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ABSTRACT

Dynamic response and stability of flexible hydrofoils in incompressible and viscous
flow

by

Eun Jung Chae

Chair: Yin Lu Young

It is important to understand and accurately predict the static and dynamic response

and the stability boundary of flexible hydrofoils to ensure their structural safety, facili-

tate the design and optimization of new and existing concepts, and test the feasibility

of using advanced materials and control concepts. In particular, with recent ad-

vancements in material and computational modeling and design, it is possible to take

advantage of advanced materials and the fluid-structure interaction (FSI) response

to improve the hydrodynamic and structural dynamic performance of flexible hydro-

foils. As interest in maritime applications of lightweight, flexible hydrofoils increases,

understanding the flow-induced vibration response and stability becomes more im-

portant to ensure structural safety and to optimize performance and control. Hence,

the objectives of this dissertation are the following: 1) to derive and validate the FSI

response and stability boundary of flexible hydrofoils in incompressible and viscous

flow; 2) to investigate the influence of inflow velocity, angle of attack, and relative

mass ratio on the flow-induced vibrations of flexible hydrofoils; and 3) to investigate

the influence of the flow-induced bend-twist coupling of flexible hydrofoils.
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A loose hybrid coupled (LHC) method is presented to predict the dynamic FSI

response and stability of flexible hydrofoils in incompressible and viscous flow. The

results indicate that both the flutter and divergence speeds decrease when the relative

mass ratio (i.e, solid-to-fluid added mass ratio,
√
µ) decreases, and that linear po-

tential theory over-predicts the flutter speed at the low mass ratio regime (
√
µ < 3).

It should be noted that although the static divergence is insensitive to variations in

solid mass, the divergence speed decreases with decreasing
√
µ because of increases in

the fluid density, which increases the fluid disturbing force. The results indicate that

static divergence governs for
√
µ < 1, dynamic divergence governs for 1 ≤ √µ < 2,

and flutter governs for
√
µ ≥ 2. The in-water natural frequencies of flexible hydro-

foils are much lower than in-air natural frequencies because of added mass effects.

The in-water natural frequencies vary with inflow velocity, angle of attack, and rel-

ative mass ratio due to flow-induced bend-twist coupling and viscous effects on the

system’s stiffness and damping terms. The results also show that vortex shedding

frequencies of flexible hydrofoils can be much lower than those of rigid hydrofoils,

and that the wake patterns can differ greatly between rigid and flexible hydrofoils.

In particular, when the vortex shedding frequencies snap into one of the natural fre-

quencies of the flexible hydrofoil (i.e, a lock-in condition of flexible hydrofoils), the

vibration and load fluctuation amplitudes are amplified. The results further show

that the inviscid simulations tend to overestimate the total loss factors for cases with

low mass ratios (
√
µ < 1), because of viscous and flow-induced bend-twist coupling

effects. Overestimation of total loss factors increases with higher inflow velocity and

lower relative mass ratio, and can be dangerous, potentially leading to earlier onset

of fatigue, louder noise and vibrations.

xxvii



CHAPTER I

Introduction

1.1 Motivation

In the majority of research involving dynamic fluid-structure interaction (FSI)

modeling, the focus has been on aerospace or wind energy structures, where the

effects of fluid inertia and fluid damping are relatively small. In marine structures,

however, the influence of fluid inertia and fluid damping can be much greater than

that of solid inertia and material damping. Furthermore, the hydrodynamic loads

can be complicated due to viscous effects, hydrodynamic cavitation, and free surface

effects because they can significantly modify and interact with the dynamic response

of marine structures.

Through recent advances in material and innovative passive and active control

technologies, it is possible to take advantage of the FSI response of lightweight,

flexible hydrofoils to improve hydrodynamic and structural performance. Designing

lightweight, flexible hydrofoils for marine environments is rather complicated. This is

because these bodies often operate in heavily loaded and off-design conditions, which

may lead to accelerated fatigue, vibration, noise, and even hydroelastic instability

such as divergence, flutter, resonance, and lock-in. To illustrate, comparison of the

relative mass ratio (i.e., solid-to-fluid added mass ratio), µ = m/(πρfb
2), and the

relative flexibility ratio (the ratio between fluid disturbing force and solid restoring

1



force, which is also the square of the ratio of the inflow velocity to the divergence ve-

locity), RF=Kf,θ/Ks,θ=(U/Ud)
2=U

2
/(µr2

θ), for airfoils and hydrofoils with the same

geometry are shown in Fig. 1.1 for a wide range of common materials. m is the solid

mass per unit span, ρf is the fluid density, b is the semi-chord, and rθ is the radius of

gyration. U and Ud are the inflow velocity and static divergence velocity, respectively.

U = U/(ωθb) is the reduced velocity. ωθ is the first in-air natural twisting frequency.
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Figure 1.1: Comparison of the relative mass ratio (µ), and relative flexibility ratio (RF =

U
2
/(µr2

θ)) for the rectangular cantilevered NACA0015 foils (a) in air and (b)
in water with c = 0.1 m, s = 0.192 m, τ/c = 0.15, νs = 0.35, rθ = 0.44, and
U = 9 m/s. Notice that when RF ≥ 1, U ≥ Ud, and the structure becomes
unstable due to static divergence.

The airfoils and hydrofoils are assumed to be structurally homogeneous and mate-

rially isotropic, and they are assumed to be cantilevered at their root. These foils have

a rectangular platform with NACA0015 cross-sections. The chord length is c = 0.1

m, the span length is s = 0.192 m, and the maximum thickness ratio is τ/c = 0.15.

For all the materials considered, the Poisson ratio is assumed to be fixed at νs = 0.35,

the radius of gyration fixed at rθ = 0.44, and the inflow velocity assumed to be U = 9

2



m/s. Notice that when RF ≥ 1, U ≥ Ud, the structure becomes unstable due to

static divergence. For the airfoil example shown in Fig. 1.1(a), all relevant mate-

rials yield relatively high mass ratios of 3 <
√
µ < 30. However, for the hydrofoil

example shown in Fig. 1.1(b), all relevant materials in water yield much lower mass

ratios of
√
µ < 1. The results in Fig. 1.1 show that as the Young’s modulus (Es)

increases, ωθ increases: Thus, U decreases as Es increases for a given operating field

inflow velocity (i.e., Es ∝ ω2
θ ∝ 1/U

2
). Notice that for a fixed U , which would be

the same for both the airfoil and hydrofoil if the geometry and material are identical,

the hydrofoil is relatively more flexible than the airfoil, as indicated by the higher

RF = U
2
/(µr2

θ) values (greater fluid disturbing force) due to the low µ for hydrofoil.

Consequently, the hydrofoil is more susceptible to static divergence because of greater

fluid disturbing force. In fact, for the hydrofoil shown in Fig. 1.1(b), static divergence

will occur for cases with Es ≤ 0.2 GPa as RF = U
2
/(µr2

θ) ≥ 1. Hence, balsa wood

and polyurethane would not be recommended for the hydrofoil if U = 9 m/s as they

are too close to or exceed the static divergence boundary. The large differences in µ

and RF values between airfoils and hydrofoils and lead to very different physical and

numerical stability characteristics, as will be illustrated later in this thesis.

1.2 Literature review

As mentioned above, fluid loads are significant for lightweight, flexible hydrofoils

in dense fluids such as water. In addition, viscous effects associated with flow sepa-

rations and vorticity influence the FSI responses as well as the hydroelastic stability

boundaries. In this section, we will review previous work on the FSI responses and

stability boundaries of lightweight, flexible hydrofoils with a focus on the in-water

response.
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1.2.1 Wake effects

The linear potential theory, based on Theodorsen (1935), Sears (1941), and Gar-

rick (1946), provides the analytical expressions for the aerodynamic lift and moment

of two-dimensional thin airfoils in uniform inflow with small amplitude, harmonic

pitching and plunging oscillations. Particularly, Theodorsen’s approach assumed

that: 1) the total lift force acts at the aerodynamic center (AC), a quarter-chord

downstream from the thin foil’s leading-edge (LE); and 2) the wake behind the foil

consists of shed vortices from the foil’s trailing-edge (TE). The shed vortices follow

the foil oscillation frequency, and convect downstream in a direction parallel to the

flow without any dissipation. However, Anderson et al. (1998) and Munch et al.

(2010) showed that actual wake patterns are typically more complex than the ideal-

ized wake patterns assumed in Theodorsen (1935)’s model. We know that the actual

wake patterns usually depend on the Strouhal number (St = fc/U) (or reduced fre-

quency, k = ωb/U), the Reynolds number (Re = Uc/ν), and the effective angle of

attack (αeff). Anderson et al. (1998) experimentally studied the wake patterns of a

two-dimensional (2D) pitching and plunging NACA0012 foil in a water tank for dif-

ferent St, where Re varied from 1.1× 103 to 4.0× 104 and αeff varied from 7o to 50o.

For St < 0.2 (i.e, k < 0.6), they observed a wavy wake without distinct vortices and

with a very weak leading-edge vortex (LEV). Characteristically, this LEV appears

between 0.1 < St < 0.2 (i.e, 0.3 < k < 0.6). Anderson et al. (1998) found that for

St > 0.2 (k > 0.6), the wake consisted of a von Kármán vortex street with a LEV.

In another study, Munch et al. (2010) conducted numerical and experimental studies

of a NACA0009 hydrofoil pitching at various reduced frequencies (k). They varied k

from 0.02 to 100 for numerical simulations, from 0.04 to 1.25 for experimental mea-

surements, and Re from 0.5 × 106 to 1.5 × 106 with a 5◦ maximum angle of attack.

For k ≤ 4 (or St ≤ 1.27), the wake pattern consisted of two undulating shear layers

with opposite strengths. However, for k ≥ 12 (or St ≥ 3.82), the wake was observed
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to be composed of distinct point vortices.

1.2.2 Viscous effects

Previous researchers have noted that linear potential flow theory (Theodorsen,

1935; Sears , 1941; Garrick , 1946) is inadequate for modeling FSI problems with

strong viscous effects. Viscous forces have a greater influence on lightweight flexible

hydrofoils in dense fluids such as water/blood/polymer solutions than on light fluids

such as air. Ducoin and Young (2013) calculated the static divergence speed of a

spanwise flexible cantilevered hydrofoil while considering viscous effects, and they

showed that viscous effects helped to delay divergence. Furthermore, Poirel et al.

(2008), Poirel and Yuan (2010), and Ducoin and Young (2013) have shown that

pressure fluctuations, generated by the bursting of laminar separation bubbles and/or

unsteady vortex shedding, can lead to hydrofoil vibrations, which can cause unwanted

noise and vibration issues as well as potential catastrophic failure of the structure

if flutter develops. Apart from studying foil geometries, Connell and Yue (2007)

and Akcabay and Young (2012) also examined the dynamic response and stability of

cantilever beams in viscous and axial flows. Akcabay and Young (2012) found that

viscous effects affect the beams’ tension, as well as delay flutter, reduce the vibration

amplitudes, and modify the oscillation modes. Akcabay and Young (2012) also found

that viscous effects are more significant for light beams in heavy fluids due to the

increased relative contribution of the fluid forces.

1.2.3 Flow-induced vibration

Previous studies on flow-induced vibration of lightweight, flexible foils have fo-

cused mostly on aerospace or wind engineering structures, where the fluid density

is much smaller than the effective solid density. The solid-to-fluid density ratio is

typically between 1− 10 for marine structures; depending on the direction of motion,
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the fluid inertial forces can be comparable to or even higher than the solid inertial

forces for lightweight structures operating in a dense fluid such as water. In ad-

dition, the fluid damping and disturbing forces also depend on the relative velocity

(Theodorsen, 1935; Sears , 1941), which suggests that the resulting in-water resonance

frequencies will depend on the flow speed. However, these dependencies have been

rarely considered by existing marine designs. While the relationship between velocity

and structural oscillation frequency is intuitively apparent, it may also be expected

to depend on the Reynolds number (Re) and the angle of attack. In their experi-

mental studies, Blake and Maga (1975) and Reese (2010) showed that the resonance

frequencies and total loss factors of flexible hydrofoils depend on the flow velocity.

However, both of these former studies involved hydrofoils made of relatively heavy

and stiff materials (i.e., stainless steel and aluminum) for a limited velocity range,

and hence showed only a small dependence on the flow velocity.

As the fluid density increases, the relative contribution of viscous fluid-structure

interaction (FSI) effects increases, particularly if flow separation and/or large defor-

mations occur, and thus generate and modify the vorticity field. The vortex shedding

frequency varies with the angle of attack, as shown by Huang and Lin (1995) and

Jung and Park (2005) for low Reynolds number (Re ≤ 2.7×104) flows. The change of

the vortex shedding frequency and wake pattern is even more obvious when compared

to results at higher Reynolds number (Re > 3× 105) flows, as shown by Reese (2010)

and Ausoni (2009). Nevertheless, very limited numerical and experimental studies

are available for flexible hydrofoils in high Reynolds number flows. Since full-scale

hydrofoils for maritime applications (propellers, turbines, rudders, control fins, etc)

typically operate at Re = 1 × 105 or higher, additional studies are needed to un-

derstand flow-induced vibrations, resonance frequencies, total loss factors at various

velocities, and angles of attack for high Reynolds number flows.
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1.2.4 Flow-induced bend-twist coupling

With recent advances in 3D printing technology and materials research, lightweight,

flexible marine structures are becoming increasingly popular. Flexible marine struc-

tures may deliver superior performance in off-design operating conditions and in spa-

tially and/or temporally varying flows (Motley and Young , 2011). If the location of

the foil’s center of pressure (CP) is away from the elastic axis (EA), the hydrodynamic

load will induce a change in the angle of attack, and in turn affect the lift and bending

deformations and hydrodynamic loads. The flow-induced bend-twist coupling exists

even in the absence of geometric and material bend-twist coupling.

There are three approaches to the study of flow-induced bend-twist couplings: the-

oretical, experimental, and numerical. Most theoretical approaches assume inviscid,

potential flow, which provides clear analytical expressions for the flow-induced bend-

twist coupling. According to classical potential theory introduced by Theodorsen

(1935), Sears (1941) and Garrick (1946), the flow-induced forces and moments are

delineated to be a summation of three components: the fluid inertial, damping, and

disturbing force terms, which are respectively in phase with acceleration, velocity, dis-

placement. However, the theoretical approach does not consider viscous effects and it

assumes small harmonic motion. Viscous effects may change the flow-induced bend-

twist coupling response because of changes in pressure distribution on the foil surface

due to flow separation, and nonlinear interactions with vortices in the wake and foil

motion. Experimental (Caporali and Brunelle, 1964; Blake and Maga, 1975; Reese,

2010; Chae et al., 2015a) and numerical (Chae et al., 2015a) approaches determine

the sum of all the FSI forces, and hence it is difficult to separate and delineate the

values for each of the fluid inertial, damping, and stiffness coupling terms. These ap-

proaches show the full physics of flow-induced bend-twist coupling and viscous effects.

For example, Caporali and Brunelle (1964) considered the flow-induced bend-twist

coupling on flexible hydrofoils represented by the two-degrees of freedom (2-DOF)
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model. They found that at the low mass ratio regime, accurate prediction of the

off-diagonal terms (i.e., flow-induced bend-twist coupling terms) are required for the

proper prediction of flutter. Chae et al. (2015a) examined the dynamic response of a

flexible hydrofoil via combined numerical and experimental studies. They focused on

the flow-induced vibrations of a lightweight, flexible hydrofoil, and showed that their

viscous FSI predictions matched with experimental data obtained by the French Naval

Academy Research Institute (IRENav). Chae et al. (2015a) found that the inviscid,

linear theory equation provided in Blake and Maga (1975) tends to over-predict the

total loss factor for cases with low mass ratio due to ignoring of the flow-induced

bend-twist coupling terms. Ausoni et al. (2007), Klamo (2007), and Schnipper et al.

(2009) also studied oscillating flexible hydrofoils in water. They observed that the

vortex shedding frequencies may match with the natural frequencies of the oscillat-

ing flexible hydrofoils in water (i.e., lock-in), which lead to amplified vibrations and

load fluctuations. However, their studies were limited to only either pitch or plunge

oscillations, which failed to illustrate flow-induced bend-twist coupling effects. Since

the flow-induced bend-twist coupling affects the dynamic response and stability of

lightweight, flexible hydrofoils, it will be the focus of the study shown in chapter V

of this thesis.

1.2.5 Physical instability modes

In this section, past works on the physical stability of flexible foils are reviewed.

The common physical instability modes include divergence, flutter, resonance, lock-in,

galloping, and buffeting. In this thesis, galloping and buffeting are excluded because

they only occur in a limited range of very low or very high frequencies.

Specifically, galloping is a self-excited vibration driven by a time-averaged fluid

force, and it develops in phase with the structure’s motion. It leads to high amplitude

vibrations because of a high energy content at a low frequency. Buffeting is caused
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by unsteadiness in the flow around the structure, such as the airflow separation or

shock wave oscillation, and is a high-frequency phenomenon, which could be occurred

when the turbulence frequency approaches the structural natural frequency.

1.2.5.1 Divergence

There are two kinds of divergence: static divergence and dynamic divergence.

Both are instability phenomena that will cause a system to fail due to excessive de-

formation and/or material failure. Static divergence is a linear static instability, where

the deformations increase with time without oscillations. It is caused by the loss of the

effective torsional stiffness, which occurs when the fluid disturbing moment exceeds

the structural restoring moment. Dynamic divergence is similar to static divergence

because the mean deformations also increase with time. However, dynamic diver-

gence has an oscillation frequency, which decays with increasing deformation. Unlike

static divergence, which depends only on the solid and fluid disturbing/restoring force

terms, dynamic divergence also depends on the solid and fluid inertial and damping

force terms, as shown by Chae et al. (2013). Bendiksen (1992, 2002) showed that

dynamic divergence can lead to material failure, accelerated fatigue, vibration, noise

issues, and even catastrophic structural failures. Chae et al. (2013) showed that dy-

namic divergence cannot be predicted with linear frequency domain methods because

it is a nonlinear phenomenon where the oscillation frequency changes with time.

1.2.5.2 Flutter and lock-in

Flutter is a dynamic self-excited aeroelastic/hydroelastic instability, where the

flow-induced deformations oscillate with a constant frequency. The critical flutter

limit is defined as a point where the total damping is zero. Once this limit is exceeded,

the oscillations will grow rapidly with time. For example, Poirel et al. (2008) and

Poirel and Yuan (2010) showed that flutter can be caused by unsteady bursting
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of laminar separation bubbles and/or unsteady vortex shedding. The flutter may

also cause unwanted noise and vibration, which may likely lead to the catastrophic

failure of a structure. Leibowitz and Belz (1962), Cieslowski and Besch (1970), Song

(1972), Brennen et al. (1980), and McCormick and Caracoglia (2004) found that stall-

induced flutter and cavitation-induced flutter may also cause large-scale vibrations

and ultimately catastrophic structural failure. On the other hand, Tang et al. (2009)

and Akcabay and Young (2012) indicated that flutter can be used to harvest energy

from ambient flow.

In the past, hydrofoil flutter has rarely been studied because marine structures

are typically made of heavy and stiff material; hence, flutter phenomenon was not

a major issue. Further, the influence of fluid inertia and damping are difficult to

quantify in water. Experimental studies of flutter in water pose a number of chal-

lenges such as higher fluid loads and lower maximum speeds due to limitations at

water tunnels or towing tanks, as well as susceptibility to complications introduced

by cavitations and free surface effects (e.g. Woolston and Castile (1951); Abramson

and Ransleben (1965); Cieslowski and Besch (1970); Besch and Liu (1971)). How-

ever, today, some marine structures are made of lightweight and flexible materials to

enhance their performances, where the relative fluid loads become more significant;

therefore, the dynamic response and susceptibility to hydroelasticity of lightweight

and flexible marine structures should be studied.

Specifically, a particular case of linear coupled-mode flutter is lock-in (de Langre,

2006). de Langre (2006) found that the coupled-mode flutter caused by coupling

between displacement and wake may extend the range of lock-in. Lock-in is a non-

linear phenomenon of vortex-induced vibrations that occurs when the vortex shedding

frequency is close to the natural frequency of the system. Lock-in can bring about

large vibration amplitudes and a sudden drop of the damping coefficient (Blake et al.,

1977; Reese, 2010; Bernitsas et al., 2008). For example, Ausoni et al. (2007) showed
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that vortex shedding frequencies are a function of the inflow velocity. They also

showed that lock-in can be induced at certain inflow velocities. Jung and Park (2005)

investigated the vortex shedding frequencies at different angles of attack. They found

that lock-in did not occur at incidences of small angles of attack such as αo < 4◦, and

at low Reynolds numbers (Re = 2.7× 104). However, lock-in did occur at incidences

with large angles of attack, αo > 10o, (Reese, 2010).

1.2.5.3 Resonance

Resonance is an externally-excited dynamic instability that occurs when the driv-

ing frequency is the same or nearly the same as the natural frequencies of the system.

In physics, resonance accounts for abnormally large vibrations with large amplitudes.

If resonance develops unexpectedly, the vibrations can prove catastrophic to struc-

tures with loud noise. Resonance could also accelerate fatigue and lead to detrimental

failure (Lian and Shyy , 2007; Visbal et al., 2009; Olofsson, 1966; Young and Savan-

der , 2011). On the other hand, resonance can be also exploited to harvest energy (see

Bachynski et al. (2012), for an example). Due to dependence on fluid loads, the reso-

nance frequency in water is expected to be dependent on the submergence (Lindholm

et al., 1965), Reynolds Number (Re) (Blake and Maga, 1975; Reese, 2010), Strouhal

Number (St) (Blake and Maga, 1975), relative velocity (Reese, 2010), and angle of

attack.

1.3 Contributions

The objective of this dissertation is to improve the understanding and predic-

tion capabilities of the fluid-structure interaction (FSI) response and the stability

of flexible hydrofoils in incompressible and viscous flow. The contributions of this

dissertation are summarized as follows:

1. New FSI coupling model development:
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A cost efficient and stable FSI coupling model of the loose hybrid coupling

(LHC) method was developed and validated for simulation of lightweight flexible

bodies in incompressible and viscous flow, as shown in Young et al. (2012),

Chae et al. (2013), and Akcabay et al. (2014). The LHC method subtracts the

potential flow estimation of the FSI force from both the left hand side and

right hand side of the equations of motion to accelerate the convergence and

to avoid the numerical instability issues due to “virtual added mass” effect for

lightweight bodies operating in dense, incompressible flow.

2. Stability boundary and governing instability mode determination:

The governing instability mode and stability boundaries were determined for

foils with a wide range of relative mass ratios. The governing instability mode

was found to change from flutter for cases with high mass ratio (
√
µ ≥ 2), to

dynamic divergence for cases with moderate mass ratio (1 ≤ √µ < 2), and to

static divergence for case with low mass ratio (
√
µ < 1). This was presented in

Chae et al. (2013). The numerical simulations were validated with published

experimental data in Woolston and Castile (1951) and Besch and Liu (1971).

