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Abstract

For an ergodic probability-measure-preserving action G ~ (X, ) of a countable
group G, we define the Rokhlin entropy h2°%(X, 1) to be the infimum of the Shannon
entropies of countable generating partitions. It is known that for free ergodic actions
of amenable groups this notion coincides with classical Kolmogorov—Sinai entropy. It
is thus natural to view Rokhlin entropy as a close analogue to classical entropy. Under
this analogy we prove that Krieger’s finite generator theorem holds for all countably
infinite groups. Specifically, if h2°%(X, ) < log(k) then there exists a generating
partition consisting of k£ sets. Using this result, we study the properties of Rokhlin
entropy as an isomorphism invariant and investigate the still unsolved isomorphism
problem for Bernoulli shifts. Under the assumption that every countable group admits
a free ergodic action of positive Rokhlin entropy, we prove that Bernoulli shifts having
base spaces of unequal Shannon entropy are non-isomorphic and that Gottschalk’s

surjunctivity conjecture and Kaplansky’s direct finiteness conjecture are true.

vi



CHAPTER I

Introduction

1.1 Background

Let (X, ) be a standard probability space, meaning X is a standard Borel space
and p is a Borel probability measure. Let G be a countably infinite group, and let
G ~ (X, ) be a probability-measure-preserving (p.m.p.) action. For a collection C
of Borel subsets of X, we let o-alg.(C) denote the smallest G-invariant o-algebra
containing C U {X} and the null sets. A Borel partition « is generating if o-alg,(«a)
is the entire Borel o-algebra B(X). For finite T' C G we write a’ for the join of the
translates t - o, t € T, where t -« = {t - A : A € a}. The Shannon entropy of a

countable Borel partition « is

H(a) = 3 —p(A) - log(u(A).

Aca

If 5 is a partition with H(3) < oo, then the conditional Shannon entropy of « relative
to 3 is

H(o| B) = H(ew vV 3) — H().
We write f < « if § is coarser than a. A probability vector is a finite or countable
ordered tuple p = (p;) of positive real numbers which sum to 1 (a more general
definition will appear in Chapter [). We write [p| for the length of p and H(p) =

> —p; - log(p;) for the Shannon entropy of p.



Generating partitions are frequently encountered in the study of entropy theory.
If G is a countable amenable group and G ~ (X, u) is a p.m.p. action, then the

classical Kolmogorov—Sinai entropy of the action is defined as

1
ha(X,p) = sup  inf —-H(3"),
A TTf%ﬁ’;e ‘T’

finite partition
and the supremum is achieved by generating partitions 8. Generating partitions are
powerful objects in the study of entropy. They not only simplify entropy compu-
tations, but also play critical roles in the proofs of some key results such as Sinai’s
factor theorem and Ornstein’s isomorphism theorem. Furthermore, they are not sim-

ply a tool in this setting, but rather are intimately tied to entropy as revealed by the

following fundamental theorems of Rokhlin and Krieger.
Theorem (Rokhlin’s generator theorem [41], 1967). If Z ~ (X, ) is a free ergodic
p.m.p. action then its entropy hz(X, u) satisfies

hz(X, p) = inf {H(a) : « 18 a countable generating partitz’on}.

Theorem (Krieger’s finite generator theorem [35], 1970). If Z ~ (X, p) is a free
ergodic p.m.p. action and hz(X,p) < log(k) then there exists a generating partition

a consisting of k sets.
Both of the above theorems were later superseded by the following result of Denker.

Theorem (Denker [14], 1974). If Z ~ (X, ) is a free ergodic p.m.p. action and p
is a finite probability vector with hz(X, ) < H(p), then for every e > 0 there is a

generating partition o = { Ao, ..., Ap—1} with |u(A;) — pi| < € for every 0 <i < |p|.

Grillenberger and Krengel [21] obtained a further strengthening of these results

which roughly says that, under the assumptions of Denker’s theorem, one can control



the joint distribution of o and finitely many of its translates. In particular, they
showed that under the assumptions of Denker’s theorem there is a generating partition
a with p(A;) = p; for every 0 <i < |p|.

