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ABSTRACT 
In pancreatic beta cells, the insulin precursor proinsulin is folded in the endoplasmic reticulum 
(ER), forming three critical intramolecular disulfide bonds.  After homo-dimerizing, native 
proinsulin exits the ER en route to secretory vesicles, where it forms hexamers, is 
endoproteolytically cleaved to mature insulin, and is stored until it is secreted in response to 
elevated blood glucose.  In Mutant Ins-gene induced Diabetes of Youth (MIDY), misfolded 
mutant proinsulin is retained in the ER and acts in a dominant-negative manner to impair 
maturation of wild-type (wt) proinsulin, leading to decreased insulin release and eventual ER 
stress-induced beta cell death.  Using cell culture and mouse models, I have investigated two 
potential mechanisms to improve secretion of misfolded mutant proinsulin.  First, I found that 
intermolecular interactions between proinsulin molecules impact strongly on the fate of those 
molecules.  Misfolded mutant proinsulin molecules dimerize with and impair secretion of co-
expressed wt molecules.  Interestingly, the opposite is also true; wt proinsulin molecules also 
stabilize and enhance secretion of mutant molecules.  Thus, there is a dynamic bidirectional 
interaction between dimerization partners, which we hope to exploit pharmacologically to 
improve clearance of misfolded proteins from the ER and alleviate ER stress-induced cell death.   
 
In the second half of my project, I investigated how manipulating the oxidative environment of 
the ER may impact proinsulin secretion and beta cell health in cells expressing mutant proinsulin.  
ER Oxidoreductin-1 (Ero1"), the best-studied ER oxidant, contributes to oxidative folding of 
secretory proteins by coupling generation of de novo disulfide bonds with reduction of molecular 
oxygen.  Due to its generation of hydrogen peroxide as a byproduct, Ero1" hyperactivity has 
been speculated to contribute to cell death in stressed beta cells.  Surprisingly, I found the 
opposite to be true.  Overexpression of Ero1" rescued secretion of wt proinsulin in the presence 
of mutant proinsulin.  Furthermore, Ero1" directly rescued a subset of MIDY mutant proinsulins 
by improving their oxidative folding, resulting in a decrease in mutant proinsulin-induced ER 
stress response.  These findings improve our understanding of proinsulin maturation in beta cells, 
and may contribute to novel therapeutic approaches in this and other secretory protein 
conformational diseases. 
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CHAPTER 1 

 

INTRODUCTION 

 

Insulin Function, Synthesis, and Secretion 

Insulin is the primary hormone responsible for glucose homeostasis. In response to increased 

blood glucose after a meal, increased blood insulin levels stimulate glucose uptake and 

utilization in fat and muscle and inhibit hepatic glucose production, among other effects.  Insulin 

deficiency results in marked metabolic abnormalities and disease, as will be discussed below.  A 

basic understanding of the insulin synthesis pathway, and the cells responsible for secreting this 

critical hormone, is important to understanding, preventing, and treating diseases of insulin 

deficiency. 

 

Insulin is synthesized and secreted from beta cells in the pancreatic islets of Langerhans.  

Making up approximately 50% of the cells in the ~1 million islets in a human pancreas (1), beta 

cells are specialized to synthesize, process, store, and secrete large amounts of insulin.  The 

insulin polypeptide precursor, preproinsulin, is a single chain molecule comprised of the signal 

peptide, insulin B-chain, C-peptide, and insulin A-chain (Figure 1.1). The N-terminal signal 

peptide drives newly synthesized preproinsulin to and across the endoplasmic reticulum (ER) 

membrane, where the signal peptide is removed by signal peptidase, forming proinsulin (2).  In 

the oxidizing environment of the ER lumen, proinsulin rapidly folds, forming three 

evolutionarily conserved disulfide bonds, including two inter-chain disulfide bonds B7-A7 and 

B19-A20, and one intra-chain disulfide bond A6-A11 (3-6). The secondary structure of the 

proinsulin molecule also contains three alpha-helical domains (7); the B-chain helix including 

residues B9-B19 and the A-chain helix including residues A13-A19 likely facilitate formation 

and alignment of the B19-A20 disulfide (8), while the A-chain helix comprising residues A3-A8 

influences alignment of the B7-A7 and A6-A11 disulfides (9).  Properly folded proinsulin 

dimerizes (4, 10-12) and exits the ER for delivery to the Golgi apparatus.   
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In the trans-Golgi network, zinc concentration increases relative to earlier secretory pathway 

compartments (13), and proinsulin is thought to form homo-hexamers around central 

coordinating Zn2+ ions (4, 14, 15).  In the trans-golgi network, proinsulin molecules are sorted 

into immature secretory vesicles in a remarkably efficient process in which >99% of newly 

synthesized proinsulin molecules are correctly targeted (16).  The mechanism of specific protein 

sorting and concentration in secretory vesicles is thought to occur by three potential mechanisms: 

sorting by entry, in which a specific signal is required for the protein to enter the vesicles; sorting 

for exit, in which certain proteins are specifically removed and targeted to other pathways such 

as the endosome; and sorting by retention, in which some signal causes the protein to be retained 

in secretory vesicles (17). Proinsulin sorting remains an active area of investigation, but 

recognition by specific receptors (18), specific membrane interactions (17), hexamer 

condensation (19), and selective removal of other soluble proteins to the endosomal system (20) 

have been suggested to play a role in formation of immature insulin vesicles. In maturing 

secretory granules (21-24), prohormone convertases PC1/3 and PC2 remove C-peptide at 

specific dibasic residues (Arg31-Arg32 and Arg64-Lys65); carboxypeptidase E then cleaves the 

dibasic residues (25), producing mature insulin.  The entire process of insulin maturation, from 

proinsulin folding in the ER to C-peptide cleavage in mature vesicles, is maintained in a unique 

cellular compartment, separate from the cytosol, that provides the appropriate conditions for the 

proinsulin and insulin molecules to maintain their appropriate secondary, tertiary, and quaternary 

structures.   

 

Mature insulin is stored in mature beta granules.  Each cell has between 5-10,000 beta granules 

(26, 27), with each granule estimated to contain 0.1– 1.0 million insulin molecules (28) 

condensed in a multimeric state (14, 29).  Several hormones, neurotransmitters, and nutrients can 

modulate insulin release from beta cells, including somatostatin, adrenaline, glucagon, GLP-1, 

GABA, and acetylcholine, as well as amino acids including leucine and arginine.  The most 

notable insulin secretagogue of all is plasma glucose, which normally ranges from a fasting level 

of 4-5mM to a post-prandial level of 7mM (1).  In pancreatic beta cells, plasma glucose is tightly 

linked to glucose metabolism, which in turn is coupled to insulin secretion.  Glucose is 

transported in a concentration dependent manner across the beta cell plasma membrane through 
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non-insulin dependent glucose transporters (Glut2 in rodents, Glut1 and Glut3 in humans) (30, 

31).  After phosphorylation of glucose by glucokinase and subsequent glucose metabolism, 

cytosolic ATP rises, causing closure of the ATP-sensitive potassium KATP channels (32), and 

subsequent membrane depolarization increases cytosolic calcium levels.  This KATP channel-

dependent pathway, termed the triggering pathway, is the best-understood mechanism for 

glucose stimulated insulin release.  Another poorly understood pathway that is KATP channel-

independent is responsible for amplification of the initial signal for insulin release, and may 

contribute to the continued release of insulin during “second phase” secretion (described below) 

(33).  Calcium stimulated exocytosis of insulin granules depends on the SNARE complex, 

including syntaxin 1 and SNAP25 on the cytosolic surface of the plasma membrane and VAMP2 

on the cytosolic surface of the secretory granule (17, 34).  When a vesicle is docked at the 

plasma membrane prior to exocytosis, complete association of the SNARE proteins (and 

resulting membrane fusion) is inhibited by binding of the protein complexin (35). Calcium 

binding to another protein in the exocytic protein complex, synaptotagmin, blocks the inhibitory 

function of complexin, allowing quick membrane fusion and exocytosis (36).  The SNARE 

proteins are also found in complex with voltage gated calcium channels, allowing very tight 

coupling of membrane depolarization and insulin release (37).   

 

Insulin granules are found in two distinct populations, the readily releasable pool (RRP) docked 

at the plasma membrane and the reserve pool.  Shortly after an increase in glucose, the RRP 

granules quickly fuse to the plasma membrane, accounting for the “first-phase” release of insulin.  

After 10-15 minutes, the “second-phase” of insulin secretion begins, in which RRP granules 

have been depleted and reserve granules must traffic to the membrane prior to exocytosis (17, 38, 

39).  Under basal conditions, a normal pancreas releases <100pmol of insulin per minute.  

During glucose-stimulated insulin release, that value increases to ~1500pmol/min during first-

phase and ~400pmol/min during second phase (1, 40).  Even under stimulated conditions, a 

relatively small fraction (approximately 1% per hour) of granules are released (41, 42), and the 

insulin granule pool is actively maintained with aged granules being degraded by crinophagy or 

autophagy (43, 44), resulting in a granule half life of 3-5 days (28, 45).   

 



 4 

Approximately half of daily insulin secretion accommodates basal metabolic needs, while half is 

secreted in response to eating (46). Thus, under non-stimulated conditions, beta cells must 

maintain a basal level of insulin synthesis to maintain reserve pools, and under stimulated 

conditions, synthesis must be upregulated to replace exocytosed granules. Similar to regulation 

of insulin secretion, insulin biosynthesis is regulated by multiple nutrient factors, principally 

glucose.  High glucose regulates insulin biosynthesis by altering preproinsulin translation in the 

short term (<4hrs) (47, 48), transcription in the medium term  (>12 hours) (49, 50), and mRNA 

stability in the long term (>24 hours of high glucose) (28, 51).  As preproinsulin accounts for 30-

50% of the protein synthesized in a beta cell (52), its synthesis and processing represents the 

major activity of the beta cell.  

 

While the post-ER steps in insulin synthesis (granule packaging, hexamerization, C-peptide 

cleavage) are fairly well understood, the ER processes are relatively more complex and are just 

now being elucidated.  Following is a review of the current understanding of protein processing, 

trafficking, and signaling associated with the ER.  

 

Entry, Folding, Modification, Trafficking, and Degradation in the ER 

Translocation of secretory proteins across the ER membrane can occur co-translationally, 

simultaneously with continuing protein synthesis, or post-translationally, after translation has 

concluded in the cytosol (53).  In co-translational translocation, the signal peptide of a growing 

polypeptide is recognized by the signal recognition particle (SRP).  The SRP-nascent chain-

ribosome complex then binds to the Sec61 translocon, and translation continues as the growing 

polypeptide is fed through the translocon into the lumen of the ER (54).  Post-translational 

translocation is SRP-independent, relying instead on a mechanism that involves a 

Sec61/Sec62/Sec63 transmembrane complex associated with the ER luminal chaperone BiP (55, 

56).  Early studies indicated that ER translocation of preproinsulin mainly involved the SRP-

dependent co-translational pathway (57, 58), but recent findings suggest that translocation of 

preproinsulin and other small polypeptides may also involve the Sec62-dependent post-

translational pathways (2, 59).  During or after translocation, signal peptidase cleaves the signal 

peptide (60), releasing the newly translocated protein into the ER lumen. 
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Upon entry into the ER, secreted proteins must fold into the correct three-dimensional 

(secondary and tertiary) structure, including formation of appropriate disulfide bonds (if 

applicable), as well as receiving additional post-translocational modifications such as 

glycosylation (if applicable).  Secretory proteins also tend to assemble into oligomeric 

complexes to form their quaternary structure.  These modifications can help to stabilize the 

protein both inside and outside the cell, and may be required for proper trafficking of the protein 

from the ER to the Golgi complex, as well as for the protein’s ultimate function.   

 

Protein folding in the ER begins cotranslocationally as the polypeptide emerges from the Sec61 

channel (61).  Though early in vitro studies showed that a protein’s primary sequence carries the 

information necessary for proper folding (62-64), in more recent years, data have suggested that 

optimizing kinetics and efficiency of protein folding in vivo requires assistance from several 

proteins known as molecular chaperones. These chaperones, which act to prevent aggregation of 

unfolded proteins thereby helping to facilitate folding and limit damage caused by mis- or 

unfolded proteins (65), are grouped into subfamilies based on their size: Hsp40, 60, 70, 90, and 

100.  In the ER of mammalian cells, the Hsp70 family member BiP/GRP78 is considered a 

master regulator of ER function (66), though members of the Hsp40 (Erdj1-5) (67, 68), Hsp90 

(GRP94) (69), and Hsp100 (TorsinA) (70) families also contribute to protein folding in the ER.  

As a new polypeptide enters the ER lumen, BiP binds cyclically and preferentially to short 

sequences of hydrophobic amino acids (71), preventing inappropriate interactions with other 

hydrophobic regions.  Cyclical BiP binding (linked to cycles of ATP hydrolysis) occurs with 

greater affinity for proteins that fold slowly or unstably (72).  Burial of hydrophobic side chains 

is thought to be the strongest force driving protein folding in an aqueous environment, with 

hydrogen bonding and electrostatic interactions also contributing (61).  As hydrophobic regions 

become more oriented towards the interior of a protein structure, the exposure of BiP binding 

sites on that protein decreases, and BiP binding to those sites on the protein decreases in parallel.  

Several of the other molecular chaperones act as co-factors for BiP function.  For example, ErdJ3 

(p58) binds misfolded forms of several proteins in complex with BiP (73).  For some substrate 

proteins, GRP94 binds after BiP release, which facilitates further folding (74).  In the case of 

proinsulin folding, some specific ER chaperones have been implicated.   However, while 
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misfolded proinsulin is known to bind BiP (11, 75) and p58 (73), the normal folding pathway for 

proinsulin is unknown.  

 

Disulfide bond formation is critical for folding and stabilization of many secreted proteins.  

Members of the protein disulfide isomerase (PDI) family of ER oxidoreductases participate in 

the formation of disulfide bonds of secretory proteins.  This family, consisting of 20 known 

members, are defined by the presence of an N-terminal ER signal peptide and at least one 

thioredoxin-like domain (76).  The first-identified member of the family, PDI, is known to 

catalyze formation (oxidation) (77), breakage (reduction) (78, 79), and reshuffling 

(isomerization) (80) of disulfide bonds, as well as non-redox dependent chaperone activity to 

assist protein folding (81).  Based on structural similarity to PDI, many of the PDI family 

members are hypothesized to have similar functions.  However, the redox potential of each 

member remains uncertain, and still others completely lack an active CXXC motif and thus may 

not be involved in redox chemistry at all (76).  It is far from clear why mammalian cells express 

such a wide range of these related PDI family members, and the role of each specific member is 

the subject of active investigation worldwide.   

 

The redox active site of a PDI protein includes at least one CXXC motif, which shuttles between 

the reduced dithiol and the oxidized disulfide state.  This dual nature of the PDI active site allows 

the protein to act as both a reductase and an oxidase.   Formation of a disulfide bond in a 

secretory protein substrate is thought to be based on exchange of a disulfide from the ER 

oxidoreductase to the folding secretory protein, which returns the PDI active site to the reduced 

dithiol.  Under physiologic conditions, many of the PDI family members are partially oxidized 

(78, 82-84), and their redox state is maintained in part by the overall redox potential of the ER 

that is at least in part controlled by glutathione (85, 86).  But the glutathione buffer system is not 

thought to be capable of driving the catalysis of disulfide bond formation with the kinetics 

required by biological demand, so the (re-)oxidation of PDI family members for purposes of 

secretory protein disulfide bond formation is thought to be catalyzed through an additional 

mechanism.   
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The best-studied source of de novo oxidizing equivalents for the ER is ER Oxidoreductin 1 

(Ero1) (87, 88).  Ero1 is a protein residing primarily on the luminal side of the ER membrane.  

The Ero1-PDI pathway of oxidation, as initially described in yeast, involves oxidation of an Ero1 

active site via an FAD+ ! FADH + H+ intermediate with ultimate reduction of molecular 

oxygen and the generation of H2O2.  Oxidized Ero1 then internally shuttles its newly formed 

disulfide bond to a different Ero1 active site disulfide pair, which in turn delivers the oxidizing 

equivalents to PDI.  This step enables PDI to oxidize its protein substrates (89-91).  See Figure 

1.2 for a graphic summary of Ero1 function. Mammalian Ero1 is thought to behave similarly to 

the yeast enzyme (92, 93) although this does not likely tell the whole story.  Notably, whereas 

Ero1 seems to be the only source of oxidizing equivalents in the ER of yeast (88), mammalian 

cells express two Ero1 homologs: Ero1! (94), which is expressed ubiquitously, and Ero1" (95), 

which is limited to pancreatic beta cells and a few selective other cell types (96).   Ero1" 

deficiency in beta cell lines has been shown to cause a decrease in proinsulin maturation and 

insulin content (97).  Moreover, mice with homozygous knockout of the Ero1" gene develop a 

prediabetes/diabetes phenotype triggered by insulin deficiency.  Nevertheless, mice lacking both 

Ero1! and Ero1" still retain some ability to oxidize proinsulin and produce mature insulin (96), 

suggesting that  other Ero1-independent pathways of proinsulin oxidative folding may also be 

involved.  

 

Though their significance in ER oxidation remains unclear, at least four potential alternative ER 

oxidation pathways exist: peroxiredoxin-IV (PRDX4), glutathione peroxidase (GPX)7 and GPX8, 

quiescin sulfhydryl oxidase (QSOX), and vitamin K epoxide reductase (VKOR) (98).  PRDX4 

can catalyze oxidation of PDI by reduction of H2O2 (99), which makes it particularly interesting 

as a supplement to Ero1 that produces H2O2 as a byproduct.  Since PRDX4 expression rescued 

the phenotype of an Ero1 mutation in yeast, and PRDX4 knockdown killed cells derived from 

Ero1! and Ero1" double knockout mice, PRDX4 is very promising as a significant supplement 

to Ero1-dependent disulfide bond formation.  GPX7 and GPX8 can couple H2O2 reduction to 

oxidation of some ER oxidoreductases in vitro, and can physically associate with Ero1! in cells 

(100), but in vivo evidence of their function as ER oxidants is lacking.  Like Ero1, QSOX 

couples reduction of oxygen with disulfide formation, but with broader substrate specificity.  In 

fact, QSOX has been shown to directly oxidize many substrate proteins in vitro, independent of 
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ER oxidoreductases (101).  QSOX is expressed in many tissues throughout the body and has 

recently been shown to act as an oxidase in vivo (102), but its significance in protein oxidation in 

the ER in vivo is unknown.  VKOR catalyzes reduction of vitamin K epoxide to vitamin K 

hydroquinone, which is critical for maturation of blood-clotting factors.  As part of its catalytic 

function, a CXXC motif within VKOR is oxidized (103, 104), and the resulting disulfide can 

then be transferred to PDI family members, with special preference for the transmembrane 

oxidoreductases TMX and TMX4 (105), suggesting that different substrates may be oxidized via 

different pathways.  Though Ero1 is still thought to be a major ER oxidant in mammals, further 

study of these alternate pathways of disulfide bond formation is still needed for a complete 

understanding of oxidative protein folding in the ER of distinct cell types, including pancreatic 

beta cells.   

