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ABSTRACT 

 In spite of the tremendous advances in science and technology, the human brain and its 

functions are still not completely understood. Functional magnetic resonance imaging (fMRI) is 

an imaging modality that allows for non-invasive study of brain function and physiology. Thus, 

fMRI has found many applications in various fields involved in the study of cognition, 

psychology, psychiatry, neuroscience, etc. Machine learning techniques have gained tremendous 

interest in recent times for fMRI data analysis. These methods involve learning from numerous 

examples and then making predictions for new unseen examples. This work addresses the use of 

machine learning techniques to find and study multivariate patterns in the fMRI brain data. 

 

 The two main applications explored in this work include temporal brain-state prediction 

and subject categorization. The within-subject brain-state prediction setup has been used to 

compare and contrast three different acquisition techniques in a motor-visual activation study. It 

has also been implemented to highlight the differences in pain regulation networks in healthy 

controls and subjects with temporomandibular disorders. Lastly, regression has been used to 

predict graded fMRI activation on a continuous scale in a motor activation and craving study. 

The between-subject categorization setup has been used to distinguish between patients with 

Asperger's disorder and healthy controls. 

 

 A major contribution of our work involves a novel multi-subject machine learning 

framework. This technique helps to learn a model which is based on information acquired from 

multiple other subjects' data in addition to the subject's own data. This has been used to classify 

the craving and non-craving brain states of nicotine-dependent subjects, allowing examination of 

both population-wide as well as subject-specific neural correlates of nicotine craving. A real-

time neurofeedback setup was implemented to provide feedback to a subject using their own 

brain activation data. Subjects can then be trained to self-regulate their own brain activation.
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

 The objective of this dissertation is to describe and explore novel methods and 

applications of multivariate pattern recognition in functional magnetic resonance imaging (fMRI) 

data analysis. We employ machine learning techniques on the complex, multivariate 

neuroimaging data to achieve this goal. 

 Machine learning techniques are a diverse group of methods that enable computers to 

learn from examples. After examining a set of examples, these algorithms help computers build 

models that can later be used to classify new unseen data into distinct classes. 

 Magnetic resonance imaging (MRI) is an imaging modality which uses a 

superconducting magnet to acquire structural images of the human body. In functional MRI, the 

MRI equipment can be used to acquire images of the human brain to understand brain function 

or to localize these functions to certain parts of the brain. Thus, fMRI can help in the study of 

neural or cognitive processes or to enable brain mapping. 

 Recently, there has been growing interest in the use of machine learning techniques for 

analyzing fMRI data. The goal of this endeavor is to extract meaningful information from 

neuroimaging data. This avenue of inquiry involves finding a pattern, localizing it and then 

characterizing it. 
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 In this dissertation we have mainly explored multivariate pattern classification for two 

end goals: 1) classification of a subject's mental states (within-subject classification) or 2) 

categorization of subjects into healthy controls or patients with disorders (between-subject 

classification). We have also presented a novel method called multi-subject machine learning for 

building an informed classifier for an individual which benefits from the information provided 

by multiple subjects in addition to the subject's own data. 

1.2 Thesis organization 

 The chapters after this introduction are organized as follows: 

 In chapter 2, we have introduced relevant background and motivation for the rest of the 

thesis. It poses research questions and provides context for the topics that are covered in the 

following chapters. We start with introducing core concepts of functional brain imaging and 

machine learning for multivariate pattern analysis. Since our major application involves the 

study of neural processes related to cigarette craving, we introduce the problem statement and 

discuss the motivation behind studying it.  

 In chapter 3, we discuss the experiment for within-subject temporal brain state 

classification. Support vector machine (SVM) classification is used to classify brain volumes 

into task activation or rest states. We compare three different acquisition techniques and 

highlight the pros and cons of each. A recently developed variant of pseudo-continuous arterial 

spin labeling (PCASL) named arterial volume-weighted arterial spin tagging (AVAST) is shown 

to perform good classification while exhibiting various desired characteristics. We then show 

results of a brain state classification experiment of pain vs. rest on TMD subjects and healthy 

controls. Lastly, we report results of predicting graded fMRI activation using support vector 

regression (SVR). 
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 In chapter 4, we discuss a between-subject classification scheme. Resting state functional 

connectivity (RSFC) maps are used for this purpose. SVM classification is used to predict the 

disease state of RSFC maps as belonging to healthy control subjects or subjects diagnosed with 

Asperger's syndrome. 

 In chapter 5, we present methods that are used to image craving and non-craving brain 

states in nicotine dependent subjects. The novel multi-subject machine learning approach used to 

build the classifier is shown to perform better than traditional approaches and also reconfirms the 

subjective nature of nicotine craving. We then discuss the real-time neurofeedback setup 

developed and used in our study. 

 Finally, chapter 6 presents a summary of knowledge discovery and contributions of this 

thesis and proposed future work. 
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CHAPTER 2  

BACKGROUND AND MOTIVATION 

2.1 Magnetic resonance imaging 

 Magnetic resonance imaging (MRI) is a technique based on the principles of nuclear 

magnetic resonance used extensively as a medical imaging tool to acquire structural images of 

the human body. Typically, it involves the use of a large superconducting magnet, radio 

frequency (RF) transmit and receive coils and gradient coils to manipulate atomic spins in the 

human body. Due to their presence in water molecules, hydrogen atoms are the most common 

atoms in the human body. In normal circumstances, these hydrogen nuclei are randomly oriented 

but in the presence of the superconducting magnet, they align themselves in the direction of the 

strong magnetic field. The RF transmit coil applies a radio frequency magnetic pulse at the 

correct frequency to disturb the hydrogen nuclei from their equilibrium and the RF receive coil 

detects the faint MR signal emitted by the nuclei during their return to the equilibrium state. The 

gradient coils are used to produce variations in the main magnetic field to enable localization of 

the signal. The final MR image is a map of the distribution of MR signal obtained. By careful 

design of RF and gradient pulses and delays, subtle changes in anatomy can be detected using 

this method. Thus, MRI can be used for structural mapping. [1, 2, 3, 4]. 

 Among many other features, few of the most vital characteristics that have propelled MRI 

as a preferred method over other medical imaging modalities include its non-invasive nature and 

lack of ionizing radiation.  
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2.2 Functional magnetic resonance imaging 

 Functional magnetic resonance imaging (fMRI) is a type of specialized MRI scan of the 

brain or spinal cord. It involves the use of MRI equipment to capture a sequential series of MR 

images. This time series of images can then be used to detect regional changes in cerebral 

metabolism, blood flow or blood volume in response to task activation or during rest, thus 

enabling functional mapping of the brain [5, 6, 7] 

 Functional MRI is becoming a preferred method for studying the functioning of a normal, 

diseased or injured brain. It is also used for finding distinguishing characteristics in the brain that 

enable the identification of disorders, as well as for assessing the potential risks of surgery or 

other invasive treatments of the brain. A noteworthy feature of fMRI is that it does not involve 

the use of an external contrast agent but most commonly depends on contrast provided by blood 

oxygenation, perfusion, diffusion, etc. 

2.2.1 BOLD fMRI 

 The most popular technique in fMRI utilizes blood oxygenation level dependent (BOLD) 

contrast which was first reported in [8]. The human brain requires a steady supply of oxygen for 

its proper functioning which is provided by the hemoglobin molecules in the blood. Hemoglobin 

is the iron-containing oxygen-transporting protein present in red blood cells. It contains iron 

atoms to which oxygen atoms may or may not be bound. When oxygen atoms are bound to 

hemoglobin (oxyhemoglobin), then the iron is shielded by oxygen and thus it exhibits 

diamagnetic properties, whereas, deoxyhemoglobin is paramagnetic. Oxygenated blood is 

diamagnetic whereas deoxygenated blood is paramagnetic, and this difference in their magnetic 

susceptibility is exploited to generate detectable changes in susceptibility-weighted MR images 

using the BOLD fMRI technique [9]. 
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 When a neuron is activated, its metabolic demand consumes oxygen in the nearby region 

and thus there is a momentary decrease in blood oxygenation. This increase in deoxyhemoglobin 

as compared to oxyhemoglobin causes the initial dip in fMRI signal. In case of a persistent 

demand for oxygen, the flow of oxygenated blood to the area increases and overcompensates for 

the initial dip. Since the supply of oxyhemoglobin is greater than the demand, this results in an 

increase in the fMRI signal. After the demand for blood ceases, a post-stimulus undershoot is 

sometimes observed in the fMRI signal before it finally returns to baseline. This phenomenon of 

change in blood oxygenation in response to neural activity is called the hemodynamic response 

(HR) and it characterizes the shape of the fMRI signal in an activated brain region. Thus by 

measuring the BOLD signal change, fMRI technique can identify a brain region that is activated. 

2.2.2 ASL fMRI 

 Because of the widespread use of BOLD contrast to acquire fMRI brain images, fMRI 

has become synonymous with BOLD imaging. Other methods that are used to map brain 

function typically involve measurement of cerebral blood flow (CBF) or cerebral blood volume 

(CBV). Arterial spin labeling (ASL) is one such method that utilizes NMR-labeled water as an 

intrinsic tracer to measure CBF as an indicator of fMRI activity. 

 In ASL techniques, CBF is estimated by measuring the concentration of the tracer as it 

passes through a tissue of interest. Instead of injecting an external tracer, RF electromagnetic 

pulses are used to invert the magnetization of hydrogen protons in the blood to magnetically 

label water and create an endogenous tracer. After allowing a short period of time for tracer to 

reach the tissue of interest, an image is collected with the tracer (tag image). This process is 

repeated without applying an RF pulse and an image is collected without tracer (control image). 

CBF can then be quantified by measuring the signal change due to the tracer by subtracting the 
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tag image from a control image. Due to the short relaxation time of arterial blood, the tracer 

decays rapidly and the signal-to-noise ratio (SNR) is very low. Since two images need to be 

acquired and then subtracted to obtain one signal, ASL techniques also suffer from low temporal 

resolution. 

 The signal acquired from BOLD imaging cannot be easily quantified and it also lacks a 

clear physiological interpretation. The BOLD signal is sensitive to field inhomogeneities caused 

by the differences of magnetic susceptibility of air and tissue which may result in local image 

distortions and signal losses [10, 11]. The within-session slow scanner drift which has been 

observed in most studies using BOLD imaging [12], makes it impractical for studies involving 

neural processes with long activation periods. 

 Arterial spin labeling holds answers for many of these shortcomings of the BOLD 

imaging technique. Since it involves the measurement of CBF, it can be directly quantified in 

terms of flow units. Thus, ASL techniques can be used for longitudinal as well as multisite 

studies. ASL is not as severely affected by field inhomogeneities and thus can be effectively used 

in brain regions close to air-tissue interfaces as well. Since ASL is a subtraction technique, the 

effects of low frequency scanner drift are diminished considerably. This advantage makes ASL 

techniques an ideal choice for imaging studies of neural processes with long activation periods. 
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2.3 Multivariate Pattern Analysis using Machine Learning in fMRI 

 Most fMRI studies were traditionally analyzed using a univariate approach called 

Statistical Parametric Mapping [13], which looks at the extent to which a voxel's time series is 

explained by a few regressors in a general linear model. Several other whole-brain mass 

univariate analysis techniques have been implemented in the past to detect patterns in the brain 

imaging data [14, 15]. However, univariate approaches treat each voxel's time course separately 

and do not take into account inter-regional correlations which may be of importance in studies 

that are directed at exploring various neural systems associated with a particular aspect of brain 

function. Also, they do not offer the prospect of employing a predictive learning approach which 

may be of significant diagnostic relevance. 

 MVPA applies sophisticated machine learning techniques to the complex patterns 

generated by the very large number of features i.e. voxel intensities [16]. Machine learning and 

pattern recognition techniques are being increasingly employed in fMRI data analysis [17]. By 

taking into account the full spatial pattern of brain activity measured simultaneously at many 

locations, these methods allow detecting subtle localized effects that may remain unidentified 

with conventional univariate statistical methods. 

 Machine learning techniques are used to find patterns in the data. As suggested by the 

name, machine learning methods are algorithms that allow a computer to learn. In typical fMRI 

applications, the machine learning algorithms are used to learn a relationship between brain 

volumes and labels. This learned functional relationship is used to form a model which is then 

used to predict the unseen labels for a new test data set. Thus they facilitate a classifier-based 

predictive learning framework. One sample of the input data is called an example or an instance, 

and every instance is described by a set of features. 
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 A lot of different machine learning techniques have been used for multivariate pattern 

analysis in numerous functional MRI studies to investigate different neural processes. Support 

vector machines and linear discriminant analysis were applied to successfully classify patterns of 

fMRI activation observed due to the visual presentation of pictorial cues of various categories of 

objects in [18]. It was demonstrated that fMRI activity patterns in early visual areas contain 

detailed orientation information that can reliably predict subjective perception using linear SVM 

in [19]. In another study [20], support vector machines were used for temporal classification of 

data in a blocked design experiment and reported results with the use of linear as well as 

polynomial kernels. 

 In [21], the authors have successfully applied machine learning techniques to implement 

lie-detection using non-linear SVM. They compare this performance with Fisher's linear 

discriminant analysis using the same data and report poorer classification accuracy. In [22], the 

authors train a model of observed fMRI data associated with viewing several dozen concrete 

nouns from a large text corpus. Once trained, the model predicts fMRI activation for thousands 

of other concrete nouns with highly significant accuracies. 

 A variety of unsupervised learning methods have also been used for exploratory analysis 

of fMRI data. In [23], an approach for optimization of PCA is reported, whereas, the use of 

clustering methods for fMRI data is discussed in [24]. K-means clustering has also been used 

with resting state fMRI time series data in [25] whereas, ICA has been used in multiple studies 

mainly to investigate differences in fMRI activations of healthy controls and disordered 

populations [26, 27, 28]. 
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In fMRI data analysis, machine learning can be used for one of two major applications:  

(1) Classification of a subject's mental states (within-subject classification) 

 When posed as a temporal brain-state classifier, they learn a functional relationship 

between brain response patterns and a perceptual, cognitive or behavioral state of a subject 

expressed in terms of a label, which may be assigned discrete or continuous values to be used in 

a classification or regression model, respectively. Each brain volume acquired during a separate 

time point acts as an instance and the intensities of all voxels in that volume act as features. 

(2) Categorization of subjects into healthy controls or patients with disorders (between- 

subject classification) 

 When used for subject categorization, the algorithm learns a functional relationship 

between a subject's data and a class label which describes the disease state of that subject (for 

example: +1=healthy control, -1=patient with disorder). For each subject, the temporal 

dimension can be reduced by using correlation and creating functional connectivity maps. Each 

subject's functional connectivity map can then act as an instance and the correlation values act as 

features. 