Over the years, Krieger’s theorem acquired much fame and underwent various
generalizations. In 1972, Katznelson and Weiss [24] outlined a proof of Krieger’s
theorem for free ergodic actions of Z%. Roughly a decade later, Sujan [50] stated
Krieger’s theorem for amenable groups but only outlined the proof. The first proof
for amenable groups to appear in the literature was obtained in 1988 by Rosen-
thal [42] who proved Krieger’s theorem under the more restrictive assumption that
ha(X, 1) < log(k —2) < log(k). This was not improved until 2002 when Danilenko
and Park [I3] proved Krieger’s theorem for amenable groups under the assumption
ha(X, p) < log(k — 1) <log(k). It is none-the-less a folklore unpublished result that
Krieger’s theorem holds for amenable groups, i.e. if G ~ (X, pu) is a free ergodic
p.m.p. action of an amenable group and hg(X, ) < log(k) then there is a generat-
ing partition consisting of k£ sets. Our much more general investigations here yield
this as a consequence. We believe that this is the first explicit proof of this fact.
Rokhlin’s theorem was generalized to actions of abelian groups by Conze [12] in 1972
and was just recently extended to amenable groups by Seward and Tucker-Drob [4§].
Specifically, if G ~ (X, u) is a free ergodic p.m.p. action of an amenable group then
the entropy hg(X, p) is equal to the infimum of H(«) over all countable generating
partitions a. Denker’s theorem on the other hand has not been extended beyond
actions of Z.

Outside of the realm of amenable groups, a new entropy theory is beginning to
emerge. Specifically, Bowen [6] recently introduced the notion of sofic entropy for

p-m.p. actions of sofic groups, and his definition was improved and generalized by Kerr



[27] and Kerr-Li [29]. We remind the reader that the class of sofic groups contains
the countable amenable groups, and it is an open question whether every countable
group is sofic. Sofic entropy extends classical entropy, as when the acting sofic group
is amenable the two notions coincide [7, B0]. Generating partitions continue to play
an important role in this theory, as sofic entropy is easier to compute when one has a
finite generating partition. Bowen [6, [§] has extended much of Ornstein’s isomorphism
theorem to this new setting, however the status of Sinai’s factor theorem and Ornstein
theory are unknown, and new techniques for generating partitions must be developed

in order to move forward. Additionally, the following questions remain open.
Question 1.1.

(1) Does sofic entropy satisfy Rokhlin’s generator theorem when the sofic entropy is

not —oo?

(2) Does sofic entropy satisfy Krieger’s finite generator theorem when the sofic en-

tropy is not —oo?

The most well known application of entropy is the classification of Bernoulli shifts
over Z up to isomorphism. This application in fact lies at the root of its conception
by Kolmogorov in 1958 [33, 34]. Bernoulli shifts were classified over Z by Ornstein
in 1970 [36] 37], over amenable groups by Ornstein—Weiss in 1987 [39], and recently
classified over many sofic groups by Bowen [0}, 8] and Kerr-Li [31]. Nevertheless, the

following fundamental problem has not yet been settled.

Question 1.2. For every countably infinite group G, are the Bernoulli shifts (L%, \%)

classified up to isomorphism by the Shannon entropy H(L, A) of their base space?

In summary, generating partitions played a critical role in classical entropy theory

and need to be further studied in the non-amenable setting for the development of



sofic entropy theory. Additionally, if non-sofic groups exist then a new entropy-style
invariant may be needed in order to complete the classification of Bernoulli shifts.
Drawing motivation from these issues, we introduce the following natural isomorphism

invariant. For an ergodic p.m.p. action G ~ (X, 1) we define the Rokhlin entropy as
R (X, p) = inf {H(a) . ais a countable Borel generating partition}.

This invariant is named in honor of Rokhlin’s generator theorem. For free ergodic
actions of amenable groups, Rokhlin’s generator theorem [48] says that Rokhlin en-
tropy is identical to classical entropy. Thus, Rokhlin entropy may be viewed as a

close analogue to entropy.

1.2 The main theorem

Our main theorem is the following generalization of Krieger’s finite generator the-

orern.

