Brain”). In many cases, these neural correlates are 

technically not explanatory or causal in nature. Nonetheless, neural data are frequently 

treated as direct proof that behavioral findings are real – a phenomenon that has been 

named ‘neurorealism’ (Racine, Bar-Ilan, & Illes, 2005). What implications does 

neuroscience have for lay understanding of human behavior? Do such low-level 

descriptions of behavioral phenomena actually have an impact on our conceptions of 

causality? Here we provide evidence that the presence of a neural correlate of a 

behavioral phenomenon increases the likelihood that people will infer a causal 

relationship between the behavioral variables and believe in the phenomenon. 

 There are a number of reasons why the public might find neuroscience data 

fascinating: brain scans may be interpreted as a clear window into the mind, people may 

prefer biological accounts of complex behavioral phenomena, and the technical 

vocabulary in neuroscience information may promote a feeling of intellectual fluency 

(Beck, 2010; Roskies, 2007; Trout, 2008). Empirical research has provided support for 

the idea that neuroscience information contains some value. For example, irrelevant 
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neuroscience information can improve the quality of bad explanations of psychological 

phenomena (Weisberg, Keil, Goodstein, Rawson, & Gray, 2008), interacting with a brain 

scanner can make people believe in mind reading (Ali, Lifshitz, & Raz, 2014), and 

images of brains have been shown to lend more credibility to research (Keehner, 

Mayberry, & Fischer, 2011; McCabe & Castel, 2008; but see Farah & Hook, 2013; 

Gruber & Dickerson, 2012; Hook & Farah, 2013; Michael, Newman, Vuorre, Cumming, 

& Garry, 2013). Laypeople typically encounter neural data as simplistic explanations of 

seemingly complex, mystifying behavioral phenomena such as love, sex, and political 

orientation. To what extent does this reductionist framing have implications for lay 

understanding of human behavior and causal inference? Previous research has yet to 

examine whether the presence of neural correlates can influence causal reasoning, and the 

present research seeks to address this question. 

 Why might neural correlates be erroneously interpreted as causal pathways for 

behavior? Correlational reasoning can be difficult due to the fact that people have a 

natural, and often unconscious, tendency to seek causes for events, and inferences are 

often based on limited information (Kuhn, Phelps, & Walters, 1985; White, 1989). 

Correlational reasoning may be especially difficult when the data involves a behavior and 

its neural correlates. People tend to seek out mechanistic information when determining 

whether two events or variables are causally related (Ahn, Kalish, Medin, & Gelman, 

1995; Koslowski & Masnick, 2010), and the reductionist nature of a neural correlate may 

give it the appearance of providing mechanistic information for the behavior in question 

(Keil, 2006). Consider, for example, the finding that stereotypical beliefs tend to become 

more pronounced when genetic explanations of group differences are provided (Bastian 
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& Haslam, 2006; Dar-Nimrod & Heine, 2011). One explanation for this finding could be 

that reductionist information, such as the suggestion of a genetic pathway, appears to 

provide more direct evidence of causation; as such, people may be more likely to assume 

that one behavioral variable (e.g., gender) determines another behavioral variable (e.g., 

math ability), when evidence is provided at a genetic, as opposed to a psychological, 

level. The present work tested whether a neural correlate is perceived as evidence for a 

causal relationship between two behavioral variables.  

Overview 

In four experiments, we assessed the influence of a neural correlate on perceived 

understanding of a phenomenon and the likelihood of making a causal inference. We 

compared the influence of a neural correlate to several control conditions: the absence of 

a correlate (Experiment 3.1), the presence of a psychological correlate (Experiments 3.2, 

3.3, and 3.4), and the presence of an eye tracking correlate (Experiment 3.3). Experiment 

3.4 also tested the possibility that the presence of a neural correlate is only influential for 

understanding phenomena that are easily related to the mind. In Experiments 3.1 through 

3.3, we predicted that participants who received a neural correlate would indicate greater 

perceived understanding of the behavioral phenomenon and would be more likely to 

expect replication of that phenomenon in a future research study. In Experiment 3.4, we 

predicted that neural information would no longer be privileged when the study’s 

dependent variable is non-cognitive. 
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Experiment 3.1 

Methods 

Participants 

We used Amazon’s Mechanical Turk to collect data from 472 participants. 

Participants were paid $1.10. The average time to read the news article was 88.19 

seconds; 20 participants were excluded for taking less than 10 seconds or longer than 5 

minutes to read the article. The average time to complete the survey was 20.72 (SD = 

8.27) minutes, and we excluded participants whose time to complete the survey exceeded 

2.5 standard deviations from the mean (n = 12). Finally, to ensure that participants in our 

sample paid attention to the task, we excluded 91 participants who answered an attention 

check item incorrectly, based on recommendations of Oppenheimer, Meyvis, & 

Davidenko (2009). Our final data set consisted of 349 participants (118 participants in 

control condition, 116 in the neuroscience text condition, and 115 in fMRI condition). 

Procedure and Materials 

Participants read a fictional news article that described the results of a behavioral 

research study, and we manipulated whether a neural correlate or no correlate was present 

(Figure 3.1.1). The fictional research study examined the effect of listening to classical 

music while studying on academic performance and concluded that listening to classical 

music had a positive effect on learning. The study contained an obvious methodological 

flaw in that the participants in the study self-selected themselves into the conditions; as a 

result, the internal validity of the study was threatened by the fact that the two groups 

being compared were likely unequal on other variables. The methodological flaw was 

included to avoid ceiling effects in the study ratings.  
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Figure 3.1.1 Research description and images used in Experiment 3.1. 

 

The presence of a neural correlate was manipulated in a paragraph preceding the 

research study description. In the control condition, participants read a short description 

of how common it is to see people listening to music while studying in libraries and 

coffee shops and saw a picture of a young male student studying with headphones on. In 

the two neural conditions, participants read a short paragraph explaining how the auditory 

cortex is activated during sound perception and saw one of two photos: the picture of the 

young male student studying (neural text condition) or a coronal fMRI slice depicting 

activation in the auditory cortices (fMRI condition). We manipulated these photos in the 

neural conditions to test whether visual depiction of the neural correlate has an additive 

effect on causal inference.  

Should you listen to classical music while studying?
By Sam Katz, science writer
Updated 8:20 AM EST, November 3, 2011

       
                   

Many people think listening to music is 
beneficial, and researchers have become 
interested in whether listening to classical 
music actually helps students’ ability to pay 
attention and learn information. A recent 
study was conducted in a typical college 
classroom. The professor asked for 
volunteers to be a part of a music listening 
group. This group would be required to 
listen to classical music while studying or 
attending lecture throughout the semester; they would be encouraged to 
listen to as much classical music as much as possible. Seventy five percent 
of the class volunteered to be in this group. The rest of the class was 
required to avoid listening to any kind of music while studying. At the end 
of the semester, the members of the music listening group consistently 
had higher exam scores for each of the three exams than the members of 
the non-music listening group. These results suggest that classical music 
listening actually helps one’s ability to study and, thus, has a positive 
impact on learning. 

[manipulated photo] Control photo:    fMRI photo:

      Years of neuroscience research have made it clear 
      that listening to music is associated with distinct 
      neural processes. Functional MRI scans reveal that 
      listening to music engages cortical areas involved in 
      music and sound perception, and this activation is 
      thought to be present even while doing other tasks, 
      such as studying or learning new information.

    Neural 
       Text:

      Although some people prefer to work in silence, 
      many people opt to listen to music while working or 
      studying. In fact, due to the increased mobile access 
      to music, a brief glimpse into a library or coffee shop 
      will reveal dozens of individuals poring over their 
      laptops and books with earphones wedged into 
      their ears.

    Control
       Text:

[manipulated text]
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Quality ratings. To assess whether neural information makes the quality of the 

research seem better, we asked participants to rate the quality of the study, article, and 

scientist. In addition, participants rated the convincingness of the research study as 

evidence of the positive impact of classical music on studying/learning. All ratings were 

on a sliding scale of 0-100%. 

Mechanistic understanding. Participants were asked to rate their mechanistic 

understanding of the research findings on a 0-100% sliding scale (“On a scale of 0 to 100, 

how much did this article help you understand why classical music may have an impact 

on learning/studying?”). High ratings were interpreted as identification of a causal 

mechanism.    

Expectation of replication. Participants were also asked to predict the results of 

a new research study testing the same claim that listening to music improves learning. 

Participants were told that the new study used an improved methodology – the students 

would be randomly assigned to the conditions. Participants could endorse one of three 

predictions for the new study: 1) the group who listened to classical music would receive 

higher exam scores; 2) the group who listened to classical music would receive lower 

exam scores; 3) there would be no difference in exam scores between those who did and 

did not listen to classical music. Responses were dichotomized; endorsement of the first 

option was coded as “1” and endorsement of the second or third option was coded as “0”. 

Individual differences. We measured individual differences in methodological 

knowledge, brain knowledge, prior beliefs, and thinking dispositions to examine whether 

these factors moderate the effect of neuroscience. Participants answered questions about 

methodological/statistical and brain knowledge, indicated their beliefs about the effect of 
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listening to music on studying/learning, and completed the Actively Open Minded 

Thinking (AOT; Stanovich & West, 1997) scale and the Cognitive Reflection Test (CRT; 

Frederick, 2005).  

Methodological/statistical knowledge. Knowledge of methodology and statistics 

was assessed with questions about familiarity with the scientific method (“Are you 

familiar with the general principles of the scientific method?”), issues of sample size 

(“Are you familiar with the idea that, for the purpose of research, one must have a large 

enough sample size to draw generalizations about the results?”), and random sampling 

(“Are you familiar with the idea that, for the purpose of research, one must select a 

random sample of participants from the population of interest?”). All responses were on a 

5-point Likert scale (1 = Not at all familiar, 5 = Very familiar). An average, standardized 

knowledge score was computed.  

Brain knowledge. Knowledge of the brain was assessed with five questions about 

basic neuroanatomy taken from introductory psychology textbooks (see Rhodes et al., 

2014 for a list of questions). The brain knowledge score reflected the number of correctly 

answered questions. 

Actively Open-Minded Thinking. The AOT scale consisted of 41 items 

measuring people’s tendency to be flexible in their thinking. Participants indicated their 

agreement (1 = Disagree strongly, 6 = Agree strongly) with statements such as “A group 

which tolerates too much difference of opinion among its members cannot exist of long” 

and “Abandoning a previous belief is a sign of strong character”. Higher scores on the 

AOT scale represent an ability to evaluate evidence objectively, independent of prior 

beliefs. 
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Cognitive Reflection Test. The Cognitive Reflection Test (CRT) measures the 

ability to inhibit an automatic, prepotent response in favor of a more deliberate answer. 

The CRT score reflected how many of the following three questions they answered 

correctly: “A bat and a ball cost $1.10 in total. The bat costs $1.00 more than the ball. 

How much does the ball cost?”, “If it takes 5 machines 5 minutes to make 5 widgets, how 

long would it take 100 machines to make 100 widgets?”, “In a lake, there is a patch of 

lily pads. Every day, the patch doubles in size. If it takes 48 days for the patch to cover 

the entire lake, how long would it take for the patch to cover half of the lake?”  

Prior beliefs. Given that people are more likely to use higher order scientific 

reasoning with evidence that contradicts their personal theories, the effect size of 

neuroscience may depend on whether participants already agree with the article’s claim – 

that listening to music while studying improves performance (Klaczynski, 2000). Before 

participants read the article, we asked about their prior beliefs regarding music and 

quality of studying (“What do you think is the relationship between listening to classical 

music and studying/learning?”). Participants who thought music had a positive impact on 

studying were categorized as having congruent prior beliefs (n = 118). Participants who 

thought that music had a negative impact or no impact on studying were categorized as 

having incongruent prior beliefs (n = 114). Participants who had no expectation of how 

music affects students were categorized as having neutral prior beliefs (n = 117). 

Results 

We found no differences between the two neural conditions on any of our 

dependent measures – convincingness of the study, quality of study, quality of article, 

quality of scientist, mechanistic understanding, or expectations of replication (ps > .50) – 
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so these conditions were grouped into an aggregate neural condition for all further 

analyses. Relative to the control condition, the presence of a neural correlate significantly 

increased the likelihood of expecting that the new study would replicate previous results 

(B = 0.57, p < .05, Table 3.1.1). 53.07% of participants who saw the neural correlate 

expected replication, compared to 42.24% in the control condition. The neural correlate 

also increased participants’ understanding of the reason why listening to music improved 

studying, t(347) = -7.00, p < .001, d = 0.79. On a scale of 0-100%, participants in the 

control condition rated their understanding of the reason for the effect as 17.08% (SD = 

24.76), while those in the neuroscience condition rated their understanding as 39.29% 

(SD = 29.52).  

 

Table 3.1.1  
Logistic Regression Predicting Expectation of Replication, Controlling for Individual 
Differences 

 B SE p OR (95% CI)  
Condition: Neuroscience 0.57 0.26 .02 1.78 (1.06, 3.00)   
Prior beliefs: Incongruent -1.86 0.31 <.001 0.15 (0.08, 0.28)  
Prior beliefs: Neutral -1.62 0.31 <.001 0.19 (0.10, 0.35)  
AOT -0.54 0.23 .02 0.58 (0.36, 0.92)  
CRT -0.38 0.11 <.001 0.67 (0.54, 0.84)  
Methodological Knowledge -0.29 0.15 .06 0.74 (0.54, 1.01)  
Note. Brain knowledge was not a significant predictor (p > .50) and was removed from the model. No 
interactions with condition were significant (ps > .60). R2 = .17 (Hosmer-Lemeshow), .21 (Cox-Snell), .28 
(Nagelkerke). Model χ2(6) = 83.76, p < .001. 
 

We found that the presence of neural correlates had no effect on study quality, 

article quality, or convincingness of the study (ps > .40). There was, however, a 

significant effect on scientist quality. Participants in the neural condition rated the 

scientist significantly higher than did participants in the control condition, M = 47.93 (SD 

= 25.36) vs. M = 41.42 (SD = 24.09), t(347) = -2.30, p < .05. Additionally, a logistic 
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regression revealed that perceived understanding and perceived scientist quality 

independently predicted expectations of replication (B = 0.02, SE(B) = 0.01, p < .01 and 

B = 0.04, SE(B) = 0.01, p < .001, respectively). 

Given that the neural condition was associated with significantly higher ratings of 

perceived understanding and scientist quality than the control condition, and that 

perceived understanding and scientist quality predicted expectations of replication, it is 

possible that one or both of these dimensions mediated the effect of condition on 

expectations of replication. We conducted mediation analyses testing the significance of 

perceived understanding and scientist quality as mediators. Unstandardized indirect 

effects were computed for each of 10,000 bootstrapped samples, and the 95% confidence 

interval was computed by determining the indirect effects at the 2.5th and 97.5th 

percentiles. The bootstrapped unstandardized indirect effect of perceived understanding 

was 0.05 (CI: 0.01 – 0.11), and the bootstrapped unstandardized indirect effect of 

scientist quality was 0.05 (CI: 0.01 – 0.09). The total indirect effect was calculated by 

adding the bootstrapped indirect effects of perceived understanding and scientist quality 

and was statistically significant  (B = 0.11, SE = 0.33, p < .01, CI: [0.04, 0.17]). The 

direct effect of condition was no longer significant (B = 0.002, SE = 0.05, p = .97, CI: [-

0.10,0.11], indicating that perceived understanding and perceptions of scientist quality 

fully mediated the effect of condition. 