 The following few figures show an illustration of classifier-based analysis. Figure 2.1 

shows an example of brain volume acquired and displays one axial slice. All the voxels in all 

such slices are concatenated into a single row to form one example. Each voxel represents a 

separate feature or attribute of the example. As shown in figure 2.2, each example is assigned a 

label. The entire dataset comprises of a collection of many such labeled examples. 

 In within-subject classification, as illustrated in figure 2.3, the different examples are 

brain volumes acquired at different time points and the labels are assigned depending on 

subject's brain state as dictated by the experimental design. As shown in figure 2.4, in the case of 

between-subject classification, the time dimension is reduced by computing the correlation 
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between time course of each voxel and that of the seed time course and the different examples 

are correlation maps of different subjects. They are assigned labels depending on the subjects' 

disease state. 

 
Figure 2.1: Illustration showing brain volume and voxels.  

(a) Brain volume acquired showing one axial slice,  

(b) One slice showing voxels that act as features. 
 

 
Figure 2.2: Illustration of classifier based analysis. 

Each row represents a single example with a label assigned to it.  

A dataset comprises of a collection of such examples. 
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Figure 2.3: Schematic of within-subject classifier.  

(a) Brain volume acquired at each time point. 

(b) Many such volumes are acquired across time and are assigned labels  

depending on brain state (Task = +1, Rest = -1) 

 

 

 

Figure 2.4: Schematic of between-subject classifier. 

(a) Brain volume acquired at each time point. 

(b) Correlation is computed between time course of each voxel  

and time course of seed voxel. 

One correlation map is obtained per subject and assigned label depending  

on their disease state (Healthy control = +1, Patient with disorder = -1) 
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 Machine learning techniques can be classified into different groups based on many 

different criteria. When this categorization is done based on learning style, then these techniques 

can be broadly classified into two main divisions. (1) Unsupervised and (2) Supervised. 

2.3.1 Unsupervised learning 

 Unsupervised machine learning techniques are data-driven and do not involve any 

explicit mention of class labels during training. They form models by identification of natural 

groups or patterns within data. Unsupervised machine learning can be used to group the input 

data into classes on the basis of their statistical properties alone. Clustering which involves 

grouping data into classes based on some measure of inherent similarity is an example of 

unsupervised learning. Some examples of unsupervised methods used for fMRI data analysis 

include k-nearest neighbor, self-organizing maps (SOM), k-means clustering [25], independent 

component analysis (ICA) [26, 27, 28].  

2.3.2 Supervised learning 

 Supervised learning is based on determining a mapping between particular features of the 

data to given target labels. It is divided into two phases, training phase and testing phase. During 

the training phase, a set of data points belonging to the training data set is used to estimate the 

parameters of a model relating the features to the target labels. Once the parameters are learned, 

the model can then be applied to predict the label of a previously unseen data point belonging to 

the test data set. If the target labels comprise a set of discrete classes, the supervised learning 

problem is referred to as classification and as regression when the target labels assume 

continuous values. Different supervised algorithms make a different set of assumptions about the 

data and have a different means of learning a model. Some of the supervised machine learning 
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techniques used for neuroimaging data analysis include support vector machine (SVM) [20, 29], 

linear discriminant analysis (LDA) [29] and logistic regression (LR) [30]. 

2.3.2.1 Support vector machine classification 

 Support vector machines are a powerful set of such machine learning methods that can be 

used to analyze data and recognize patterns [31, 32, 33]. In this study, support vector machines 

were chosen as the choice of machine learning technique for multiple reasons. They can be 

implemented for use in classification as well as regression analysis. Another vital characteristic 

is that the SVM algorithm seeks a maximum margin separating hyperplane, thus making it 

resilient to overfitting. This means that they provide better generalization, allowing the best 

prediction accuracy for previously unseen test data. Also, when a linear kernel is used, they 

allow the possibility of generating discrimination maps so that they can be visualized in the 

original data space. Thus, SVMs help not only in effective pattern discrimination but also pattern 

localization in the given data. SVMs are a preferred method for learning when the data has many 

more features than the number of examples which is the typical case for fMRI experiments. 

 When implemented as a classifier, support vector machines learn from a set of training 

examples, which are labeled as belonging to either of two classes, and build a model. During the 

testing phase, this model then predicts whether an unseen test example belongs to one class or 

the other in an extremely fast process. This provides a much needed advantage in order to 

implement real-time neurofeedback. 

 Basically, a support vector machine constructs a hyperplane in high-dimensional space 

which is capable of separating examples which belong to either of two classes. In order to 

maintain the generalization error to a minimum, a maximum margin classifier is sought, i.e. the 
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hyperplane which ensures the largest distance to the nearest training point in either class. These 

nearest training points that rest on the boundary are termed the support vectors. 

 

Figure 2.5: Support vector machine classification example. 

 

  

 Figure 2.5 attempts to explain the working of support vector machine classification with 

the help of a simple example in which a line is sought to classify the samples belonging to either 

of two classes (orange circles and green squares). These samples are voxel intensities of a 

hypothetical two-voxel brain at different time points in either task or rest condition. For 

simplicity, consider a simple example of a two voxel brain with x1 and x2 being the gray scale 

intensities of these two voxels. The paradigm design is briefly illustrated on the right hand side. 

Green squares represent rest whereas orange circles represent task condition. Alternating blocks 

of rest and task conditions are presented to the subject and data from this hypothetical two voxel 

brain is acquired at each time point. A maximum margin separating hyperplane is sought to 

classify these brain data collected at every time point into rest (-1) or task (+1) condition. Once 
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this classifying hyperplane is constructed, new test data can be easily classified depending on 

which side of the hyperplane they lie. 

 The separating hyperplane generated by the SVM algorithm is orthogonal to the weight 

vector w which defines the direction in which the examples of the two classes differ most from 

one another. Thus, the classifier is parameterized by w, which can be solved for by using the 

following optimization problem: 

2

1

. . {1, 2, ..., n} :

1 & 0i

n

i
i

T
i i i

min C

s t i



 

 

    


w

w

y w x

‖ ‖

  (1) 

where w is the normal vector to the hyperplane, yi are the known input class labels, xi are the 

input feature vectors, C is a tradeoff parameter and  are non-negative slack variables. 

 Some misclassifications, as represented by the two orange dots on the wrong side of the 

boundary, may also be permitted. But these misclassifications are penalized in the optimization 

problem depending on the distances represented by the slack variables (  ). C is the trade-off 

parameter used to regulate the number of misclassifications to allow. A very high value of C 

penalizes all misclassifications heavily and thus builds a classifier which might overfit the data. 

On the other hand, a low value of C might permit too many misclassifications and an inept model 

might be obtained. Thus, cross validation may be performed to choose the best value of C. 

  

2.3.2.2 Support vector regression 

 When implemented for regression analysis, support vector machines compute functional 

approximation. Given a set of input training examples with real-valued labels, it tries to fit a 

function to these training samples and then when presented with an unseen test example, it 
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calculates the corresponding output of the function. In regression analysis, Vapnik’s ε-insensitive 

loss function is used to define an ε-tube [31]. As shown in figure 2.6, if the measured value is 

within the defined ε tube, the loss associated with it is zero and for all other predicted points 

outside the tube, this loss is equal to difference between the value and the radius ε of the tube. 

 Figure 2.7 illustrates an example of support vector regression. The epsilon tube is seen as 

a margin in two dimensions. ξ and ξ* are the losses associated with those particular samples as 

defined by Vapnik’s loss function. 

 
Figure 2.6: Vapnik’s ε-insensitive loss function. 

 

The corresponding optimization problem for SVR is given by: 
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where w is the normal vector to the hyperplane, yi are the known input class labels, xi are the 

input feature vectors, C is a tradeoff parameter,  and  * are non-negative slack variables and ε 

defines the tube. 
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Figure 2.7: Support vector regression example. 

 

 

 Another important point to note is that kernel mapping techniques can be employed with 

support vector machines so as to construct a linear classifier to classify the input vectors in a 

higher-dimensional feature space instead of the input space, without having to explicitly convert 

them into this feature space [32]. Figure 2.8 shows a schematic diagram explaining this kernel 

mapping with support vector machines. Kernel mapping may be employed in order to perform 

classification as well as regression of the data. But in most of our examples, the number of 

features (voxels) and hence the dimensionality of data is much higher than the number of 

instances and hence the linear kernel is sufficient for finding a separating hyperplane [33]. 



19 

 

 

Figure 2.8: Kernel mapping technique schematic. 
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2.4 Smoking 

2.4.1 Addiction and effects 

 Self-regulation of nicotine craving was chosen ahead of any other addictive drug due to a 

number of reasons. Smoking is a major addictive public health problem [34] and the number one 

cause of preventable morbidity and mortality in the U.S. [35]. Also, due to the ease of 

availability of cigarettes, there is a high prevalence of nicotine dependence and thus smokers are 

much easier to recruit as compared to illegal drug users. Recent neuroimaging studies have 

examined regional activity responses in correlation with craving for cigarettes and reported an 

increase in brain activation in the prefrontal cortex [36, 37, 38], thalamus [36, 37, 39, 40] and 

visual system [37, 39]. Another inhalation study reported an increase in frontal lobe and thalamic 

blood flow in smokers who smoked a cigarette [41]. These findings have reinforced the idea that 

nicotine has direct effects on neural function [42, 43]. Nicotine dependence is a prototypical 

form of drug dependence and findings from this project may encourage similar research with 

other forms of drug dependence. 

2.4.2 Nicotine craving 

 Craving can be a persistent and disturbing feature of addiction that can contribute to 

drug-seeking behavior or relapse in subjects trying to remain abstinent. It describes an irresistible 

need for drug intake that eventually leads to dependent behavior. Craving is thought to originate 

from positive-reinforcing properties of the drug [44] or withdrawal-related negative-reinforcing 

properties [45]. Frequent smokers as well as consumers of alcohol and illegal drugs report 

moderate craving for the drugs they use [46]. 
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 Cocaine users report experiencing a strong desire for the drug when exposed to cues 

associated with it. Nicotine dependence level is associated with greater BOLD fMRI activation 

[47, 48] and cigarette craving [49] in response to smoking cues. Mental imagery of smoking 

related material (e.g. audio scripts or visual cues) produces a consistent profile of craving and 

mood effects compared to material devoid of smoking-related cues. This suggests the efficacy of 

using auditory and visual paradigms to elicit craving and the prospect of identifying crave or no-

crave state of a brain based on their functional MRI data when presented with such cues. 

2.4.3 Neurofeedback and self-regulation 

 Biofeedback is a technique by which subjects' bodily processes may be measured and 

then presented back to them immediately to enable increased awareness and deliberate control of 

the related cognitive or physiological activity. Multiple groups have investigated and practiced 

this technique in the past. Recent advances in acquisition techniques, computational power and 

algorithms have increased the sensitivity and speed of fMRI significantly, making real-time 

acquisition, analysis and display of fMRI data feasible. These developments together facilitate 

the possibility of a real-time fMRI neurofeedback system which enables online feedback of the 

BOLD signal. This system can enable subjects to learn the self-regulation of local brain activity 

with a high spatial and temporal resolution and whole-brain coverage. Recent work using real-

time fMRI establishes that an individual can learn to directly control activation of localized brain 

regions that are associated with pain perception and regulation [50]. In another study, signal from 

the amygdala was used to enhance the effect of a sadness induction paradigm [51]. Other brain 

regions have also been shown to respond to real-time fMRI feedback including the auditory [52], 

and motor cortex in a finger tapping paradigm [53], rostral ACC [54, 55] and anterior insular 

cortex [56]. This technique may be extended to control the activation of brain regions that may 
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be involved in craving. This approach might provide control over the neurophysiological 

mechanisms of craving in nicotine dependent subjects and may thus prove to be a particularly 

effective neurofeedback method. 

2.5 Overall Significance 

 There is an ever-increasing rise in the number of mortalities due to the negative health 

effects of cigarette smoking. Because of the addictive nature of nicotine present in cigarettes, 

smokers find it extremely difficult to quit and there is a large number of cases of relapse due to 

craving. Hence, it would be of tremendous significance to devise a technique that could assist 

nicotine dependent subjects to control their craving or their urge to smoke. As described in this 

dissertation, real-time fMRI neurofeedback proposes one such possible technique. This thesis 

explores the possibility of exploiting the fast nature of powerful machine learning techniques 

such as SVM for this application. 

 Also, in this dissertation, the possibility of using the machine learning techniques for 

learning brain state predictors and models that can delineate between healthy and diseased 

populations has also been investigated. 
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CHAPTER 3 

PREDICTION OF SUBJECT'S BRAIN STATES 

 In recent years, machine learning techniques have gained tremendous popularity in 

medical image analysis. Temporal brain state classification is one of the major applications of 

machine learning techniques using functional MRI brain data. Typically, in brain-state 

classification experiments, the machine learning algorithm is used to build a model based on 

multiple examples from two different classes. These classes are defined based on the stimulus 

that is presented to the subject and their corresponding brain state. And the examples are brain 

volumes captured when the subject is in that particular brain state. Once the model is built, it can 

be used to predict the brain state of each new unseen brain volume. When used for regression, 

this model can be used to learn and predict an outcome on a continuous scale instead of binary 

output in the case of classification. 

 The major application of brain state classification is to study mental representations and 

enable brain mapping. This can be implemented for various applications like classifying brain 

states while craving vs. not craving, activation vs rest or even more complicated experiments like 

lie detection. In this chapter, we first look at brain-state classification of activation vs rest to 

compare and contrast three different acquisition techniques. Then, we look at classification of 

controlled pressure pain vs rest in patients with temporomandibular disorders (TMD) and healthy 

controls. Lastly, we report findings from our experiment in characterizing graded fMRI 

activation. 
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3.1 Support vector machine classification of Arterial Volume-weighted Arterial Spin  

Tagging (AVAST) images 

 This section explores the use of support vector machine (SVM) classification technique 

with motor-visual activation paradigm to perform brain state classification into activation and 

rest. Images were acquired using a recently developed variant of traditional pseudo-continuous 

arterial spin labeling (PCASL) technique called arterial volume-weighted arterial spin tagging 

(AVAST). The classification scheme is also performed on images acquired using blood 

oxygenation level dependent (BOLD) and traditional perfusion-weighted arterial spin labeling 

(ASL) techniques for comparison. The results demonstrate that this technique outperforms 

traditional pseudo-continuous ASL, achieving classification accuracy comparable to that of 

BOLD contrast. AVAST demonstrates superior signal-to-noise ratio (SNR) and improved 

temporal resolution as compared to traditional perfusion-weighted ASL, and reduced sensitivity 

to scanner drift as compared to BOLD. Owing to these characteristics, AVAST lends itself as an 

ideal choice for dynamic fMRI and real-time neurofeedback experiments with sustained 

activation periods. 