 

Disulfide bond formation is a critical step in proinsulin maturation and function.   Genetically 

modified proinsulin molecules that lack the interchain B19-A20 or B7-A7 disulfide bonds are 

retained in the ER, while molecules that lack the A6-A11 intrachain disulfide bond are secreted 

but lack the ability to bind and activate insulin receptor.  Furthermore, any proinsulin molecule 

lacking a single cysteine, thus having a free thiol, is also at risk of being retained in the ER.  

Given the requirement for proinsulin to form proper disulfide bonds before exiting the ER, 

enhancement of ER oxidative machinery may offer an interesting approach to improve beta cell 

function, as will be discussed in chapter 3 of this thesis.  

 

A majority of secreted proteins undergo glycosylation within the ER, especially N-linked 

glycosylation.  N-linked glycosylation can play an important role in protein quality control, 

trafficking, and function.  Because proinsulin, the subject of this thesis, is not a glycoprotein, the 

N-linked glycosylation process will be reviewed only briefly here.   Upon entry of nascent 

glycoproteins into the ER, oligosaccharyl transferase attaches a preformed glycan containing 

three glucose, nine mannose, and two N-acetyl glucosamine residues to asparagine side chains in 

Asn-X-Ser/Thr consensus sites (106).  These sugar residues then undergo consecutive rounds of 

trimming and reglucosylation by glucosidases and glucosyltransferases, providing sufficient time 

for proper folding to occur, assisted by cyclical association of lectin-like ER chaperones calnexin 

and calreticulin.  Near-native molecules continue in the calnexin-calreticulin cycle until 
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molecules that achieve a native conformation can proceed forward to the Golgi, and terminally-

misfolded molecules can be targeted for degradation (65).   

 

A final step that many proteins undergo prior to ER exit is oligomerization, in which multiple 

subunits combine into a single complex.  Intermolecular interactions stabilizing the complex may 

include intermolecular disulfide bonds or non-covalent hydrogen bonds and/or hydrophobic 

interactions.  The nature of the oligomer and the sequence of folding and dimerization vary.  

Newly synthesized thyroglobulin (Tg), for example, is initially detected in high-molecular 

weight aggregates bound to molecular chaperones (107, 108).  After ten minutes, these 

aggregates resolve into monomers that no longer bind chaperones.  Shortly thereafter, Tg is 

detected as a dimer and is eventually trafficked to the Golgi.  For other proteins, oligomerization 

can occur prior to or during monomer folding (109), as is seen with the Trp repressor in E coli 

(110).   The immunoglobulin IgM forms more complex oligomers (111): its secreted form is 

made up of one J-chain and five subunits, each comprising two heavy and two light chains, 

stabilized by intermolecular disulfide bonds (112).  Some oligomeric proteins can, alternatively, 

be secreted as monomers (113-115), but quite often, formation of dimers or higher order 

oligomers is required for export from the ER.  In the case of immunoglobulins, the heavy chain 

is retained in the ER unless it is bound to a light chain (111).  Similarly, in the T-cell receptor, 

addition of the ! chain confers stability and allows ER exit of the previously assembled hetero-

oligomer (116).   

 

Protein oligomerization has also been recognized to play a role in the pathogenesis of human 

disease.  Dominant and recessive mutations in the Cl-/HCO3- anion exchanger (AE1) have been 

found to cause distal renal tubular acidosis, a kidney defect, as well as southeast asian 

ovalocytosis, a red blood cell defect (117, 118). Normally, AE1 is expressed on the plasma 

membrane of alpha-intercalated cells in the kidney or red blood cells, but mutant forms of the 

protein are retained in the ER and fail to reach the membrane.  When mutant AE1 is co-

expressed with wild-type AE1, the two proteins form hetero-oligomers, which causes the wild-

type AE1 to also be retained in the ER (118, 119). Interestingly, hetero-dimerization between 

mutant and wild-type kAE1 also rescues some of the mutant molecules, allowing them to exit the 

ER and reach the plasma membrane (120, 121).  As part of further investigation into how protein 
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oligomerization in the ER can affect human disease, chapter 2 of this thesis will focus on how 

mutant and wild-type versions of two proteins interact to influence pathogenesis of two distinct 

diseases: Mutant Ins-Gene Induced Diabetes of Youth (MIDY, described below) and Congenital 

Hypothyroidism with deficient thyroglobulin.  

 

In order to leave the ER for transport to the Golgi complex, proteins must pass the ER quality 

control (QC) system.  It is thought that QC acts at two levels: primary (or general) QC applies to 

all proteins exiting the ER, while secondary QC applies to specific proteins (122).  In primary 

QC, ER chaperones and other proteins recognize common characteristics of mis- or unfolded 

proteins, such as exposed hydrophobic regions, mobile loops, free thiols, or a general lack of 

compactness.  Such characteristics of incompletely folded proteins trigger binding by chaperones 

like BiP, GRP94, and the PDIs, resulting in retention in the ER.  The lectins calnexin and 

calreticulin are important in retention of misfolded glycoproteins, as they bind to the specific 

glucosylated glycans characteristic of misfolded proteins.  The primary QC system is relatively 

stringent, since the multitude of folding enzymes and chaperones form a redundant system in 

which each protein recognizes unfolded substrates in a different manner (123).  In secondary QC, 

cargo receptors recognize molecules to specifically target them for ER exit.  Examples of 

secondary QC proteins include ERGIC-53 (124), which recognizes a subset of glycoproteins, and 

!-catenin (125), which binds to E-cadherin and enhances its export to the plasma membrane.  

Transport from the ER to the Golgi occurs via COPII coated vesicles budding from specialized 

exit sites of the ER. Entry of proteins into COPII coated vesicles can occur by a bulk flow 

mechanism (126) but receptor-mediated export can increased the kinetics and efficiency of ER 

export (127). In the former mechanism, properly folded cargo is incorporated into ER-exit 

vesicles because there is no means (such as persistent ER chaperone binding) to exclude such 

incorporation; whereas the latter mechanism requires binding of cargo proteins to receptors for 

active extraction from the main ER compartment into ER-exit vesicles.  Both of these models 

likely contribute to differing degrees, depending on the particular substrate protein being 

exported (122).  Upon uncoating, the COPII vesicles fuse to form the ER-Golgi intermediate 

compartment (128).  Vesicle membrane and ER resident proteins that may have escaped can be 

recycled back to the ER (129) via COPI coated vesicles, with the help of ER-retrieval receptors 

such as the KDEL receptor (130).   



 11 

 

Proteins that are terminally misfolded are targeted for degradation by the process known as ER-

associated degradation (ERAD).  After recognition by ER chaperones, the misfolded protein 

must be retrotranslocated from the ER to the cytosol (131-133).  If disulfide bonds have been 

formed, it is believed that they must be broken before retrotranslocation, a process that is likely 

to involve the reductase function of some of the PDI family members (134-136).  The process of 

retrotranslocation remains incompletely understood, though it does include at least in part the 

Sec61 complex (133, 137).  Ubiquitination of ERAD substrate proteins during retrotranslocation, 

through the concerted action of Hrd1, gp78, RMA1, TEB4, and CHIP (138), targets the 

misfolded substrate to the cytosolic 26s proteasome for degradation (139).   

 

Accumulation of misfolded proteins can be harmful to individual cells and to whole organisms.  

When unfolded or misfolded proteins accumulate, cells can experience “ER stress”. To adapt to 

protein load in the ER and to prevent such accumulation, cells activate an ER stress response 

also known as the unfolded protein response (UPR).  The ER stress response serves to balance 

ER protein load with folding capacity by inhibiting general protein translation while upregulating 

genes involved in protein folding and degradation. This conserved stress response consists of 

three individual signaling branches activated by the three ER membrane-associated sensors Ire1, 

ATF6, and PERK (140).  All of these sensor activities are thought to be repressed by binding of 

their luminal domains to BiP.  When the load of unfolded or misfolded proteins in the ER 

increases, BiP shifts its binding distribution towards these proteins and away from the sensors, 

which can allow them to activate their respective response pathways (141-143).  Direct binding 

of misfolded proteins by the sensors may also contribute to pathway activation (144).  Activated 

Ire1 dimerizes and auto-phosphorylates and then cleaves a 26 base pair fragment from the Xbp1 

mRNA (145), which can then be translated into an active Xbp1 transcription factor that induces 

expression of many genes involved in ER function (146).  Activated Perk homodimerizes and 

ultimately phosphorylates Ser51 of eIF2! (147), which attenuates global protein translation to 

help relieve ER stress.  Curiously, phospho-eIF2! allows for the increased translation of ATF4, a 

transcription factor that also induces expression of genes related to ER function, apoptosis, and 

oxidative stress (148).  Activated ATF6 exits the ER and is delivered to the Golgi complex 

where it is cleaved by S1P and S2P proteases to release the transcription-activating form 



 12 

pATF6!(N) (149), which acts similarly to active Xbp1 in turning on ER stress-response genes 

(150).  Though the UPR is a protective response meant to maintain functional balance in the ER, 

chronic unremitting ER stress can induce apoptosis through the ATF4-induced expression of the 

pro-apoptotic transcription factor CHOP (151). 

 

ER stress and Misfolded Proinsulin in Diabetes 

The existence of several forms of monogenic diabetes caused by mutations to ER-related genes 

emphasizes the importance of the ER in pancreatic beta cell function and insulin secretion.  In 

Wolcott-Rallison syndrome, a rare disorder characterized by neonatal insulin-dependent diabetes 

and other organ system manifestations, mutations in PERK (152) result in pancreatic hypoplasia 

and "-cell loss (153).  In Wolfram syndrome, a mutation in the WFS1 gene (154), which encodes 

a protein that affects ER calcium homeostasis, results in early-onset diabetes associated with 

selective "-cell loss, among other manifestations (155).  Furthermore, mutations in ATF6 (156, 

157) and CHOP (158) have been identified as contributing to increased risk for type 2 diabetes.   

 

Type 2 diabetes, which accounts for >90% of the 25.8 million cases of diabetes in the United 

States (159), results when defects in insulin secretion and peripheral insulin action contribute to 

loss of maintenance of euglycemia.  Progressive insulin deficiency seems to be what drives 

patients from a state of “pre-diabetes” to overt diabetes and is recognized as a crucial feature in 

the pathogenesis of the disease (160-162).  Impaired beta cell function, as evidenced by impaired 

first- and second-phase insulin release (163-165) and increased secretion of unprocessed 

proinsulin (166), and loss of beta cell mass all likely contribute to insulin deficiency in diabetes.  

Patients with type 2 diabetes have been shown to have fewer beta cells (167, 168) and an 

increase in apoptotic beta cells (169); these findings have also been replicated in multiple animal 

models of the disease (170-175).  Though not the only factor involved in beta cell death, ER 

stress has been implicated as a key factor in the progression of diabetes (175-180).   Notably, 

Laybutt et al observed increased expression of several ER stress markers in islets of diabetic 

db/db mice and in pancreatic sections of patients with type 2 diabetes.  They also found that 

decreasing ER stress, by overexpressing BiP, attenuated lipid-induced apoptosis in mouse beta 

cell cultures (176).  Similarly, Song et al showed that knockout of the gene encoding the ER 

stress-induced pro-apoptotic transcription factor, Chop, protected from beta cell death and 
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diabetes in multiple genetic and diet-induced models of the disease (175).  Though these and 

other studies establish a link between ER stress-induced apoptosis in pancreatic beta cells and 

type 2 diabetes, the proximal mechanism responsible for ER stress signaling is less clearly 

established.   

 

One potential contributor to ER stress-induced beta cell death in diabetes is islet amyloid 

polypeptide (IAPP) (181).  This protein, which is synthesized as an 89 amino acid chain and 

cleaved to a 37 residue form (182), is trafficked through the insulin secretory pathway and 

cosecreted with insulin (183).  Its physiologic function is poorly understood, but it does have a 

paracrine effect to inhibit insulin secretion (184).  It may also inhibit insulin-stimulated glucose 

uptake in muscle cells (185), delay gastric emptying, and suppress appetite (186).  IAPP was 

originally discovered due to its tendency to form extracellular amyloid deposits in islets of 

diabetic patients (187, 188). Transgenic expression of human IAPP gives mice and rats a greater 

predisiposition to diabetes (189-191), based on a deficit in beta cell mass due to increased 

apoptosis (192). Evidence now suggests that the toxic effects of IAPP are not due to the 

formation of extracellular fibrils (as was originally hypothesized) (193), but rather due to its 

propensity to form intracellular toxic oligomers (194-196).   The mechanism by which IAPP 

causes cell death may involve UPR activation, since increased ER stress markers were observed 

in beta cell lines and islets of transgenic IAPP rodents (177, 197), but other pathways may also 

be involved, since p38 MAPK (198), JNK1 (199), and Fas-associated death receptor (200) 

expression is increased in cells exposed to IAPP.  Even though IAPP has well-established 

potential to harm beta cells, its significance in pathogenesis of type 2 diabetes is less well-

defined; clearly, other proteins and factors in the cell are involved.  

 

Proinsulin is definitively the most abundantly synthesized islet protein, accounting for up to 20% 

of total mRNA (201) and up to 50% of all protein synthesized in beta cells (202).  It is therefore 

reasonable to hypothesize that misfolded or unfolded proinsulin may contribute significantly to 

ER stress and apoptosis in the pathogenesis of type 2 diabetes.  Indeed, a subpopulation of newly 

synthesized proinsulin molecules are detectably misfolded in mouse islets and beta cell lines (3) 

and this amount increases under conditions of high secretory demand (203, 204), as in insulin-
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resistant pre-diabetic patients.  These findings raise questions about the pathophysiological 

consequences of increased levels of misfolded proinsulin in the ER of pancreatic beta cells.   

 

The negative effect that misfolded proinsulin can have on beta cells was first established in the 

Akita mouse (205).  In animals of this lineage, one allele of the Ins2 gene harbors a Cys to Tyr 

mutation at position A7, producing a misfolded proinsulin molecule that cannot form the critical 

B7-A7 disulfide bond (75).  This subpopulation of misfolded protein molecules is retained in the 

ER (206) and, remarkably, this impairs secretion of co-expressed wild-type proinsulin by 

recruiting bystander proinsulin into aberrant disulfide-linked protein complexes (207) and 

triggers ER-stress induced beta cell apoptosis and diabetes in early life (208).  

 

In the past six years, the same insulin mutation as that found in the Akita mouse, as well as 26 

other proinsulin mutations (209-216), have been discovered to cause autosomal dominant 

permanent neonatal diabetes as part of a syndrome termed Mutant Ins-gene Induced Diabetes of 

Youth (MIDY) (7).   Like the Akita proinsulin, these mutants are retained in the ER, induce ER 

stress, and negatively impact secretion of co-expressed wild-type proinsulin (217-219).  As is 

detailed in Table 1.1, of these 27 human Ins gene mutations, twelve either introduce or remove a 

cysteine:  two in the B chain, eight in the A chain, and two in the C-peptide or flanking cleavage 

sites.  As these mutations result in an unpaired reactive thiol, the mechanism by which they cause 

diabetes is likely similar to that of the Akita mutation (207). The three MIDY mutations located 

in the preproinsulin signal peptide appear to act by affecting ER translocation and/or signal 

peptide cleavage (2). The remaining twelve mutations all occur in conserved B chain residues 

that are believed to be important for alignment of the B and A chains leading to formation of the 

insulin interchain disulfide bonds (7, 220-224); indeed, these MIDY mutations are likely to 

impair formation of native proinsulin disulfide bonds.  As a consequence, these mutants behave 

like those that introduce or remove a cysteine in proinsulin, being retained in the ER, with 

dominant-negative effects on the export of co-expressed wild-type proinsulin, to an extent 

greater than that caused by chemical induction of ER stress (219).  Thus, the current model for 

this disease is that misfolded proinsulin in the ER specifically interacts with wild-type bystander 

molecules, augmenting the impairment of proinsulin export, and thereby causing insulin 

deficiency.  As insulin secretion is impaired, blood glucose increases, leading to further 
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upregulation of proinsulin expression and synthesis.  This positive feedback loop only 

exacerbates ER stress and beta cell apoptosis, leading to diabetes (see Figure 1.3).  

 

The MIDY mutants are an interesting model of proinsulin folding in their own right, but their 

greater significance lies in providing insights into the basic mechanism by which proinsulin 

misfolding may bring about insulin deficiency in other forms of diabetes.  Understanding the 

proinsulin folding pathway, and defects in proinsulin folding, as a fundamental link to beta cell 

failure, may contribute to improved understanding of common forms of type 2 diabetes.  The 

experiments detailed in this thesis investigate two novel approaches to improve secretion of 

misfolded proinsulin.  In chapter 2, I exploit the MIDY mutant proinsulin-G(B23)V to explore 

the biological significance of the relative abundance (ie., stoichiometry) of wild-type and mutant 

proinsulin forms.  In chapter 3, I exploit Ero1 proteins to enhance the oxidative capacity of the 

ER, in order to examine effects on the export of mutant proinsulin molecules that are otherwise 

prone to misfolding. The findings detailed in both chapters shed new light on the problem of 

secretory protein folding in the ER, and they may contribute to novel therapeutic approaches for 

diabetes and other diseases. 
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Figures and Tables 
 

 
 
 
 
Figure 1.1 Structure and processing of proinsulin 
A) In pancreatic beta cells, the signal peptide of preproinsulin is cleaved upon co-translational 
translocation to the ER, producing nascent proinsulin.  After oxidative folding and formation of 
the three intramolecular disulfide bonds, native proinsulin exits the ER for transport to secretory 
vesicles, where C-peptide is cleaved, producing mature insulin. B) Native proinsulin is made up 
of  the B chain (blue) with an !-helix at residues B9-B19, the unstructured C-peptide (black, with 
flanking dibasic residues shown in green), and the A chain (red) with !-helices at residues A3-
A8 and A13-A19.  Disulfide bonds are formed between C(B7)-C(A7), C(B19)-C(A20), and 
C(A6)-C(A11).  Modified from (225).    
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Figure 1.2. Proposed model for proinsulin disulfide bond formation.  Within the ER, 
proinsulin must form three intramolecular disulfide bonds.  Members of the PDI protein family 
(green) transfer disulfide bonds (orange line) to the proinsulin molecule, and then must be re-
oxidized by Ero1 (purple).  Ero1 in turn forms de novo disulfide bonds by reducing molecular 
oxygen, producing hydrogen peroxide.  This cycle must repeat three times to form the required 
proinsulin disulfide bonds.   
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Figure 1.3 Proposed molecular mechanisms of beta cell failure caused by misfolded 
proinsulin. When WT (blue) and mutant (red) proinsulin are coexpressed in beta cells, the 
mutant proinsulin promotes WT proinsulin retention in the ER, decreasing insulin production, 
and forcing beta cells to use up insulin secretory granules from their progressively depleted 
insulin storage pool. The insufficiency of insulin increases blood glucose, and this initially 
stimulates the production of even more wild-type and mutant preproinsulins, exacerbating ER 
stress induced by misfolded proinsulin-containing protein complexes. Inexorable progression of 
insulin insufficiency leads to frank diabetes, further ER stress, and beta cell demise.  Figure from 
(7).  
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  Chain 
MIDY 
Mutation Age of Onset Original Diagnosis 