 

Discussion 

Consistent with previous research (Rhodes, Rodriguez, & Shah, 2014), the 

presence of a neural correlate increased perceived understanding and perceived scientist 

quality. The fact that the presence of a neural correlate also increased expectations of 
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replication suggests that participants who saw this information were more likely to 

attribute a causal relationship between the two variables in the behavioral research study: 

music-listening behavior and academic performance. Given that perceived understanding 

and perceived scientist quality were both mediators of this effect, the higher likelihood of 

causal inference in the neuroscience condition appears to be explained by greater 

perceived understanding and greater trust in the scientist in this condition than in the 

control condition. Indeed, the only reason why the mechanistic understanding of a 

phenomenon should be improved is if a possible causal relationship has been identified; 

therefore, the fact that understanding was higher in the neural condition implies that 

participants were attributing a causal, as opposed to a spurious or correlational, 

relationship between classical music and quality of studying.  

One could argue that the presence of the neural correlate in the first experiment 

did provide a plausible causal explanation for the effect of listening to music on quality 

of studying. For example, perhaps participants believed that the effect of brain activity is 

not local, and that activation anywhere in the brain could increase efficiency in other 

areas. If so, it would then be plausible to assume that increased brain activity in the 

auditory cortex could have a positive effect on areas related to attention and memory, 

which could improve academic performance. If this is the case, it could explain why 

participants in the neural condition reported having a greater feeling of understanding of 

the phenomenon and why they were more likely to expect the study to replicate in the 

future. Moreover, this effect may be elicited not just by neural information but, instead, 

by any type of information that could be construed as providing a causal mechanism.  In 

our second experiment, we compared the likelihood of making a causal inference when a 
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neural correlate was present to when a behavioral correlate was present. Both types of 

correlates could be interpreted as causal mechanisms for the effect of listening to music 

on learning. If the type of mechanism suggested (behavioral vs. neural) has no effect on 

causal inference generation, there should be no differences in understanding and 

expectations of replication between the two conditions. However, if neural mechanisms 

are more likely to be treated as evidence of causation, causal inference should be more 

likely when the neural correlate is present. 

Experiment 3.2 

Methods 

Participants 

 We recruited 484 participants from Amazon’s Mechanical Turk. Participants were 

paid $1.50. The average time to read the news article was 76.27 seconds; we excluded 58 

participants who spent less than 10 seconds or greater than 5 minutes reading the article. 

The average time it took to complete the entire survey was 12.82 (SD = 6.24) minutes, 

and we excluded 11 participants whose time to complete the survey was greater than 2.5 

standard deviations from the mean. Finally, as in Experiment 3.1, we excluded 23 

participants who answered an attention check item incorrectly. After these exclusions, 

our data set consisted of 392 participants (193 in behavioral condition, 199 in neural 

condition). 

Materials and Procedure 

Participants read the same fictional research study as in Experiment 3.1, except 

the dependent variable in the study was changed to “wordless music.” The presence of 

neural and behavioral information was manipulated between-subjects (Figure 3.2.1). The 
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neural condition contained the same neural correlate as in Experiment 3.1, and the 

behavioral condition contained a paragraph explaining how listening to music can 

increase feelings of happiness and life satisfaction. Both conditions contained pictures of 

data: the neural condition contained the fMRI slice from Experiment 3.1 and the 

behavioral condition contained bar graphs showing that people who listen to more music 

score higher on a subjective happiness measure. 

 

Figure 3.2.1. Research description and images used in Experiment 3.2. 

 

Quality ratings and mechanistic understanding. After reading the article, 

participants rated the quality of the research and the scientist who conducted the study. 

Participants also rated their understanding of the reason why wordless music might have 

a positive impact on learning/studying. All ratings were on a 0-100% sliding scale. 

Should you listen to wordless music while studying?
By Sam Katz, science writer
Updated 8:20 AM EST, November 3, 2011

       
                   

Many people think listening to music is 
beneficial, and researchers have become 
interested in whether listening to wordless 
music actually helps students’ ability to pay 
attention and learn information. A recent 
study was conducted in a typical college 
classroom. The professor asked for 
volunteers to be a part of a music listening 
group. This group would be required to 
listen to wordless music while studying or 
attending lecture throughout the semester; they would be encouraged to 
listen to as much wordless music as much as possible. Seventy five percent 
of the class volunteered to be in this group. The rest of the class was 
required to avoid listening to any kind of music while studying. At the end 
of the semester, the members of the music listening group consistently 
had higher exam scores for each of the three exams than the members of 
the non-music listening group. These results suggest that wordless music 
listening actually helps one’s ability to study and, thus, has a positive 
impact on learning. 

[manipulated photo] Behavioral data:    Neural data:

      Years of neuroscience research have made it clear 
      that listening to music is associated with distinct 
      neural processes. Functional MRI scans reveal that 
      listening to music engages cortical areas involved in 
      music and sound perception, and this activation is 
      thought to be present even while doing other tasks, 
      such as studying or learning new information.

    Neural 
       Text:

      Years of psychology research have made it clear that 
      listening to music can be pleasurable. Behavioral 
      research studies reveal that listening to music can have 
      an effect on self-reported levels of happiness and 
      life-satisfaction, and this effect is thought to last even 
      while doing other tasks, such as studying or learning 
      new information.

 Behavioral
       Text:

[manipulated text]
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Expectation of replication. As in Experiment 3.1, participants were asked about 

their expectation for the results of an improved study that randomly assigned students to 

the wordless music and no music conditions. Participants could endorse one of three 

options: 1) The wordless music group will score higher than the no-music group; 2) The 

wordless music group will score lower than the no-music group; 3) There will not be any 

difference in exam scores between the wordless music group and no-music group. 

Responses that endorsed the first option – that students in the wordless music condition 

would have higher exam scores – were coded as ‘1’; all other responses were coded as 

‘0’. 

Plausibility of causal pathways. Although the neural and behavioral correlates 

were not necessarily intended to be causal explanations of the music effect, they could be 

interpreted this way if participants believed in certain assumptions. These assumptions 

and their resulting causal pathways are illustrated in Figure 3.2.2. The first causal 

pathway is implied if participants believed that the effect of neural activation is not 

localized; if this is the case, then the fact that the auditory cortex is activated when people 

listen to music suggests that there could be increased stimulation in other areas of the 

brain, perhaps improving academic performance. Similarly, if participants believed that 

positive moods improve the quality of studying, then the fact that music is associated 

with more positive moods suggests that improved mood leads to better study quality, 

which could conceivably improve performance. We assessed the plausibility of these two 

causal pathways by asking participants to respond “True” or “False” to the following 

questions: 1) “If one specific region of the brain is activated (such as a region associated 

with sound perception), brain activity in other, unrelated regions (such as a region 
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associated with memory or attention) will also increase as a result”, and 2) “People tend 

to learn information better when they are in a happy mood.” 

 

Figure 3.2.2. Causal pathways implied by neural and behavioral correlates. 
Although other potential pathways may exist as well, these pathways were 
selected as the most logical progressions based on the correlates provided. 

 

Individual differences. We measured aspects of participants’ methodological 

knowledge (specifically, familiarity with sample size and selection bias), as well as 

participants’ habitual music-listening behavior to see whether these factors moderated the 

effect of neural information. 

Music-listening behavior. Although prior beliefs did not moderate the effect of 

neuroscience in Experiment 3.1, we still anticipated that personal experience might be an 

important factor in determining how people reason about causation in the research study. 

As such, prior to reading the article, participants were asked how often they chose to 

listen to wordless music when they were working, studying, or concentrating on 

something specific over the last month (never, 20% of the time, 40% of the time, 60% of 

the time, 80% of the time, always). One hundred and sixty seven participants (42.60%) 

indicated that they never listened to wordless music while concentrating over the past 

Implied causal pathway for neural condition

Implied causal pathway for behavioral condition

Neural correlate 
Music increases activity 

in auditory cortex

Increased activity leads to 
improved efficiency in other

brain areas
Improved performance

Key assumption: The effect of increased neural activation is not localized.

Behavioral correlate
Music improves mood

Improved mood leads to 
better quality of studying Improved performance

Key assumption: Positive moods improve quality of studying.
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month. These participants were categorized as “Non-listeners” and the remaining 225 

participants were categorized as “Listeners”.  

Understanding of sample size. Familiarity with the importance of sample size 

was measured after participants read the article. Participants completed an adapted, 

frequentist version of Kahneman and Tverksy’s hospital problem (Kahneman & Tversky, 

1972; Sedlmeier & Gigerenzer, 1997). Participants who answered the item correctly 

received a score of 1; all other responses received a score of 0. 

Understanding of selection bias. We measured understanding of selection bias by 

asking participants to read the following research scenario and identify the most serious 

threat to the validity of the radio station’s conclusions. 

Suppose a local radio station is constructing a poll about how people in 
a particular city currently feel about controversial political issues, such 
as gun control, affirmative action, and marriage equality. The station 
surveys the audience by asking listeners to call in and explain their 
position on each issue. The radio station then compiles the responses 
and posts the results on their website. 
 
Participants could choose from four options: a) The study was not done in person, 

b) The study overrepresented individuals with strong opinions, c) The study was done 

only once, not multiple times, and d) The study does not take into account how listeners 

have previously voted. The correct answer is (b). Participants who selected this answer 

received a score of 1; all other responses received a score of 0. 

Results 

The presence of a neural correlate increased expectations of replication (B = 0.70, 

p < .05), but this was qualified by an interaction with habitual music listening behavior (B 

= -0.83, p < .05, Table 3.2.1). Among people who never listen to music while trying to 

concentrate (n = 167), people who read the neural version were more likely to expect 
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replication (65.11%) than people who read the behavioral version (46.91%).  Among 

people who habitually listen to music while working (n = 225), the neural and behavioral 

versions of the article resulted in similar expectations of replication (61.06% and 64.28%, 

respectively). Interestingly, these results suggest that people who do not already practice 

the behavior are most likely to interpret the neural correlate as evidence of causation; 

people who do practice the behavior are likely to believe in the effect regardless of 

whether neural information is present.  

 

Table 3.2.1  
Logistic Regression Predicting Expectation of Replication 

 B SE p OR (95% CI)  
Condition: Neuroscience 0.70 0.32 .02 2.02 (1.08, 3.84)  
Behavior: Listeners 0.71 0.30 .01 2.04 (1.13, 3.71)  
Selection bias: Correct -0.83 0.25 <.001 0.43 (0.25, 0.70)  
Condition: Neuroscience X Behavior: 
Listeners 

-0.83 0.42 .04 0.43 (0.18, 0.99)  

Note. Sample size familiarity was not a significant predictor (B = -0.32, p = .12) and was removed from the 
model. Additionally, there were no interactions between condition and sample size or selection bias (ps > 
.62). R2 = .04 (Hosmer-Lemeshow), .05 (Cox-Snell), .06 (Nagelkerke). Model χ2(4) = 19.30, p < .001. 
 

 

We also found, as in Experiment 3.1, that participants who read the neural version 

rated their understanding of the phenomenon significantly higher than those who read the 

behavioral version (45.75% (SD = 29.75) vs. 32.32% (SD = 30.24), respectively, t(390) = 

-4.43, p < .001, d = 0.44). The presence of a neural correlate had no effect on evaluations 

of research or scientist quality, ts < 0.50, ps > .70. Taken together with results from 

Experiment 3.1, we concluded that neural correlates do not have an effect on perceptions 

of research quality; instead, the primary influence is on causal understanding. As in 

Experiment 3.1, a logistic regression showed that ratings of causal understanding and 
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scientist quality were both significant predictors of expectations of replication (B = 0.01, 

SE = 0.00, p < .01, and B = 0.02, SE = 0.00, p < .001, respectively). 

Given that condition was a significant predictor of perceived understanding and 

that perceived understanding was a predictor of expectations of replication, we predicted 

that perceived understanding would be a significant mediator of the effect of condition on 

expectations of replication. However, because the effect of condition on expectations of 

replication was only significant for non-listeners, we performed the mediation analysis on 

a dataset consisting of only non-listeners. We tested the significance of the indirect effect 

using bootstrapping procedures. Unstandardized indirect effects were computed for each 

of 10,000 bootstrapped samples, and the 95% confidence interval was computed by 

determining the indirect effects at the 2.5th and 97.5th percentiles. The bootstrapped 

unstandardized indirect effect was 0.05, and the 95% confidence interval ranged from 

0.01 to 0.11. Thus, the indirect effect was statistically significant. The direct effect of 

condition was no longer significant (B = 0.11, CI: [-0.04, 0.25]) indicating that perceived 

understanding fully mediated the effect of condition on expectations of replication for 

non-listeners.  

An alternative explanation for the increased understanding and expectations of 

replication in the neural condition could be that the suggested behavioral mechanism was 

perceived as less plausible than the suggested neural mechanism. However, 95.66% 

percent of participants thought that positive moods could improve study quality and 

73.72% of participants endorsed the idea that neural activation is not localized, 

suggesting that both of the suggested mechanisms were considered plausible. The fact 

that the presence of the neural correlate increased mechanistic understanding more than 
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the presence of the behavioral correlate, despite the fact that both mechanisms were 

considered plausible, provides additional evidence that neural information is perceived as 

inherently causal. 

Discussion 

Experiment 3.2 replicated the results of Experiment 3.1 and provided additional 

evidence that the information neuroscience provides is unique and more influential for 

perceived understanding than is psychology information. Plausible mechanisms were 

provided in both conditions in the present experiment, but perceived understanding and 

expectations of replication were significantly greater in the neural condition than the 

psychology condition, particularly among participants who did not already engage in the 

behavior being promoted. 

One explanation for the effects of condition on perceived understanding and 

expectations of replication could be that the neuroscience information sounded more 

technical and scientific than the psychology information. Most people are probably aware 

that neuroimaging uses sophisticated technology, and people may assume that 

information that is gained through more sophisticated technology has more validity and 

explanatory power. Experiment 3.3 tests this hypothesis by adding a third condition, 

which replaced the neuroscience information with information that is gathered through 

another sophisticated, but not brain-based, technology: eye tracking. If the effect of 

neuroscience is due simply to the fact that it sounds more technical, we should see 

analogous effects on understanding and expectations of replication for the eye tracking 

condition. If however, there is something unique about neuroscience information as an 
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explanation, we should expect the neuroscience condition to report greater understanding 

and expectations of replication than the psychology and eye tracking conditions.  

It is important to note that in Experiment 3.2, neural information was primarily 

influential for participants who did not already engage in the behavior that the news 

article promoted. One explanation for this finding may be that people who choose to 

listen to music while they work or study already believe in some causal effect that music 

has on their productivity; as such, the type of causal mechanism (behavioral vs. neural) 

does not make a difference on their perception of causation. It is not immediately clear 

why people who avoid listening to music were more influenced by the neural than 

behavioral information. Research on motivated reasoning finds that people who are 

confronted with evidence that contradicts their personal theories provide more analytic 

(as opposed to heuristic) evaluations of that evidence (Evans, 2003; Klaczynski, 2000). It 

is possible that this is also true of people who do not currently engage in a behavior; if so, 

the more critical evaluations of the behavioral version of the article, and the valuation of 

the neural information, may have been the result of analytic processes. Alternatively, it is 

also possible that, because they did not habitually engage in the behavior, these 

participants were less engaged by the article and processed the neural information 

heuristically. Experiments 3 and 4 seek to replicate these prior behavior findings with 

new scenarios and further understand the extent to which people engage heuristic or 

analytic processes when evaluating neuroscience information.  

Experiment 3.3 

The objective of Experiment 3.3 was to replicate Experiment 3.2 using a novel 

fictional research scenario about the benefits of meditation for academic performance and 
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also compare the influence of neuroscience information to another technical, but not 

brain-based methodology: eye tracking. We also included a scientific literacy scale as an 

additional individual difference measure. We were again interested in the influence of 

neuroscience information on perceived understanding and expectations of replication. In 

addition, we added a question that asked participants to directly compare neuroscience, 

eye tracking, and psychology evidence in terms of how well each piece of evidence 

supported the researchers’ conclusion. By including this within-subjects measure of 

neuroscience preference, we hoped to examine the relationship between individual 

differences and neuroscience preference. 