3. Flow-induced vibrations examination:

The influence of the inflow velocity, angle of attack, and relative mass ratio

on flexible hydrofoils was investigated (to be published in Chae et al. (2015a)

and in Chae et al. (2015b)). In particular, lightweight, flexible hydrofoils in

cantilevered configuration subject to flow-induced spanwise bend-twist defor-

mation were studied in water. The numerical predictions were validated with

new experiments conducted by the French Naval Academy Research Institute

(IRENav). The influence of viscous effects and relative mass ratio on the dy-

namic response and stability of flexible hydrofoils were identified for a wide

range of operating conditions.
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1.4 Outline

This dissertation presents the fluid-structure interaction (FSI) response and sta-

bility of lightweight, flexible hydrofoils with a focus on operation in incompressible

and viscous flow. It is organized as follows: Chapter I discusses the motivation of

this thesis and examines previous studies on these topics. Chapter II presents the

non-dimensional equations for the solid and fluid models; the details of the deriva-

tions are shown in the Appendix. Chapter III determines the stability boundaries for

a wide range of relative mass ratios (
√
µ) and compares the results from published

experimental, theoretical, and numerical studies. This chapter also investigates the

time-histories of the deformations and hydrodynamic loads, vorticity contours, and

total damping factors for the fluid-structure interaction (FSI) responses at or near the

static divergence, dynamic divergence, and flutter boundaries. Chapter IV focuses on

the influence of the inflow velocity and the angle of attack on flow-induced vibration

characteristics of lightweight, flexible hydrofoils. This chapter determines the in-water

natural frequencies and total loss factors by comparing predictions with new experi-

mental measurements conducted by our collaborators at the French Naval Academy

Research Institute (IRENav). Chapter V studies the influence of flow-induced bend-

twist coupling effects on the dynamic response of lightweight, flexible hydrofoils. This

chapter also examines viscous effects on flexible hydrofoils by comparing results of in-

viscid and viscous FSI simulations. Chapter VI presents the conclusion and discusses

opportunities for future research.
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CHAPTER II

Model description

2.1 Model setup

This thesis investigates the dynamic response and stability boundary of rectangu-

lar, cantilevered flexible foils in incompressible flow with and without consideration

of viscous effects. The flexible hydrofoil is assumed to be chordwise rigid with only

spanwise bending and twisting degrees of freedom (DOF), as shown in Fig. 2.1.

Cs,h 

Cs,q 

Ks,q 

Ks,h 

AC 

U 

Y 

X 

-𝜽(𝒕) 𝜶 

𝒉(𝒕) 

EA CG 

Figure 2.1: 2-DOF solid model of a cantilevered hydrofoil which spanwise bending and
twisting degrees of freedom only

The bending deformation, h, and the twisting deformation, θ, are defined as posi-

tive upwards and counter-clockwise, respectively, with regard to the elastic axis (EA)

of the flexible hydrofoil. The inflow velocity is defined as U , the geometric angle of
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attack as αo, and effective angle of attack as αeff = αo−θ. EA is located at a distance

ab in the downstream direction from the mid-chord, where b = c/2 is semi-chord

length. The aerodynamic center (AC), at which the pitch moment coefficient does

not vary with the lift coefficient, is located at a distance eb in the upstream direction

from the EA. In inviscid flow models such as by the approach of Theodorsen (1935)

and Weissinger (1947), the flow is assumed to be fully attached and the lift acts at

the AC, i.e., the center of pressure (CP) is assumed to coincide with the AC. Hence

e is assumed to take the value of a + 1
2

(i.e., the AC is at quarter-chord from the

symmetric thin foil’s leading-edge). However, the actual center of pressure, where the

real lift acts, changes with operating conditions, particularly for thick and rounded

nose sections common to many maritime applications. The center of gravity (CG) is

located at distance xθb in the downstream direction from the EA. In the derivation of

Theodorsen (1935) and Weissinger (1947), the vortex shedding frequency is assumed

to be the same as the foil oscillation frequency, and the vortices convect downstream

without any dissipation. They also assume the induced downwash caused by the shed

vortices in the wake to act at three quarter-chord (3c/4) from the foil’s leading-edge,

which is located at distance db in the downstream direction from the EA, where

d = a − 1
2
. In reality, however, the vortex shedding frequency may differ from the

foil oscillation frequency, may contain multiple frequencies, and the vortices may not

convect downstream in the direction of flow. The vortices may also interact with the

foil motions, viscous dissipation will occur, and the effective induced velocity by shed

vortices may not necessarily act at 3c/4 from the foil’s leading-edge.

In Fig. 2.1, Cs,h(= 2mωhζs,h) and Cs,θ(= 2Iθωθζs,θ), Ks,h(= mω2
h) and Ks,θ(=

Iθω
2
θ) are, respectively, the solid damping values and solid restoring values per unit

span for the foil spanwise bending and twisting motion, as indicated by the subscripts

h and θ. m is the solid mass per unit span; b is the semi-chord; Iθ(= mr2
θb

2) is the

solid mass moment of inertia per unit span about the EA; rθ is the radius of gyration;
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ζs,h and ζs,θ are respectively the solid bending and twisting damping coefficients.

ωh = 2πfh and ωθ = 2πfθ are, respectively, the first in-vacuum natural bending and

twisting frequencies, which are taken be the same as the in-air natural frequencies

because of the low density of air. The characteristic non-dimensional parameters

governing the FSI response of a flexible hydrofoil are listed in Table 2.1, where Sθ is

the static imbalance per unit span; ρf is the fluid density; νf is the fluid kinematic

viscosity; and ω = 2πf is the foil oscillation frequency.

Table 2.1: Characteristic non-dimensional parameters of a flexible hydrofoil

Parameter Symbol Formula Physical meaning
Elastic axis a - Non-dimensional distance from mid-

chord to foil elastic axis (EA), positive if
EA is aft of the mid-chord

Aerodynamic center e - Distance from EA to aerodynamic center
(AC), positive if EA is aft of the AC

Three quarter chord d - Distance from EA to three quarter-chord
(3c/4), positive if 3c/4 is aft of the EA

Center of gravity xθ Sθ/(mb) Non-dimensional distance from the EA to
the foil center of gravity (CG), positive
for CG aft of the EA

Radius of gyration rθ
√
Iθ/(mb2) Non-dimensional radius of gyration about

the EA
Solid damping coeff. ζs,h,

ζs,θ

Cs,h/(2mωh),
Cs,θ/(2Iθω

2
θ)

Solid bending and twisting damping coef-
ficients

Relative mass ratio µ m/(πρfb
2) Ratio between solid inertial force and

fluid inertial force for bending motion
Reduced velocity U U/(ωθb) Ratio between fluid convection frequency

and solid first in-air natural twisting fre-
quency

Reduced frequency k ωb/U Ratio between solid oscillation frequency
and fluid convection frequency

Solid bending to twisting
frequency ratio

Ω ωh/ωθ Ratio between first in-air natural bending
and twisting frequency

Reynolds number Re 2Ub/νf Ratio between fluid inertial force and
fluid viscous force

2.1.1 Solid model

The non-dimensional two degree-of-freedom (2-DOF) solid equations of motion

(EOM) can be written in condensed form as shown in Eq. (2.1). The EOM is non-

dimensionalized by using b for length, πρfb
2 for mass per unit span, and 1/ωθ for time.
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The twisting frequency is selected because for most flexible hydrofoils, the governing

instability mechanism is static divergence, which is a loss of effective system torsional

stiffness.

MsẌ + CsẊ + KsX = Fstatic, (2.1)

where X = [h/b, θ]T , Ẋ, and Ẍ are the non-dimensional displacement, velocity, and

acceleration vectors. Ms, Cs, and Ks are, respectively, the non-dimensional solid

inertial, damping, and stiffness matrices, which could be written as:

Ms = µ

 1 xθ

xθ r2
θ

 ,Cs = µ

 2Ωζs,h 0

0 2r2
θζs,θ

 ,Ks = µ

 Ω2 0

0 r2
θ

 . (2.2)

Note that the foil is assumed to be made of homogeneous, isotropic material, so there

is no bend-twist coupling on Cs and Ks. The non-dimensional static force vector,

Fstatic (shown in Eq. (2.3)) , the right hand side (RHS) of Eq. (2.1) corresponds to

the steady-state lift and moment per unit span caused by initial angle of attack or

camber effects, and are non-dimensionalized by πρfb
3ω2

θ and πρfb
4ω2

θ , respectively.

Fstatic =

 Lstatic

Mstatic

 = U
2

 2(αo − αLo)

2CMo,AC/π − 2e(αo − αLo)

 , (2.3)

where αLo is the angle of attack at which the lift force is zero. CMo,AC is the steady-

state moment coefficient at the aerodynamic center (AC). Note that for a symmetric

flexible foil with no camber, αLo and CMo,AC are both zero if αo = 0.

2.1.2 Fluid model

The FSI response of flexible foil is modeled using both an inviscid fluid model and

a viscous fluid model, which are respectively defined by the inviscid fully coupled (FC)
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method and the viscous loose hybrid coupled (LHC) method, the details of which are

provided in Young et al. (2012), Chae et al. (2013), and Akcabay et al. (2014).

2.1.2.1 Inviscid fluid model

The inviscid fluid model uses the potential flow solution of Theodorsen (1935) (as-

suming an inviscid, irrotational, and incompressible fluid). The approach of Theodorsen

(1935) is derived for a thin two-dimensional (2D) foil undergoing small harmonic

pitching and plunging motion. It assumes the lift and moment to contain both circu-

latory and non-circulatory parts with a flat, zero thickness trailing wake sheet parallel

to the inflow. Theodorsen also assumed the lift to act at c/4 from the foil’s leading

edge (i.e., e = a+ 1
2
), the vortices to shed downstream parallel to the inflow without

any dissipation, and the induced downwash to act at 3c/4 from the foil leading edge

(i.e., d = a− 1
2
). The non-dimensional inviscid fluid force vectors, FT

FSI, are expressed

by Theodorsen (1935) in terms of the inviscid fluid lift (LTFSI) and moment (MT
FSI) per

unit span acting on the foil.

FT
FSI =


LTFSI

MT
FSI

 = −MT Ẍ−CT Ẋ−KTX. (2.4)

In Eq. (2.4), MT , CT , and KT are, respectively, the non-dimensional inviscid

fluid inertial, damping, and stiffness matrices. C(k) present Theodorsen’s circulation

function (Theodorsen, 1935), Eq.(2.5), which accounts for the circulatory load on the

foil induced by the shed vortices in the wake in Eqs. (2.6) - (2.8). k is the reduced

foil oscillation frequency.

C(k) = F (k) + iG(k) =
H2

1 (k)

H2
1 (k) + iH2

0 (k)
. (2.5)
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where H2
1 (k) and H2

0 (k) are Hänkel functions (i.e., 3rd kind Bessel functions).

MT =


MT

11 MT
12

MT
21 MT

22

 =


1 −a

−a 1
8

+ a2

 , (2.6)

CT =


CT

11 CT
12

CT
21 CT

22

 = U


2C(k) 1− 2C(k)d

−2C(k)e d[2C(k)e− 1]

 (2.7)

= U


2C(k) 1 + C(k)(1− 2a)

−C(k)(2a+ 1)
(

1
2
− a
)

[1− C(k)(2a+ 1)]

 ,

KT =


KT

11 KT
12

KT
21 KT

22

 = U
2


0 2C(k)

0 −2C(k)e

 = U
2


0 2C(k)

0 −C(k)(2a+ 1)

 .(2.8)

Comparison of Eqs. (2.2) and (2.4) suggests that for lightweight foils in dense

fluid such that
√
µ < 1, the relative contribution of the fluid inertial and damping

terms will be higher than that of the solid terms.

Note that Theodorsen’s solution assumes small, harmonic foil motion and fully

attached flow on a thin foil. Theodorsen also assumed the 1) lift to act at c/4 from

the foil’s leading edge (i.e. e = a+ 1
2
), 2) the vortices to shed downstream parallel to

the inflow without any dissipation, and 3) the induced downwash to act at 3c/4 from

the foil leading edge (i.e. d = a − 1
2
). These assumptions are not necessarily valid,

which will in turn affect the accuracy of the fluid damping and stiffness terms, CT

and KT , and hence the in-water natural frequencies and total loss factors. The fluid

inertial term, MT , on the other hand, is mainly driven by pressure effect, and hence
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is minimally impacted by viscous effects. The influence of viscous effects on CT and

KT , and the presence of flow-induced coupling (off-diagonal terms in CT and KT ) are

responsible for the dependence of the in-water vibration frequencies with operating

condition and the over-prediction of the loss factors by inviscid, uncoupled mode

solution introduced in Blake and Maga (1975), both of which will be demonstrated

later in chapter V.

2.1.2.2 Viscous Fluid Model

For the viscous fluid model, the current simulation solves the unsteady Reynolds-

averaged Navier-Stokes (uRANS) equations with the k − ω shear stress transport

(k − ω SST) turbulence model for an incompressible Newtonian fluid with negligible

body forces, as shown in Eqs. (2.10)-(2.9).

∂uf
∂t

+ uf · ∇uf = −∇P (
EuU

2

2
) +∇ ·

(
2U

Reeff

(
∇uf +∇uTf

))
(2.9)

∇ · uf = 0 (2.10)

Note that the uRANS equations shown in Eqs. (2.9) - (2.10) was non-dimensionalized

by using b for length, Po (the static pressure) for reference pressure, 1/ωθ for time,

and ωθb for velocity. uf is the non-dimensional local fluid velocity, t is the non-

dimensional time, P is the non-dimensional total pressure, U is the reduced velocity,

Eu = 2Po
ρfU2 is the Euler number, and Reeff = Uc

νeff
is the effective Reynolds number. Po

is the static pressure, and νeff is the fluid effective kinematic viscosity. The viscous

simulation solves Eqs. (2.9)-(2.10) via the ANSYS-CFX (2011) commercial software.

The local velocity must be the same for the fluid and the solid at the common

interface, and the interface traction acting on the fluid and the solid should be equal
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and opposite in direction.

uf = us, (2.11)

σf · n + σs · n = 0, (2.12)

σf · t + σs · t = 0, (2.13)

σf = −Eu
2
P I +

2

ReeffU
(∇uf +∇uTf ), (2.14)

where the subscripts “s” and “f” denote the solid and fluid parameters, respectively.

n and t are, respectively, a unit normal (positive out of the body) and tangential

vector on the foil surface. σ is the non-dimensional total stress tensor for a Newtonian

fluid, and I is the identity matrix.

The non-dimensional viscous fluid lift and moment acting on the hydrofoil, FCFD,

from ANSYS-CFX (2011), are computed as follows in Eq. (2.15).

FCFD =


LCFD

MCFD

 =


∮
A

(j · σfn)dA

∮
A

(r× σfn)dA

 , (2.15)

where j is a unit vector along the Y direction as shown in Fig. 2.1, and r is a vector

from the EA to a point on the closed foil surface (A).

Even though the large eddy simulation (LES) would be more accurate than

uRANS, particularly for cases dominated by transient, large scale vortices, LES needs

a very fine mesh and very small time step sizes to resolve the most energetic eddies.

Particularly near the wall regions, where the attached boundary layers are important,

LES will give poor predictions unless very fine grids are used. Hence, the uRANS

is used in this thesis instead of LES as a compromise between accuracy and compu-

tational efficiency for transient high Reynolds number flows, as shown in this thesis.

Convergence study with time step size and validation studies with multiple experi-
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mental data are shown in Chapters III and IV, respectively. Nevertheless, high-fidelity

FSI simulations with LES should be studied in the future to better capture unsteady

interaction between flexible foil motions and vorticity field.

In this thesis, the k− ω SST turbulence model is used with the uRANS solver; it

combines the advantages of the k− ε model away from the wall and the k− ω model

near the wall. Therefore, the k−ω SST turbulence model has been shown to be able

to accurately predict of the boundary layer separation and turbulence behaviors of

flexible foils at high Reynolds numbers (Ducoin and Young , 2013).

2.1.3 FSI coupling model

Both inviscid and viscous FSI coupling models are presented in the subsections

below. It should be noted that the inviscid FSI coupling model was iterated to get

the initial oscillation reduced frequency (k), and the viscous FSI coupling model used

the same initial k from the result of inviscid FSI coupling model.

2.1.3.1 Inviscid FSI Coupling Model

The inviscid FSI coupling model employs a time domain (TD) fully coupled (FC)

method. The FC method is possible because the analytical representation of both

the solid and the inviscid fluid forces are known, where the fluid forces are given by

Theodorsen (1935). The discretized non-dimensional inviscid, fully coupled equation

of motion (EOM) is shown in Eq. (2.16).

(Ms + MT )Ẍn + (Cs + CT )Ẋn + (Ks + KT )Xn = Fstatic, (2.16)

where the subscript n is the time-step index.
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2.1.3.2 Viscous FSI Coupling Model

The viscous FSI coupling model employs a time domain (TD) loose hybrid coupled

(LHC) method introduced in Young et al. (2012), Chae et al. (2013), and Akcabay

et al. (2014) to couple the partitioned viscous computational fluid dynamics (CFD)

and computational structural dynamics (CSD) solvers to model flexible structures in

dense, incompressible flow. A partitioned FSI coupling method is used because of

the conveniences associated with using modular CFD and CSD solvers. Classically,

partitioned FSI methods couple the two different CFD and CSD solvers via either

the loosely-coupled (LC) or tightly-coupled (TC) techniques. The LC technique uses

the CFD solution at the previous time-step as an input to the CSD solution for the

new time-step, while the TC technique iterates between the solutions of the CFD and

CSD solvers per each new time-step. Previous works of Chen and Wambsganss (1972);

Paidoussis (1973); Belanger et al. (1995); Mok and Wall (2001); Causin et al. (2005);

Forster et al. (2007); Young (2007, 2008); Xiao and Batra (2012) have shown that

traditional LC and TC methods are not suitable for problems involving lightweight

solids in incompressible, heavy fluids due to numerical instability issues associated

with artificial added mass effects, which are caused by time-lag in the exchange of

surface tractions and deformations between the fluid and solid solvers. The discretized

EOM of the non-dimensional viscous LHC method in a time domain is given in

Eq.(2.17).

(Ms + MT )Ẍn+1 + (Cs + CT )Ẋn+1 + (Ks + KT )Xn+1 = (FCFD)n − (FT
FSI)n, (2.17)

FCFD is the non-dimensional viscous fluid force on the foil that is computed by the

CFD solver, which includes both static and dynamic force components. The LHC

method subtracts the potential flow estimate of the hydroelastic force that depends

on the flow-induced deformations, FT
FSI, from both the left and right sides of the
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EOM. For a thin rectangular foil, the LHC method estimates FT
FSI using Theodorsen’s

derivation, as given in Eqs.(2.6)-(2.8). Eq.(2.17) is solved using a semi-implicit Crank-

Nicholson method, which is second-order accurate in time.

The flow chart for the LHC algorithm is given in Fig. 2.2. Xo = [ho/b, θo]
T

are the non-dimensional initial prescribed displacements. Xo, Ẋo are respectively

the non-dimensional initial deformations and velocity of deformations. In this study,

the commercial ANSYS-CFX (2011) software is used as the CFD solver, but other

commercial or in-house CFD solvers could be used as well with the LHC algorithm.

Notice that the LHC method does not require the sub-iterations between the solid

and fluid solvers. A detailed study of the numerical convergence and accuracy of the

LHC method can be found in Akcabay et al. (2015).
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𝑛 = 1, 𝑡𝑛 = 0 

𝑿𝑛 = 𝑿𝑜, 𝑿 𝑛 = 𝑿 𝑜 

𝑛 = 𝑛 + 1 

𝑿𝑛 = 𝑿𝑛−1, 𝑿 𝑛 = 𝑿 𝑛−1, 𝑿 𝑛 = 𝑿 𝑛−1 

Define:  𝑭FSI
𝑇

𝑛
= −𝑴𝑇𝑿 𝑛  − 𝑪𝑇𝑿 𝑛 − 𝑲𝑇𝑿𝑛  

𝑴𝑠 +𝑴𝑇 𝑿 𝑛+1 + 𝑪𝑠 + 𝑪𝑇 𝑿 𝑛+1 + 𝑲𝑠 +𝑲𝑇 𝑿𝑛+1 = 𝑭CFD 𝑛 − 𝑭FSI
𝑇

𝑛
 

Solve with the Crank-Nicholon method: Calculate 𝑿𝑛+1, 𝑿 𝑛+1, 𝑿 𝑛+1 

CFD Solver 
    Input: 𝑿𝑛+1, 𝑿 𝑛+1, 𝑿 𝑛+1 

    Deform CFD mesh 

    Solve: uRANS equation 

    Output: 𝑭CFD 𝑛+1 

𝑡final ≤ 𝑡𝑛+1 STOP 
No Yes 

Figure 2.2: Loose hybrid coupled (LHC) algorithm flow chart
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CHAPTER III

Stability boundary

In this chapter, the stability boundaries and fluid-structure interaction (FSI) re-

sponses of static divergence, dynamic divergence, and flutter are determined. Section

3.1 presents a model setup of numerical simulations and comparisons with published

experiments for the stability boundaries and FSI responses of a NACA16-010 foil.

Section 3.2 investigates the influence of relative mass ratio on the static and dynamic

stability boundaries, as well as oscillation frequency. Inviscid and viscous FSI pre-

dictions are compared with published experimental data. Section 3.3 shows the FSI

responses using the time-histories of the predicted bending and twisting deformations,

as well as lift and moment coefficients at various mass ratios. Section 3.4 presents

the total damping coefficients and vibration frequencies predicted using inviscid and

viscous FSI solvers. Specifically, the critical flutter speed corresponds to the time at

which the total damping coefficient becomes zero.

3.1 NACA16-010 model setup

The physical parameters for a NACA16-010 foil used in current numerical simula-

tions and published experimental tests (Woolston and Castile, 1951; Besch and Liu,

1971) are listed in Table 3.1. Note that since the current simulations are conducted

with a 2D fluid solver, the mass, damping, and stiffness values of the foils in Table
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3.1 are given per unit span length. In all the simulations of NACA16-010 shown in

this section, solid damping is ignored (i.e., ζs,h = 0 and ζs,θ = 0).