C
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te
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e 
M

ut
at
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ns

 

B C(B19)G most <6 mo Neonatal DM 
B F(B24)C <6 mo Neonatal DM 
C-pep R(Cpep -2)C <6 mo or 8-37 yr Type 1 DM or MODY 
C-pep R(Cpep+2)C most <6 mo Neonatal DM 
A G(A1)C <6 mo Neonatal DM 
A C(A6)Y* <6 mo Neonatal DM 
A C(A7)S <6 mo Neonatal DM 
A C(A7)Y** <6 mo Neonatal DM 
A S(A12)C <6 mo Neonatal DM 
A Y(A14)C <6 mo Neonatal DM 
A Y(A19)C <6 mo Neonatal DM 
A Y(A19)Stop <6 mo Neonatal DM 

N
on

-C
ys

te
in

e 
M

ut
at

io
ns

 

SigPep R(SP6)C 15-65 yr MODY 
SigPep R(SP6)H 15-65 yr MODY 
SigPep A(SP24)D most <6 mo Neonatal DM 
B H(B5)D <6 mo Neonatal DM 
B L(B6)M <6 mo or 17-36 yr Neonatal DM or MODY 
B L(B6) P <6 mo or 17-36 yr Neonatal DM or MODY 
B L(B6)V <6 mo or 17-36 yr Neonatal DM or MODY 
B G(B8)R most <6 mo Neonatal or Type 1 DM 
B G(B8)S most <6 mo Neonatal or Type 1 DM 
B L(B11)P <6 mo Neonatal DM 
B LY(B15,16)H <6 mo Neonatal DM 
B C(B19)G most <6 mo Neonatal DM 
B R(B22)Q 13-35 yr MODY 
B G(B23)V*** <6 mo Neonatal DM 
B F(B24)C <6 mo Neonatal DM 

  
*Analogous to Munich mouse 

 

  

**Analogous to Akita mouse 
***Focus of this thesis 

  
Table 1.1 Human proinsulin mutations that cause MIDY. 
Of the 27 known MIDY mutations, 12 introduce or delete a cysteine residue.  Shown are the 
locations of the mutations (C-peptide, B Chain, A Chain, or Signal Peptide), the age at onset of 
diabetes, and the original diagnosis(7).   
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CHAPTER 2 

 

DOMINANT PROTEIN INTERACTIONS THAT INFLUENCE THE PATHOGENESIS 

OF CONFORMATIONAL DISEASES1   

 

Abstract 

Misfolding of exportable proteins can trigger endocrinopathies, including Mutant INS-gene 

Induced Diabetes of Youth (autosomal dominant) and Congenital Hypothyroidism with deficient 

thyroglobulin (autosomal recessive).  Both proinsulin and thyroglobulin normally form 

homodimers; mutant versions of both proteins misfold in the endoplasmic reticulum (ER) 

triggering ER stress; and in both cases, heterozygosity creates potential for cross-dimerization 

between mutant and wild-type (wt) gene products.  Remarkably, we find in both cases, that 

whereas conditions favoring an increased stoichiometry of mutant gene product dominantly 

inhibits export of the wt partner, increased stoichiometry of the wt gene product helps to rescue 

secretion of the mutant partner.  Unlike approaches involving the regulation of proteostasis 

networks, these dramatic effects appear protein-specific.  Surprisingly, the bi-directional 

consequences of secretory blockade and rescue occur simultaneously in the same cells.  

Expression level and stability of wild-type subunits — influencing the ratio of the assembly 

partners — may be a critical factor influencing which effect dominates the clinical phenotype, as 

demonstrated in two mouse models with secretory protein misfolding in the ER.  The results 

offer new insight into dominant versus recessive inheritance of conformational diseases, and 

offer opportunities for the development of new therapies.   

 
 

 

                                                
1 Chapter 2 was published under the citation: Wright, J., Wang, X., Haataja, L., Kellogg, A.P., 
Lee, J., Liu, M., and Arvan, P. 2013. Dominant protein interactions that influence the 
pathogenesis of conformational diseases. J Clin Invest. 
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Introduction 

Several human ‘conformational diseases’ of the secretory pathway are caused by mutations in 

exportable proteins blocking their export from the endoplasmic reticulum (ER) (1).  Loss of 

function in post-ER compartments is often observed as autosomal recessive disease.  By contrast, 

other disorders caused by gain-of-toxic-function mutations can ultimately lead to cell death that 

may trigger autosomal dominant disease (2).   

 

Given that both autosomal dominant and recessive mutations can be found in exportable proteins 

that form homodimers, and the much higher frequency of heterozygosity than homozygosity in 

the global population, it is critical to understand how cross-dimerization between wild-type (wt) 

and mutant gene products might influence clinical phenotypes.  To study this, we have examined 

mutant forms of proinsulin (linked to autosomal dominant disease) and thyroglobulin (linked to 

autosomal recessive disease).   

 

Proinsulin, the major protein synthesized by pancreatic beta cells, is co-translationally 

translocated into the ER.  In the ER, proinsulin is thought to form noncovalent homodimers that 

proceed in the distal secretory pathway to form homohexamers that undergo endoproteolytic 

processing to mature insulin and C-peptide (3).  Recently, 26 distinct coding sequence mutations 

in proinsulin have been found responsible for a gain-of-toxic-function underlying the autosomal 

dominant syndrome of Mutant INS gene-induced Diabetes of Youth (MIDY), in which secretion 

of co-expressed wild-type proinsulin is inhibited, resulting in insulin-deficient diabetes (4).  

When expressed recombinantly, MIDY proinsulin mutants, including proinsulin-G(B23)V, are 

not appreciably secreted from heterologous cells (5).  Curiously, however, some MIDY mutants 

expressed in Min6 pancreatic beta cells, including proinsulin-G(B23)V, undergo successful 

anterograde transport in the secretory pathway, even to the extent of becoming 

endoproteolytically processed in secretory granules (6).  The difference in the secretory fate of 

proinsulin-G(B23)V in cells lacking a wt proinsulin allele versus beta cells that express 

endogenous proinsulin, raises the question of whether wt proinsulin could impact on transport of 

the mutant proinsulin-G(B23)V.  

 



 

 

 

37 

Such a question is also interesting when considering thyroglobulin (Tg), the major protein 

product of the thyroid gland that serves as precursor for thyroid hormone synthesis.  The large 

Tg primary structure comprises three disulfide-rich upstream regions (“I-II-III”) followed by the 

cholinesterase-like (ChEL) domain (7).  Similar to proinsulin, Tg forms noncovalent 

homodimers in the ER (8).  The ChEL domain functions as an intramolecular chaperone to 

promote oxidative folding of I-II-III but also functions in Tg homodimerization (9, 10).  In the 

disorder known as Congenital Hypothyroidism with Deficient Tg, ChEL is a commonly affected 

mutation site both in humans (11) and rodent models (12-14).  Homozygous rdw/rdw rat dwarfs 

express a single ChEL point mutation [equivalent to G(2298)R of mature mouse Tg] and develop 

thyroid atrophy (15) from thyrocyte cell death (16).  When co-expressed, mutant rdw-Tg can 

cross-dimerize with wt Tg (17).   

 

Understanding the cell biological behaviors of misfolded versions of exportable proteins in the 

presence of their properly folded partners is of great importance for understanding potential 

therapeutic approaches to conformational diseases.  In the current study, we have investigated 

the selectivity of interactions between two ER-retained mutant secretory proteins and their wt 

counterparts.   

 

Materials and Methods 

Materials 

Lipofectamine 2000, Dulbecco’s modified Eagle’s medium (DMEM), RPMI 1640 medium, fetal 

bovine serum, zysorbin, penicillin, and streptomycin were from Invitrogen.  Glucose, 3-isobutyl-

1-methylxanthine (IBMX), tolbutamide, and Brefeldin A were from Sigma.  Endoglycosidase H 

(EndoH) was from New England Biolabs. Complete protease inhibitor cocktail was from Roche. 

Citrisolv was from Fisher.  Rabbit anti-myc, anti-GFP and chicken anti-myc were from 

Immunology Consultants; mouse mAb anti-HA was from Covance.  Rabbit anti-ACTH antibody 

was a gift from Dr. M. Low (U. Michigan, Ann Arbor, MI).  Human proinsulin specific RIA was 

from Millipore.  Mouse proinsulin specific ELISA  and mouse proinsulin-specific antibody was 

from Alpco.  Trans35S label and Na125I were from Perkin Elmer.   
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Cell Culture and Transfection 

293, 293T, and AtT20 cells were cultured in DMEM with 10% fetal bovine serum and penicillin 

(100 U/ml) and streptomycin (100 µg/ml).  INS1 and INS1E cells were cultured in RPMI 1640 

medium supplemented with 10% fetal bovine serum, 1 mM pyruvate, 10mM HEPES, penicillin 

(100 U/ml) and streptomycin (100 µg/ml), and 50 mM 2-mercaptoethanol. Proinsulin and 

thyroglobulin variants were expressed in pCDNA3.1 or pTarget mammalian expression vectors.  

The hPro-CpepSfGFP-KDEL vector was a gift from Dr. E. Snapp (AECOM, Bronx, NY). 

Transfections, using Lipofectamine 2000 were performed in 12-well plates.  Total plasmid DNA 

was held constant within each experiment by addition of empty vector.  Cells were harvested 24-

48 h after transfection, and lysed in either boiling SDS-gel buffer (4% SDS, 20% glycerol, 120 

mM Tris pH 6.8), RIPA buffer (0.1 M NaCl, 0.2 % deoxycholate, 25 mM Tris-pH 7.4, 1% Triton 

X-100, 0.1% SDS, 10 mM EDTA pH 8.0, and proteinase inhibitor cocktail), NP40-CoIP buffer 

(1% NP40, 0.1 M NaCl, 2 mM EDTA, 25 mM Tris pH 7.4) or TX-CoIP buffer (0.1% Triton X-

100, 0.1 M NaCl, 5 mM EDTA, 25 mM Tris pH 7), as indicated.  For glucose-stimulated 

secretion measurements, cells were preincubated in 2.8 mM glucose for 30 min.  Fresh basal 

media (2.8mM glucose) was then collected for 90 min, followed by stimulation media (21 mM 

glucose, 1 mM tolbutamide, 1 mM IBMX) for 90 min, with cell lysis thereafter in SDS-gel 

buffer.   

 

Generation of mouse lines 

Mice expressing hProC(A7)Y-CpepGFP transgene driven by the Ins1 promoter bearing with 

hetero/homozygous disruption of endogenous Ins2, were as previously described (18).  A full 

description of rdw-Tg3xMyc transgenic mice is forthcoming; briefly, a transgene consisting of 

the bovine Tgn promoter (19) immediately upstream of the full-length mouse Tgn ORF encoding 

rdw-Tg plus a triple-myc epitope tag (i.e., rdw-Tg3xMyc) (10) was expressed in C57BL/6 

mice.  These rdw-Tg3xMyc transgenic mice in a Tgn+/+ genetic background were crossed and 

then backcrossed with Tgncog/cog mice to generate Tgn+/cog and then Tgncog/cog ± rdw-Tg3xMyc 

mice.  All animals were used in accordance with the University of Michigan’s University 

Committee on Use and Care of Animals.    
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Confocal Imaging 

Formaldehyde-fixed cells were permeablized with 0.4% TX100, blocked (TBS containing 3% 

BSA and 0.2% TX100), and then either directly mounted or stained overnight at 4°C with 

primary antibodies: chicken anti-myc (1:5000 dilution) and rabbit anti-ACTH (1:25000).  

Thereafter, slides were rinsed and incubated with secondary antibody conjugates, mounted with 

Prolong Gold with DAPI, and imaged by confocal epifluorescence with a 60x oil objective.  GFP 

intensity in granule (ACTH-staining) and non-granule regions was quantified using Metamorph 

(Molecular Devices).  For cells transfected with hPro-CpepMyc, only cells positively staining 

with chicken anti-myc antibodies were quantified.   

 

For imaging of mouse islets, excised pancreata were fixed, paraffin-embedded, micro-sectioned, 

and deparaffinized with Citrisolv.  Sections underwent antigen retrieval (RetrieveALL-1), were 

blocked with 3% BSA, and were immunostained overnight at 4°C with mouse anti-mouse 

proinsulin, guinea pig anti-insulin, and rabbit anti-calnexin antibodies.  After rinsing and 

incubation with secondary antibody conjugates, slides were mounted with Prolong Gold with 

DAPI, and by confocal epifluorescence as above.  For quantification of wt mouse proinsulin 

localization, analyzers were blinded to mouse genotype.  Four to five islets per mouse were 

analyzed, scoring each nucleated cell expressing proinsulin as either “majority ER” (colocalizing 

with calnexin) or “majority Golgi” (perinuclear crescent of increased signal intensity).   

 

Metabolic Labeling, Immunoprecipitation, EndoH digestion 

24 h post-transfection, cells were trypsinized and re-plated on poly-D-lysine-coated plates.  After 

6 h, cells were pulse labeled with 35S-amino acids for 10 min and chased as indicated, with cells 

lysed in RIPA buffer.  For measurement of mutant proinsulin stability, lysate and media were 

combined, precleared with zysorbin, and immunoprecipitated with anti-insulin or anti-myc.  

Immunoprecipitates (normalized to TCA-precipitable counts) were analyzed by reducing 4-12% 

acrylamide gradient SDS-PAGE, phosphorimaging, and band quantitation (ImageQuant).   

 

For 125I labeling of secreted rdw-Tg3xMyc, thyroid glands were labeled for 30 min at 37°C in 

200 µL complete medium containing 0.1 µM NaI plus 1.0 µCi/µL Na125I.  After labeling, 

samples were washed thrice with ice-cold PBS, sonicated in 200 µL of RIPA buffer, diluted to 1 
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mL, and immunoprecipitated with rabbit anti-myc antibody normalized to total DNA in the 

lysate.   

 

EndoH digestion was performed according to manufacturer instructions; EndoH sensitive and 

resistant rdw-Tg3xMyc standands were from transfected 293T cells radiolabeled with 35S-amino 

acids.  EndoH digests were analyzed by SDS 5%-PAGE and phosphorimaging.  Controls 

establish that anti-myc does not immunoprecipitate untagged endogenous thyroglobulin (not 

shown).   

 

Co-Immunoprecipitation  

After lysis in ice-cold CoIP buffer, lysates were precleared and then immunoprecipitated with the 

indicated antibodies, washed, and analyzed by reducing SDS-PAGE and immunoblotting.   

 

Proinsulin Measurements and Western Blotting 

At 24 h post-transfection, an overnight incubation in fresh media was initiated, and cells were 

lysed in RIPA buffer.  Secreted and cellular proinsulin was measured by human proinsulin-

specific RIA or mouse proinsulin-specific ELISA, normalized to total protein in the lysate.  For 

western blotting, proteins (10 µg/lane) were resolved by 4-12% acrylamide gradient SDS-PAGE, 

electrotransferred to nitrocellulose, and immunoblotted with the indicated antibodies.  

Horseradish peroxidase-conjugated secondary antibodies were from Jackson ImmunoResearch 

with proteins visualized by ECL (Millipore).  !-Tubulin was measured as a loading control.  

Western blot bands were quantified using ImageJ and ImageQuant software.  The location of 

relevant molecular weight markers are indicated. 

 

Statistics 

Statistical analyses were conducted using GraphPad Prism software.  Data are presented as mean 

± SEM, unless otherwise noted (as in Figure 2.8).  Two-tailed student’s t test was used to assess 

statistical significance, with a threshold for significance of p<0.05.   
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Study approval 

The handling and euthanizing of mice was performed entirely in accordance with national 

guidelines and with approval from the Committee on Use and Care of Animals at the University 

of Michigan. 

 

Results 

Trans-dominant retention of a well-folded wt secretory protein partner   

To test whether simple ER retention of one homodimerization partner can confer retention to a 

wt bystander, we expressed various epitope-tagged proinsulin constructs: human proinsulin 

(hPro) bearing or not bearing a myc- or SuperfolderGFP-tag within the C-peptide sequence 

(hPro-CpepMyc and hPro-CpepSfGFP, respectively), or mouse proinsulin (mPro). Epitope-

tagging the C-peptide does not significantly affect the folding or ER export of wt proinsulin (20).  

We also expressed proinsulin(s) bearing a C-terminal KDEL sequence reported to confer 

proinsulin retention within the ER (21).  All of these recombinant proinsulins were comparably 

expressed, and the expression level for each protein could be experimentally controlled (although 

the mutant hProG(B23)V-CpepMyc is less stable, see below) as it was proportional to the 

amount of plasmid DNA included in our transfections (See Appendix, Supplemental Figure S1).  

hPro-CpepSfGFP-KDEL was retained intracellularly in INS1 beta cells (See Appendix, 

Supplemental Figure S1), primarily in the same compartment as that marked by a ER-RFP, a red 

fluorescent protein bearing the KDEL retention signal (6).   

 

Interestingly, when co-transfected with hPro-CpepSfGFP-KDEL plasmid, the intracellular 

content of wt hPro-CpepMyc increased, and its secretion decreased (Figure 2.1A).  Intracellular 

wt hPro-CpepMyc co-immunoprecipitated with hPro-CpepSfGFP-KDEL, perhaps to an even 

greater extent than its co-precipitation with wt hPro-CpepSfGFP (Figure 2.1B bottom row).  

Nevertheless, even as increasing doses of mPro-KDEL dramatically inhibited secretion of wt 

human proinsulin (Figure 2.1C upper bar graph measured by human proinsulin RIA), secretion 

of wt TgGFP was largely unaffected in the same cells (Figure 2.1C bottom).  These results 

suggest that blockade of export of the well-folded wt secretory protein partner involves specific 

interactions with its ER-retained dimerization partner.  Indeed as shown in Figure 2.1D, secretion 
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of wt hPro-CpepMyc was largely restored upon overexpression of wt mPro “competitor” even in 

the presence of mPro-KDEL.   

 

Misfolded mutant secretory protein also assembles with and impairs secretion of its WT partner.   

We have previously suggested that in the autosomal dominant disease called MIDY, misfolded 

mutant proinsulin can inhibit wt proinsulin export by recruitment of the wt gene product into 

aberrant protein complexes within the ER (5, 20).  Indeed, when wt hPro-CpepMyc was co-

expressed with misfolded mutant mProG(B23)V in place of wt mPro, the wt hPro-CpepMyc 

secretion was impaired in trans (Figure 2.2A).  By contrast, the mutant rdw allele of Tg 

functions as an autosomal recessive (15); nevertheless, surprisingly, we found that co-expression 

of rdw-Tg also could greatly decrease the secretion of wt Tg3xMyc (Figure 2.2B) with the extent 

of this dominant-negative inhibition dependent upon the relative abundance of mutant versus wt 

gene products (see below).  Unlike secreted wt Tg3xMyc, wt Tg3xMyc retained intracellularly in 

the presence of co-expressed rdw-Tg was recovered in an endoglycosidase H (EndoH)-sensitive 

state indicating molecules that had not advanced to the Golgi complex (Figure 2.2B). The rdw-

Tg has a point mutation in the ChEL domain that is involved in Tg homodimerization (10, 17).  