Method 

Participants 

We recruited 673 participants (41.91% female, mean age = 33.99, range = 19-71) 

from Amazon’s Mechanical Turk. To be eligible for the experiment, participants must 

have completed at least 100 tasks on Mechanical Turk and received an approval rating of 

at least 95%. More than half of the participants (57.33%) had obtained a college degree. 

We excluded 25 people whose total time to complete the survey exceeded the mean 

completion time (M = 14.97 minutes, SD = 9.74) by more than 2.5 standard deviations. 

To ensure the quality of our responses, we asked participants at the end of the survey how 

much effort they put into the experiment (1 = Almost no effort, 2 = Very little effort, 3 = 

Some effort, 4 = Quite a bit of effort, 5 = A lot of effort). We trimmed the data set to only 

include participants who indicated that they spent “Quite a bit of effort” or “A lot of 

effort” when completing the experiment; based on this criterion, 44 people were 

excluded. Research suggests that screening participants based on response time and self-
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reported attention is effective for removing careless responses (Meade & Craig, 2012). 

The final data set consisted of 604 participants. Participants were paid $1.10 for their 

participation. 

Procedure 

All participants read a brief description of a fictional research study investigating 

whether meditation improves academic performance. The set up of the fictional research 

study was similar to the music listening study in that it was conducted in a large 

classroom, participants volunteered to be part of either the experimental (meditation) 

group or control group, and participants in the meditation group showed better academic 

performance than did the control group at the end of the semester. Similar to the previous 

studies, we manipulated the paragraph preceding the research study description. This 

paragraph described a correlate of meditating that was derived from behavioral, 

neuroscience, or eye tracking methodologies. For example, the behavioral correlate was 

performance on standard attention tasks, the neuroscience correlate was neural activity in 

brain areas involved in regulating attention, and the eye tracking correlate was the ability 

to maintain one’s gaze. Additionally, the paragraph was paired with a picture of 

behavioral, neuroscience, or eye tracking data, respectively. The text and images used in 

each condition can be seen in Table 3.3.1. Participants were randomly assigned to the 

psychology, neuroscience or eye tracking condition. Importantly, the same mechanism 

was suggested in each of the three conditions – that meditating improves academic 

performance because it improves attention. Thus, this design allowed us to more purely 

investigate the impact that the level of analysis and technical language of the suggested 
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mechanism had on evaluation measures. The mean time spent reading the article was 

1.17 minutes. 

 

Table 3.3.1  
Stimuli Used in Experiment 3.3 

Text Manipulations 

Neuroscience 
paragraph 

Years of neuroscience research have 
made it clear that meditating is 
associated with distinct neural 
processes. Functional MRI scans reveal 
that meditating regularly engages brain 
areas involved in processes like 
attention and awareness, and these 
effects are believed to be long lasting.  

Psychology 
paragraph 

Years of psychology research have 
made it clear that meditating is 
associated with distinct cognitive 
processes. Behavioral research studies 
reveal that meditating regularly can 
have positive effects on performance on 
standard attention tasks, and these 
effects are believed to be long lasting.  

Eye tracking 
paragraph 

Years of psychology research have 
made it clear that meditating is 
associated with distinct cognitive 
processes. Eye tracking studies reveal 
that meditating regularly can improve 
the ability to maintain one’s gaze during 
a task, and these effects are believed to 
be long lasting. 

 

Research Description Seen by All Participants 
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New research is shedding light on whether meditating is effective for improving academic 
performance. In a recent study conducted in a large classroom, students volunteered to be 
part of a meditation group or a control group. Participants in the meditation group were 
instructed to meditate for 30 minutes every day for three months. Forty percent of the class 
volunteered to be in this group. The control group was required to avoid meditating during 
this time period. Researchers found that students in the meditation group showed a greater 
increase in their academic performance at the end of the semester than the control group. 
Researchers concluded that meditation can improve academic performance. 

 

Evaluation Measures  

 Quality ratings. After reading the article, participants rated the quality of the 

research and the quality of the scientist, both on a sliding scale of 0% to 100%.  

 Perceived understanding. Participants rated the extent to which the article 

helped them understand the reason why meditation might improve academic 

performance, on a sliding scale of 0% to 100%. 

 Expectation of replication. To measure participants’ causal inference, we asked 

participants to predict the most likely outcome of a new study that randomly assigned 

class members to the experimental and control groups. Participants selected among the 

following options: 1) The meditation group will have better academic performance than 

the control group, 2) The meditation group will have worse academic performance than 

the control group, or 3) There will not be any difference in academic performance 

between the meditation and control groups. Responses were dichotomized such that 

selecting the first option was coded as ‘1’ and all other responses were coded as ‘0’. 

Participants also rated their confidence in their choice on a scale of 0 to 100%. 

 Preference for neuroscience evidence. Because participants in each condition 

were only exposed to one type of correlational evidence (psychology vs. neuroscience vs. 
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eye tracking), the design of the experiment did not allow comparisons of quality, 

perceived understanding, and expectations of replication within a given subject. To 

obtain a within-subjects measurement of the effect of the type of evidence, we presented 

participants with the question below. Participants selected the piece of evidence that most 

supported the researchers’ conclusion. 

One reason why researchers think that meditation may improve academic 
performance is because meditation has been shown to improve 
attention/concentration. Suppose that different research studies have been 
conducted to examine how meditation influences attention/concentration. 
Which piece of evidence provides the most support for the conclusion that 
meditation improves attention/concentration? 
 

• Behavioral research study found that meditation improves 
performance on standard attention tasks used in cognitive 
psychology 

• Neuroimaging study found that meditation increases activity in 
brain areas associated with attention 

• Eye tracking study found that meditation improves one’s ability to 
maintain his/her gaze during a task 

 

Individual Differences 

Prior behavior and beliefs. Before reading the article, participants were asked to 

indicate how often they have participated in some form of meditation over the past year 

(1 = Never, 2 = Rarely, 3 = Sometimes, 4 = Often, 5 = All of the Time). For simplicity, 

selection of the first option was coded as ‘Never meditate’, and selection of any other 

option was coded as ‘Sometimes meditate’. Additionally, participants were asked to 

indicate which of the following best described their belief about the effect of meditation 

on academic performance: 1) Meditating regularly can improve academic performance, 

2) Meditating regularly can impair academic performance, 3) Meditating regularly has no 

effect on academic performance, 4) I have no opinion about the effect of meditation on 
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academic performance. Participants who selected option 1 were categorized as having 

congruent beliefs, participants who selected option 2 or option 3 were categorized as 

having incongruent beliefs, and participants who selected option 4 were categorized as 

having neutral beliefs.  

 Methodological knowledge. Methodological knowledge was measured by 

familiarity with selection bias and the importance of sample size. Familiarity with these 

two concepts was measured in the same way as in Experiment 3.2. 

Scientific literacy. Participants completed the Civic Scientific Literacy scale 

(Miller, 1998; see Appendix), which consisted of 11 questions measuring familiarity with 

basic physical and biological science. Seven items were simple true/false questions (e.g., 

“Lasers work by focusing sound waves”). The remaining four questions assessed 

understanding of basic probability and the scientific process. There was a ceiling effect 

on scientific literacy (M = 0.87, SD = 0.13 out of a possible 1.0, Cronbach’s alpha = .47), 

so we combined the literacy scale with the two methodological questions to create a 12-

item scale (M = 0.83, SD = 0.14, Cronbach’s alpha = 0.54). As expected, scientific 

literacy was significantly and positively correlated with education level (r(600)= .28, p < 

.001). 

Results 

We ran a MANOVA with the perceived quality and understanding ratings as the 

dependent variables and condition, prior beliefs, prior behavior, and scientific literacy as 

predictors. Results of the MANOVA revealed significant overall effects of condition 

(F(6, 1150) = 8.83, p < .001, Hotelling-Lawley = 0.09) on perceived understanding but 

not on ratings of scientist and research quality (ps > .50, Figure 3.3.1). Post-hoc analyses 
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using Tukey’s HSD on the perceived understanding variable revealed significant effects 

of both the neuroscience and eye tracking conditions. Interestingly, there was greater 

perceived understanding in the neuroscience (M = 48.78, SD = 29.69) and eye tracking 

(M = 45.39, SD = 30.83) conditions than in the behavioral condition (M = 31.98, SD = 

29.96, ps < .001)). The effect size for the neuroscience condition (d = .56) was greater 

than the effect size for the eye tracking condition (d = .44). 

 

Figure 3.3.1. Effect of condition on reasoning measures. 

 

Results from the MANOVA also revealed significant effects of prior behavior, 

prior beliefs, and scientific literacy on perceived understanding (Fs > 3.17, ps < .05) as 

well as ratings of research and scientist quality (Fs > 3.20, ps < .05). Specifically, 

participants who sometimes meditated reported having slightly greater perceived 

understanding of the phenomenon than participants who never meditated (MSometimes = 

55.53, SDSometimes = 30.80, MNever = 38.23, SDNever = 30.91, p = .05), participants who had 

incongruent prior beliefs about meditation reported having a lower perceived 
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understanding than participants with congruent prior beliefs (MIncongruent = 31.55, 

SDIncongruent = 28.53, MCongruent = 45.33, SDCongruent = 31.25, p = .01), and participants with 

lower than median scientific literacy reported having greater perceived understanding of 

the phenomenon than did participants with higher than median scientific literacy (MLow = 

53.96, SDLow = 32.16, MHigh = 36.68, SDHigh = 28.89, p < .001). Prior behavior, prior 

beliefs, and scientific literacy had similar effects on the scientist and research quality 

ratings: participants who sometimes meditated reported higher scientist and research 

quality than did participants who never meditated (ps < .01), participants with 

incongruent beliefs rated the scientist and research quality lower than did participants 

with congruent beliefs (ps < .05), participants with neutral beliefs rated the research 

quality lower than participants with congruent beliefs (p < .01), and participants with 

lower than median scientific literacy rated the scientist and research more highly than did 

participants with higher than median scientific literacy (ps < .001).  

To examine expectations of replication, we first excluded two participants who 

said they had zero confidence in their prediction. Aside from these two participants, 

overall people were fairly confident in their prediction; the mean confidence for those 

who expected replication was 69% (SD = 22.24) and the mean confidence for those who 

did not expect replication was 59% (SD = 20.50). We conducted a logistic regression 

with condition (neuroscience vs. eye tracking vs. psychology), prior beliefs (incongruent 

vs. congruent vs. neutral), prior behavior (never vs. sometimes), perceived understanding, 

and scientific literacy as predictors and found that the only significant effects were a main 

effect of prior beliefs (participants with neutral or incongruent prior beliefs were less 
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likely to expect replication than participants with congruent beliefs, ps < .001) and a main 

effect of perceived understanding (p < .001).  

Although there were not significant interactions between condition and prior 

beliefs or prior behavior, there appeared to be a trend in the predicted direction for prior 

behavior – participants who never meditated were slightly more likely to expect 

replication when neuroscience information was present rather than psychology or eye 

tracking information (ps = .17 and .18, respectively). We repeated the logistic regression 

and combined the psychology and eye tracking conditions into a single non-neuroscience 

condition to increase power (Table 3.3.2). This analysis revealed a significant main effect 

of condition (p = .02) and a marginally significant interaction between condition and 

prior behavior (p = .09), in addition to the main effects of prior beliefs and perceived 

understanding. 

 

Table 3.3.2  
Logistic Regression Predicting Expectations of Replication 

 B (SE) p OR (CI) 
Condition: Non-neuroscience 0.56 (0.24) .02 1.75 (1.08, 2.86) 
Prior Behavior: Never 0.46 (0.32) .15 1.59 (0.83, 3.05) 
Prior Beliefs: Incongruent -1.48 (0.33) .00 0.22 (0.11, 0.43) 
Prior Beliefs: Neutral -1.11 (0.20) .00 0.32 (0.21, 0.48) 
Perceived Understanding 0.01 (0.00) .00 1.01 (1.00, 1.01) 
Condition: Non-neuroscience X 
Prior Behavior: Never 

-0.65 (0.39) .09 0.51 (0.23, 1.11) 

Note. R2 = .08 (Hosmer-Lemeshow), .10 (Cox-Snell), .14 (Nagelkerke). Model χ2(6) = 
68.32, p < .001. The effect of scientific literacy was not significant (p = .55) and was 
removed from the model. 
 
 

Figure 3.3.2 illustrates that, contrary to Experiment 3.2, the interaction seems to be 

primarily driven by people who sometimes meditate – these individuals are actually more 
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likely to expect replication when there is no neuroscience information present. We 

examined this interaction further and found that people who indicated that they 

sometimes meditate had a significantly higher education level than participants who said 

they never meditate (p < .05). Although the interaction between education and condition 

did not reach significance (p = .12), the fact that people who sometimes meditate were 

significantly different from people who never meditate in terms of education level 

suggests that the influence of prior behavior may be confounded by other individual 

differences related to education level that were not assessed. 

 

 

Figure 3.3.2. Predicted probability of expecting replication. 

 

As Figure 3.3.3 illustrates, when asked which piece of evidence most supports the 

researchers’ conclusion, participants were significantly influenced by the condition they 

were in. Individuals in the eye tracking condition were the most likely condition to select 

eye tracking evidence, individuals in the psychology condition were the most likely 

condition to select behavioral evidence, and individuals in the neuroscience condition 

were the most likely condition to select neuroscience evidence. These results suggest that 
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the type of mechanism participants read in the article primed them to select the piece of 

evidence consistent with that mechanism. To examine whether there was a preference for 

neuroscience information while controlling for the possible influence of priming, we 

performed exact binomial tests on the eye tracking and psychology conditions, in each 

case excluding participants who chose the eye tracking and psychology evidence, 

respectively. For the eye tracking condition, participants were significantly more likely to 

choose neuroscience than psychology evidence, after those who chose eye-tracking 

evidence were removed (41.17% vs. 58.82%, p < .001). Similarly, for the psychology 

condition, participants were significantly more likely to choose neuroscience than eye 

tracking evidence, after those who chose psychology evidence were removed (90.91% vs. 

9.09%, p < .001). Interestingly, in the neuroscience condition, participants were 

significantly more likely to choose the psychology evidence than the eye tracking 

evidence, after those who chose neuroscience evidence were removed (97.33% vs. 

2.67%, p < .001). This latter finding suggests that the technical language present in the 

eye tracking evidence is not sufficient to make this evidence preferred over psychology 

evidence, and the finding from the psychology condition similarly shows that 

neuroscience is selected far more frequently than eye tracking evidence.  
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Figure 3.3.3. Within-subjects preference for neuroscience. 

 

We also examined correlations between the choice of neuroscience evidence in 

the non-neuroscience conditions (to control for the influence of priming) and scientific 

literacy. People who were more scientifically literate were slightly more likely to select 

the neuroscience evidence over the eye tracking or psychology evidence, but this 

relationship did not reach significance, r(398) = 0.08, p = .08.  

Discussion 

 We replicated our previous finding that neuroscience information, compared to 

psychology information, increased perceived understanding. Interestingly, we found a 

similar effect when comparing eye tracking information to psychology information. 

These results suggest that technical-sounding language may sound more mechanistic, 

which could increase perceived understanding. It is worth noting, however, that the effect 

size was larger for neuroscience information than eye tracking information, suggesting 

that brain-based explanations may still be perceived as providing more explanatory 

power.  
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Our finding that neuroscience evidence was perceived to provide greater support 

for the conclusion further suggests that there is something special about neuroscience 

information. The evidential support that neuroscience appears to provide cannot be purely 

accounted for by the technical language, since the eye tracking evidence was not 

perceived to be as supportive of the researcher’s conclusion. Possibly, people are more 

familiar with the topic of neuroscience than eye tracking since it receives more attention 

in popular media. Alternatively, considering that the outcome variable in the research 

study was academic performance, which is likely perceived as a cognitive construct, 

people may believe that neuroimaging evidence is the best possible evidence for 

understanding what is going on in the mind. Fernandez-Duque, Evans, Christian, and 

Hodges (in press) described this as the “brain-as-engine-of-mind“ hypothesis as opposed 

to the “prestige of science” hypothesis; that is, our findings may best be accounted for by 

the belief that the brain is the best explanation for mental phenomena, rather than the 

belief that brain imaging indicates better science. If this is the case, the marginally 

significant correlation between scientific literacy and frequency of selecting neuroscience 

evidence as most supportive suggests that people who are more scientifically literate – 

who presumably may have had more exposure to neuroscience evidence in the media – 

are slightly more likely to hold this “brain-as-engine-of-mind” belief. 