Table 3.1: NACA16-010 physical parameters

Parameter Current simulation Woolston & Castile (1951) Besch & Liu (1971)

Foil NACA 16-010 NACA 16-010 NACA 16-012

Material Epoxy & Lead powder Balsa wood Lead and Tin,

Balsa wood Epoxy & Lead powder,

Epoxy &

Glass-microballoon

Fluid Water Freon 21 & Air mixtures Water

Freon 21 & Air mixtures

c [m] 0.305 0.305 0.152

s [m] 1.219 1.219 0.381

AR [-] 0.003 4 2.5

τ/c [-] 0.1 0.1 0.12

αo [◦] 0 0 0

a [-] -0.218 and -0.5 -0.218 -0.5

xθ [-] 0.068 and 0.524 0.068 0.523 – 0.524

rθ [-] 0.403 and 0.709 0.403 0.709 – 0.713

Es [GPa] 1.80 and 2.34 1.80 1.59 – 1.63

νs [-] 0.36 0.36 N/A

m [kg/m] 0.63 – 286.06 0.63 3.94 – 17.55

ρf [kg/m3] 0.5 – 1000 0.08 – 3.18 1000

νf [m2/s] 1.0×10−6 – 1.12×10−5 2.85×10−6 – 1.19×10−4 1.0×10−6

Re [-] 0.35×106 – 4.27×106 0.41×106 – 1.84×106 1.94×106 – 2.82×106

√
µ [-] 0.3 – 4.18 1.65 – 10.52 0.45 – 0.98

fh [Hz] 0.72 – 17.65 15.29 11.09 – 22.49

fθ [Hz] 1.74 – 52.11 36.92 35.09 – 68.75

3.1.1 NACA16-010 mesh setup

The numerical NACA16-010 mesh for the CFD solver is shown in Fig. 3.1. The

numerical mesh consists of unstructured triangular elements everywhere except at the

boundary layer region near the foil, which is discretized with the structured mesh.
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The smallest element near the foil surface satisfies y+ ≈ 1. The mesh is refined near

the foil’s leading and trailing edges, as well as in the wake region, in order to capture

the flow details. The boundary conditions are uniform flow with 3% turbulence

intensity at the inlet (i.e., left-end of the numerical domain shown in Fig. 3.1),

symmetry conditions at the top and bottom of the fluid domain, solid-wall boundary

conditions on the foil surface, and prescribed pressure boundary conditions at the

outlet. The mesh elements are deformed according to the computed bending and

twisting displacements of the hydrofoil at each time-step. The numerical simulations

are initialized from the steady-state solution of the fluid flow around the foil with a

θo = −2◦ initial twist angle and ho = 0.

No slip 

Inlet Outlet 

Symmetry 𝟕𝒄 𝟏𝟑𝒄 

𝟏𝟎𝒄 

𝑷𝟎 𝑼𝟎 

Symmetry 

Figure 3.1: The 2D NACA16-010 mesh, which is discretized with approximately 76,000
elements and 48,000 nodes.

For the mesh deformation algorithm as shown in ANSYS-CFX (2011), the mesh

elements are deformed to conform to the hydrofoil geometry according to the foil

motions obtained by using the viscous loose hybrid coupled (LHC) method at each

time-step. The numerical simulations of the flexible hydrofoil are initialized from the

steady-state solution of flow around a stationary hydrofoil. All the CFD simulations
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assume the flow to be fully turbulent and are performed at Re = 3.5×105 ∼ 4.27×106

and U = 0.16 ∼ 1.9 with geometric angles of attack (αo) of 0◦ with zero initial bending

deformation and −2◦ initial twisting deformation.

3.1.2 Numerical convergence studies for NACA16-010

Mesh and time convergence studies were conducted for the case corresponding to a

rectangular, cantilevered NACA16-010 balsa wood foil with an AR = 4 in a Freon 21-

air mixture with Re = 1.24×106,
√
µ = 2.79, and U = 1.3; the relevant experimental

description is available at Woolston and Castile (1951), and the key parameters are

listed in Table 3.1. In all the convergence results shown in this subsection, the time-

history plots are non-dimensionalized by the first in-air natural twisting frequency,

ωθ = 232 rad/s.
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Figure 3.2: Mesh convergence study of (a) bending deformations and (b) twisting defor-
mations for the flexible NACA16-010 foil at ∆t = 0.0004s with αo = 0o,√
µ = 2.79, U = 1.3, and Re = 1.24 × 106. Note that “coarse mesh” has

3.4 × 104 nodes and 5.2 × 104 elements, “medium mesh” has 4.8 × 104 nodes
and 7.6 × 104 elements, and “fine mesh” has 10.7 × 104 nodes and 18.4 × 104

elements. t = tωθ is the non-dimensional time.

For the mesh convergence study, three different meshes are used with ∆t = ∆tωθ ≈
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Figure 3.3: Time convergence study of (a) bending deformations and (b) twisting deforma-
tions for the flexible NACA16-010 foil on the “medium mesh” (4.8× 104 nodes
and 7.6×104 elements) with αo = 0o,

√
µ = 2.79, U = 1.3, and Re = 1.24×106.

Note that t = tωθ is the non-dimensional time.

0.1 (i.e., ∆t = 4×10−4 s). The coarse mesh approximately contains 34,000 nodes and

52,000 elements; the medium mesh approximately contains 48,000 nodes and 76,000

elements; and the fine mesh approximately contains 107,000 nodes and 184,000 ele-

ments. Fig. 3.2 shows that the predicted time-histories of the bending and twisting

deformations with the medium mesh are sufficiently close with the predictions evalu-

ated with the fine mesh. Hence, from here on, the medium mesh is used to calculate

the viscous FSI responses.

For the time convergence study, the predicted time-histories of the bending and

twisting deformations using three different time-step sizes (∆t = ∆tωθ ≈ 0.02 , 0.1,

and 0.2) on the “medium mesh” are compared in Fig. 3.3. Note in Fig. 3.3 that

the predictions obtained using the two smallest time-steps are close. Hence, in the

simulations shown from here on, a time-step size of ∆t = 0.0004s corresponding to

∆t ≤ 0.1 will be used. This corresponds to a Courant-Friedrichs-Lewy (CFL =

U∆t/∆x) number between 0.07 to 6.70 for the various cases shown in this chapter.
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In addition to these convergence studies, the simulations are validated through

comparison with various experimental data, which will be shown in section 3.2.

3.1.3 Prediction of flutter, static divergence, and dynamic divergence

In all the simulations, the flutter boundary is determined by seeking the minimum

critical inflow velocity at which the total damping of the vibrating system, ζT , is

zero. Note that the total damping is the sum of the solid and fluid damping (i.e.,

ζT = ζs + ζf ). The logarithmic decrement method for calculating ζT is used in this

section, and it is demonstrated through Fig. 3.4, and in Eqs.(3.1) and (3.2).

Time

D
ef

or
m

at
io

n

 

 

Y
1 Y

2 Y
3 . . .

Y
l Y

l+1

Figure 3.4: Sample time-history of the deformation used to determine the total damping
coefficient, ζT , via the logarithmic decrement method.

δ =
1

l
ln

(
Y1

Yl+1

)
, (3.1)

ζT =
δ√

4π2 + δ2
. (3.2)

where l is the number of the peak points between Y1 and Yl+1 (i.e., the maximum

amplitude of the deformation at the each number of the peak points). δ is the
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logarithmic decrement. Fig. 3.4 is a sample time-history of deformation. The flutter

boundary is determined through interpolating the critical U for which ζT is zero.

The static divergence velocity, Ud, is the critical speed at which the effective tor-

sional stiffness (i.e., sum of both solid stiffness and fluid stiffness) of the foil becomes

zero. From the balance between the flow-induced disturbing moment and the solid

elastic restoring moment, the linear theory estimates Ud as:

Ud =

√
kθ

ρfeb2 ∂CL
∂α

, (3.3)

where the linear theory takes e = a + 1
2

and ∂CL
∂α

= 2π. Note that for a given solid,

the dimensional value of Ud decreases with increasing ρf according to Eq.(3.3), but

Ud does not vary with ρs as long as Kθ remains the same.

In a time domain viscous LHC method solution, the static divergence velocity is

determined as the speed at which the deformations monotonically increase without an

obvious oscillation frequency, and the dynamic divergence velocity is determined as

the speed for when the mean deformations grow with a decaying oscillation frequency.

It should be mentioned here that dynamic divergence is a nonlinear phenomenon

according to Kousen and Bendiksen (1988); Bendiksen (1992, 2002), and it is only

predicted in this work using the LHC viscous FSI solver through a time domain

solution method.

3.2 Static and dynamic stability boundaries

The current time domain (TD) solutions obtained using the inviscid FC and vis-

cous LHC method are compared with frequency domain (FD) solutions of the linear

potential theory predictions, and with experimental measurements of the critical di-

vergence velocities, flutter velocities and frequencies given in Woolston and Castile

(1951) and Besch and Liu (1971) for cases with different relative mass ratios (
√
µ),
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as shown in Table 3.1.

Figure 3.5: Woolston and Castile (1951)’s experimental model of a cantilevered NACA16-
010 foil in Freon 21 and air mixtures.

Woolston and Castile (1951)’s experiments cover a
√
µ range (1.65 ≤ √µ ≤ 10.52)

that correspond to the typical operating conditions of light airfoils and Micro Air

Vehicles (MAV). The flutter velocities and frequencies those studies were measured

for a rectangular cantilevered balsa wood NACA 16-010 foil in Freon 21 and air

mixtures with different fluid densities. The cantilevered NACA16-010 foil has a chord

length (c) of 0.305 m and a span length (s) of 1.219 m, as shown in Fig. 3.5. These

experiments were performed in a wind tunnel, which had a circular cross section of

1.37 m in diameter. The Re was between 4.1×105 and 1.84×106. The flutter velocities

were determined as the speeds for when the total system damping was projected to

be zero.

Besch and Liu (1971)’s experiments were conducted in a depressurized 36 in (=0.9

m) water tunnel at the Naval Ship Research and Development Center (NSRDC),

where the maximum attainable speed was 25.72 m/s. The geometry corresponds to

a rectangular NACA16-012 foil with c=0.152 m , s=0.381 m, and it is cantilevered
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Figure 3.6: Besch and Liu (1971)’s experimental model of a cantilevered NACA16-012 foil
inside a depressurized 36 in (=0.9 m) re-circulating water tunnel.

at the root with a quarter chord pitching point, as shown in Fig. 3.6. The Re was

between 1.94× 106 and 2.82× 106. The relative mass ratios (0.45 ≤ √µ ≤ 0.98) were

controlled by using different materials (i.e., lead and tin, epoxy and lead powder,

epoxy and glass micro balloons in water) to construct the NACA 16-012 hydrofoils.

Again, the flutter inception speeds were determined by projecting the speed at which

the total damping coefficient was zero.

As shown in Figs. 3.7 and 3.9, the linear theory and experimental results obtained

by Woolston and Castile (1951) are in good agreement with each other for
√
µ > 3.

It is important to note that Woolston and Castile’s results shown in Figs. 3.7 and

3.9 are limited to
√
µ > 1.5, due to the use of balsa wood for the foil, and the limited

range of fluid densities that can be achieved by using a Freon 21 and air mixture in a

wind tunnel. On the other hand, Besch and Liu (1971)’s experimental results given in

Fig. 3.8 contain data for
√
µ ≤ 1 only, since they used water as the experimental test

fluid. It should be noted that Woolston and Castile (1951)’s linear theory results used

the frequency domain solution technique, while the current inviscid FC and viscous

LHC simulations used the time domain solution technique.
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Figure 3.7: Static/dynamic divergence and flutter velocity boundaries as a function of
the relative mass ratio (

√
µ) based on Woolston and Castile (1951)’s data for

NACA 16-010 foil in Freon 21 and air mixtures with predicted results by fixed
ρf or ρs.The linear theory divergence velocities are calculated by Eq.(3.3).
Note that the closed symbols represent flutter and open symbols represent
divergence. The triangle symbols represent cases where

√
µ is varied by chang-

ing ρs and fixing ρf = 1000kg/m3, and the inverted triangle symbols represent
cases where

√
µ is varied by changing ρf and fixing ρs = 97.13kg/m3 in the

viscous FSI simulations. (a = −0.218, xθ = 0.068, and rθ = 0.403).

Figures 3.7 and 3.8 suggest that with decreasing
√
µ, the reduced flutter velocity

(U f ) and the reduced divergence velocity (Ud) will both decrease. According to

Eq. (3.3) for a given foil with a fixed material, the dimensional values of Ud will only

decrease as the ρf increases (the dimensional Ud is not a function of ρs). However, the

reduced divergence velocity (Ud) decreases with reductions in ρs because ωθ increases

as ρs decreases.

Figures 3.7 - 3.9 show that the predicted flutter and divergence boundaries using

the current viscous LHC simulations are in good agreement with the experimental

results of Woolston and Castile (1951) and Besch and Liu (1971). However, as shown

in Fig. 3.7, the frequency domain linear theory solution predicts higher flutter velocity

than measured for
√
µ < 3, which is dangerous because that means the actual system
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f
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Figure 3.8: Static/dynamic divergence and flutter velocity boundaries as a function of the
relative mass ratio (

√
µ) based on Besch and Liu (1971)’s data for NACA 16-

012 foil in water and with numerical predictions obtained by varying ρs but
fixed ρf . The linear theory for divergence velocity shown in Eq.(3.3); predicted
Ud = ∞ for Besch and Liu’s case shown in Fig. 3.8 due to the coincidence of
EA and AC, and hence is not shown in Fig. 3.8. Note that the closed symbols
represent flutter and open symbols represent divergence. The triangle symbols
represent cases where

√
µ is varied by changing ρs and fixing ρf = 1000kg/m3

in the viscous FSI simulations. (a = −0.5, xθ = 0.524, and rθ = 0.709)

will flutter earlier than the linear theory prediction. This discrepancy is because

the linear potential theory of flutter assumes small harmonic deformations, which

are not necessarily valid for cases with low relative mass ratios. Note that as fluid

inertial and damping effects increase with increasing ρf , the foil motion will no longer

be harmonic because the oscillations will be damped out quickly and viscous effects

become relatively more important as
√
µ decreases. Hence, the inviscid frequency

domain linear theory is not suitable for flutter predictions of light foils in a dense

fluid, such as most hydrofoils. For 1 ≤ √µ < 2 (in the range of very heavy hydrofoils

or very light airfoils), the dynamic divergence and flutter boundaries are very close.

It is worth it to point out that while the flutter velocities were reported by Woolston
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Figure 3.9: Static/dynamic divergence and flutter in (a) non-dimensional frequency ratios
and (b) reduced frequencies as a function of relative mass ratio (

√
µ) based on

Woolston and Castile (1951)’s data for NACA 16-010 foil in Freon 21 and air
mixtures with predicted results by fixed ρf or ρs. Note that the closed symbols
represent flutter and open symbols represent divergence. The triangle symbols
represent cases where

√
µ is varied by changing ρs and fixing ρf = 1000kg/m3,

and the inverted triangle symbols represent cases where
√
µ is varied by chang-

ing ρf and fixing ρs = 97.13kg/m3 in the viscous FSI simulations. (a = −0.218,
xθ = 0.068, and rθ = 0.403). In the dynamic divergence regions (1 ≤ √µ < 2),
the decaying frequencies are expressed as the dotted arrow line.

and Castile (1951) at
√
µ = 1.65 & 1.98, they did not report the flutter frequencies,

as shown in Figs. 3.7 - 3.9, which may be because the system was actually in the

dynamic divergence regime where the vibration frequency decay with time as the

deformations increase. The results in Figs. 3.7 and 3.9 suggest that the viscous LHC
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method can accurately capture the flutter onset condition for the range of relative

mass ratios considered. The time domain inviscid FC method (in contrast to the

linear theory results from Woolston and Castile (1951) obtained using a frequency

domain solution method) also yielded good estimates, because it does not assume

harmonic condition. It is important to note here that the time domain inviscid FC

solver is able to provide a good approximation at a much lower computational cost

compared to the viscous LHC method.

Figure 3.9(a) shows the nondimensional frequency ratios, ω/ω∗
θ , which is the foil

vibration frequency divided by the twisting natural frequency in fluid. Fig. 3.9(b)

shows the reduced frequency, k, at the flutter boundary. For almost all the cases

shown in Figure 3.9, k < 1, the simulations show that the wake patterns consist of

thin, undulating shear layers with opposite signs, as will be shown later in Figs. 3.16–

3.17. Note that the system vibration frequency is zero in the static divergence range

(
√
µ < 1), but there are still vibrations at the dynamic divergence range (1 ≤ √µ < 2)

where the mean deformations grow in time and the vibration frequency decreases

toward zero as the deformation increases. The results show that in the flutter region

(
√
µ ≥ 2), ω/ω∗

θ and k both decrease with increasing
√
µ, and the flutter frequency is

slightly less than the in-water natural twisting frequency, as indicated in Fig. 3.9(a).

The results in Figs. 3.7, 3.8, and 3.9 suggest that the flutter velocity and fre-

quencies, as well as the divergence velocity predicted using the viscous LHC, are in

good agreement with the measured data. The trends in Figs. 3.7 and 3.8 show that

when
√
µ < 2, static or dynamic divergence will occur earlier than flutter because

the oscillations will be quickly damped out with higher fluid inertial and damping

effects. In addition, for some cases such as those shown in Fig. 3.8, static divergence

may occur at lower speeds than that predicted by linear potential theory because of

viscous and nonlinear effects. Examples of such cases were reported in experimental

studies in Besch and Liu (1971) and Abramson and Ransleben (1965), and shown
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in Fig. 3.8, where the theoretical divergence velocity was infinite because the EA

coincided with the theoretical AC (i.e., e = 0 in Eq.(3.3)); the predicted divergence

velocity using the viscous FSI solver was finite, and agreed well with measured values,

because viscous effects and flow separation modified the center of pressure (CP) from

the theoretically assumed location. Nevertheless, it should be noted that the current

viscous FSI solver assumes linear elastic material behavior, and does not consider the

strain and/or stress limit where material failures may occur.

The results in Figs. 3.7 - 3.9 show that the governing instability mode transitions

from flutter for
√
µ ≥ 2 to dynamic divergence for 1 ≤ √µ < 2 to static divergence

for
√
µ < 1. Change in instability mode can be explained as follows: as the relative

mass ratio decreases, the in-water natural frequencies reduce with increased fluid

density; this will prolong the structural dynamic response time and increase not

only the fluid inertial and damping forces, but also the fluid disturbing force, which

acts to lower the effective system stiffness. Note that static divergence is a static

failure which occurs when the effective system stiffness is zero, i.e. when the fluid

disturbing moment is equal or higher than the solid restoring moment. On the other

hand, dynamic divergence is a nonlinear dynamic instability with oscillation. As the

relative mass ratio approaches zero (
√
µ→ 0), the oscillation frequencies move toward

zero (ω → 0) due to increasing fluid damping and fluid inertial effects coupled with

decreasing system stiffness, which explains the transitions from flutter to dynamic

divergence to static divergence. This also explains why the linear frequency domain

(FD) method will fail in the low mass ration regime (
√
µ < 3) as the motion will

no longer be harmonic. Note that the results of Woolston and Castile (1951) for

1 ≤ √µ < 2 can potentially be dynamic divergence rather than flutter because

the oscillation frequencies are not shown in Fig. 3.9. Since Woolston and Castile

(1951) measured flutter points by an oscillograph record of the model frequencies,

the oscillation frequency might decay out in those regions (1 ≤ √µ < 2).
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Figure 3.10: Time histories of bending and twisting deformation of viscous LHC for NACA
16-010 foil at (a)

√
µ=0.3, U = 0.16 (Static divergence) (b)

√
µ=1.0, U =

0.55 (Dynamic divergence) (c)
√
µ=1.5, U = 0.82 (Dynamic divergence), (d)√

µ=1.98, U = 1.0 (Flutter). t = tωθ is the non-dimensional time. Note that
the
√
µ is varied by fixing ρf = 1000kg/m3 corresponding to the water and

varying ρs.

Figure 3.10 shows the predicted sample time histories for static divergence (Fig.

3.10(a)), dynamic divergence (Figs. 3.10(b),(c)), and flutter (Fig. 3.10(d)). The
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results are obtained using the viscous LHC method, and by changing
√
µ by fixing

ρf corresponding to water and varying ρs. As shown in Figs. 3.7, 3.8, and 3.9, linear

potential theory cannot predict the proper switch-off point between divergence and

flutter because there is a dynamic divergence region between flutter and static diver-

gence for 1 ≤ √µ < 2, where the mean deformation increases monotonically, and the

oscillation frequency decreases as deformation increases. Note that dynamic diver-

gence was captured by the nonlinear viscous FSI solver. Again, it should be empha-

sized that dynamic divergence is a nonlinear phenomenon, and cannot be predicted

with linear methods that assumes small harmonic motion. Unlike static divergence,

dynamic divergence depends on both solid and fluid inertia and damping force terms,

in addition to the solid restoring force and fluid disturbing force terms.

Table 3.2: The influence of varying ρs vs. ρf (to change the relative mass ratio,
√
µ) on

the reduced static/dynamic divergence and flutter velocities. The results
are predicted by the viscous LHC model.

Varying ρs Varying ρf

(ρf = 1000kg/m3) (ρs = 97.13kg/m3)

Status
√
µ U ω/ω∗

θ k U ω/ω∗
θ k

Static
0.3 0.16 0.0 0.0

divergence 0.67 0.37 0.0 0.0

Dynamic

1.0 0.55 1.78 → 0.0 1.25 → 0.0 0.54 1.37 → 0.0 1.21 → 0.0

1.5 0.82 1.16 → 0.0 0.81 → 0.0 0.82 1.22 → 0.0 0.81 → 0.0

divergence 1.65 0.90 1.11 → 0.0 0.73 → 0.0 0.88 1.19 → 0.0 0.77 → 0.0

Flutter

1.98 1.00 1.13 0.70 1.02 1.09 0.66

1.29 0.93 0.52

1.85 0.89 0.36

Using the viscous LHC method, the influences of varying ρs vs. ρf , on the re-

duced static/dynamic divergence and flutter velocities are shown in Table 3.2. The

static divergence (i.e., deformation →∞ and k = 0), dynamic divergence (i.e., mean

deformation → ∞ and k → 0), and flutter (i.e., total damping=0 and k =constant)

boundaries are distinguished for different relative mass ratios. The results in Table
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3.2 show that the predicted reduced velocity (U), non-dimensional frequency ratio

(ω/ω∗
θ), and reduced frequency (k) are similar for cases with varying ρs or ρf .

3.3 FSI response

This section explains the detailed FSI response of the flexible foil under stable,

critical, and unstable conditions at the test points shown in Fig. 3.11.
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Figure 3.11: The test points used to demonstrate the detailed FSI response of flexible
foils in light and dense flow conditions. Also shown are the linear theory
flutter (via frequency domain solution method) and static divergence velocity
boundaries. The problem set-up is similar to the experiments by Woolston
and Castile (1951) for NACA 16-010 foil in Freon 21 and air mixtures with
fixed ρs = 97.13kg/m3.

