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CHAPTER I

Introduction

Exciton-polaritons are quasi-particles created due to the strong coupling between

the semiconductor excitons and microcavity photons[1]. The matter components,

excitons, feature rich interactions in semiconductor materials. Hence polaritons are

good candidates for research on many body physics as well as non-linear phenomena.

The major decay channel for polaritons is through the photon leakage which main-

tains the same energy and momentum. The measurement of these photons gives the

direct information of the polariton systems. The photon component of the polaritons

also enriches the system with physics of cavity quantum electrodynamics.

1.1 Two Dimensional (2D) Polariton System

As one of the important demonstration on macroscopic quantum phenomena and

quantum many body physics in solid state materials, two dimensional (2D) polariton

Bose-Einstein condensation (BEC) or polariton lasing has been realized and observed

in many groups[2][3][4] for the past decade. Quantum degeneracy[5], 1st order[6]

and 2nd order coherence[2][7][8] for this condensation/lasing have been observed.

Superfluid properties along side the BEC of polariton system such as long-range

transportation, vortices and Josephson oscillations[9] [10] [11] [12] have also been

1
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achieved in relatively recent years.

Since the major decay channel for the polariton system is through the photon

leakage which maintains the same energy and momentum, the measurement of these

photons gives the direct information of the polariton system. By exploiting such

property of the polariton systems, researches on the physics of cavity quantum elec-

trodynamics have also been well developed both in theory[13] [14] [15] [16] and ex-

periments [17] [18] [19].

Since polariton lasing is realized through the polariton BEC, the lasing mechanism

is different from the traditional laser, where a population inversion is not required [20]

[21]. Therefore polariton lasers normally have a relatively lower excitation threshold

compared to the traditional semiconductor laser[22]. This promises the polariton sys-

tem more device-orientated applications in addition to the scientific research. Many

efforts have also been made towards a more attainable polariton laser with room

temperature lasing or even electrically pumped devices. For instance, uitilizing the

higher binding energies of excitons in GaN [23] [24] [25] [26] and organic semiconduc-

tor materials[27] [28] [29], polariton lasing at room temperature has been realized.

Electrically pumped polariton lasers using GaAs as the active media have also been

demonstrated in two groups[30] [31] in very recent years.

1.2 Lower Dimensional Polariton System

Two dimensional polariton systems have enabled people to conduct research on

many remarkable physics phenomena as illustrated above. Yet many of the theoret-

ically predicted applications of polariton systems have reached beyond two dimen-

sional systems, such as matter-wave circuits/polariton circuits[32] [33] [34], novel
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phases transition[35] [36], and lattice quantum simulators[37]. To realize these use-

ful and promising applications, effective lower dimensional (0D or 1D) confinement,

control and coupling are required.

Since a polariton consists of semiconductor excitons and cavity photons, one of

the viable paths to control the polariton system is through the matter part. Me-

chanical potentials[38] [4], external electrical or magnetic fields[39] [40] [41], or even

optical stark effects[42] for the semiconductor excitons have shown the energy tuning

and local confinement abilities for a polariton system. Yet these experimental con-

structions for the polariton systems are far from effective as for the dimensionality

control. Besides, these bulky external setups are hard to be incorporated at the level

of single devices.

To have more effective polariton system controls and also avoid the complicated

external field setups, we can also alter the systems from the cavity photon part.

One direct and simple way to modify the photon components for the polariton sys-

tem is using the optical pumping source. By using different pumping densities [43]

and different pumping geometries[44] [45], locally trapped polaritons can be real-

ized. However, these devices are still heavily relying on the external experimental

equipment. Similar to controlling through exciton components, incorporating these

optical schemes into a single device could be difficult.

Many experimental efforts have been invested in controlling the polariton system

from the sample level. In particular, one popular way is by using different surface

patterning[46] [47] [48] [49]. Effective confinement is realized by altering the cavity

length with the surface metals. Instead of having the continuous dispersions in

momentum space for traditional 2D polariton systems, energy gaps appear at certain

critical points. Effective polariton lattices are successfully constructed and many of
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the lattice physics rules are giving accurate explanations and predictions. Yet sharing

the same issue with the method of using an optical pumping scheme, these devices

are still using the traditional 2D systems. Accessing to an individual or isolated

lower dimensional system, such as 0D and 1D, still remains challenging.

To be able to form these low dimensional polariton systems, one effective way

is to embed a low-dimension aperture inside the sample before completion of the

epitaxial growing [50] [51]. In this way, the polariton system is conveniently confined

within the aperture. The signature discrete energy levels have been observed in

these systems, which indicates effective lateral confinements. However, due to the

intrinsic defects for the MBE re-growth, no polariton lasing or condensation have

been observed from these samples.

In order to have the low dimensional systems and keep the polariton lasing /

condensation, pillar etching used to be the most successful technique to modify the

polariton systems[52] [53] [54] [55] [56]. 0D, 1D or even lattice systems with polariton

lasing/condensation have been achieved. Since the sample mirrors are still using

distributed Bragg reflector (DBR), it is normally several microns thick. Making these

straight and tall pillars always requires long-time and accurately delivered plasma

etching. The plasma bombardment is effective to sculpt the pillars yet it is damaging

the active media − quantum well exciton layers as well. As a result, the exciton layer

is not well protected. Besides, the energy detuning (energy difference between cavity

photon and quantum well exciton) is highly location dependent. Single pillar or in-

situ photon energy tuning is almost impossible due to the intrinsic limitations for all

DBR based samples.



5

1.3 Sub-Wavelength Gratings-Based Polariton System

To overcome the limitations for all the DBR based samples, where in-situ photon

tuning is impossible, and also be able to fulfill the purpose of effective low dimensional

control in polariton systems, a new type of cavity which bases on mirrors utilizing

sub-wavelength high contrast gratings is introduced and investigated in this thesis.

In comparison with the traditional polariton research using the thick DBR samples

(several microns), the sub-wavelength gratings (SWG) are only a single thin layer

(tens of nanometers) of alternatively matter-air periodic structure. Taking advantage

of the high contrast of the refractive indices between air and semiconductor material,

the SWG-mirrors are the same or even better quality as compared to the mirrors

with DBR in terms of the reflectance and the range of the wavelenth giving high

reflectivity. In addition, we can utilize the air gap below this single layer of gratings

for the in-situ photon resonance tuning, since the cavity photon resonances have the

one-to-one correlation with the air-gap distances. Besides, the in-plane asymmetric

property of the grating structures will also add extra control for the polarization

direction of the polaritons, which is another fundamental property for the light part of

the systems. This type of high contrast grating (HCG) mirrors has been successfully

implemented in the vertical cavity surface emitting lasers (VCSEL) [57] [58] [59] [60]

[61] [62]. Many of the traits of the high contrast gratings found in these references

are also beneficial for polariton research, such as resonance tunability, dimensionality

control and high fabrication tolerance.

As for the low dimensional system control using the SWGs, it provides many

advantages. Comparing with the surface patterning devices, we have the capability

of constructing single 0D, 1D or even coupled systems directly by the gratings shape
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definition in fabrication[63] [64]. We will be able to not only observe the coupling

effects in lattice type structure similar to surface pattern device, but we will also still

maintain the control for each individual 0D system which is impossible for the surface

pattern systems. Compared to the aperture embedding samples and pillar etching

samples, the active media of the exciton layer is well protected during the device

fabrication since the etching is shorter and less intrusive. Besides, single polariton

lasing was observed and demonstrated in this thesis.

Lastly, the SWG systems also enable us with many other properties of polaritons.

Firstly, dispersion engineering can be fulfilled [65]. Since we have the flexibility to

change the phase inside the cavity for photons emitted at different angles, different

cavity photon resonances will appear from the device for corresponding in-plane

wave-numbers. These features of SWG pose a potential for polariton dispersion

engineering. Besides, the distinct coexistence of strong coupling and weak coupling

in one device features bi-statbility [66]. Such properties also have the potential for

spin researches [67] [68] [69] [70] in SWG microcavities for polaritons. In addition,

the thin layer of SWG is also sensitive to mechanical tuning, such as small physical

bending and vibration. It also has the potential to demonstrate optomechanical

phenomena that theory has predicted [71].

1.4 Thesis Structure

In this thesis, I will first review the low dimensional quantum systems (Chapter

II) and traditional 2D polariton research in DBR samples (Chapter III). Then I will

introduce the sub-wavelength high contrast gratings, SWG/HCG, which includes

the device design and fabrication (Chapter IV). Next, I will focus on a 0D polariton



7

system using the SWG cavity (Chapter V). The dispersion, signature energy discrete

levels, unique polarization properties and the single-mode lasing phenomena will be

demonstrated. Additional properties of the 0D device such as diamagnetic energy

tuning and second order coherence will also be discussed (Chapter VI).Following the

work of the 0D SWG polariton systems, I will also demonstrate some of my work in

the coupled 0D systems and even 1D systems using SWG structures (Chapter VII).

The potential engineering and dimensionality control will be illustrated. Lastly, some

of the future work will be discussed (VIII).



CHAPTER II

Low Dimensional Quantum Systems

When the physics scales go down to micron- or even nano-meter realm, many new

phenomena will emerge which can not be explained by using classical mechanics.

As modern technology develops, many of the electronic and optical devices have

gone down to these extremely small scales, thus have reached beyond the classical

mechanics limit. Therefore we have entered into the quantum world. Quantum

mechanics have provided fundamental framework and comprehension for physics at

this regime. In this chapter, some basic quantum mechanics examples with low

dimensions will be discussed.

2.1 One Dimensional Quantum Wells

2.1.1 One Dimensional Quantum Wells with Infinite Potential

One of the simplest examples that we can observe the quantum phenomena is

by using the model of one dimensional quantum well. Assume there is a infinite

potential quantum well as shown in the figure. The potential can be described using

the following equations:

8
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Figure 2.1: Potential diagram for a one dimensional quantum well

Figure 2.2: The first four energy levels and corresponding wave functions for a 1D finite potential
well. The dashed line is indicating the potential height and position.
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(2.1) V (x) =


+∞ x > L

0 0 < x < L

+∞ x < 0

Use Schrodinger’s equation for static states in this one dimensional case:

(2.2) [− ~2

2m
∇2 + V (x)]Ψ(x) = EΨ(x)

By matching the continuous boundary conditions at x = 0 and x = L, we can

simply find the analytical solutions for this 1D infinite quantum well problems:

(2.3) En =
n2π2~2

8mL2

where n is the discretized energy level number and n is also an integer number. The

corresponding wave functions for all these energy levels are shown in the following:

(2.4) Ψ(x) =


0 x > L√

2
L
sin(nπ

L
x) 0 < x < L

0 x < 0

Even though this is a simple quantum box case and is not a true reflection of real

cases in the actual physical devices, it still provides useful in-depth understanding of
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the scale trends. For example, if we take a look at Equation 2.3, the energy levels of

the 1D quantum well, the energy levels’ spacing for n+ 1 and n can be derived as:

(2.5) ∆E =
π2~2

8mL2
[(n+ 1)2 − n2]

(2.6) ∆E =
π2~2

8mL2
(2n+ 1)

So the energy levels’ spacings have become larger as the energy level goes up,

which we could easily observe in many of the real quantum devices.