An interesting question that follows is whether the brain would still be considered 

the best piece of evidence if the fictional study’s dependent variable is no longer 

cognitive. Plenty of neuroimaging studies use brain evidence to help explain phenomena 

that are not explicitly cognitive in nature, such as those relating to self-regulation, 

emotion, and personality, to name just a few. It is possible that brain evidence may not 
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appear as relevant for phenomena that are not explicitly cognitive in nature and, if this is 

the case, neuroscience information may no longer increase perceived understanding or 

appear to be superior evidence compared to behavioral information. Experiment 3.4 tests 

this possibility. 

Finally, our failure to find a significant interaction between condition and prior 

behavior is interesting and could be due to the fact that meditation is not a common 

activity, and people who meditate may be different from people who do not meditate in 

ways that we did not measure. In a recent representative survey, only about 10 percent of 

people used meditation in the past year (National Health Interview Survey, 2008). In our 

sample, about 60 percent of people said they had meditated during the past 12 months 

(30.2% rarely, 21.35% sometimes, 7.61% often, 2.81% all of the time), which suggests 

that our sample is not representative, and our predicted influence of prior behavior may 

be more likely among a representative sample. Additionally, as mentioned previously, 

participants in our sample who meditated were significantly higher in education level 

than people who did not meditate. This difference in education level could have 

influenced the extent to which (and the direction in which) prior behavior interacts with 

condition. Experiment 3.4 controls for this possibility by using a different research 

context that we expected to be less dependent on education level and more applicable to a 

variety of people. 
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Experiment 3.4 

In this experiment, we manipulated the presence of neuroscience and psychology 

information in the same way as in Experiments 3.1 and 3.2. However, in order to test 

whether the influence of neuroscience is limited to cognitive phenomena, the main 

dependent variable in the fictional research study was loneliness, a non-cognitive 

construct. Additionally, the fictional research study described a popular activity – eating 

comfort foods – that should be less associated with moderating factors such as education.  

Method 

Participants 

 We recruited 310 participants (46.13% female; mean age = 33.86) from 

Amazon’s Mechanical Turk. To be eligible to complete the HIT, participants must have 

completed at least 100 tasks on Amazon Mechanical Turk and received at least a 95% 

lifetime approval rating. More than half of the participants (59.66%) had obtained a 

bachelor’s degree. Similar to Experiment 3.3, we excluded eight participants whose time 

to complete the survey exceeded 2.5 standard deviations of the mean completion time 

(15.25 minutes, SD = 11.06). We also excluded five people who said they spent less than 

“quite a bit of effort” on the experiment and 14 people who incorrectly answered a 

comprehension question after reading the article.  The final data set consisted of 273 

participants. Participants were compensated $1.10 for their participation. 

Procedure 

Participants read a fictional research study that found that eating comfort foods 

alleviated feelings of loneliness. Researchers in the fictional study induced loneliness in 

the participants and asked them to volunteer to be in either a comfort food or regular food 
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condition (selection bias). Those who volunteered to be in the comfort food condition 

could choose to eat pizza, ice cream, or cookies. The fictional study found that 

participants in the comfort food condition had a greater reduction in loneliness; therefore, 

the researchers concluded that eating comfort foods reduces loneliness. 

Prior to reading this fictional research study, participants were randomly assigned 

to read a paragraph that contained either psychology or neuroscience details related to 

comfort food. The psychology version of the paragraph stated that eating comfort foods 

tends to bring up fond memories of one’s childhood, such as family traditions or other 

special social events. The neuroscience version of the paragraph stated that eating 

comfort foods activates brain areas associated with remembering positive socioemotional 

events. Importantly, the mechanism suggested in both conditions was that comfort food 

makes one remember fond memories and/or events; the two mechanisms differed only in 

their level of analysis. The mean time spent reading the article was 1.42 minutes. 

 
Table 3.4.1  
Stimuli Used in Experiment 3.4 

Neuroscience Paragraph Psychology Paragraph 

Years of neuroscience research suggest 
that certain foods can affect the kinds of 
things people think about. Specifically, 
brain scans show that when people view 
images of their favorite comfort foods, 
they show increased activation in brain 
areas (such as the medial temporal lobe) 
associated with remembering positive 
socioemotional memories. (50 words) 

Years of psychology research suggest that 
certain foods can affect the kinds of things 
people think about. Specifically, 
psychology studies show that when people 
view images of their favorite foods, they 
tend to think about memories from their 
childhood such as family traditions and 
other significant social events. (48 words) 

Research Description Seen by All Participants 
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New research is shedding light on how comfort foods might cure feelings of loneliness. 
In a recent study, participants volunteered to be part of a comfort food group or a 
control group. At the beginning of the study, researchers made participants feel lonely 
by asking them to write about the last fight they had with a close friend or relative. 
Then, participants in the comfort food group were instructed to eat their favorite 
comfort food, choosing from pizza, ice cream, or cookies. Participants in the control 
group were instructed to eat a granola bar. Loneliness was measured before and after 
participants ate their respective foods. Researchers found that participants in the 
comfort food group showed a greater decrease in loneliness than participants in the 
control group. Researchers concluded that comfort food can reduce loneliness. 

 

Evaluation Measures 

Quality ratings and perceived understanding. After reading the article, 

participants rated the overall quality of the research and the quality of the scientist on 

scales of 0% to 100%.  Participants also rated the extent to which the article helped them 

understand why comfort foods might reduce loneliness on a scale of 0% to 100%. 

Expectation of replication. Participants were asked to indicate what would 

happen if researchers repeated the study using an improved methodology. With the 

improved methodology, participants in the fictional study would be randomly assigned to 

the comfort food group or control group, and participants’ could choose to eat any 

comfort food they desired, rather than having to choose from just pizza, ice cream, or 

cookies. Participants could respond in the following ways: 1) The comfort food condition 

would show a greater reduction in loneliness than would the control condition, 2) The 

control condition would show a greater reduction in loneliness than would the comfort 

food condition, or 3) The comfort food condition and control condition would show equal 

reductions in loneliness. Participants who selected the first option were categorized as 

having expectations of replication (coded as ‘1’), while participants who selected the 
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second or third option were categorized as not having expectations of replication (coded 

as ‘0’). 

Preference for neuroscience evidence. We followed a similar approach as in 

Experiment 3.3. Participants were told that one reason researchers think comfort foods 

reduce loneliness is because comfort foods are associated with fond, sentimental 

memories. We then asked which piece of evidence most supports the conclusion that 

comfort foods increase the recall of fond, sentimental memories: 1) Neuroimaging study 

found that comfort foods were associated with increased activity in brain areas (such as 

the medial temporal lobe) associated with storing sentimental memories, or 2) Behavioral 

research study found that people who ate comfort foods were more likely to report 

thinking about sentimental memories than people who ate foods they enjoyed but did not 

associate with comfort. 

Individual Differences 

Prior behavior and beliefs. Prior to reading the fictional study, participants were 

asked to think about all the times they have felt lonely or sad over the past two months 

and indicate how often they ate comfort food(s) to help themselves feel better (never, 

20% of the time, 40% of the time, 60% of the time, 80% of the time, or always). 

Responses were dichotomized such that ‘0’ indicated that participants never ate comfort 

food and ‘1’ indicated that participants did turn to comfort foods to help themselves feel 

better. To measure prior beliefs, participants were also asked to indicate which of the 

following best explains the relationship between eating comfort foods and loneliness: 1) 

Eating comfort foods tends to reduce loneliness, 2) Eating comfort foods tends to 

increase loneliness, 3) Eating comfort foods does not affect loneliness, and 4) I have no 
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expectation about the relationship between comfort foods and loneliness. Participants 

who chose the first option were categorized as having congruent beliefs, participants who 

chose the second or third options were categorized as having incongruent beliefs, and 

participants who chose the fourth option were categorized as having neutral beliefs. 

Methodological knowledge. Methodological knowledge was measured by 

familiarity with selection bias and the importance of sample size. Familiarity with these 

two concepts was measured in the same way as in Experiments 3.2 and 3.3. 

Scientific literacy. Participants completed the same Civic Scientific Literacy 

scale (Miller, 1998) used in Experiment 3.3. Similar to Experiment 3.3, we combined the 

questions from the Civic Scientific Literacy Scale with two methodological questions to 

form a 12-item science literacy measure (M = 0.83, SD = 0.13, Cronbach’s alpha = 0.49). 

As expected, scientific literacy was significantly and positively correlated with education 

level (r(271) = 0.31, p < .001). 

Results 

 We conducted a MANOVA on the three rating scale variables with condition, 

prior beliefs, prior behavior, and scientific literacy as predictors. Interestingly, condition 

was not a significant predictor of any rating scale variable (Fs < 1.84, ps > .17). The lack 

of an effect on perceived understanding suggests that the contribution of neuroimaging 

evidence to perceived understanding might be limited to outcomes that are cognitive or 

explicitly related to the mind. There were, however, significant main effects of prior 

beliefs and scientific literacy (Fs > 4.91, ps < .01) as well as a marginally significant 

effect of prior behavior (F(3, 253) = 2.16, p = .09), and no significant interactions (ps > 

.40). One-way ANOVAs revealed significant effects of prior beliefs and scientific 
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literacy on all three ratings: scientist quality, research quality, and perceived 

understanding (Fs > 5.7, ps < .05). Post-hoc tests showed that participants who had lower 

than median scientific literacy rated the research quality, scientist quality, and perceived 

understanding higher than participants who had higher than median scientific literacy (ps 

< .05). Additionally, participants who had congruent prior or neutral prior beliefs rated 

the scientist and research quality lower than participants with congruent prior beliefs (ps 

< .01), and participants with neutral prior beliefs rated their perceived understanding 

lower than participants with congruent prior beliefs (p < .05).  

As expected, and contrary to Experiment 3.3, there was no difference in education 

level between people who ate comfort food and people who didn’t eat comfort food (p > 

.60). We examined participants’ expectations of replication in a logistic regression (Table 

3.4.2) and found, similar to Experiments 3.1 and 3.2, a significant main effect of prior 

beliefs (p < .001), marginally significant main effects of prior behavior (p = .08) and 

scientific literacy (p = .09), and a significant interaction between condition and prior 

behavior (p < .05).   

Table 3.4.2  
Logistic Regression Predicting Expectations of Replication 

 B (SE) p OR (CI) 
Condition: Neuroscience -0.05 (0.32) .85     0.94 (0.49, 1.79) 
Prior Behavior: Never -0.78 (0.42) .06 0.45 (0.19, 1.06) 
Prior Beliefs: Incongruent -1.60 (0.34) .00 0.20 (0.09, 0.39) 
Prior Beliefs: Neutral -1.61 (0.38) .00 0.19 (0.09, 0.41) 
Scientific Literacy 2.24 (1.13) .04 9.43 (1.01, 90.16) 
Perceived Understanding 0.01 (0.00) .04 1.01 (1.00, 1.02) 
Condition: Neuroscience X 
Prior Behavior: Never 

1.32 (0.66) .04 3.74 (1.04, 14.16) 

Note. R2 = .13 (Hosmer-Lemeshow), .15 (Cox-Snell), .21 (Nagelkerke). Model χ2(7) = 
44.98, p < .001. 
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Specifically, the presence of neuroscience information increased expectations of 

replication among participants who did not already engage in the behavior being 

promoted, but not among participants who did already engage in the behavior (Figure 

3.4.1). 

 

Figure 3.4.1. Predicted probability of expecting replication, 
controlling for scientific literacy and perceived understanding. 

 

 Similar to Experiment 3.3, participants indicated that neuroscience evidence 

provided better support for the researchers’ conclusion than psychology evidence 

(71.78% vs. 28.21%). Interestingly, participants heavily favored neuroscience over 

psychology information regardless of the condition they were in (χ2 (1, N = 273)= 0.0, p 

= 1). Additionally, we examined the correlation between scientific literacy and the 

selection of neuroscience in the psychology condition (to control for the influence of 

priming) and found that participants who were more scientifically literate were more 

likely to think that neuroscience evidence provided greater support for the conclusion, 

r(141) = 0.17, p = .03. 
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Figure 3.4.2. Within-subjects measure of neuroscience 
preference. 

 

Discussion 

 The results from Experiment 3.4 suggest that the dependent variable being 

assessed in a neuroimaging study may affect the influence of that information; 

specifically, neuroimaging evidence may be most likely to increase perceived 

understanding of a phenomenon when that phenomenon is explicitly cognitive. These 

results provide additional support to the “brain-as-engine-of-the-mind” hypothesis 

(Fernandez-Duque et al., in press) and may shed light on why a recent experiment 

investigating the influence of neuroscience information found that it did not influence 

assessments of personality, a non-cognitive construct (Diekmann, Konig, & Alles, in 

press). 

 As expected, Experiment 3.4 also replicated the findings from Experiments 3.1 

and 3.2 related to prior behavior – the influence of neuroscience information seems to be 

primarily influential for participants who do not yet engage in the behavior. People who 
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already engage in the behavior being promoted likely already believe that the conclusion 

is true and are likely to think the findings would replicate regardless of which condition 

they are in. 

 We also replicated the findings from Experiment 3.3 that people high in scientific 

literacy are less likely to inflate their understanding of the phenomenon and tend to give 

lower ratings of research quality and scientist quality. However, given the choice between 

neuroscience and psychology evidence, highly scientifically literate people are more 

likely to think that neuroscience evidence provides better support for the conclusion than 

psychology evidence. It is possible that people who have higher scientific literacy may be 

more aware of the shortcomings of psychological research. Regardless, this finding 

suggests that the preference for neuroscience information might occur not through a 

heuristic process but instead through deliberate valuation.  

General Discussion 

In four experiments, we provide evidence that the presence of a neural correlate of 

a behavioral effect can make participants more likely to infer a causal relationship 

between the two behavioral variables. Specifically, participants tended to think that they 

had a greater perceived understanding of the mechanism underlying a cognitive 

phenomenon, and they were more likely to expect that the phenomenon would replicate 

in a future study, when a neural pathway was suggested. Similar effects on perceived 

understanding were found for information about another technical, but not brain-based 

methodology, suggesting that the technical language in an explanation may increase its 

credibility. Importantly, the effects of expectations of replication tended to be driven by 

participants who did not engage in the behavior being promoted. Interestingly, the 



	
  

	
   95	
  

presence of neural information had no effect on participants’ ratings of how well the 

research was conducted or how convincing it was.  

Recent research has investigated the effect of brain images on perceptions of 

scientific quality, and the majority of the evidence suggests that brain images do not 

necessarily affect the perceived scientific quality of a research study (Farah & Hook, 

2013; Gruber & Dickerson, 2012; Hook & Farah, 2013; Michael, Newman, Vuorre, 

Cumming, & Garry, 2013). Our work suggests that textual neural information may not 

necessarily affect the perceived quality of a research study, either; it can, however, 

influence the perceived validity of the evidence and peoples’ perceived understanding of 

the phenomenon. 