The predicted time-histories of the bending and twisting deformations at the test

points (shown in Fig. 3.11) using the time domain (TD) inviscid FC and viscous LHC

method formulation are shown in Figs. 3.12 and 3.13; the flutter velocity, Uf , shown

in the labels therein corresponds to that computed by the viscous LHC method. As

can be seen from Fig. 3.7, the predicted flutter velocities are somewhat different

for the viscous LHC computations and the inviscid FC computations due to viscous

and nonlinear FSI effects. When the inflow velocity is less than the flutter velocity
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Figure 3.12: Time-histories of bending and twisting deformations for NACA16-010 foil at√
µ = 1.0 and

√
µ = 1.98. t = tωθ is the non-dimensional time,

√
µ is varied

by fixing ρs = 97.13kg/m3 corresponding to the balsa wood NACA16-010 foil
used by Woolston and Castile (1951), but varying ρf .
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Figure 3.13: Time-histories of bending and twisting deformations for NACA16-010 foil at√
µ = 2.79 and

√
µ = 4.18. t = tωθ is the non-dimensional time,

√
µ is varied

by fixing ρs = 97.13kg/m3 corresponding to the balsa wood NACA16-010 foil
used by Woolston and Castile (1951), but varying ρf .
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Figure 3.14: Time-histories of lift and moment coefficients for NACA16-010 foil at
√
µ =

1.0 and
√
µ = 1.98. t = tωθ is the non-dimensional time,

√
µ is varied by

fixing ρs = 97.13kg/m3 corresponding to the balsa wood NACA16-010 foil
used by Woolston and Castile (1951), but varying ρf .
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Figure 3.15: Time-histories of lift and moment coefficients for NACA16-010 foil at
√
µ =

2.79 and
√
µ = 4.18. t = tωθ is the non-dimensional time,

√
µ is varied by

fixing ρs = 97.13kg/m3 corresponding to the balsa wood NACA16-010 foil
used by Woolston and Castile (1951), but varying ρf .
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(U < Uf ) (as in Figs. 3.12(a), (b) and 3.13(a), (b)), the foil is predicted to be stable

by both the inviscid and viscous simulations, where the amplitudes of the bending

and twisting vibrations decrease with time and eventually approach zero because of

a net positive total damping.

When the inflow velocity is equal to the flutter velocity (U = Uf ), the amplitudes

of the bending and twisting vibrations remain the same in time due to net zero

total damping; this is close to the cases shown in Figs. 3.12(d) and 3.13(c),(d)

for the viscous LHC simulations. When the inflow velocity is much greater than

the flutter velocity (U > Uf ), as shown in Figs. 3.12(c), (e), (f) and 3.13(e), (f),

the system becomes unstable and gets into dynamic divergence; the amplitudes of

the bending and twisting vibrations increase with time because the total damping

becomes negative. In addition, as shown in Fig. 3.11, the points shown in Figs.

3.12(e), (f) and 3.13(e), (f) are not only above the flutter boundary, but also the

static divergence boundary, and hence are labeled as dynamic divergence since obvious

fluctuations could be observed. The mean deformation increases with time, and the

oscillation frequency goes toward zero as deformation increases.

As shown in Fig. 3.7, for
√
µ < 1, the foil will encounter static divergence before

flutter. Divergence is possible when the EA of the hydrofoil is downstream of the

center of pressure (CP), and when the fluid disturbing force is equal to or exceeds the

solid restoring moment. As is evident via Eq.(3.3), the critical divergence velocity

decreases with increasing ρf and e. However, even for the case of e = 0, where the

EA coincides with the aerodynamic center (AC), divergence may still occur, as shown

in Besch and Liu (1971) and our viscous FSI prediction shown in Fig. 3.8, because

viscous effects and flow separation cause the CP to move from the AC. Also note

that for
√
µ < 3, where the viscous forces are relatively more important, the results

shown in Figs. 3.12 and 3.13 suggest that viscous effects may not delay flutter. In

this regime, as shown in Figs. 3.12 and 3.13(a), (c), and (e), the magnitudes of the
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bending and twisting deformations obtained using the viscous LHC simulations are

greater and have a slower rate of decay than the inviscid FC simulations, due to the

nonlinear viscous FSI effect caused by the higher fluid density. Consequently, the

predicted flutter velocity using the viscous LHC simulations is lower than the inviscid

FC simulations, as will be shown later in Fig. 3.18. However, for
√
µ > 3, the results

in Fig. 3.7 show that viscous effects help to delay flutter. For instance, the inviscid

FC simulations predict a lower flutter velocity than the viscous LHC simulations,

which is evident by the increasing deformation amplitudes with time predicted by

the inviscid FC method in Fig. 3.13(d), i.e. U > Uf , while the viscous LHC method

shows approximately constant displacement amplitude in time.

The time-histories of the lift coefficient (CL) and moment coefficient (CM) for var-

ious relative mass ratios for the system under stable, critical, and unstable conditions

are shown in Figs. 3.14 and 3.15. Note that the lift coefficients follow the same trend

with the bending deformations; similarly, the moment coefficients (defined as positive

counterclockwise about the EA) follow the same trend with the twisting deformations.

It should be noted in Fig. 3.14 that for all the cases except Fig. 3.14(a), the results

are obtained using ∆t = 4 × 10−4 s. For case shown in Fig. 3.14 (a) ∆t = 8 × 10−4

s is used in order to avoid numerical noises due to the relatively large period. For

√
µ ≤ 1, the CL and CM predictions obtained using the viscous LHC simulations

show high frequency noise introduced by the very small time-step size compared to

the large natural period. The large natural period is a result of the higher added mass

with higher ρf . To avoid this artificial noise due to numerical errors, the simulation

shown in Fig. 3.14(a) for the lift and moment coefficients with U = 0.3 and
√
µ = 1.0

was obtained using ∆t = 8× 10−4 s.

Figure 3.16 illustrates the predicted time-history of the bending and twisting de-

formations along with selected snapshots of the predicted streamlines and vorticity

contours obtained from the viscous LHC simulations for a hydrofoil at its critical
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flutter velocity of U = 1.0 for
√
µ = 1.98, for the balsa wood NACA16-010 foil used

by Woolston and Castile (1951). The heavy black horizontal lines on the vorticity

contour plot indicate the undeformed vertical position of the hydrofoil trailing edge

(TE). The deformations are relatively small because of the relatively high stiffness

of the model-scale foil. Nevertheless, the foil is observed to undergo near constant

amplitude oscillations in plunge and pitch at the flutter velocity, as illustrated in Fig.

3.16.
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Figure 3.16: (Left) Time-histories of the bending and twisting deformation and (Right)
the predicted vorticity contour with sample streamlines, for the balsa wood
NACA16-010 foil used by Woolston and Castile (1951) at its flutter veloc-
ity (U = 1.0) with

√
µ = 1.98 (ρf = 2.21kg/m3 and ρs = 97.13kg/m3) and

Re=1.94×106. t = tωθ is the non-dimensional time. The heavy black horizon-
tal lines on the non-dimensional vorticity ($ = ωb/U) contour plot indicate
the initial vertical position of the foil trailing-edge.

Similarly, Fig. 3.17 shows the predicted deformation time-histories and corre-

sponding snapshots of the streamline and vorticity contours for a hydrofoil at the

divergence velocity for
√
µ = 1.98 with U = 1.7. Since U = 1.7 corresponds to the

divergence velocity, the amplitudes of both the bending and twisting motion increase

monotonically with time.
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Figure 3.17: (Left) Time-histories of the bending and twisting deformation and (Right)
the predicted vorticity contour with sample streamlines, for the balsa wood
NACA16-010 foil used by Woolston and Castile (1951) at its divergence ve-
locity (U = 1.7) with

√
µ = 1.98 (ρf = 2.21kg/m3 and ρs = 97.13kg/m3)

and Re=3.24 × 106. t = tωθ is the non-dimensional time. The heavy black
horizontal lines on the non-dimensional vorticity ($ = ωb/U) contour plot
indicate the initial vertical position of the foil trailing-edge.

Note that the vorticity contours in Figs. 3.16 and 3.17 show consistent thin trailing

wake sheets; this is because k < 1, which is consistent with the wake patterns reported

in Munch et al. (2010).

3.4 Total damping coefficient and vibration frequency

In this study, the flutter boundary is determined as the critical speeds when

the total bending (or twisting) damping coefficient, ζT,h (or ζT,θ), is projected to be

zero. To illustrate this process, the predicted total bending and twisting damping

coefficients, ζT,h and ζT,θ, as a function of the reduced velocity (U) are shown in Fig.

3.18 along with the measured flutter velocity values reported by Woolston and Castile

(1951).

As noted earlier, when ζT > 0, the deformations will decrease with time, so the
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Figure 3.18: (a) Total bending damping ratio (ζT,h) and (b) total twisting damping ratio
(ζT,θ) as function of the reduced velocity (U) at different relative mass ratios√
µ. In this plot,

√
µ is varied by fixing ρs of 97.13 kg/m3 corresponding to

the balsa wood NACA16-010 foil used by Woolston and Castile (1951), but
varying ρf . The filled symbols correspond to the experimental measurements,
the dashed lines with open symbols correspond to inviscid FC simulations, and
the solid lines with open symbols correspond to viscous LHC simulations.

system is stable. When ζT < 0, the deformations will increase with time, so the

system is unstable. The flutter velocities reported in Fig. 3.7 correspond to the

projected critical speed in Fig. 3.18 at which either ζT,h = 0 or ζT,θ = 0, whichever is

earlier, although the two values are very close.

As shown in Fig. 3.18, the flutter velocity predicted by the viscous LHC method

is higher than the velocities predicted by the inviscid FC method for
√
µ > 3, but

the opposite is true for
√
µ < 3. Moreover, for all the cases shown, the flutter veloci-
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ties predicted by the viscous LHC method are closer to the experimentally measured

values than those predicted by the inviscid FC method. It should be noted that the

current inviscid and viscous simulations assume the structural damping coefficients,

ζs,h and ζs,θ, to be zero (for simplicity), which contribute to the slight under predic-

tion of the flutter velocities predicted by the viscous LHC method compared to the

experimentally measured values.

Figure 3.19 shows the predicted system bending and twisting vibration frequencies

(fh = fh,LHC/fθ and f = fθ,LHC/fθ) as a function of the reduced velocity (U) for

three different relative mass ratios. The predictions shown there are obtained using

the viscous LHC method. It should be noted that results for the
√
µ = 1 case are

not shown in Fig. 3.19, because in that case divergence occurred prior to flutter.

Note that although the measured flutter velocities were reported for multiple cases,

the measured flutter frequency was only reported for the
√
µ = 4.18 case in Woolston

and Castile (1951). Additional comparisons of the predicted and measured non-

dimensional flutter frequencies are shown in Fig. 3.9, which have different
√
µ values

than the ones shown here. The results show that the viscous LHC simulations are in

good agreement with the measured values.
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Figure 3.19: Non-dimensional (a) bending frequency (fh = fh,LHC/fθ) and (b) twisting
frequency (f = fθ,LHC/fθ) for NACA16-010 foil at different relative mass
ratios (

√
µ) as function of the reduced velocity (U) at the various simulation

points shown in Fig. 3.11.
√
µ is varied by fixing ρs of 97.13 kg/m3 corre-

sponding to the balsa wood NACA16-010 foil used by Woolston and Castile
(1951) but varying ρf . Also shown are the measured flutter velocity (as shown
by the vertical dot lines) and frequency (black filled square) from Woolston
and Castile (1951). The experimental frequencies for different

√
µ are also

shown in Fig. 3.9. The predicted system bending and twisting vibration fre-
quencies (fh,LHC and fθ,LHC) from the viscous LHC method are noted by
the open symbols. The predicted flutter bending and twisting frequencies are
noted by the filled symbols.

53



CHAPTER IV

Flow-induced vibrations

As stated earlier, the fluid-structure interaction responses of a hydrofoil become

more important with higher fluid loads. Hence, the results presented below demon-

strate the flow-induced vibration response of a cantilevered flexible NACA0015 poly-

acetate (POM) hydrofoil. Section 4.1 presents the NACA0015 model setup of both

the numerical and experimental simulations for the flow-induced vibration response.

Section 4.2 and Section 4.3 present the influence of the reduced velocity and angle

of attack, respectively, on the flow-induced vibration of the flexible NACA0015 hy-

drofoil. The times histories of bending and twisting deformations, total loss factors,

wake structures, and vortex shedding frequencies of the flexible hydrofoil are shown

in this section to explain the flow-induced vibrations. To reduce clutter in the graphs,

only viscous FSI results are shown in this chapter and the predictions are compared

with experimental measurements from the French Naval Academy Research Institute

(IRENav).

4.1 NACA0015 model setup

Numerical simulations are performed on a cantilevered flexible NACA0015 poly-

acetate (POM) hydrofoil, where the key geometric, fluid, and material parameters

are listed on the right most column in Table 4.1. The chord length (c) is 0.1 m and a
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span length (s) is 0.192 m. To examine the trend of the in-water damping character-

istic of flexible hydrofoils with varying µ and U , current experimental and numerical

viscous FSI models are compared with published experimental measurements (Blake

and Maga, 1975; Reese, 2010) and the inviscid theory (Blake and Maga, 1975). Table

4.1 shows a comparison of the key parameters for the current POM NACA0015 foil

with the hydrofoils tested by Blake and Maga (1975) and by Reese (2010). Note that

the current NACA0015 hydrofoil has a much lower relative mass ratio (
√
µ) and a

much higher reduced velocity (U) because of the lower density and elastic modulus

of POM compared to the stainless steel hydrofoil used in Blake and Maga (1975) and

the aluminum hydrofoil used in Reese (2010).

Table 4.1: Experimental and numerical parameters of the current POM NACA0015
hydrofoil, as well as the stainless steel and aluminum hydrofoils tested by
Blake and Maga (1975) and Reese (2010), respectively.

Model Blake & Maga(1975)
Exp.

Reese(2010) Exp. Current
Exp.& Num.

Material Stainless Steel Aluminum POM

Foil shape Bullet NACA66 NACA0015
√
µ [-] 0.82 0.47 0.44

αo [deg] 0 -4, 0, 4, 10 2, 8, 15, 20

Re [-] 1× 105 ∼ 5× 105 5.6× 104 ∼ 5.6× 105 3× 105 ∼ 12× 105

U [-] 0.007 ∼ 0.04 0.004 ∼ 0.04 0.02 ∼ 0.1

a [-] 0 0 0

xθ [-] N/A N/A -0.16

rθ [-] N/A N/A 0.44

AR [−] 7.26 2 1.92

s [m] 0.508 0.1 0.192

c [m] 0.07 0.05 0.1

ζs,h [%] 0.1 (assumed) 0.2 (assumed) 2 (assumed)

ζs,θ [%] 0.1 (assumed) 0.2 (assumed) 2 (assumed)

fh [Hz] 114 319 81

fθ [Hz] 897 1549 390

f∗h [Hz] 79 163 33 ∼ 37

f∗θ [Hz] 678 869 182 ∼ 202
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4.1.1 NACA0015 mesh setup

Symmetry 𝟔𝒄 𝟏𝟐𝒄 

Inlet 

Outlet 

𝟏𝟎𝒄 

𝑷𝟎 

𝑼𝟎 

No slip 

Symmetry 

Figure 4.1: NACA0015 CFD (medium) mesh with 4.8× 105 nodes and 9.1× 105 elements
and prescribed boundary conditions.

The NACA0015 CFD mesh is shown in Fig. 4.1. An unstructured mesh is used

everywhere, apart from the hydrofoil surface. A structured boundary layer mesh is

used near the foil surface, which satisfied y+ ≈ 1. To capture the flow details, the

mesh is refined near the foil’s leading-edge (LE), trailing-edge (TE), and the wake

region. The boundary conditions of the CFD mesh domain are:

• uniform inlet boundary condition with 3% turbulence intensity at the left edge

of the domain,

• prescribed pressure boundary condition at the right edge of the domain,

• symmetry boundary conditions at the top and bottom edges, and

• no-slip and no penetration boundary conditions at the foil interface.

Numerical viscous simulations are only performed for the NACA0015 POM hydro-

foil. At each time-step, the mesh elements are deformed to conform to the hydrofoil

geometry according to the foil motions obtained by using the viscous loose hybrid
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coupled (LHC) method. (Readers should refer to ANSYS-CFX (2011) for details

about the mesh deformation algorithm.) The numerical simulations of the flexible

hydrofoil are initialized from the steady-state solution of flow around a stationary

hydrofoil. All the CFD simulations assume the flow to be fully turbulent and are

performed at Re = 3 × 105 ∼ 1.2 × 106 and U = 0.02 ∼ 0.1 (by varying the inflow

velocity, U) with geometric angles of attack (αo) of 2◦, 8◦, 15◦, and 20◦ with zero

initial twisting and bending deformations.

4.1.2 Numerical mesh and time step size convergence studies for the

NACA0015 POM hydrofoil

Numerical mesh and time step size convergence studies were conducted for the

flexible NACA0015 POM hydrofoil at αo = 8o, U = 0.05, and Re = 6× 105.
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Figure 4.2: Mesh convergence study of (a) bending deformations and (b) twisting deforma-
tions for the flexible NACA0015 POM hydrofoil at ∆t = T ∗

h/480 with αo = 8o,√
µ = 0.44, U = 0.05, and Re = 6 × 105. Note that “coarse mesh” has

2.9 × 105 nodes and 2.7 × 105 elements, “medium mesh” has 4.8 × 105 nodes
and 9.1 × 105 elements, and “fine mesh” has 9.2 × 105 nodes and 18.2 × 105

elements. T ∗
h = 1/f∗h is the first in-water natural bending period of the flexible

hydrofoil and t = tωθ is the non-dimensional time.
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For the mesh convergence study, Fig. 4.2 compares the predicted time-histories

of the bending and twisting deformations of the hydrofoil at ∆t = T ∗
h/480 with three

different mesh sizes (i.e., “coarse mesh”: 2.9 × 105 nodes and 2.7 × 105 elements,

“medium mesh”: 4.8× 105 nodes and 9.1× 105 elements, and “fine mesh”: 9.2× 105

nodes and 18.2 × 105 elements). Note that T ∗
h = 1/f ∗

h is the first in-water natural

bending period of the flexible hydrofoil and t = tωθ is the non-dimensional time.

The results in Fig. 4.2 show that the predicted time-histories of the bending and

twisting deformations with the medium mesh were sufficiently close to the predictions

evaluated with the fine mesh. Therefore, the medium mesh was used to calculate the

viscous FSI responses for the results shown in the rest of this thesis.
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Figure 4.3: Time step size convergence study of (a) bending deformations and (b) twisting
deformations for the flexible NACA0015 POM hydrofoil on the “medium mesh”
(4.8 × 105 nodes and 9.1 × 105 elements) with αo = 8o,

√
µ = 0.44, U = 0.05,

and Re = 6 × 105. Note that T ∗
h = 1/f∗h is the first in-water natural bending

period of the flexible hydrofoil and t = tωθ is the non-dimensional time.

For the time step size convergence study, Fig. 4.3 compares the predicted time-

histories of the bending and twisting deformations of the hydrofoil with three different

time-step sizes, ∆t = T ∗
h/240, T ∗

h/480, and T ∗
h/720, (i.e., ∆t = ∆tωθ=0.33, 0.16, and

0.11, for a flexible hydrofoil with the “medium mesh” with αo = 8o, U = 0.05, and
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Re = 6× 105). Note in Fig. 4.3 that the predictions obtained using the two smallest

time-steps were consistent. Consequently, all the simulations shown next used a time-

step size of ∆t = T ∗
h/480. Comparisons of the numerical predictions and experimental

measurements will be shown later in sections 4.2 and 4.3.

4.1.3 Experimental model for the NACA0015 POM hydrofoil

Experimental measurements were carried out in a recirculation cavitation tunnel

at the French Naval Academy Research Institute (IRENav). The test section was 1

m long and had a 0.192 m× 0.192 m square section, as shown in Fig. 4.4(a).

The facility provided regulated velocities ranging from 2 m/s to 12 m/s, and

regulated pressures from 30 mbar to 3 bars. The tunnel turbulence intensity measured

by Laser Doppler Velocimetry (LDV) at the center of the test-section was 2%. A

flexible, cantilevered, rectangular hydrofoil with a NACA0015 section geometry with

a chord of c=0.1 m and a span of s=0.192 m was used. The hydrofoil was made of

POM, with an elasticity modulus of Es=3×109 Pa, Poisson’s ratio of νs= 0.35, and

solid density of ρs=1420 kg/m3.

The foil was clamped at its root onto a steel cylinder, while its tip section was

free, with a clearance of 1 mm between the free tip and the vertical wall, which could

induce secondary flow at the large angle of incidence. Notice that the small clearance

was used to minimize tip loss so the hydrodynamic response is approximately two-

dimensional (2D). As shown in Fig. 4.4(b), the foil was mounted horizontally in the

tunnel test section and was connected to an electric drive to change its undeformed

angle of attack (αo) according to a prescribed value. The rotation center, elastic axis

(EA), was at the mid-chord.

Structural vibrations were measured using two Polytec R© LDVs: PSV-400 for

scanning and PDV-100 for reference, using a class II HeNe laser of wavelength of

633 nm as shown in Figs. 4.4(b) and 4.4(c). The first laser measured the vibration
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Figure 4.4: The French Naval Academy Research Institute (IRENav) experimental setup:
(a) cantilevered hydrofoil inside the cavitation tunnel, (b) foil mounting and
Laser Doppler Velocimetry (LDV) setup, (c) photo of the two Laser Doppler
Velocimetries (LDV) setup, and (d) pressure side (bottom) view of the can-
tilevered NACA0015 POM hydrofoil: the hydrofoil is fixed on the left end,
and free on the right end, where there is a 1mm gap between the foil tip and
the tunnel wall; flow goes from bottom to top. Also shown are the scanned
measurement points (SP) and fixed reference point (RP) near the free end of
the hydrofoil.

velocity on a reference point (RP), which was set at the mid-chord near the free end of

the hydrofoil as shown by the red dot in Fig. 4.4(d). The second laser was equipped

with a scanning system based on mirror motions, which could provide sequential

vibration measurements over a user-defined predefined grid, as demonstrated via the

green dots in Fig. 4.4(d). The measurements were optimized for a horizontal plane
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surface subjected to vertical vibrations; the vibration velocities were captured with

sensitivities ranging from 10 to 1000 mm/s/V . The system provided the Fourier

transform of the vibration velocity signal for each measurement point for frequencies

up to 40 kHz. The resultant velocity spectra were averaged using a user-defined

number of acquisitions; specifically, the results shown in this work were computed

by averaging 512 acquisitions per each measurement point. The frequency resolution

for vibration measurements was ∆f=0.625 Hz. The phase information (throughout

the scan between the two measurement points) was preserved by utilizing the other

reference velocimetry laser. The two laser setup made it possible to retrieve the

deflection shape at a given frequency, and therefore to identify the natural frequencies

of the structure and the corresponding vibration mode shapes. In order to focus on

the first bending and twisting modes, two points were selected in the vicinity of the

free foil tip, one close to the leading edge and one close to the trailing-edge (TE),

while the reference measurement point was at the foil mid-chord near the free end

of the hydrofoil, as shown in Fig. 4.4(d). These points were covered with reflective

patches to avoid any light-absorption effects due to the hydrofoil material and to

improve the signal to noise ratio. The hydrofoil vibrations were measured on the foil

pressure side through the transparent bottom wall of the tunnel test section, while

the velocimetry scanning head was held fixed to the ground.

Several measurements were carried out. The first set of measurements were con-

ducted by measuring the mean spectral response of the foil subject to a series of

impulses generated by an electrodynamic shaker both in-air and in-still-water (i.e.,

U= 0 m/s), which are shown in Fig. 4.5.