Another important feature worth pointing out from the solution of this 1D quan-

tum well (Equation 2.3) case is that, the energy levels’ spacing has the inverse pro-

portional relation with the quantum well dimension L. So as the dimension of the

device decreases, the energy spacing of the energy levels will increase.

2.1.2 One Dimensional Quantum Well with Harmonic Potential

Another important and simple quantum well example is with harmonic potential.

The potential shape is a parabolic function of the position x. It is also one of the

few quantum systems which can have a simple and analytical solution.

Similar to the infinite quantum well solution, we apply the harmonic potential to

Equation 2.2. The harmonic potential is with parabolic shape of V (x) = 1
2
~ω2x2.

The wavefuntion solutions are shown here:

Ψ(x) =
1√
2nn!

(
mω

π~
)1/4exp(−mωx

2

2~
)Hn(

√
mω

~
x),

where n = 1, 2, . . . . . .

(2.7)
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Figure 2.3: An example of quantum well with harmonic potential, energy and wavefuction solutions
for the first four levels

The energy solutions are:

(2.8) En = ~ω(n+
1

2
), where n = 1, 2, . . .

As can be seen from the energy solutions, the energy spacing is equal for the

harmonic potential, which is ~ω.

One example using harmonic potential is shown above in Figure 2.3. The harmonic

potential trapped effective photon mass is 1.38×10−5 of electron mass, the harmonic

potential is with ~ω = 22.5µeV .
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2.1.3 One Dimensional Quantum Well with Finite Potential

Continuing with the 1D quantum well case, the finite potential well problem has

very similar potential structure. To make the problem slightly easier and solutions

symmetric, I shift the potential to the left by L/2, but the width of the potential

still maintains at L. The potential for this problem is shown in the following:

(2.9) V (x) =


0 x > L/2

−V0 −L/2 < x < L/2

0 x < −L/2

We can use the similar solving method by applying this potential to the Schrodinger’s

Equation 2.2 and applying to the continuous boundary conditions at x = −L/2 and

x = L/2. We can not get analytical expression for the energy levels. However, we

can use numerical method to get the solution for the energies. The wavefuntions for

this potential well in three different regions without showing explicitly the values for

the wave-number k (since it is dependent on the energy solution) are shown in the

following:

(2.10) V (x) =


Ψ1(x) = Ce−αx +Deαx x > L/2

Ψ2(x) = Asin(kx) +Bcos(kx) −L/2 < x < L/2

Ψ3(x) = Fe−αx +Geαx x < −L/2

where α and wave number k are depending on the numerical solution for the

energy and the coefficients A, B, C, D, F, G are dependent on the normalization.

One example using the finite quantum well wavefuntion solution is shown in the

following figure. The parameters I am using are true reflection of the photons in an
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actual optoelectronic device I will later discuss in the later chapter. The effective

mass of the photon is mph is 1.38 × 10−5 of the electron mass me; the quantum

well width is 5µm; and the potential V0 is 0.05meV . The numerical solution of the

lowest four discretized energy levels and corresponding wave functions for this finite

quantum well are shown in the following figure.

In Figure 2.1.1 for the finite potential well solution, we can still observe the similar

energy level trends as in the infinite potential wells. The energy spacings are more

sparse as the energy levels increase. One example of these kind of potentials is shown

in the following figure:

2.2 Array of One Dimensional Potential Wells

If we put several one dimensional potential wells in an array along the x direction,

then we form an array of one dimensional potential wells.

In Figure 2.2, each individual potential well is with V0 of 0.05meV and the poten-

tial width is 5µm. For the two-well array, the separation of the two potential centers

is 10µm and the separation is 7.5µm for the three potential wells example. If we

still consider the photon case with effective mass of 1.38× 10−5 of the electron mass.

The wavefuntion solution can be well expressed in the following figure. We are still

using the first four energies an examples.

As can be seen from the solution, in Figure 2.5, the first and second, the third

and fourth energy states are nearly degenerate. In the left well, they have complete

overlapping wavefuction; and in the right well, they have wavefuctions with phase

difference of π.

If we move the two potential well closer, the degeneracy will be lifted. This

phenomena is illustrated in the next example, where we have the right edge of the
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Figure 2.4: Two examples of array of one dimensional potential, with finite potential two quantum
wells and three quantum wells separately
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Figure 2.5: Two potential quantum well array solution

left potential is with distance of 0.2µm away from the left edge of the right potential

well. At the same time, we keep the rest of the parameters exactly the same as the

previous example. The wavefuction solutions are shown in the following figure.

As can be seen in Figure 2.6, the wavefuctions for the first and second, and

for the third and fourth are not overlapping any more. The energies for the first

and second, and for the third and fourth are not the same anymore. (The energy

difference between the first and second states are not observable due to the calculation

resolution.) If we look closer at the space between the two wells, the first and third

state wavefuctions are not dropping to zero. It seems that there is connection between

the two wells through these wave functions. In this situation, we say the two quantum

wells are coupled. We also call these phenomena quantum tunneling. The lifting of

the degeneracy is also due to the coupling of these two quantum wells.

From these two examples, we can see quantum tunneling or quantum well coupling
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Figure 2.6: Two potential quantum well array solution

is depending on the distance between these two quantum wells. It also depends on

the height of the quantum well, V0.

If we extend the numbers of the coupled quantum wells’ number to infinite, the

original degenerate quantum levels will expand to a band, while still maintaining the

energy difference between the two energy levels. The band gap, which is the evergy

difference between the lower energy edge of the higher band and the upper edge of

the lower energy band, is depending on the coupling strength between each pair of

the quantum wells. This is also the idea of the one dimensional photonic crystal.

2.3 Two Dimensional Quantum Boxes

For the two dimensional quantum box problem, we can just di-sect the problem

into two one-dimensional quantum well problems along both directions of x and y.

For each of the direction, the energy levels are exactly following the same formula of
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the one-dimensional quantum well case.

The energy solution for the two dimensional quantum well case is presented in

the following:

(2.11) Enx,ny =
π2~2

8mL2
(n2

x + n2
y)

Based on Equation 2.11, for a square quantum box, the ground state for this two

dimensional quantum box is when nx and ny both equal to 1, (nx, ny)=(1, 1). The

second energy or the first excited energy will experience degeneracy since both sides

of the quantum box have the exact same dimension. So the states of (1, 2) and (2,

1) are completely degenerate. The second excited state is (2, 2), no degenerate. The

energy levels can be calculated for this square quantum box so on and so forth.



CHAPTER III

Microcavity Polaritons

Semiconductor microcavity polaritons are quasi-particles formed by strong cou-

pling of semiconductor excitons and microcavity photons. The unique half-light-half-

matter property makes microcavity polaritons an excellent medium for research on

light-matter interactions.

3.1 Excitons

In intrinsic semiconductor materials, there are valence bands and conduction

bands for electron states, which are formed due to the periodic crystal structure.

The energy difference at the bottom edge of the conduction band to the top edge

of the valence band is called energy gap. For an unexcited semiconductor material,

the valence band is filled with electrons up to the top band edge and the conduction

band is empty.

An exciton is a bound state between the excited electron and a hole formed by the

Coulomb interaction in semiconductors[72]. An exciton can be formed in an optical

excitation process. When a photon is absorbed with approximately the energy of

the energy gap, one electron on the top of the valence band will be excited to the

conduction band and leave a positively charged vacancy, which we call a hole in

19
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the valence band. This negatively charged electron and positively charged hole will

form an electron hole pair due to the Coulomb attraction. This attractive Coulomb

interaction will lower the energy of the electron-hole pair. As a result the exciton

energy is smaller than the energy gap. In GaAs material, the typical band gap is

∼1.5eV at 10K and the attractive Coulomb energy is called the binding energy, which

is on the orders of 10meV. This optical process can be described by using Fermi’s

golden rule in the following equation:

(3.1) Wcv =
2π

~
∑

f,i
| < f |Ĥ|i > |2δ(Ef − Ei− ~ω)

where i and f are the initial state and final state of the electron, H is Hamiltonian

for the dipole interaction, Ei and Ef are the intial and final states’ energies, and ~ω

is the photon energy.

The formation of exciton is illustrated in the schematic Figure 3.1.

Semiconductor excitons have finite life times, usually on the order of ns. When

one exciton decays, the electron in conduction band falls back to valence band and

emits a photon at the same time.

3.2 Semiconductor Microcavity

An optical microcavity is a structure consisting of two highly reflective mirrors

positioned face to face to confine photons with certain energies. The trapped photon

energy is called the resonance for this optical cavity and is usually determined by

the distance of the two mirrors for the cavity. This distance is half of the wavelength

of the desired cavity resonance.
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Figure 3.1: An electron-hole pair or exciton is formed in a direct bandgap semiconductor

To form a semiconductor high reflective mirror, we use distributed Bragg reflectors

(DBR). A typical DBR structure is composed of alternating high and low refraction

index material layers, each with an optical thickness of λ/4. The DBRs reflectivity

can be expressed in the following equation:

(3.2) R = |non
2N
2 − ntn2N

1

n0n2N
2 + ntn2N

1

|2

where n0 is the refractive index for the light incident media, n1 and n2 are the

refractive indexes for the two alternating semiconductor materials, nt is the refractive

index for the termination media . N is the number of the paris of the alternating

high and low index layers. The DBR reflector can also have very high reflectivity

for a broader range of wavelengths around the cavity resonance. The range of these
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Figure 3.2: Single layer structure for light propagation described by using transfer matrix.

wavelengths is called the stop-band for the DBR.

To simulate the reflection spectrum of DBR, we can use the transfer matrix

method. Transfer-matrix method is a very efficient way to trace the optical wave

through a layered medium. The method is based on Maxwell’s equations and the

continuous boundary conditions at the interface of the different materials medium.

Transfer matrices are also efficient ways to trace the propagation of light in multi-

ple different layers with different refractive indexes. For a stacked material system,

transfer-matrix method also gives simple and accurate expression of system’s reflec-

tivity and transmission.

In Figure 3.2, the electric field component and magnetic field component of the

light wave inside this ith layer is related to the corresponding field components in the

(i−1)th layer. This relation based on Maxwell’s equations and continuous conditions

at the boundary can be described as:

(3.3)

Ei−1
Hi−1

 = Mi

Ei
Hi
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where i is the dummy indices noting the number of the stratified material layer.

In Figure 3.2, the superscripts u and l are indicating the upper and lower interfaces.

The electric field and magnetic field components can be described in the following

equation:

Ei = ail + bil

Hi =
(ail − bil)

zi

(3.4)

Also based on the phase differences due to the light propagation, for Ei−1 and

Hi−1 can be described in the following:

Ei−1 = aiu + biu

Ei−1 = ailexp(−ikidi) + bilexp(ikidi)

Hi−1 =
ailexp(−ikidi)− bilexp(ikidi)

Zi

(3.5)

Obtain the expressions for ail bil,

ail =
Ei + ZiHi

2

bi =
Ei − ZiHi

2

(3.6)

Based on previous equations, Equations: 3.4 3.5 and 3.6, we can derived the

expression for Ei−1 and also Hi−1,
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Ei−1 =
Ei + ZiHi

2
exp(−kidi) +

Ei − ZiHi

2
exp(kidi)

Ei−1 = Eicos(kidi)− iZiHisin(kidi)

Hi−1 =
Ei + ZiHi

2Zi
exp(−ikidi)−

Ei − ZiHi

2Zi
exp(ikidi)

Hi−1 = − i

Zi
sin(kidi) +Hicos(kidi)

(3.7)

Hence,

Ei−1 = [cos(kidi)]Ei + [−iZisin(kidi)]Hi

Hi−1 = [−isin(kidi)

Zi
]Ei + [cos(kidi)]Hi

(3.8)

If we express Equation 3.8 in a matrix form:

(3.9)

Ei−1
Hi−1

 =

 cos(kidi) −iZisin(kidi)

−i sin(kidi)
Zi

cos(kidi)


Ei
Hi



If we compare Equation 3.9 and Equation 3.4, we can easily get

(3.10) Mi =

 cos(kidi) −iZisin(kidi)

−i sin(kidi)
Zi

cos(kidi)



For a stack of stratified layer materials, the transfer matrix is just the matrix

multiplication from the initial transfer matrix Mi to final transfer matrix Mf :

(3.11) Mtotal = M1M2 . . . . . .Mfinal
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One important feature about a optical structure is the reflectivity. We can use the

transfer matrix method to derive the reflectivity for the stacked optical structure.