3.1.1 Introduction 

 Functional magnetic resonance imaging (fMRI) is a non-invasive technique used for 

visualization of regional brain activity. Blood oxygenation level dependent (BOLD) contrast 

based techniques are the most commonly used methods for acquiring fMRI images. The 

hemodynamic response to neuronal activation entails a temporary increase in blood volume and 

oxygenation level in the blood. BOLD techniques take advantage of the difference in magnetic 

properties of oxygenated and deoxygenated blood to generate images and are widely used as a 

marker for providing reliable information about neural activation [1]. The intensity of obtained 
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images is relative and not individually quantitative because BOLD does not involve direct 

measurement of any physiological parameter, unless a number of additional measures are 

collected [2, 3]. The BOLD signal is sensitive to field inhomogeneities caused by the differences 

in magnetic susceptibility of air and tissue which may results in local tissue distortions and signal 

losses [4, 5]. The within-session slow scanner drift which has been observed in most studies 

using BOLD imaging [6] makes it impractical to use for studies involving neural processes with 

long activation periods. 

 The observed signal in arterial spin labelling (ASL) method depends on cerebral blood 

flow (CBF) alone and is independent of the oxygenation level. ASL techniques are less sensitive 

to local susceptibility artefacts due to the use of shorted echo times (TEs) and show reduced 

sensitivity to the MR scanner drift since they are subtraction techniques. Unlike BOLD imaging, 

they are also capable of absolute quantification of CBF in well characterized physiological units, 

but ASL suffers from inadequacies such as low SNR, and poor temporal resolution. 

 Since cerebral perfusion is regulated at the arteriolar level, measuring the arterial cerebral 

blood volume (aCBV) provides useful information about neuronal activation [7,8]. Arterial 

volume-weighted arterial spin tagging (AVAST) is a variant of pseudo-continuous arterial spin 

labeling acquisition (PCASL) technique which measures aCBV. fMRI using physiological 

parameters such as CBF or CBV, unlike BOLD fMRI, provides a quantifiable contrast and is 

more closely related to neural activity [9, 10, 11]. 

 The short relaxation time of arterial blood causes the tag to decay rapidly resulting in 

lower SNR while using traditional perfusion-weighted ASL techniques. AVAST demonstrates 

superior SNR since the images are acquired while tag is still in the arteries before perfusion. 

AVAST is based on optimizing the timing parameters of a PCASL sequence such that the 
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subtracted ASL signal is predominantly from the arteries, rather than from the capillaries and the 

tissue parenchyma. The technique tailors the tagging duration and repetition time (TR) for each 

subject to achieve a contrast that depends on aCBV with little contamination from the perfusion 

signal by taking advantage of the kinetics of the tag through that subject's vasculature. AVAST 

exhibits activation detection sensitivity and temporal resolution which is on par with BOLD 

imaging and an improvement over the standard CBF ASL technique, while preserving its 

quantitative nature and statistical advantages [12]. 

 Machine learning techniques have been used increasingly to analyze fMRI images. 

Machine learning involves the use of an algorithm to facilitate learning from examples. In 

supervised machine learning algorithms, there is first a training phase, during which labeled 

input training samples are used to build a model that captures the relationship between the 

training samples and the corresponding labels [13]. This model is then used during the testing 

phase to compute an output label for any new testing data sample. Such a setup has been used 

with functional magnetic resonance imaging (fMRI) data to enable brain-state classification [14, 

15, 16]. 

 The objective of this work is to determine whether AVAST is suitable for SVM 

classification and to compare its performance to BOLD and perfusion-weighted ASL in terms of 

SVM classification accuracy. To that end, we employed the SVM classification algorithm to 

perform temporal brain state classification of motor-visual activation vs. rest using images 

captured by each of the three acquisition techniques : BOLD, ASL and AVAST. We have 

presented their comparative performance in terms of classification accuracy and significant 

model weights. Since ASL has a lower temporal resolution, we collect fewer samples in ASL as 

compared to BOLD and AVAST in the same duration. We have repeated analysis with 
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subsampled BOLD and AVAST runs and presented results to ensure that the classification was 

not driven by number of examples. 

3.1.2 Methods 

3.1.2.1 Stimulation paradigm 

 Ten healthy subjects participated in this study after signing a written consent and were 

scanned in accordance with the Institutional Review Board of the University of Michigan. They 

were given mirrored glasses to view a rear projection screen while being scanned. The paradigm 

involved displaying 5 cycles of alternating 30s blocks of flashing checkerboard (8Hz) and static 

fixation cross (total duration = 300 seconds). The subjects performed a robust visuo-spatial 

activation task and the images used for the stimulation paradigm are shown in figure 3.1. 

Subjects were instructed to perform self-paced finger tapping with their right hand when 

presented with the flashing checkerboard, and rest when presented with the fixation cross. The 

experiment was performed twice per subject and two runs of data were acquired using each 

acquisition technique. 

 

 

Figure 3.1: Images used for the stimulation paradigm. 

(a) Checkerboard, (b) Inverted checkerboard, (c) Fixation cross 
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3.1.2.2 Data acquisition 

 All functional images were collected on a 3T GE Signa Excite scanner. Images were 

captured using each of the three acquisition techniques (BOLD, ASL, AVAST) on every subject 

while they performed the activation task. To ensure that the steady state was reached, four 

dummy scans were collected at the start of each run and disregarded. Image acquisition details 

are as follows: 

 BOLD: A single-shot gradient echo reverse spiral pulse sequence was used (Scan 

parameters- TR/TE/FA/FOV=2s/30ms/90°/24cm, 64x64matrix, 22 contiguous slices) 

 Perfusion-weighted ASL: Images were acquired using a functional CBF scheme 

employing an off-resonance corrected PCASL technique [17] followed by a 3D stack of spirals 

acquisition [18]. (Scan parameters- TR/TE/FOV=4s/4.5ms/24cm, tagging duration = 2s, post 

inversion delay = 1.5s, 64x64matrix, 22 contiguous slices, slab thickness = 11cm, bandwidth = 

125KHz) 

 AVAST: The same pulse sequence utilized for the perfusion-weighted scans was used 

here, but the tagging parameters were modified to achieve arterial blood weighting. Firstly, a 

calibration scan was implemented in order to find the optimal timing parameters (tagging 

duration and TR) for each subject as in [12]. Using these parameters that were tailored for each 

subject, images were then acquired using the functional aCBV scheme of AVAST (i.e. adjust TR 

and tagging duration obtained from the calibration scan, no post inversion delay) 

3.1.2.3 Preprocessing steps 

 All datasets were reconstructed and the following preprocessing steps were performed 

before analysis using the support vector machine training and testing setup. 
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 BOLD: A custom MATLAB code was used for k-space spike removal and spiral 

reconstruction. SPM8 [19] was used to perform the following: (1) slice timing correction, which 

corrects for differences in acquisition time between slices during sequential imaging. (2) rigid 

body motion correction  and (3) spatial smoothing using a Gaussian smoothing kernel with 

FWHM of 8 mm. 

 ASL and AVAST: As before, custom MATLAB code was used for k-space spike 

removal and 3D spiral reconstruction and SPM8 motion correction was performed. Next, the 

resulting time series of images were surround subtracted and spatial smoothing was performed 

using a Gaussian smoothing kernel with FWHM of 8 mm. Only 11 slices that were consistent 

across BOLD, ASL and AVAST and covered the motor and visual cortices were used for further 

analysis. 

3.1.2.4 Features and examples 

 A classifier function outputs a binary class label for every input set of feature values.  

The features represent an example, whereas, the label signifies the class that a particular example 

belongs to. More specifically, if x is an example with features [x1, x2, x3,..] and the class label is 

denoted by y=(±1), then the classifier function f( ) computes the label for every given input, i.e. 

y=f(x). 

 In our study, at each time point, a brain activation volume is acquired (using one of the 

three acquisition techniques). Each such volume is used as a separate example in which the voxel 

grey scale intensities act as features. Depending on whether the subject was tapping their finger 

or resting, a label of +1 or -1 is associated with each example. 

 Data acquired during one of the two runs is used as training data while the other separate 

run is used as testing data. In the training phase, a mapping is learned from the training examples 



35 

 

to the respective class labels and a classifier is built. In the testing phase, this model is used to 

predict the class of a previously unseen example from the testing data. Classifier performance is 

calculated as the ratio of the number of correctly classified test examples to the total number of 

test examples. At first, run 1 was used for training the classification model, whereas, run 2 was 

used to assess the effectiveness of the model and then vice versa. 

3.1.2.5 Dataset dimensionality 

 Each of the acquired 3-dimensional volumes, which act as training and testing examples, 

was of size [64x64x11] voxels. Initially, this accounted to 45,056 features that were then reduced 

to ~8,000 features by excluding all voxels that fell outside the brain region by using a brain mask 

created for each individual subject. For BOLD images, this mask was computed by including 

only those voxels that were within one standard deviation of the mean of the mean image. For 

ASL and AVAST, all voxels within one standard deviation of the mean of the baseline image 

(i.e., the mean of the control images in the time series) were included. Note that, for each of the 

techniques, a different number of examples were collected due to the different TR in each 

technique (see table 3.1). The number of examples also varies because of the use of surround 

subtraction in ASL and AVAST. Two such runs were collected per subject. 

 The runs acquired with perfusion-weighted ASL technique (TR = 4s) include fewer time 

points than those acquired using BOLD (TR = 2s) or AVAST (TR = 1.9 to 2.5s) In order to 

address this discrepancy, the analysis was repeated for subsampled runs of BOLD and AVAST 

such that only every other time point was considered during analysis. These are denoted as 

sBOLD and sAVAST respectively. The effective TR for sBOLD is 4s and the effective TR in the 

case of sAVAST ranges from 3.8s to 5s as noted in table 3.1. 
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Technique TR #Examples 

BOLD 2s 150 

ASL 4s 74 

AVAST 1.9s 156 

AVAST 2.0s 148 

AVAST 2.1s 142 

AVAST 2.2s 134 

AVAST 2.4s 124 

AVAST 2.5s 118 

sBOLD 4s* 75 

sAVAST 3.8s to 5s* 59 to 78 

Table 3.1: Number of examples in train and test datasets  

corresponding to each TR using each acquisition technique.  

sBOLD and sAVAST are the subsampled runs of BOLD and AVAST. 

* denotes effective TR after subsampling 

 

3.1.2.6 SVM classification 

 In standard SVM classification approach, a separating boundary between the two classes 

of examples (e.g. +1 and −1) is learned such that the distance (termed "margin") between the 

data points and boundary is maximal. In higher dimensions, the separating boundary manifests 

itself as a hyperplane. This separating hyperplane generated by the SVM algorithm is orthogonal 

to the weight vector w which defines the direction in which the examples of the two classes 

differ most from one another. Thus, the classifier is parameterized by w, which can be solved for 

by using the following optimization problem: 
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where w is the normal vector to the hyperplane, yi are the known input class labels, xi are the 

input feature vectors, C is the trade-off parameter used to penalize misclassifications and i are 

the non-negative slack variables which measure the degree of misclassification of the input data 

xi. The SVM then uses the sign of the decision function f(x)=w
T
x to classify any new data point 

x represented by the feature vector x into one class or the other.  

 LIBSVM [20], a Library for Support Vector Machines, was used to perform the SVM 

classification with the default linear kernel and default value of C = 1. 

3.1.2.7 Transition periods 

 The paradigm design includes 10 alternating blocks of flashing checkerboard and fixation 

cross. Thus, there are 9 intervals when the subject switches from one state to another (finger 

tapping or rest). These are called transition periods during which the vascular response to 

neuronal activation is still "ramping up" to its stable state in our block design experiment. We 

investigated the effect of the transition period by excluding scans acquired during these periods 

from the modeling exercise as in [21], as follows. Initially, the training was implemented using 

all the time points. Then this exercise was repeated by excluding 1 time point from both blocks 

(last time point from previous block and first time point from next block) at each transition point. 

The same was further repeated by excluding 2 and 3 time points, respectively. This timing is 

illustrated in the figure 3.2. 
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Figure 3.2: Schematic diagram depicting the transition points that are ignored 

(a) No time points ignored, (b) 1 time point ignored – green,  

(c) 2 time points ignored – red, (d) 3 time points ignored – black 

 

3.1.2.8 Permutation tests 

 The weight vector w generated by the SVM algorithm is representative of the most 

discriminatory regions of the brain. When mapped back into original image space, this vector 

generates the discriminating volume also called the weight vector map. SVM is a multivariate 

pattern analysis technique which assigns a separate weight to each voxel which depends on the 

weights assigned to other voxels. The weight vector map is thus a representation of the voxels 

that are most vital to the classification. The magnitude of the absolute value of each voxel weight 
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determines its relative importance in discriminating the brain states and the most important 

voxels for discrimination of the brain states can be inspected by thresholding the obtained weight 

vector map. 

 A permutation test was employed to assess the reproducibility of these spatial patterns. 

Briefly, permutation tests are nonparametric techniques that empirically estimate the distribution 

of a statistic under a null hypothesis empirically and have been used with fMRI data previously 

in [22, 23, 24]. The null hypothesis proposes that there are no differences between the two brain 

states and thus the labels assigned to each example are inconsequential. The alternate hypothesis, 

on the other hand, claims that the assigned class labels are actually indicative of the brain state 

that an example belongs to and better than random. We can estimate the distribution of weights 

assigned to each voxel under the null hypothesis by randomly permuting the class labels multiple 

times and training the SVM each time with this different permutation of labels. In each instance, 

the weights were normalized to have unit standard deviation. The SVM training was also done 

once with the known correct non-permuted labels. Now, for each voxel, the p value under null 

hypothesis was calculated as the ratio of number of times that the voxel weight assigned to it was 

greater than or equal to the weight assigned to it when training with original non-permuted 

labels. Since we permuted the labels and trained 2000 different models, if this number is smaller 

than 20, then that voxel is likely to be predictive of the class label with a significance level of 

1%. The weight vector maps shown in the RESULTS display all significant voxels with p value 

< 0.01. 
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3.1.3 Results 

3.1.3.1 Classification accuracy 

 Figure 3.3 shows a plot of the mean classification accuracy across both runs of all ten 

subjects. It demonstrates that the mean classification accuracy obtained by AVAST was 

consistently better than that offered by ASL and almost equivalent to BOLD. Ignoring transition 

points improves the classification accuracy initially but plateaus for BOLD and AVAST, 

whereas, it deteriorates for ASL when 3 time points are ignored in each block. 