In Fig. 4.5, the first mode corresponds to primarily bending (fh, f
∗
h), and the

second mode corresponds to primarily twisting (fθ, f
∗
θ ). The third mode corresponds

to the second bending natural frequency (fh,2, f ∗
h,2). According to the measurements,

the first in-air natural bending and twisting frequencies were fh = 81 Hz and fθ = 390
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Figure 4.5: The French Naval Academy Research Institute (IRENav) experimental vibra-
tion frequency response of the NACA0015 POM hydrofoil for shock impulses
in-air and in-still-water. Note that fh, fθ, fh,2 are the first in-air natural bend-
ing frequency, the first in-air natural twisting frequency, and the second in-air
natural bending frequency, receptively. f∗h , f∗θ , and f∗h,2 are the first in-water
natural bending frequency, the first in-water natural twisting frequency, and
the second in-water natural bending frequency, receptively. ω = ω/ωθ is the
non-dimensional frequency.

Hz; the first in-still-water natural bending and twisting frequencies were f ∗
h = 34 Hz

and f ∗
θ = 184 Hz. It should be noted that during experiments, small disparities

could occur on the measured frequencies due the repeatability of the assembly and

disassembly of the mechanical mounting system sustaining the hydrofoil. Based on

repeated measurements under the same conditions, the uncertainty in the frequency

measurement was approximately 2%. The experimental series consisted of measuring

the vibration response of the foil subject to various flow velocities and different angles

of attack (U = 0.02, 0.03, 0.04, 0.05; Re = 3, 4, 5, 6× 105; αo= 0, 2, 4, 6, 8o).

Examples of the variation of the frequency spectra with varying inflow velocities at

αo = 8o and varying angles of attack at U = 0.05 are shown in Fig. 4.6. In general, the

amplitude of the frequency spectra increased with increasing flow velocity. It should

be noted that the in-still-water vibration response (U = 0) in Fig. 4.6 is scaled down,
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Figure 4.6: Examples of the variation of the measured frequency spectra for the NACA0015
POM hydrofoil with (a) varying inflow velocity at αo = 8o and (b) varying angle
of attack at U = 0.05. Note that ω = ω/ωθ is the non-dimensional frequency.

as it was obtained using an electrodynamic shaker, while the in-flowing-water cases

(U > 0) correspond to natural flow-induced vibrations. The results in Fig. 4.6(a)

show that the first in-water natural bending frequency was insensitive to variations

in the inflow velocity, but the first in-water natural twisting frequency increased with

the inflow velocity. Fig. 4.6(b) indicates that the in-water natural frequencies varied

slightly with the angle of attack (αo), but the variation was non-monotonic and was

much smaller than the variations observed in Fig. 4.6(a) for varying U .

4.1.4 Validation study with other experimental measurements for the

NACA0015 hydrofoil

To check the validity of the current experimental measurements (by the French

Naval Academy Research Institute) and numerical predictions, the measured and

predicted lift coefficient (CL), drag coefficient (CD), and moment coefficient (CM)

with varying angles of attack for a rigid NACA0015 hydrofoil are compared against

the published experimental results (Jacobs and Sherman, 1937) in Fig. 4.7. The setup
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of the rigid NACA0015 hydrofoil in the current steady is the same as presented in

section 4.1.3, but the foil is made of stainless steel and the axis of rotation was at

0.25c from the foil’s LE. Note that Jacobs and Sherman (1937) used a NACA0015

airfoil with AR = 6 while the current experiments used a NACA0015 hydrofoil with

AR = 1.92. Figure 4.7 also includes the predicted lift coefficients from the inviscid

thin-airfoil theory given in Eq. (4.1).

CL = 2παo (4.1)

The theoretical steady-state drag coefficients given in Fig. 4.7(b) were calculated

using Eq. (4.2), where CDo is the skin friction drag coefficient based on 1/7 power

law, and CDi is the induced 100% suction drag coefficient.

CD = CDo + CDi = 0.0576Re−1/5 + C2
L/(πAR) (4.2)

The theoretical moment coefficients at the aerodynamic center, CMo,AC , given in

Fig. 4.7(c) are zero because the inviscid theory assumes the center of pressure (CP)

to be located at the AC.

As shown in Fig. 4.7, the current experimental and numerical results agree well

with experimental results of Jacobs and Sherman (1937) at approximately the same

Reynolds number (Re).

In the current experiments conducted by the French Naval Academy Research

Institute (IRENav), the hydrodynamic forces were measured on a rigid (i.e., stainless

steel) hydrofoil mounted in a 3-component hydrodynamic balance measuring lift, drag

and moment. In that case, the axis of rotation was located at 0.25c from the leading-

edge (LE). Each data acquisition was for about 10 s with a sampling frequency of

1 kHz. To ensure fully turbulent flow, a roughness strip was placed close to the

foil leading edge. Taking into account the mounting system, the uncertainty in the
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Figure 4.7: (a) CL vs. αo, (b) CL vs. CD, and (c) CMo,AC at the aerodynamic center
(AC) vs. CL plots for a rigid NACA0015 foil and at steady-state. The aspect
ratio (AR = s/c) was 6 for the experiments by Jacobs and Sherman (1937)
and was 1.92 for the current experiments by the French Naval Academy Re-
search Institute (IRENav). The numerical simulation is based on a 2D uRANS
simulation.

angle of attack was about ±0.15o. Taking into account the tunnel regulation system,

the uncertainties of the flow rate computed from pressure measurements (Fig. 4.4(a))

were±0.02m/s. The experimental accuracy of the balance obtained from calibrations

was ±5 N for the lift, ±1.6 N for the drag and ±1 Nm for the moment.

The results in Fig. 4.7 show that the slopes of the measured and predicted lift

coefficients are less than those of inviscid theory. The decrease in slope is caused

by the development of a small separated region near the foil’s trailing-edge (TE),

which expands toward the foil’s leading-edge (LE) as the angle of attack increased

until the flow was fully separated, i.e. stalled, which occurred at αo = 16o − 18o

for the NACA0015 depending on Re. It is noteworthy that the moment coefficient

also changed with the development of the trailing-edge vortex (TEV) because of the

change in lift and the movement of the center of pressure towards the mid-chord. At
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lower Re regions (i.e., Re < 6×105), the numerical results overestimated the CD and

CM because the viscous simulation assumed fully turbulent flow, but the actual flow

regime might have been transitional.
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Figure 4.8: Variation of the time-histories of (a) bending deformations and (b) twisting
deformations with varying inlet turbulence intensity on the flexible NACA0015
POM hydrofoil at αo = 8o,

√
µ = 0.44, U = 0.05, and Re = 6× 105. Note that

t = tωθ is the non-dimensional time.

The inlet turbulence intensity is defined as the root-mean-square (RMS) value of

the inlet velocity fluctuations divided by the mean inlet velocity. The experimental

and numerical setups differ in the inlet turbulence intensity. For the experimental

study, the inlet turbulence intensity of 2% is measured at the inlet of the test section,

which is about 350 mm from the hydrofoil’s leading-edge. For the numerical simu-

lation, on the other hand, the inlet turbulence intensity is set at 3%, as the inlet is

set at 550 mm from the hydrofoil’s leading-edge. The turbulence intensity of uRANS

simulations models generally decreases in the stream-wise direction due to numerical

diffusions; Therefore, the inlet turbulence intensity is set to be 3% at the left end

of the CFD domain so that at the leading-edge (LE) of the hydrofoil, the numerical

turbulence intensity becomes similar to the measured value of 2%. To check the in-
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Figure 4.9: Variation of the predicted frequency spectra (ω = ω/ωθ) of the (a) bending
deformations and (b) twisting deformations with varying inlet turbulence in-
tensity for the flexible NACA0015 POM hydrofoil at αo = 8o,

√
µ = 0.44,

U = 0.05, and Re = 6× 105. Note that the FFT window size is t = 0− 2500.

fluence of inlet turbulence intensity, Figs. 4.8 - 4.9 show the predicted time-histories

and frequency spectra, respectively, of bending and twisting deformations for pre-

scribed inlet turbulence intensity of 2% and 3%, respectively. The results show that

the difference between 2% and 3% of the inlet turbulence intensity has a practically

negligible influence on the numerical predictions.

4.1.5 Prediction of the total loss factor

The total loss factor (also called Q-factor in the acoustic literature) is equal to

two times the total damping coefficient (i.e., ηT=2ζT ) and is the sum of the solid loss

factor (ηs) and the fluid loss factor (ηf ) .

ηT = ηs + ηf . (4.3)
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For the current NACA0015 POM hydrofoil, the solid damping coefficients for both

bending and twisting are assumed to be 2%, and hence ηs,h = ηs,θ = 0.04. The

theoretical inviscid, uncoupled mode fluid loss factors are calculated following Blake

and Maga (1975), which was derived based on Theodorsen (1935)’s fluid loads, as

shown in Eqs. (4.4) - (4.5).

ηf,h =
2C(k)U
ω∗
h

ωθ

(
µ+ 1

) , (4.4)

ηf,θ =
d[2C(k)e− 1]U

ω∗
θ

ωθ

[
µr2

θ + (
1

8
+ a2)

] . (4.5)

It should be noted that Eqs. (4.4) - (4.5) neglected the flow-induced bend-twist

coupling terms (i.e., off-diagonal terms in MT and CT in Eqs. (2.6) and (2.7)).
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Figure 4.10: Illustration of the mobility peak power down method used to calculate the
total loss factors based on the frequency spectrum.

The mobility peak power down method by Cremer et al. (2005), Eq. (4.6), was

used to calculate the total loss factor (ηT = 2ζT ), by processing the frequency spectra

of both the experimental measurements and viscous simulations. Note that the exper-

imental results by IRENav only have the frequency spectra, therefore the logarithmic
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decrement method cannot be used in this section. The mobility peak power down

method used to calculate the total loss factor is shown in Eq. (4.6), and in Fig. 4.10.

ηT =
f2 − f1

fi
√
p− 1

, (4.6)

where p is the number of the reduction of the mobility. In this study, p = 5 was used

when processing both experimental and viscous FSI results.

In Eq. (4.6) and Fig. 4.10, fi is the frequency of interest (e.g. bending and twisting

natural frequencies, or the vortex shedding frequency) with peak amplitude (i.e.,

|Apeak|). f1 and f2 correspond to the frequencies on the left and right, respectively,

at the amplitude |Amp| (i.e., “p”th mobility peak amplitude, on each side of fn) as

shown in Fig. 4.10. It should be noted that for p = 5, the
√

5-th amplitude reduction,

|Amp| = |Apeak|/
√

5.

4.2 Influence of the reduced velocity

Detailed variation of the time and frequency response with inflow velocity (as

reflected by the change in U = U/ωθb, the reduced velocity) will be shown in this

section.

4.2.1 Time-histories of the bending and twisting responses at pre-stall

conditions

Figure 4.11 shows the time-histories of the bending and twisting deformations

with reduced velocity (U = 0.02 ∼ 0.1, Re = 3 ∼ 12×105) on the flexible NACA0015

POM hydrofoil (
√
µ = 0.44) at αo = 8o. The results in Fig. 4.11 indicate that the

amplitudes of bending and twisting deformations increase with U before the stall

angle. It should be noted that αeff = αo − θ and θ < 0, so αeff > αo because flow

induces a clockwise moment as the center of pressure (CP) is upstream of the elastic
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Figure 4.11: Variation of the predicted time-histories of (a) bending deformations and (b)
twisting deformations with varying reduced velocity (U = 0.02 ∼ 0.1, Re =
3 ∼ 12 × 105) on the flexible NACA0015 POM hydrofoil (

√
µ = 0.44) at

αo = 8o. Note that t = tωθ is the non-dimensional time.

axis (EA) prior to stall. Stall occurs when αeff = 16o ∼ 18o for Re = 5 ∼ 12 × 105,

based on the rigid NACA0015 results shown in Fig. 4.7(a).

4.2.2 Frequency spectra of the bending and twisting responses at pre-

stall conditions

Figure 4.12 presents the predicted and measured variation of the frequency spectra

(via fast Fourier transform (FFT) method) of the bending and twisting deformations

with varying reduced velocity (U = 0.02 ∼ 0.1, Re = 3 ∼ 12 × 105) for the flexible

NACA0015 POM hydrofoil (
√
µ = 0.44) at αo = 8o. For all the cases, U was varied

by fixing ωθ and varying U . Generally, the predicted first in-water natural bending

and twisting frequencies are in good agreement with experimental measurements at

U = 0.02 and 0.05. It should be noted that experimental measurements are not

available for U > 0.05. Figure 4.12 shows that the viscous FSI model is able to capture

the frequency peaks corresponding to the natural bending and twisting frequencies
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Figure 4.12: Variation of the predicted and measured frequency spectra (ω = ω/ωθ) of
(a) bending deformations and (b) twisting deformations with varying reduced
velocity (U = 0.02 ∼ 0.1, Re = 3 ∼ 12×105) for the flexible NACA0015 POM
hydrofoil at αo = 8o. Note that the FFT window size is t = tωθ = 0 − 2500,
and experimental data were only available for U = 0.02− 0.05.

for the twisting deformation, and the natural bending frequency peak in the bending

deformation, but the predicted twisting frequency peak in the bending deformation

was much smaller than the measured value. In addition, the numerical model could

not capture a third frequency peak that was observed in the experiment because

it corresponded to the second bending mode (f ∗
h,2), as the current 2-DOF model is

designed to capture the first bending and the first twisting modes only.

Table 4.2 compares the predicted and measured first in-water natural bending and

twisting frequencies with varying reduced velocity (i.e., varying inflow velocity) based

on frequency spectra shown in Fig. 4.12 through the FFT method. In general, good

comparisons are observed between predictions and measurements.

The results shown in Figs. 4.6 and 4.12, as well as Table 4.2, suggest that while

the first in-water natural bending frequency is relatively insensitive to variations in U ,

the first in-water natural twisting frequency tends to increase with increasing reduced
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Table 4.2: Comparison of the predicted and measured first in-water natural bending
and twisting frequencies (fh&fθ in-air and f ∗

h&f ∗
θ in-water). It should be

noted that the numerical values with superscript “+” are computed using
Theodorsen (1935)’s approach as they correspond to the still-water condi-
tions.

fh =81 [Hz] U = 0 U = 0.02 U = 0.05 U = 0.07 U = 0.1

fθ =390 [Hz] Re=0×105 Re=3×105 Re=6×105 Re=9×105 Re=12×105

f∗h [Hz]
Exp. 34 36 36 N/A N/A

Num. 33+ 33 37 35 35

f∗θ [Hz]
Exp. 184 182 192 N/A N/A

Num. 190+ 184 195 199 202

velocity. The change of the first in-water natural twisting frequency with U is due to

the dependence of the fluid damping and fluid stiffness terms with the U , as shown

in Eqs. (2.7) and (2.8), and viscous FSI effects (see Chae et al. (2015b) for more

details). The resonance frequencies of a flexible hydrofoil are different between still-

water and flowing-water conditions, particularly for lightweight structures operating

at high speed in a dense fluid, i.e. cases with low µ and high U , because of changes

in fluid forces in phase with the acceleration, velocity, and displacement, respectively,

with operating conditions. The same is expected to be true for flexible mooring lines

and pipelines in-water (Klamo, 2007). In addition, the resonance frequencies may

change non-monotonically with U due to viscous effects on the hydrodynamic loads

caused by transition, flow separations, and shed vortices in the wake.

4.2.3 Total loss factors of the bending and twisting responses at pre-stall

conditions

Figures 4.13 - 4.14 show a comparison of the total loss factors (ηT ) obtained

using the viscous FSI solver, using inviscid, uncoupled mode linear theory given by

Blake and Maga (1975) in Eqs. (4.4) - (4.5), and with experimental measurements.

Experimental and linear theory results are shown for the current NACA0015 POM

hydrofoil as well as the stainless steel hydrofoil tested by Blake and Maga (1975) and
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the aluminum hydrofoil tested by Reese (2010). Viscous FSI simulations were only

conducted for the NACA0015 POM hydrofoil.
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Figure 4.13: Comparison of the measured and predicted total loss factor (ηT ) vs. reduced
velocity (U) for a (a) bending and (b) twisting deformations for the flexi-
ble NACA0015 POM hydrofoil. Also shown are experimental measurements
of a stainless steel bullet shape hydrofoil from Blake and Maga (1975) and
an aluminum NACA66 hydrofoil from Reese (2010), along with the theo-
retical prediction obtained using Eqs. (4.4) - (4.5) according to Blake and
Maga (1975). Note that viscous FSI simulations are only shown for the POM
NACA0015 hydrofoil.

The assumed solid damping values for the three different hydrofoils are shown in

Table 4.1. Although the geometry and natural frequencies of the stainless steel and

aluminum hydrofoils examined in the experimental studies by Blake and Maga (1975)

and by Reese (2010), respectively, are not the same as the current experimental and

numerical model for the POM NACA0015 hydrofoil, the trends of the variation of

total loss factor with the reduced velocity (U) and relative mass ratio (µ) are similar.
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Figure 4.14: Comparison of the measured and predicted total loss factor (ηT ) vs. reduced
frequency (k) for a (a) bending and (b) twisting deformations for the flexi-
ble NACA0015 POM hydrofoil. Also shown are experimental measurements
of a stainless steel bullet shape hydrofoil from Blake and Maga (1975) and
an aluminum NACA66 hydrofoil from Reese (2010), along with the theo-
retical prediction obtained using Eqs. (4.4) - (4.5) according to Blake and
Maga (1975). Note that viscous FSI simulations are only shown for the POM
NACA0015 hydrofoil.

Generally, the total loss factor increases with increasing U (and hence decreases with

k = ωb/U = ω/(ωθU)) and with decreasing solid-to-fluid added mass ratio (µ),

consistent with the trends as expected in Eqs. (4.4)-(4.5). Note that the current

NACA0015 POM hydrofoil has a higher U (more flexible) and lower
√
µ (lighter) than

the aluminum NACA66 foil tested by Reese (2010) and the stainless steel bullet shape

hydrofoil tested by Blake and Maga (1975), as shown in Table 4.1. It is noteworthy

that for most of the cases shown in Fig. 4.14, k > 1, so the wake pattern contains

distinct point vortices instead of a simple flat vortex sheet, as shown later in Fig.
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4.16. The inviscid, uncoupled mode linear theory equation provided in Blake and

Maga (1975) tends to over-predict the total loss factor for all three hydrofoils, and

the over-prediction increases with decreasing
√
µ. This is both because the linear

theory by Blake and Maga (1975) ignores the contribution of flow-induced bend-twist

coupling of the hydrodynamic loads (i.e., the off-diagonal terms in CT and KT in

Eqs. (2.7) and (2.8)) and because it ignores viscous effects. Note that e, d, and C(k)

will be different that assumed in linear inviscid theory because of the movement on

the center of pressure, the magnitude and frequency of the effective induced velocity

by the wake vortices, the change in shedding frequencies, and the resulting phase

lag caused by the wake vortices. The over-prediction of ηT by the inviscid theory

increases with increasing U and decreasing
√
µ, as shown in Fig. 4.13. This over-

prediction is not desirable since unexpected lower damping can accelerate fatigue,

lead to longer settling time, result in greater noise and vibration, and may lead to

earlier susceptibility to flutter and divergence (as observed in Chae et al. (2013)).

4.2.4 Comparison of the predicted rigid and flexible foil responses and

vortex shedding frequencies at post-stall condition

Figure 4.15 compares the time-histories of the predicted bending and twisting

deformations of the flexible NACA0015 POM hydrofoil (
√
µ = 0.44) with varying

reduced velocity (U = 0.02 ∼ 0.09, U = 3 ∼ 11m/s) at αo = 20o, post-stall. The

results in Fig. 4.15 show that the amplitudes of the predicted bending and twisting

deformations increase with U , even for the post stall angle case because of the higher

fluid loads.

Figure 4.16 shows snapshots of the vorticity contours of the flow around the rigid

and flexible NACA0015 hydrofoils with αo = 20◦ at different time instances (t = tωθ)

for the rigid foil (U = 0) with U= 3 m/s (i.e., Re = 3× 105), and for the flexible foil

(U = 0.02 ∼ 0.09) with U= 3 ∼ 11 m/s (i.e., Re = 3× 105 ∼ 11× 105). Notice that
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Figure 4.15: Variation of the predicted time-histories of (a) bending deformations and (b)
twisting deformations with different reduced velocities (U = 0.02 ∼ 0.09,
Re = 3 ∼ 11 × 105) for the flexible NACA0015 POM hydrofoil (

√
µ = 0.44)

at αo = 20o. Note that t = tωθ is the non-dimensional time.

only U is varied and fθ=390 Hz for the flexible foil. It should be noted that ωθ = 2πfθ

for the rigid foil is theoretically infinite. To allow consistent comparisons with the

flexible foil results, t for the rigid foil is defined using fθ= 390 Hz, the same as for

the flexible foil and the results in the left most column were obtained for U=3 m/s.

For the rigid foil (U = 0), von Kármán vortex type wake patterns are observed. The

vorticity patterns and vortex shedding frequencies are very different for the flexible foil

compared to the rigid foil because the bending and twisting deformations generate,

modify, and interact with the vorticity field around the foil, as shown in Fig. 4.16.

Figure 4.17 shows the wake patterns of rigid and flexible hydrofoils (
√
µ = 0.44)

at the steady-state condition with αo = 20◦ (the rigid foil (U = 0) with U= 3 m/s

(i.e., Re = 3× 105), and for the flexible foil (U = 0.02 ∼ 0.09) with U= 3 ∼ 11 m/s

(i.e., Re = 3×105 ∼ 11×105). When the hydrofoil becomes increasingly flexible, the

wake pattern changes from the“2S” mode to the “P+S” mode. Following Williamson

and Roshko (1988), the definition of the “S” and “P” mode correspond to single
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Figure 4.16: Snapshots of the non-dimensional vorticity ($ = ωb/U) contours of the flow
around the rigid and flexible NACA0015 hydrofoils with αo = 20◦ at different
time instances (t = tωθ) for the rigid foil (U = 0) with U= 3 m/s (i.e.,
Re = 3 × 105), and for the flexible foil (U = 0.02 ∼ 0.09) with U= 3 ∼ 11
m/s (i.e., Re = 3 × 105 ∼ 11 × 105). The horizontal lines pass through the
elastic axis of the undeformed hydrofoil. Notice that only U is varied and
fθ=390 Hz for the flexible foil. It should be noted that ωθ = 2πfθ for the
rigid foil is theoretically infinite. To allow consistent comparisons with the
flexible foil results, t for the rigid foil is defined using fθ= 390 Hz, the same
as for the flexible foil and the results in the left most column were obtained
for U=3 m/s.

vortex and pair vortices, respectively. There is a change in wake pattern because

the foil’s deformations modify the flow separation and wake patterns. For the “2S”

mode, a vortex is fed into the wake in each half cycle, which is known as Kármán

vortex shedding. The “P+S” mode has asymmetric wakes, consisting of a pair of

counter-rotating vortices as well as a solitary vortex; the solitary vortex is caused by

the bending motion, as it is locked in to the bending natural frequency.