To test if the rdw ChEL domain can indeed associate with the wt Tg ChEL domain, wt ChEL-

HA was co-expressed with rdw-ChEL-Myc.  Similar to the situation with the mutant proinsulin 

hProG(B23)V-CpepMyc (Figure 2.2C bottom), we found that mutant rdw-ChEL could co-

precipitate with its wt dimerization partner (Figure 2.2D bottom).   

 

WT-mutant cross-dimerization offers secretory rescue to the mutant gene product.   

In INS1 cells, wt hPro-CpepSfGFP efficiently reached secretory granules and was well secreted, 

whereas hProC(A7)Y-CpepSfGFP (which harbors the same mutation as that found in the Akita 

mouse) was retained in the ER (Figure 2.3A upper) rather than being secreted (Figure 2.3A 

lower) (22).  Interestingly, however, recombinant hProG(B23)V-CpepSfGFP showed 

intermediate behavior, with partial ER retention and a partial secretory granule distribution, and 

an intermediate level of secretion — consistent with a previous report (6).  This stands in 

contrast to findings that secretion of mutant hProG(B23)V is negligible in heterologous cells that 

do not express endogenous wt proinsulin (5).  We therefore considered whether secretion of 

hProG(B23)V might be improved in cells expressing a wt proinsulin partner.  To test this, we 
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expressed wt hPro-CpepSfGFP in the mouse pituitary cell line AtT20 (which forms secretory 

granules containing ACTH but does not express proinsulin).  In this cell line, wt hPro-

CpepSfGFP co-localized with endogenous ACTH in secretory granules that accumulate at the 

distal tips of cellular processes (Figure 2.3B upper row).  When expressed by itself, 

hProG(B23)V-CpepSfGFP exhibited primarily an ER distribution and did not reach secretory 

granules (Figure 2.3B middle row).  However, when co-expressed with wt hPro-CpepMyc, the 

hProG(B23)V-CpepSfGFP was partially rescued, becoming visible in secretory granules (Figure 

2.3B lower; quantification of granule GFP intensity shown at right).  These results indicate that 

expression of wt proinsulin enhances intracellular transport of mutant hProG(B23)V.   

 

To determine the selectivity of this rescue, 293T cells were co-transfected with fixed equimolar 

amounts of hProG(B23)V-CpepMyc and rdw-TgGFP, and simultaneously co-transfected with 

either wt mPro or wt Tg (empty vector was included to keep constant the total DNA in each 

transfection).  As measured by human proinsulin-specific RIA, secretory rescue of hProG(B23)V 

was provided selectively by wt mPro (Figure 2.4A upper panel; confirmed by immunoblotting in 

Figure 2.4B) but not by wt Tg (Figure 2.4A upper).  Conversely, rescue of rdw-TgGFP secretion 

was conferred upon co-expression of wt Tg (17) but not by wt mPro (lane “M”, Figure 2.4A 

lower panel).  This phenotype involved authentic intracellular transport through the secretory 

pathway (rather than cell death) as rescue was blocked in cells treated with Brefeldin A (which 

blocks anterograde transport, Figure 2.4C).  Thus, not only can an ER-retained dimerization 

partner impair secretion of its wt counterpart (Figures 2.1, 2.2), but expression of wt dimerization 

partner augments secretion of its misfolded counterpart (Figures 2.3, 2.4).   

 

WT dimerization partners dose-dependently stabilize their misfolded counterparts for secretory 

rescue.   

To examine the stability of hProG(B23)V-CpepMyc, we used metabolic pulse-labeling of cells 

with 35S-amino acids and measured the fraction of newly-synthesized protein remaining at 20 h 

after synthesis.  hProG(B23)V-CpepMyc stability was significantly increased by co-expression 

of wt mPro (Figure 2.5A).  In parallel, wt Tg3xMyc increased both the intracellular as well as 

secreted amounts of rdw-TgGFP — indeed, these observations were dependent on the dose of wt 

Tg3xMyc (Figure 2.5B).  Rescue of hProG(B23)V-CpepMyc also was observed with increasing 
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concentrations of co-expressed wt mPro (Figure 2.5C).  Notably, rescue appeared more 

dependent upon the ratio between wt and mutant proteins than the absolute amount of wt protein 

expressed, because increasing rescue was also observed with decreasing expression of misfolded 

mutant rdw-TgGFP rather than raising the amount of wt Tg3xMyc (Figure 2.5D).    

 

Rescue of mutant and blockade of wild-type proinsulin and thyroglobulin occur within the 

(patho)physiological context.   

To determine if the effects of altering wt : mutant stoichiometric ratio in heterologous cells also 

are observed in pancreatic beta cells, we expressed two different doses of hProG(B23)V-

CpepSfGFP in INS1E cells that are known to secrete endogenous proinsulin and insulin under 

basal conditions and at greater levels in response to elevated glucose. Unsurprisingly, INS1E 

cells transfected with less plasmid expressed less mutant proinsulin (Figure 2.5E left panel).  

Interestingly, INS1E cells expressing less mutant proinsulin (and thus a higher wt : mutant 

stoichiometric ratio) exhibited higher fractional secretion of the mutant protein under both basal 

and glucose-stimulated conditions, including both unprocessed hProG(B23)V-CpepSfGFP and 

its CpepGFP processing product (Figure 2.5E right).  

 

We next wished to extend these findings to tissues of animals with diseases of protein misfolding 

in the ER.  First we looked directly at the rescue of mutant rdw-Tg3xMyc in thyroid tissue from 

animals lacking or bearing wt Tg.  For this, we prepared an rdw-Tg3xMyc transgene whose 

expression in the thyroid gland was driven by a thyroglobulin promoter.  The rdw-Tg protein was 

expressed in thyroid tissue of otherwise wild-type C57BL/6 mice, or mutant cog/cog mice (with 

homozygous expression of mutant Tg-L2263P) in a C57BL/6 background.  Both strains of mice 

expressed the rdw-Tg protein in the thyroid gland (See Appendix, Supplemental Figure S2), and 

both strains can iodinate secreted proteins (23).  However, in thyroid tissue from the cog/cog 

background (lacking wt Tg), no rdw-Tg could become iodinated, indicating an inability of rdw-

Tg to reach the iodination site (Figure 2.6A).  By contrast, in thyroid tissue of C57BL/6 control 

mice expressing wt Tg, some mutant rdw-Tg was rescued based on the ability to become 

iodinated — moreover, the iodinated rdw-Tg was endoH-resistant, indicative of molecules that 

had undergone normal intracellular transport through Golgi/post-Golgi compartments (Figure 

2.6A).   
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We also wished to determine if decreased wt : mutant stoichiometry can promote blockade of the 

wt gene product.  For this, we examined mice expressing the Akita-like mutant hProC(A7)Y-

CpepGFP transgene (18) with deletion of either one allele or homozygous knockout of 

endogenous Ins2 to progressively decrease wt proinsulin expression.  We then used mouse 

proinsulin-specific immunofluorescence to examine the intracellular distribution of the 

remaining endogenous (primarily Ins1) gene product.  In wt, Ins2+/-, and Ins2-/- mice lacking the 

mutant transgene, most pancreatic beta cells exhibit strong proinsulin immunostaining in the 

Golgi region, consistent with previous reports (22, 24).  However, in the presence of the mutant 

hProC(A7)Y-CpepGFP [which itself is entrapped in the ER (18)], more cells began to appear 

with endogenous mouse proinsulin in an ER-like pattern (co-localizing with calnexin, Figure 

2.6B upper two rows).  There is published evidence that endogenous proinsulin synthesis/content 

is heterogeneous in the population of islet " cells (25, 26).  Nevertheless, in Ins2-/- mice, as the 

ratio of wt : mutant proinsulin decreased, the fraction of cells exhibiting endogenous wt 

proinsulin in an ER-staining pattern increased — and this effect was apparent in mice matched 

for random blood glucose levels # 250 mg/dL (Figure 2.6B, quantitated at right).  These findings 

demonstrate that in tissues from actual conformational disease models, both mutant secretory 

protein rescue (Figure 2.6A) and wt secretory protein blockade (Figure 2.6B) are influenced by 

the ratio of wt : mutant secretory protein in the ER.   

 

Can secretory rescue and secretory blockade occur simultaneously?   

To examine whether both rescue (of mutant) and blockade (of wt) dimerization partners can 

occur simultaneously, we first transfected 293T cells with wt mPro, or hProG(B23)V, or both.  

We then independently measured mouse proinsulin and human proinsulin secretion by species-

specific immunoassay.  Secretion of wt mPro was significantly diminished by the presence of 

hProG(B23)V (Figure 2.7A upper).  Remarkably, from the same cells, hProG(B23)V secretion 

was improved by the co-expression of wt mPro (Figure 2.7A lower).  Similarly, when 

transfecting with progressively increasing ratios of wt Tg3xMyc to mutant rdw-TgGFP, rdw-

TgGFP secretion improved (Figure 2.7B upper), whereas wt Tg3xMyc secretion was 

significantly diminished when the ratio favored rdw-TgGFP (Figure 2.7B lower).  Intermediate 

ratios showed both rescue and blockade (Figure 2.7B).  Both sets of data in Figure 2.7 indicate 

that these effects occur simultaneously in the same cells.   



 

 

 

46 

Is secretory rescue of misfolded proinsulin unique to the G(B23)V substitution?    

Multiple MIDY mutants cause dominant-negative blockade of wt proinsulin export (5).  

Structurally, MIDY can be subdivided into those mutants that cause the gain or loss of a Cys 

residue to create an unpaired cysteine, and other mutants affecting conserved hydrophobic 

residues that perturb disulfide pairing of the natural cysteine partners (4).  To see which class of 

mutants could be rescued by co-expression of wt proinsulin, we compared secretion of a series of 

co-expressed MIDY mutants.  Notably, secretion of most proinsulin mutants containing an 

unpaired cysteine, such as C(A6)Y, C(B19)H, or the C(A7)Y mutant responsible for diabetes in 

the Akita mouse, was not improved by co-expression of wt proinsulin (Figure 2.8).  By contrast, 

secretion of several other misfolded MIDY proinsulins [e.g., A(SP24)D, H(B5)D, G(B8)S] were 

rescued in addition to G(B23)V.  These data suggest that this mechanism does not work in all 

cases; nevertheless, cross-dimerization of proinsulin (Figure 2.1B, 2C) or thyroglobulin (Figure 

2.2D) exhibits plasticity, highlighting the potential for intracellular transport rescue of a variety 

of misfolded exportable proteins by their wt counterparts.   

 

Discussion 

There are a large number of disorders linked to misfolding, ER entrapment (27) and degradation 

of exportable proteins (28), and several new approaches have been proposed for the development 

of therapies for these diseases.  Some of these proposals include pharmacological modification of 

the rate of protein synthesis to avoid overloading protein folding capacity (29), others involve 

manipulation of the intraluminal ER ionic milieu (30, 31) or modulating ER-associated 

degradation (ERAD) (32), and still others involve pharmacologic chaperones (33) or modulators 

of endogenous ER chaperone activity (34, 35) including pre-emptive induction of unfolded 

protein response (36).  Each of these therapies are designed to manipulate the ER quality control 

environment, altering the ratio of protein folding to protein folding capacity.   

 

In addition to these critical features, we also note that there has been unrecognized selection 

pressure for exportable proteins to evolve as oligomeric species (37).  Indeed, even upon initial 

description of the ER hsp70 chaperone, BiP, its ability to confer ER retention was found to be 

linked to its selective association with unassembled subunits of exportable protein oligomers 

(38).  Oligomerization limits chaperone re-binding and helps to relieve ER entrapment (39, 40), 
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often by limiting exposure of unpaired Cys residues that can frequently be associated with ER 

retention (41-43).  Typically, monomer folding precedes oligomerization (44) but there are 

examples where oligomer formation may be a very early folding step (45).  Either way, for many 

exportable proteins, achieving an oligomeric state is a critical decision point in determining 

anterograde transport versus ERAD (46).   

 

It has been shown that expression of misfolded mutant proteins have the potential to cause their 

wt (bystander) dimerization partners to be retained in the ER (5, 20, 47-50).  Although protein-

specific rather than general — lowering the levels of the mutant partner (51) and raising wt 

levels — has been proposed as one of the more efficacious therapeutic approaches, by 

maintaining general protein homeostasis while allowing escape from ER entrapment of a specific 

disease-linked gene product (52, 53).  In the present study, we emphasize that one potential 

consequence of raising the wt:mutant protein ratio is that an increased fraction of mutant protein 

may cross-dimerize with wt, allowing for novel, protein-specific enhancement of protein export.  

Our findings are unequivocal because we have selectively epitope-tagged the respective wt and 

mutant partners, and experimentally controlled the expression levels of the respective products 

(Figures 2.1, 2.5-2.7).  In this report, we have studied proinsulin mutants causing MIDY, and 

thyroglobulin mutants causing congenital hypothyroidism, as two genetically-unrelated 

representatives of a broad class of conformational diseases of exportable proteins.  The organs 

affected by these diseases appear quite different in terms of their ability to expand tissue mass, 

and they might have different intrinsic susceptibility to ER stress (a goiter can grow large 

whereas expansion of pancreatic beta cell mass is more limited), yet studying these molecules in 

parallel has allowed us to address persistent questions about the extent to which phenotypes 

linked to cross-dimerization are protein-specific, and the extent to which the pathogenesis of 

these diseases is secondary to generalized ER stress.  

 

In the current study, we demonstrate that retention of proinsulin-KDEL, via a mechanism 

involving neither misfolding nor ER stress, is sufficient to induce export blockade of its wt 

dimerization partner (Figure 2.1A, C) in conjunction with direct physical association between the 

partners (Figure 2.1B), and in a manner competed by further addition of wt proinsulin (Figure 

2.1D).  In the same cells, wt Tg secretion continues unimpeded in the face of proinsulin 
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blockade, demonstrating specificity (Figure 2.1C).  We have every reason to believe that the 

initial pathogenesis of MIDY is based on a similar underlying cell biological principle: in the 

case of mutant versions of exportable proteins, chaperone-mediated retention of the misfolded 

gene product is the rule (54).  While formation of misfolded protein complexes was once thought 

to be nonspecific (55), we have found that expression of the proinsulin-G(B23)V mutant 

selectively co-precipitates its wt partner (Figure 2.2C) and blocks secretion of that partner 

(Figure 2.2A) while neither associating with nor blocking wt Tg in the same cells (Figure 2.1C 

and data not shown).  This dominant effect on wt proinsulin appears to account for the dominant 

inheritance of MIDY (Figure 2.9), producing insulin deficiency from the wt allele (4).  

Moreover, expressing the Akita-like hProC(A7)Y-CpepGFP transgene in mice first with 

heterozygous and then homozygous loss of endogenous Ins2 (i.e., changing the relative 

expression of the two protein partners) results in progressive blockade of remaining wild-type 

proinsulin, independent of changes in random blood glucose (Figure 2.6B).   

 

Despite an autosomal recessive pattern of inheritance, we found surprisingly similar molecular 

behavior for the genetically unrelated thyroglobulin protein.  The rdw-Tg, which bears a 

mutation in the ChEL domain and causes thyrocyte cell death only when expressed in 

homozygotes (16), also exhibits cross-dimerization with wt Tg in heterozygotes (17).  Herein we 

show that the molecular mechanism involves direct interactions between the mutant and wt 

dimerization (ChEL) domains (Figure 2.2D).  Remarkably, we found that expression of the 

recessive rdw-Tg also can dominantly block export of its wt Tg partner (Figure 2.2B), and this 

phenotype is linked to lowering the wt:mutant protein ratio (Figure 2.7B).  The fact that 

heterozygosity does not generate hypothyroidism in vivo indicates that rdw/+ rats express a Tg 

protein ratio favoring the wt gene product.  Further, when expression of the wt gene product is 

favored, rescue phenotypes become apparent.  Such rescue was directly demonstrated in thyroid 

tissue of mice expressing a mutant rdw-Tg3xmyc transgene in a wild-type genetic background: 

unlike in cog/cog mice, rdw-Tg3xmyc acquired endoH resistance and even became iodinated in 

animals making endogenous wild-type Tg (Figure 2.6A).  Moreover, rescue is also observed for 

proinsulin mutations that are ordinarily transmitted with autosomal dominant inheritance.  In 

pancreatic beta cells, partial rescue of proinsulin-G(B23)V to secretory granules is already in 

evidence (Figure 2.3A), conferring enhanced secretion under both basal and stimulated 
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conditions (Figure 2.5E) (6), and such an effect can be directly attributed to co-expression of wt 

proinsulin (Figure 2.3B).  Moreover, rescue of mutant proinsulin-G(B23)V or rdw-Tg is also 

protein specific: in cells co-expressing both mutants, secretory rescue of proinsulin-G(B23)V is 

accomplished exclusively by wt proinsulin, whereas secretory rescue of rdw-Tg is accomplished 

exclusively by wt Tg (Figure 2.4).   

 

All evidence points to the idea that secretory rescue is a consequence of intracellular stabilization 

of the mutant gene product: this is true both for proinsulin-G(B23)V (Figure 2.5A) and for rdw-

Tg (Figure 2.5B).  And for both mutant proteins, the magnitude of the stabilization and secretory 

rescue is linked to the ratio of wt:mutant protein expression (Figure 2.5C, D).  Most remarkable 

of all, rescue (of mutant) and blockade (of wt) secretion occurs simultaneously in the same cells 

(Figure 2.7).  Thus for both proteins, there is a dynamic bi-directional balance between retention 

and anterograde transport of mutant cross-dimers (Figure 2.9).   

 

We posit that for the many conformational diseases affecting exportable proteins that 

oligomerize in the ER, a dominant versus recessive pattern of inheritance is in part a reflection of 

the balance of these two activities (blockade versus rescue, see Figure 2.9).  In the case of MIDY 

and other dominantly inherited diseases, the balance favors net retention of protein, whereas in 

the case of congenital hypothyroidism with defective Tg, the balance favors net export.  The 

minimum plasmid ratio at which we observed secretory rescue was consistent with this 

hypothesis: rescue of proinsulin-B23V requires higher wt:mutant ratios than the rescue of rdw-

Tg secretion (Figure 2.5).   