 ASL technique has a lower temporal resolution as compared to BOLD and AVAST. For 

the same duration of experiment, more images are captured in the other two techniques and thus 

fewer samples are obtained for analyzing the classifier on ASL images. In order to ensure that 

the classifier power was not being driven by the number of examples in each case, subsampled 

BOLD (sBOLD) and subsampled AVAST (sAVAST) runs were also analyzed using the same 

setup. The mean classification accuracy for these analyses was found to be similar to the earlier 

case as seen in the plot. 
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Figure 3.3: Mean classification accuracy over two runs of all ten subjects for each acquisition 

technique (BOLD-blue, ASL-red, AVAST-green) against number of ignored transition points. 

The error bars depict standard error. 
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3.1.3.1 Weight vector maps 

 The SVM algorithm generates discriminatory weight maps and the permutation tests 

allow us to find the significant voxels from these maps as described in the METHODS. These 

maps are indicative of the detection sensitivity of the acquisition technique. 

 
Figure 3.4: Significant SVM weights after permutation tests with p<0.01 for a representative 

subject for each acquisition technique (BOLD-blue, ASL-red, AVAST-green) (a) BOLD, (b) 

BOLD + AVAST, (c) BOLD + AVAST + ASL 

Motor cortex is delineated by orange square and visual cortex is indicated by yellow oval. 
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 Figure 3.4 depicts select slices for a representative subject showing SVM weights in the 

left motor and premotor cortices (orange squares) and visual cortices (yellow ovals) as expected. 

The left-most column shows the most significant SVM weights with p<0.01 for BOLD (blue) 

technique. The middle column shows the AVAST (green) weights superimposed on BOLD and 

the right-most column shows ASL (red) weights superimposed on BOLD and AVAST. The 

significant weights were bigger and more robust in the AVAST technique as compared to ASL. 

3.1.4 Discussion 

 Traditionally, perfusion-weighted ASL techniques suffer from low SNR and detection 

sensitivity. By taking advantage of the kinetics of the tag through the vasculature, AVAST 

facilitates the tailoring of the timing parameters for each subject [12]. This permits the 

acquisition rate to be much faster and allows much superior temporal resolution as compared to 

standard perfusion-weighted ASL. Thus, we can acquire a larger number of volumes in the same 

duration. Also, as noted previously in [12], AVAST offers much better activation detection 

sensitivity. Both these features are advantageous for the machine learning techniques since it 

increases the degrees of freedom and also the images obtained are much more sensitive to 

activation. Thus, AVAST images exhibit better classification performance in terms of higher 

classification accuracy and more robust clusters of significant weights in the expected brain 

regions. 

 The data presented here indicate that AVAST images can be used for SVM classification 

more reliably than perfusion weighted ASL, and are comparable to BOLD images in terms of 

their reliability.  AVAST images, however, retain some of the advantages of ASL imaging, such 

as its robustness to scanner drifts and ability to be quantified.  ASL images do not depend on T2* 

contrast, so they can use shorter echo times and thus mitigate susceptibility artifacts. 
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 This study presents promising results that promote the use of machine learning 

techniques for brain state classification of images acquired by using the AVAST technique. This 

technique might be used for dynamic fMRI experiments and real-time brain state classification 

studies as in [25]. 

 

3.2 Temporal brain state classification of pain vs rest in healthy control subjects and 

subjects with temporomandibular disorders 

3.2.1 Introduction 

 Temporomandibular disorders (TMD) are a group of disorders affecting the 

temporomandibular joints (the joints which connect the jaw bone to the skull) and the muscles of 

mastication (the muscles that move the jaw) [26]. Pain is the defining feature of TMD and the 

primary reason for seeking care. Other discomforts may involve restricted jaw function and joint 

noises. In this study, fMRI scans of healthy control subjects as well as patients with TMD were 

captured while delivering controlled levels of pain using tools to the face or thumb. Support 

vector machine (SVM) classification has been used to classify pain vs rest states. The results 

present significant differences in brain activation related to pain regulation in controls and 

patients for two separate experiments that involved application of pain stimulus to face or thumb. 

3.2.2 Methods 

 Ten healthy controls and ten TMD patients participated in this study. Each participant 

was subjected to two 10-minute evoked pressure scans in the MRI scanner and images were 

collected using a T2*-weighted spiral sequence (TR = 2.5 s, TE = 30 ms, FA = 90°, matrix size 

64 x 64 with 48 slices, FOV = 22 cm and 3.44 x 3.44 x 3 mm voxels). Pressure pain was 
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delivered with a pneumatic system. In the first scan, pain was delivered to the left thumb nail, 

whereas, in the second scan, pain was delivered to the left anterior temporalis region on the face. 

Pressures eliciting high and medium pain as previously determined were applied in a pseudo 

random fashion and interleaved with an “off” condition (no pressure applied). A run contained a 

total of 12 pain blocks (6 medium, 6 high; each block 25 seconds in duration) and 12 off blocks 

(each block 25 seconds in duration). The timing of experimental design is illustrated in figure 

3.5. Alternate 25s blocks of pain and rest were presented for a total duration of 600 seconds. The 

medium and high pain blocks were both considered simply as pain blocks in the analysis. SVM 

analysis was done using LIBSVM [20] package in MATLAB. A model was trained on the first 

half and then tested on the second half. 

 
Time (seconds) 

Figure 3.5: Experimental timing for the pain paradigm 

 

  In order to ensure the reliability of SVM weights, permutation tests [22, 23, 24] were 

carried out with 2000 repeats. Thus, a map descriptive of weight significance was generated for 

each subject called permutation maps. These permutation maps were used to generate the Z maps 

High  

Pain 

Med 

Pain 
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for all control subjects and all TMD patients for both thumb as well as face. A t-test was then 

computed to find differences between the Z maps of all control subjects and all TMD patients 

with p<0.01. 

3.2.3 Results 

 Figures 3.6 and 3.7 show the significant weight differences between control subjects and 

TMD patients when pain was delivered to the subject's thumb and face respectively. In both 

cases, significant weights are found in the right insula and the cingulate cortex regions with 

p<0.01. In the case of thumb pain, weights are also observed in the cerebellar region. 

 

 
Figure 3.6: Difference map of significant SVM weights  

between control subjects and TMD patients for Thumb pain with p<0.01 
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Figure 3.7: Difference map of significant SVM weights  

between control subjects and TMD patients for Face pain with p<0.01 

3.2.4 Discussion 

 It has been shown that patients with TMD show an increased sensitivity to painful stimuli 

as compared to healthy controls. They have lower thresholds and tolerances for pain and this 

may be caused due to an alteration in the pain regulatory systems [27]. Thus, it is reasonable that 

the difference map between patients and controls shows additional significant weights in pain 

regions of the brain. 

 The insula is a part of the brain that is involved in consciousness and usually linked to 

emotion [28]. Insular cortex functions include perception, motor control, cognition and 

regulation of homeostasis [29]. It has also been associated to the sensation of pain, especially, 

related to judging the degree of pain [30]. The cingulate cortex is an integral part of the limbic 
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system which is involved in emotion processing, memory and learning. Neuroimaging has made 

it possible to link specific aspects of pain perception to localized emotional substrates [31] and 

thus clearly explain the involvement of cingulate cortex. Although, the exact role of cerebellum 

in pain processing is unclear, possible functional roles associated with it include perspectives 

relating to emotion, cognition and motor control in response to pain [32]. 

 In this study, we have introduced another application of SVM based classifier. It has been 

successfully implemented as a brain-state classifier of pain vs rest. The significant weights 

observed in the weight map are consistent with literature. 

 

3.3 Characterization of graded fMRI activation using support vector regression 

3.3.1 Introduction 

 When support vector machines are used for classification, then the input training samples 

are assigned binary labels (typically, ±1) and so the predicted labels for unseen test samples are 

also binary. These labels correspond to either the brain state or disease state of the scanned 

subject. When support vector machines are used for regression studies, then the labels assigned 

to input training samples are on a continuous scale. Thus, the output prediction associated with 

each unseen test sample is also on a continuous scale and can be used to model and predict a 

continuous signal [33, 34]. Unlike SVM classification, SVR performs functional approximation 

using the data and labels from the training run. It then uses the trained model and outputs the 

value of the function for new unseen test data as described in Chapter 2. 

 In this section, support vector regression (SVR) has been used in two experiments. In the 

first, SVR is used to predict graded fMRI activation in the motor cortex. Bilateral finger tapping 
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at various different frequencies was used for graded motor activation. In the second experiment, 

SVR is implemented to predict the amount of craving a subject experiences while being 

presented with smoking stimuli during their scan. The subjects' self-reported craving measures 

are used as train the model and test the prediction. 

3.3.2 Methods 

 For the finger tapping experiment, the subject used mirrored glasses while being scanned 

to look at a rear projection screen on which images shown in figure 3.8 were presented. The 

subjects were instructed to perform bimanual finger tapping at a pace influenced by the images. 

In each block, the images would transition at 1, 2, 3, or 4Hz. Each such 20s tapping block was 

interspersed with 20s blocks of static fixation during which the subject was instructed to rest. 

T2*-weighted images were acquired on a 3T GE scanner using a custom spiral-in sequence with 

following parameters (TR/TE/FA/FOV = 2s/30ms/90°/22cm, 64x64 matrix, 40 contiguous axial 

slices of 3 mm slice thickness). Two such runs were collected per subject. The tapping frequency 

was used as a label for all fMRI brain volumes acquired within that block. LIBSVM [20] 

package in MATLAB was used with default parameters to perform SVR. At first, run 1 was used 

to train a model which was tested on run 2 and then vice versa. Squared correlation coefficient 

was computed in each case. 



50 

 

 
Figure 3.8: Images used to influence the subjects' bimanual finger tapping pace. The numbered 

images would sequentially transition at 1, 2, 3 or 4Hz to influence tapping frequency for a total 

of 20s, followed by the fixation cross for same duration. 

 

 

 For the craving experiment, 19 nicotine dependent subjects were scanned. They were 

presented with a series of images that depicted smoking cues followed by a block of matched set 

of neutral images devoid of smoking cues. Few examples are demonstrated in figure 3.9. Again, 

T2*-weighted images were acquired on a 3T GE scanner using a custom spiral-in sequence with 

following parameters (TR/TE/FA/FOV = 2s/30ms/90°/22cm, 64x64 matrix, 40 contiguous axial 

slices of 3 mm slice thickness). Subjects used a MR-compatible button-response pad to rate each 

image on a scale of 1 to 5 in real-time depending on how much it made them crave cigarettes. 

20s blocks of smoking or non-smoking images were followed by a 4s fixation cross for a total 

scan time of 384 seconds. Again two runs were acquired and LIBSVM [20] package in 

MATLAB was used to train an SVR model on 1 of the runs and test on the other. Every instance 

at which the user increased or decreased their craving rating was investigated and that particular 

instance was accepted as correctly classified only if there was a corresponding change in SVR 

prediction. 
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Figure 3.9: Example images showing smoking cues as well as neutral cues. 

Each image was presented for 4s in 20s blocks and rated by the subject. 

 

3.3.3 Results 

 Figures 3.10 and 3.11 show, for the finger tapping experiment, the output of SVR 

prediction (blue) and the expected test labels (red) for a representative subject. The peaks in the 

SVR output are a clear indication that the algorithm is able to model the graded activation. The 

first figure shows the output when the model is trained on run 1 and tested on run 2, whereas, the 

second figure shows the output of SVR when it was trained on run 2 and then tested on new 

unseen run 1. 

 The squared correlation coefficient in the first case is 0.69, whereas, in the second case, it 

is computed as 0.75. 
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Figure 3.10: SVR output after training on run 1 and testing on run 2  

for a representative subject for motor activation paradigm. 

 

 
Figure 3.11: SVR output after training on run 2 and testing on run 1  

for a representative subject for motor activation paradigm. 
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 Figure 3.12 shows, for the craving experiment, an example plot of SVR prediction (blue) 

and subject's self-reported craving measure. As per the classification scheme used, the average 

classification accuracy over 19 subjects was 62%. It can be seen from the output, that SVR is 

able to predict some of the sudden blips and crests in the subject's self-reported ratings. 

 
Figure 3.12: SVR output after training on run 1 and testing on run 2 

for a representative subject for craving paradigm. 

3.3.4 Discussion 

 Support vector regression has been successfully used to learn from graded fMRI 

activation and then predict the same for the test run. In the first experiment, this algorithm has 

been used to model robust motor activation. This can be extended to study other neural 

processes, especially, those that involve activations that are continuous in nature and can involve 

gradations. In the second experiment, this has been used to model the amount of craving that a 

subject is experiencing in real-time. The problem faced here is that there is no known reliable 

way of measuring the amount of craving externally without relying on a subject's self-reported 
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craving levels. Hence, it is not easy to quantify the input training labels that are used to build the 

model. Regardless, the SVR output seems to detect the sudden changes in subjects' self-reported 

craving levels efficiently in lots of instances. 

3.4 Concluding remarks 

 In this chapter, we saw results from experiments in which machine learning algorithms 

have been implemented for brain state prediction. This was used to compare acquisition 

techniques, find brain state differences between healthy subjects and patients and also to 

investigate graded fMRI activation. In the next chapter, we report findings from our experiment 

in which machine learning techniques are used for subject classification.  
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CHAPTER 4 

CATEGORIZATION OF SUBJECTS INTO HEALTHY CONTROLS AND 

PATIENTS WITH DISORDERS 

 Machine learning techniques can be used to facilitate subject categorization based on 

their disease state. In such a setting, each subject's data is represented by a single map and the 

classifier builds a model which learns to classify all maps of control subjects from maps 

belonging to disordered patients. Thus, the model highlights those parts of the brain that are most 

discriminatory between the two classes and throws light on the neural correlates of the disorder. 

In this chapter, we present findings from our study involving categorization of healthy control 

subjects from patients with Asperger's disorder. Resting state functional connectivity maps are 

utilized in this study to represent each subject. 

4.1 Functional connectivity 

 Functional connectivity is a statistical concept that is defined as temporal correlation 

between spatially remote neurophysiological events [1]. It captures statistical dependence 

between all the different voxels of the brain and is usually computed by finding the temporal 

correlation between their time courses or other multivariate analysis methods. In fMRI data, low 

frequency time course fluctuations are found to be temporally correlated between functionally 

related areas and exist in a number of brain networks. It has been speculated that this 

interregional correlation in fluctuations is caused by spontaneous neuronal activity and 

corresponding alterations in blood flow and oxygenation [2]. Functional connectivity cannot give 
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any information about the directionality of the connection. Recently, most functional 

connectivity studies are carried out by examining interregional correlations in BOLD fMRI data 

of subjects in the resting state. 