The total transfer matrix can also be expressed explicitly:

(3.12) Mtotal =

m11 m12

m21 m22



The reflectivity is just the ratio of b/a, so this quantity for a N layer structures

can be derived in the following:

(3.13) R = |ZN+1m11 +m12 − Z1ZN+1m21 − Z1m22

ZN+1m11 +m12 + Z1ZN+1m21 + Z1m22

|2

By using the transfer matrix method, the reflection spectrum of the DBR can be

simulated. The following Figure 3.3 presents the simulation results for the reflectivity

of an example DBR reflector.

In the example simulation Figure 3.3, the central wavelength for the stop-band

is 790 nm. The refractive indexes n1 and n2 are refractive indexes for materials of

Al0.15GaAs and AlAs. The number of the DBR paris N is 30.

Still using the transfer matrix method, we can also calculate the reflection spec-

trum for a DBR-DBR cavity as shown in the following figure:

For this 15 pairs of DBR sandwiched microcavity, the corresponding reflection

spectrum is simulated,
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Figure 3.3: An example of DBR reflectivity by transfer matrix simulation

Figure 3.4: DBR - DBR microcavity sturcture
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Figure 3.5: An example of DBR cavity resonance in reflectivity spectrum by transfer matrix simu-
lation

One important characteristic parameter for the DBR cavity is the quality factor

Q which is defined as:

(3.14) Q =
λ

∆λ
≈ π(R1R2)

1/4

1− (R1R2)1/2

where λ is the cavity resonant wavelength, ∆λ is the line width of the cavity

resonance. In the Figure 3.5, it is giving an example using two 15 pairs of DBR on

top and bottom to bandwidth a half λ = 790 nm cavity. From the transfer matrix

simulation, the line width of the cavity resonance is approximately 4 nm. Hence the

quality for this micro cavity is approximately 200.

Based on the quality factor equation, increasing the number of pairs of the al-

ternating layers can increase the reflectivity of the mirrors. Increasing the contrast

of the refractive indexes between two alternating material can increase the mirrors
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reflectivity as well as expand the width of the stop-band. Based on the quality fac-

tor Q equation, both of these methods will increase the quality factor for the DBR

cavity.

For a planar DBR cavity, the dispersion relation of a microcavity photon can be

derived. If we define the z-direction as the microcavity photon confined direction,

the photon is not confined along the perpendicular plane to the z-direction. The

cavity photon energy can be written in the following form:

(3.15) Ecav =
~c
nc

√
k2⊥ + k2‖

where the vertical wave-number k⊥ = 2πnc/λ. There is also one to one correspon-

dence between the in-plane wave-number and the light incident angle. Based on the

microcavity photon energy equation, one example of a microcavity photon relation is

depicted in the figure below with cavity resonance at wavelength of 802nm or energy

of 1.546eV,

When k// is much smaller than k⊥, we can make the parabolic approximation for

the microcavity photon dispersion. The dispersion will be:

(3.16) Ecav =
~c
nck⊥

(1 +
k2‖

2k2⊥
)

(3.17) = Ecav(k‖ = 0) +
~2k2‖

2(2π~/λc)

(3.18) = Ecav0 +
~2k2‖

2mcav
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Figure 3.6: An example of microcavity photon dispersion

Therefore we can have a good estimation about the effective mass of the micro-

cavity photon, which is:

(3.19) m∗cav =
2π~
λc

n2
c

For an 800nm resonance microcavity with a refractive index of 3.5, the effective

mass of the corresponding microcavity photon is 3.7× 10−5that of electron mass. So

the effective mass of the microcavity photon is extremely small.

3.3 Microcavity Polaritons

If we place the quantum wells at the antinodes of the semiconductor microcavity,

strong interactions between the quantum well excitons and cavity photons are ex-
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Figure 3.7: Polariton formation scheme

pected. If the interaction is strong enough that the energy exchanging rate is faster

than the decay rate of the cavity photons and quantum well excitons, new eigen-

states can be created. Thus, we call these new eigen-states microcavity polarities.

These new eigen-states were firstly observed in experiments by Weisbuch etc in 1992

[73].

Using similar illustration as in Figure 3.1, the formation of this new quasi-particle,

polariton, is illustrated in the following Figure 3.3,

This energy exchanging process and emerging of the new eigen-states, polaritons,

can be described in the following Hamiltonian under rotating wave approximation:

(3.20) Ĥtotal = Ĥexciton + Ĥcavity + Ĥinteraction



31

This Hamiltonian equation can also be expressed explicitly in the matrix format:

(3.21) Ĥtotal =

Eexciton 2~Ω

2~Ω Ecavity



After diaganolization of the matrix, the solutions for the Haimiltion, which are

the new eigen-states or polariton states can be expressed in the following equation.

We also call these two polariton states upper-polariton and lower polariton

(3.22) EUP,LP =
1

2
[Eexciton + Ecavity ±

√
4~2Ω2 + (Eexciton − Ecavity)2]

Ecavity and Eexciton are the cavity resonant energy and quantum well exciton en-

ergy. 2~Ω represents the interaction strength between the cavity photons and quan-

tum well excitons. EUP −ELP = 2~Ω, the energy difference between upper polariton

(UP) and lower polariton (LP). This energy is also known as the ’Rabi Splitting’

energy. The energy difference between the exciton energy and cavity photon energy,

Ecavity−Eexciton is often called detuning. When detuning is negative, we have cavity

photon-like LP and exciton-like UP at lower k‖; when detuning is positive, we have

photon-like UP and exciton-like LP at lower k‖. When detuning is zero, in both UP

and LP, the photon and exciton components are exactly at half. Different fractions

of photons and excitons in UP and LP will generate different dispersion relations.

Based on Equation 3.22, the calculated results of negative, zero and positive detuning

are illustrated.

In Figure 3.3, the calculations are using, Eexciton = 1.551eV , Rabi Splitting at

2~Ω = 10meV , both positive and negative detuning are at ∆E = 5meV . The blue
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Figure 3.8: UP and LP dispersion relation at three different detuning energy
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lines are indicating the dispersion relations for the cavity photons, the dotted lines

are indicating the quantum well exciton energies and the red lines are indicating the

dispersion relations for the UPs and LPs in all three figures.

The effective masses for UP and LP are defined in the following equations:

(3.23)
1

m∗UP
=
|C|2

mexc

+
|X|2

mcav

(3.24)
1

m∗LP
=
|X|2

mexc

+
|C|2

mcav

where mexc and mcan are the effective masses for quantum well excitons and cavity

photons. C and X are the photon and exciton fractions. The different effective masses

for UP and LP can also be seen from these three different detuning cases in Figure

3.3, we can observe the curvature changes at low k‖. These dispersion relations

capture the variation of the effective masses for polaritions. Generally speaking, the

effective mass of the exciton is usually 105 times of the effective mass of the cavity

photon. As can be seen, even for a zero detuning Ecavity −Eexciton = 0, half-exciton-

half-photon polartion, the effective mass of the polariton is taking majorly from the

effective mass of the cavity photon. Therefore, this kind of polariton effective mass

is very small.



CHAPTER IV

Subwavelength High Contrast Gratings

4.1 Subwavelength Gratings

A set of gratings is an optical component with a periodic structure that splits and

diffracts light into several beams traveling in different directions. A typical group of

the optical gratings is illustrated in the Figure 4.1.

The period of the gratings is d. The light is incident from angle θi and the

diffraction angle is θm, where m is the diffraction level. The relation between the

incident light and diffraction light follows the grating equation, which is:

(4.1) d (sin(θi) + sin(θm)) = mλ

λ is the wavelength of the incident light. From Equation 4.1, we see that if λ > d

and we want to maintain the equality in real numbers, the only possible solution

is let m = 0. Then sin(θi) = −sin(θm). We only have zeroth order of diffraction

which is just the reflection. Therefore, for a sub wavelength grating, where the

period of the grating is smaller than the wavelength, we have very strong reflection

of the incident light. By using this property of the sub-wavelength gratings, we can

34
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Figure 4.1: A schematic of a typical set of diffraction gratings

use these gratings as very high quality mirrors. The high contrast gratings we will

introduce here are also utilizing this property of the sub-wavelength gratings.

4.2 High Contrast Gratings

4.2.1 General Properties of High Contrast Gratings

A high contrast grating is a single layer with periodic structures, where the re-

fractive index of the grating materials has very large contrast compared to the sur-

rounding material. A schematic of a typical rectangular shaped gratings is shown in

Figure 4.2

The period of the grating is Λ; the length of the space between the grating bar is

a; the thickness of the single layer of the gratings is t. The ratio of the grating bars

width (Λ−a)/Λ is called the gratings’ duty cycle. For future discussion convenience,
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Figure 4.2: A schematic of high contrast gratings (HCG)

we also define the TE polarization as the direction when the electric field of the

incident light is along the grating bars, and TM polarization as the direction when

the electric field is perpendicular to the bars direction.

One of the important features of the HCG is that it can provide very high re-

flectivity from just a single layer as compared with traditional DBR with 20 - 30

times thicker of material. Meanwhile, the range of the wavelength for high reflec-

tivity (stop-band) for HCG-DBR cavity is wider in comparison with a traditional

DBR-DBR cavity. Another important feature for the HCG is that it can also pro-

vide polarization selectivity by providing very high reflection for one polarization

and minimize the other due to the intrinsic symmetry-breaking structure. Hence the

HCG is a very good candidate for a very good quality microcavity. These three good

features are also shown in the following figures of examples

A typical HCG-DBR cavity drawing in in Figure 4.3, where sub wavelength grating
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Figure 4.3: An HCG - DBR cavity drawing

(SWG) is just the HCG. The reason to keep the top several layers of the DBR is to

prevent the over etching issue for fabrication purposes.

For this kind of HCG-DBR cavity, the broader range of the stop band feature is

shown in the example in Figure 4.4

Also for the cavity Q factor comparing in terms of the thickness of the devices

for HCG-DBR cavity and the traditional DBR-DBR cavity, calculation results are

shown in Figure 4.5. HCG-DBR has a comparable Q value of very good quality as

that of a very thick DBR-DBR cavity.