Theorem 1.3. Let G be a countably infinite group acting ergodically, but not necessar-
ily freely, by measure-preserving bijections on a non-atomic standard probability space
(X, ). If p= (p;) is any finite or countable probability vector with h2°*(X, n) < H(p),
then there is a generating partition o = {A; : 0 <1 < |p|} with u(A;) = p; for every

0<i<|p|

This theorem supersedes previous work of the author in [46] which, under the
assumption hi®(X, 1) < oo, constructed a finite generating partition without any
control over its cardinality or distribution. The major difficulty which the present
work overcomes is that all prior proofs of Krieger’s theorem relied critically upon the
classical Rokhlin lemma and Shannon—McMillan—Breiman theorem, and these tools

do not exist for actions of general countable groups.



We remark that in order for a partition « to exist as described in Theorem [[.3] it
is necessary that h3°<(X, u) < H(p). So the above theorem is optimal since in general
there are actions where the infimum h8°%(X, 1) is not achieved, such as free ergodic
actions which are not isomorphic to any Bernoulli shift (see Corollary below).

If hE%(X, 1) < log(k) then using p = (p, . .., pr_1) where each p; = 1/k we obtain

the following:

Corollary 1.4. Let G be a countably infinite group acting ergodically, but not nec-
essarily freely, by measure-preserving bijections on a non-atomic standard probability
space (X, p). If h3X(X,pn) < log(k), then there is a generating partition o with

la] = k.

We mention that Corollary is the first non-free action version of Krieger’s
finite generator theorem. Furthermore, we believe that Corollary (together with
the Rokhlin generator theorem for amenable groups [48]) is the first explicit proof
of Krieger’s finite generator theorem for free ergodic actions of countable amenable
groups. In fact, we obtain the following strong form of Denker’s theorem for amenable

groups:

Corollary 1.5. Let G be a countably infinite amenable group and let G ~ (X, ) be
a free ergodic p.m.p. action. If p = (p;) is any finite or countable probability vector
with ha(X, p) < H(P) then there exists a generating partition o = {A; : 0 <1i < |p|}

with p(A;) = p; for every 0 < i < |p|.

We point out that Theorem [[.3] shows that a positive answer to Question [L.1}(1)
implies a positive answer to [[.1](2).
Rather than proving Theorem directly, we instead prove a stronger but more

technical result which is a generalization of the “relative” Krieger finite generator



theorem. The relative version of Krieger’s theorem for Z actions was first proven
by Kifer and Weiss [32] in 2002. It states that if Z ~ (X,u) is a free ergodic
p.m.p. action, F is a Z-invariant sub-o-algebra, and the relative entropy satisfies
hz(X, u|F) < log(k), then there is a Borel partition « consisting of k sets such that
o-algs(a) V F is the entire Borel o-algebra B(X). This result was later extended
by Danilenko and Park [13] to free ergodic actions of amenable groups under the
assumption that F induces a class-bijective factor.

For a p.m.p. ergodic action G ~ (X, ) and a G-invariant sub-c-algebra F, we

define the relative Rokhlin entropy h2°%(X, u|F) to be
inf {H(a|f) : « is a countable Borel partition and o-alg,(a) V F = B(X)}.

We refer the reader to Chapter[[I]for the definition of the conditional Shannon entropy
H(a|F), but we remark that when 7 = {X, o} we have H(a|F) = H(a). We
observe in Proposition [X. 1] that for free ergodic actions of amenable groups the relative
Rokhlin entropy coincides with relative Kolmogorov—Sinai entropy. Similar to the
Rudolph~Weiss theorem [43], we observe in Proposition that hE%(X, u|F) is
invariant under orbit equivalences for which the orbit-change cocycle is F-measurable.

Before stating the stronger version of our main theorem, we introduce some addi-
tional terminology. A pre-partition of X is a countable collection of pairwise-disjoint
subsets of X. We say that another pre-partition 5 extends «, written 5 J «, if there
is an injection ¢ : o« —  with A C «(A) for every A € a. Equivalently, 8 J « if and
only if the restriction of # to Ua coincides with a.