 Functional connectivity applies to both task-activated as well as resting-state studies. In 

task-activated studies, it can refer to correlations across subjects, runs, blocks, trials or individual 

time points. On the other hand, in resting-state studies, it is assessed across individual BOLD 

time points during resting conditions. Functional connectivity between brain regions has been 

estimated primarily using one of two methods: (a) seed-based temporal correlation [3] or (b) 

spatial independent component analysis (ICA) [4]. The network maps derived using both have 

been shown to be similar but not identical [5]. 

4.2 Resting state 

 An individual is said to be in a resting state when they are not focused on the outside 

world and their brain is at wakeful rest. The default mode network is a specific network of brain 

regions that are active when the individual is in this resting state i.e. they show synchronous 

activations in the absence of any external stimulus and it deactivates in response to any 

externally demanding goal-directed task [6]. It includes the posterior cingulate cortex, medial 

prefrontal cortex and lateral parietal cortex. These are regions usually associated with the social 

cognition network. Thus, deficits in the functional connectivity of these regions imply an 

impaired or atypical social development. Resting state functional connectivity (RSFC) has 

gained a lot of interest in recent times to understand the brain's functional organization and to 

examine if it is altered in any specific group of subjects. These different groups of subjects might 

be separated based on age, gender or diagnosis of a neurological or psychiatric disorder [7]. 

RSFC maps were used in [8] to distinguish patients with depression from healthy controls. 
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4.3 Autism Spectrum Disorders 

 An autism spectrum disorder (ASD) is a heterogenous, behaviorally defined 

neurodevelopmental disorder [9]. It is diagnosed on the basis of a triad of behavioral 

impairments, namely, impaired social interaction, impaired communication and restricted, 

repetitive interests and activities. The behavioral phenotype associated with ASD is well 

described but its etiology is not completely understood. Many possible causes of origin have 

been postulated, namely, genetic, infectious, neurologic, metabolic, immunologic, environmental 

and other factors. Recent neuroimaging studies have highlighted that it is accompanied by subtle 

and spatially distributed differences in brain anatomy, mainly brain regions associated with the 

social cognition network. 

4.4 Functional MRI detection of Asperger's Disorder using SVM classification 

 Asperger’s Disorder is a type of high functioning autism, with core deficits in social 

interaction [9]. Several research studies have been conducted to find distinctive abnormal 

features from the brain of Asperger’s Disorder subjects to find neural correlates of these 

behavioral characteristics. Recent resting state functional MRI studies have reported that subjects 

with Asperger’s Disorder exhibit decreased functional connectivity between nodes in the default 

mode network, which is a set of brain regions showing synchronous activations during resting 

state for healthy subjects. In this study, we employ a machine learning algorithm using support 

vector machine to differentiate Asperger’s Disorder subjects from healthy control subjects based 

on their resting state functional MRI images. We believe that our method can help identify 

Asperger’s Disorder in an objective and automated manner and serve as a basis for future work 

to quantify severity of Autism based on resting state MR brain scans.  
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4.4.1 Introduction 

 Asperger’s disorder is considered one of the autism spectrum disorders and is associated 

with a history of atypical social development and the presence of repetitive or highly 

circumscribed behaviors and interests [9]. To find abnormalities of brain structures and functions 

related to these behavioral characteristics, many functional neuroimaging studies have been 

conducted [10 - 16]. Particularly, several studies reported that they could successfully identify 

distinctive brain activation patterns from subjects with Asperger’s Disorder using functional 

Magnetic Resonance Imaging (fMRI) [11]. 

 However, these experiments required that the subjects actively respond to the provided 

stimuli during scanning, which is potentially problematic with patient populations, as opposed to 

a resting state study which does not require the use of explicit stimuli. Individuals are said to be 

in the resting state when they are not focused on the outside world and their brain is at wakeful 

rest. A resting state functional connectivity (RSFC) study involves detecting temporal 

correlations in spontaneous blood oxygen level dependent (BOLD) signal oscillations while 

subjects rest in the scanner.  

 
    z = +36                   z = +30                  z = +24                   z = +18 

Figure 4.1: Default mode network example showing PCC (yellow oval) [6] 

 

 A set of brain regions, collectively termed as the default mode network (DMN), show 

synchronous activations during a resting state [6]. The DMN mainly comprises of posterior 

cingulate cortex, medial prefrontal cortex and lateral parietal cortex. It was recently examined in 
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order to investigate whether there is a significant difference between subjects diagnosed with 

autism spectrum disorders and healthy control subjects [17]. 

  Functional MRI scans of a resting state brain were used in [17] to form a time series of 

fMRI images in order to measure the default network connectivity of brain regions. A correlation 

was computed between time series of each voxel and that of a seed voxel taken from posterior 

cingulate cortex (PCC), which is a member of the default network. A correlation value above a 

statistically determined threshold was regarded as activation (or connection between the two 

nodes) and for Asperger’s Disorder subjects, they observed very weak connectivity between the 

brain regions belonging to the DMN including posterior cingulate cortex, medial prefrontal 

cortex and lateral parietal cortex as compared to control subjects. Although this method was 

effective in demonstrating the difference in functional connectivity between subjects with 

Asperger’s Disorder and healthy control subjects, it is subjective to the choice of statistical 

parameters and it also involved manual visual investigation of the computed correlation maps to 

decide whether or not the map belonged to a subject with Asperger’s Disorder. 

 In this study, we employ a machine learning approach which involves the training of a 

support vector machine using the computed correlation map in order to automate this 

classification in a more objective manner. In typical fMRI applications to identify pathology, the 

machine learning algorithms learn a functional relationship between features of the brain images 

and diagnosed state of a subject expressed in terms of a label, which may be assigned discrete or 

continuous values. This learned functional relationship is used to form a model which is then 

used to predict the unseen labels for a new test data set. Thus, they facilitate a classifier based 

predictive learning framework.  
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 Support Vector Machine (SVM) is a powerful set of such machine learning methods. The 

SVM algorithm seeks a maximum margin separating hyperplane thus making it resilient to 

overfitting. This means that they provide better generalization, allowing most favorable 

classification of previously unseen test data [18, 19]. Additionally, when a linear kernel is used, 

they allow the possibility of generating discrimination maps [20], which describes the 

contribution of individual training features to classification. Thus, SVMs help not only in 

effective pattern discrimination but also pattern localization. In our specific application, this 

feature would help us localize the brain regions that differentiate subjects with the disorder from 

healthy controls. SVMs can be implemented for use in binary classification as well as continuous 

regression analysis. Thus, they can be used for differentiating patients from controls as also for 

quantifying the level of autism severity. 

 In this study, support vector machines have been implemented to classify resting state 

functional connectivity data of subjects with Asperger’s disorder from that of healthy controls. 

Preprocessing steps including the use of absolute values, spatial smoothing and a mask that only 

includes default mode network areas were examined in an attempt to optimize the prediction 

accuracy of SVM algorithm. 

4.4.2 Methods 

4.4.2.1 Subjects 

 Eight adults with Asperger’s Disorder (AD) and eighteen healthy control (HC) subjects 

participated in this study (AD: 20.8±3.2 years, HC: 24.8±5.3 years).  The subjects have near or 

above average intelligence as measured by a standardized IQ test, i.e. the Wechsler Abbreviated 

Scale of Intelligence (WASI) [21] (AD : mean IQ = 113.4 ± 16.4, HC : mean IQ = 123.1 ± 7.0). 

Within the patient group, 6 were male and 2 were female; 6 were Caucasian and 2 were Asian-
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American. The diagnosis of Asperger’s Disorder was based on a clinical assessment completed 

by a clinical psychologist.  The assessment battery consisted of the Autism Diagnostic 

Observation Schedule-Generic [22], a clinical chart review, and when possible (n = 5), a parent 

interview (i.e., the Autism Diagnostic Interview-Revised; [23]).  All participants met DSM-IV 

criteria [9] for Asperger’s Disorder and had a history of social difficulties beginning in 

childhood. Ten out of the total eighteen control subjects completed the Young Adult Self Report 

[24] to rule out any psychiatric symptoms. Remaining eight subjects (27.4 ± 5.3 yrs; 6 male, 2 

female) were given a short questionnaire, developed by the authors, to rule out symptoms of 

inattention, depression, and/or anxiety.  Written informed consent was obtained from all subjects 

prior to enrollment in the study.  The study was carried out with the approval of the Internal 

Review Board of Emory University. 

4.4.2.2 fMRI scans 

 Resting state MR scans were acquired on a 3T Siemens Trio scanner using an echo-

planar imaging sequence with TR/TE/FA/FOV of 750 ms/35 ms/50/22 cm. Ten contiguous 5-

mm thick axial slices were acquired in each TR, with an in-plane resolution of 3.44 mm x 3.44 

mm, covering the anterior, middle and posterior cingulate cortex and the dorsomedial prefrontal 

cortex.  Resting state data were acquired while subjects were inactive (lying still with visual 

fixation cross).  A total of 280 volumes were collected during a 3.5 minute scan. 

4.4.2.3 Functional connectivity map generation 

 For all individual data, a transformation into MNI space was calculated using SPM2 [25].  

The coordinates of a seed voxel in the posterior cingulate cortex were identified in the standard 

MNI space (MNI: -2, -51, 17; BA 23) as in [26], and then transformed to the original (native) 

acquisition space. The fMRI signal timecourses for this voxel and four neighboring voxels were 
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averaged together, and low-pass filtered (< 0.08 Hz) to avoid artifacts (e.g. cardiac and 

respiration effects), while preserving frequencies contributing to functional connectivity [27, 28]. 

This timecourse was then used as the reference timecourse. The timecourses of every other voxel 

in the entire imaged volume were also low-pass filtered. These timecourses were then correlated 

with the reference timecourse to form functional connectivity maps (i.e., low frequency 

timecourse correlation maps). The resultant functional connectivity correlation maps were then 

transformed to MNI space using the transformation computed earlier. 

4.4.2.4 Preprocessing steps 

 Ten axial slices were initially acquired for each subject in their native space. However, 

due to different head positioning of individual subjects, after spatial normalization only four 

common slices in MNI space covering the default mode network (ranging from z = +10 mm to z 

= +30 mm) were used in the subsequent analysis. Also the data from two subjects could not be 

included in the analysis because it was visually observed to have abnormal transformations. 

Using the data for SVM training without such initial filtering would definitely deteriorate the 

classification performance and hence some of the data had to be disregarded. This initial filtering 

process finally resulted in seven Asperger’s Disorder subjects and seventeen control subjects.  

 The data initially used to train the SVM were correlation values that were normalized 

using Fisher z-transformation, which is defined by the transformation 
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where r is the correlation coefficient. Thus z-maps are formed for each subject. Figure 4.2 shows 

example z-maps of two control subjects and two Asperger’s Disorder subjects, representative of 

the difference in their functional connectivity. 
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Figure 4.2: Correlation maps of four slices (z=+10 to z=+30) of four subjects  

(2 subjects with Asperger’s disorder and 2 control subjects)  

representative of functional connectivity 

  

 A spatial mask was generated for each slice location to include only common brain 

regions among all subjects. This was accomplished in MATLAB by performing logical AND 

between same slice of every subject and then performing dilation to form contiguous maps. In 

addition to the masking technique, we explored three additional preprocessing steps and their 

combinations in order to improve the prediction accuracy of the SVM. The details of each of 

these preprocessing steps and the motivation behind using them are discussed below.  

a) Absolute z-score values 

Functional connectivity is a measure of the synchrony of activation or deactivation between 

different neural assemblies. Irrespective of whether the timecourses of voxels are positively or 

negatively correlated, connectivity can be viewed as a measure of the strength (magnitude) of 

this association. In this respect, the absolute z-score value could prove to be a better feature than 
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the original z-score value to represent the strength of the DMN connectivity. Especially in our 

problem, it was reported in [17] that the DMN connectivity was weaker in Asperger’s Disorder 

subjects as compared to healthy control subjects. Hence, we deduced that training SVM with 

absolute correlation values may help improve the classification accuracy. In this preprocessing 

step, absolute values of the correlation maps were taken in order to represent the connectivity 

between a particular brain voxel and the PCC.  

b) Spatial smoothing of correlation maps 

In spite of normalization, there might be variability in the exact shape and size of brain structures 

in individual subjects. For example, edges were observed in the correlation maps, suggestive of a 

sharp transition which often appeared in significantly different locations even between subjects 

of the same group. Such inter-subject variability may deteriorate the performance of the classifier 

because it may reduce the number of shared features between members of the same group. To 

account for this variability, spatial smoothing of each correlation map was done. Low-pass 

gaussian filters with various different values of FWHM were tried for this purpose and the 

gaussian filter with FWHM of 6 voxels gave the best classification performance and was thus 

finally selected. 

c) Default Mode Network mask creation 

The number of voxels and hence the number of correlation values used to represent each subject 

was ~10,000 voxels within the brain. The dimension of the data from each subject was much 

larger than the number of subjects, and hence it was highly likely that the problem would suffer 

due to “the curse of high dimensionality” [18, 19]. In other words, SVM training may overfit to 

the training data set, consequently degrading classification performance on test data. Therefore it 

would be desirable to select correlation values of only relevant brain regions to train the SVM 
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most efficiently. As demonstrated in [17], the default mode network activity could be used to 

distinguish between Asperger’s Disorder subjects and control subjects. Hence an attempt was 

made to use a spatial mask covering only the default mode network. The default mode network 

was identified from the correlation maps of the 17 control subjects by including only those 

voxels that had a significant correlation value in at least 3 subjects.  

4.4.2.5 SVM algorithm 

 SVM training and testing was implemented using LIBSVM [29] in MATLAB. In terms 

of implementation a linear kernel was used (Different kernels including the sigmoid and radial 

basis function were tried in conjunction with various combinations of SVM training parameters, 

but none succeeded in improving the prediction accuracy (data not shown)). 

 Because the number of subjects was small (7 Asperger’s, 17 controls), leave-one-out 

cross validation (LOOCV) was used to estimate the accuracy of the classification process. Each 

time the SVM was trained on the maps of 23 subjects and then tested on the remaining subject’s 

map. Out of the 24 cases, the total number of times the test subject’s class was correctly 

predicted was recorded. 

 The preprocessing steps mentioned above were applied in all possible combinations and 

the SVM algorithm was then used to train and test this data using LOOCV as described above. 