 

In conclusion, the data presented herein indicate that both secretory blockade and rescue involve 

direct cross-dimerization between wt and mutant gene products.  As cross-dimerization in the 

secretory pathway is certainly not limited to proinsulin and thyroglobulin (56), we expect that 

similar cooperativity will be observed for other exportable proteins.  While the effects described 

in this report appear limited to protein-specific protein rescue of mutant oligomerization partners, 

the results imply a broader significance for understanding disease pathophysiology.  Specifically, 

our studies have potential relevance to the finding of ER accumulation of secretory proteins even 

in the absence of any mutations.  For example, wt proinsulin is prone to misfolding under 
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conditions of increased insulin demand (57, 58) and its accumulation may contribute to beta cell 

failure (59, 60).  If oligomerization plays an important role in the retention of wt proinsulin and 

other wt secretory proteins, then protecting/stabilizing the interaction interface (such as with 

small molecule interactors) might allow ER escape of an increased fraction of exportable protein 

despite the presence of a misfolded subset of such molecules.  Such methods might be used in 

combination therapy with other approaches to alter the ER environment (described above), 

opening remarkable new avenues for treatment of diseases of misfolding of exportable proteins.   
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Figures 

 Figure 2.1. Proinsulin-KDEL interacts with and inhibits secretion of WT proinsulin.  293T 
cells transiently transfected with hPro-CpepMyc were co-transfected with plasmids as indicated.  
A) Cell lysates (C) and media (M) were resolved by SDS-PAGE, electrotransfer, and 
immunoblotting (WB) with anti-myc.  The media/cell ratio of hPro-CpepMyc bands was 
decreased by 58.9 ± 12.8% (p=0.003, n=6) in cells co-expressing hPro-CpepSfGFP-KDEL 
compared to wt hPro-CpepSfGFP.  B) Cells lysed in TX-CoIP buffer were immunoprecipitated 
with anti-GFP or anti-myc, resolved by SDS-PAGE, electrotransfer, and immunoblotting (WB) 
with anti-GFP or anti-myc as indicated.  The upper two panels demonstrate expression of the 
indicated proteins, and the lower panel demonstrates co-immunoprecipitation.  Gels are 
representative of three independent experiments. C) Cells transiently expressing wt human 
proinsulin plus TgGFP were co-transfected with plasmids as indicated.  The media collected 
overnight were analyzed by human proinsulin specific RIA.  TgGFP in the same cell lysates (C) 
and media (M) were analyzed by SDS-PAGE, electrotransfer, and immunoblotting (WB) with 
anti-GFP.  The media/cell ratio of TgGFP bands in cells co-expressing mPro-KDEL exhibits no 
significant change to that from cells co-expressing wt mPro (1.9 ± 0.2 vs. 2.1 ± 0.8; p=0.3, n=5). 
In B) and C), noncontiguous lanes from the same gel are shown.  D) Cells transiently expressing 
hPro-CpepMyc were co-transfected with plasmids expressing mouse proinsulin-KDEL (mPro-
KDEL) or mouse proinsulin (mPro).  Media were collected overnight and cell lysates were 
analyzed by human proinsulin-specific RIA.  The data in C) and D) represent mean ± s.e.m., 
each from $ 4 independent transfections.  * = p < 0.05.  
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Figure 2.2. Cross-dimerization of mutant/wt proinsulin and mutant/wt thyroglobulin.  293T 
cells were transiently co-transfected with plasmids expressing the indicated proinsulin or Tg 
variants.  A) At 48 h post-transfection, cell lysates and overnight media were collected; both 
were immunoprecipitated with anti-myc (to pre-purify the antigen) and then analyzed by SDS-
PAGE, electrotransfer, and immunoblotting with anti-myc.  The media/cell ratio of hPro-
CpepMyc bands from cells co-expressing mPro-G(B23)V decreased 66.1 ± 1.9% (p<0.001, n=4) 
compared to that of wt mPro.  B) At 48 h post-transfection, cell lysates and overnight media 
were collected, treated ± Endo-H, and were analyzed by immunoblotting with anti-myc.  The 
media/cell ratio of wt Tg3xMyc bands in cells co-expressing rdw-TgGFP decreased 74.1 ± 3.3% 
(p<0.001, n=4) compared to that of wt TgGFP.  C) At 48 h post-transfection, cells lysed in TX-
CoIP buffer were immunoprecipitated with anti-GFP or anti-myc and were analyzed by Western 
blotting with anti-GFP or anti-myc, as indicated. D) Cells transiently co-expressing wt secretory 
ChEL-HA plus secretory mutant rdw-ChEL-Myc or secretory wt ChEL-Myc (9) were cultured in 
the presence of brefeldin A (5 h, 5 µg/mL) to allow intracellular co-incubation of the co-
expressed constructs.  Cells were then lysed in NP40-CoIP buffer and analyzed by 
immunoblotting with or without immunoprecipitation as indicated.  For C) and D), the upper two 
panels demonstrate expression of protein partners, and the lower panel demonstrates co-
immunoprecipitation.  Gels in C) and D) are representative of n$3 experiments.  In A) and C), 
noncontiguous lanes from the same gel are shown.   
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Figure 2.3. Intracellular distribution of mutant proinsulins in regulated secretory cells co-
expressing or not co-expressing wt proinsulin.  A) Cultured INS1 pancreatic beta cells (that 
express endogenous proinsulin) were transiently transfected to express wt or mutant hPro-
CpepSfGFP, as indicated.  Fixed cells (counterstained with DAPI) were examined by confocal 
microscopy for the distribution of SfGFP-containing peptides (upper panels; scale bar = 20 µm).  
The cell lysates and overnight bathing media were collected, immunoprecipitated with anti-GFP, 
and analyzed by immunoblotting with anti-GFP to examine secretion efficiency (lower panel). 
Noncontiguous lanes from the same gel are shown.  The media/cell ratio for wt, G(B23)V, and 
C(A7)Y hPro-CpepSfGFP bands was 14.8 ± 3.8, 0.74 ± 0.04, and 0.16 ± 0.06, respectively (p < 
0.05 for all groups, n=4).  B) Cultured AtT20 pituitary corticotroph cells (that do not express 
endogenous proinsulin) were transiently co-transfected with one of three different plasmid 
combinations, as indicated.  Fixed cells were examined by confocal fluorescence for the 
distribution of SfGFP-containing peptides (green) and immunofluorescence to localize ACTH-
containing secretory granules (red) at the tips of cell (arrowheads; scale bar = 20 µm).  Cell 
boundaries were defined from phase contrast images (not shown).  Enrichment of average GFP 
intensity in the secretory granule region (shown at right) was compared to average GFP intensity 
in nongranule regions.  Data represent mean ± s.e.m. from 30-38 separately imaged cells for each 
of the three respective transfection conditions.  * = p < 0.05.   
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Figure 2.4.  Cross-dimerization as a basis for secretory rescue of mutant proinsulin or 
thyroglobulin is specific to their respective wild-type partners.  A) 293T cells transiently 
expressing both mutant proinsulin and mutant Tg were co-transfected with either wt mouse 
proinsulin or wt Tg.  The media were collected overnight and cells lysed; proinsulin secretion 
was quantified by human proinsulin-specific RIA (upper panel).  Data represent mean ± s.e.m. 
relative to cells lacking mPro or wt Tg (p = 0.07, n = 3).  From the same cell lysates (C) and 
media (M), secretion of rdw-TgGFP was analyzed by SDS-PAGE, electrotransfer, and 
immunoblotting with anti-GFP (lower panel).  B) At 48 h post co-transfection as indicated, 
overnight secretion of mutant hProG(B23)V-CpepMyc (in duplicate) was measured by 
immunoprecipitation and immunoblotting with anti-myc.  The results shown in panels A and B 
are representative of three separate experiments.  EV=empty vector.  C) At 48 h post 
transfection, cells co-transfected as indicated were either untreated or treated with 5 µg/ml 
brefeldin A (BFA).  After 5 h, the media were collected and analyzed by human proinsulin-
specific RIA.  The data shown are mean values ± range from two independent measurements.  
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Figure 2.5.  Secretory rescue and stabilization of mutant proinsulin or thyroglobulin by 
their wt counterparts is linked to the wt : mutant expression ratio.  293T cells were 
transiently co-transfected with the indicated plasmid combinations, with empty vector added to 
keep total DNA/well constant (A-D). A) Total mutant proinsulin recovery at 20-hour post-
synthesis was measured by pulse-chase (see Methods).  Protein stability was quantified by band 
recovery at 20 h chase to that at time zero; mean ± s.e.m., n=4, *=p<0.05.  B) Overnight media 
and cell lysates were analyzed by immunoblotting with anti-GFP, normalized to total cellular 
protein.  Representative blots from three experiments are shown. C) Overnight media were 
collected, and human proinsulin secretion (normalized to total cellular protein) was measured by 
RIA.  Data represent mean ± range from two independent experiments.  D) Overnight media and 
cell lysates (lower two panels) or combined lysate and media (upper panel) were analyzed by 
immunoblotting with anti-GFP, normalized to total cellular protein. Representative blots from 
three experiments are shown. E) INS1E cells were transfected with 2 or 0.5 µg plasmid 
expressing mutant proinsulin; the cellular levels of hProG(B23)V-CpepSfGFP are shown at left.  
Cell lysates (C) and basal secretion (B) and glucose-stimulated secretion (S), normalized for 
hProG(B23)V-CpepSfGFP protein expression (1% of total for 2 µg transfection; 3% of total for 
0.5 µg transfection) were analyzed by immunoblotting with anti-GFP (middle panel).  Percent 
secretion was quantified as total GFP signal in media over total in cells (right).  The data 
represent mean ± s.e.m., from 3 independent experiments.   
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Figure 2.6. Rescue of mutant thyroglobulin and blockade of wild-type proinsulin in 
primary tissue from animal models of disease.  A) Lobules of thyroid glands were freshly 
prepared from mice of the indicated genotypes.  Secretory proteins delivered for post-
translational iodination were labeled by incubation of thyroid lobules with 1.0 µCi/µL Na125I for 
30 min as described in Methods.  The thyroid lobules were then lysed and immunoprecipitated 
with anti-myc.  The immunoprecipitates were either mock-digested or digested with Endo-H as 
in Fig. 2B, and then analyzed by SDS-PAGE and autoradiography.  B) Pancreata from 6 week-
old mice with the genotypes indicated (at left) were fixed in paraffin, sectioned, de-paraffinized, 
and immunostained with antibodies specific to mouse proinsulin (red) and calnexin to mark the 
ER (green).  From confocal microscope images (scale bar = 10 µm), a blinded reader scored the 
localization of wt mouse proinsulin in each beta cell as either a predominant juxtanuclear 
crescent of increased intensity [‘Golgi’, consistent with previous reports (22, 24), e.g., see 
arrows] or mainly co-localized with calnexin (‘ER’ e.g., see arrowheads).  Quantitation of these 
data (at right) are shown as mean ± s.e.m from n=5 mice with 5 islets per mouse.   
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Figure 2.7. Bidirectional consequences of interactions between mutant and wt cross-
dimerization partners.  A) The overnight bathing media from cells co-transfected with mutant 
human proinsulin-G(B23)V and wt mouse proinsulin were selectively probed for simultaneous 
secretion of mouse proinsulin (by ELISA, upper panel) and human proinsulin (by RIA, lower 
panel); both assays (normalized to total cell protein) are entirely species-specific.  The data 
represent mean ± s.e.m. from a minimum of three independent transfections, * = p < 0.05.  B) 
The overnight bathing media from cells co-transfected with rdw-TgGFP and wt Tg3xMyc were 
resolved by SDS-PAGE and selectively probed for simultaneous secretion of mutant Tg (by 
specific immunoblotting with anti-GFP, upper panel) and wt Tg (by specific immunoblotting 
with anti-myc, lower panel), normalized to total cellular protein.  For the lower panel, 
noncontiguous lanes from the same gel are shown.   Note that whereas in single transfections 
rdw-Tg is not secreted and wt Tg is well secreted, in co-transfection, rdw-Tg secretion becomes 
enhanced while wt Tg secretion becomes inhibited.   The data shown are representative of three 
independent experiments. 
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Figure 2.8. Secretory rescue by wt proinsulin is restricted to a subset of MIDY mutants.  
293T cells transiently co-transfected with plasmids expressing the indicated human proinsulin 
mutants and either empty vector or wt mouse proinsulin, were incubated overnight in growth 
medium beginning at 24 h post-transfection.  Media were collected and human proinsulin 
secretion was measured by RIA.  The data shown (fold increase in mutant proinsulin secretion as 
a consequence of expressing wt mouse proinsulin over empty vector) are mean values ± range 
from two independent experiments. x = undetectable.   
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Figure 2.9. Model of bidirectional intermolecular interactions of misfolded and native 
proteins.  Within the ER, many secretory proteins, including proinsulin and thyroglobulin, form 
homodimers.  When mutant and wt alleles from the same gene cross-dimerize, there may be 
several outcomes, two of which are summarized in the figure.  The wt gene product can assist the 
mutant partner to exit the ER, or the mutant protein can block anterograde transport of the wt 
protein.  Among other protein-specific and general factors involved, the relative concentrations 
(i.e., stoichiometric ratio) of the two dimerization partners also contribute to the outcome, with 
lower wt : mutant ratios resulting in greater ER retention and higher wt : mutant ratios resulting 
in enhanced forward transport.   
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CHAPTER 3 

 

ERO1! IMPROVES FOLDING AND SECRETION OF MUTANT PROINSULIN AND 

ATTENUATES MUTANT PROINSULIN-INDUCED ER STRESS 

 

Abstract 

Upon chronically upregulated proinsulin synthesis, misfolded proinsulin can accumulate in the 

endoplasmic reticulum (ER) of pancreatic beta cells, which may culminate in the development of 

type 2 diabetes.  In Mutant Ins-gene Induced Diabetes of Youth (MIDY), misfolded mutant 

proinsulin impairs ER exit of co-expressed wild-type (wt) proinsulin, limiting insulin production, 

increasing ER stress and leading to eventual beta cell death.  In this study, we have investigated 

the hypothesis that increased expression of ER oxidoreductin 1-alpha (Ero1!) — despite an 

established role in the generation of H2O2 — might nevertheless be beneficial in limiting 

proinsulin misfolding and its adverse downstream consequences.  Increased Ero1! expression is 

effective in preventing inhibition of wt proinsulin secretion from cells co-expressing misfolded 

mutant proinsulin.  In addition, we find that upon increased Ero1! expression, some of the 

MIDY mutants themselves are directly rescued from ER retention.  Secretory rescue of 

proinsulin-G(B23)V is correlated with improved oxidative folding of mutant proinsulin.  Indeed, 

using three different variants of Ero1!, we find that expression of either wild-type or a 

hyperoxidizing mutant  Ero1! construct can rescue mutant proinsulin-G(B23)V, in parallel with 

its ability to provide an oxidizing environment in the ER lumen — whereas beneficial effects 

were less apparent for a redox-inactive form of Ero1!.  Increased expression of protein disulfide 

isomerase (PDI) antagonizes the rescue provided by oxidatively active Ero1!.  Importantly, the 

ER stress response induced by misfolded proinsulin was diminished upon increased expression 

of Ero1!, suggesting that enhancing the oxidative folding of proinsulin is a viable therapeutic 

strategy in the treatment of type 2 diabetes.   
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Introduction 

The insulin precursor, proinsulin, is the principal protein synthesized in pancreatic beta cells and 

consists sequentially of the so-called B-chain, C-peptide, and A-chain.  Newly-synthesized 

proinsulin must fold properly, including the formation of three intramolecular disulfide bonds, in 

order to be eligible for exit from the endoplasmic reticulum (ER) en route to secretory granules 

where it is eventually converted to mature insulin for secretion (1).  Nevertheless, the specific 

enzymes involved in the oxidative folding of proinsulin remain poorly understood (2).  Under 

conditions of increased synthesis, proinsulin is susceptible to increased misfolding involving the 

mispairing of cysteines to form non-native disulfide bonds (3, 4).  Chronic accumulation of 

misfolded proteins in the ER—termed ER stress—leads to activation of unfolded protein 

response pathways, culminating in apoptosis (5).  ER stress-induced apoptosis is thought to 

contribute to loss of pancreatic beta cells in type 2 diabetes (6).  Indeed, misfolded proinsulin is 

an established cause of autosomal dominant diabetes in the syndrome of Mutant Ins-gene 

Induced Diabetes of Youth (MIDY) (1).  The mutant proinsulin molecules are retained in the ER 

due to a defect in their folding (7); moreover, misfolded mutant proinsulin molecules exert a 

dominant-negative effect on the transport of co-expressed wild-type (wt) molecules through 

direct association, leading to ER stress and eventual beta cell death (7-9).   

 

In recent years, increasing attention has been paid to the role of ER Oxidoreductin-1 (Ero1) in 

promoting the oxidative folding of proinsulin in the ER (10, 11). Mammals express two isoforms 

of Ero1 (! and "); both are ER luminal flavoproteins that couple reduction of molecular oxygen 

with the oxidation of ER oxidoreductases such as protein disulfide isomerase (PDI) (12).  In turn, 

the ER oxidoreductases can shuttle disulfide bonds to substrates to catalyze the folding of newly-

synthesized secretory proteins such as proinsulin (12). Among other pathways, Ero1 is the best-

known source of disulfide bonds in the ER lumen (13). Since Ero1 deficiency impairs proinsulin 

maturation and causes insulin-deficient diabetes (11), it occurred to us that improved proinsulin 

oxidative folding may provide a novel approach to ameliorating insulin production.  Indeed, both 

Ero1 isoforms improved proinsulin secretion from heterologous cells, though Ero1! had a 

markedly stronger effect than did Ero1" (14).  Propelled by the hypothesis that improvement of 

proinsulin folding kinetics may prevent ER retention of both mutant and wt molecules, we have 

examined the effect(s) of increased Ero1! expression on misfolded proinsulin in the ER.  We 
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found that Ero1! overexpression rescued secretion of mutant proinsulin, associated with 

improved proinsulin oxidative folding and decreased mutant proinsulin-induced ER stress.  

 

 

Materials and Methods 

Cell Culture and Transfection 

HEK293T cells (called 293T) cells were cultured in DMEM with 10% fetal bovine serum and 

penicillin (100 U/ml) and streptomycin (100 µg/ml). INS1E cells were cultured in RPMI 1640 

medium supplemented with 10% fetal bovine serum, 1 mM pyruvate, 10mM HEPES, penicillin 

(100 U/ml) and streptomycin (100 µg/ml), and 50 mM 2-mercaptoethanol.  Flp-In T-Rex 293 

cells stably transfected with empty vector (EV), Ero1!-WT, or Ero1!-Active, as previously 

described (18), were maintained in MEM (Sigma, M4526) supplemented with 10% fetal bovine 

serum, 100 U/ml penicillin, 100 µg/ml streptomycin, 1x GlutaMAX (Gibco), 7.5 µg/ml 

blasticidin, and 50 µg/ml hygromycin.  For doxycycline induction, they were incubated in 

complete media containing 1 ug/ml doxycycline for 24 hours.  All cells were cultured at 37°C in 

a 5% CO2 incubator.  Proinsulin variants were expressed in pcDNA3.1 (Invitrogen) or pTarget 

(Promega), Ero1! variants were expressed in pcDNA5/FRT/TO (Invitrogen), Grx1-roGFP-iE 

was expressed in pcDNA3.1, and PDIflag was expressed in pcDNA3.1/V5-His TOPO TA.  All 

plasmids have been used in prior publications, with the exception of Ero1!-Hex and proinsulin-

KeepB19/A20, which were generated using the Quikchange Site-Directed Mutagenesis Kit 

(Agilent).  Plasmids were transfected using Lipofectamine 2000 (Invitrogen) for 293T cells or 

Metafectene Pro (Biontex) for Ins1E and Flp-In T-Rex 293 cells.  Total plasmid DNA amount 

was held constant within each experiment by addition of empty vector.   