For a Borel pre-partition o, we define the reduced o-algebra a—alnged(a) to be the

collection of Borel sets R C X such that there is a conull X’ C X satisfying:

for every r € RN X" and x € X'\ R there is g € G with g -r,¢g-z € Ua



and with ¢ - r and ¢ - x lying in distinct classes of a.

It is a basic exercise to verify that o-algis’(a) is indeed a o-algebra.

The definition of reduced o-algebra may seem a bit odd at first, but comes about
naturally from our work here and significantly simplifies the proof of Theorem [[.16]
below. A key property of this definition is that if £ is any partition extending « then
one automatically has o-alg,(8) O o-algis!(a) (Lemma . Another important
property is that if G ~ (Y,v) is a factor of (X, u) via ¢ : (X, ) — (Y,v), then for
any pre-partition a of Y we have o-algis? (¢ () = ¢ (0-algls?()) (Lemma .
These properties can be quite useful for specialized constructions. For example, one
could imagine constructing two pre-partitions a! and a? which achieve different goals.
If Uat is disjoint from Ua?, then one can choose a common extension partition o and

automatically have o-alg,(a) D o-algisd(a') V o-alghsd(a?).

Theorem 1.6. Let G be a countably infinite group acting ergodically, but not nec-
essarily freely, by measure-preserving bijections on a non-atomic standard probability
space (X, ). Let F be a G-invariant sub-o-algebra of X. If 0 <r <1 and p = (p;)
is any finite or countable probability vector with hZ°(X, u|F) < r - H(p), then there
is a Borel pre-partition o = {A; : 0 < i < |p|} with p(Ua) = r, p(A;) = r - p; for

every 0 <i < |p|, and o-algli*(a) vV F = B(X).

The above result is new even in the case G = Z and F = {X,}. We mention
that the parameter r is needed for some of our later results. With r = 1, this result
strengthens the prior versions of the relative Krieger finite generator theorem, and
with F = {X, @} it implies Theorem We point out that we do not assume any
properties of F, and in particular we do not require that F induce a class-bijective

factor.



Observe that by using r = 1, Theorem [I.6| implies that we may use H(a) in place
of H(a|F) in the definition of h*(X, u|F). From this observation, we deduce the

following sub-additive identity.

Corollary 1.7. Let G be a countably infinite group acting ergodically, but not nec-
essarily freely, by measure-preserving bijections on a non-atomic standard probability
space (X, p). If G ~ (Y,v) is a factor of G ~ (X, ) and F is the sub-o-algebra of

X associated to Y then
RS (X, 1) < he™ (Y, v) + h™ (X, pl F).

The inequality above can be strict, for example when h2°%(X, 1) < hEX(Y,v). A

strict inequality is common for actions of non-amenable groups [47].

1.3 Applications

We use Theorem|[[.6]to study the Rokhlin entropy of Bernoulli shifts and investigate
Question . Recall that for a standard probability space (L, \) the Bernoulli shift
over G with base space (L, )\) is simply the product space (LY, \%) equipped with the

natural left-shift action of G:
for g,h € G and x € LY (g-x)(h) = z(g7'h).
The Shannon entropy of the base space is

H(L,A) =) =A(() - log A(¢)

leL

if A has countable support, and H(L, \) = oo otherwise. Every Bernoulli shift (L%, \%)
comes with the canonical, possibly uncountable, generating partition & = {R, : { €
L}, where

Ry={xc LY z(1g) = (}.



Note that if H(L, \) < oo then .Z is countable and H(.Z") = H(L, ). Thus one always
has h3eK(LE \G) < H(L, \).

A fundamental open problem in ergodic theory is to determine, for every count-
ably infinite group G, whether (2¢, uS) can be isomorphic to (3%, u§). Here we write
n for {0,...,n — 1} and u, for the normalized counting measure on {0,...,n — 1}.
Note that H(n,u,) = log(n). For amenable groups G, the Bernoulli shift (LY \%)
has Kolmogorov—Sinai entropy H(L,)), and thus (29 u§) and (3¢, u§) are non-
isomorphic. In 2010, groundbreaking work of Bowen [6], together with improvements
by Kerr and Li [29], created a notion of sofic entropy for p.m.p. actions of sofic
groups. For sofic G, the Bernoulli shift (LY \%) has sofic entropy H(L,\) [6], B1].
Thus (2¢,uS) and (39, u§) are non-isomorphic for sofic G. Based on these results, it

seems that the following statement may be true of all countably infinite groups G":
INV : H(L, )\) is an isomorphism invariant for (L%, \%).