SVM training involves generation of discrimination maps or weight vector maps in which 

different weights are assigned to each voxel. These weights can be interpreted as the strength of 

contribution of the respective voxel to the classification. Thus, in our study, weight vector maps 

are indicative of parts of the brain that are most dissimilar between the two groups and hence 

most discriminative.  
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4.4.3 Results 

 Table 4.1 summarizes the prediction accuracies of the cross validation with different 

combinations of preprocessing steps. As observed from the table, the highest prediction accuracy 

was observed when a combination of all three preprocessing steps was used. Application of one 

or two of these steps sometimes degraded the prediction accuracy. For example, when the maps 

were only spatially smoothed, the classification accuracy reduced from 79% to 66% and when 

these maps were spatially smoothed and also a default mode network mask was used, the 

performance deteriorated from 79% to 75%. These two cases have in common that absolute 

correlation values are not used, and this reaffirms our conjecture that the classification should be 

based on the strength of DMN connectivity. 

 

 Preprocessing Combinations 

Preprocessing Step 1 2 3 4 5 6 7 8 

Absolute correlation  ✔   ✔ ✔  ✔ 

Spatial smoothing   ✔  ✔  ✔ ✔ 

DMN mask    ✔  ✔ ✔ ✔ 

Prediction Accuracy 79 % 83 % 66 % 79 % 92 % 83 % 75 % 96 % 

Table 4.1: Prediction accuracy results for different combinations of preprocessing methods. 

(DMN – Default mode network) 

 

 Figure 4.3 depicts a weight vector map obtained after training the SVM using absolute 

correlation values and spatial smoothing on z-maps of all 24 subjects (with no default mode 

network masking). Only the top 10% of the weights are displayed; these weights are contained in 

the default mode network. This reaffirms the claim that brain regions belonging to the default 

mode network are vital in classifying Asperger’s Disorder subjects from control subjects. 
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Figure 4.3: Weight vector maps for four slices (z=+12.5, z=+17.5, z=+22.5 and z=+27.5), using 

absolute correlation and spatial smoothing (Combination 5). Only the top 10% of positive 

weights have been displayed. 

 

4.4.4 Conclusions 

 The present study introduces a novel framework which involves the use of support vector 

machines as a machine learning tool implemented to classify Asperger’s Disorder subjects from 

healthy control subjects. Support vector machine was trained with correlation values between the 

resting state fMRI time series of each voxel and that of a seed voxel taken from posterior 

cingulate cortex. In the leave-one-out cross validation on a data set of 7 Asperger’s Disorder 

subjects and 17 healthy control subjects, classification was successfully performed with high 

prediction accuracy up to 96%, which was achieved with the application of preprocessing steps 

including absolute correlation values, spatial smoothing of correlation maps, and use of a default 

mode network mask. A previous study [17] reported that relative to controls, the disordered 

population showed an alteration in functional connectivity. Specifically, the disordered group 

showed weaker connectivity between the posterior cingulate cortex and medial prefrontal cortex. 

Our findings are consistent with these results as depicted in the classification accuracy numbers 

and the weight vector maps. 
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 Future work would include verifying these findings on a much larger dataset. Also, a 

more automated and refined process of feature selection such as the automated segmentation of 

brain regions suggested in [30] would be helpful. 

4.5 Concluding remarks  

 In this chapter, we looked at the use of support vector classification algorithm for 

enabling the categorization of subjects into healthy controls or disordered patients. Resting state 

functional connectivity maps were used with posterior cingulate cortex chosen as the seed for 

connectivity analysis. This study can be further extended by including the use of support vector 

regression to relate the clinical severity of autism to the fMRI resting state functional 

connectivity measure. In that investigation, a subject with Asperger’s Disorder would be labeled 

with a behavioral score assessed by clinicians which indicates the clinical severity of the 

disorder. After training on these data and labels, the model built by the SVM would predict a 

score for the test data corresponding to the clinical severity of their disorder. Quantification of 

the severity of Asperger’s disorder from fMRI data by using support vector regression could 

prove to be a valuable clinical tool to assist physicians in their diagnoses. This may also help 

elucidate the neural cause of the disorder in further detail.  
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CHAPTER 5 

IMAGING THE CRAVING BRAIN 

 Craving is defined as an intense desire to consume something and such powerful 

(typically, abnormal) desires for consumption can be found in obese individuals in the form of 

food craving or people who are dependent on a particular drug also have an irresistible yearning 

for their choice of drug. This phenomenon can have an adverse effect on the individual who may 

find it difficult to stay focused on their tasks and might even prove to be a hindrance in their 

daily routines. Therefore, there is considerable interest in understanding the psychological 

components of craving and studying the brain activation patterns associated with craving in the 

human brain. 

 In this section, we present findings from our studies in which functional MRI was used to 

study the brain of nicotine dependent subjects when they crave cigarettes. First, we explore a 

novel application of multi-task learning to build separate population-wide and subject-specific 

models of the craving brain. Then, we present the real-time fMRI neurofeedback setup used in 

our study to assist subjects in modulating their own brain activation patterns. 

5.1 Multi-subject machine learning for brain state classification of nicotine craving 

 In recent times, machine learning has gained popularity in fMRI studies of brain state 

classification. In this setting, we typically have very few examples or data points from individual 

subjects to train a model. However, there is often a large amount of additional data from other 

subjects responding to the same stimulus that can be used beneficially. This section describes a 

novel multi-subject machine learning approach to brain state classification, in which we 
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demonstrate an improved approach to leveraging information from multiple subjects’ brain 

activation data to build robust models for individual subjects. The approach treats each subject’s 

brain state classification as a separate task, where each of these tasks is assumed to be related to 

every other task to a certain extent because all subjects are presented with the same stimulus. The 

algorithm then builds a classifier that learns from all the tasks simultaneously, taking advantage 

of the similarity between them, to improve the individual tasks. This approach is being used to 

investigate the brain’s craving-state classification in nicotine dependent subjects. We provide 

promising results that demonstrate that this algorithm outperforms typical approaches, achieving 

classification accuracy of approximately 75%. More importantly, the proposed approach allows 

us to identify the subjective nature of brain activation across different subjects along with that 

shared among all subjects and optimally combines them to build robust classifiers of nicotine 

craving. 

5.1.1 Introduction to the technique 

 Machine learning involves the use of an algorithm to facilitate learning from examples. In 

supervised machine learning algorithms, there is first a training phase, during which labeled 

input training samples are used to build a model that captures the relationship between the 

training samples and the corresponding labels [1]. This model is then used during the testing 

phase to compute an output label/prediction for any new testing data sample. Such a setup has 

been used with functional magnetic resonance imaging (fMRI) data to enable brain-state 

classification [2, 3, 4]. 

 A typical approach to brain-state classification involves training a model for a particular 

subject by exclusively using data acquired by scanning that subject. However, it is often the case 

that multiple subjects are scanned using the identical setup and stimuli. The typical approach 
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fails to exploit the relatedness in brain activation of different subjects in response to similar 

stimuli. Alternatively, it could be advantageous to leverage the other participants’ data when 

training a classifier for the target participant. One straightforward and common approach is to 

combine the target participant’s training data with that of the others and train a common 

classifier. A major limitation of this approach is that it assumes that brain activation in response 

to a stimulus is uniform across all participants. In this work we propose using a multi-task 

approach to leverage the commonality between participants’ brain activation while allowing for 

participant-specific activity. 

 The multi-task approach we employ was proposed in [5, 6] to build a classification model 

that takes information from several separate but related tasks simultaneously. This approach was 

explored to build a brain computer interface (BCI) using EEG data in [7]. In a very recent study 

[8], a Bayesian approach was proposed to use multi-task learning with fMRI data of subjects 

performing a Posner task which investigates the effect of attentional processes on episodic 

memory encoding. In our study, we have applied the multi-task learning framework to fMRI data 

of the craving population to develop a multi-subject classification scheme that helps throw light 

on the neural correlates of nicotine craving. In our specific case, each subject’s brain state 

classification is treated as a separate task. Thus, applying multi-task learning in this setting yields 

a multi-subject machine learning algorithm designed to take advantage of the similarity in brain 

activation of different subjects. By exploiting this shared structure, it is possible to leverage any 

commonality between the subjects and build a more robust classifier. The resultant multi-subject 

classifier is comprised of a shared component common to all participants that identifies brain 

activation common to all, as well as individual participant-specific components that identify 

brain activation specific to each participant. This separation allows us to identify parts of the 
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brain that are most affected by the stimuli at the population level by means of the common 

component. Additionally, the participant specific components highlight the differences in how 

the stimuli affect the brain activity of different individuals in the population.  This type of 

analysis provides for richer understanding and better interpretation of the effects of the stimuli on 

brain activity. 

 Though generally applicable, herein we apply the multi-subject classifier to the brain 

state classification of cigarette craving and non-craving brain states in nicotine dependent 

subjects. Smoking addiction is a major health problem, and nicotine craving can be a persistent 

and disturbing feature of this addiction. Studies have reported that nicotine dependence level of 

subjects is associated with greater blood oxygen level dependent (BOLD) fMRI activation [9, 

10] and craving for cigarettes [11] in response to smoking cues. This application offers a basis 

for comparing the efficacy of the multi-subject approach to the standard approaches, which will 

serve as baselines. Additionally, it demonstrates the extra insight and interpretability afforded by 

the multi-subject model formulation. 

 The results are promising and show that it is possible to learn classifiers that predict the 

craving state of subjects with high accuracy. In addition to the predictive performance, an 

important contribution to highlight is that such methods allow us to assess the contribution of 

different parts of the brain to the brain-state classification. More specifically, our approach 

allows for the differentiation between group-level and individual participant-specific subjective 

activation. A permutation test performed on the multi-subject technique generates reliable maps 

that reveal the parts of the brain that are most vital for nicotine craving classification. Thus, our 

analysis presents a multivariate technique that highlights the subjective nature of an individual’s 

brain activation in response to nicotine craving. 
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5.1.2 Methods 

5.1.2.1 Subject Screening 

 Sixteen subjects with nicotine dependence participated in this study. Screening measures 

including expired carbon monoxide level (CO > 12ppm), number of cigarettes smoked daily (> 

10) and Fagerström scores (> 4) were used to ensure at least moderate smoking and level of 

nicotine dependence. All subjects were scanned after overnight abstinence, as verified by 

measuring a decrease in CO level (at least 8ppm) on the scan day compared to CO level on the 

screening day. 

5.1.2.2 Data acquisition and paradigm 

 BOLD functional images were collected on a 3T GE scanner using a T2*-weighted 

single-shot custom spiral-in sequence. The scan parameters used are summarized as follows: 

TR/TE/FA/FOV=2s/30ms/90°/22cm, 64x64 matrix, 40 contiguous axial slices of 3mm thickness. 

Subjects were given mirrored glasses to view a rear projection screen while being scanned. The 

paradigm included displaying of a sequence of images that depicted smoking or non-smoking 

scenes. These were presented in alternating blocks to induce or suppress subject’s nicotine 

craving. The validity of these pictorial stimuli to elicit craving has previously been demonstrated 

in [12]. Two such runs were collected per subject. The first run was used for training the 

classification model, whereas the second run was used to assess the effectiveness of the model. 

Details of the paradigm can be summarized as follows: (20s blocks, each block with 5 pictures 

for 4s each; 16 repeats of alternating blocks of craving and non-craving descriptors, with 4s static 

fixation image in between each block; 384s total time). 
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5.1.2.3 Preprocessing steps 

 A custom MATLAB code was used for k-space outlier removal and spiral reconstruction. 

SPM8 [13] was used to perform slice timing correction, which corrects for differences in 

acquisition time between slices during sequential imaging. It performs a phase shift, resulting in 

each time series having the values that would have been obtained had the slice been acquired at 

the beginning of each TR. SPM motion correction was performed to reduce the effects of head 

motion that might have corrupted the data. To allow for spatial correspondence between brains in 

this multi-subject analysis, the brains were warped to an MNI template space. Spatial smoothing 

was then done using a Gaussian smoothing kernel with FWHM of 8 mm to mitigate the effects 

of inter-subject variability. Furthermore, the time course of each voxel was normalized by 

subtracting its mean over time and dividing by its standard deviation. 

5.1.2.4 Features and examples 

 A classifier is a function that takes a set of feature values representing an example as 

input and predicts the class (label) that the particular example belongs to as an output. More 

specifically, if x is an example with features [x1, x2, x3,…] and the class label is denoted by 

y=(±1), then the classifier is a function f( ) that computes the label for a given input, i.e. y=f(x). 

In our study, at each time point, a BOLD brain activation volume is acquired. Each such volume 

is used as a separate example in which the voxel grey scale intensities act as features. Depending 

on whether the subject was looking at a smoking or non-smoking picture stimulus, a label of +1 

or -1 is associated with each example. 

 Data acquired during the first run are used as training data. In the training phase, a 

mapping is learned from the training examples to the respective class labels and a classifier is 

built. In the testing phase, this model is used to predict the class of a previously unseen example 
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from the testing data acquired during the second run. Classifier performance is calculated as the 

ratio of the number of correctly classified test examples to the total number of test examples. 

5.1.2.5 Dataset dimensionality 

 Each of the acquired 3-dimensional volumes, which act as training examples, was of size 

[53x63x46] voxels. Initially, this accounted to 153,594 features that were then reduced to 54,438 

features by excluding all voxels that fell outside the brain region. Disregarding the brain images 

captured when the subjects were looking at the fixation cross that was displayed between blocks, 

we obtained a total of 160 examples per run with two such runs per subject. 

5.1.2.6 SVM classification 

 To create a temporal brain-state classifier across multiple subjects we compare three 

commonly used SVM approaches, which will serve as touchstones to the multi-subject SVM 

approach discussed herein. In all of the subsequent cases described, each subject's first run is 

used for the training phase, whereas, their second run is used for testing. The first touchstone, 

T1E1 (train on 1, test on 1), treats each participant independently and trains a classifier only on 

their brain activity, disregarding any commonality between subjects that arises from the shared 

paradigm. The second, T16E1 (train on all 16, test on 1), combines all participants’ activity and 

trains one classifier that is generally applicable to all participants assuming that brain activity is 

exactly similar across all participants. The third, T15E1 (train on other 15, test on left out 1), is 

similar to T16E1 and trains one classifier using all the participants’ data excluding the target 

participant’s training data. The classifier is then tested on the target participant's second run. This 

final scenario simulates a situation where a classifier trained on previously scanned subjects is 

used to classify the brain state of a new subject. 
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 These three baseline approaches are compared to the multi-task approach, proposed in [5, 

6]. This technique, when applied such that each subject's data defines a task, can be manipulated 

to address the spectrum between the T1E1 and T16E1 (i.e. entire range from least dependence on 

other subjects' data to most dependence). The resultant multi-subject (MS) classifier combines, 

in a principled manner, a participant-specific classifier with a generally applicable one.  With 

regard to the smoking- vs. control-stimulus task, the MS classifier outperforms the baselines by 

training a classifier that emphasizes participant-specific brain activity while leveraging the 

commonality between brain activities of other subjects responding to the same paradigm. 