One explanation for these findings could relate to the fact that lay people have 

limited knowledge of neuroscience and gather much of their neuroscience knowledge 

from the media (Hurculano-Houzel, 2002). Given that media reports of neuroscience tend 

to be optimistic in tone and focus more on the benefits of neuroscience research rather 

than its limitations and challenges (Racine, Waldman, Rosenberg, & Illes, 2010), 

participants’ limited knowledge about neuroscience may result in increased trust in the 

science rather than increased skepticism. This could also help explain the positive 

correlations between scientific literacy and the tendency to think that neuroscience 

evidence provided the best support for a conclusion. People who are higher in scientific 

literacy may have encountered neuroscience information more frequently than people 

who are lower in scientific literacy, which could result in a familiarity effect (Zajonc, 

1968). Moreover, if the primary source of participants’ familiarity with neuroscience is 

through the media, which tends to treat neuroscience with enthusiasm and optimism, they 
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are unlikely to have as deep an understanding of the limitations of neuroscience research 

as they might for psychology research.   

That neural data may be more likely to elicit causal inference for cognitive 

phenomena than behavioral data demonstrates how influential this evidence can be for 

lay understanding of the mind. For example, perhaps people would be more willing to 

spend money on a cognitive training program when this training program is explicitly 

tied to the brain. Research already suggests that this may be the case (Lindell & Kidd, 

2013). Given the widespread public interest in neuroscience and the implications this 

field has for understanding social and political issues such as mental health and human 

agency (O’Connor & Joffe, 2013; Lavazza & De Caro, 2010), as well as the fact that 

products allegedly based on neuroscience are marketed towards clinical populations 

before robust empirical support is available (Chancellor & Chatterjee, 2011), 

communicating neuroscience research in a way that allows accurate lay interpretation is 

paramount. Further evidence for this comes from a recent call for increased empirical 

research on neuroscience communication (Illes et al., 2010). Judy Illes and colleagues 

outline a multipronged approach to increase neuroscience literacy, which could involve, 

for example, training science journalists on how to communicate neuroscience findings 

and rewarding academicians for communicating their science to the public. Coordination 

between scientists and journalists could reduce unwarranted causal interpretations and 

help prevent the lay public from uncritically assuming that neural data always increase 

the validity of behavioral phenomena. 
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Appendix 

Science Literacy Scale  

(Adapted from Miller, 1998) 

True/False 

1. Lasers work by focusing sound waves. 
2. All radioactivity is man-made. 
3. Electrons are smaller than atoms. 
4. The center of the Earth is very hot. 
5. The continents have been moving their location for millions of years and will 

continue to move. 
6. It is the father’s gene that decides whether the baby is a boy or a girl. 
7. Antibiotics kill viruses as well as bacteria. 

 
8. Two scientists want to know if a certain drug is effective against high blood 

pressure. The first scientist wants to give the drug to 1000 people with high blood 
pressure and see how many of them experience lower blood pressure levels. The 
second scientist wants to give this drug to 500 people with high blood pressure, 
and not give this drug to another 500 people with high blood pressure, and see 
how many in both groups experience lower blood pressure levels. 

a. Which scientist suggests a better way to test this drug? 
 

9. A doctor tells a couple that their genetic makeup means that they’ve got a one-in-
four chance of having a child with an inherited illness. Does this mean that if their 
first child has the illness, the next three will not? 

a. Does this mean that if their first child has the illness, the next three will 
not? 

b. Does this mean that each of the couple’s children will have the same risk 
of suffering from the illness? 
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 CHAPTER 4

Preference for Micro-Level Science: Evidence and Implications 

 

Introduction 

Previous research has investigated the influence of neuroscience explanations or 

pictures of brain data in popular media and found that neuroscience can influence 

scientific reasoning. Specifically, the presence of neuroscience can make explanations 

more satisfying (Fernandez-Duque, Evans, Colton, & Hodges, in press; Michael, 

Newman, Vuorre, Cumming, & Garry, 2013; Weisberg, Keil, Goodstein, Rawson, & 

Gray, 2008), make people feel like they have a better mechanistic understanding of the 

phenomenon (Rhodes, Rodriguez, & Shah, 2014), and even increase expectations that the 

study is likely to replicate (Rhodes & Shah, in revision). Although researchers have 

demonstrated the potential for neuroscience to influence scientific reasoning, many 

questions remain regarding the necessary conditions required for neuroscience to be 

influential, the cognitive processes underlying this effect, and the practical implications 

this effect might have on everyday reasoning. It is also unclear the extent to which similar 

effects exist for other micro-level, as opposed macro-level, methodologies. Here we 

present two experiments examining the extent to which micro-level information is 

preferred for a variety of research scenarios, as well as the influence of various factors 

such as the way in which the micro-level information is integrated into the research study 

and the type of subjects used in the research study. Additionally, we examine how the 



	
  

	
   104	
  

preference for micro-level information affects assumptions about the appropriate sample 

size needed.  

Research studies that are reported in the media often contain evidence collected 

from a study, an explanation for that evidence, and a conclusion based on that evidence 

as well as implications. Much research has examined how people evaluate explanations. 

For example, people often judge explanations based on the sense of understanding they 

provide and how they fit with their own intuitions, rather than how accurate they are 

(Trout, 2007). Furthermore, people likely overestimate the extent to which they 

understand an explanation for a pattern of results, especially if they are low in scientific 

literacy (Rhodes & Shah, in revision). Despite the challenges in reasoning about 

explanations, explanations play an important role in scientific reasoning. Specifically, 

explanations provide a causal framework through which evidence can be understood and 

evaluated (Koslowski, Marasia, Chelenza, & Dublin, 2008). Koslowski and colleagues 

even argue that information is not considered evidence unless an explanation is provided. 

Given the presumed power of explanations, an interesting question is whether micro-level 

information would still increase perceived understanding if it were only presented as 

evidence, not as an explanation. In the present work, we define evidence as the raw 

outcome of a study and explanation as the mechanistic information that connects an 

outcome to the researchers’ conclusion.  

Previous research that has examined micro-level information has not 

systematically manipulated how that information is integrated into the research scenario. 

In Experiments 2.1-3.4, micro-level information was incorporated into the research study 

as a suggested mechanistic explanation for the effect described in the fictional research 
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study. In contrast, much of the previous research examining neuroscience information has 

included it as evidence, not an explanation, and has failed to find significant effects 

(Gruber & Dickinson, 2012; Hook & Farah, 2013; Michael et al., 2008). Thus, it is 

important to examine whether the influence of micro-level information depends on the 

way it is integrated into the research study.  

Understanding how the type of integration influences the preference for micro-

level information can provide more insight into the assumptions and/or beliefs people 

have about micro-level information. For example, if people only prefer micro-level 

information to macro-level information when it is presented as evidence, but not when it 

is presented as an explanation, it would suggest that people believe micro-level evidence 

to be more valid than macro-level evidence, perhaps resulting from more sophisticated 

and precise technology. In contrast, if people only prefer micro-level information when it 

is presented in an explanation, it would suggest that the appeal of micro-level information 

relates to its ability to provide a mechanistic framework for the phenomenon at hand. 

Another possibility is that micro-level information would only be preferred when it is 

presented as both evidence and explanation. Indeed, the findings from Koslowski et al. 

(2008) suggest that evidence alone without an explanation leads to weaker causal 

attributions, and the same might be true when micro- or macro-level explanations are 

presented alone without specific evidence. Additionally, people value mechanistic 

information (Ahn, Kalish, Medin, & Gelman, 1995), so people may prefer scenarios that 

provide explanations rather than just evidence. Given the interdependence of evidence 

and explanation (Koslowski et al. 2008), we predict that ratings of understanding and 

quality will be highest when both evidence and explanations are present. 
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In addition to identifying the conditions under which micro-level information is 

perceived as more valid, a second goal of this work is to examine the implications that 

these micro-level assumptions have for expectations about appropriate sample sizes. If 

micro-level evidence is perceived as more valid, this could have implications for research 

methodology. For example, people might assume that a research study that involves 

micro-level information does not require as large of a sample size as a research study that 

involves macro-level information. Understanding whether beliefs about the validity of 

micro-level information affects sample size expectations is important for understanding 

how people reason about scientific evidence in their everyday lives. Recent meta-

analyses of neuroscience and animal studies, both of which tend to employ micro-level 

methodologies, have suggested that many, if not most, of these studies are underpowered 

(Button et al., 2013; Macleod, 2011). Underpowered studies mean that, if significant 

effects are found, they are likely to be false positives. Additionally, research suggests that 

publication biases exist in many fields – that is, studies that show significant effects are 

more likely to be published than studies that show null effects. For the lay reader, the end 

result of this process might be a flashy headline that makes a bold claim based on 

significant effects from an underpowered study. Of course, it is not the case that all 

studies employing micro-level methodologies are underpowered; however, if people are 

willing to accept smaller sample sizes for micro-level than macro-level methodologies, 

this would have implications for how both the lay and scientific community view 

research studies that utilize different levels of analysis. 

Finally, previous research has begun to examine how susceptibility to 

neuroscience may be moderated by individual differences, such as dualistic beliefs (Hook 
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& Farah, 2013) and domain-relevant knowledge (Weisberg et al., 2008; Rhodes et al., 

2014), as well as prior beliefs and scientific literacy (Rhodes et al., 2014). However, it is 

unclear how individual differences moderate susceptibility to other types of micro-level 

information. The present research explores whether individual differences in reasoning 

ability and scientific knowledge predict preferences for micro-level information.  

Overview 

 We present two experiments examining moderators of the preference for micro-

level information and the implications this preference might have for judgments about 

sample size. In Experiment 4.1, participants read eight research descriptions, half of 

which contained micro-level information and the other half contained macro-level 

information, and the way in which the micro- vs. macro-level information was integrated 

into the research description was manipulated between-subjects. In Experiment 4.2, 

participants read the same eight research scenarios of one type of integration and 

estimated the number of subjects that would need to be in the study in order for them to 

be sufficiently confident in the researchers’ conclusions. 

Experiment 4.1 

Methods 

Participants 

We recruited 330 participants (49.69% female; mean age = 35.45; range = 19-75) 

from Amazon Mechanical Turk. Approximately half of the participants (49.68%) had 

obtained at least a college degree. Fourteen participants who spent longer than 2.5 

standard deviations of the mean time to complete the survey (M = 29.83 minutes, SD = 

13.17) were excluded. Participants were paid $2.00 for their participation. 



	
  

	
   108	
  

Materials 

Participants read eight brief descriptions of fictional research studies that tested 

treatments of four ailments: cold symptoms, depression, canine aggression, and social 

fear in monkeys. In each fictional research study, there were treatment and control 

conditions as well as a main outcome of interest (measures of cold symptoms, depression, 

aggression, or social fear). Additionally, there was information about the potential 

mechanism through which the treatment acted. We manipulated within-subjects whether 

the mechanistic information came from a macro-level or a micro-level, and we 

manipulated between-subjects whether the macro- and micro-level information was 

presented in the form of evidence, an explanation, or both evidence and explanation. 

Type of mechanistic information. For each ailment, two research studies were 

described: one that included mechanistic information from a macro-level of analysis and 

one that included mechanistic information from a micro-level analysis. In each case, the 

mechanistic information was chosen based on existing research studies that suggest that 

this could be a mechanism for the effect of interest. Two of the ailments pertained to 

animals and two pertained to humans. For the human studies, macro-level information 

was typically obtained through surveys. For the animal studies, macro-level information 

was obtained through behavioral observation. The types of mechanistic information given 

for each ailment are listed in Table 4.1.1.  
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Table 4.1.1  
Mechanistic Information Provided in Research Descriptions 

 

Integration of mechanistic information with research study. In addition to the 

within-subjects manipulation of the level of analysis at which the mechanistic 

information came from, we also manipulated how this information was integrated within 

the research description. Specifically, we manipulated whether the mechanistic 

information was presented in the research study’s result (Evidence Only condition), the 

explanation for the research study’s result (Explanation Only condition), or both 

(Evidence and Explanation condition; see Table 4.1.2). Note that in the Evidence Only 

condition, the study’s result was an effect on the micro/macro evidence, but the study’s 

conclusion was that treatment might also reduce the outcome of interest. The study’s 

result and conclusion were linked together by a statement suggesting that micro/macro 

evidence collected might also have an effect on the outcome of interest; thus, the 

conclusion was based on a presumed correlational relationship and was primarily 

speculative. 

 

Scenario Method of Data 
Collection

Mechanistic 
Information

Method of Data 
Collection

Mechanistic 
Information

Tea reduces cold 
symptoms Survey Tea decreases anxiety Blood test Tea decreases cortisol

Therapy reduces canine 
aggression

Behavioral 
observation

Therapy decreases 
anxiety Blood test Therapy decreases 

catecholamine levels

Therapy decreases 
depressive symptoms Survey Therapy decreases 

chronic stress Neuroimaging Therapy decreases 
amygdala activity

Therapy reduces social 
fear in monkeys

Behavioral 
observation

Therapy reduces 
psychological stress Neuroimaging Therapy reduces 

pulvinar signaling

Macro-level Micro-level
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Table 4.1.2  
Integration Manipulations for Example Research Scenario 

 

Procedure 

For each ailment, the micro and macro versions of the study were presented on 

the same page, with the macro version appearing first and the micro version appearing 

immediately after it. Participants were instructed to read the two studies and then answer 

the questions that follow. A block design was used so that participants answered all 

questions pertaining to a single ailment before moving on to the next ailment. 

Preference for micro-level information. The first question asked participants to 

indicate which study’s conclusion was more supported, in a forced choice format. 

Selection of the micro version was coded as ‘1’ and selection of the macro version was 

coded as ‘0’. Participants were also asked to indicate their confidence in their choice, on 

a scale of 0-100%.  The dichotomous choice scores were multiplied by these confidence 

ratings to create weighted preference scores. For example, a participant whose preference 

Tea

Decrease 
in anxiety

Decrease 
in cortisol 

Tea

Decrease in
cold symptoms 

Tea might decrease 
cold symptoms 

Tea

Decrease in 
cold symptoms 

Decrease in 
cold symptoms 

& anxiety 

Decrease in 
cold symptoms  

& cortisol

Tea reduces anxiety, 
which impairs 

immune functioning

Tea reduces cortisol, 
which impairs 

immune functioning

Treatment Study Result Explanation 
for Result

None

None 

Study Conclusion

Tea decreases 
cold symptoms 

Tea decreases 
cold symptoms 

Tea decreases 
cold symptoms 

Tea decreases 
cold symptoms 

Tea might decrease 
cold symptoms 

Evidence
Only

Explanation
Only

Evidence 
&

Explanation

Features of Fictional Research Study:
Exotic Tea Reduces Cold Symptoms

Condition

Tea reduces anxiety, 
which impairs 

immune functioning

Tea reduces cortisol, 
which impairs 

immune functioning
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score was ‘50’ meant they preferred the micro version of the study and were 50% 

confident in this choice. A benefit of this approach is that participants who selected the 

micro version but were not at all confident in their choice (e.g., confidence was 0) 

received a weighted preference score of 0. We expected that the preference for micro-

level information could be driven by perceptions of quality and/or perceptions of 

understanding, so we also measured these dimensions. 

Perceived understanding. For each of the two research studies, participants rated 

their perceived understanding on a scale of 1 (not at all) to 6 (completely) of the reason 

why the treatment had the observed effect on the outcome of interest. These questions 

assessed participants’ perceived mechanistic understanding of the phenomenon. For 

correlational analyses, we measured individual differences in perceived understanding by 

subtracting the perceived understanding ratings for the macro-level version from that of 

the micro-level version. Raw understanding ratings were used in the multilevel models. 

 Perceived quality. Finally, on a separate page, participants were presented with 

the two research studies again and were asked to rate the quality of each research study, 

on a scale of 1 to 5. For correlational analyses, we measured individual differences in 

quality ratings by subtracting the quality ratings for the macro-level version from that of 

the micro-level version. Raw quality ratings were used in the multilevel models. 