Remark 1.8. Another important question is whether H(L, \) = H(K, k) implies that
(LE, \Y) is isomorphic to (K¢, k%). In 1970, Ornstein famously answered this ques-
tion positively for G = Z, thus completely classifying Bernoulli shifts over Z up to
isomorphism [36], 37]. This result was extended to amenable groups by Ornstein and
Weiss in 1987 [39]. Work of Stepin shows that this property is retained under passage
to supergroups [49], so the isomorphism result extends to all groups which contain an
infinite amenable subgroup. In 2012, Bowen proved that for every countably infinite
group G, if H(L, \) = H(K, k) and the supports of A and  each have cardinality at
least 3, then (LY \%) is isomorphic to (K¢, %) [8]. Thus, this question is nearly

resolved with only the case of a two atom base space incomplete.

We previously noted that one always has h2%(L¢ \¥) < H(L, \). When G is sofic,

10



Rokhlin entropy is bounded below by sofic entropy and thus h2°%(LY \Y) = H(L, \)
whenever (G is sofic. Since the definition of Rokhlin entropy does not require the

acting group to be sofic, the statement
RBS : hg*5 (L \%) = H(L, \) for every standard probability space (L, \).

(acronym for Rokhlin entropy of Bernoulli Shifts) may be true for all countably infinite
groups G. Notice that RBS = INV.

We investigate RBS and along the way we further develop the theory of Rokhlin
entropy. The canonical generating partition . of (LY, \“) has the property that its
translates are mutually independent. Our first result uses the joint distributions of

translates of a generating partition in order to bound Rokhlin entropy.

Theorem 1.9. Let G be a countably infinite group, let G ~ (X, ) be a free p.m.p.
ergodic action, and let a be a countable generating partition. If T' C G is finite, € > 0,
and ‘%' -H(aT) < H(a) — ¢, then h3°%(X, ) < H(a) — €/(16|T'}3).

Since the equality H(a®) = |T| - H(«) implies that the T-translates of o are mu-

tually independent when H(a)) < oo, we obtain the following.

Corollary 1.10. Let G be a countably infinite group acting freely and ergodically on a
standard probability space (X, 1) by measure-preserving bijections. If v is a countable
generating partition and

™ (X, 1) = H(a) < o0,
then (X, p) is isomorphic to a Bernoulli shift.

As the sofic entropy of an ergodic action is always bounded above by Rokhlin

entropy [6], we have the following immediate corollary.

Corollary I.11. Let G be a sofic group with sofic approzimation ¥, and let G act

freely and ergodically on a standard probability space (X, u) by measure-preserving

11



bijections. If a is a countable generating partition and the sofic entropy hZ(X, )

satisfies h5(X, ) = H(a) < oo, then (X, i) is isomorphic to a Bernoulli shift.

From Theorem [[.9we derive a few properties which would follow if RBS were found
to be true. Recall that an action G ~ (X, 1) of an amenable group G is said to have
completely positive entropy if every factor G ~ (Y, v) of (X, p), with Y not essentially
a single point, has positive Kolmogorov—Sinai entropy. For G = Z, these actions are
also called Kolmogorov or K-automorphisms. The standard example of completely
positive entropy actions are Bernoulli shifts (see [43]). In fact, for amenable groups
factors of Bernoulli shifts are Bernoulli [39], but it is unknown if this holds for any
non-amenable group. Recently, it was proven by Kerr that Bernoulli shifts over sofic
groups have completely positive sofic entropy [28]. Along these lines, we obtain the

following corollary of Theorem [[.9

Corollary 1.12. Let G be a countably infinite group. Assume that h3°%(LE \%) =
H(L, \) for all standard probability spaces (L, X). Then every Bernoulli shift over G

has completely positive Rokhlin entropy.