Finally, the polarization control can be optimized for certain gratings design by

tuning the period, duty cycle and thickness of the gratings. This is shown in Figure
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Figure 4.4: Reflection spectra calculated for SWG/HCG-DBR cavity and DBR-DBR cavity

Figure 4.5: SWG/HCG - DBR cavity and DBR-DBR cavity Q value comparison
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Figure 4.6: Reflection spectra for two polarizations TE and TM, calculated for a certain design of
HCG optimized for TE polarization

4.6, where we have a sample design which is optimized for very high reflectivity for

TE polarization and the at the same time, the reflectivity of TM polarization remains

very low for over 200nm wavelength range.

4.2.2 Subwavelength HCG-DBR Cavity Design and Optimization

One desired properties for the HCG-DBR cavity is that the high reflectance is

resistant to relatively large angle, which means the HCG has large incident angle

tolerance. Here in this section for the HCG-DBR cavity design, we will take the

large angle tolerance into consideration. We will also focus on Al0.15GaAs as the

grating layer material since that is the material we use for all of the research devices.

The energy vs. in-plane momentum dispersion of a planar cavity is governed by

the angular dependence of the cavity mirrorss reflection phase. This is shown by the

round-trip phase condition for the cavity resonance:
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(4.2) Φ1(ω, k//) + Φ2(ω, k//)− 2dkc⊥ = 2mπ

Here ω is the angular frequency of the resonance, k// and kc⊥ are the in-plane and

longitudinal wavenumbers in the cavity layer, respectively, d is the distance between

the two cavity mirrors, and m is an integer. The first two terms Φ1 and Φ2 are the

reflection phases of the two cavity mirrors. Equation 4.2 uniquely determines the

dispersion relation ω(k//).

A conventional DBR-DBR cavity exhibits a rigid quadratic dispersion because

the DBR’s reflection phase is close to π over a wide range of k//. Let Φ1(ω, k//) ≈

Φ2(ω, k//) ≈ π, using kc⊥ =
√

((ncω)2 − k2//), for small k//, we obtain a quadratic

dispersion:

(4.3) ω(k//) ≈ ω0[1 +
k2//

2(ncω0/c)2
]

Here ω0 = ω(k// = 0) and nc is the refraction index of the cavity. For an AlAs

cavity, k2///(ncω0c)
2 < 0.1 is satisfied up to an incident angle θ0 = 44 in vacuum. The

curvature of the quadratic dispersion is determined by nc and ω0, with no additional

tuning available.

In contrast, an HCGs reflection phase can have a stronger and more complicated

angular dependence, enabling dispersion engineering. Reflection from the periodic

hCG structure is produced by scattering between the lateral modes inside the SWG

and Floquet-form diffraction modes outside. The lateral modes of an HCG can be
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Figure 4.7: Schematic of an HCG structure for optimization

analyzed using waveguide- array (WGA) modes, which was introduced in to explain

intuitively the high reflectance of the HCG at normal incidence. Below we generalize

the work in and derive the WGA modes in HCGs of arbitrary thickness in the general

case of oblique incidence. We show that, due to symmetry properties of the grating,

the dispersion of the WGA-modes could shift considerably with the incidence angle,

leading to large changes in the reflection phase.

We treat the HCG as a waveguide array with z-axis as the propagation direction

shown in Figure 4.7. It is periodic in the x-direction and translationally invariant

in the y-direction. We focus the discussion on the case of an incident plane wave

propagating in the x-z plane with an oblique angle θ0 from z-direction. For a WGA

mode with transverse-magnetic (TM) polarization as labeled in 4.7, the lateral mode

profile H(x) and propagation constant β are determined by an eigenvalue equation,
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(4.4) (
∂2

∂x2
+ n2(x)

ω2

c2
)H(x) = β2H(x)

where n(x) is the refractive index profile. Because of the periodicity of n(x), the

eigenmode can be expressed in a Bloch-wave form,

(4.5) H(x) = exp(ikxx)un(x)

where exp(ikxx) is the Bloch phase factor, where the wavenumber kx is determined

by the incident wave in- plane wavenumber kx = ω/csin(θ0). un(x) is a periodic

function, where the subscript n denotes the discrete mode number. Given ω and θ0,

we can solve for the eigenvalues β2
n and obtain the ω − β dispersion of WGA-modes

through:

(4.6) 2n2
bkakb(cos(kaa)cos(kbb)− cos(kxΛ))− (n4

bk
2
a + k2b )sin(kaa)sin(kbb) = 0

where nb is the refractive index of the grating bar; a and b are the widths of the air

and bar regions; ka,b is the transverse wavenumber in air or bar region, determined

by ka,b =
√

(na,bω/c)2 − β2. An example of a WGA mode dispersion is shown in

Figure 4.8.

In the case of normal incidence (blue lines), the incident wave matches the re-

flection symmetry of the grating about the center of the grating bars. Correspond-
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Figure 4.8: The β − ω dispersions of the TM WGA-modes in an HCG with a duty cycle η = 65%,
for incidence angles of 0 degree, 15 degree and 30 degree.
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ingly, TM0,2,4,... modes have the same symmetry and thus can be excited, while the

TM1,3,5,... modes have the odd symmetry and thus cannot be excited.

In the case of oblique-angle incidence, the incident plane waves no longer has the

reflection symmetry, and thus the odd-order modes can also be excited. Avoided

crossings between the odd-order and even-order modes lead to significant shift of the

mode dispersions, as illustrated in Figure 4.8.

Reflection from an HCG with finite thickness tg can be understood as resulting

from interference of WGA modes reflected from both the top and bottom HCG-

air interfaces. For a given WGA, for example the WGA used in Figure 4.8, we can

visualize the dependence of the reflection on tg using tg−ω maps of the reflectance and

reflection phase, as shown in Figure 4.9. For each of the WGA mode in Figure 4.8,

the HCG forms a Fabry- Perot resonator when the approximated round-trip phase

condition βtg = mπ is satisfied, where m is an integer. We mark the corresponding

tg −ω values in Figure 4.9with white dashed and dash-dotted lines for the TM0 and

TM2 modes, respectively. The reflectance is nearly zero around these lines and the

reflection phase changes by π across the lines, which are signatures of Fabry- Perot

resonances. Naturally, high reflectance region exist only between these lines, when

two WGA modes co-exist and produce nearly perfect destructive-interference at the

output plane of HCG.

At oblique angles, the appearance of the odd-order WGA modes leads to large

shifts of the WGA modes, which manifests as large shifts of the reflectance and phase

patterns on the tg − ω maps. An example is shown in Figure 4.9(c)-(d) for θ0 = 30.

Consistent with the β − ω diagram (Figure 4.8), the Fabry-Perot resonance lines

originated from the TM0 mode barely move, while those from the TM2 mode move

toward lower frequencies. The high reflectance regions, as well as the phase in these
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Figure 4.9: tg − ω maps of the reflectance ((a) and (c)) and reflection phase ((b) and (d)) of a
SWG with η = 65% for the TM polarization, under normal incidence ((a) and (b))
and θ0 = 30 degree oblique incidence ((b) and (d)). The black dash- dotted lines in
(a) and (b) show the dual-mode regime defined by ωc2 and ωc4 obtained in Figure 4.8.
The dispersions of the dual WGA modes are plotted as the two sets of white dashed
and dash-dotted lines in all four figures, using the approximated Fabry-Perot resonance
condition of βtg = π. These lines overlap well with the zero-reflectance (blue) stripes in
(a) and (c). Broadband high-reflectance regions (red) can be found between those lines.
Each point on the figure corresponds to one SWG design. An example is marked by
the white + symbol, which has a phase shift of 0.4π over 30 degree while maintaining
high-reflectance (> 0.995).
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regions, move with those grid lines. For a certain HCG in the high-reflectance region,

for example the point marked by a white star in Figure 4.9, the reflection phase could

become very different at oblique incidence angles.

4.3 Device Fabrication

To fabricate the sub-wavelength high contrast gratings, the process includes pat-

tern definition by using electron beam (e-beam) lithography, reactive ion etching or

dry etching, selective wet chemical etching and critical point drying. The fabrication

process is illustrated in the flow chart in Figure 4.10.

4.3.1 Electron Beam Lithography

Electron beam lithography is using high speed electrons to do patterning at

nanometer scale with programmed electromagnetic field. It has been developed

for tens of years and became a standard nano-device processing steps in semicon-

ductor device research[74]. It is also the very first step of the fabrication for our

sub-wavelength high contrast grating devices. As shown in the fabrication flow in

Figure 4.10, it begins with the e-beam resist coating. Even though this is a very sim-

ple and straightforward step, it has significant impact on the quality of the pattern

drawing. Since we are also using the resist as the etching mask, the thickness of the

e-beam resist can not be too thin. Otherwise, we jeopardize of damaging the surface

of the gratings which could eventually lead to poor quality of the device.

The ebeam machine to fulfill the patterning task is Raith-150. There are several

parameters we have considered here in order to have grating patterns with relatively

good quality (grating edge wiggling < 10nm, required from tolerance simulation

by design). So to reach this resolution, we used high voltage, small aperture and



47

Figure 4.10: Fabrication flow
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relatively appropriate working distance. Higher voltage is for faster speed of the

electrons, so the wavelength of the electrons will be shorter. The aperture and

working distance are not straightforward to tune. In principle, we should have used

smaller working distance F, and larger aperture D. So the value of (F/D) is small,

which determines the imaging resolution in classic Gaussian optics. However there

is another important issue we have to consider is the electrons’ trajectory in the

beam resists. One is forward scattering and the other is the reflective scattering.

Too much of these two scatterings will decrease the resolution of the patterning.

In practice, we did use relatively small working distance to have good resolution.

At the same time, we also use a bit smaller aperture to compensate the enhanced

forward and back-forward scattering due to the smaller working distance. After

several iterations of optimization for the ebeam patterning process, the final recipe

we used for the pattern by Raith-150 is, voltage = 20MV, working distance F= 6

µm and aperture D= 7.5 µm. The patterning results are shown together with the

photoresist optimization in Figures 4.11, 4.12, and 4.13.

There are two types of the e-beam resist I have developed to fabricate the devices.

One is the poly-methyl methacrylate (PMMA), which is the traditional e-beam resist;

the other is the high quality, very electron sensitive, newly developed ZEP-520 from

Zeon Corp.

To maintain enough e-beam patterning resolution using PMMA, I used PMMA

A4; to have a thick enough etching mask, I also used 200nm of the PMMA. For a

testing sample after dry etching, a typical testing results after the dry etching process

is shown in Figure 4.11 and Figure 4.12. As can be seen, even though the grating

pattern has enough resolution, the e-beam resist mask has minimum residual from

the cross-section view. This will possibly damage the edges of the gratings due to the
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Figure 4.11: A testing sample after e-beam lithography and dry etching using PMMA. View from
the top.

Figure 4.12: A testing sample after e-beam lithography and dry etching using PMMA. Cross section
view.
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Figure 4.13: A testing sample after e-beam lithography and dry etching using ZEP. Cross section
view.

dry etching variation. However, this can not be improved by just simply increase the

thickness of the e-beam resist, as a thicker e-beam resist will reduce the patterning

resolution.

To solve this problem, ZEP-520a has been used to replace PMMA A4 as the

e-beam resist. It is highly sensitive to the electrons even with very high thickness,

which gives enough patterning resolution and also behaves as an excellent dry etching

mask.