Figure 4.18 shows the variation of frequency spectra by taking the FFT of the
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Figure 4.17: Wake patterns at the steady-state condition with αo = 20◦ for the rigid and
flexible NACA0015 hydrofoils (

√
µ = 0.44). Note that the horizontal lines

pass through the undeformed hydrofoils elastic axis and “S” means solitary
vortex, and “P” means pair of counter-rotating vortices.

time-histories of the predicted lift and moment coefficients. The red dashed line is

the primary vortex shedding frequency, fvs, and the blue dotted line is the first in-

water natural bending frequency, f ∗
h . The first in-water natural bending frequencies

varied slightly with inflow velocity, and are the same as those shown in Fig. 4.12

and Table 4.2. The results for the rigid hydrofoil show that the primary vortex shed-

ding frequency varies almost linearly with the inflow velocity, and the corresponding

reduced frequency is approximately kvs,rigid =2.5 (kvs,rigid = 2πfvs,rigidb/U). For the

flexible hydrofoil, however, the reduced vortex shedding frequency is not constant. In

particular, for U = 7 ∼ 9m/s (i.e., U = 0.06 ∼ 0.07), the vortex shedding frequencies

of the flexible hydrofoil snap into the first in-water natural bending frequency of the

flexible hydrofoil (i.e., lock-in), which lead to amplified vibrations and load fluctua-

tions. It should be noted that the FFT results show zero mean frequency, as the mean
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(b) CL of flexible foil (U=0.02-0.09)

0

20

40

60

80

100

2
4

6
8

10
12
0

0.02

0.04

 

f [Hz]
U [m/s] 

5 
× 

|C
M

|
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(d) CM of flexible foil (U=0.02-0.09)

Figure 4.18: Frequency spectra of the lift coefficients (CL) of the (a) rigid foil and (b)
flexible foil, and moment coefficients (CM ) of the (c) rigid foil and (d) flexible
hydrofoil at αo = 20◦ and U = 3 ∼ 11m/s (i.e., U = 0 ∼ 0.09). Note
that FFT window size is t = tωθ = 1000 − 2500 of the flexible foil to focus
on the established vortex shedding frequencies. The red dashed line is the
primary vortex shedding frequency, fvs, and the blue dotted line is the first in-
water natural bending frequency, f∗h . It should be noted that the dimensional
parameters are plotted as the natural frequency of the rigid foil is theoretically
infinite.
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values are subtracted from the data before taking the FFT. Thus, comparing the am-

plitudes from the FFT alone might be misleading. Nevertheless, the increase in the

amplitude of the fluctuation at lock-in can be observed in Fig. 4.18, and the change

in the trend of the vortex shedding frequency for the lock-in case with U = 7 ∼ 9

m/s (i.e., U = 0.06 ∼ 0.07) can be observed in Figs. 4.15, 4.16, and 4.18.
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Figure 4.19: Variation of the vortex shedding frequencies and natural frequencies with
inflow velocity (U = 3 ∼ 12 m/s, U = 0 ∼ 0.09) for the rigid and flexible
NACA0015 hydrofoil at αo = 20o. The shadowed blue region, U = 7 ∼ 9m/s
(i.e., U = 0.06 ∼ 0.07), corresponds to the lock-in condition, where the vortex
shedding frequency matches with the first in-water natural bending frequency.
This plot is a summary of the results shown in Fig. 4.18. It should be noted
that the dimensional parameters are plotted as the natural frequency of the
rigid foil is theoretically infinite.

Fig. 4.19 shows the variation of the predicted vortex shedding frequencies with

inflow velocity for both the rigid and flexible hydrofoils, as well as the predicted first

in-water natural bending frequency of the flexible hydrofoil. The results show that

before and after the lock-in region, the slope of the vortex shedding frequency versus

inflow velocity (U) curve for the flexible foil is similar to that of the rigid foil, but

the shedding frequency of the rigid foil is higher than that of the flexible foil. Hence,

the reduced shedding frequency of the rigid hydrofoil is kvs,rigid=2.5, which is higher
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than that of the flexible hydrofoil in the lock-off region with kvs,flexible=1.3 (kvs,flexible =

2πfvs,flexibleb/U). This is because the flexible hydrofoil’s bend-twist motion changes

the wake characteristics and stimulates earlier shedding. It should be noted that the

dimensional parameters are plotted in Figs. 4.18 - 4.19 as the natural frequency of

the rigid foil is theoretically infinite.

Figure 4.20 shows the frequency spectra of the flow-induced moment coefficient,

CM , for both the rigid and the flexible hydrofoils at αo = 20◦ (U = 0 for rigid foil and

U = 0.04 ∼ 0.09 for flexible foil (i.e.Re = 5× 105 ∼ 11× 105)), where U=0.065 is the

lock-in case and U=0.04 & 0.09 are the lock-off cases for the flexible hydrofoil. The

results in Fig. 4.20(c) show that the flexible hydrofoil is in lock-in with the bending

mode at U = 0.065, where the first in-water natural bending frequency is the same

as the vortex shedding frequency (f ∗
h = fvs); hence, the amplitudes of hydrodynamic

loads are amplified. Moreover, the dynamic response of the flexible hydrofoil has

subharmonic and harmonic frequencies of the vortex shedding frequencies (i.e., 1/2fvs,

fvs, 2fvs, 3fvs...), as observed in Fig. 4.20 (b) - (d).

4.3 Influence of angle of attack

The dynamic responses of flexible hydrofoils are expected to be sensitive to varia-

tions in the angle of attack (αo) due to changes in the dynamic lift, center of pressure

(CP), and wake patterns. Detailed variations of the time and frequency responses

with angle of attack are shown in this section.

4.3.1 Time-histories of the bending and twisting responses

Figure 4.21 shows the predicted time-histories of the bending and twisting defor-

mations with varying angle of attack (αo = 2o ∼ 20o) for the flexible NACA0015

POM hydrofoil (
√
µ = 0.44) for U = 0.05 and Re = 6× 105.

Before the foil stalls, αeff <16o ∼ 18o, the amplitude of twisting deformation
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(c) U = 0.065(flexible hydrofoil lock-in)
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Figure 4.20: The frequency spectra of CM at (a) U = 0 (rigid NACA0015 hydrofoil), (b)
U = 0.04 (flexible NACA0015 POM hydrofoil lock-off case), (c) U = 0.065
(flexible NACA0015 POM hydrofoil lock–in case), and (s) U = 0.09 (flexible
NACA0015 POM hydrofoil lock-off case) at αo = 20◦ and

√
µ = 0.44. Note

that the FFT window size is t = tωθ = 2000 ∼ 2500.

increases approximately linearly with the angle of attack because the elastic flow-

induced deformations are linearly related to the lift force, which varies approximately

linearly with the angle of attack until a trailing-edge vortex (TEV) develops at αo >
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Figure 4.21: The effect of the angle of attack on the predicted time-histories of the (a)
bending and (b) twisting deformations of a flexible NACA0015 POM hydrofoil
(
√
µ = 0.44) for U = 0.05 and Re = 6 × 105. Note that t = tωθ is the non-

dimensional time.

8o, as shown in Fig. 4.7. After the foil stalls, αeff > 16o ∼ 18o, the mean lift drops

and the mean amplitude of twisting deformation also shows a sudden drop along with

the development of large oscillations due to dynamic vortex shedding.

4.3.2 Frequency spectra of the bending and twisting responses

Figure 4.22 shows the variation of the predicted and measured frequency spectra

of first in-water natural bending and twisting frequencies with angle of attack for

the flexible NACA0015 POM hydrofoil (
√
µ = 0.44) at U = 0.05 and Re = 6 × 105.

The results show good comparisons between the predicted and measured response

at αo = 2o and αo = 8o. Experimental data are not available for αo > 8o to avoid

breaking the foil and to avoid an interference effect from the top and bottom wall

boundary layers of the test section.

Table 4.3 compares the predicted and measured first in-water natural bending

and twisting frequencies with angle of attack based on the frequency response. The
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Figure 4.22: Variation of the predicted and measured frequency spectra (ω = ω/ωθ) of
the (a) bending deformations and (b) twisting deformations with angle of
attack for the flexible NACA0015 POM hydrofoil (

√
µ = 0.44) at U = 0.05

and Re = 6 × 105. Note that the FFT window size is t = 0 − 2500, and
experimental data were only available for αo = 2o & 8o.

Table 4.3: Comparison of the predicted and measured first in-water natural bending
and twisting frequencies for a flexible NACA0015 POM hydrofoil (

√
µ =

0.44) for U = 0.05 and Re = 6 × 105. (fh&fθ are the in-air and f ∗
h&f ∗

θ are
the in-water natural frequencies)

fh =82 [Hz], fθ =396 [Hz] αo = 2o αo = 8o αo = 15o αo = 20o

f∗h [Hz]
Exp. 36 36 N/A N/A

Num. 35 37 37 34

f∗θ [Hz]
Exp. 187 192 N/A N/A

Num. 197 195 200 193

first in-water natural bending and twisting frequencies vary slightly with the angle

of attack. The dependence of the in-water natural frequencies with angle of attack

is non-monotonic and is associated with viscous FSI effects caused by the change in

the pressure distribution and wake patterns with the angle of attack.
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Figure 4.23: Comparison of the measured and predicted total loss factor (ηT ) vs. angle
of attack (αo) for the (a) bending, and (b) twisting deformations for the
flexible NACA0015 POM hydrofoil at U = 0.05 and Re = 6 × 105. Also
shown are experimental measurements of an aluminum NACA66 hydrofoil
from Reese (2010), as well as the theoretical predictions by using Eqs. (4.4) -
(4.5) according to Blake and Maga (1975). Note that viscous FSI simulations
are only shown for the POM NACA0015 hydrofoil.

4.3.3 Total loss factors of the bending and twisting responses

Figure 4.23 shows a comparison of the total loss factors (ηT ) obtained using the vis-

cous FSI solver, the inviscid, uncoupled mode linear theory given by Blake and Maga

(1975) in Eqs. (4.4) and (4.5), as well as the experimental studies of the NACA0015

POM hydrofoil from both IRENav and of the NACA66 aluminum hydrofoil from

Reese (2010) with varying angle of attack. Note that viscous FSI simulations are

only shown for the NACA0015 POM hydrofoil. The predicted viscous results com-

pare well with the experimental measurements for the NACA0015 POM hydrofoil.

The inviscid linear theory (as given in Eqs. (4.4)-(4.5)) overestimates the total loss
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factor for both hydrofoils. Inviscid theory also cannot predict the variation of the

total loss factor with the angle of attack caused by viscous effects such as flow sep-

aration and unsteady vortex shedding. Similar to the results shown in Section 4.2,

the over-prediction of ηT by the inviscid linear theory is more severe for the lighter

POM NACA0015 hydrofoil than the heavier aluminum NACA66 hydrofoil studied by

Reese (2010). At post-stall (i.e., αo = 20o), the results of bending and twisting defor-

mations become over-damped locally as shown in Fig. 4.21. However, the mobility

peak power down method is only valid for an under-damped system, where the total

damping coefficients (ζT ) < 1 (i.e., ηT < 2). Therefore, Fig. 4.23 shows the total loss

factors for 2o ≤ αo ≤ 15o only.

4.3.4 Wake structures

𝒕  𝜶𝒐 = 𝟐𝒐 𝜶𝒐 = 𝟐𝒐 𝜶𝒐 = 𝟖𝒐 𝜶𝒐 = 𝟏𝟓𝒐 𝜶𝒐 = 𝟐𝟎𝒐 
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Figure 4.24: Snapshots of the predicted non-dimensional vorticity ($ = ωb/U) contours of
the flow around a flexible POM (bottom row) NACA0015 hydrofoil at different
time instances (t = tωθ) for αo = 2 ∼ 20◦ at U = 0.05 and Re = 6× 105. The
horizontal lines pass through the elastic axis of the undeformed hydrofoil.
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The snapshots of the predicted vorticity contours of viscous FSI simulations at

selected time instances (t = tωθ) for a flexible NACA0015 hydrofoil for αo = 2 ∼ 20◦

at U = 0.05 and Re = 6× 105 are shown in Fig. 4.24. The results in Fig. 4.24 show

that unsteady vortex sheddings can be observed even for the αo = 2o case during the

transient responses phase prior to reaching static equilibrium. At αo = 15o, the flow

is nearly fully separated due to increases in the effective angle of attack caused by

the clockwise flow-induced twisting motion. At αo = 20o, the flow is fully separated.

It should be noted that the vortex shedding frequency of the flexible hydrofoil shown

in Fig. 4.24 is close to lock-in with the first in-water natural bending frequency at

αo = 20o, which results in large-scale fluctuations in loads and deformation, as shown

in the time-histories plot in Fig. 4.21.
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CHAPTER V

Flow-induced bend-twist coupling

For lightweight, flexible hydrofoils, the natural frequencies and total loss factors

vary with the inflow velocity and the angle of attack, as shown in chapter IV. For the

lightweight, flexible POM NACA0015 hydrofoil, in particular, there are flow-induced

bend-twist coupling effects because the elastic axis differs from the center of pressure.

Section 5.1 shows the predicted uncoupled and coupled in-water natural frequencies

and total loss factors for varying reduced velocity, angle of attack, and relative mass

ratio. The experimental measurements of the flexible POM NACA0015 hydrofoil are

obtained by the French Naval Academy Research Institute (IRENav). Section 5.2

presents the parametric maps for a wide range of common materials to compare the

inviscid, uncoupled and coupled mode of in-water natural frequencies and fluid loss

factors of NACA0015 foils.

5.1 Influence of the flow-induced bend-twist coupling on the

natural frequency and total loss factor

Flow-induced bend-twist coupling can affect the hydrofoil’s dynamics, as there are

non-zero off-diagonal terms of the fluid damping and disturbing force/moment (i.e.,

CT
12, CT

21, KT
12, and KT

21 in Eqs. (2.7) - (2.8)). In addition to the off-diagonal terms

induced in the linear potential-flow solution, the location of the center of pressure
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(CP) and the lift force may change with the effective angle of attack (αeff) due to

viscous effects such as transition, separation, and interaction with shed vortices in

the wake. This section examines how the system’s in-water natural frequencies and

total loss factors depend on the flow-induced bend-twist coupling effects.

5.1.1 NACA0015 model setup

Numerical simulations are performed on a cantilevered, rectangular NACA0015

hydrofoil made of five different materials: low-density polyethylene (LDPE), nylon,

polyacetate (POM), aluminum, and stainless steel materials.

Table 5.1: Model parameters for the NACA0015 hydrofoil with five different materials

Material LDPE Nylon POM Aluminum Stainless Steel

ρs [kg/m3] 920 1000 1480 2700 7480

Es [GPa] 0.3 2 3 69 180

νs [-] 0.35 0.39 0.35 0.34 0.31
√
µ [-] 0.35 0.36 0.44 0.59 0.99

αo [o] 8 8 2 ∼ 20 8 8

Re [-] 2.35× 105 6.02× 105 3× 105 ∼ 12× 105 21.22× 105 20.37× 105

U [-] 0.05 0.05 0.02 ∼ 0.1 0.05 0.05

a [-] 0 0 0 0 0

xθ [-] -0.16 -0.16 -0.16 -0.16 -0.16

rθ [-] 0.44 0.44 0.44 0.44 0.44

c [m] 0.1 0.1 0.1 0.1 0.1

s [m] 0.192 0.192 0.192 0.192 0.192

τ/c [-] 0.15 0.15 0.15 0.15 0.15

ζs,h [%] 2 3 2 0.2 0.1

ζs,θ [%] 2 3 2 0.2 0.1

Ω = fh/fθ [-] 0.21 0.21 0.21 0.21 0.21

fh [Hz] 32 83 82 291 279

fθ [Hz] 156 399 395 1398 1342

Table 5.1 lists the range of the model parameters for the NACA0015 hydrofoil

with five different materials. To investigate the influence of the reduced velocity (U)
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and the angle of attack (αo), the POM NACA0015 hydrofoil is used, varying the U

(by changing U) and αo. To investigate the influence of the relative mass ratio (µ),

the U is fixed by varying the inflow velocity (U) proportional with changing stiffness

for the five different materials (e.g. LDPE, nylon, POM, aluminum, stainless steel).

The relative mass ratio (µ = m/(πρfb
2)) is varied by changing the solid density (ρs)

and fixing both the fluid density (ρf ) and the semi-chord length. Following Leissa

(1969), the first in-air natural bending and twisting frequencies (ωh and ωθ) can be

calculated as shown in Eqs. (5.1)-(5.2) for a rectangular, homogeneous, isotropic,

cantilevered plate with an aspect ratio (AR) of 1.92.

ωh = 2πfh =
β1

s

√
Es(τ/s)2

12(1− ν2
s )ρs

, (5.1)

ωθ = 2πfθ =
β2

s

√
Es(τ/s)2

12(1− ν2
s )ρs

, (5.2)

where β1= 2.88 and β2=13.84, and therefore Ω = ωh/ωθ = β1/β2 = 0.21 for all

materials. β1 and β2 are found by matching the in-air natural frequencies of the POM

NACA0015 hydrofoil measured at the French Naval Academy Research Institute. In

Eqs. (5.1)-(5.2), τ is the maximum thickness.

The FSI responses of the flexible hydrofoils are modeled by solving a two-degrees-

of-freedom (2-DOF) equation of motion (EOM) using both an inviscid fluid model

and a viscous fluid model via the LHC method discussed in chapter II. The same

viscous formulation was previously used in Young et al. (2012), Chae et al. (2013),

and Akcabay et al. (2014). The flow is assumed to be fully turbulent and 2.35×105 ≤

Re ≤ 20.37× 105 for the cases shown in this section. In addition, the foil is assumed

to be deeply submerged so free surface and cavitation effects are not relevant. This

chapter uses the same medium NACA0015 mesh (about 929,000 nodes and 910,000

elements) and time step size of ∆t = T ∗
h/480 (i.e., ∆t = ∆tωθ = 0.16) as shown in

chapter IV to solve the fluid dynamics.
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5.1.2 In-water natural frequencies

For the time domain (TD) viscous FSI simulations, the natural frequencies are

determined by inspecting the peaks of the frequency spectra obtained via fast Fourier

transform (FFT) of the time-histories. In addition, frequency domain (FD) inviscid

solutions of natural frequencies are obtained by solving the eigenvalue problem.

The inviscid, uncoupled mode in-water natural bending and twisting frequencies

(f ∗
h−UM and f ∗

θ−UM) based on Theodorsen (1935)’s approach are expressed as:

f ∗
h−UM = fh

√
µ

µ+ 1
, (5.3)

f ∗
θ−UM = fθ

√
µr2

θ − 2C(k)eU
2

µr2
θ + (1

8
+ a2)

, (5.4)

where the superscript “∗” is used for the in-water natural frequencies.

The inviscid, coupled mode in-water natural bending and twisting frequencies (f ∗
h

and f ∗
θ ) of the frequency domain (FD) inviscid solutions are obtained by assuming a

solution in the form of:

X = Aeλt with (Ms + MT )Ẍ + (Cs + CT )Ẋ + (Ks + KT )X = 0. (5.5)

In Eq. (5.5), A is a constant vector that depends on the initial bending or twisting

deformation, and λ is the eigenvalue of the EOM. In general, the eigenvalues have

real and imaginary terms in the form of:

λ = −ζTωn ± iωn
√

1− ζ2
T = Re(λ)± iIm(λ), (5.6)

where ζT is the total damping coefficient and ωn is the undamped natural frequency.
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The equation for the damped in-water natural frequency (ωd) is shown in Eq. (5.9).

ωn =
√
Re(λ)2 + Im(λ)2 (5.7)

ζT =
−Re(λ)

ωn
=
ηT
2

(5.8)

ωd = ωn
√

1− ζ2
T = Im(λ) (5.9)
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Figure 5.1: Stability zones of the system as a function of the real and imaginary components
of the eigenvalues of the fully coupled inviscid FSI equations shown in Eq. 5.5.

Based on the inviscid eigenvalue calculation, the plot shown in Fig. 5.1 classifies

the stability regions as follows:

• When Re(λ)<0, ζT > 0, the system is stable, as shown in Fig. 5.2(a), as the

deformation will damp out with time. When Re(λ)> 0, ζT < 0, the system is

unstable, as shown in Figs. 5.2(b) and 5.2(d). When Re(λ)= 0, ζT = 0, the

system is neutral, as shown in Figs. 5.2(c).

• When Im(λ)=0 or ζT ≥ 1, there is no oscillation frequency; on the other hand,

when Im(λ) 6= 0, there is an oscillation frequency.
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Figure 5.2: Examples of the system response in (a) stable, (b) static divergence, (c) flutter,
and (d) post-flutter conditions.

• When Re(λ)>0 & Im(λ)=0, the system undergoes a static divergence as shown

in Fig. 5.2(b), as the deformation will grow exponentially with time without

oscillation.

• When Re(λ)=0 & Im(λ) 6= 0, ζT = 0, the system is at the flutter boundary as

shown in Fig. 5.2(c), where the system oscillates with constant amplitude and

frequency.
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• When Re(λ)>0 & Im(λ)6= 0, ζT < 0, the system is at post-flutter as shown in

Fig. 5.2(d); the deformations increase with time and with oscillations.

5.1.3 The effects of the reduced velocity (U)

Figure 5.3 shows the effect of the reduced velocity (U) on the first in-water natural

bending and twisting frequencies (f ∗
h & f ∗

θ ) for the flexible NACA0015 POM hydrofoil

with
√
µ = 0.44 at αo = 8◦ (the Re is between 3× 105 ∼ 19× 105).

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

U [-]

f h
=

f
∗ h
/
f h

[-
]

 

 

Inviscid, uncoupled mode: f
h−UM
*

Exp. IRENav: f
h
*

Inviscid [FD]: f
h
*

Inviscid [TD]: f
h
*

Viscous [TD]: f
h
*

Divergence

(a) Bending frequencies

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

1.2

U [-]

f θ
=

f
∗ θ
/
f θ

[-
]

 

 

Inviscid, uncoupled mode: fθ −UM
*

Exp. IRENav: fθ
*

Inviscid [FD]: fθ
*

Inviscid [TD]: fθ
*

Viscous [TD]: fθ
*

Divergence

(b) Twisting frequencies

Figure 5.3: Effect of reduced velocity (U) on the non-dimensional (a) bending frequen-
cies and (b) twisting frequencies of the flexible NACA0015 POM hydrofoil
(
√
µ=0.44) at αo = 8o and U = 0.02 ∼ 0.15 (i.e., Re = 3 × 105 ∼ 19 × 105).

FD is the frequency domain solution and TD is the time domain solution.

The reduced velocity (U = U/ωθb) is varied by changing the inflow velocity and

fixing the foil geometry and material. The experimental results are from IRENav

(Chae et al., 2015a). It should be noted that for the both inviscid and viscous FSI

solutions in a time domain (TD), the numerical simulations were iterated to get the

initial oscillation reduced frequency (k).