Our next corollary relates to two well-known open conjectures from outside ergodic
theory. The first is Kaplansky’s direct finiteness conjecture, which states that for every
countable group G and every field K, if a and b are elements of the group ring K[G]
and satisfy ab = 1 then ba = 1. Kaplansky proved this for K = C in 1972 [23] (see
also a shorter proof by Burger and Valette [10]). For general fields K, this conjecture
was proven for abelian groups by Ara, O’Meara, and Perera in 2002 [2], and then
proven for sofic groups by Elek and Szabé in 2004 [16]. This conjecture has also been
verified for some groups whose soficity is currently unknown [52] [3].

The second conjecture is Gottschalk’s surjunctivity conjecture, which states that

12



if G is a countable group, n € N, and ¢ : n® — n% is a continuous G-equivariant
injection, then ¢ is surjective. This conjecture has a simple topological proof when
G is residually finite (this is due to Lawton, see [20] or [54]), and can be proven for
amenable groups using topological entropy. Gromov proved the conjecture for sofic
groups, and in fact he defined the class of sofic groups for this purpose [22] 54]. Later,
after the discovery of sofic entropy, a topological entropy proof was given for sofic
groups [29]. We point out that it is known that Gottschalk’s surjunctivity conjecture
implies Kaplansky’s direct finiteness conjecture [I1], Section 1.5].

From Corollary we deduce the following.

Corollary 1.13. Let G be a countably infinite group. Assume that hE%(LE \Y) =
H(L, \) for all standard probability spaces (L,\). Then G satisfies Gottschalk’s sur-

Jgunctivity conjecture and Kaplansky’s direct finiteness conjecture.

If we define the statements

CPE : Every Bernoulli shift over G has completely positive Rokhlin entropy.
GOT : G satisfies Gottschalk’s surjunctivity conjecture.

KAP : G satisfies Kaplansky’s direct finiteness conjecture.

then from earlier comments and Corollaries and we deduce that for every

countably infinite group G
RBS = INV + CPE + GOT + KAP.

We now turn our attention to the validity of RBS. A priori, there is nothing

obvious one can say about h2°(LY \%) except that

hER((L x K)Y (A x £)%) < hBR(LY N9 4 hE%(KY k%) < H(L,\) + H(K, k).

13



Indeed, we do not know if Rokhlin entropy is additive under direct products, even for
Bernoulli shifts.

For a countably infinite group G, define

hay (G) = sup  h&* (X, p),

o G (Xp)
where the supremum is taken over all free ergodic p.m.p. actions G ~ (X, ) with
h&k (X, 1) < oo. For non-sofic groups G, we do not know if either of the following

two statements are true.

POS : There is a free ergodic p.m.p. action G ~ (X, ) with ha**(X, ) > 0.

INF : hR%(G) = 0.

sup

In order to study RBS, we first use Theorem in order to develop the following
analog of the classical Kolmogorov-Sinai theorem from entropy theory. Recall that if
(G is amenable then the Kolmogorov—Sinai theorem states that the Kolmogorov—Sinai

entropy ha (X, p) of G ~ (X, ) satisfies

_ coe b T
hG(Xaﬂ)—Sngzl;cl% T H(a™),

where the supremum is over all countable partitions o with H(a) < 0.

Theorem 1.14. Let G be a countable group acting ergodically, but not necessar-
ily freely, by measure-preserving bijections on a standard probability space (X, ).

Let (an)nen be an increasing sequence of partitions with H(ay,) < oo and B(X) =

V ey 0-algg(on). If

. . . . . T . < T T }
Inf lim sup Inf i/l“;glfa mf{H(ﬁ | o)+ B < ay, Hlam |87) <e
T finite

is positive then h3°%(X, ) = co. On the other hand, if the expression above is equal
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to 0 then

Rok o . . . . g<al T }
he” (X, 1) g%ig;,gggj;gg mf{H(ﬂ) B<ag, Hlan [87) <e
nite

We do not know if requiring the first expression in Theorem to be 0 is su-
perfluous. Although the connection may not be obvious, this is closely related to
whether POS implies INF (see the discussion following Corollary .