 Preference for micro-level scientists. After reading the research scenarios, 

participants also rated the scientific rigor (how closely its practitioners adhere to the 

scientific method) of 12 scientists from various subdisciplines on a scale of 1 (not at all) 

to 10 (absolutely). The question was based on a similar question used in Fernandez-

Duque et al. (in press). Order of presentation was random. The 12 subdisciplines were 
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composed of micro- and macro-level versions of six general disciplines: anthropology, 

economics, psychology, chemistry, physics, and biology. Half of the general disciplines 

were considered social sciences and the other half were considered physical/life sciences. 

The subdisciplines that were generated from these general disciplines are listed below in 

Table 4.1.3.  

Table 4.1.3  
List of Subdisciplines in Scientific Fields Questionnaire 

 

Individual Differences 

 Essentialism. Participants completed a 23-item scale from Bastian and Haslam 

(2008), which measured the extent to which people think in essentialist ways. Participants 

rated their agreement with each item on a scale of 1 (Strongly Disagree) to 6 (Strongly 

Agree). Specifically, the scale was composed of three subscales: biological basis, 

discreteness, and informativeness. The biological basis subscale measured beliefs about 

the extent to which human attributes are biologically determined (e.g., “The kind of 

person someone is can be largely attributed to their genetic inheritance”), the discreteness 

subscale measured beliefs about the extent to which attributes are distinct (e.g., “A person 

either has a certain attribute or they do not”), and the informativeness subscale measured 

General Discipline Subdiscipline Level
Cultural Anthropologist Macro

Biological Anthropologist Micro
Behavioral Economist Macro

Neuroeconomist Micro
Cognitive Psychologist Macro

Neuropsychologist Micro
Geochemist Macro

Nanochemist Micro
Geophysicist Macro

Quantum physicist Micro
Systems biologist Macro

Microbiologist Micro
Biologist

Anthropologist

Economist

Psychologist

Chemist

Physicist
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beliefs about the extent to which attributes can be easily determined (e.g., “When getting 

to know a person it is possible to get a picture of the kind of person they are very 

quickly”). We predicted that people who tend to think in essentialist ways would be more 

influenced by micro-level information than people who do not have strong essentialist 

beliefs. 

 Actively Open-Minded Thinking. Participants completed the 41-item Actively 

Open-Minded Thinking (AOT) Scale from Stanovich and West, 1997. This scale assesses 

participants’ ability to reason independently of their prior beliefs. Performance on this 

scale is believed to be an index of cognitive flexibility and reflects sophisticated thinking 

dispositions. We predicted that people who score highly on the AOT scale would be more 

critical of the research studies and potentially less influenced by the presence of micro-

level information than people who score low on the AOT scale.  

 Scientific Literacy. Participants completed a civic scientific literacy scale based 

on work by Miller (1998). The scale consisted of seven declarative knowledge questions 

about basic physics and biology (e.g., “Antibiotics kill viruses as well as bacteria”), and 

two questions about probability (e.g., “A doctor tells a couple that their genetic makeup 

means that they’ve got a one-in-four chance of having a child with an inherited illness. 

Does this mean that if their first child has the illness, the next three will not?”). 

Additionally, the scale included one question about the scientific process, shown below.  

Two scientists want to know if a certain drug is effective against high 
blood pressure. The first scientist wants to give the drug to 1,000 
people with high blood pressure and see how many of them 
experience lower blood pressure levels. The second scientist wants to 
give this drug to 500 people with high blood pressure, and not give 
this drug to another 500 people with high blood pressure, and see how 
many in both groups experience lower blood pressure levels. Which 
scientist suggests a better way to test this drug? 
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 We predicted that people who have greater scientific literacy would be more critical 

of the research studies and less influenced by micro-level information than people who 

are lower in scientific literacy. 

Results 

The mean weighted preference scores were well above 0 for all scenarios and 

conditions, indicating a widespread preference for the micro versions of the research 

studies (Table 4.1.4). Reliability of the four weighted preference scores was high (alpha = 

.80, CI: .72-.88). In general, people were substantially confident in their choice of the 

most supportive research study (M = 71.33, SD = 22.12).  

Table 4.1.4  
Weighted Preference For Micro-Level Version of Each Research Scenario 

 

 Correlations between the three dependent variables (weighted preference scores, 

differential understanding, and differential quality) and the individual difference 

measures of interest are listed in Table 4.1.5. The three dependent variables were 

positively correlated with each other. Additionally, AOT and scientific literacy were 

positively correlated with both weighted preferences scores and differential quality 

scores. These positive correlations suggest that individuals who are more sophisticated in 

their thinking dispositions and scientific knowledge are actually more likely to prefer the 

micro-level than macro-level versions of the research studies. As expected, preference for 

Tea Dogs Depression Monkeys

Evidence 121 85.95 66.94 75.2 56.19
Explanation 107 83.17 65.42 63.55 65.42
Evidence & 
Explanation 102 79.41 60.78 62.74 62.74

Tea Dogs Depression Monkeys

Evidence 121 66.56 (32.65) 51.28 (39.10) 59.52 (37.64) 41.69 (39.76) 54.76 (26.92)

Explanation 107 59.13 (33.51) 44.63 (37.81) 44.42 (38.26) 45.60 (37.06) 48.45 (29.95)

Evidence & 
Explanation 

102 55.17 (35.47) 42.82 (39.61) 46.04 (39.67) 44.23 (37.91) 47.07 (32.35)

Support | Micro 
M (SD)

Support | Micro 
M (SD)

Mean (SD)

Type of 
Manipulation N Support Micro Support Micro Support MicroSupport Micro

Type of 
Manipulation

N
Support | Micro 

M (SD)
Support | Micro 

M (SD)
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micro-level scientific fields was also positively correlated with both weighted preference 

scores and differential quality scores; it was also positively correlated with scientific 

literacy. Interestingly, AOT, scientific literacy, and preference for scientific fields were 

not significantly correlated with differential understanding. Finally, AOT was positively 

correlated with scientific literacy and negatively correlated with essentialism.  

 

Table 4.1.5  
Correlations Between Dependent Variables and Individual Differences 

 

To determine whether the condition had an effect on the weighted preference 

scores, we constructed a multilevel model with the type of subject (human vs. animal) 

modeled as a random effect and type of integration (Evidence, Explanation, Both), AOT, 

scientific literacy, and essentialism modeled as fixed effects (Table 4.1.6). The type of 

subject used in the research study had a significant effect on the weighted preference 

scores, indicating that the preference for micro-level information was stronger when the 

research study involved humans than when it involved animals. Interestingly, people who 

scored higher on the AOT scale showed significantly stronger micro-level preferences, 

and people who had higher than median scientific literacy showed slightly stronger 

micro-level preferences.  

 

1 2 3 4 5 6 7
1. Weighted preference scores --
2. Differential quality .68*** --
3. Differential understanding .43*** .61*** --
4. Preference for micro-level fields .13* .15** .09 --
5.AOT .19*** .25*** .09 .09 --
6. Scientific literacy .17** .18** .09 .16** .43*** --
7. Essentialism -.06 -.05 -.11 -.05 -.28*** -.08 --
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Table 4.1.6  
Multilevel Model Predicting Weighted Preference Scores 

 B (SE) p 
Integration: Explanation -2.66 (4.37) .54 
Integration: Both -3.18 (4.49) .47 
Scientific Literacy    22.39 (12.96) .08 
Subject: Human 16.63 (2.72) .00 
AOT 6.73 (2.72) .01 
Integration: Explanation X Subject: Human -9.91 (3.95) .01 
Integration: Both X Subject: Human -9.42 (4.05) .02 

  
Additionally, although there was not a significant main effect of the type of 

integration, there was a significant interaction between integration type and the type of 

subject. As Figure 4.1.1 illustrates, weighted preference scores were similar for all 

integration types except when the research study involved humans; in these cases, the 

weighted preference for the micro-level version was significantly stronger in the 

Evidence Only condition than in the Explanation Only or Evidence & Explanation 

conditions. There was not a significant main effect of essentialism (p = .94).  

 

 
Figure 4.1.1 Weighted preference scores by integration and subject type 
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 We also modeled ratings of quality and perceived understanding for the eight 

research studies. Table 4.1.7 shows the results of a multilevel model for quality ratings 

with level of analysis and type of subject modeled as random effects and type of 

integration, AOT, scientific literacy, and essentialism modeled as fixed effects. There 

were significant main effects of subject type, AOT, level of analysis, and a marginally 

significant effect of essentialism, as well as several significant interactions.  

 

Table 4.1.7  
Multilevel Model Predicting Quality Ratings 

 B (SE) p 
Integration: Explanation   -0.12 (0.09) .21 
Integration: Both 0.08 (0.09) .39 
Subject: Human -0.33 (0.05) .00 
AOT -0.21 (0.05) .00 
Level: Micro -0.97 (0.29) .00 
Essentialism 0.09 (0.29) .05 
Integration: Explanation X Subject: Human 0.29 (0.07) .00 
Integration: Both X Subject: Human 0.22 (0.07) .00 
AOT X Level: Micro 0.30 (0.06) .00 
Subject: Human X Level: Micro 0.50 (0.07) .00 
Integration: Explanation X Level: Micro -0.01 (0.11) .86 
Integration: Both X Level: Micro -0.02 (0.12) .83 
Integration: Explanation X Subject: Human X Level: Micro -0.35 (0.10) .00 
Integration: Both X Subject: Human X Level: Micro -0.22 (0.10) .03 

 

The most interesting interaction was the three-way interaction between integration 

type, subject type, and level of analysis, illustrated in Figure 4.1.2. In general, micro-level 

information received higher quality ratings and the influence of integration type only 

mattered for research scenarios involving human subjects. For these scenarios, the 

relative increase in quality ratings when comparing macro- and micro-level versions of 

the research scenario was greatest for the evidence only condition. This finding is 
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consistent with the interaction between type of integration and type of subject that was 

found for the weighted preference scores.  

 
Figure 4.1.2. Quality ratings by level of analysis, subject 
type, and integration type. Evaluated at mean AOT. Bars 
represent 95% confidence intervals. 

 

Together, these findings suggest that the evidence only condition might make the 

weaknesses of human macro-level information and the strengths of human micro-level 

information particularly salient, perhaps due to the lack of an explanation of how the 

researchers’ results supported their conclusions. There was also a significant interaction 

between AOT and level of analysis, indicating that people who scored higher on the AOT 

showed a larger difference in their ratings of quality (MDiff = 0.66) for micro and macro 

level studies than did people who scored lower on the AOT (MDiff = 0.31). There was not 

a significant main effect of scientific literacy (p = .13), nor was there an interaction 

between scientific literacy and level of analysis (p = .10). There was a marginally 

significant main effect of essentialism, indicating that people with stronger essentialist 
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beliefs tended to give slightly higher quality ratings, but there was no interaction with 

level of analysis (p = .66). 

Table 4.1.8 shows the results of a multilevel model predicting ratings of perceived 

understanding with level of analysis and type of subject modeled as random effects and 

type of integration, AOT, and scientific literacy modeled as fixed effects. There were 

significant main effects of subject type, AOT, and level of analysis in the predicted 

directions, but there were no main effects of scientific literacy (p = .52) or essentialism (p 

= .50) and no interactions between scientific literacy and level of analysis (p = .32) or 

essentialism and level of analysis (p = .12). Additionally, there was a significant 

interaction between type of subject and level of analysis, as well as a marginally 

significant interaction between AOT and level of analysis.  

Table 4.1.8  
Multilevel Model for Perceived Understanding 

 B (SE) p 
Subject: Human   -0.03 (0.04) .41 
AOT 0.02 (0.08) .85 
Level: Micro -0.84 (0.37) .02 
Integration: Evidence 0.13 (0.11) .23 
Integration: Both 0.31 (0.12) .01 
AOT X Level: Micro 0.14 (0.08) .09 
Subject: Human X Level: Micro 0.42 (0.05) .00 

 

The interaction between type of subject and level of analysis, controlling for 

AOT, is illustrated in Figure 4.1.3. Understanding was higher for micro-level versions 

when the research scenarios involved human subjects, but understanding was higher for 

macro-level versions when the research scenarios involved animal subjects.  
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Figure 4.1.3. Perceived understanding by level, subject type, 
and integration type. Evaluated at mean AOT. Bars 
represent 95% confidence intervals. 

 

Responses to the scientific fields scale were highly correlated with each other and 

had high internal consistency (CI alpha = .86 - .92, M = .89). As expected, micro-level 

fields received significantly higher ratings of scientific rigor than did macro-level fields 

(M = 8.07, SD = 1.39 and M = 7.32, SD = 1.43, respectively; t(329) = 15.74, p < .001). 

We created an individualized preference for micro fields score by subtracting each 

participant’s mean ratings for macro-level fields from their mean ratings for micro-level 

fields. We conducted a linear regression analysis to examine individuals’ preferences for 

micro-level fields with AOT, essentialism, and scientific literacy as predictors. Scientific 

literacy was a significant predictor (B = 0.90, SE(B) = 0.39, p = .01), indicating that 

people who had higher scientific literacy showed stronger preferences for micro-level 

scientific fields, but AOT and essentialism were not (ps > .50). The model was significant 

but explained a small proportion of the variance, F (3,311) = 2.87, p < .05, R2 = .02. 
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Discussion 

 This experiment demonstrated that, when forced to choose between micro- and 

macro-level information, people have a consistent preference for micro-level information. 

Furthermore, this preference was related to scientific literacy and AOT. Specifically, 

people who were more scientifically literate and higher in AOT were more likely to 

indicate that research studies that involve micro-level information were of higher quality, 

and that the conclusions based on these studies were more supportive of the evidence, 

compared to research studies that involve macro-level information. Additionally, people 

who were more scientifically literate were more likely to rate micro-level scientific fields 

as more scientific than their macro-level counterparts. Interestingly, however, we found 

that scientific literacy and AOT were not significantly correlated with perceived 

understanding. If the preference for micro-level information were driven by unconscious 

heuristics, we might expect that higher scores on the scientific literacy and AOT 

assessments would be negatively associated with the preference for micro-level 

information. Therefore, our results suggest that the preference for micro-level 

information is not driven by unconscious heuristics but instead by a deliberative process. 

 In general, perceived understanding and quality tended to be highest when micro-

level information was presented in both the evidence and explanation. Ratings in this 

condition were significantly higher than ratings in the Explanation Only condition, but 

not the Evidence Only condition. One interpretation of this finding could be that evidence 

is valued over explanation, which suggests that, contrary to Koslowski et al. (2008), 

explanation does not always increase the value of evidence. Weighted preference scores 

were similar in the Explanation Only and Explanation & Evidence conditions, but 
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significantly higher in the Evidence Only condition when the research study involved 

humans. This result suggests that either the micro-level information appeared particularly 

attractive in these conditions, or the macro-level information appeared particularly 

unattractive. We expect that the latter is the case, since the macro-level research studies 

that involved humans utilized survey data as the dependent variable, and results from a 

think aloud pilot study suggested that people are aware of self-report biases that can 

emerge from surveys. Additionally, the Evidence Only condition provided the least 

amount of information possible – just a description of what the research study did and 

concluded, but no explanation linking the two – which means the shortcomings of the 

human macro-level data may have been particularly salient in this condition.   