For the flexible NACA0015 POM hydrofoil with the characteristics shown in Table

5.1, the non-dimensional static divergence velocity (Ud) is calculated as 0.22, as shown
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in Fig. 5.3, by using the static force balance relation given in Eq. (5.10).

Ud =
Ud
ωθb

=

√
kθ

2πρfeb4ω2
θ

=

√
µr2

θ

1 + 2a
(5.10)

As shown in Fig. 5.3, the in-water natural frequencies (f ∗
h & f ∗

θ ) are lower than

in-air natural frequencies (fh & fθ) due to the added mass effect. The IRENav

experimental measurements agree well with time domain (TD) viscous predictions,

and both results show that while f ∗
h is practically independent of U , f ∗

θ tended to

increase with U , which is consistent with the frequency spectra shown in Figs. 4.6

and 4.12. On the other hand, both the frequency domain (FD) and time domain

(TD) inviscid solutions predict that f ∗
h decreases as U increases, which does not agree

with experimental measurements nor with TD viscous predictions. The difference

between inviscid and viscous solutions of f ∗
h increases as U increases. The inviscid,

uncoupled mode theory f ∗
θ−UM in Eq. (5.4) decreases with U , and it is opposite to the

trend observed in the FD and TD inviscid solutions, and differ from the TD viscous

simulations to experimental measurements. The inviscid, uncoupled mode solution

differs from the inviscid, coupled mode solution because the flow-induced bend-twist

coupling terms (CT
12, CT

12, and KT
12 in Eqs. (2.7) - (2.8)) are neglected in the derivation

of Eqs. (5.3) and (5.4). The FD inviscid solution also differs from the TD inviscid

solution due to the application of harmonic motion assumption in the FD solution,

which is not true in the low mass ratio (µ) regime due to the high fluid damping.

The difference between the TD inviscid and TD viscous solutions is mainly caused

by viscous effects (e.g. separation and interaction of shed vortices with body motion)

on the fluid damping (CT ) and stiffness (KT ) terms.

Figure 5.4 compares bending and twisting total loss factors (ηT,h and ηT,θ, respec-

tively) with varying reduced velocity (U = 0.02 ∼ 0.07, Re = 3 × 105 ∼ 9 × 105) on

the flexible NACA0015 POM hydrofoil (
√
µ = 0.44) at αo = 8o. ηT,h and ηT,θ are
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Figure 5.4: Effect of reduced velocity (U) on the non-dimensional in-water (a) bending
total loss factors and (b) twisting total loss factors of the flexible NACA0015
POM hydrofoil (

√
µ=0.44) at αo = 8o and U = 0.02 ∼ 0.07 (i.e., Re = 3×105 ∼

9× 105). Note that TD is the time domain solution.

measured by the mobility peak power down method (shown in chapter IV of section

4.1.5) for all the methods except for the inviscid, uncoupled mode theory, which is

given in Eqs. (4.4) and (4.5).

As noted in chapter IV, the total loss factors increase with U because the fluid

damping force is proportional to U . In Fig. 5.4, the predicted total loss factors

from the TD viscous simulations are in good agreement with experimental results,

which is the same as those shown in chapter IV. Moreover, the total loss factors of

both the inviscid, uncoupled mode theory by Blake and Maga (1975) and the TD

inviscid FSI solution are similar, and both over-predicted the actual total loss factors

compared to both the TD viscous FSI and experimental results. This is because of two

factors: 1) the wake consists of point vortices, which may not behave as assumed in

Theodorsen (1935), i.e. the wake is not aligned with the inflow, dynamic interactions

between the vortices in the wake, and body motion leads to changes in vortex shedding

frequencies and induced velocity on the foil, leading to the development of viscous
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dissipation; and 2) the actual center of pressure (CP) may come closer to the EA

instead of the aerodynamic center (AC) (i.e., c/4 from the foil’s leading-edge) assumed

in Theodorsen (1935). It should be noted that over-prediction of the total loss factors

is a risk as the structure may undergo earlier fatigue, longer settling time, higher

noise and vibration. All of these effects will modify e, d, k, and C(k), which, in turn,

affect the inviscid natural frequencies and total loss factors predictions.
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Figure 5.5: Influence of reduced velocity (U) on the root locus plot of (a) bending eigenval-
ues and (b) twisting eigenvalues of the inviscid frequency domain (FD) solution
for the flexible NACA0015 POM hydrofoil (

√
µ = 0.44) with U = 0.02 ∼ 0.12

(i.e., Re = 3 ∼ 15× 105). Theodorsen corresponds to the FD inviscid solution
with all terms included. CT12 = 0, CT21 = 0, and KT

12 = 0 corresponds to when
the respective flow-induced bend-twist coupling terms are set to zero for the
FD inviscid solution.

To better understand the influence of the flow-induced bend-twist coupling terms,

Fig. 5.5 shows the root locus plot of the bending and twisting eigenvalues of Eq. (5.6)

for the flexible NACA0015 POM hydrofoil (
√
µ=0.44) with U = 0.02 ∼ 0.12 (i.e.,

Re = 3 ∼ 15 × 105). It should be noted that the bending and twisting eigenvalues

correspond to the solution of the frequency domain (FD) inviscid problem shown

in Eq. 5.5. Theodorsen corresponds to the FD inviscid solution with all the terms
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included, while CT
12 = 0, CT

21 = 0, and KT
12 = 0 correspond to the FD inviscid solutions

when the respective flow-induced bend-twist coupling terms are set to zero in Eqs.

(2.7) and (2.8) that makes up Theodorsen’s solution.

The results in Fig. 5.5 show that the in-water damped natural frequencies, ωd (i.e.,

imaginary eigenvalues, Im(λ), in Eq. (5.9)) vary with U as shown in Fig. 5.3; for the

FD inviscid (Theodorsen) solution, the in-water damped natural bending frequency

(f ∗
h) as represented by Im(λ1) decreases with higher U , and the in-water natural

twisting frequency (f ∗
θ ) as represented by Im(λ2) increases with higher U , which are

consistent with the results shown in Fig. 5.3. The results also show that increasing

U increases the bending and twisting total damping coefficients (ζT,h, ζT,θ) (i.e., a

function of the real and imaginary eigenvalues as shown in Eq. (5.8)), which are

consistent with the results shown in Fig. 5.4. Note that ζT,h increases 20% faster

with U than ζT,θ as indicated by the differences in the slope of the bending mode

corresponding to the twisting mode of Theodorsen’s solution in Figs. 5.4 and 5.5.

In Fig. 5.5, if the inviscid flow-induced bend-twist coupling damping terms are

ignored (i.e., CT
12 = 0 or CT

21 = 0 in Eq. (2.7)) with varying U , the eigenvalues of the

bending mode (λ1) and the twisting mode (λ2) are different, compared with the FD

inviscid fully coupled solution (i.e., Theodorsen), particularly for λ2. The results in

Fig. 5.5 show that the flow-induced bend-twist coupling damping terms highly affect

the in-water natural frequencies and total loss factors. The results in Fig. 5.5 further

show that when the inviscid stiffness related to the flow-induced bend-twist coupling

terms is ignored (i.e., KT
12 = 0 in Eq. (2.8)), λ1 and λ2 are slightly underestimated

compared to Theodorsen (1935)’s solution. These findings imply that the disturbing

force components of the flow-induced bend-twist coupling terms also affect the in-

water natural frequencies and total loss factors. As shown in Eqs. (2.7) and (2.8),

the flow-induced bend-twist coupling terms (CT
12, CT

21, and KT
12) depend on U , as well

as e, d, k, and C(k), where the values will differ for inviscid vs. viscous flows, resulting
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in different trends of the natural frequencies and total loss factors, as observed in Figs.

5.3 and 5.4.

5.1.4 The effect of the angle of attack (αo)

Figure 5.6 shows the effect of angle of attack (αo) on the first in-water natural

bending and twisting frequencies (f ∗
h & f ∗

θ ) for the flexible NACA0015 POM hydrofoil

(
√
µ = 0.44) at U = 0.05 (i.e., Re = 6× 105).
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Figure 5.6: Effect of angle of attack (αo) on the non-dimensional in-water (a) bending fre-
quencies and (b) twisting frequencies of the flexible NACA0015 POM hydrofoil
(
√
µ=0.44) at U = 0.05 (i.e., Re = 6 × 105). Note that FD is the frequency

domain solution and TD is the time domain solution.

Generally, the TD viscous results of the in-water natural frequencies are in good

agreement with IRENav experimental results shown in Chae et al. (2015a), and both

vary slightly with the angle of attack. Both the FD and TD inviscid solutions are

similar, and a slight difference can be observed with the inviscid, uncoupled mode

theory frequencies given by Eqs. (5.3) and (5.4). Nevertheless, the inviscid solutions

compared fairly well with the experimental and TD viscous results, as the results

are for U = 0.05, where the flow-induced bend-twist effects corresponding to the off-
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diagonal terms on the damping and stiffness are small. Note that CT is proportional

to U and KT is proportional to U
2

in Eqs. (2.7) and (2.8).
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Figure 5.7: Effect of angle of attack (αo) on the non-dimensional (a) bending total loss
factors and (b) twisting total loss factors of the flexible NACA0015 POM hy-
drofoil (

√
µ=0.44) at U = 0.05 (i.e., Re = 6× 105). Note that TD is the time

domain solution.

Similarly, Fig. 5.7 compares the predicted and measured bending and twisting

motions of total loss factors (ηT ) with varying angle of attack (αo) for the same flexible

NACA0015 POM hydrofoil (
√
µ = 0.44) at U = 0.05 (i.e., Re = 6×105). As with the

results shown in Fig. 5.4, there is a good comparison between TD viscous numerical

and experimental total loss factors. Both the inviscid, uncoupled mode theory (given

in Eqs. (5.3) and (5.4)) and the TD inviscid solution significantly overestimate the

total loss factors for the flexible NACA0015 POM hydrofoil (
√
µ=0.44) with different

angles of attack. The results show that both the in-water natural frequencies and

the total loss factors have a weak dependence on the angle of attack (αo), which is

expected, as the dependence is due to the higher order nonlinear viscous effects.
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5.1.5 The effect of the relative mass ratio (
√
µ)

Figure 5.8 shows the effect of the relative mass ratio (
√
µ) on the first in-water nat-

ural bending and twisting frequencies (f ∗
h & f ∗

θ ) for the flexible NACA0015 hydrofoil

at αo = 8o and U = 0.05. Note that the different
√
µ values are obtained by changing

the solid material from stainless steel (
√
µ= 0.99) to low-density polyethylene (LDPE)

(
√
µ= 0.35) for a given fluid (ρf=1000kg/m3). Detailed simulation parameters are

listed in Table 5.1. To investigate the influence of the relative mass ratio (
√
µ), the

U is fixed at 0.05 (where experimental data is available for IRENav) by varying the

inflow velocity (U) proportional with changing stiffness (and hence ωθ) for the five

different materials (e.g. LDPE, nylon, POM, aluminum , and stainless steel).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

√

µ[−]

f h
=

f
∗ h
/
f h

[-
]

 

 

Inviscid, uncoupled mode: f
h−UM
*

Exp. IRENav: f
h
*

Inviscid [FD]: f
h
*

Inviscid [TD]: f
h
*

Viscous [TD]: f
h
*

POM

Al

St

(a) Bending frequencies

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

√

µ[−]

f θ
=

f
∗ θ
/
f θ

[-
]

 

 

Inviscid, uncoupled mode: fθ −UM
*

Exp. IRENav: fθ
*

Inviscid [FD]: fθ
*

Inviscid [TD]: fθ
*

Viscous [TD]: fθ
*

St

Al

POM

(b) Twisting frequencies

Figure 5.8: Effect of relative mass ratio (
√
µ) on the non-dimensional in-water (a) bending

frequencies and (b) twisting frequencies of the flexible NACA0015 hydrofoil at
αo = 8o and U = 0.05. Note that FD is the frequency domain solution and
TD is the time domain solution. Note also that the different

√
µ values are

obtained by changing the solid material from stainless steel (
√
µ= 0.99) to low-

density polyethylene (LDPE) (
√
µ= 0.35) for a given fluid (ρf=1000kg/m3).

The reduced velocity (U = U/(ωθb)) is fixed by changing the inflow velocity
for a given foil’s in-air natural twisting frequency.

The results in Fig. 5.8 show that inviscid, uncoupled mode theory and both
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FD and TD inviscid solutions are similar to the TD viscous solution of the in-water

natural bending and twisting frequencies at
√
µ ' 1. With decreasing

√
µ, the

differences between inviscid, uncoupled mode and coupled mode results are increased

slightly due to changes induced by the flow-induced bend-twist coupling term. Figure

5.8 also shows that the in-water to in-air natural frequency ratios (fh = f ∗
h/fh and

fθ = f ∗
θ /fθ) decrease rapidly with lower

√
µ, and approach zero as

√
µ→ 0, as shown

in Eqs. (5.3) and (5.4).
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Figure 5.9: Effect of relative mass ratio (
√
µ) on the non-dimensional (a) bending total loss

factors and (b) twisting total loss factors of the flexible NACA0015 hydrofoil
at αo = 8o and U = 0.05. Note that TD is the time domain solution. Note also
that the different

√
µ values are obtained by changing the solid material from

stainless steel (
√
µ= 0.99) to low-density polyethylene (LDPE) (

√
µ= 0.35) for

a given fluid (ρf=1000kg/m3). The reduced velocity (U = U/(ωθb)) is fixed by
changing the inflow velocity for a given foil’s in-air natural twisting frequency.

Figure 5.9 compares the total loss factors (ηT ) for bending and twisting motions

with the varying relative mass ratio (
√
µ) for the same flexible NACA0015 hydrofoil

at αo = 8o and U = 0.05. The results in Fig. 5.9 show that the inviscid, uncou-

pled mode theory and TD inviscid solutions again overestimate the total loss factors

compared with experimental and TD viscous solutions; the overestimation increases
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with decreasing
√
µ. It should be noted that the rapid increase of the total loss factor

with decreasing
√
µ is the reason why flutter, which occurs when total effective fluid

and solid damping is zero, is usually not a great concern for hydrofoils compared to

airfoils. The high damping also leads to non-harmonic, rapidly decaying oscillations,

resulting in the transition from fluter to dynamic divergence to static divergence.
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Figure 5.10: Effect of relative mass ratio (
√
µ) on the non-dimensional (a) bending total

loss factors and (b) twisting total loss factors of the flexible NACA0015 airfoil
at αo = 8o and U = 0.05. Note that TD is the time domain solution. Note
also that the different

√
µ values are obtained by changing the solid material

from stainless steel to POM for a given fluid (ρf=1.185kg/m3). The reduced
velocity (U = U/(ωθb)) is fixed by changing the inflow velocity for a given
foil’s in-air natural twisting frequency.

To contrast the in-water vs. in-air response, Fig. 5.10 compares the total loss

factors (ηT ) for bending and twisting motions with the varying relative mass ratio

(
√
µ) for the same flexible NACA0015 foil shown in Fig. 5.9, but in air (with ρf=1.185

kg/m3) at αo = 8o and U=0.05. Notice that the foils are in air so
√
µ > 10 for the

range of materials considered. The results in Fig. 5.10 show that the total loss factors

predicted by inviscid, uncoupled mode theory are similar to that predicted by the TD

viscous solutions for airfoils, and ηT values of airfoils are approximately an order
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of magnitude less than those of hydrofoils. Therefore, the flow-induced bend-twist

coupling effects in air are very small compared to those in water due to smaller fluid

loads. Moreover, when
√
µ increases, the inviscid, uncoupled mode theory slightly

underestimates the total loss factor for the bending motion compared with TD viscous

solutions (i.e., the inviscid theory is conservative.), which is the opposite of the trend

observed for the hydrofoils, as shown in Fig. 5.9.
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Figure 5.11: Influence of relative mass ratio (
√
µ) on the root locus plot of (a) bending

mode and (b) twisting mode for the flexible NACA0015 hydrofoil with U =
0.05. Note that the different

√
µ values are obtained by changing the solid

material from stainless steel (
√
µ= 0.99) to low-density polyethylene (LDPE)

(
√
µ= 0.35) for a given fluid (ρf=1000kg/m3). Theodorsen corresponds to

the FD inviscid solution with all terms included. CT12 = 0, CT21 = 0, and
KT

12 = 0 correspond to when the respective flow-induced bend-twist coupling
terms are set to zero for the FD inviscid solution.

To better understand the influence of the flow-induced bend-twist coupling terms

with relative mass ratio (
√
µ), Fig. 5.11 shows the root locus plot of bending and

twisting eigenvalues (for the flexible NACA0015 hydrofoil with U = 0.05) correspond

to the solution of the frequency domain (FD) inviscid problem shown in Eq. 5.5.

As with the results shown in Fig. 5.5, all the simulations for bending and twisting

eigenvalues with varying relative mass ratio considered in this work are for stable
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systems, as Re(λ1) < 0 & Re(λ2) < 0. The results in Fig. 5.11 show that as
√
µ→ 0,

both Re(λ) & Im(λ) → 0, which implies ζT → 1 and f ∗
h & f ∗

θ → 0. The results also

show that when the inviscid damping and stiffness of the flow-induced bend-twist

coupling terms are ignored (i.e., CT
12 = 0, CT

21 = 0, or KT
12 = 0 in Eqs. (2.7) and

(2.8)) with varying relative mass ratio (
√
µ), λ1 and λ2 change only slightly from the

Theodorsen’s solution due to the low U , which in turn, affect the natural frequencies

and total loss factors as shown in Figs. 5.8 and 5.9. It should be noted that for high

values of U , the flow-induced bend-twist coupling terms would have more impact on

the eigenvalues, and hence the in-water natural frequencies and loss factors, as shown

in Figs. 5.3 and 5.4.

5.2 Influence of the flow-induced bend-twist coupling on the

parametric maps

To illustrate the influence of the flow-induced bend-twist coupling terms and hy-

drodynamic damping effects, comparisons of the inviscid, undamped uncoupled mode

natural frequency ratios (f ∗
h−UM/fh, f

∗
θ−UM/fθ in Eqs. (5.3) - (5.4)) and inviscid,

damped coupled mode natural frequency ratios (f ∗
h/fh, f

∗
θ /fθ in Eq. (5.9)) for a rect-

angular, cantilevered NACA0015 foils with νs = 0.35, C(k) = 0.5, and U = 0.07 are

shown in Figs. 5.12 and 5.13 for a wide range of common materials.

The rectangular, cantilevered NACA0015 hydrofoils are assumed to be structurally

homogeneous and materially isotropic, and they are assumed to be cantilevered at

their root. As the mass ratio (µ) decreases, f ∗
h−UM , f ∗

θ−UM , f ∗
h , and f ∗

θ decrease for a

given U . When
√
µ ≤ 0.5 & U ≥ 0.05, the discrepancy between inviscid, uncoupled

mode and coupled mode in-water natural frequencies increases, which are consistent

with the results shown in Fig. 5.8 (i.e., f ∗
h−UM ≥ f ∗

h and f ∗
θ−UM ≤ f ∗

θ ).

Figures 5.14 and 5.15 show the influence of flow-induced bend-twist coupling of
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Figure 5.12: Comparison of the natural bending frequency ratios of (a) the inviscid, un-
damped uncoupled mode (f∗h−UM/fh) solution obtained using Eq. (5.3) and
(b) the inviscid, damped coupled mode (f∗h/fh) solution obtained using Eq.
(5.9) for a rectangular, cantilevered NACA0015 hydrofoils made of different
materials with νs = 0.35, C(k) = 0.5, and U = 0.07.
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Figure 5.13: Comparison of the natural twisting frequency ratios of (a) the inviscid, un-
damped uncoupled mode (f∗θ−UM/fθ) solution obtained using Eq. (5.4) and
(b) the inviscid, damped coupled mode (f∗θ /fθ) solution obtained using Eq.
(5.9) for a rectangular, cantilevered NACA0015 hydrofoils made of different
materials with νs = 0.35, C(k) = 0.5, and U = 0.07.

106



0.1 0.5 1 1.5

√

µ [−]

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

10
3

ρs [Mg/m3]

E
s
[G

P
a
]

 

 

1

Ni−Al Bronze

Polyurethane

CFRP

KFRP GFRP

Alumina

Nylon
POM

Al

Steel

Balsa

0.2

GFRP KFRP 

1 0.5
0.6 0.4

0.8
0.3

(a) Inviscid, uncoupled mode of ηf,h−UM

0.1 0.5 1 1.5

√

µ [−]

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

10
3

ρs [Mg/m3]

E
s
[G

P
a
]

 

 

1

Ni−Al Bronze
CFRP

KFRP GFRP

GFRP KFRP 

Alumina

Nylon
POM

Steel

Balsa

Al

Polyurethane

0.61
0.5

0.8 0.4 0.3 0.2

(b) Inviscid, coupled mode of ηf,h

Figure 5.14: Comparison of the bending fluid loss factors of (a) the inviscid, uncoupled
mode (ηf,h−UM ) solution obtained using Eq. (4.4) and (b) the inviscid, cou-
pled mode (ηf,h) solution obtained using Eq. (5.8) for a rectangular, can-
tilevered NACA0015 hydrofoils made of different materials with νs = 0.35,
C(k) = 0.5, and U = 0.07.
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Figure 5.15: Comparison of the twisting fluid loss factors of (a) the inviscid, uncoupled
mode (ηf,θ−UM ) solution obtained using Eq. (4.5) and (b) the inviscid, cou-
pled mode (ηf,θ) solution obtained using Eq. (5.8) for a rectangular, can-
tilevered NACA0015 hydrofoils made of different materials with νs = 0.35,
C(k) = 0.5, and U = 0.07.
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the fluid loss factors (by comparing the inviscid, uncoupled mode (ηf,h−UM & ηf,θ−UM

in Eqs. (4.4) - (4.5)) and inviscid, coupled mode (ηf,h & ηf,θ in Eq. (5.8))) solutions

for a rectangular, cantilevered NACA0015 foils made of different materials with νs =

0.35, C(k) = 0.5, and U = 0.07. The results in Figs. 5.14 and 5.15 show that as

the µ decreases, ηf,h−UM , ηf,θ−UM , ηf,h, and ηf,θ increase for a given U . Inviscid,

uncoupled and coupled mode results are similar, but some difference can still be

observed for
√
µ ≤ 0.5 & U ≥ 0.05. In addition, as mentioned when presenting the

results shown in Fig. 5.8, both inviscid results over-predicted the actual total loss

factors compared to viscous results and experimental measurements for
√
µ < 1; and

this overestimation will increases with decreasing µ and increasing U . The results

in this and the precious chapter show that the impacts of the flow-induced bend-

twist coupling terms increase with higher U and lower µ, and the flow-induced bend-

twist coupling terms are affected by viscous effects via e, d, and C(k) due to flow

separations, shed vorticies, and interaction with body motion.
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CHAPTER VI

Conclusion and future work

6.1 Conclusion

Rectangular, cantilevered, flexible foils with chordwise rigid and spanwise bend-

ing and twisting deformations in incompressible and viscous flow were studied via

combined numerical and experimental modeling. The unsteady Reynolds-average

Navier-Stokes (uRANS) fluid solver was coupled with a two degrees-of-freedom (2-

DOF) solid solver through an efficient and stable loose hybrid coupling (LHC) method

introduced by Young et al. (2012), Chae et al. (2013), and Akcabay and Young (2014).