The main utility of Theorem is that it reveals new properties of Rokhlin

entropy (in addition to the corollary below, see also Corollaries [XI11.4] [XIII.5} [XII1.7]

XII1.8 and [XIIL.9). This theorem and its corollaries are important ingredients to our

main theorems.

Corollary I1.15. Let G be a countable group, let L be a finite set, and let LS have the
product topology. Then the map taking invariant ergodic Borel probability measures

w to hER(LY 1) is upper-semicontinuous in the weak*-topology.

We investigate RBS by an approximation argument via Corollary [[.15] The re-
quired ingredient is the construction of generating partitions a which are almost
Bernoulli in the sense that H(a)/|T| > H(a) — € for some large but finite 7' C G
and some small € > 0. By well known properties of Shannon entropy [15, Fact 3.1.3],
this condition is equivalent to saying that the T-translates of a are close to being
mutually independent. This theorem may be viewed as a generalization of a similar

result obtained by Grillenberger and Krengel for G = Z [21].

Theorem 1.16. Let G be a countably infinite group acting freely and ergodically on
a standard probability space (X, u) by measure-preserving bijections. If p = (p;) is
any finite or countable probability vector with h3°(X, u) < H(p) < oo, then for every

finite T"C G and € > 0 there is a generating partition « = {A; : 0 < i < |p|} with
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w(A;) = p; for every 0 < i < |p| and

1

m~H(a ) > H(a) —e.

The proof of Theorem [[.3] upon which the above result is based, takes place almost
exclusively within the pseudo-group of the induced orbit equivalence relation. It is
therefore a bit unexpected that we are able to control the interaction among the
T-translates of « in the above theorem.

The above theorem strengthens the result of Abért and Weiss that all free actions
weakly contain a Bernoulli shift [I]. Specifically, assuming only that H(p) > 0, they
proved the existence of an « which is not necessarily generating but otherwise satisfies
the conditions stated in Theorem [[.16]

Theorem allows us to investigate RBS for H(L, \) < oo.

Theorem 1.17. Let G be a countably infinite group and let (L,\) be a standard

probability space with H(L, \) < co. Then

hBK(LE A\G) = min (H(L, N, hROk(G)).

sup

Note that when hg** (LY, X¥) < H(L,\), the supremum hfX(G) is achieved by
(LY, \%). We point out that the above theorem places a significant restriction on the
nature of the map H(L, \) = h2°%(LY \). Prior to obtaining this theorem, there is
no obvious reason why this map should be monotone or even piece-wise linear.

Next we consider the case H(L, \) = co. In this case we obtain a result stronger
than Theorem [[.17. This is surprising from a historical perspective, since when Kol-
mogorov defined entropy in 1958 he could only handle Bernoulli shifts with a finite

Shannon entropy base [33], 34]. It was not until the improvements of Sinai that infi-

nite Shannon entropy bases could be considered [44]. Similarly, when Bowen defined
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sofic entropy he studied Bernoulli shifts with both finite and infinite Shannon entropy
bases [6], but he was only fully successful in the finite case. The infinite case was

resolved through improvements by Kerr and Li [29, 31 27].

Theorem 1.18. Let G be a countably infinite group and let (L,\) be a standard
probability space with H(L,\) = oo. Then hE%(LY ) = oo if and only if there

exists a free ergodic p.m.p. action G ~ (X, p) with h2(X, p) > 0.
Thus, if H(L, \) = co then hE%(LY \%) is either 0 or infinity.
It follows from Theorems and that for every countably infinite group G

INF = RBS.

Theorem 1.19. Let P be a countable group containing arbitrarily large finite sub-

groups. If G is any countably infinite group with h°%(G) < oo then hB%(P x G) = 0.

sup sup

Thus (VG POS) = (VG INF). Putting all of our results together, we obtain the

following.

Corollary 1.20. Assume that every countably infinite group G admits a free ergodic

p.m.p. action with h&*(X, ) > 0. Then:

(i) hBX(LY NY) = H(L, \) for every countably infinite group G and every probability

space (L, \);

(11) Every Bernoulli shift over any countably infinite group has completely positive

Rokhlin entropy;
(111) Gottschalk’s surjunctivity conjecture is true;

(iv) Kaplansky’s direct finiteness conjecture is true.
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This corollary indicates that the validity of (VG POS) should be considered an
important open problem.
Finally, for convenience to the reader we summarize the implications we uncovered

in the two lines below:
INF = RBS = INV + CPE + GOT + KAP

(VG POS) = (VG INF).