As can be seen from Figure 4.13, grating patterns with similar period and duty-

cycle have been fabricated. After using the same dry etching recipe for the testing

sample, we still have significant amount of the ZEP e-beam resist on top the grating

patterns in comparison with the testing sample using PMMA A4. By using ZEP

as the e-beam resist and etching mask, we still have the desired resolution for the

grating patterning; at the same time, the grating material underneath has been well

protected.
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The recipe for ZEP e-beam patterning is: 2500 RPM spin-on rate, which will give

450 nm thickness for patterning. After spun on ZEP, 180 C baking for 3 - 5 min to

dry and bake out the chemical resolution. For this thickness of ZEP, the central dose

for the dose matrix is targeting at 50 µC/mm2, which is 4 -5 times less compared to

PMMA A4. Right after the e-beam patterning, we use Xylene as developing solution

for about 2 min. To strip off the ZEP e-beam resist, PRS-2000 can be used for 10

-20 min (The cleaning results might be better if PRS-2000 solution is heated up).

4.3.2 Reactive Ion Etching

Reactive Ion Etching or dry etching is the immediate step after e-beam patterning.

Dry etching is the step to transfer the pattern on e-beam resist to the actual sample.

It is using the plasma ions under directional voltage to bombard the surface of the

material. For the part which is exposed, the bombardment will take effect; for the

part which is protected by the etching mask (for our process, it is the e-beam resist),

the bombardment will be shielded. So in this way, the patterns on the mask/e-beam-

resist will be transferred to the first layer of the sample.

The dry etching process is taking advantage of the physical reaction of the bom-

bardment as well as the chemical etching process. So different semiconductor material

will be utilizing different chemical ions. For GaAs and AlAs material, the effective

chemical etchant is Cl. The Cl ions not only bombard the surface of the unprotected

sample, they also have the active chemical reaction with Ga an Al components in

the material. So the dry etching process is very effective.

To control the etching rate of the dry etching process, there are several parameters

we can control. The most important one is the voltage between two panels. This

voltage controls the electrical field inside the etching chamber, therefore has great
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impact on the ions’ acceleration and speed. Another parameter is the voltage to

trigger the plasma inside the chamber. It is usually around a few hundreds of volts.

To incorporate the plasma igniting voltage, a proper rate of the chemical flow should

be considered at the same time. Finally, the temperature should also be controlled

while etching. Temperature normally wouldn’t affect the behavior of the etchant,

yet it plays an important role for the e-beam etching mask. At relatively high

temperature (e.g. 50C), the organic e-beam resist will become relatively soft so it

will not be protecting the material below very well and the etching rate for the e-beam

resist is very high. At lower temperatures (e.g. 5C), the e-beam resist tends to be

very hard and behave as a very good etching mask. If all the parameters collaborate

well, it will take a few minutes to etch through several hundreds of nanometers of

the GaAs or AlAs material.

The recipe for GaAs material I used for the final device is presented here. The

chemical flow rates are: Cl2 is 1 sccm, BCl3 is 4 sccm and Ar is 8 sccm. The voltage

between the charged panel is 40 V, and the voltage for the plasma triggering is 250 V.

Finally the etching temperature is at 5 C.

4.3.3 Selective Wet Chemical Etching

The final step for the device fabrication is the wet chemical etching with high

selectivity. During this process, the sacrificial layer beneath the gratings will be

etched away selectively. As a result the gratins will be only surrounded by air, so the

very high contrast gratings will be formed. This process is illustrated in the following

sketch with actual sample structure after e-beam and dry etching patterning.

There are several chemical etchant which could reach the goal of the selectively

etch Al rich Al>0.5GaAs material while have minimum effect on Ga rich Al<0.5GaAs
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Figure 4.14: Wet chemical etching
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Figure 4.15: Process after wet etching, sample transfer and critical point drying

material. For example, HF and HCl are both good choices to fulfill this task. Even

though HF is very good candidate to do the selective etching, the selectivity and

etching rate are both very high. It is very hard to control during the fabrication

process, especially we only need to etch away a few hundred nanometers Al0.85GaAs

material.

The final etchant for our sample is HCl. It has very gentle etching rate, so that

we can have a good control of the etching time. Also the selectivity is comparable

with HF, at 500:1 of AlAl over GaAs. So for 400nm Al0.85GaAs sacrificial material

etching, I immerse the sample in HCl for 30 seconds.

After the wet chemical etching, we have to use the critical point dryer to release

the patterns as we can not directly take the sample out for N2 gas blowing to dry.

The air-suspending gratings is very fragile. The liquid surface tension will buckle

or crash the gratings during the gas-blowing process. Therefore we have to use the

critical point dryer for the drying process. The sample cleaning/rinsing and solution

buffering process after the wet chemical etching is shown in Figure 4.15.

We also designed the sample holder based on the sample size. The sample holder
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Figure 4.16: Process after wet etching, sample transfer and critical point drying

pocket is not too deep, so during the rinsing process, it will not carry over too much

residual etchant. During the whole rinsing process, the sample should be immersed

in liquid at all time.

After the wet etching step in HCl, the sample first goes through the de-ionized

water to rinse out the HCl. Then we move the sample into methanol which is the

starting liquid in critical point dryer to rinse out all the residual water during the

cleaning process. Afterwards, we continue to use the same sample holder to move

the sample from methanol beaker to the chamber of the critical point dryer. The

arrows in Figure 4.15 is indicating the transferring steps during this pattern release

process.

Finally, when the sample is fully immersed in the critical point dryer’s chamber,

the liquid CO2 will completely replace the starting solution of methanol inside the

chamber. Then the dryer goes to relatively high temperature and high pressure as
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Figure 4.17: An SEM image showing a group of gratings collapse to the bottom after wet etching

programmed around the critical point of CO2, where the liquid and gas phase can not

be distinguished to completely dry out the sample. In this way, the sample does not

need to experience the tension due to the liquid drying. This process is illustrated

in Figure 4.16.

Even though the gratings should not experience any abrupt phase change in the

critical point dryer, a little residual of the methanol or water due to incomplete

replacement inside the chamber could cause the damage to the gratings. Since the

grating layer is also very thin, the gratings may not be strong enough to support

themselves. As a result, we could observe many buckling cases even by using critical

point drying.

Two examples are shown for a buckling case in Figure 4.17 as compared to a

successful clean case in Figure 4.18. In Figure 4.17, the 5 µm × 5 µm grating layer

complete collapses to the bottom. In Figure 4.18, a 10 µm wide grating layer is

suspending. From this cut cross-section view, the air gap between the grating layer

and the top of the protection layer is clearly seen. We also notice the protection
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Figure 4.18: An SEM image showing a successful air-suspending group of gratings

layer thickness does not change much at the etching region compared to the planar

region. This indicates a very high selectivity during the wet etching process.



CHAPTER V

Zero Dimensional SWG Polariton Device

5.1 Introduction

Foundational work on 2D polariton systems has inspired theoretical schemes for

polariton-based quantum circuits, quantum light sources and novel quantum phases.

Experimental implementation of these schemes requires the control, confinement and

coupling of polariton systems, which remain challenging in conventional microcavity

structures.

Important features of a versatile experimental platform based on polaritons in-

clude: first, well-defined zero-dimensional (0D) polaritons as building blocks of a

coupled system; second, the establishment (i.e., survival) of a non-equilibrium quan-

tum phase in each 0D polariton cell, typically manifested as polariton lasing; third,

controllable coupling among the 0D cells; fourth, individual addressability and con-

trol of each cell.

In conventional polariton cavities, the thick mirrors, consisting of distributed

Bragg reflectors (DBRs), make it difficult for the polaritons to be confined or con-

trolled beyond the perturbative regime. Most existing methods for controlling po-

laritons lead to a weak modulation potential that modifies the systems properties

without reducing its dimensionality from 2D to 0D. Examples include weak con-

58
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finement of excitons via mechanical strain[4] and periodic modulation of the optical

modes via surface patterning[46] [75]. Advanced techniques have been developed to

embed apertures inside the cavity,[51] [76] which have led to 0D polariton cells, but

polariton lasing has not been reported thus far. Alternatively, 0D polariton systems

have also been produced via direct etching of the vertical cavity into pillars.

Using this method, two groups have recently achieved polariton lasing in pillars,[52]

[77] [41] thus satisfying the first two requirements. However, this approach requires

destructive plasma etching throughout the 4- to 6- µm-tall cavity structure as well

as the active media layers, which preludes coupling between separate pillars. It is

also unclear whether further control of the polariton modes in each pillar would be

possible.

In this chapter, a polariton system in an unconventional cavity that can fulfill all

four requirements is demonstrated.

5.2 Device Structure

The new cavity structure replaces the top DBR with a slab of photonic crystal

(PC) Figure 5.1, which enables confinement and control of the polariton modes by

design. At the same time, there is no destructive interface in the active media layers

or the main cavity layers; hence, coupling among multiple low-dimensional polariton

cells is unhindered. Using this cavity system, we demonstrate 0D polariton lasing at

a chosen polarization. The schematic is shown in Figure 5.1 (a).

Before the nano-patterning for the device, the molecular beam epitaxy grown

GaAs wafer is with the layer by layer structure as following: 30 pairs of bottom DBR,

an AlAs λ/2 cavity layer, 2.5 pairs of top DBR consisting of Al0.15GaAs/AlAs, and
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Figure 5.1: Examples of the hybrid cavity.(a)A schematic of a 0D hybrid cavity with a SWG
mirror.(b)Top-view SEM image of a fabricated 0D cavity with a SWG of 5µ × 5µ in
size. 0D, zero-dimensional; SEM, scanning electron microscopy; SWG, subwavelength
grating.

an Al0.85GaAs sacrificial layer followed by an Al0.15GaAs top layer. There are 12

GaAs quantum wells distributed in the three central antinodes of the cavity.

We created square gratings of 5 − 8µm in length (Figure 5.1 b) on the top layer

via electron-beam lithography followed by a short plasma etching step. Hydrochloric

acid chemical etching was then applied to remove the sacrificial layer, followed by

critical point drying. The fabricated gratings are approximately 80 nm thick, with

a period of approximately 520 nm and a duty cycle of approximately 40%, and are

suspended over an air gap of approximately 300 nm. The gratings are optimized as a

high-reflectance mirror for light polarized along the grating bar direction (transverse

electric (TE)- polarization). Figure 5.1 (b) shows a scanning electron microscopy

image of the top view of one of the devices.
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Figure 5.2: Optical characterization set-up for the device.

5.3 Optical Properties of 0D SWG Polariton Device

5.3.1 Optical Characterization Methods

Optical measurements were performed to characterize the pro- perties of the cavity

system. For consistency, all data shown were taken on a device of 7.5µm × 7.5µm

in size. The sample was kept at 1090 K in a continuous flow liquid-helium cryostat.

The optical measurement set-up in shown in the following Figure 5.2.

For the photoluminescence (PL) measurement characterization: A pulsed Ti:sapphire

laser at 740nm was used as the excitation laser, with an 80-MHz repetition rate and
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a 100-fs pulse duration. The laser was focused to a spot size of approximately 2µm

in diameter on the device from the normal direction using an objective lens with a

numerical aperture of 0.55. The photoluminescence signal was collected with same

objective lens, followed by real space for Fourier space imaging optics, and then

sent to a 0.5-m spectrometer with an attached nitrogen-cooled charge coupled device

(CCD).