 As a quick refresher, in traditional two-class SVM classification approach, a separating 

boundary between the two classes of examples (e.g. +1 and −1) is learned such that the margin 

between the data points and boundary is maximal. In higher dimensions, this boundary manifests 

itself as a hyperplane. This separating hyperplane generated by the SVM algorithm is orthogonal 

to the weight vector w. The SVM then uses the sign of the decision function f(x)=w
T
x to classify 

any data point x represented by the feature vector x into one class or the other. Thus, the 

classifier is parameterized by w, which can be solved for by using the following optimization: 
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where w is the normal vector to the hyperplane, yi are the known input class labels, xi are the 

input feature vectors, C is the trade-off parameter used to penalize misclassifications and i are 

the non-negative slack variables which measure the degree of misclassification of the input data 

xi. 
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 In this study, the MS classifier used is the multi-task SVM classifier proposed in [5, 6] 

where each task t represents an individual subject’s brain activation in response to a common 

craving paradigm. This multi-task SVM classifier learns, in a coupled manner, solutions for T 

tasks using a separate classification function for each task t, ft (x) = wt
T
x. The learnt classifier wt 

for each task t is defined as: 

0t t w w v    (2) 

where w0 is shared across all tasks and vt is specific to each task t. When the vectors vt are large 

relative to w0, the task-specific components dominate the shared component and each task may 

have a very different classifier. When vt is small relative to w0, all of the tasks have very similar 

classifiers.  

To obtain these hyperplanes, one can solve the optimization problem: 
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where T is the number of subjects (tasks) used for training and m is the number of samples or 

training volumes per task. yit are the known input class labels, xit are the input feature vectors for 

subject t. C is the trade-off parameter used to penalize misclassifications and i are the non-

negative slack variables which measure the degree of misclassification of the input data xit. The 

regularization parameter λ determines the cost parameter of the SVM as well as enforces the 

relatedness of the tasks. Thus, it models relations among the tasks by acting as a task coupling 

parameter and quantifies how related the tasks are. 

LIBSVM [14], a Library for Support Vector Machines, was used to perform the SVM 

classification with the pre-computed multi-task kernel.  
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The multi-task kernel is defined as: 

{ ( , ) ( , ) } (1 ) T

tqK x t s q xT s      (4) 

where data point x from task t is represented as an ordered pair (x,t), and data point s from task q 

as the ordered pair (s,q) and δtq is 1 when t=q and 0 otherwise. When λ equals 0, each task 

influences every other task heavily and makes the problem similar to building one common 

classifier for all tasks together (T16E1) whereas when λ equals 1, it implies that the tasks are all 

learned independently and that an individual SVM classifier is learned per task (T1E1). Thus, the 

choice of λ is an important decision in multi-task problems. 

5.1.2.7 Experimental iterations 

 To determine how our classification scheme performed with a varied number of examples 

from subjects, we designed a specific setup, referred to as Setup 1, for the analysis in which four 

cases were examined using a reduced number of samples. In the first case, only the first 25% (i.e. 

first 40 out of the total 160) examples from all the subjects’ data were used to train a model. In 

the subsequent cases, 50%, 75% and 100% (80, 120 and all 160 examples respectively) of all 

subjects’ data were used. 

 It was noted, though, that in an experimental setting, apart from the new subject being 

scanned (target subject), all the training examples (entire 100%) from subjects other than our 

target subject would already be available. This data could, therefore, be leveraged to improve our 

classifier. In this regard, Setup 2 was designed to study the effect of varying the number of 

examples from the target subject used to train a model while using all existing data from the 

others. Similar to Setup 1, the analysis was performed in four cases. In the first case, only the 

first 25% (i.e. first 40 out of the total 160) examples from the target subject’s data were used 

along with the entire 100% of all the other subjects’ data (all 160 examples) to train a model. In 
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the subsequent cases, 50%, 75% and 100% (80, 120 and all 160 examples respectively) of the 

data from the target subject were used along with the entire 100% of all the other subjects’ data 

(160 examples). 

 These experimental setups were designed to examine whether a fewer number of 

examples suffice to learn robust classifiers that achieve classification accuracy comparable to 

that of classifiers trained by using all the examples available. Additionally, to simulate a realistic 

deployment scenario, when selecting a subset of the data in the iterations we used the first 

portion of examples instead of picking them at random. This approach to subset selection might 

also account for effects such as fatigue and habituation. 

5.1.2.8 Parameter selection 

 In the SVM formulation, there is a tradeoff parameter C which allows the user to adjust 

the penalty imposed on each misclassification as seen in (1) and (3). This, in turn, governs the 

number of training misclassifications permitted. If C is set too high there is a huge penalty on 

misclassifications, which generates a model that is more rigid and less generalizable. On the 

other hand, if it is set too low, there is not much penalty on misclassifications which may 

generate an inept model. Hence, as is typically the case, C is chosen based on a validation set. 

Values of C=2^
 [-20:1:20]

 were considered in both the standard SVM and the MS-SVM. For the 

multi-task kernel, the coupling parameter λ was also chosen using a validation set, and was 

allowed to vary over the entire range from 0 to 1, with smaller steps of 0.025 from 0 to 0.4 and 

larger steps of 0.1 from 0.4 to 1. A leave-one-subject-out cross validation setup was used to 

choose the best C and λ parameters for each participant. 

5.1.2.9 Permutation tests 
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 The SVM algorithm generates a separating hyperplane which is orthogonal to the weight 

vector w. This weight vector defines the direction in which samples of the two classes differ 

most from one another. Thus, it is representative of the most discriminatory regions of the brain. 

This vector when mapped back into original image space generates the discriminating volume 

also called the weight vector map. Each voxel is assigned a separate weight and since SVM is a 

multivariate pattern analysis technique, all weight values depend on all other weight values. The 

weight vector map is thus a representation of the voxels that are most vital to the classification. 

The magnitude of the absolute value of each voxel weight determines its importance in 

discriminating the brain states and the most important voxels for discrimination of internal 

emotional/cognitive states can be inspected by merely thresholding the obtained weight vector 

map. However, to assess the reproducibility of these spatial patterns, a permutation test has been 

employed as discussed later. 

 Permutation tests are nonparametric techniques that empirically estimate the distribution 

of a statistic under a null hypothesis and have been used with fMRI data previously in [15, 16]. 

The null hypothesis suggests there are no differences between the two brain states and thus the 

labels assigned to each example, delineating them as belonging to one class or another, are 

inconsequential. The alternate hypothesis proposes that the assigned class labels, in fact, are 

related to the classification and much better than random. One can estimate the distribution of 

weights assigned to each voxel under the null hypothesis by randomly permuting the class labels 

2000 times and then training the SVM each time with a different permutation of labels. In each 

instance, the weights are normalized to have unit standard deviation. The SVM training is also 

done once with the known correct non-permuted labels. Now, for each voxel, the p value under 

null hypothesis can be calculated as the ratio of number of times (out of 2000) that the voxel 
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weight assigned to it is greater than or equal to the weight assigned to it when training with 

original non-permuted labels. If this number is smaller than 100, then that voxel is likely to be 

predictive of the class label with a significance level of 5%. The weight vector maps shown in 

the results section display all significant voxels with p value < 0.05. 

5.1.3 Results 

5.1.3.1 Classification accuracy 

 Figure 5.1 shows a plot of the mean classification accuracy across all 16 subjects against 

the percentage of examples used for training the classifier model using Setup 1. As expected, 

T1E1 (blue) performs better with an increase in the number of examples used for training the 

model. Since T15E1 (green) uses data from every subject except the target subject to build the 

model, it does not perform as well. T16E1 (red) performs better with an increase in the number 

of examples but MS (black) outperforms all the other approaches. 
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Figure 5.1: Setup 1 plot of mean classification accuracy across all 16 subjects against percentage 

of training examples used to train the model for each of the classification approaches. 

 
Figure 5.2: Setup 2 plot of mean classification accuracy across all 16 subjects against percentage 

of training examples used to train the model for each of the classification approaches. 
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 Figure 5.2 shows a plot of the mean classification accuracy across all 16 subjects against 

the percentage of examples used for training the classifier model using Setup 2. It is clear from 

the plot that including more training data from the target participant improves classifier 

performance. Also, including sufficient training data (in this case, > 50% or 80 examples) from 

the target participant is important for good performance. T15E1 (green), which has no training 

data from the target participant, performs worst in most cases. 

 More importantly, it can be observed that T16E1 (red) performs better than MS (black) 

when we have less information from the target subject while training a model. But when we 

include more data (50%, 75% and 100%, i.e. 80, 120 and 160 examples), then the multi-subject 

approach performs best. Additionally, we observe that MS with 75% of the participant’s data 

approximately matches the performance of MS at 100% and outperforms T16E1 with 100%, 

meaning that by using the MS approach we can acquire fewer training data examples from the 

target participant with comparable results. 

 The classification accuracies obtained for each individual subject by using each of the 

four methods (T1E1, T15E1, T16E1 and MS) are summarized in Table 5.1. These results exhibit 

that for some subjects, training a model using only their data (T1E1) gives better classification 

accuracy. This is perhaps an indication that these subjects' activations are significantly different 

from the general population and thus introducing other participants' data worsens their model. 

For few others, training a model on all the subjects’ data pooled together (T16E1) helps train a 

better model pointing towards the likelihood that these subjects' brain activation is very similar 

to that of the general population. But for a majority of the subjects, leveraging the classifier by 

using the other subjects’ data along with the target subject’s training run (MS) helps build the 

best classifier. 
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Subject # T1E1 T15E1 T16E1 MS 

1 56.88 61.88 68.75 66.25 

2 72.50 71.88 75.63 79.38 

3 69.38 71.25 71.25 70.63 

4 74.38 76.88 78.75 80.00 

5 81.25 68.13 80.00 83.13 

6 76.88 68.13 77.50 76.88 

7 66.88 68.75 71.25 74.38 

8 85.00 73.13 82.50 85.63 

9 73.13 65.00 65.00 67.50 

10 58.75 61.25 66.25 64.38 

11 70.00 70.63 78.75 79.38 

12 78.75 70.63 79.38 83.13 

13 70.63 65.63 70.00 72.50 

14 77.50 72.50 73.13 71.88 

15 64.38 74.38 81.88 79.38 

16 60.62 53.75 63.75 62.50 

Mean 71.06 68.36 73.99 74.81 

Table 5.1: Comparison of classification accuracies for each individual subject across each of the 

four methods. The maximum accuracy in each row is italicized for emphasis. 

5.1.3.2 Weight vector maps 

 Beyond improved classification, the proposed MS method enables us to generate 

discriminatory weight maps, described in the methods, to examine the population-wide as well as 

subjective effects of nicotine craving on brain activation. All the displayed maps are obtained by 

permutation tests and only voxels that are predictive with a significance level of p<0.05 have 

been superimposed on the MNI brain template. The population-wide common component w0 is 

represented in red while the subject-specific component vt is shown in yellow and their 

intersection is displayed in green. Figure 5.3-(a) corresponds to the mean w0 image, whereas, 

Figure 5.3-(b) corresponds to w0 + vt. A representative subset of subjects and slices are selected 

for ease of visual representation. These clusters were then compared to the Automated 

Anatomical Labeling (AAL) template defined in [17] to find respective anatomical regions. 
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Names of all the anatomical regions that show clusters in the maps have been summarized in 

Table 5.2. 

 

Figure 5.3: Example of weight vector map obtained using permutation tests (p<0.05) on multi-

subject SVM superimposed on MNI brain template. Population-wide component w0 [red] and 

individual participant-specific component vt [yellow] and overlap [green] (a) w0 (b) w0 + vt 

Each row corresponds to a different slice (z=-14, z=-5, z=4, z=25, z=58, from top to bottom) of 

the MNI template and each column corresponds to a different subject (w0+v2, w0+v7, w0+v9, 

w0+v12, w0+v14, from left to right) 

 

 The w0 image in Fig. 3-(a) shows lingual gyrus activity, along with cuneus and precuneus 

activation near the occipital cortex. Precentral and postcentral sulcus activation is also evident 

along with supplementary motor and insular activity. Each column of Fig. 3-(b) corresponds to a 

single participant (w0+vt) and shows a different pattern of activation. Various degrees of frontal 

and especially orbitofrontal (OFC) activation are observed in the maps for subjects 2, 9 and 12. 
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Larger clusters in the anterior cingulate cortex (ACC) are seen in the map belonging to subjects 

12 and 14 whereas a smaller cluster is observed for subject 7. Different proportion of pre- and 

post-central sulcus activation is seen in almost all subjects’ maps. Subjects 7 and 9 show clusters 

in the precuneus region whereas subjects 2 and 12 show similar clusters in the cuneus region and 

also the lingual gyrus. In addition, subjects 9, 12 and 14 also show insular activation. The 

meaning of each of these observations has been further explored in the DISCUSSION section. 

 

 Figure 5.4 provides a visual representation summarizing the statistically significant 

clusters of voxels in the weight maps of all subjects belonging to all different regions of interest 

(ROI). The intensity of each block signifies the normalized cluster size belonging to a particular 

region as denoted by the AAL template. Each column represents a different ROI and for each 

region, the cluster size has been normalized by the standard deviation across all subjects. The top 

most row corresponds to the population wide component, whereas, every subsequent row 

corresponds to an individual subject. Most of the subjects show larger clusters in the frontal 

 w0 v2 v7 v9 v12 v14 

z = -14 Lingual gyrus   Orbitofrontal 

cortex, insula 

Orbitofrontal 

cortex 

 

z = -5 Lingual gyrus, 

insula, 

occipital cortex 

Orbitofrontal 

cortex 

ACC Orbitofrontal 

cortex, insula 

Orbitofrontal 

cortex, insula, 

lingual gyrus 

 

z = 4 Cuneus Lingual gyrus Frontal cortex, 

caudate 

Occipital 

cortex 

Lingual gyrus, 

frontal cortex, 

ACC 

Insula, ACC, 

frontal cortex 

z = 25 Precuneus, pre 

and post 

central sulcus 

Cuneus Precuneus, Cuneus, 

occipital cortex 

Cuneus, 

occipital 

cortex, ACC 

ACC, frontal 

cortex 

z = 58 Pre and post 

central sulcus, 

supplementary 

motor area 

Pre and post 

central sulcus 

Precuneus, pre 

and post 

central sulcus 

Precuneus Precentral 

sulcus, 

supplementary 

motor area 

Postcentral 

sulcus 

Table 5.2: Summary of different brain regions that show clusters in the weight vector maps for 

different subjects. Each row corresponds to a different slice as shown by the corresponding z-

value of the MNI template. First column corresponds to the population-wide component of the 

weight vector map whereas all the other columns belong to individual subjects. 
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region with subject 13 (v13) showing the largest cluster. Contrarily, most subjects have smaller 

clusters in the ACC except subjects 6, 12 and 14 (v6, v12 and v14) have large clusters. 