A commercial computational fluid dynamics (CFD) solver (i.e., ANSYS-CFX (2011))

was used for viscous simulations to solve the uRANS equation with the k − ω shear

stress transport (k − ω SST) turbulence model. A fully coupled (FC) inviscid fluid-

structure interaction (FSI) model was also developed based on the potential flow

theory following Theodorsen (1935).

For the FSI response and stability boundary, the results of viscous simulations

were compared with predictions obtained using the inviscid fully coupled (FC) FSI

model, as well as published experimental data given in Woolston and Castile (1951)

and Besch and Liu (1971). The NACA16-010 foil geometry, which was the same

as that used in the experimental study in Woolston and Castile (1951), was used in

viscous and inviscid simulations for the stability boundary study presented in chapter
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III. The operating conditions were Re = 3.05×105−4.27×106 and
√
µ = 0.3−4.18. In

general, as the fluid density increased for a given solid density, the relative mass ratio

(
√
µ) decreased, which in turn led to a decrease of the critical reduced flutter velocity

and the reduced divergence velocity. The following major findings were observed:

• The frequency domain (FD) linear potential theory solution predicted higher

flutter velocities than measured for cases with low relative mass ratios (
√
µ < 3).

This is because in the low relative mass ratio regime, the fluid forces were

comparable to the solid forces, and the relative contribution of viscous effects

increased, which led to strong viscous interactions. In particular, as the fluid

damping and inertial forces increased with higher fluid density, the flow-induced

oscillation would be quickly damped out, leading to non-harmonic motion, and

hence greater error between linear FD inviscid predictions (that assume har-

monic motion) and the experimental results.

• The governing instability mode varied with
√
µ :

– for
√
µ< 1, static divergence was the governing instability mode as the

fluid disturbing force dominated and became equal to, or greater than, the

solid restoring force. Divergence can occur even if the elastic axis (EA) is

at the aerodynamic center (AC), which contradicts linear potential theory

predictions for thin symmetric foils. This is because, in reality, the center

of pressure (CP) may not coincide with the AC; the CP will vary with

the angle of attack and flow conditions due to viscous and flow separation

effects, which will lead to a non-zero moment arm between the EA and the

CP, even if the EA is at the AC, leading to the possibility of divergence,

which could only be captured by viscous FSI models;

– for 1 ≤ √µ < 2, dynamic divergence was the governing instability mode,

which could only be captured by viscous nonlinear FSI models because
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the response is non-harmonic and the oscillation frequencies decrease with

time as the mean deformation amplitude increases; and

– for
√
µ ≥ 2, flutter was the governing instability mode and the difference

between inviscid and viscous models became relatively small, and both

predictions agreed well with experimental measurements.

• The predicted flutter velocity, flutter frequency, and divergence velocity ob-

tained using the viscous LHC simulations compared well with the measured

values from previously published experimental data. Even though the inviscid

FC method with a time domain (TD) solution technique provided a reasonable

approximation of the flutter and static divergence velocities at a much lower

computational cost compared to the viscous LHC method, viscous LHC simu-

lations in a time domain were recommended to predict the dynamic response

and stability boundary to capture nonlinear viscous FSI effects.

For the flow-induced vibration studies shown in chapter IV, the simulations were

performed on a cantilevered NACA0015 hydrofoil made of a polyacetate (POM) ma-

terial with a chord length, c = 2b, of 0.1 m and a span length, s, of 0.192 m, with

reduced velocity (by changing inflow velocity) ranging from U = 0.02 ∼ 0.1 (i.e.,

Re = 3 ∼ 12 × 105) and angles of attack ranging from αo = 2 ∼ 20o. The model

was validated by comparing the numerical predictions with experimental measure-

ments conducted inside a cavitation tunnel at the French Naval Academy Research

Institute (IRENav). Comparisons between the current numerical and experimental

results with prior published results of other flexible hydrofoils were also shown. The

results indicated that:

• Numerical viscous FSI predictions of both the first in-water natural bending

and twisting frequencies and total loss factors compared well with available

experimental measurements.
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• While the first in-water natural bending frequency was mostly independent

of the inflow velocity, the first in-water natural twisting frequency tended to

increase with the inflow velocity for the flexible NACA0015 POM hydrofoil

due to changes in the system stiffness and damping caused by viscous effects

including separation, generation, and interaction of vortices with foil bending

and twisting motion.

• The inviscid, linear, uncoupled mode theory provided in Blake and Maga (1975)

tended to over-predict the total loss factors. The over-prediction increases with

increasing U and with decreasing µ, and was found to be as high as 52% for

bending and 25% for twisting for the current flexible NACA0015 POM hydrofoil.

The over-prediction is mostly caused by neglecting of the flow-induced bend-

twist coupling terms and viscous FSI effects, which are more significant for cases

with low µ and high U . Viscous effects could modify the location of center of

pressure, the trajectory of the wake sheet, vortex shedding frequencies, phase lag

caused by the wake vortices, and resulting interaction with foil motions, which

could lead to lower the fluid damping than predicted using inviscid theory.

• At αo = 20o, the reduced vortex shedding frequency was approximately kvs,rigid

=2.5 for the rigid hydrofoil, and kvs, flexible=1.3 for the flexible hydrofoil (in lock-

off region) with varying reduced velocity (i.e., varying inflow velocity). In other

words, the vortex shedding frequency of the rigid foil was much higher than that

of the flexible foil. In the lock-in region, the vortex shedding frequencies of the

flexible hydrofoil snapped into the first in-water natural bending frequencies,

which led to amplified vibrations and load fluctuations.

• Both experimental and numerical results indicated that both the in-water nat-

ural frequencies and loss factors varied slightly with the angle of attack due to

viscous effects, but the variations were small compared to those observed with
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U .

For the flow-induced bend-twist coupling study shown in chapter V, numerical sim-

ulations were performed on cantilevered NACA0015 hydrofoils with a chord length, c,

of 0.1 m, and a span length, s, of 0.192 m, which were made of low-density polyethy-

lene (LDPE), nylon, polyacetate (POM), aluminum, and stainless steel materials

corresponds to relative mass ratios of
√
µ = m/(πρfb

2) = 0.35 ∼ 0.99. In the simula-

tions, water is the operating fluid. The reduced velocity ranged from U = U/(ωθb) = 0

(rigid) to 0.15, Reynolds numbers from Re = 3×105 ∼ 2.0×106, and angles of attack

from αo = 2◦, 8◦, 15◦, and 20◦. Specifically, the following results were observed:

• The inviscid, uncoupled mode theory, and both the frequency domain (FD) and

the time domain (TD) inviscid solutions under-predicted the first in-water nat-

ural bending frequencies compared to the time domain (TD) viscous solutions;

the difference between inviscid and viscous predictions increased with increasing

U and lower µ.

• As µ decreases toward zero, the in-water natural frequencies also reduce rapidly

toward zero while the damping coefficient increases rapidly toward one. Conse-

quently, the structural response time lengthens, and the flow-induced vibrations

will be rapidly damped out, which is why the governing instability mode goes

from flutter for
√
µ > 2 to dynamic divergence for 1 ≤ √µ < 2 to static

divergence for
√
µ < 1.

• The inviscid, uncoupled mode theory and the TD inviscid solver overestimated

the total loss factors, and this overestimation increased with higher U or with

lower
√
µ at low mass ratios (i.e.,

√
µ < 1, the region for most hydrofoils). The

opposite was observed for
√
µ > 1, the region for most airfoils. It should be

noted that over-predicting the total loss factors could be dangerous as it could

lead to designs that were more prone to earlier fatigue, longer settling time,
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increased noise and vibration, as well as earlier flutter and greater deformation

and load amplification resonance.

• The flow-induced bend-twist coupling terms in the fluid damping and stiffness

are found to affect natural frequencies and loss factors. The impacts of the

flow-induced bend-twist coupling terms increase with higher U and lower µ.

The flow-induced bend-twist coupling terms are responsible for the difference

between inviscid, uncoupled and coupled mode, TD inviscid FC and TD viscous

LHC solutions. Notice that the flow-induced bend-twist coupling terms are

affected by viscous effects via e, d, and C(k) due to flow separations, shed

vorticies, and interaction with body motion.

6.2 Future work

In this thesis, we developed a new loose hybrid coupling (LHC) method for viscous

FSI simulations (Young et al., 2012; Chae et al., 2013; Akcabay et al., 2014). The LHC

method subtracts the potential flow estimation of the FSI force from both the left

hand side and right hand side of the equations of motion to accelerate the convergence

and to avoid the numerical instability issues. The LHC method was validated for

numerical simulations for the dynamic response and stability boundary of flexible

hydrofoils in incompressible and viscous flow. A related study by Akcabay et al.

(2015) has shown that subtracting potential flow estimate of the added mass term on

both side of the equation is critical to expanding the numerical stability boundary

by avoiding the virtual added mass instability for incompressible flows (Young , 2007,

2008; Xiao and Batra, 2012). However, the importance of also subtracting the fluid

damping and fluid disturbing force terms from both sides of the equation of motion

is not clear as their effects on the numerical stability should be small, and they will

increase the computational costs due to the need to iterate to determine the reduced
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frequency (k). Hence, in Fig. 6.1, we compare the LHC method and the added mass

(AM) method, where the later only subtracted the potential flow estimate of the fluid

added mass terms, MT , from both the sides of the equations of motion.
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Figure 6.1: Comparison of the time-histories of twisting deformations (θ) with different
viscous FSI methods on the NACA0015 stainless steel and POM hydrofoils at
αo = 8o with (a)

√
µ = 0.99 & U = 0.05, (b)

√
µ = 0.44 & U = 0.05, and (c)√

µ = 0.44 & U = 0.1. Note that t = tωθ is the non-dimensional time.
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Figure 6.2: Comparison of the frequency spectra (ω = ω/ωθ) of twisting deformations
with different viscous FSI methods on the NACA0015 stainless steel and POM
hydrofoils at αo = 8o with (a)

√
µ = 0.99 & U = 0.05, (b)

√
µ = 0.44 &

U = 0.05, and (c)
√
µ = 0.44 & U = 0.1. Note that the FFT window size is

t = 0− 2500.

Figures 6.1 - 6.2 show the predicted time-histories and frequency spectra, respec-
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tively, of twisting deformations for the LHC and AM methods on the NACA0015

stainless steel and POM hydrofoils (
√
µ=0.44 & 0.99) at αo = 8o with U=0.05 & 0.1.

The results show that there are no significant differences between the LHC and AM

methods at the low reduced velocity (U = 0.05) and high mass ratio (
√
µ = 0.99) as

shown in Figs. 6.1 (a), (b) - 6.2 (a), (b). However, for the case with
√
µ = 0.44 and

U = 0.1 shown in Figs. 6.1 (c) and 6.2 (c), there is a phase shift of the twisting de-

formations between LHC and AM methods, which lead to slightly high first in-water

natural twisting frequency predicted by the AM method than the LHC method. This

implies that the fluid damping and fluid disturbing force terms may be important

for cases with low µ and high U (i.e.,
√
µ ≤ 0.5 & U ≥ 0.05) because these are

propositional to the U and U
2
, respectively, as shown in Eqs. (2.7) and (2.8).
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Figure 6.3: Comparison of the time-histories of moment (M) of the inviscid fully coupled
(FC) method on the NACA0015 stainless steel and POM hydrofoils at αo = 8o

with (a)
√
µ = 0.99 & U = 0.05, (b)

√
µ = 0.44 & U = 0.05 (c)

√
µ = 0.99 &

U = 0.05, (b)
√
µ = 0.44 & U = 0.05, and (c)

√
µ = 0.44 & U = 0.1. Note

that t = tωθ is the non-dimensional time.

To better understand the influence of the fluid damping and fluid disturbing force

terms, Fig. 6.3 shows the time-histories of the dimensional solid and fluid inertial,

damping, and stiffness moments obtained via the inviscid fully coupled (FC) method.
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The results show that the sold stiffness moment is dominant in general due to the

higher torsional spring coefficient, which corresponded to a NACA0015 POM hydrofoil

with c = 0.1 m and s = 0.192 m. Notice that as µ decreases, ω∗
θ decreases so

the response period increases. The magnitude of the fluid inertial and damping

terms become larger than the solid inertial and damping terms, respectively, when

√
µ < 1. In addition, the fluid damping terms increase in proportion to U , and the

fluid disturbing terms increase in proportion to U
2
. Hence, as µ decreases and/or U

increases, the vibration damps out faster, which will make it more difficult to capture

the frequency peaks as the system becomes over-damped and non-harmonic, as shown

in Fig. 6.1. In particular, for the
√
µ = 0.44 and U = 0.1 case, the fluid damping

terms become larger than the fluid inertial terms, which lead to differences in solution

between the LHC and AM, as shown in Fig. 6.2 (c), as the fluid forces are no longer

dominated by the fluid inertial terms. Therefore, additional experimental studies are

needed to validate the accuracy of the LHC and AM solutions for such low µ and

high U case.

In the future, the authors will extend the viscous LHC or AM method to simu-

late the transient FSI response and stability boundary of 3D flexible hydrofoils and

propulsors, as the current CFD model is 2D, and the foil is assumed to be rigid in the

chordwise direction. In particular, more studies are needed to investigate 3D effects,

dynamics near the foil tip. High fidelity 3D LES or DNS simulations coupled with

3D solid model are also needed to better quantify the dynamic FSI response in flows

dominated by transient large-scale vortices. Moreover, the authors will investigate

the effects of free surface, cavitation, material anisotropy, and scaling laws on the

dynamic viscous FSI response and stability boundary of flexible hydrofoils.

Furthermore, more numerical simulations and experiments with different flexible

materials are needed to improve our understanding of flow-induced vibrations and the

resulting impact on foil performance and stability. Additional research is also needed
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to investigate the susceptibility of flexible hydrofoils to buffeting and galloping.
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APPENDIX A

Non-dimensional Equation

A.1 Inviscid Fully Coupled (FC) Method

The dimensional inviscid FSI coupling model (i.e., fully coupled method) can be

written:

(M̃s + M̃
T

)
¨̃
Xn + (C̃s + C̃

T
)

˙̃
Xn + (K̃s + K̃

T
)X̃n = F̃static, (A.1)

where the subscript n is index for the each time-step level and X̃ = [h/b, θ]T ,
˙̃
X, and

¨̃
X are the dimensional displacement, velocity, and acceleration vectors. M̃s, C̃s, and

K̃s are, respectively, dimensional solid inertial, damping, and stiffness terms, which

could be written as:

M̃s =

 m Sθ

Sθ Iθ

 , C̃s =

 Cs,h 0

0 Cs,θ

 , K̃s =

 Ks,h 0

0 Ks,θ

 , (A.2)

where m, Sθ(= mxθb), and Iθ(= mr2
θb

2) are respectively the solid mass per unit span,

the static imbalance per unit span, and the solid mass moment of inertia per unit span

defined about the elastic axis (EA), while rθ is the nondimensional radius of gyration.
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b is the semi-chord length (c/2). If ωh = 2πfh and ωθ = 2πfθ are the first in-air natural

bending and twisting frequencies, then Cs,h = 2mωhζh and Cs,θ = 2Iθωθζθ are the solid

damping values per unit span for the bending and twisting motions, respectively; ζh

and ζθ are the solid bending and twisting damping coefficients. Similarly, Ks,h = mω2
h

and Ks,θ = Iθω
2
θ are the solid bending and torsional stiffness values per unit span.

M̃
T

, C̃
T

and K̃
T

are, respectively, dimensional fluid inertial, damping, and stiffness

terms per unit span, which are expressed by Theodorsen (1935) approach in terms of

inviscid fluid lift and moment acting on the foil and could be written as:

M̃f

T
=

 πρfb
2 −πρfb3a

−πρfb3a πρfb
4(1

8
+ a2)

 , (A.3)

C̃f

T
= −πρfUb2

 −2
b
C(k) −(1 + (1− 2a)C(k))

(2a+ 1)C(k) b(1
2
− a)(−1 + (2a+ 1)C(k))

 , (A.4)

K̃f

T
=

 0 2πρfU
2bC(k)

0 −πρfU2b2(2a+ 1)C(k)

 , (A.5)

where U is the inflow velocity, ρf is the fluid density. a is non-dimensional distance

from mid-chord to EA, positive for EA aft mid-chord. k = ωb/U is the reduced

frequency. C(k) is the Theodorsen’s circulation function, which can be considered as

a measure to quantify the wake induced loss of the lift, which could be written as Eq.

(A.6).

C(k) = F (k) + iG(k) =
H2

1 (k)

H2
1 (k) + iH2

0 (k)
, (A.6)

where H2
1 (k) and H2

0 (k) are the Hänkel functions.(i.e., 3rd kind Bessel functions).
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F̃static is the dimensional static force vector as presented in Eq. (A.7)

F̃
T

static =

 2qb(αo − αLo)dCLdα
qc2CMo,AC − 2qb2e(αo − αLo)dCLdα

 , (A.7)

where dCL/dα = 2π is the theoretical slope of the lift coefficient vs. angle of attack

curve, and q = 1
2
ρfU

2 is the dynamic fluid pressure. αo and αLo are, respectively, the

initial angle of attack and the angle of attack at which the lift force is zero. CMo,AC

is the moment coefficient at the aerodynamic center (AC), which is assumed to be at

c/4 away from the foil leading edge. e = a+ 1
2

is the non-dimensional distance (as a

fraction of b) from the EA to the AC. Note that for a symmetric foil with no camber,

αLo and CMo,AC are both zero.

The discretized EOM of the inviscid FC method in a time domain (TD) is re-

written in Eq.(A.8).


 m Sθ

Sθ Iθ

+

 πρfb
2 −πρfb3a

−πρfb3a πρfb
4(1

8
+ a2)



 ḧ

θ̈

 (A.8)

+


 Ch 0

0 Cθ

− πρfUb2

 −2
b
C(k) −(1 + (1− 2a)C(k))

(2a+ 1)C(k) b(1
2
− a)(−1 + (2a+ 1)C(k))



 ḣ

θ̇


+


 Kh 0

0 Kθ

+

 0 2πρfU
2bC(k)

0 −πρfU2b2(2a+ 1)C(k)



 h

θ


=

 2πρfU
2b(αo − αLo)

2ρfU
2b2CMo,AC − 2πρfU

2b2e(αo − αLo)

 .
The EOM of the inviscid FC method is non-dimensionalized by using b for length,

πρfb
2 for mass per unit span, 1/ωθ for time, and πρfb

3ω2
θ and πρfb

4ω2
θ for static lift

and moment per unit span, respectively. Therefore, the non-dimensional inviscid FC

method in a time domain can be expressed in Eq.(A.9).
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µ
 1 xθ

xθ r2
θ

+

 1 −a

−a 1
8

+ a2



 ḧ

b

θ̈

 (A.9)

+

µ
 2Ωζs,h 0

0 2r2
θζs,θ

+ U

 2C(k) 1 + C(k)(1− 2a)

−C(k)(2a+ 1)
(

1
2
− a
)

[1− C(k)(2a+ 1)]



 ḣ

b

θ̇


+

µ
 Ω2 0

0 r2
θ

+ U
2

 0 2C(k)

0 −C(k)(2a+ 1)



 h

b

θ


= U

2

 2(αo − αLo)

2CMo,AC/π − 2e(αo − αLo)

 .
The discretized non-dimensional inviscid solver of the fully coupled equation of

motion (EOM) is shown below:

(Ms + MT )Ẍn + (Cs + CT )Ẋn + (Ks + KT )Xn = Fstatic. (A.10)

In Eq. (A.10), X = [h/b, θ]T , Ẋ, and Ẍ are the non-dimensional displacement, veloc-

ity, and acceleration vectors. Ms, Cs, and Ks are, respectively, the non-dimensional

solid inertial, damping, and stiffness matrices MT , CT , and KT are, respectively, the

non-dimensional inviscid fluid inertial, damping, and stiffness matrices. Fstatic is the

non-dimensional static force vector.

A.2 Viscous Loose Hybrid Coupled (LHC) Method

The dimensional viscous FSI coupling model (i.e., Loose hybrid coupled method

(Young et al., 2012; Chae et al., 2013)) is solved using a semi-implicit Crank-Nicholson
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method in order to maintain the second-order accuracy in time, which can be written:

(M̃s + M̃
T

)
¨̃
Xn+1 + (C̃s + C̃

T
)

˙̃
Xn+1 + (K̃s + K̃

T
)X̃n+1 = (F̃CFD)n − (F̃

T

FSI)n,(A.11)

where the dimensional inviscid fluid force vector, F̃
T

FSI as presented in Eq. (A.12), is

expressed by Theodorsen (1935) approach.

F̃
T

FSI = −M̃
T ¨̃
X− C̃

T ˙̃
X− K̃

T
X̃. (A.12)

The dimensional viscous fluid force vector for the lift and moment acting on the

hydrofoil, F̃CFD from ANSYS-CFX (2011), is computed as follows in Eq. (A.13).

F̃CFD =


∮
A

(j · σfn)dA

∮
A

(r× σfn)dA

 , (A.13)

where n is a unit normal vector on the foil surface, j is a unit vector along the Y

direction, and r is a vector from the EA to a point on the closed foil surface (A). σf

is the total stress tensor for a Newtonian fluid for a Newtonian fluid as shown in Eq.

(A.14).

σf = −P I + µeff(∇uf +∇uTf ), (A.14)

where I is the identity matrix, P is the total pressure, and uf is the local fluid velocity.

µeff is the fluid effective dynamic viscosity.

Similar to the inviscid FC method, the EOM of the viscous LHC method is non-

dimensionalized by using b for length, πρfb
2 for mass per unit span, and 1/ωθ for

time, Po (the static pressure) for reference pressure, and ωθb for velocity. Therefore,

the discretized EOM of the non-dimensional viscous LHC method in a time domain
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is given in Eq.(A.15).

(Ms + MT )Ẍn+1 + (Cs + CT )Ẋn+1 + (Ks + KT )Xn+1 = (FCFD)n − (FT
FSI)n.(A.15)

In Eq. (A.15), FCFD is the non-dimensional viscous fluid lift and moment acting

on the hydrofoil as shown in Eq. (A.16).

FCFD =


∮
A

(j · σfn)dA

∮
A

(r× σfn)dA

 , (A.16)

σf = −Eu
2
P I +

2

ReeffU
(∇uf +∇uTf ), (A.17)

where σf is the non-dimensional total stress tensor for a Newtonian fluid, P is the

non-dimensional total pressure, uf is the non-dimensional local fluid velocity, U is

the reduced velocity, Eu = 2Po
ρfU2 is the Euler number, and Reeff = Uc

νeff
is the effective

Reynolds number. νeff is the fluid effective kinematic viscosity.
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