 

Proinsulin Measurements and Western Blotting  

For secretion experiments, 24-48 hours post-transfection, culture media was changed and 

collected overnight.  Cells were lysed in RIPA buffer (0.1 M NaCl, 0.2 % deoxycholate, 25 mM 

Tris-pH 7.4, 1% Triton X-100, 0.1% SDS, 10 mM EDTA pH 8.0, and proteinase inhibitor 

cocktail).  Proinsulin was measured by rat insulin or human proinsulin specific 

radioimmunoassay (RIA) and normalized to total protein (measured by BCA assay) in the lysate.  

For western blotting, proteins (10 µg/lane) were resolved by SDS-PAGE on 4-12% acrylamide 
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gradient gels (‘NuPAGE’), electrotransferred to nitrocellulose, and immunoblotted with the 

indicated antibodies: anti-Ero1! (Santa Cruz), anti-Myc (Immunology Consultant Laboratories), 

or anti-!Tubulin (Sigma).  Horseradish peroxidase-conjugated secondary antibodies were from 

Jackson ImmunoResearch with proteins visualized by ECL (Millipore).   !-Tubulin was 

measured as a loading control.  The location of relevant molecular weiht markers is indicated in 

the figures.  Western blot bands were quantified using ImageQuant software.   

 

Metabolic Labeling 

48 hours post-transfection, cells were starved in DMEM lacking cysteine and methionine for 30 

minutes.  After pulse-labeling with S35 labeled cysteine and methionine (Perkin Elmer) for the 

times indicated in the figure legends, cells were washed in ice cold PBS containing 20mM N-

ethyl-methionine (NEM, Sigma), lysed in RIPA buffer containing 2mM NEM, and 

immunoprecipitated using anti-Myc antibodies and protein A agarose.  Immunoprecipitates were 

separated by reducing or non-reducing tris-tricine-urea-SDS-PAGE(Figure 3.3b) as previously 

described (7) or by NuPage (Figure 3.8) and analyzed by autoradiography.  Gel bands were 

quantified using Imagequant software.  

 

ER Oxidation 

Oxidation of the ER in Flp-In TRex 293 cells, using the HyPerER sensor, and in Ins1E cells, 

using Grx-roGFP1-iE was measured as previously described (20, 21). Briefly, Flp-In TRex 293 

cells were stably transfected with plasmid expressing the HyPerER sensor (33).  After induction 

of the Ero1! variants with 1µg/ml doxycycline for 24 hours, fluorescence spectra are obtained at 

steady state or in the presence of 10mM DTT or 100µM H2O2, with excitation ranging from 410-

510nm and emission at 535.  Percent oxidation is calculated as previously described (20).  For 

Ins1E, cells were washed in PBS containing 20mM NEM and lysed on ice for 1 hour in 100 mM 

NaPO4, pH 8, containing 1% Triton-X-100 and 200!"M phenylmethylsulfonylfluoride.  After 

removal of insoluble cell debris by centrifugation,  the supernatant was immunoprecipitated 

using NHS-activated agarose (Thermo Scientific) decorated with anti-GFP.  Samples were 

separated by SDS-PAGE and immunoblotted using anti-HA antibodies.  Blots were analyzed 

densitometrically to determine the oxidized/reduced ratio (21). 
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BiP-Luciferase Measurement 

24 hours after transfection with appropriate proinsulin, Ero1!, and BiP promoter driven 

luciferase plasmids, cells were split into 2 separate wells.  One well was lysed in Passive Lysis 

Buffer (Promega) and luciferase was measured using the Dual Luciferase Reporter Assay Kit 

(Promega) according to manufacturer instructions.  The other well was lysed in Buffer RLT 

(Qiagen) and homogenized using QIAShredder columns (Qiagen).  RNA was isolated using the 

RNeasy kit (Qiagen) according to manufacturer instructions.  cDNA was generated using the 

Superscript III First Strand Synthesis Kit (Invitrogen) according to manufacturer instructions.  

RT-qPCR was performed using Power SYBR Green (Invitrogen) on a StepOnePlus qPCR 

machine (Applied Biosystems) with human proinsulin specific primers: 5’-

CGCAGCCTTTGTGAACCAAC-3’ (Forward) and 5’- TGGGTGTGTAGAAGAAGCCTC-3’ 

(Reverse).  Luciferase signal was normalized to human proinsulin mRNA to account for 

differences in transfection efficiency. 

 

Statistical Analysis 

Statistical analyses were conducted using GraphPad Prism software.  Data are presented as mean 

± SEM, unless otherwise noted, as in Figure 3.2 and Figure 3.8C.  Two-tailed Student’s t test 

was used to assess statistical significance, with a threshold for significance of P<0.05. 

 

 

Results 

Ero1! rescues wildtype proinsulin in the presence of MIDY mutants     

MIDY mutations cause proinsulin to act as a dominant-negative mutant that inhibits wt 

proinsulin transport through the secretory pathway (7-9).  To test the effect of increased Ero1! 

expression on this dominant-negative behavior (14), we co-transfected INS1E beta cells with 

wild-type human proinsulin tagged with a myc-epitope (hPro-CpepMyc) plus either wt or mutant 

mouse proinsulin (mPro).  As previously reported (7), mouse mutant proinsulins C(A7)Y or 

G(B23)V each impaired secretion of co-expressed human wt proinsulin, as measured by human 

proinsulin specific radioimmunoassay (Figure 3.1).  Remarkably, co-transfection of Ero1! in 

beta cells rescued wt proinsulin in the presence of mutant proinsulins C(A7)Y or G(B23)V 

(Figure 3.1).   
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Ero1! directly rescues MIDY mutants   

We wished to determine if prevention of dominant-negative behavior involves primarily Ero1 

activity on wt proinsulin, or if it might in part be attributed to direct effects on mutant proinsulin 

molecules.  With this in mind, we examined the effect of increased Ero1! expression on the 

secretion of a variety of MIDY mutant proinsulins expressed in 293T cells in which wt 

proinsulin is not co-expressed.  Remarkably, several proinsulin mutants including G(B8)S and 

G(B23)V were rescued upon increased expression of Ero1!, while others including L(B11P) and 

C(A7)Y could not be rescued (Figure 3.2 lanes 6 and 10 versus lanes 7 and 14 ).  These results 

indicate that increased expression of Ero1! can directly rescue the secretion of a subset of the 

misfolded proinsulin MIDY mutants. 

 

Rescue of mutant proinsulin by Ero1! and by wt proinsulin are distinct 

It is already known that wt proinsulin can dimerize with mutant proinsulin (15) to bring about a 

partial rescue of a subset of misfolded MIDY mutants (16).  It was therefore of interest whether 

Ero1!-mediated rescue phenocopied the effect of wt proinsulin or whether it was quantitatively 

and/or mechanistically distinct. Hence, we quantified the extent of proinsulin secretion upon 

either treatment and asked if combined treatment showed cooperative amelioration. In the 

presence of wt proinsulin, we observed an approximately three-fold increase in secretion of the 

mutant proinsulin-G(B23)V (Figure 3.3A, second bar).  Independently, we observed an 11-fold 

increase in proinsulin-G(B23)V secretion by increasing Ero1! expression (Figure 3.3A, third 

bar).  When the two treatments were combined, the resulting increase in proinsulin-G(B23)V 

secretion was additive (Figure 3.3A, P=0.08 vs. cells expressing only Ero1!), suggesting that the 

two methods are mechanistically distinct.  

 

Ero1! enhances folding and secretion of the proinsulin-G(B23)V mutant     

To examine how increased expression of Ero1! impacts on proinsulin-G(B23)V folding, we co-

transfected 293T cells with proinsulin-G(B23)V and Ero1! or empty vector, metabolically 

labeled newly-synthesized proteins with 35S-amino acids, immunoprecipitated proinsulin, and 

analyzed the immunoprecipitates by non-reducing Tris-Tricine-Urea-SDS-PAGE.  Wt proinsulin 

can be resolved into four differentially-migrating bands of which the fastest represents native 

proinsulin, the slowest represents fully reduced proinsulin, and the intermediate bands are 
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thought to represent incompletely or improperly folded proinsulin disulfide isomers (7).  Under 

reducing conditions, all oxidized/partially-oxidized proinsulin bands shift up to collapse into a 

single reduced band (Figure 3.3B, lower panel).  Under nonreducing conditions, the fraction of 

proinsulin-G(B23)V that migrated as the native disulfide-bonded form was less than 10% of all 

molecules (Figure 3.3B lane 2), whereas more than 50% of wt proinsulin had acquired the native 

state.  Importantly, when Ero1! was co-transfected, the fraction of proinsulin-G(B23)V 

achieving a native-like mobility was increased (Figure 3.3B lane 3, 3’), although it remained less 

than that seen for wt proinsulin (lane 1).  In 293T cells with co-transfection of Ero1! plasmid, 

the synthesis of labeled proinsulin-G(B23)V appeared to be diminished.  This effect was less 

evident in beta cells and was not correlated with increased ER stress (see below) — but may 

reflect competition between CMV promoters on different plasmids or other mechanisms.  

However, the decreased synthesis of proinsulin-G(B23)V in 293T cells (Figure 3.3B lane 3) 

cannot readily explain its increased secretion from the same cells (Figure 3.2 lane 10).  Rather, 

secretory rescue by Ero1! appears to be correlated with increased oxidation of proinsulin-

G(B23)V.    

 

Proinsulin-G(B23)V mutant rescue activity by Ero1! mutants ± PDI     

Oxidase activity of Ero1!, involving two communicating C394-C397 and C94-C99 active site 

disulfides, are negatively regulated by oxidation of Cys residues at positions 104 and 131 (17, 

18).  We utilized a plasmid expressing Ero1! (bearing a C-terminal Myc and 6-His tag, called 

Ero1!Myc6His) with the regulatory Cys residues mutated to Ala; this construct (herein called 

Ero1!-Active) has previously been shown to have increased activity compared to Ero1!-WT (17, 

19).  We also mutated the four active site plus the two regulatory Cys residues in a construct 

called Ero1!-Hex (Figure 3.4A), which lacks the ability to generate disulfide bonds.  Unlike wt 

proinsulin (Figure 3.4B lane 1), a negligible amount of proinsulin-G(B23)V could be secreted 

from cells to medium (Figure 3.4B lane 2).  However, co-expression of wt Ero1! or Ero1!-

Active markedly increased proinsulin-G(B23)V secretion (Figure 3.4B lanes 3 and 5).  By 

contrast, enhanced proinsulin-G(B23)V secretion was not observed upon co-expression of the 

Ero1!-Hex mutant (Figure 3.4B lane 4) — although when considered as a fraction of total (cell + 

medium) even Ero1!-Hex promoted a statistically significant increase in fractional secretion of 

mutant proinsulin (Figure 3.4C).   
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To determine if rescue of mutant proinsulin by Ero1! correlated with increased oxidation in the 

ER lumen, we measured proinsulin secretion and ER redox state in two cell lines: Flp-In T-Rex 

293 cells with inducible expression of wt Ero1! (18) or Ero1!-Active (17), or in transiently 

transfected INS1E cells. In Flp-In T-Rex 293 cells, we measured ER hyper-oxidation using the 

HyPerER sensor (20), and in Ins1E cells, we used an ER-targeted redox sensitive green 

fluorescent protein, Grx1-roGFP1-iE (21). By nonreducing SDS-PAGE, Grx1-roGFP1-iE 

migrates farther when oxidized than when reduced, and the ratio of the two forms allow an 

estimation of ER redox state.  Indeed, under rescue conditions for proinsulin-G(B23)V (Figure 

3.5A left), there was enhanced oxidation of HyPer in the ER (Figure 3.5A right).  Furthermore, 

in INS1E cells, wt Ero1! demonstrated a tendency towards increased ER oxidation, and Ero1!-

Active produced significant oxidation (Figure 3.5B right) in parallel with increased proinsulin-

G(B23)V secretion (Figure 3.5B left).   

 

As part of the canonical ER oxidation pathway (22), Ero1 is thought to transfer disulfide bonds 

to ER oxidoreductases such as PDI, which can then oxidize substrate proteins.  However, Rajpal 

et al. recently found that in pancreatic beta cells (and 293-derived cells), PDI acts as an 

“unfoldase” or ER retention factor for proinsulin rather than as an oxidant of proinsulin (2, 23).  

To determine if PDI enhances or attenuates Ero1!-mediated rescue of mutant proinsulin, we co-

expressed flag-tagged PDI with hProG(B23)V-CpepMyc and Ero1!Myc6His.  Remarkably, co-

expression of PDI significantly impaired rescue of mutant proinsulin secretion in cells with 

increased expression of wt Ero1! or Ero1!-Active (Figure 3.6 lanes 3-4 and 7-8), indicating that 

Ero1! -facilitated proinsulin secretion was not due to enhanced PDI-catalyzed oxidation. 

However, co-expression of PDI had no effect in cells expressing the inactive Ero1!-Hex (Figure 

3.6 lanes 5-6).  Thus, the activity of PDI to antagonize mutant proinsulin export depends on the 

presence of active-site cysteines in Ero1!.   

 

Ero1! decreases ER stress activated by Proinsulin-G(B23)V     

Expression of hyperactive Ero1! triggers the ER stress response (17), which is likely a result of 

increased generation of H2O2 (24).  It was therefore of interest to know if increased oxidation of 

proinsulin-G(B23)V upon co-expression of Ero1! triggers increased ER stress. To test this, we 
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utilized a BiP-promoter driven luciferase (BiP-luciferase) reporter (as a readout of ER stress 

signaling) and normalized luciferase luminescence directly to the mRNA level of proinsulin-

G(B23)V that drives the ER stress response (7). Consistent with previous data (7), the G(B23)V 

mutation triggered a ~2.4 fold increase in BiP-luciferase compared to cells expressing wt 

proinsulin.  However, increased expression of wt Ero1! resulted in a significant diminution of 

the G(B23)V-mediated increase in BiP-luciferase (Figure 3.7 lane 3); expression of Ero1!-

Active also tended to inhibit the G(B23)V-mediated increase in BiP-luciferase (Figure 3.7 lane 

5).  By contrast, Ero1!-Hex did not decrease the ER stress response induced by proinsulin-

G(B23)V (Figure 3.7 lane 4). We conclude that co-expression of active Ero1! does not further 

compromise ER homeostasis but rather antagonizes proinsulin-G(B23)V-mediated ER stress.  

 

Ero1! directly enhances formation of the proinsulin C(B19)-C(A20) disulfide bond, even in the 

presence of the G(B23)V mutation   

Finally, to pin down where in the proinsulin folding pathway can Ero1! promote proinsulin 

oxidation, we engineered a proinsulin variant that can form only the B19-A20 disulfide bond.  

This C(B7)S,C(A6)S,C(A7)S,C(A11)S mutant that we call “KeepB19/A20” also has a myc tag 

and two Met residues added to the C-peptide to enhance labeling efficiency with 35S-amino acids 

(Figure 3.8A).  When transiently transfected, newly synthesized KeepB19/A20 runs by 

nonreducing SDS-PAGE as two distinct bands: the slower-migrating reduced band and the 

faster-migrating oxidized band.  Because only two Cys residues remain in the protein, we can be 

certain that the oxidized band represents formation of the proinsulin B19-A20 disulfide bond.  

Overexpressing wt Ero1! or Ero1!-Active significantly increased B19-A20 disulfide bond 

formation (Figure 3.8B nonreduced gel, lanes 2 and 4, quantified below the gel) whereas Ero1!-

Hex was without effect (Figure 3.8B, lane 3).  Previous reports have suggested that the G(B23)V 

mutation may impair the kinetics of B19-A20 disulfide pairing (7, 25); we therefore investigated 

the ability of Ero1! to assist in B19-A20 disulfide bond formation in the presence of the 

G(B23)V point mutation.  Once again, overexpression of wt Ero1! and Ero1!-Active, but not 

Ero1!-Hex, directly enhanced formation of this critical proinsulin disulfide bond.  These data 

provide potential insight into the mechanism of rescue of MIDY mutants by increased activity of 

Ero1.   
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Discussion 

The MIDY mutants provide an interesting model to study the effects of proinsulin misfolding on 

beta cell dysfunction.  These mutants are known to operate in a dominant-negative mode, 

associating with and inhibiting the intracellular transport of co-expressed wildtype proinsulin (7-

9, 16) and resulting in eventual ER stress-induced beta cell death (1).  A preliminary report has 

indicated that increased expression of ER oxidoreductin-1 can ameliorate this dominant-negative 

effect (14).  In the current study, we have further explored the benefits of Ero1 expression on 

proinsulin transport leading to elevated insulin production.  Curiously, since oxidative stress has 

been linked to beta cell dysfunction in diabetes (6, 26), and because Ero1 activity includes H2O2 

generation that is presumed to be detrimental to beta cells (5), published studies have attempted 

to improve beta cell health by decreasing Ero1 levels (11, 27). While scavenging cellular reactive 

oxygen species might improve beta cell insulin secretion under conditions of stress (27), in fact 

inhibition of Ero1! was found to have the opposite effect(10, 11).  Specifically, Min6 cells with 

disrupted Ero1! expression have decreased insulin content and increased susceptibility to ER 

stress-induced apoptosis (10).  Furthermore, mice with homozygous Ero1! knockout develop 

diabetes with insulin insufficiency, and mice expressing the MIDY mutant proinsulin-C(A7)Y 

develop earlier and more severe insulin-deficient diabetes when one Ero1! allele is lacking (11). 

Thus deficiency in the oxidative capacity of the ER may be more detrimental to beta cell insulin 

production than potential damage caused by reactive oxygen species generated as a byproduct of 

Ero1 activity.  

 

In the current study, we have examined the consequences of increased Ero1 levels in cells 

expressing misfolded proinsulin, using proinsulin-G(B23)V as a model.  Our work started out to 

further understand the improved secretion of wt proinsulin in the presence of misfolded MIDY 

mutants.  We confirmed that increased expression of Ero1" significantly attenuates the defect in 

endogenous insulin production/secretion in INS1E beta cells exogenously expressing mutant 

proinsulin-C(A7)Y or G(B23)V (Figure 3.1).  Indeed, Ero1" does not at all improve the secretion 

of proinsulin-C(A7)Y itself (Figure 3.2 lane 14); thus in this instance, beneficial effects of Ero1" 

are likely explained by actions on the co-expressed wt proinsulin partner.  However, to our 

surprise, we found that increased expression of Ero1" markedly improved secretion of a subset 

of MIDY mutants including proinsulin-G(B23)V, even in the absence of any co-expressed wt 
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proinsulin (Figure 3.2 lane 10).  These data suggest a more direct effect of Ero1! activity on the 

mutant proinsulin itself.  We have recently found that secretion of proinsulin-G(B23)V is 

increased in cells co-expressing wt proinsulin (16).  Interestingly, many of the same MIDY 

mutants whose secretion can be enhanced by co-expression with wt proinsulin (16) are among 

those whose secretion can also be enhanced by increased expression of Ero1!.  However, Ero1! 

exerts a much stronger effect on proinsulin-G(B23)V secretion than does co-expression of wt 

proinsulin, and in fact, the two treatments together have an additive effect suggesting that each 

treatment acts to rescue a misfolded proinsulin molecules by different mechanisms.  While 

rescue by wt proinsulin is likely a consequence of cross-dimerization between misfolded and wt 

partners (16), the mechanism of rescue by Ero1! is unknown, and in this study, we have 

endeavored to pursue some of the most obvious initial possibilities.   