 

Figure 5.4: Visual representation of the summary of cluster sizes of statistically significant 

weights (p<0.05) found in different regions of interest (denoted along each column) for different 

subjects (denoted along each row). Each column corresponds to a different ROI as denoted (in 

accordance to the AAL template). First row corresponds to the population wide component of 

the weight vector map (w0), whereas, all the other rows belong to individual subjects (vt). 

Intensities for each ROI are normalized by the standard deviation across all subjects. Most of the 

subjects show larger clusters in the precuneus region with subject 6 (v6) showing the largest 

cluster whereas subjects 13, 14 and 16 have small clusters. 
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5.1.4 Discussion 

 The population-wide significant weight vector map shows clusters in various regions of 

interest that have previously been cited in the craving literature. Lingual gyrus activity has been 

associated to vision processing and especially for encoding visual memories [18]. Previous 

functional studies have linked precuneus activation to self-consciousness and reflective self-

awareness as well as processing of episodic memories [19]. The insula has been associated with 

explicit motivation to take drugs, i.e. urge to smoke [20]. The supplementary motor area (SMA) 

is a part of the brain that contributes to the control of movement. The precentral sulcus and 

postcentral sulcus lie on either side of the central sulcus in proximity to the motor cortex and 

somatosensory cortex. These regions are associated with the act of motor imagery, which is a 

mental execution of a movement without any explicit movement [21]. Involvement of these 

regions may be linked to the subjects' imagery of their hand action while smoking a cigarette. 

 The individual, subject-specific weight vector maps displayed significant clusters in 

varied regions that have been associated with cigarette craving. A recent study established that 

cue-induced craving signal correlated most with activity in the medial orbitofrontal cortex 

(mOFC), which encodes the subjective value of the drug based on content of the cue [22]. Other 

brain regions such as the ACC, insula and supplementary motor areas have been shown to be 

activated in response to the presentation of drug cues especially during abstinence [23]. 

 In this work, the results demonstrate that using the MS approach, one can train brain-state 

classifiers that achieve 75% average performance on nicotine craving classification on new 

participants.  Additionally, the MS approach allows for training better models while using less 

participant-specific data. These classifiers can thus be quickly deployed on new participants 

because less training data need to be collected, saving on the expensive and time-consuming 



95 

 

process of collecting a large amount of participant-specific training data. This adds to patient 

comfort and helps reduce the undesirable effects of patient motion caused due to long scan times. 

The present method not only has predictive capability, but also affords greater interpretability 

regarding brain function. The MS approach provides a multivariate pattern analysis technique 

that utilizes the population-wide brain activation component and leverages the individuals' 

subject-specific component to build more robust classifiers. The subjectivity of brain activation 

is therefore an important confounder that should not be overlooked when performing brain state 

classification. The otherwise individually heterogeneous regions identified in the individual vt 

maps in the RESULTS have been previously associated with drug cue-induced craving responses 

in the literature [24, 25, 26, 27], further corroborating the validity of our approach. The 

individually-variable nature of brain activation warrants further study, however one possible 

explanation could be that subjects had significantly different perspectives and motivations 

towards smoking cigarettes and nicotine craving, or various levels of addiction. 

 As demonstrated, our proposed multi-subject learning approach provides a novel means 

to train brain-state classifiers that perform well on brain volumes from new participants and 

sheds light on neural correlates of smoking cue-induced craving. Moreover, by exploiting the 

relatedness of brain-activation patterns between the participants, these generalizable classifiers 

can be trained with a small amount of training participants and samples. This approach can be 

used to predict the craving state of a nicotine dependent subject by examining their fMRI brain 

activation data. These findings also encourage the possibility of using a neurofeedback 

mechanism to help subjects self-regulate their craving by adopting a method similar to that 

described in [28], but with greater capacity to incorporate individual differences in cue-induced 

brain regional activation. 
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 This MS approach, whose utility we presented using nicotine craving, is generally 

applicable to other brain-state classification tasks where data are collected from multiple 

participants presented with the same stimuli, which is typical of most fMRI studies. By 

leveraging the existing information available from other subjects' scans, this approach helps 

build robust classifiers, which may improve our understanding of the neural substrates of various 

brain functions. 

5.2 Real-time neurofeedback 

 Technological advancements have made it possible to increase the speed and computing 

power of machines tremendously. This has allowed reconstruction algorithms to be extremely 

fast and led to the possibility of a real-time fMRI setup. In Chapter 2, we mentioned a number of 

studies reporting the possible applications and results of using real-time fMRI neurofeedback to 

assist subjects in controlling their own brain activations. In this section, we have presented our 

setup for real-time fMRI and its application for modulating craving in nicotine dependent 

subjects. 

 

Figure 5.5: Illustration of real-time neurofeedback experiment as in [4] 
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 Fig. 5.5 shows a simplified illustration of the real-time neurofeedback experiment that 

has been developed in this study. While the subject is lying inside the scanner, they use mirrored 

glasses to view a rear projection screen. According to the experimental design, the screen shows 

different cues and the subject is expected to respond to these cues. The subject's fMRI images are 

acquired and reconstructed after every time of repetition (TR, typically = 2s). 

 After the training run, all these brain volumes are used as labeled examples to train a 

model of the subject's brain. During the testing run, this model is used to classify each new brain 

volume reconstructed after every TR as belonging to one class or the other. This classification 

output can be used to modify the cues displayed to the subject. Since the subjects respond to the 

cues presented to them, this completes the feedback loop. Since this method involves using brain 

signals to modify the behavior of the subject after every single TR, it is termed as a real-time 

neurofeedback experiment. 

 

 

Figure 5.6: Schematic diagram of real-time setup. 
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 Figure 5.6 shows a detailed schematic of the real-time setup which includes an MRI 

scanner, a presentation & feedback computer and another reconstruction and classification 

workstation. Whatever is displayed on the screen of the presentation computer is mirrored onto 

the screen behind the MRI scanner where subjects can see it using mirrored glasses. 

 In a standard fMRI experiment, images are captured over a five minute scan and then the 

series of brain volumes are reconstructed from raw data at the end. In our study, this process has 

been modified using a GE client to stream the raw data to the reconstruction computer after 

every 2 seconds. Here, a custom MATLAB reconstruction algorithm is used to reconstruct a 

brain volume every time raw data is received. 

 In our study, we use machine learning techniques to perform temporal brain state 

classification. The first set of acquired brain volumes are together called a training run which is 

used to build a model. The learnt model is then used to classify newly captured volumes in the 

testing phase. We use LIBSVM [14] code in MATLAB for the SVM train and SVM test.  

 Most groups use specialized software packages for creating the accurately timed visuals 

for the stimulus paradigm but we have implemented it within MATLAB by utilizing timer 

functions. The output of the SVM algorithm is sent from the reconstruction and classification 

computer via a user datagram protocol (UDP) communication channel over to the paradigm 

computer. The UDP package sent is either a 0 or a 1 depending on the SVM classifier output. 

Depending on this value, the display on the feedback computer is updated. The subject responds 

to this updated stimulus and thus neurofeedback is accomplished. This neurofeedback setup can 

be used for multiple studies that may involve a self-regulation component. 

 In our studies, we have used this real-time setup for controlling motor activation as well 

as modulation of craving related brain activation. In the case of motor activation, the subject was 
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instructed to tap with either left or right hand and the SVM algorithm trained a model of tapping 

with left hand vs tapping with right hand. This model was then used during testing phase to 

control the direction of motion of a speedometer needle. This finger tapping experiment was just 

a prototype for other more complex neurofeedback experiments like devising a cigarette craving 

monitor.  

 When used for modulating craving related brain activation, we classify between craving 

and non-craving temporal brain states. During the pre-scan screening session, subjects rate a 

series of images which may or may not have smoking descriptors. Depending on their rating of 

these images, the paradigm image sequence is tailored for each subject. During the scan session, 

subjects are shown this stimulation paradigm which involves alternating blocks of smoking and 

non-smoking related images. Before each such block, the subjects are instructed to imagine 

themselves in their craving place (any physical place that they personally associate to smoking. 

e.g. usual hangouts, clubs, local smoke shop, etc.) or non-craving place (any physical place that 

dissuades them from smoking. e.g. educational institution, church, in the proximity of children, 

etc.) to help them modulate their craving. The subjects were instructed to crave cigarettes while 

looking at image cues that were smoking-related and to not crave when looking at neutral cues. 

SVM algorithm was used to generate a brain state classifier that distinguished craving vs non-

craving brains. During the testing phase, the SVM output was used to control the speedometer 

needle between the two extremes of crave and no-crave. 

 

5.3 Concluding remarks 

 In this chapter, we have reported findings from our studies that involved imaging the 

craving brain. The multi-task learning technique was applied in a novel manner to create a multi-
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subject classifier which benefit from data acquired on multiple subjects. Also, we demonstrate a 

real-time neurofeedback setup which was used for various applications including a craving 

monitor which could be used to assist subjects in controlling their own cigarette craving related 

brain activation. 
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CHAPTER 6 

SUMMARY OF CONTRIBUTIONS AND FUTURE WORK 

6.1 Novel contributions 

 Implemented temporal brain state predictor for 

a) Classification using AVAST images –  

AVAST outperforms ASL while preserving all of its desirable properties that are 

preferred over BOLD for neural processes with sustained activation periods. 

b) Pain vs rest in TMD patients vs healthy controls –  

Significant differences were observed in the pain vs rest classifier in patients and controls 

for pain applied to thumb as well as face. 

c) Graded fMRI activation –  

Support vector regression models were trained to accurately predict fMRI activation on a 

continuous scale in motor activation and craving modulation. 

 Subject categorization into healthy controls and autistic patients –  

Resting state functional connectivity maps were used to categorize subjects into controls 

and patients with high accuracy; significant weight clusters were found in the default 

mode network area. 

 Implemented multi-subject machine learning classifier for craving population 

A population-wide shared component and subject-specific individual components of 

craving related brain activation were identified in the significant weight clusters. 
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 Set up real-time fMRI neurofeedback 

MATLAB was used to tailor the craving paradigm for each subject and then display 

images as well as classifier output of the machine learning algorithm sent over a real-time 

UDP communication channel. This setup was used to enable motor activation 

neurofeedback and craving modulation. 

6.2 Summary and future work 

 In this thesis, we have explored various methods and applications of machine learning 

techniques in different functional MRI experiments. These algorithms have been successfully 

applied to perform various tasks such as brain-state classification, categorization of subjects and 

also shown to characterize and predict graded activation using regression methods. Although we 

demonstrate compelling results in the dissertation, these findings are by no means exhaustive. 

There are several topics that remain to be explored. Following is a summary of specific 

contributions and possible future work. 

 In chapter 3, we have proposed the use of an arterial cerebral blood volume (aCBV) 

weighted acquisition technique called AVAST in a support vector machine (SVM) based 

temporal brain-state classification experiment. This technique exhibits results that are 

comparable to BOLD and superior to perfusion-weighted ASL while retaining desirable 

characteristics of ASL imaging. AVAST involves calibration scans to tailor the best timing 

parameters for each subject. Further exploration could include acquiring images using optimal as 

well as sub-optimal timing parameters for each subject and then comparing the classification 

accuracy of the brain-state classifier to further emphasize the significance of individually tailored 

AVAST acquisitions. Furthermore, in this study, we have investigated the efficacy of this 

technique on robust visual-motor activation but this can be easily extended to brain-state 
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classification of other more complex processes including craving states in nicotine dependent 

subjects since craving processes exhibit a long sustained period of activation. 

 In the experiment involving brain-state classification of pain vs rest, the experimental 

design involves controlled application of two different levels of pain. Thus, this problem can be 

formulated for regression or multi-class SVM approach. The weight maps generated in these 

cases could throw light on important neural substrates of pain regulation in healthy subjects and 

subjects suffering with temporomandibular disorders (TMD). 

 Support vector regression (SVR) was used to predict graded fMRI activation on a 

continuous scale in motor activation. This is further extended to use with craving activity with 

subjects' self-reported craving measures as input labels and then predicting their craving measure 

on a continuous scale during testing phase. This can be extended to many other neural processes, 

especially, those that involve graded activations. 

 In chapter 4, we used resting state scans and computed correlation maps using a seed in 

the posterior cingulate cortex (PCC). The resting state functional connectivity (RSFC) maps 

obtained were used to distinguish healthy subjects from subjects with Asperger's disorder. In this 

study, we use SVM classification for the categorization of subjects. Instead of using a binary 

label based on disease state, it is possible to use a continuous label and perform regression on 

these maps. This is especially possible with autistic subjects since the diagnosis of autism is 

based on a wide spectrum and each diagnosed subject is given a score that defines the severity of 

their autistic traits. This score can be used as a continuous label input to the support vector 

regression (SVR) algorithm. Thus SVR output would characterize where on the autism spectrum 

the subject lies. This measure could be used as an additional guideline by clinicians and not the 

only tool to decide the severity of autism. 
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 In chapter 5, we introduced a novel multi-subject machine learning approach to build a 

more informed model using multiple subjects' data at once. This technique uses multi-task 

learning methods with functional MRI data where each individual subject's brain activation is 

treated as a separate task. The model formed using this method, can be subdivided into a 

population-wide component and an individual-specific component. A detailed analysis of the 

optimal value of coupling parameter chosen for each subject could help characterize how similar 

they are to the rest of the nicotine dependent subjects. This could then be correlated with other 

phenotypic details such as motivation to smoke, age, gender, etc. to construct better models of 

smoking behavior and build insight. 

 We have described a real-time neurofeedback setup that we developed to enable self-

regulation of nicotine craving. Future work could include studying the possible reinforcing 

effects of providing placebo feedback. This would involve presenting the subject with an ideal 

feedback regardless of their actual brain activation. The knowledge of being able to control their 

craving-related brain activation could be empowering and assist them in being able to quit. The 

real-time neurofeedback setup can also be used to study several different neural processes, 

especially those processes that can be individually regulated or modulated. 