 Our finding that the preference for micro-level information is significantly 

correlated with scientific literacy and AOT suggests that people may be using a rational 

strategy when directly comparing macro- and micro-level information. One such strategy 

may be that people believe that micro-level information is inherently more valid than 

macro-level information. Experiment 4.2 tests this possibility by examining how micro- 

vs. macro-level information affects intuitions about the size of the sample needed for a 

research study. Many micro-level studies are based on significantly smaller sample sizes 

than macro-level studies, so understanding how people assign weight to the level of 

analysis and the sample size may shed further light on the types of strategies people use 

when evaluating research studies as well as the practical implications of these strategies. 
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Experiment 4.2 

Overview 

The purpose of this experiment was to examine whether micro-level information 

affected estimations of the size of the sample needed for a research study. We 

manipulated the level of analysis (micro vs. macro) and the sample size (large vs. small) 

within-subjects. If people believe that micro-level information is inherently more valid, 

they may accept a smaller sample size for these studies than they would for macro-level 

studies. However, given that previous research suggests that people are well aware that 

sample size is an important factor, and are likely to pay attention to this factor in a “knee-

jerk” way, it is also possible that people may no longer use micro- vs. macro-level 

information as an evaluation criterion once sample size information is present. Such a 

finding would suggest that the preference for micro-level information is not necessarily 

due to an assumption of its superior validity, but instead a result of some other strategy. 

Method 

Participants 

 We recruited 200 participants (40.83% female; mean age = 34.45, range = 19-68) 

from Amazon Mechanical Turk. Approximately half (48.67%) of the sample had 

obtained at least a college degree. Eight people were excluded for taking longer than 2.5 

standard deviations of the mean time to complete the survey (M = 25.56 minutes, SD = 

14.47). Participants were paid $2.00 for their participation. 

Materials and Procedure 

 Similar to Experiment 4.1, participants read eight brief descriptions of research 

studies. The research studies were the same ones used in the Evidence & Explanation 
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condition of Experiment 4.1 with the addition of information about sample size. The 

sample size described in each research study was small. For each research study, 

participants were asked to 1) rate their confidence in the researchers’ conclusion on a 

scale of 1 (not at all) to 6 (completely), and 2) indicate how many participants they would 

need to see in a new study to be sufficiently convinced that the researchers’ conclusion is 

true. Half of the research studies used micro-level evidence and explanations, and the 

other half used macro-level. Micro- and macro-level versions were organized into blocks, 

and participants were randomly assigned to see either the micro- or macro- block first. 

Within each block, the order of presentation of the research studies was randomized. This 

design allowed for both within-subjects and between-subjects (for the first block only) 

analyses of the influence of level of analysis. Importantly, for a given research scenario, 

the sample sizes provided in the micro and macro versions were identical; however, the 

sample sizes for different research scenarios were not the same, and the sample sizes 

provided for studies involving humans were slightly higher than those provided for 

animal studies. To account for the differences in original sample sizes, sample size 

estimations were divided by the sample size provided in the original study. Additionally, 

we expected that the variance in sample size estimates would be very high, so all 

estimates were log transformed to achieve a more normal distribution. Results from a 

think aloud pilot study (see Appendix) revealed that participants tended to not attend to 

sample size until later in the experiment. To increase attention to the sample size, we 

explicitly mentioned that participants would be seeing information about sample size and 

the type of evidence collected in the research study, and that participants should feel free 

to make their decisions based on whichever information they felt was most relevant. 
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Table 4.2.1  
Sample Sizes Provided in Research Studies 

 

Note. Sample sizes for micro- and macro- versions of each research 
study were the same. 

 

Individual differences. After evaluating the eight research descriptions, 

participants completed the scientific fields questionnaire and the essentialism, AOT, and 

scientific literacy scales used in Experiment 4.1. 

Results 

A multilevel model for confidence ratings with level of analysis and type of 

subject as random effects and literacy and condition as fixed effects revealed significant 

effects of level of analysis (B = 0.25, SE = 0.08, p < .01) and scientific literacy (B = -

1.95, SE = 0.57, p < .001). People were more confident in the conclusions based on 

studies that included micro-level information than macro-level information, and people 

who were more scientifically literate tended to be less confident in researchers’ 

conclusions. Interestingly, there was also a significant interaction between level of 

analysis and condition, indicating that that participants tended to be more confident in the 

level of analysis they saw first (B = -0.35, SE = 0.12, p < .01). Thus, participants in the 

Micro First condition were more confident in micro- than macro-level studies (MMicro = 

2.89, SDMicro = 1.32, MMacro = 2.99, SDMacro = 1.32), and participants in the Macro First 

Research Study Sample Size Provided

Tea reduces cold symptoms 10

Therapy reduces depression 12

Therapy reduces canine aggression 6

Therapy reduces social fear in monkeys 5
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condition were more confident in macro- than micro-level studies (MMicro = 3.13, SDMicro 

= 1.32, MMacro = 2.87, SDMacro = 1.40). There was a marginally significant effect of 

subject type, indicating that people tended to be slightly more confident in research 

studies that used humans rather than animals (B = 0.51, SE = 0.29, p = .07), but there was 

also a marginally significant interaction between type of subject and scientific literacy, 

indicating that participants who had lower scientific literacy had a slightly larger 

difference in confidence between human and animal studies (B = -0.57, SE = 0.34, p = 

.09). Specifically, participants with lower scientific literacy tended to be slightly more 

confident in human studies than animal studies (MHuman = 3.45, SDHuman = 1.45, MAnimal = 

3.26, SDAnimal = 1.46), whereas participants with higher scientific literacy gave similar 

confidence ratings for both types of studies (MHuman = 2.78, SDHuman = 1.23, MAnimal = 

2.82, SDAnimal = 1.27). 

Our primary analysis of interest was to examine predictors of sample size 

estimations. We constructed a multilevel model with level of analysis and type of subject 

modeled as random effects and condition (Micro First vs. Macro First), scientific literacy, 

confidence in the researchers’ conclusions, and individual preferences for micro-level 

fields modeled as fixed effects (Table 4.2.2). There was a main effect of scientific 

literacy, indicating that people with higher scientific literacy preferred larger sample 

sizes. There was also a significant main effect of subject type, indicating that participants 

tended to estimate larger sample sizes for studies that involved humans. There were no 

significant effects of condition (p = .62) or essentialism (p = .28), and there was no 

interaction between essentialism and level of analysis (p = .90). 
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Table 4.2.2  
Multilevel Model Predicting Sample Size Estimations 

 B (SE) p 
Level: Micro 0.21 (0.09) .19 
Subject: Human 0.38 (0.12) .00 
Scientific Literacy 3.70 (0.82) .00 
Confidence 0.08 (0.11) .45 
Preference for micro-level fields 0.19 (0.11) .07 
Level X Confidence -0.06 (0.02) .02 
Subject X Confidence -0.12 (0.03) .00 
Literacy X Confidence -0.34 (0.13) .01 
Level X Fields -0.11 (0.04) .00 

 

There were several interesting interactions that emerged, which are illustrated in 

Figure 4.2.1. The top left figure shows that people tended to estimate smaller sample 

sizes for micro-level than macro-level studies, but this difference was larger for people 

who tended to believe that micro-level fields were more scientific than macro-level 

fields. The top right figure shows the difference in sample sizes estimates for micro- vs. 

macro-level studies by confidence; the two lines are not parallel, indicating that people 

who were not very confident in the research study’s conclusions gave closer estimates for 

micro- and macro-level studies, while people who were more confident in the 

researchers’ conclusions were more influenced by the level of analysis of the study. The 

bottom left figure shows that people who were not confident in the research were the 

ones who estimated larger sample sizes for the human studies. Finally, the bottom right 

figure shows that the difference in sample size estimations for people who were low 

versus high in scientific literacy was larger when people were not confident in the 

research than when people were confident; in other words, scientific literacy played a 

larger role in determining sample size estimations when people had low confidence. 
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Figure 4.2.1 Significant interactions for model predicting sample size estimations. 

 

 We also performed between-subjects analyses for sample size by looking only at 

the first block of research studies. In these analyses, level of analysis was manipulated 

between subjects. We constructed a multilevel model for sample size estimations with 

type of subject as the only random effect and level of analysis, confidence in the 

researchers’ conclusions, and scientific literacy as fixed effects. There was no effect of 

level of analysis (B = -0.03, SE = 0.18, p = .86), but there were significant effects of 

scientific literacy (B = 2.34, SE = 0.68, p < .001) type of subject (B = 0.59, SE = 0.15, p < 

.001), and confidence in the researchers’ conclusions (B = -0.19, SE = 0.04, p < .001), 

indicating that participants who were more scientifically literate tended to estimate larger 

sample sizes, participants tended to estimate smaller sample sizes for humans than 

animals, and participants who were more confident in the researchers’ conclusions 

estimated smaller sample sizes. There was a marginal effect of preference for micro-level 
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fields (B = 0.19, SE = 0.11, p = .08), indicating that people thought micro-level fields 

were more scientific also estimated slightly larger sample sizes than people who had less 

of a preference for micro-level fields. There was also a significant interaction between 

confidence and type of subject (B = -0.18, SE = 0.04, p < .001), indicating that people 

who were less confident in the researchers’ conclusions tended to estimate larger sample 

sizes for humans than animals (MHuman = 3.66, SDHuman = 1.37, MAnimal = 3.23, SDAnimal = 

1.28), while people who were more confident in the researchers’ conclusions estimated 

slightly larger sample sizes for animals than humans (MHuman = 2.23, SDHuman = 1.74, 

MAnimal = 2.42, SDAnimal = 1.49).  

Discussion 

 This experiment showed that the preference for micro-level information is not 

restricted to judgments of quality and evidential support but is also reflected in peoples’ 

expectations about the size of a research sample. One explanation for this finding may be 

that people believe micro-level information to be more valid and perhaps less variable 

across subjects. While it is true that studies taking place at the micro-level tend to have 

smaller sample sizes, given that our sample was primarily non-experts, it is unlikely that 

they would have known this beforehand. Thus, this experiment suggests that non-experts 

tend to reach this conclusion on their own. 

An interesting finding from this experiment is that the influence of micro- and 

macro-level information on sample size estimations is only evident when participants are 

exposed to both conditions and must, therefore, make comparisons between macro- and 

micro-level research studies. One explanation for this finding may relate to the sparse 

amount of detail that was provided in the research descriptions. Several participants 
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commented that the task was difficult because there was not much information to base 

their judgments off of. In this experiment, it was necessary to constrain the research 

description to contain only the information we were manipulating – level of evidence and 

sample size. For these stimuli, it seems likely that judgments of sample size would be 

easier in the within-subjects condition, since participants can at least compare micro-level 

versions to macro-level versions and use that comparison as a basis for their judgment. In 

a between-subjects design, however, participants only see the micro-level studies or the 

macro-level studies, so it is possible their sample size estimations are less informed. 

General Discussion 

The present work examined the conditions under which micro-level information is 

likely to be preferred to macro-level information. Specifically, we manipulated how the 

micro- and macro-level information was integrated into the research study and the type of 

subjects and method of data collection used in the research study, as well as individual 

differences related to micro-level preferences. We found that the way that the way micro-

level information was integrated into the study did not have an effect on its appeal. The 

presence of micro-level information in any form tended to increase ratings of perceived 

quality and understanding. Interestingly, what appeared to matter more was the type of 

subjects that were used in the research study. It is important to keep in mind that macro-

level human data was collected through self-report, while macro-level animal data was 

collected through observation. As a result, differences in human versus animal studies 

may simply reflect distrust in self-report data from humans. On the other hand, it could 

also reflect the belief that humans are more variable than animals and thus macro-level 

data may appear less valid for these subjects. 
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The finding that the type of integration did not have an effect on micro-level 

preference suggests that multiple mechanisms may be working to elicit micro-level 

preferences. People appear to hold two beliefs: 1) Micro-level explanations provide a 

stronger mechanistic framework than macro-level explanations, and 2) micro-level 

evidence is more valid than macro-level evidence. Support for the latter primarily comes 

from the findings from Experiment 4.2 – the presence of micro-level information reduces 

the sample size needed for a research study. One rationale people may be using to support 

this belief is that micro-level processes are less subject to change. For example, people 

might rationalize that self-report measures can fluctuate depending on the day and time 

that you collect them, but processes that occur at a biological level might appear less 

likely to have these random fluctuations. Although this rationale might apply to some 

micro- and macro-level processes, it certainly does not apply to all instances of these 

processes. For example, the brain is constantly changing based on one’s experiences. 

Moreover, there are a number of other sources of variance that must be dealt with in 

micro-level methodologies. Perhaps more importantly, with some micro-level 

methodologies, especially newer ones that tend to receive a lot of media coverage, the 

mapping between what we observe and what we are trying to measure is not always 

straightforward; as a result, large sample sizes are needed in these fields. Additionally, 

false positives are typically high in fMRI research, which reiterates the need for large 

sample sizes. Of course, there are often more practical limitations to acquiring large 

sample sizes for micro-level methodologies – equipment is expensive and it is unethical 

to waste animal lives. Nevertheless, understanding people’s assumptions about the 

validity of micro- versus macro-level information could help inform researchers about the 
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public perception of their science as well as funding and publication decisions that occur 

within a researchers’ subject area. 

Another important goal of these experiments was to examine how individual 

differences relate to micro-level preferences. Our finding that people who are high in 

scientific literacy and AOT are more likely to endorse micro-level methodologies 

suggests that the preference for micro-level information results from a deliberative, as 

opposed to a heuristic, process. People likely have beliefs about the validity of micro-

level information that are activated and influence their evaluations of micro- and macro-

level information. Another piece of the explanation could be that people who are less 

scientifically literate are less familiar with the language used to describe micro-level 

processes and might be less likely to endorse the macro-level version, basing their 

judgment on familiarity instead. If this is the case, however, it is interesting that people 

who are less scientifically literate tend to rate their perceived understanding higher than 

people who are more scientifically literate; this pattern of results suggests that these 

individuals are not accurate (or perhaps truthful) in assessing their knowledge. 

In conclusion, we have demonstrated that the preference for micro-level 

information is stable across different kinds of research scenarios and types of micro-level 

information and has implications for how people reason about methodology in everyday 

settings. While the valuation of micro-level information might be a rational process, it 

has implications for how reductionist approaches will be received and influence scientific 

fields. 
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Appendix 

Description of Think Aloud Pilot Study 

Protocol 

Participants read eight research scenarios, all of which used the Evidence Only 
integration type. The type of ailment (tea vs. monkeys), the level of analysis (micro vs. 
macro), and the size of the sample size used in the research study (small vs. large) were 
manipulated within-subjects. Participants were instructed to read each scenario and rate 
1) how confident they were in the researchers’ conclusions, 2) how well they understood 
the reason why the researchers found what they did, and 3) how scientific the research 
seemed. Participants were instructed to think out loud and vocalize their thoughts as they 
answered each question. Responses were transcribed and categorized into seven themes. 

 
Definitions of Themes 

 
Terminology – Participants commented on how scientific the language/jargon seemed 
Mechanism – Participants indicated how well the research description helped them 

conceptually understand why the researchers found what they found 
Results – Participants re-stated the results of the research study 
Research Design – Participants praised or critiqued the design of the research, including 

the use of control groups and operational definitions 
Write-up – Participants referred to the level of detail provided in the research study 
Data – Participants mentioned the presence or absence of data (e.g., numbers) in the 

research description 
Sample Size – Participants remarked on the sample size used in the study 
 

Frequency of themes, summed across eight research scenarios 

 

 

Evaluation 
Measure

Macro-level Studies Micro-level Studies Macro-level Studies Micro-level Studies

research design (5) sample size (8) sample size (7) mechanism (3)
sample size (4) mechanism (4) mechanism (2) results (3)
mechanism (4) research design (4) results (2) sample size (2)

write-up (3) data (3) research design (1)
results (1) terminology (2)
data (1)

mechanism (8) mechanism (8) mechanism (7) mechanism (11)
research design (3) terminology (6)

write-up (3)
write-up (6) write-up (5) terminology (7)

mechanism (4) mechanism (4) mechanism (3)
terminology (3) terminology (3)

research design (1) data (1)
sample size (1)

Confidence

Understanding

Scientific

Factors Contributing to Lower Scores Factors Contributing to Higher Scores
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Key Themes 
For ratings of confidence in the researchers’ conclusions, participants were likely 

to critique the research design in macro-level studies and the sample sizes in both macro-
and micro-level studies. When sample sizes were larger, participants were likely to 
mention this as a positive factor for macro-level studies. Participants tended to mention 
the mechanistic information as a positive factor for micro-level studies. 