 

Proinsulin-G(B23)V is a useful model of misfolded proinsulin, because previous work has 

established that upon reaching a native disulfide bonding pattern, the insulin moiety of this 

MIDY mutant achieves thermodynamic stability equal to that of wild-type insulin — indeed the 

defect for proinsulin-G(B23)V is a kinetic barrier in achieving the native disulfide-bonded state 

(7).  In this report, we find that increased expression of Ero1! enhances the fraction of newly-

synthesized proinsulin-G(B23)V achieving a disulfide bonding pattern comparable to that of 

natively folded wt proinsulin (Figure 3.3B).  Moreover, in two additional cell culture models, 

beta cells and 293 cells with inducible Ero1! expression, rescue of misfolded proinsulin by 

Ero1! was accompanied by increased oxidation of the ER lumen (Figure 3.5).  By contrast, 

Ero1!-Hex, which lacks the ability to promote disulfide bonds via the canonical mechanism, had 

a markedly decreased ability to rescue misfolded proinsulin secretion (Figure 3.4B, C).   

 

Our data suggest that rescue of proinsulin misfolding by Ero1! can be attributed to improvement 

of the proinsulin oxidation pathway.  However, this oxidation pathway remains poorly 

understood.  The best-studied Ero1 substrate is PDI, and until recently it was assumed that PDI 

shuttles disulfide bonds to nascent proinsulin.  However, new evidence has suggested that PDI 

actually retards insulin production in beta cells and limits proinsulin intracellular transport (2, 

23).  Herein we find that co-transfection of PDI attenuates the rescue of misfolded proinsulin 

provided by wt Ero1! or Ero1!-Active, whereas it had no effect in cells expressing the 
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catalytically inactive Ero1!-Hex (Figure 3.6).  These data suggest that PDI either inhibits the 

enzymatic activity of Ero1 (which we view as unlikely) or competes with other ER 

oxidoreductases that are involved in proinsulin folding, or acts directly on proinsulin in a manner 

that actually limits proinsulin folding and transport.  Indeed, a direct physical interaction 

between PDI and proinsulin in the ER was demonstrated (2).  Altogether, the current data clearly 

support the conclusion that oxidative folding of proinsulin, promoted by Ero1, is not mediated by 

PDI. Nevertheless, our results suggest the possibility — counter to current thinking (27) — that 

elevation of ER oxidative capacity (and of Ero1 activity in particular) in beta cells may be a 

reasonable therapeutic strategy in treatment of proinsulin misfolding.  Importantly, as wt 

proinsulin is prone to misfolding especially when its synthesis is upregulated (3, 4), such agents 

could be of particular therapeutic value in type 2 diabetes where high-level proinsulin synthesis 

and ER-stress induced beta cell death prevail. Accordinlgy, we examined ER stress response in 

INS1E cells expressing proinsulin-G(B23)V and found that both wt Ero1! and Ero1!-Active 

decreased BiP-luciferase reporter activity, whereas Ero1!-Hex was without effect (Figure 3.7). 

These data provide further support for the notion that Ero1-mediated oxidation of the ER lumen 

may actually be beneficial to stressed beta cells (28), especially in light of recent findings that 

H2O2 generated by Ero1 may be readily consumed by concurrent activity of peroxiredoxin-4 to 

further enhance protein disulfide bond formation (29, 30).   

 

While rescue of oxidative folding of proinsulin molecules that are prone to misfolding is a key 

contribution of Ero1!, we also note that cells expressing Ero1!-Hex also showed a modest 

fractional enhancement of proinsulin secretion (Figure 3.4C).  Since this mutant lacks the ability 

to promote substrate disulfide bond formation, it is possible that Ero1! has additional activities 

and protein partners that influence folding and secretion of proinsulin.  Further investigation is 

needed to explore the magnitude of these effects on secretory protein substrates and to 

understand the underlying mechanism and significance of Ero1! oxidative and non-oxidative 

activities.   

 

Finally, we note that not only do the oxidoreductases involved in proinsulin folding remain 

mysterious, but even whether formation of each of proinsulin’s three disulfide bonds is catalyzed 

remains unknown.  To break this problem down to its simplest components, we generated the 



 77 

KeepB19/A20 construct to study formation of the B19-A20 disulfide bond in the absence of 

other possible pairings.  Unequivocally, both wt Ero1! and Ero1!-Active promote oxidative 

assembly of the B19-A20 disulfide bond (once again, Ero1!-Hex had no effect) (Figure 3.8B).  

More importantly, wt Ero1! and Ero1!-Active promote formation of this bond even in the 

presence of the proinsulin-G(B23)V mutation (Figure 3.8C).  These data strongly support a 

mechanism for how Ero1! assists proinsulin to overcome misfolding: by facilitating formation of 

the critical stabilizing B19-A20 disulfide bond (31, 32).  
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Figures 

 
Figure 3.1. Ero1! rescues wildtype proinsulin in the presence of MIDY mutants.  INS1E 
cells were triply transfected with plasmids expressing wt hPro-CpepMyc, the indicated mouse 
proinsulin mutants, and Ero1! or empty vector.  48 h after transfection, media was changed for 
overnight collection.  Cells were lysed in RIPA buffer, and human proinsulin secretion was 
measured by human proinsulin specific RIA, normalized to total cellular protein content.  Data 
represent mean ± SEM of three independent transfections.  *P<0.05 vs. cells co-expressing wt 
mPro.  †P<0.05 vs. cells untransfected with Ero1!. 
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Figure 3.2. Ero1! directly rescues MIDY mutants.  293T cells were transiently co-transfected 
with plasmids expressing the indicated human proinsulin mutants and Ero1! or empty vector.  24 
hours after transfection, media was collected overnight and cells were lysed in RIPA.  Proinsulin 
secretion was measured by human proinsulin specific RIA and normalized to total cellular 
protein content.  Data represent mean ± range of two independent transfections and is expressed 
as fold increase of secretion from cells co-transfected with Ero1! over secretion from cells co-
transfected with empty vector (EV).  Immunoblots of cell lysates (bottom panels) using anti-
Ero1! antibodies show the level of total Ero1! expression, with !-tubulin used as a loading 
control.  Lane 1 represents cells transfected only with empty vector, and lanes 2-15 represent 
cells expressing the indicated human proinsulin mutant + Ero1!. Noncontiguous lanes from the 
same gel were spliced together where indicated. 
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Figure 3.3. Ero1! enhances folding and secretion of the proinsulin-G(B23)V mutant. (A) 
293T cells were triply transfected with hProG(B23)V-CpepMyc ± mProWT ± Ero1!, as 
indicated.  24 hours after transfection, cell culture media was collected overnight, and cells were 
lysed in RIPA buffer.  hPro secretion was measured by human proinsulin specific RIA, 
normalized to total cellular protein content.  Data represents mean ± SEM of three independent 
transfections, expressed as fold increase in secretion compared to cells transfected with 
hProG(B23)V-CpepMyc alone.  *P<0.05 vs. a value of 1, †P<0.05 vs. bar 2.  Between bars 3 and 
4, P=0.08.  (B) 293T cells co-transfected with wt or G(B23)V hPro-CpepMyc ± Ero1!, as 
indicated, were pulse-labeled with 35S cysteine and methionine for 30 minutes.  After washing 
cells in ice cold PBS containing 20mM NEM for 5 minutes, cells were lysed in RIPA containing 
2 mM NEM.  After immunoprecipitation with anti-Myc antibodies, samples were separated by 
reducing or non-reducing tris-tricine-urea-SDS-PAGE and analyzed by autoradiography.  Lane 3’ 
is a longer exposure of lane 3, to allow direct comparison of the band intensity against lane 2.  
Data represent mean ± SEM of densitometric quantification of native proinsulin band intensity 
over total proinsulin intensity. n=4, *P<0.05 vs. cells untransfected with Ero1!.  Noncontiguous 
lanes from the same gel were spliced together.   
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Figure 3.4. Ero1! mutants vary in their ability to rescue proinsulin-G(B23)V.  (A) 
Schematic representation of the Ero1! active sites (C94-C99, and C394-C397) and regulatory 
cysteines (C104-C131) in wt Ero1!, Ero1!-Hex, and Ero1!-Active.  (B) 293T cells were co-
transfected with the indicated hPro-CpepMyc and Ero1!Myc6His plasmids.  24 hours after 
transfection, cell culture media was collected overnight, and cells were lysed in RIPA buffer.  
Secretion of hPro-CpepMyc and cellular content of hPro-CpepMyc and Ero1!Myc6His were 
measured by Western blot analysis using anti-Myc antibodies.  Gel loading was normalized to 
total cellular protein content.  (C) Data represent densitometric quantification of bands from (B), 
expressed as media over total (cell + media) band intensity, n=3.  *P<0.05 vs. cells lacking any 
Ero1!Myc6His. †P<0.05 vs. cells co-expressing wt Ero1!Myc6His. 
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Figure 3.5. Ero1! hyperoxidizes the ER and promotes secretion of proinsulin-G(B23)V in 
Flp-In T-Rex-293 and Ins1E cells. (A) Stably transfected Flp-In T-Rex-293 cells inducibly 
expressing empty vector (EV), wt, or Active Ero1!Myc6His were transiently transfected with 
hProG(B23)V-CpepMyc.  24 hours after transfection, cells were split into 2 separate wells, to be 
treated with or without 1 ug/ml doxycycline.  After 24 hours on doxycycline, cell culture media 
was collected overnight, and cells were lysed in RIPA buffer.  Proinsulin secretion was measured 
by insulin RIA, normalized to total cellular protein content.  HyPerER oxidation in separately 
transfected cells was measured as described in Methods.  Data represents mean ± SEM of three 
independent experiments, expressed as fold increase of secretion in +dox cells over -dox cells 
(left panel) or ratio of oxidized over reduced bands relative to –dox cells (right panel).  *P<0.05 
vs. –dox cells. (B) Ins1E cells were co-transfected with hProG(B23)V-CpepMyc and EV or the 
indicated Ero1!Myc6His variant.  24 hours after transfection, cell culture media was collected 
overnight, and cells were lysed in RIPA buffer.  Proinsulin secretion was measured by human 
proinsulin specific RIA, normalized to total cellular protein content.  Grx1-roGFP1-iE oxidation 
in separately transfected cells was measured as described in Methods.  Data represent mean ± 
SEM from 3-4 independent experiments, expressed as proinsulin secretion normalized to cellular 
protein (right panel) or ratio of oxidized over reduced bands relative to cells lacking 
Ero1!Myc6His (right panel).  *P<0.05 vs. cells without Ero1!Myc6His.   
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Figure 3.6. PDI antagonizes the ability of Ero1! to promote proinsulin-G(B23)V secretion.  
293T cells were triply transfected with hProG(B23)V-CpepMyc with the indicated 
Ero1!Myc6His mutants with or without PDIflag.  After 24 hours, cell culture media was 
collected overnight, and cells were lysed in RIPA buffer.  Proinsulin secretion was detected by 
insulin RIA, normalized to total cellular protein content.  Data represent mean ± SEM from 4 
independent experiments. *P<0.05 vs. control cells lacking PDIflag.  Ero1!Myc6His was 
confirmed by anti-Myc immunoblot, with !-Tubulin as a gel loading control. 
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Figure 3.7. Ero1! decreases ER stress activated by proinsulin-G(B23)V. Ins1E cells were 
triply transfected with plasmids expressing BiP-promoter driven luciferase and the indicated 
hPro-CpepMyc and Ero1!Myc6His mutants.  Transfected cells were split into 3 separate wells, 
and 48 hours after transfection cells were lysed.  Lysates were either used to measure luciferase 
signal by luminometer, human proinsulin mRNA by RT-qPCR, or hPro-CpepMyc and 
Ero1!Myc6His content by anti-Myc immunoblot with !-Tubulin as a loading control.  Data 
represent mean ± SEM of 5 independent experiments. *P<0.05 compared to cells expressing 
hProG(B23)V-CpepMyc without Ero1!Myc6His, expressed as fold increase of luciferase signal 
over human insulin mRNA compared to cells expressing wt proinsulin.  
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Figure 3.8. Ero1! directly enhances formation of the proinsulin C(B19)-C(A20) disulfide 
bond. (A) Schematic representation of the KeepB19A20 construct, with the indicated mutations 
from wt proinsulin indicated.  The resulting molecule can make only the C(B19)-C(A20) 
disulfide bond.  (B) 293T cells were co-transfected with KeepB19A20 and the indicated 
Ero1!Myc6His mutants.  After 48 hours, cells were pulse labeled with 35S Cys/Met for 10 min 
prior to treatment with ice-cold PBS containing 20 mM NEM and lysis in RIPA containing 2 
mM NEM.  Lysates were immunoprecipitated with anti-Myc antibodies, separate by reducing 
and non-reducing SDS-PAGE (NuPage), and analyzed by autoradiography.  Data represent 
densitometric quantification of proinsulin bands from 4 independent experiments, expressed as 
ratio of oxidized over reduced bands. *P<0.05 vs. cells lacking Ero1!Myc6His.  (C) 293T cells 
were co-transfected with wt or G(B23)V KeepB19A20 and with the indicated Ero1!Myc6His 
mutants.  Cells were treated as described in (B).  Data represent quantification from 1 experiment.   
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CHAPTER 4 

 

PERSPECTIVE AND CONCLUSIONS 

 

Introduction 

As insulin is the primary hormone responsible for regulating glucose metabolism, insulin 

synthesis and secretion is critical for health. As discussed in Chapter 1, the insulin precursor 

proinsulin folds, forms its three intramolecular disulfide bonds, and non-covalently dimerizes 

prior to exiting the endoplasmic reticulum (ER).  After ER exit, it transits through the Golgi 

complex to secretory vesicles, where it forms hexamers, is endoproteolytically cleaved to mature 

insulin, and is stored until secretion.  Insulin secretion is tightly coupled to blood glucose and is 

regulated as well by other nutrients and hormones.   Mutations in several of the genes involved in 

insulin synthesis and secretion have been associated with monogenic diabetes, including 

mutations in KCNJ11 and ABCC8 (which encode subunits of the ATP sensitive potassium 

channel), GCK (which encodes glucokinase, the enzyme responsible for the first step of glucose 

metabolism), and SCLC2A2 (the Glut2 glucose transporter) (1).   

 

Mutations in the coding sequence of proinsulin itself also cause disease of varying severity, 

depending on the nature of the mutation.  Multiple translational start site or truncation mutants 

have been identified to cause insulin deficiency leading to autosomal recessive diabetes in 

humans (2).  Other insulin mutations cause milder and later onset diabetes due to decreased 

insulin receptor binding (3) or impaired endoproteolytic cleavage of proinsulin (4).   Studying 

these “classical insulinopathies” has shed light on insulin processing and insulin receptor binding 

and their role in physiology and disease.   

 

For my thesis research, I have focused on a new class of insulin mutations responsible for a 

syndrome termed mutant Ins-gene induced diabetes of youth (MIDY), with the hope that my 

research will lead to improved understanding of this disease and novel therapeutic options for 
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this and other forms of diabetes.  In addition, as discussed below, there are many diseases of 

other organ systems that appear to have deep similarity in terms of molecular pathogenesis, and 

it is not implausible that work done here could have impact entirely outside of the diabetes arena.   

 

Until quite recently, patients with MIDY were diagnosed with very early onset type 1 diabetes.  

Unfortunately, even though the etiology of their disease is quite different from type 1 diabetes, 

they receive identical treatment, namely daily blood glucose monitoring and insulin replacement 

therapy by subcutaneous injection. While such treatment dramatically improves these patients’ 

life expectancy and quality of life, therapy specifically targeting the underlying problem in these 

diseases could provide improved glycemic control and quality of life.  Unlike type 1 diabetes, 

which is an autoimmune disease, MIDY is caused by mutations in the coding sequence of an 

allele of the Ins gene.  The products of this allele are misfolded and retained in the ER, but their 

pathogenic mechanism is not due solely to the retention of the mutant molecules alone.  Rather, 

the mutant proinsulin molecules exhibit a toxic gain-of-function based on intermolecular 

interaction with co-expressed wt proinsulin.  Due to this interaction, wt proinsulin is also 

retained in the ER, which is fundamental to decreased insulin secretion and increased ER stress 

and beta cell death, leading to hyperglycemia and diabetes (5-7).  

 

Thus, MIDY belongs to a growing class of disorders, the secretory protein conformational 

diseases (8).  Multiple therapies for these diseases have been proposed, including 

pharmacological modification of the rate of protein synthesis to avoid overloading protein 

folding capacity (9), manipulation of the intraluminal ER ionic milieu (10, 11) or modulation of 

ER-associated degradation (ERAD) (12); still others involve pharmacologic chaperones (13) or 

modulators of endogenous ER chaperone activity (14, 15) including pre-emptive induction of 

unfolded protein response (16).  All of these therapies are general in nature, theoretically 

affecting all secreted proteins similarly.  In Chapter 2 of my dissertation, I investigated a novel 

approach that may help improve proinsulin secretion specifically, rather than generally.  In 

Chapter 3 of my dissertation, I investigated a second approach to improving proinsulin secretion, 

by enhancing protein oxidation in the ER.  

 

 



 91 

Intermolecular Interactions in MIDY 

It has been widely observed that many secreted proteins oligomerize intracellularly, even if they 

function extracellularly as monomers.  This observation is also true for insulin and its precursor 

proinsulin.  In Chapter 2, I studied how the intermolecular interactions between homo-

dimerization partners can affect trafficking of protein through the secretory pathway.  After 

observing that some mutant proinsulins are more efficiently secreted in cells that co-express wt 

proinsulin than in heterologous cells lacking endogenous insulin (5-7), I questioned how 

dimerization between mutant and wt proinsulin may affect trafficking of both partners.  Indeed, 

we had previously found that mutant proinsulin dimerizes with (17)and impairs trafficking of wt 

proinsulin (5), but the effect of this intermolecular interaction on the mutant protein had never 

been investigated.  I found that dimerization has two simultaneous effects on the partner 

molecules.  Strangely, at the same time that wt proinsulin is impeded by its interaction with 

mutant proinsulin, wt proinsulin also improves mutant secretion (Figure 2.7A) by stabilizing the 

misfolded molecule (Figure 2.5A). Though this rescue by dimerization does not apply to all 

MIDY mutants (Figure 2.8), remarkably, it may be generalizable to other proteins, since mutant 

rdw-thyroglobulin (Tg) was rescued by co-expression with wt Tg.  Similar to proinsulin, mutant 

Tg and wt Tg dimerize (Figure 2.2D), and a sub-fraction of dimers is secreted while another sub-

fraction is retained, leading to secretory rescue of mutant Tg and blockade of wt Tg (Figure 

2.7B).  For both proteins (Tg and proinsulin), this effect is specific, since wt Tg failed to rescue 

mutant proinsulin, and wt proinsulin failed to rescue mutant Tg (Figure 2.4A) Thus, any dimer 

may either be retained in the ER or be transported forward for secretion (Figure 2.9), and the 

ratio of expression of either partner seems to play a significant role in determining which result 

predominates (Figure 2.5B-E)  

 

These results raise two important, unanswered questions about the nature of secretory protein 

dimers.  First, how does dimerization allow secretion of a subset of misfolded mutant protein?  