The spectrally resolved real space and Fourier space distributions were measured

by selecting a strip across the center of the Fourier space and real space distribu-

tions using the spectrometers entrance slit. The resolution of the measurements was

limited by the charge-coupled device pixel size to 0.3µm−1 for Fourier space imaging

and by the diffraction limit to 0.4 mm for real space imaging.

For the reflection measurement characterization, we are using a similar set-up.

Tthe same Ti:sapphire pulsed laser with 100 - fs pulse duration was focused on the

device. Instead of using the wavelength of 740nm, we use central wavelength of

800nm with spectrally line width of 15nm. Similarly, the signal collected by the

objective lens was directed into the spectrometer in momentum space. As for the

reference reflection, we replace the sample with a dielectric mirror at the exact same

position. Dividing the signal intensity from the device by the reference reflection

from the mirror, we will get the reflection property of the device.

5.3.2 Spectral Properties of 0D SWG Polariton Device

Strong coupling between the excitons and TE cavity modes was evident in the

momentum space images of the emission from within the cavity, as shown in Figure

5.3 (a). Discrete lower polariton (LP) modes and a faint upper polariton (UP) branch

were observed below and above the exciton energy, respectively, with dispersions
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distinct from that of the cavity photon (the red solid line). In contrast, the emission

from outside the hybrid cavity region shows a flat, broad exciton band at the heavy

hole exciton energy of Eexc = 1.551eV (Figure 5.3 (b)). The energies of the polariton

modes can be described as follows in the rotating wave approximation:

(5.1) ELP,UP (k) =
1

2
[Eexc(k) + Ecav(k)±

√
(Eexc(k)− Ecav(k))2 + 4~2Ω2]

Here, k is the in-plane wavenumber, Ecav is the uncoupled cavity energy and

2~Ω is the excitonphoton coupling strength, corresponding to LPUP splitting at

zero excitonphoton detuning. Using Equation 5.1 and the measured Eexc(k = 0) =

1.551eV,ELP (k = 0) = 1.543eV and EUP (k = 0) = 1.556eV , we obtain Ecav(k =

0) = 1.548eV and 2~Ω = 12meV .

The discrete LP modes show full three-dimensional confinement of the polaritons.

The lateral size of the hybrid cavity is determined by the size of the high-reflectance

subwavelength grating (SWG). Outside the SWG, there is no cavity resonance, and

the excitons are eigen-excitations. Inside the SWG region, the TE-polarized cavity

modes strongly couple to the excitons, leading to laterally confined TE-polarized

polariton modes. The transverse magnetic (TM)-polarized excitons remain in the

weak coupling regime. Because there is not a sharp lateral boundary at which the

cavity mode disappears, we phenomenologically modeled the effective confinement

potential as an infinite harmonic potential. The calculated energies of the LP modes

are indicated by the dashed lines in Figure 5.3 (a), which agree very well with the

measured LP resonances. For comparison, the confined cavity modes (crosses) and

corresponding 2D dispersions of the LP, UP and cavity modes are also shown (solid

lines).
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Figure 5.3: Spectral properties of a 0D polariton device.(a)Spectrally resolved momentum space
image of the PL from a 0D cavity,which shows discrete LP modes and an UP mode.
To clearly show the UP mode, the intensity of the upper panel is magnified by 40×
compared to the lower panel. The straight red line at 1.551 eV corresponds to the
independently measured exciton energy. The other solid lines are the calculated dis-
persions of the LP, UP and uncoupled cavity. The white dashed lines and the crosses
(×) mark the position of the calculated discrete LP and cavity energies, respectively.
(b) Spectrally resolved momentum space images of the exciton PL, measured from the
unprocessed part next to the SWGDBR cavity. (c) Spectrally resolved real space image
of the PL from the 0D cavity, showing the spatial profile of the discrete LP modes.
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Figure 5.4: Reflectance spectra of the 0D cavity measured from (a) the normal direction and (b)
3.5 degree from the normal direction, both with an angular resolution of 0.276 degree.

The spatial profiles of the confined LP modes were also measured via spectrally

resolved real space imaging, as shown in Figure 5.3(c). The four lowest LP modes

are well confined within the SWG region, while the higher excited states are spread

outside and form a continuous band. The variances of the k-space and x-space

wavefunctions along the detected direction are ∆k = 0.85µm and ∆x = 1.01µm.

Their product is ∆x × ∆k = 0.86, slightly larger than the uncertainty limit of 0.5,

which may be due to the diffusion of the LPs.

The absorption spectra of the modes were obtained via reflectance measurements.

The spectrum measured normal to the sample (Figure 5.4 (a)) shows the three sym-

metric modes with the lowest mean in-plane wavenumber: the UP ground state, the

LP ground state and the second LP excited states. The spectral weights of the other

polar- iton states are too small to be measured in reflectance. When measured at

3.56 from the sample normal, the first excited state of the LPs was also observed
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Figure 5.5: The PL signals of LP from the 0D device at temperatures from 10K to 90K

(Figure 5.4 (b)).

5.3.3 Temperature Dependence Property of 0D SWD Polariton Device

A further confirmation of the strong-coupling regime is the temperature tuning

of the resonances.

The PL signals of the LP from the device and exciton from the planar part of the

sample are measured at different temperatures from 10K to 90K. These measurement

results are shown in Figure 5.5 and Figure 5.6.

Since we can not directly measure the cavity resonance due to the strong coupling

effect between the exciton and the cavity photon, we measured the side-dips energy

shift as a function of the temperature. It is an direct indicator for the cavity resonance

shift due to the same shifting trend between the cavity resonance and the side-dips in
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Figure 5.6: The PL signals of excitons from the planar part of the sample at temperatures from
10K to 90K



68

the reflection spectrum. The temperature dependent reflection measurement results

are shown in Figure 5.7.

For LP energy, we use the ground state energy throughout the temperature vari-

ation from Figure 5.5; For the cavity resonance dependence, we use the energy of

the cavity resonance at 10K plus the energy shifting from the side-dips at various

temperatures in Figure 5.7. Also we convert the wavelength in Figure 5.7 to energy

unit eV in Figure 5.8.

The summary of graph of the temperature dependence for LP, exciton and cavity

resonance is shown in Figure 5.8. As the temperature increased, the LP and UP

ground state energies were redshifted and were measured via k - space photolumi-

nescence. The exciton energy was directly measured in the planar region outside the

SWG. The shift of the cavity photon energy was obtained from the shift of the first

low-energy side minimum of the stopband. Anticrossing of the LP and UP modes is

evident.

The calculated the coupling strengths at difference temperatures are also shown in

Figure 5.9. From the LP, exciton and cavity energies, we obtain a coupling strength

of 2~Ω(T ) ∼ 10meV from 10 K to 80 K, showing that strong coupling persists to

the liquid nitrogen temperature and higher.

5.3.4 Polarization Property of the SWG Polariton Device

Unlike planar DBRs, the grating breaks the in-plane rotational symmetry. As

a result, the SWG mirrors can have high polarization selectivity. We optimized

our SWG to have high reflectance for the TE mode and low reflectance for the

orthogonal TM mode. Correspondingly, the polaritons are TE-polarized, while the

TM- polarized excitons remain in the weak coupling regime. Figure 5.10 shows the
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Figure 5.10: Polarizations of the polaritons and excitons in the hybrid-cavity polariton system. (a)
Polar plots of the LP ground state intensity as a function of the angle of the linear
polarization analyzer. The symbols represent the data. The solid lines fit to Equation
5.2, with a corresponding fitted linear degree of polarization of 91.9%. (b) Polar plot
for the exciton emission intensity from within the SWG, corresponding to a fitted
linear degree of polarization of 98.2%, with orthogonal polarization compared to (a)
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photoluminescence intensity vs. the angle of linear polarization for the LPs and

excitons at k ∼ 0 within the SWG region, normalized by the maximum intensity.

We fit the data with,

(5.2) I = Acos(θ − Φ)2 +B

where the fitting parameter w depends on the orientation of the device, A corre-

sponds to linearly polarized light, and B corresponds to a nonpolarized background.

Correspondingly, the degree of linear polarization is:

(5.3) DOP =
Imax − Imin
Imax − Imin

=
A

A+ 2B
.

We obtained ALP = 1.04 ± 0.04, BLP = 0.05 ± 0.01, ΦLP = 71 ± 1 and DOP =

91.9% for the LPs, confirming that the LPs are highly TE-polarized. For the excitons,

we obtained Aexc = 0.891±0.001, Bexc = 0.0081±0.0002, Φexc = 161±1 = ΦLP +90,

DOP = 98.2%, showing that the excitons are polarized orthogonal to the LPs.

Such control of the polariton polarization has not been possible with conventional

DBRDBR cavities and is unique to the SWG-based cavity.

5.4 Lasing in 0D SWG Polariton Device

In this section, we show that polariton lasing was achieved in the 0D hybrid

cavity. We continued to use the same pumping condition as the previous PL optical

characterization and continuously increased the excitation power. The PL signal



73

Figure 5.11: 0D SWG polariton device spectra with excitation power from 0.1mW to 0.7mW

from the device shifts from multiple discrete modes to single mode accompanying

the increased PL intensity. This phenomena was captured in the following spectra

figure at nine different pumping powers. (Figure 5.11)

The summary and analysis of the the lasing phenomena are presented in Figure

5.12. As shown in Figure 5.12(a), the emission intensity I from the LP ground state

increases sharply with the excitation power P at a threshold of Pth =∼ 5kW/cm−2,

characteristic of the onset of lasing. Interestingly, the emission intensity I varies

with P quadratically both below and well above the threshold, except at very low

excitation densities. This result may arise because the energy separation between the

discrete modes is larger than kBT ∼ 0.8meV . As a result, relaxation to the ground

state through LP- phonon scattering is suppressed compared to LP - LP scattering.

Accompanying the transition, a sharp decrease in the LP ground state linewidth
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Figure 5.12: Lasing properties of the 0D polaritons. (a) Integrated intensity, (b) linewidth and (c)
corresponding energy blueshift of the LP ground state vs. the excitation density. The
dashed lines in (a) provide a comparison with quadratic dependence. The dashed lines
in (c) display comparisons with the linear dependence below the threshold and loga-
rithmic dependence above the threshold. 0D, zero-dimensional; LP, lower polariton;
PL, photoluminescence.
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was measured. The minimum linewidth of 0.24 meV may be primarily limited by

the intensity fluctuation of the pulsed excitation laser [8]. The LP energy increased

continuously with the excitation density due to excitonexciton interactions. The

blueshift shows a linear dependence below the threshold, is suppressed near the

threshold, and shows a logarithmic dependence above the threshold [52] [43]. The

discrete energy levels are maintained across the threshold and remain distinct below

the uncoupled cavity energy.

The establishment of polariton lasing confirms the quality of the 0D polariton

system. The threshold density is smaller than or comparable to those measured

in DBR - DBR pillar cavities [52] [77]. The linewidth reduction and blueshift are

all within an order of magnitude of reported values in DBR - DBR planar or pillar

microcavities [73] [52] [77]. Unlike DBR - DBR cavities, however, the polariton lasing

demonstrated herein occurs with a priori defined polarization, independent of the

excitation conditions.



CHAPTER VI

Magnetic Properties and Coherent Properties of 0D SWG
Polariton Device

6.1 Magnetic Properties of 0D SWG Polariton Device

Since a polariton condensate or polariton lasing shares many similarities with a

microcavity photon laser, it is important to establish criteria how to unambiguously

distinguish the two phenomena. Here in this section, we utilize the interaction with

external magnetic fields to quantify the matter content of a polariton laser which

would not be possible for a photon laser due to the lack of the matter part.