For ratings of perceived understanding, participants tended to think about whether 
they understood the reason why the treatment of interest elicited the observed effect. In 
several instances, participants also remarked that the lack of scientific jargon 
(terminology) in macro-level studies helped them understand the results better. 

For ratings of how scientific the research seemed, participants were likely to 
mention that the scientific jargon (terminology) made the micro-level studies seem more 
scientific. Participants tended to mention that there was not much detail or specifics for 
macro-level studies (write-up), which contributed to lower ratings of “scientificness”. 
 

Important Takeaways 
 

 The sophistication of the language and the lucidity of the mechanism are 
important factors for judging perceived understanding and the “scientificness” of the 
research. Participants attend to how scientific the language seems when deciding how 
scientific the research is. However, the use of more easily understandable language in 
macro-level studies may contribute to better mechanistic understanding for some people.  

Although participants did attend to sample size, they only attended to it about 
halfway through the research studies. Once they realized that the sample size changed 
across studies, they tended to use that as another judgment criterion. For this reason, 
Experiment 4.2 used instructions that explicitly drew participants’ attention to the sample 
size mentioned in each research description. 
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 CHAPTER 5

Conclusion 

 
 The goal of my dissertation was to examine how people reason scientifically 

about information that comes from different levels of analysis. Specifically, I examined 

how dispositional and contextual factors influence the extent to which people prefer 

micro-level information over macro-level information. Across eight studies, I found that 

micro-level information is perceived as more supportive of a researchers’ conclusion, 

across a variety of scenarios; improves perceived understanding; increases expectations 

of replication for a future study; and decreases the estimated sample size needed for a 

research study. Taken together, these findings suggest that people perceive micro-level 

information in a fundamentally different, and more favorable, way than they perceive 

macro-level information. However, there are important individual differences and 

contextual factors that moderate this effect. 

Summary of Key Findings 

 Experiments 2.1 and 2.2 showed that the presence of neuroscience increased 

ratings of scientist quality and mechanistic understanding of a cognitive phenomenon 

after controlling for individual differences in thinking dispositions. Experiments 3.1 and 

3.2 found similar effects on mechanistic understanding when comparing neuroscience 

information to comparable psychology information, and also found that neuroscience 

information made people more likely to expect replication in a future study, especially for 
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people who did not already engage in the behavior being promoted. Experiment 3.3 

found that eye tracking information also increased perceived understanding of the 

cognitive phenomenon, although the effect size was smaller than it was for neuroscience 

information, and that people tended to think neuroscience evidence provided more 

support for the researchers’ conclusion than did either psychology or eye tracking 

information. Experiment 3.3 also found a marginally significant interaction between 

neuroscience information and prior behavior. Experiment 3.4 found that neuroscience 

information no longer increased understanding of the phenomenon when it was non-

cognitive; however, neuroscience still increased expectations of replication for people 

who did not already engage in the behavior, and people were still more likely to indicate 

that neuroscience evidence provided more support for the conclusion than did behavioral 

evidence. Experiment 4.1 found that the preference for micro-level information is stable 

across different research scenarios involving different data collection techniques and 

different ways of integrating the micro-level information into the research study; 

additionally, people who had more sophisticated scientific knowledge and thinking 

dispositions were more likely to display a preference for micro-level information. Finally, 

Experiment 4.2 showed that this preference for micro-level information results in a 

decrease in the perceived sample size needed in a research study. 

Theoretical Contributions 

 It is important to note that many of the previous studies looking at the influence of 

neuroscience have reached inconsistent conclusions, and one implication of my 

dissertation is that these previous studies may not have focused on the right dependent 

variables. Previous research has primarily focused on how the information affects 



	
  

	
   139	
  

perceived quality of the research and scientific reasoning in the article. In my research, I 

consistently failed to find effects of neuroscience on perceived quality of the research; 

however, consistent effects emerged for perceived understanding, when the phenomenon 

being studied was cognitive, and expectations of replication. Additionally, previous 

research has neglected to control for the type of phenomena (e.g., cognitive vs. non-

cognitive) paired with the neuroscience information, which could also partially explain 

inconsistencies in the literature. For example, Hook and Farah (2013) failed to replicate 

McCabe and Castel (2008) which investigated the influence of brain images presented in 

research articles about cognitive phenomena; however, in Hook and Farah’s replication 

attempts, many of the fictional studies were about non-cognitive phenomena. My 

research suggests that neuroscience information may be most influential for phenomena 

that are easily associated with the mind.  

The present research improves on this previous body of work in a number of other 

ways, as well. For example, previous studies have not attended to how the neuroscience 

or other micro-level information is integrated into the fictional research scenarios. As 

illustrated in Table 5.1 below, some studies used neuroscience only as an explanation, 

while others used it only as evidence, and some used it as both. Given the inconsistencies 

across these studies, it was important to address whether the way in which micro-level 

information is integrated into the research study moderates its influence on reasoning. 

Additionally, in studies investigating the influence of neuroscience text, researchers have 

typically compared the influence of a research study with neuroscience text to the 

influence of a research study with either no additional text at all or no additional text that 

could be construed as a mechanism. Thus, it is unclear whether the effects of 
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neuroscience in previous studies have been due to something unique about neuroscience 

information or, instead, due simply to the fact that a plausible mechanism was suggested 

in the neuroscience condition but not in the control condition. Creating proper control 

conditions for the micro-level conditions was a significant focus of my dissertation and 

allowed for a purer assessment of the influence of level of analysis on causal 

understanding and beliefs about validity. 

 

Table 5.1  
Stimulus Features in Previous Neuroscience Studies (re-presented from Chapter 1) 

 

Why do people tend to think micro-level is superior to macro-level information? 

As discussed in previous chapters, one explanation could be that micro-level information 

sounds technical and scientific, and people could use these superficial features as a cue 

for quality. However, the fact that people were more likely to think that neuroscience, 

rather than eye tracking, evidence provided the best support for the researchers’ 

conclusions in Experiment 3.3 suggests that technical jargon cannot be the only 

explanation. Additional support for this claim comes from Fernandez-Duque, Evans, 

Colton, and Hodges (in press), who found that the presence of jargon from hard science 

Paper Type of Integration Outcome Variable Subjects

Weisberg et al. (2008) Explanation 16 cognitive, 2 non-
cognitive Human Neuroscience text vs. no additional text Quality of 

explanations

McCabe & Castel (2008) Evidence & 
Explanation Cognitive Human

Brain image vs. bar graph vs. text; brain 
image vs. topographical maps; Brain 

image vs. text

Credibility & 
reasoning

Gruber & Dickerson (2008) Evidence Pseudo-cognitive Human No image vs. several different types of 
images, including brain

Credibility & 
reasoning

Hook & Farah (2013) Evidence 2 cognitive, 4 non-
cognitive Human Brain image vs. bar graph vs. control 

photo
Credibility & 

reasoning

Diekmann et al. (in press) Evidence Non-cognitive Human Neuroscience text vs. no additional text Interestingness

Fernandez-Duque et al. (2014) Explanation

16 cognitive, 2 non-
cognitive (used stimuli 
from Weisberg, et al. 

(2008)

Human

Brain image + neuroscience text vs. 
neuroscience text only vs. no additional 

text ; neuroscience text vs. social science 
text vs. no additional text; neuroscience 

text vs. hard science text vs. social science 
text

Quality of 
explanations

Features of Fictional Research study
Comparison of Interest Outcome Variable(s) 

of Interest
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disciplines – such as biochemistry, biology, and mathematics – in an explanation did not 

make the explanation seem better than if social science information was present; 

however, the presence of neuroscience information made the explanation seem 

significantly better than explanations with social science information. 

Another explanation could be that micro-level information appears to provide a 

better mechanistic explanation for a phenomenon. Support for this possibility comes from 

the dramatic effect that micro-level information had on perceived understanding in 

Experiments 2.1 through 3.3. However, as suggested in Experiment 3.4, the perceived 

mechanistic advantage of micro-level information may only hold when the micro-level 

methodology is judged to be an appropriate tool for studying the construct of interest. For 

example, neuroscience, a brain-based methodology, had significant effects on 

understanding cognitive phenomena, but not an emotional phenomenon. These results 

suggest that it may be less straightforward for lay readers to understand how neural 

activity can influence emotions, which folk wisdom tends to ascribe to the heart or the 

“soul”, than how it influences cognitive performance.   

 Another process that might be going on is that people may have fixed beliefs 

about what science is supposed to look like. Beginning at an early age, children tend to 

think that science involves sophisticated equipment. Chambers (1983) asked children to 

draw a picture of a scientist and found that the stereotypical image of a scientist involves 

lab coats, eyeglasses, and laboratory equipment such as microscopes, telescopes, and 

computers. Children were much less likely to draw notebooks and reports, which would 

depict science more generally as a process of recording knowledge. Chambers found that 

the stereotypical image of a scientist begins in second and third grade, with more 
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intelligent children forming the image sooner. One factor contributing to these 

stereotypical representations of science could be the way in which children are taught 

science. Beginning in pre-school, teachers often set aside a fixed amount of time per day 

to “do science”, which typically consists of equipment and disjoint activities that do not 

get integrated into the rest of the day’s activities (Conezio & French, 2002; French & 

Woodring, 2012). Thus, people tend to think of science as a collection of facts resulting 

from sophisticated equipment, rather than an approach we use to think about the world, 

and may fail to appreciate how the scientific process can be applied in everyday lives at 

multiple levels of analysis. These fixed beliefs about science might result in a bias 

towards reductionist approaches, such that information that is collected from a lower 

level of analysis will be perceived as more valid than information that is collected from a 

higher level of analysis. The deficiency in science process skills has affected the Next 

Generation Science Standards, which seek to move beyond just content knowledge and 

place a greater emphasis on the mastery of transferable scientific thinking skills that can 

be incorporated across disciplines (NGSS Lead States, 2013).  

 One possibility that can be ruled out is that people are distracted by micro-level 

evidence. We consistently found that, in Studies 1-4, the presence of neuroscience 

information did not interfere with participants’ ability to recall important methodological 

details from the article they read. Although this finding does not rule out the possibility 

that there is some process below the threshold of awareness that is influencing 

evaluations, such as a heuristic process, it does suggest that neuroscience is not affecting 

attentional processes.  
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 An intriguing finding from this research is that, even among scientifically literate 

samples, people whose scientific literacy was higher than the median were even more 

likely to show a preference for micro-level information. Such a finding could still be 

explained in part by the aforementioned “prior beliefs about science” hypothesis, given 

that these prior beliefs are not necessarily limited to people who are low in scientific 

literacy. In fact, it is possible that these prior beliefs are even stronger among the 

scientifically literate. For example, perhaps scientifically literate people have had more 

education and more exposure to these beliefs about what science is and is not, resulting in 

a kind of confirmation bias (Nickerson, 1998), while people with less scientific 

knowledge might approach the task with more naïveté. It is also possible that people with 

more scientific literacy were more familiar with the terminology used and scientific 

domains represented, resulting in increased ratings based on familiarity, compared to 

people with lower scientific literacy whose lack of knowledge or familiarity may have 

resulted in lower ratings. However, this explanation would not necessarily be consistent 

with our finding that people who are lower in scientific literacy rate their perceived 

understanding higher than do those who are higher in scientific literacy, although 

possibly this latter finding could be explained by a self-enhancement effect (Paulhus, 

1998). 

 Although distinguishing between these potential processes is outside the scope of 

this work, this research has provided information on which processes are more or less 

likely candidates and which ones should be explored in future work. Additionally, this 

latter set of findings strongly suggests that the preference for micro-level information is 

deliberative – that is, people are consciously deciding that micro-level information 
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appears more valid than macro-level information. It would not be correct to say that this 

conscious valuation of micro-level over macro-level information is irrational; as 

previously mentioned, there may be well-founded reasons why people believe micro-

level information to be superior. However, the fact that people are expressing this value 

provides insight into lay people’s assumptions about what a scientific process is and what 

makes evidence valid.  

Practical Implications 

Given that the lay public encounters scientific evidence online, when a number of 

contextual factors may be present, an important implication of my work pertains to the 

influence of these contextual factors on the preference for micro-level information. The 

first implication is that one’s current or prior behavior plays a significant role in 

determining how people are influenced by micro-level information that is relevant to that 

behavior. Much research has examined how prior beliefs affect the way people reason 

about evidence and found that people tend to be more critical of evidence that contradicts 

their prior beliefs, and less critical of evidence that confirms their prior beliefs (Lord, 

Ross, & Lepper, 1979; Klaczynski, 2000). Similarly, my research consistently 

demonstrated that people with congruent prior beliefs evaluated the fictional research 

studies more favorably than did people with neutral or incongruent beliefs (Experiments 

2.1 through 3.4). Interestingly, interactions between the condition (neuroscience vs. no 

neuroscience) and prior behavior showed that people who already engage in the behavior 

were less influenced by neuroscience information, whereas people who did not yet 

engage in the behavior were influenced by the neuroscience information (Experiments 

3.1, 3.2, and 3.4). These results suggest that when a newspaper headline touts a new 
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behavior or product unfamiliar to people, coupled with neuroscience or other micro-level 

information, people may be especially likely to be influenced by it, particularly if the 

micro-level process is seen as directly relevant to the outcome variable.   

 Another implication from my research is that we have a better understanding of 

the ways in which micro-level preferences can manifest themselves in everyday 

reasoning and decision-making scenarios. Specifically, people are more likely to expect 

that a study will replicate when the neuroscience information is included (Experiments 

3.1, 3.2, and 3.4), and people are willing to accept smaller sample sizes when micro-level 

information is present (Experiment 4.2). Taken together, people tend to believe 

conclusions more when they are based on micro-level evidence. This finding may help 

explain the tension that is often created when reductionist approaches seem to be 

overemphasized, typically by funding agencies, in fields where a complex systems 

approach is often more beneficial. As noted in Breckler (2006), a clear example of the 

implications of micro-level preferences has played out at the National Institute of Mental 

Health, who previously championed the biopsychosocial model of mental health but has 

recently shifted its focus to neural and genetic approaches, even though, for many mental 

health issues, balanced approaches are more likely to lead to significant advances. For 

example, research on interpersonal relationships and social support is critical for 

understanding how to manage many mental health issues, and it would be inappropriate 

to assume that micro-level approaches could provide more insight into the management 

of mental health issues than macro-level approaches. In other words, the assumption that 

micro-level information is superior to macro-level information could lead to the dismissal 

of important environmental factors that could moderate, or even give rise to, 
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physiological processes. Another, less direct, consequence of an overemphasis on 

reductionism is that many reductionist techniques are expensive, which often limits the 

number of subjects that can be included in a study, which can lead to an overabundance 

of false positives in the scientific literature (Button et al., 2013; Macleod, 2011). 

However, given the perceived validity of micro-level evidence demonstrated in the 

present work, people may not immediately appreciate these caveats to the extent they 

would for macro-level evidence.   

Final Remarks 

 I have provided evidence that people show consistent preferences for micro-level 

information across a variety of behavioral phenomena, and it appears that people arrive at 

these preferences through deliberate strategies. These findings suggest that people think 

about macro- and micro-level evidence in fundamentally different ways, with a tendency 

to value micro-level evidence over macro-level evidence. While there may be some 

rational basis for this differential valuation, I have also illustrated some of the 

implications this may pose for scientific fields, particularly ones that seek to understand 

complex systems in which important factors may operate at many different levels of 

analysis. As suggested by the Next Generation Science Standards, one strategy for 

improving the way that people reason about scientific evidence may be to place a larger 

emphasis on the process of science, and encourage children from a young age to see 

science as strategic approach for understanding the phenomena they encounter in their 

everyday lives, regardless of the level of analysis. 
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