As far as we can tell, dimerization does not seem to improve folding of the mutant, so rescue of 

the mutant must involve some mechanism other than simple enhanced folding.   Since the mutant 

is stabilized, it may be reasonable to hypothesize that dimerization masks typical markers for 

ER-associated degradation (ERAD), preventing binding to the degradation machinery.  Similarly, 

dimerization may simply prevent binding to ER retention factors, allowing escape from ER 
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quality control.  Though the nature of interactions between proinsulin and many ER chaperones 

remains unclear, some chaperones, including BiP and PDI, have been proposed as proinsulin 

retention factors.  Overexpression or knockdown of these potential proinsulin retention factors, 

in conjunction with expression of wt proinsulin as a rescue agent for mutant molecules, could be 

an interesting starting point in addressing this question.  The role of individual chaperones and 

oxidoreductases in proinsulin folding remains an active area of investigation in our lab, and 

novel findings could provide new insight into these mechanisms.  Alternatively, binding of wt 

proinsulin to some forward-transport cargo receptor may “pull” the misfolded mutant forward 

out of the ER, though no proinsulin cargo receptor has yet been identified.  

 

Since a single mutant molecule cannot simultaneously be retained and rescued, a second, related 

question is what determines the fate of a given dimer.  Though dimerization does not necessarily 

improve folding of the mutant proteins, it is possible that the folding state of the wt molecule at 

the time of dimerization may influence the decision.  In this scenario, a well-folded wt protein 

would rescue its mutant dimerization partner, while a partially-folded wt protein would be 

retained by its interaction with the misfolded mutant.  Alternatively, the decision between 

retention and secretion may be entirely stochastic, with wt-wt dimers being almost completely 

secreted, mutant-mutant dimers being almost completely retained, and mixed dimers having an 

intermediate chance at either outcome (based on the potential mechanisms outlined above).  

Though interesting, these conflicting hypotheses are exceedingly difficult to test in living cells, 

and we have discussed collaborations with experts in mathematical modeling to further dissect 

the behavior of proinsulin dimers.  Furthermore, in vitro co-immunoprecipitation experiments to 

determine the respective strength of interaction between mutant and wt proinsulins could help 

elucidate the nature and results of dimerization. 

 

Another intriguing aspect of the rescue/blockade described in Chapter 1 is the genetic inheritance 

patterns of the two diseases involved.  Intriguingly, despite the similarities between the 

molecular behavior of mutant Tg and proinsulin, the rdw Tg gene is a recessive allele, whereas 

mutant proinsulin acts dominantly.  Thus heterozygous expression of the mutant proinsulin 

causes early onset permanent diabetes, while patients (or animals) expressing one allele of 

mutant Tg are phenotypically normal.  We speculate that the explanation for this difference lies, 
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at least in part, in the differences in “rescuability” of each mutant.  Rescue of mutant proinsulin 

required higher wt:mutant ratios than did rescue of mutant Tg.  Thus, at the theoretical 1:1 ratio 

found in heterozygotes, mutant Tg may be more efficiently rescued than mutant proinsulin.  Of 

course, other factors may also contribute, including the ability of the thyroid to grow in response 

to hypothyroidism, compared to the relatively limited growth potential of adult pancreatic beta 

cells.   

 

To further investigate this phenomenon in animal disease, we are currently generating a knock-in 

mouse expressing an inducible Ins2G(B23)V allele.  Since mice express two insulin genes, Ins1 and 

Ins2, these B23V mice are expected to express proinsulin at a wt:mutant ratio of approximately 

3:1 (though actual ratio is likely lower since Ins2 expresses more strongly than Ins1 (18)).  By 

crossing these mice to Ins1 knockout mice, Ins2 knockout mice, and compound Ins1/Ins2 

knockout mice (which we have in our lab), we will be able to generate mice expressing 

proinsulin wt:mutant ratios ranging from 0:1 to 3:1.  Since the Ins2G(B23)V allele is a myc-tagged 

human preproinsulin gene, we will be able to distinguish processing and secretion of mutant 

from wt proinsulins. In conjunction with my results in Chapter 2, I expect mice with low 

wt:mutant ratios to develop insulin-deficient hyperglycemia earlier and more severely, as well as 

impaired subcellular trafficking of both wt and mutant proinsulins, compared to mice with high 

wt:mutant ratios. Differences in onset of diabetes between mice expressing more or less wt 

proinsulin could potentially be explained simply by relative deficiency of wt insulin secretion.  

At its most extreme, animals lacking any wt insulin die within 48 hours of birth, so mice with a 

0:1 ratio may not contribute to experiments involving blood glucose measurement, but 

comparison between mice with more moderate ratios may help determine the significance of 

rescue of mutant proinsulin by wt proinsulin in living animals.  Furthermore, by isolating islets 

from these mice, we will be able to control for external effects such as hyperglycemia to monitor 

how efficiently mutant and wt proinsulin is trafficked and secreted from these cells.   

 

As a further extension of this project, I would like to use chemical compounds to interfere with 

intermolecular interactions between proinsulin molecules and observe their effect on secretion 

and cell health.  Using in silico screening of compounds that can fit in the interface between 

proinsulin dimerization partners, our lab has identified several potential dimerization inhibitors.  
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I would like to measure wt and mutant proinsulin secretion in the presence of these compounds, 

to see if preventing dimerization attenuates mutant rescue, improves wt secretion, or affects cell 

health.   

 

Another tool that would be valuable in continuing this project would be non-dimerizing 

proinsulin molecules.  Indeed, monomeric insulins are used extensively to treat type 1 diabetic 

patients, due to their improved kinetics of bioactivity.  All of these monomeric insulins are 

artificially synthesized, and their in vivo behavior as proinsulin is unknown.  A monomeric 

proinsulin would allow me to directly test our hypothesis that dimerization is what accounts for 

secretion of proinsulin-G(B23)V and some other MIDY mutants.  Surprisingly though, all of the 

“monomeric proinsulins” that I have made, including P(B28)D and PK(B28, 29)KP (based on 

Insulin-Aspart and Insulin-LysPro, respectively), co-immunoprecipitated with wt or mutant 

proinsulin (Figure 4.1).  Though two of the “non-dimerizers” had decreased co-

immunoprecipitation and thus may be promising, the fact that the proinsulins based on 

monomeric insulins do form dimers may suggest that proinsulin dimerization is a critical, 

unavoidable step in proinsulin maturation.  Regardless, our lab continues efforts to generate 

monomeric proinsulins using crystallographic information about the dimer interface and based 

on other monomeric insulins, with hopes that this will be a valuable research tool.  

 

ER Oxidation in MIDY 

ER stress and activation of the unfolded protein response are often associated with increased 

oxidative stress (19-21), which may contribute to beta cell dysfunction and cell death in diabetes.  

Multiple markers of oxidative protein damage have been observed in islets of type 2 diabetics 

(22, 23), and antioxidant treatment of various rodent models of diabetes ameliorated the 

development of hyperglycemia and prevented the loss of beta cells (24-27).  Nevertheless, the 

extent to which ER-derived reactive oxygen species, such as the H2O2 produced by Ero1, 

contributes to this oxidative stress remains unclear.  In yeast (28) and in C. elegans (29), partial 

attenuation of Ero1 activity is beneficial in the context of pharmacologically-induced ER stress.  

In mammalian cells, siRNA-mediated knockdown of Ero1! in murine macrophages decreased 

susceptibility to pharmacologically induced ER stress and apoptosis (30), and knockdown of 

Ero1" seemed to be cytoprotective in Min6 cells stably expressing the mutant proinsulin-
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C(A7)Y (31), though this result seems contradictory to another study finding that Ero1! 

knockdown in Min6 cells increased phospho-JNK and susceptibility to ER-stress-induced 

apoptosis (32).  Furthermore, a recent study implicated Ero1" activity as a major contributor to 

cell death induced by tunicamycin (a potent ER stressor) or by forced expression of ATF4 and 

CHOP (the principle transcription factors believed to be responsible for ER-stress induced 

apoptosis) (33).  Despite a prevailing view that ER-derived reactive oxygen species damage cells, 

in vivo models have failed to support the hypothesis that Ero1 activity contributes to beta cell 

dysfunction in diabetes.  In fact, mice lacking Ero1! actually develop a diabetic phenotype (i.e., 

more Ero1! is better) and mice expressing mutant proinsulin-C(A7)Y and only one allele of 

Ero1! develop diabetes earlier and more severely than mice with two functional Ero1! alleles 

(31).  Thus, while some in vitro evidence suggests that Ero1 activity is detrimental to cell health, 

in vivo studies seem to suggest the opposite.  

 

Based on the foregoing logic, it is not unreasonable to hypothesize that enhanced Ero1 activity 

might actually be beneficial to insulin secretion and beta cell health in the context of misfolded 

mutant proinsulin.  In Chapter 3, I investigated how Ero1" overexpression affects mutant and wt 

proinsulin secretion and ER stress response in beta cells.  I found that overexpression of Ero1" 

improved wt proinsulin secretion in the presence of mutant proinsulin (Figure 3.1).  Ero1" also 

directly improved secretion of a significant subset of the MIDY mutants (Figure 3.2).  This 

rescue of mutant proinsulin is likely due to improved proinsulin oxidation (Figure 3.3), 

especially of the C(B19)-C(A20) bond (Figure 3.8), though non-oxidative effects might also play 

a role since a redox-inactive Ero1" mutant also moderately improved secretion of mutant 

proinsulin (Figure 3.4).  Consistent with a previous report (34), Ero1"’s activity on proinsulin 

was not mediated by proinsulin disulfide isomerase (PDI), since PDI overexpression actually 

antagonized the effect of enzymatically-active Ero1" (Figure 3.6).  Importantly, increased Ero1" 

may be beneficial to beta cell health since mutant proinsulin-induced ER stress response was 

decreased by Ero1" overexpression (Figure 3.7).  

 

To further advance this work, I would like to better understand the mechanism by which Ero1" 

overexpression rescues secretion of mutant proinsulin.  Clearly, enhanced oxidation contributes 

to its mechanism, since wt Ero1" and hyperactive Ero1"-Active had significantly more effect 
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than the redox-inactive Ero1!-Hex. To determine if the effect is predominantly oxidative or non-

oxidative, I first would like to determine the oxidation state of the secreted mutant molecules 

when co-expressed with the Ero1! variants.  If the molecules rescued by Ero1!-Hex exhibit 

enhanced oxidation (as measured by the assay in Figure 3.3B), Ero1! may have a previously 

unidentified oxidative mechanism, which could be probed using site-directed mutagenesis of 

other combinations of its 15 cysteine residues (35).  Ero1! is known to form homo-dimers, and 

overexpression of any Ero1! variant may also stabilize and enhance activity of the endogenous 

Ero1! molecules.  This hypothesis could be tested by pulse chase experiments with Ero1! 

immunoprecipitation, to measure the half-life of newly synthesized Ero1! in the presence or 

absence of exogenous Ero1!.  Furthermore, Ero1! forms complexes with multiple ER 

oxidoreductases, including PDI.  Since these oxidoreductases may act as proinsulin reductases, 

Ero1!-mediated rescue may involve sequestration of the proinsulin-reducing enzymes, indirectly 

causing enhanced oxidation.  This hypothesis is currently being tested by measuring the ability 

of Ero1! variants, including Ero1!-Hex, to form complexes with the various ER oxidoreductases.  

Similarly, non-oxidative effects of Ero1! overexpression may involve sequestration of ER 

retention factors, independent of their ability to oxidize or reduce proinsulin.  Moreover, since 

Ero1! activity depends on the cofactor FAD to couple oxidation of disulfide bonds with 

reduction of molecular oxygen (36), Ero1! overexpression may affect other FAD-dependent 

redox reactions in the cell. Accordingly, I would like to measure FAD, FADH2, and other related 

metabolites in cells expressing the various Ero1! mutants.   

 

If Ero1! modulation is to become a potential therapeutic option in MIDY and other related 

diseases, we need to identify small-molecule Ero1! activators that can be tested in cell culture 

and animal models.  A high-throughput assay for Ero1! has already been used to identify 

pharmacologic inhibitors (37), and a similar approach could be used to screen for activators of 

both Ero1 isoforms.  Furthermore, structural biology may be helpful in identifying candidate 

compounds.  For Ero1!, one of the active site disulfide pairs (C94 and C99) lies on a mobile 

loop, the position of which is regulated by formation of a regulatory disulfide between C94 and 

C131 (38), which stabilizes the enzyme’s inactive form, preventing oxidation of substrate 

proteins.  The known crystallographic structure of the protein could potentially be used to predict 

small molecules that would bind Ero1 and prevent formation of this regulatory disulfide, 
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effectively making a hyperactive Ero1!.  Less is known about regulation of Ero1", though 

identification of a specific activator of the " form would be beneficial since its expression is 

limited largely to pancreatic beta cells and some secretory stomach cells (39, 40), so its 

activation would have more limited effects than the broadly expressed Ero1!.  

 

As discussed above, the notion that increasing oxidation in the ER may be a therapeutic approach 

in some forms of diabetes runs counter to some current beliefs (27), since the catalytic cycle of 

Ero1! is coupled to hydrogen peroxide production.  Recently, however, an ER oxidoreductase, 

peroxiredoxin 4 (PRDX4), was identified that couples hydrogen peroxide consumption with de 

novo disulfide bond formation (41).  Other ER resident proteins may also contribute to disulfide 

bond formation while consuming reactive oxygen species (as discussed in Chapter 1). Therefore, 

hydrogen peroxide produced by Ero1 may be rendered inconsequential compared to the 

beneficial effects of improved folding and/or clearance of misfolded proinsulin molecules. With 

that in mind, I would like to investigate the role that other ER oxidants have on proinsulin 

oxidation.  Multiple pathways, including PRDX4, QSOX, VKOR, and GPX7/8 may contribute 

to disulfide bond formation in the ER.  All of these genes are expressed quite highly in human, 

mouse and rat islets, as well as Min6 and Ins1 beta cell lines (See Figure 4.2) (42), and may 

therefore contribute to proinsulin maturation.  I would like to overexpress these genes 

individually in cells expressing mutant or wt proinsulin and observe their affect on proinsulin 

folding, processing, and secretion and their effect on cell heatlh.  The peroxidases (GPX7, GPX8, 

and especially PRDX4) are particularly interesting as potential targets for improving proinsulin 

folding in diabetes because of their ability to catalyze hydrogen peroxide.  Though the exact 

source of peroxides for these enzymes remains an active area of investigation (43), stressed cells 

are likely to generate hydrogen peroxide from multiple sources, including increased ER 

oxidation and mitochondrial respiration, as well as peroxisome and NADPH oxidase activities.  

Interestingly, pancreatic beta cells express superoxide dismutases, which convert oxygen radicals 

to H2O2, but lack catalase, the enzyme that typically breaks down H2O2 (44).  Therefore, the ER 

resident peroxidases may serve an important dual role, coupling protein folding with diminution 

of oxidative stress. 
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Finally, I would like to employ a non-biased approach to identify other genetic modifiers of 

insulin synthesis and secretion.  Since the onset of diabetes caused by some MIDY mutants 

varies widely (45), other genes are very likely involved in modulating proinsulin folding and a 

cell’s response to misfolded proinsulin.  As has been done previously for other secreted proteins 

(46), I would like to use yeast overexpression and deletion libraries to screen for effects on 

secretion of mutant and wt proinsulins.  After identifying potential genes from the yeasts 

relatively simple genome, we could then test the effects of their mammalian homologs in 

mammalian cell lines.  This approach could help identify novel therapeutic targets for treatment 

of secretory protein conformational diseases.  

 

Summary 

In this dissertation, I have outlined two distinct mechanisms by which secretion of mutant 

proinsulin can be improved.  In the first mechanism, wt proinsulin dimerizes with the mutant, 

stabilizes it, and allows it to exit the ER for secretion.  In the second mechanism, Ero1! 

overexpression enhances oxidative folding of the mutant molecule, allowing anterograde 

transport out of the ER.  Interestingly, both of these mechanisms seem to act on separate subsets 

of molecules, since their effects are additive when combined (Figure 3.3A).  Both of these 

studies point to the potential to enhance ER exit of misfolded proteins as a therapeutic 

mechanism for secretory protein conformational diseases such as MIDY.    

 

  



 99 

Figures 

 
Figure 4.1 Co-immunoprecipitation of “monomeric” proinsulin 
293T cells were transiently transfected with the indicated combinations of GFP-tagged (hPro-
CpepSfGFP) and myc-tagged (hPro-CpepMyc) proinsulins.  Cells were lysed in CoIP buffer 
(100mM NaCl, 25mM Tris, 0.1% TritonX-100, and 5mM EDTA).  Lysates were either 
immunoprecipitated with anti-GFP antibodies (lowest gel) or directly separated by SDS-PAGE 
and analyzed immunoblot using GFP or Myc antibodies.  The top and middle gels show 
expression of hPro-CpepSfGFP and hPro-CpepMyc, respectively, and the bottom gel 
demonstrates co-immunoprecipitation between the proinsulin molecules.   
 

 
Figure 4.2 Expression of ER oxidases in various tissues and cell lines. 
mRNA levels of insulin, Ero1!, Ero1", Prdx4, Gpx7, Gpx8, QSOX1, and VKOR in human islet, 
mouse islet, and rat islets, as well as the mouse insulinoma cell line Min6, and the rat insulinoma 
cell line Ins1.  Taken from the Beta Cell Gene Atlas at t1dbase.org(42). 
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APPENDIX 
 

CHAPTER 2 SUPPLEMENTAL FIGURES 
 

 

 
 
Supplemental Figure S1. Synthesis of proinsulin and thyroglobulin is proportional 
to the amount of plasmid transfected; a KDEL-tag retains proinsulin in an ER-like 
compartment. A) 293T cells were transiently transfected in 12-well plates with the 
plasmids and amounts (ng/well) indicated.  The transfected cells were pulse labeled with 
35S-Cys for 10 min and lysed in RIPA buffer.  Cell lysates were immunoprecipitated 
with either anti-insulin (left panel) or anti-myc (right panel) and analyzed by reducing 
SDS-PAGE and autoradiography. EV=Empty Vector B) INS1 cells were co-transfected 
with ER-RFP (red fluorescence) and either wt hPro-CpepSfGFP (upper) or hPro-
CpepSfGFP-KDEL (lower) (green fluorescence), fixed in 4% formaldehyde, and imaged 
by confocal miscriscopy.  Scale bar = 20 mm.  
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Supplemental Figure S2. Expression of rdw-Tg3xMyc protein in the thyroid glands 
of rdwTg3xMyc transgenic mice in a C57BL/6-wt or C57BL/6-cog/cog background.  
Thyroid glands from mice of the indicated genotypes were lysed by sonication in lysis 
buffer.  Lysates, normalized to total DNA content, were analyzed by immunoblotting 
with anti-myc antibodies.   
  