When an external magnetic field is applied to a semiconductor exciton system,

the energy of the exciton can be written as

(6.1) E(B) = E0 + γ1B + γ2B
2 + . . . . . .

Where E0 is the exciton’s original energy, B is the external magnetic field. The

linear term of γ1B is the Zeeman effect. It is corresponding to the two spin polariza-

tions of the exciton state which can be detected and distinguished by light with two

circular polarization in optical characterization. Since the SWG devices feature pre-

defined linear polarization, we cannot observe the Zeeman splitting from the devices

in external magnetic field.
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In Equation 6.1, the second term γ1B
2 is diamagnetic energy shift. As can be

seen is in quadratic relation with the external magnetic field intensity and can by

simply characterized by the intrinsic material property, the diamagnetic coefficient

γ2. Since polariton is partially composed of exciton, the energy shift of the polariton

is in proportion to the exciton component.

A different device from the one in Chapter ?? is used to demonstrate the diamag-

netic properties of the polariton system. This device is with dimension 5µm× 5µm.

The initial optical characterization, power dependent features and polariton las-

ing/condensation can be reproduced in this device which are also shown in Figure

6.1 and Figure 6.2.

Ti-Sapphire laser (spot size of 4µm). The excitation wave- length of the laser is

set to be about ∼ 80meV above the lower polariton energy, and the pulse width of

the laser is about ∼ 4ps with a repetition rate of 82 MHz. The sample is held at

T = 6K in a helium flow cryostat. The selected device comprises a detuning between

microcavity photon energy δ = Ecavity − Eexc = −7meV .

In order to directly verify the persistence of the strong coupling above the lasing

threshold, we study the interaction of the laser mode with the magnetic field (applied

in Faraday configuration). In Figure 6.3, we plot spectra extracted from k// = 0

for magnetic fields between B = 0Tand B = 5T , recorded above the nonlinearity

threshold at P = 1.4Pth. The asymmetric shape of the emission peak is due to the

pulsed excitation scheme [20] as a result of the time integrated measurement. With

increasing magnetic field, the peak energy of the system successively shifts towards

higher energies. As we will show in the following, this shift can directly be connected

to the diamagnetic shift of the QW exciton emission band, which is given by
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Figure 6.1: (a)(c) Energy-momentum dispersions of a 5µm large high index contrast grating struc-
ture at a detuning of δE = 7meV . The white dashed lines are indicating the lower and
upper polaritons, the red dashed line the exciton, and the green dashed one the photon
energy. (a) Well below the non-linearity threshold at P = 0.2Pth, the zero-dimensional
resonances are clearly visible confirming the 3D confinement of the structure. (b) At
the threshold P = Pth, the ground state energy is slightly blueshifted and becomes
more and more intensive. Above threshold (c) at P = 2.5Pth only the ground state
is observable. The emission occurs well below the photon energy (green dashed line)
indicating that strong coupling is preserved.
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Figure 6.2: (a) Input-output curve and (b)power dependent linewidth trace of the ground state
emission. Slightly above threshold, the linewidth narrows down to 0.391 meV (smaller
than for low excitation powers). (c) Energy peak position versus excitation power.
All the values are extracted from the momentum-space spectra by integrating around
k// = 0 with k// = ±0.15µm−1

(6.2) ∆EX = κXB
2

Here, κX is the diamagnetic coefficient of the QW exciton. For comparison, the

diamagnetic shift of the bare QW exciton, recorded under low excitation powers is

shown in Figure 6.3(b). As expected, the QW exciton emission is also subject to a

blueshift in the presence of a magnetic field, however, with a significantly larger mag-

nitude. In contrast to a standard microcavity composed of two DBR segments, we

can directly probe the uncoupled QW luminescence simply by moving the collection

spot a few µm away from the SWG, hence allowing for a high degree of comparability.

In Figure 6.4, we plot the peak position of both the emission features from the cou-

pled and the uncoupled system as a function of the magnetic field. The diamagnetic

coefficient of the QW exciton which amounts to κX,lowP = 57µeV/T 2 is determined
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Figure 6.3: Line spectra from the momentum-space images for the dif-ferent magnetic fields from
B = 0T to B = 5T at an excitation power of P = 1.4Pth for (a) the polariton condensate
and (b) the uncoupled QW exciton.

straight forwardly by fitting the data with Equation 6.2. In order to theoretically

reproduce the diamagnetic shift of the polariton condensate, we have to extend the

simple expression Equation 6.2 by including the effects of light-matter hybridization

via a polariton Hopfield coefficient |X(κX , B,ERS)|2. The latter characterizes the

degree of light-matter hybridization in the system

(6.3) ∆EDia,LP = |X(κX , B,ERS)|2κXB2

For the detuning of our device d δ = −7meV and the Rabi- splitting of ERS =

12meV , the matter part in our device amounts to |X|2 = 0.24 at 0 T.

When a magnetic field is applied, the exciton-photon detuning changes, and the
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Figure 6.4: Comparison between the diamagnetic shift of the bare quantum well exciton (green
squares) and the diamagnetic shift of the polariton condensate (blue dots).
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Rabi-splitting increases as a result of an increased exciton oscillator strength[21].

Consequently, the Hopfield coefficient becomes a function of the magnetic field and

reads

(6.4) |X(κX , B,ERS)|2 =
1

2
(1 +

EC − (EX + κXB
2)√

(EC − (EX + κXB2))2 + (ERS(B))2
)

By assuming approximately a linear increase of the Rabi- splitting from ERS =

12meV to ERS = 12.5meV between 0T and 5T, we can fit the data of the polariton

condensates diamagnetic shift in Figure 6.4 by combining Equations 6.3 6.4.

This allows us to determine the diamagnetic coefficient κX of the QW exciton

from the polariton condesate’s diamagnetic shift at P = 1.4Pth (see Figure 6.4, red

solid line) to κX,highP = 57µeV/T 2 which is in perfect agreement with the bare

exciton shift at low excitation power. This confirms that the model Equation 6.3

and the assumptions for the change of the detaining and the Rabi-splitting with

magnetic field are well justified. More importantly, it directly evidences the matter

contribution in our system and justifies the attribution to a polariton condensate.

Indeed, for a polariton laser system close to the Mott transition, an increase of the

diamagnetic coefficient with increasing exciton densities could be expected as a result

of excitonic screening effects. Since our analysis confirms that such an effect can be

neglected in our experiment, we conclude that our low dimensional SWG laser is not

only operated in the strong light-matter coupling regime but also significantly below

the transition to the weak coupling crossover.
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6.2 Coherent Properties of the 0D SWG Polariton Device

In quantum optics, the statistical property and coherence property are character-

ized by using the correlation function. The photon statistical properties are charac-

terized by using the second order correlation function. The second order correlation

function with time delay τ is:

(6.5) g(2)(τ) =
< a†(0)a†(τ)a(τ)a(0) >

< a†a >2

where a† and a are the creation and annihilation symbol for particles. The second

order correlation function with zero time delay can be subsequently written as:

(6.6) g(2)(0) =
< (a†)2a2 >

< a†a >2

The second order coherence properties of the polariton condensate or polariton

laser has been extensively researched for the two dimensional polariton systems.

[8][2]. Yet it has been suffering one major problems that none of these polariton

condensates or polariton lasers are truly coherent with g(2)(0) = 1. This has been

shown with g(2)(0) signals not reaching 1 while the condensates happen or even

g(2)(0) reaches 1, but subsequently deviate from 1 with higher excitation power for

the system.

For our polariton system, it is tightly confined from all three directions. Hence, we

have discretized modes for the polariton system. While we reach the lasing threshold,

the polarities all condense to single ground state mode. This has been demonstrated

from the previous optical characterization chapter and also in the magnetic property
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Figure 6.5: The updated optical characterization setup for g(2)(0) measurement. The dashed line
shading area is the HB-T setup

section in this chapter. To further characterize this single mode lasing property, we

also did the g(2)(0) measurement.

To realize the g(2)(0) measurement, we also use the Hanburry Brwon - Twiss

(HB-T) set up with filtered polariton signal. Compared to the original optical char-

acterization set up in Figure 5.2, the updated g(2)(0) set up utilizes the spectrometer

to do the polariton ground state signal filtering in spectroscopy. Then the filtered

signal is directed into two avalanche photon detectors (APD) with 40ps time reso-

lution which are connected to the time-to-amplitude converter (TAC). The TAC is

connected to multi-channel analyzer which records the photon counts in histogram

between the start and stop time. This set up is shown in Figure 6.5

The g(2)(0) measurement results are shown in Figure 6.6. As can be seen, due

to the thermal state property below threshold, emission with a bunching effect was

expected with a maxmium of g(2)(0) = 1.35 is measured. While the pumping power

is above the threshold, g(2)(0) signal abruptly drops to 1, indicating a pure second



85

Figure 6.6: Second order correlation g(2)(0) as a function of normalized pumping power. Inset: The
number of coincidence counts as a function of τ

order coherent state formed for lower polariton ground state while lasing. Because of

the strong scattering processes between LPs at extreme high pumping power, g(2)(0)

starts to increase.

In summary, based on this g(2)(0) measurement, we can see we have very good

quality of a single mode LP laser from the 0D SWG-based polariton device, attribut-

ing to the tight confinement. The pure coherence of g(2)(0) = 1 has been maintained

for a large range of pumping power above the lasing threshold.



CHAPTER VII

Decoupled, Coupled and One Dimensional SWG Polariton
Devices

The polariton system also provide an accessible venue for research on lattice

physics [16] [33] and quantum optical circuits[32] [78] [34]. Along this line, we also

construct de-coupled and couple polariton systems from the zero dimensional polari-

ton quantum boxes.

The SWG-based polariton system not only can formulate the potential for the

polariton systems, but also realize lower dimensional control. To realize the potential

construction and probing an individual 0D system for a coupled-polariton system,

here in this section, we introduce newly designed quasi-one dimensional SWG devices.

These devices not only accomplish the effective potential control for the polariton

system but also provide a 1D channel for polariton coupling.

7.1 Introduction: Surface Patterning Working Principle

To realize the coupling and dimensionality control for the confined polariton sys-

tems, we specifically designed surface patterns to surround the air-suspending grat-

ings in different devices. These patterns will create different potentials for the cavity

photons, through which we achieve the control for the polariton systems. For a
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typical device surface pattern, it is composed of thorough-etched square holes and

rectangular holes.

To create lower dimensional SWG-cavities, we first utilize the sudden change in the

reflectance from the SWG region to the planar region surrounding it, which results in

a large effective potential at the lateral boundaries of the SWG. To create additional

potentials and to control the coupling among 0D SWG-cavities, we place through-

etched long rectangular slots in the tether, which changes the boundary condition

of the cavity and creates effectively potential barriers for the cavity modes. The

potential is centered at the center of the slots, with its width and height controlled

by the length of the slot. By arranging the positions and changing the lengths of

the slots, we can create different effective potentials for the photon modes. In the

strong-coupling regime, the photon potential is directly transcribed to the polaritons.

7.2 Uncoupled Polariton Systems

The first two devices have the same SWG of 7.5 µm in width and 30 µm in length,

while different patterns in the tether create different potentials for the polaritons.

In the first device, we create two separate 0D polariton quantum boxes by placing a

pair of long slot of 8.5 µm in length, in the middle of both of the top and bottom

tethers, as shown in the scanning electron microscopic (SEM) image in Fig 7.1(a).

The resulting lower polariton (LP) modes were measured via spectrally resolved real

space imaging, as shown in Fig 7.1(b). Two spatially separated groups LP modes

were observed, with identical discrete energy levels. It suggests that the slots create

a potential barrier, confining the LPs to two 0D quantum boxes on its two sides.
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Figure 7.1: Two decoupled 0D polariton systems: (a) Device SEM image. (b) Real space spectro-
scopic characterization. (c) Effective photon potentials in the device. The black line −
is the total potential. The blue dashed line indicates the Gaussian-shaped potential in
the middle. The red dot-dashed line depicts the harmonic potential towards edges of
the device. (d) Simulation results using the total photon potential.
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We model the potential barriers created by the slots by Gaussian functions: A ∗

exp(x−x0
B

)2. Here x is the position along the SWGs longer dimension measured from

the center of the SWG. x0 is given by the center of the slot. A and B correspond

to height and width of the barrier, respectively, and are positively correlated with

the width of the slot. For the long slot placed at the center of the wire, x0 = 0,

A = 10 meV and B = 4 µm. In addition, same as in Ref. [63], we model the

effective harmonic potential at the two ends of the SWGs longer dimension as U(x) =

a(x− d)2. Here a=2meV, d=±7.2 µm, and. The total potential for the entire device

is the sum of all the Gaussian barriers and edge harmonic potentials. The profile of

each contributing potential and the total potential are plotted in Fig 7.1(c).

Using the total potential, we can first calculate the confined photon energy levels

and the corresponding real space wave functions. Then the lower polariton energy

levels can be calculated using Equation 3.22. The resulting polariton energy levels

and the corresponding spatial wave functions are shown in Fig 7.1(d), which match

very well the experimental results in Fig 7.1(b).

7.3 Coupled Polariton Systmes

In the second SWG device, we demonstrate coupling among three 0D polariton

quantum boxes, using two closely spaced, narrower and shallower potential barriers

instead of a wide one at the center. We achieve this with two shorter slots, 7 µm

apart, as shown in the SEM image in Fig 7.2(a).

The resulting LP modes were shown by the spectrally resolved real-space images

of the PL in Fig 7.2(b). Similar to the first device, the energy levels are discrete,

showing the zero-dimensionality of each constituent quantum boxes. At the same
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Figure 7.2: Coupled polariton systems from 0D polariton units: (a) Device SEM image. (b) Real
space spectroscopic characterization. (c) Effective photon potentials: black line is the
total potential; blue dashed line indicates the two shallow Gaussian barriers in the
middle; The red dot-dashed line depicts the harmonic potential towards edges of the
device. (d) Simulation results using the total photon potential.
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time, unlike having separate groups of LPs in the first device, LPs show renormalized

energy levels and distinct features resulting from coupling among the three quantum

boxes, or, tunneling through the barriers. For example, there exists a common

ground state at a lower energy than the ground states in the first device. The spatial

wavefunction of the ground state doesnt have a node and peaks at the center of the

device. The first and second excited states are very closely spaced in energy, different

from either three uncoupled quantum boxes or an unmodulated quantum wire.

To model the potentials, we use the same method as for the first device. The same

harmonic potentials are used towards the two ends of the wire. The same Gaussian

function is use for the barriers created by the slots. The two main barriers are

centered at x0 = ±3.5 µm and with a smaller height and width given by A = 4 meV

and B = 2 µm. Similar to Device 1, harmonic potential at the two ends of the SWG’s

longer dimension is U(x) = a(x − d)2, with a=2 meV, d=±6.6 µm. Each of these

potentials and the total potential are plotted in Fig 7.2(c). The calculated energy

levels and corresponding wavefunction distributions based on the total potential are

shown in Fig 7.2(d). Due to the shallower barrier and closer spacing of the potential

wells, quantum tunneling between the potential wells is prominent. The ground state

and the first several excited states of the coupled system match very well with the

measured results in Fig 7.2(b).

In the first two devices, the same tether pattern is used at both the top and

bottom of the SWG, which create potentials symmetric around the center of the

SWG along its width. A higher potential barrier would require a longer slot, limiting

the number of the potential barriers or the height of them for given length of the

SWG-wire. Moreover, the height and width of the barrier are both fixed with a given

slot width.
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Figure 7.3: 1D polariton system: (a) Device SEM image. (b) Simulation results of dispersion rela-
tion in momentum space, based on device modulation periods of ∼7µm. (c) Momentum
space spectroscopic characterization.

7.4 1D Polariton Lattice

We also implement a quasi-1D polariton lattice by extending the two coupled

0D polariton quantum boxes in the second device to eight coupled ones. We use a

long SWG wire of 60 µm in length and create the periodic potential with periodic

slot-pattern in the tether. The slots have a width of 3 µm, same as in the second

device, and they are placed ∼ 7 µm apart. The SEM image of the device is shown

in Fig 7.3(a). The energy-wavenumber dispersion of the LP modes is shown in

Fig 7.3(c). Energy gaps can be identified at the edges of the 1st Brillouin zone
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at ±π/7µm−1 and 2π/7µm−1, corresponding to the lattice constant of 7µm.Up to

three LP dispersion curves can be measured in the repeated-zone scheme. At higher

energies, additional branches are also observed due the one-dimensional nature of the

wire. In Fig 7.3(c), we calculated the LP dispersion on a lattice in the extended zone

scheme. The five vertical black dashed lines indicate the minima of the dispersion

branches, with a period of ∼ 2π/7µm−1. Each crossing point of the dispersion

branches corresponds to the edge of the Brillouin zones and separates different energy

bands. The calculated dispersions compare well with the measurement.

7.5 Polariton Device with Arbitrary Potential Shapes

In the first two devices, the same tether pattern is used at both the top and

bottom of the SWG, which create potentials symmetric around the center of the

SWG along its width. A higher potential barrier would require a longer slot, limiting

the number of the potential barriers or the height of them for given length of the

SWG-wire. Moreover, the height and width of the barrier are both fixed with a given

slot width. In this asymmetric device, we show that by combining different tether

patterns at the top and bottom of the SWG, additional potential barriers can be

created. Moreover, the barriers height can be adjusted independent from the width,

enabling tall barriers with a narrow width. As shown in Fig 7.4(a), we place one

long slot at the center of the top tether and two shorter slots at the bottom tether.

The resulting spectrally resolves spatial modes of the LPs are shown in Fig 7.4(b).

The potentials are again modeled using the same method as before. Tentative po-

tential modeling is demonstrated here. Since the bottom tether has the same pattern

as in the first device, we use the same Gaussian potentials for the first device, but



94

��

��
��� �
 � 
 �� �

�

����

����

����

���µ��

�
��
���
��
�

���µ��

�

�

��
��� �
 � 
 �� �

��
	�

��
	

��
	�

� ��� ��	 ��� �� �

��
��
��
��
��

���µ��

�

�

��
��� �
 � 
 �� �

��
	�

��
	

��
	�

��� ��	 ��� �� �

30 µm  

(a) 

(b) 

(c) 

(d) 

Figure 7.4: Coupling polariton system with designs of asymmetric surface patterns: (a) Device SEM
image. (b) Real space spectroscopic characterization. (c) Effective photon potentials
in the device. The black line − is the total potential. The blue dashed line indicates
the Gaussian-shaped potential in the middle. The red dotted line is the Gaussian-
shaped the potential with shorter bar-length. The magenta dash-dotted line depicts
the harmonic potential towards edges of the device. (d) Simulation results using the
total photon potential.
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reducing the width B by half. Since the top two slots have the length between the

longest slot in Device 1 and the shortest slot we see in Device 2, the A and B values

chose to model these potentials will fall in between as well, A= 8meV and B= 3 µm.

Compared to the symmetric devices 1 and 2, only one side was used, so these two

values will also be reduced by half to A=4meV and B=1.5 µm. The total potential

and constructing potentials are drawn in Fig 7.4(c) and simulation results are shown

in Fig 7.4(d). The calculated results reproduce many of the major features of the

measured results. In particular, the two spatially separated major branches on both

sides of the device central axis are clearly seen. And the lowest energies match up

as well.



CHAPTER VIII

Conclusion and Future Work

8.1 Conclusions

In this thesis, I have demonstrated the first series of hybrid cavities incorporating

a mirror of sub-wavelength high contrast gratings. These cavities work at strong

coupling regime which produce microcavity polaritons. Unique to SWG or HCG

microcavity polaritons, they have pre-defined polarization. This adds extra control

for the fundamental properties of polariton systems, which is impossible for the

traditional DBR-DBR polaritons.

I have presented the dimensionality control using SWGs. The zero dimensional

device in was demonstrated in Chapter V in which three-dimensional confinement

was achieved. In Chapter VII, I have also introduced three devices which realized de-

coupled, coupled quantum-box polariton systems and Quasi-1D polariton systems,

through different device surface patterning. I have introduced and characterized a

quasi-one dimensional polariton device using the SWGs as well.

The zero dimensional system in Chapter V also presents prominent lasing prop-

erties. The signature nonlinear increase of the emission intensity, continuous energy

blue shifting, and the decrease of the line-width at lasing were all clearly observed

from the device.

96
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By using the external magnetic field, I have demonstrated that the device lases

at the strong coupling regime. The diamagnetic-shift observed from the zero dimen-

sional device while lasing, clearly distinguish the polariton laser from the traditional

photon laser. In addition, the 2nd order coherence characterization for the polariton

laser further confirms the single mode lasing property, which was observed in polari-

ton devices for the first time. Besides, the single-mode lasing maintained through a

large range of pumping intensities up to 10 times of the excitation threshold.

The polariton devices using sub-wavelength grating mircocavities present efficient

dimensionality and coupling control as well as macroscopic coherent states. Such

properties are the essential components for solid-state quantum devices. SWG po-

lariton devices presented in this thesis are building blocks for this ultimate goal.

8.2 Future Works

Due to the unique polarization properties of the SWG based polariton systems, we

are able to realize the strong coupling in one particular linear polarization, while the

cross-polarization still maintains at weak coupling regime. Such property provides

the opportunity for direct probing of the exciton reservoir in the weak coupling

regime simultaneously, while the properties in the strong coupling regime will not be

disrupted. The origin of the energy shifting at high pumping density is expected to

detect through the weakly coupled excitons.

As can be seen in Chapter VII, polariton systems with de-coupled and coupled

properties were realized through the surface pattern design. In particular, the asym-

metric surface pattern has extra freedom for control of the potential barriers. Further
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investigation of the different surface designs, such as coupling strength or different

modulation periods, will allow for various modifications of the polariton systems .

Since one way to control the cavity resonance for SWG device is through tuning

the air gap below the gratings. We will be able to tune the cavity photon energy in

one single device, if we can incorporate external mechanical control for the top layer

of the device. So far the most promising way is through the static electrical field.

Such properties of the device are expected to present more control for the polariton

systems.
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Höfling, Norio Kumada, Lukas Worschech, Alfred Forchel, and Yoshihisa Yamamoto. Dynam-
ical d-wave condensation of excitonpolaritons in a two-dimensional square-lattice potential.
Nature Physics, 7(9):681–686, June 2011.
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