1.4 Outline

The proof of Theorem is entirely self-contained and only uses the definition
of ergodicity, standard properties of Shannon entropy, and Stirling’s formula. The
proof generally ignores the action of the group but instead works almost exclusively
within the pseudo-group of the induced orbit-equivalence relation. We review basic
properties of the pseudo-group in Chapter [[IIl The important advantage of working
within the pseudo-group is that we are able to obtain a suitable replacement to both
the Rokhlin lemma and the Shannon-McMillan—Breiman theorem. We present this
replacement in Chapter[[V] A significant difficulty of working within the pseudo-group
is that the notion of “generating” partition is lost. In a spirit somewhat similar to
work of Rudolph-Weiss [43], we must maintain careful control over sub-o-algebras
and the measurability properties of cocycles which relate elements of the pseudo-
group to the action of G. This is the most challenging part of the proof, and it is
essentially the only time when we must use the original group action. The coding
machinery needed for this task is presented in Chapters [V] and [VIl One final main
ingredient is a procedure for replacing countably infinite partitions with finite ones.
This procedure originates from prior work of the author in [46] and is presented in

Chapter [VIIl In Chapter [VIII we review a few well known counting lemmas related
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to Shannon entropy. Then in Chapter [[X]we collect our tools together and mimic the
classical proof of Krieger’s finite generator theorem and thus establish Theorem [[.6]

We remark that if one is only interested in obtaining a finite generating partition,
then only Chapters [T} [[TI] and [VII) are needed. Indeed, the latter two chapters essen-
tially recreate the proof of this fact by the author in [46]. The novelty of Theorem
is its precise control over the cardinality and distribution of the generating partition,
and the new ideas needed for this stronger result are the content of Chapters [[V], [V]
and [V

In Chapter [X] we show that relative Rokhlin entropy and relative Kolmogorov—
Sinai entropy coincide. We review the Rokhlin metric on the space of partitions and
some of its basic properties in Chapter [XI} Then in Chapter [XII] we study the joint
distributions among translates of a given generating partition and prove Theorem
1.9 This chapter also contains the proofs of Corollaries and Next we
study computability aspects of Rokhlin entropy and present the proof of Theorem
in Chapter [XIII} Chapters [XII] and [XIII| not only develop important properties
of Rokhlin entropy, but also serve as vital steps towards the study of the Rokhlin
entropy of Bernoulli shifts. In Chapter [KIV]we construct generating partitions which
are approximately Bernoulli and establish Theorem [[.16, We are then able to study
the Rokhlin entropy of Bernoulli shifts in Chapter [XV]and prove Theorems[[.17], [.18]
and [[19
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CHAPTER 11

Preliminaries

Let (X, u) be a standard probability space. For C C B(X), we let o-alg(C) denote
the smallest sub-o-algebra containing CU{ X} and the p-null sets (not to be confused
with the notation o-alg.(C) from the introduction). For a collection of partitions «y,
we let \/Z.e ; @; denote the coarsest partition finer than every «;. Note that \/Z.e ;G
may be uncountable. Similarly, for a collection of sub-c-algebras F;, we let \/,.; F;
denote the smallest o-algebra containing every F;.

Every probability space (X, ) which we consider will be assumed to be standard.
In particular, X will be a standard Borel space. A well-known property of standard
Borel spaces is that they are countably generated [25, Prop. 12.1], meaning there is
a sequence B,, C X of Borel sets such that B(X) is the smallest o-algebra containing
all of the sets B,,. This implies that there is an increasing sequence «,, of finite Borel
partitions of X such that B(X) =/, oy o-alg(an).

Throughout this paper, whenever working with a probability space (X, u) we will
generally ignore sets of measure zero. In particular, we write A = B for A, B C X if
their symmetric difference is null. Also, by a partition of X we will mean a collection
of pairwise-disjoint Borel sets whose union is conull. In particular, we allow partitions

to contain the empty set. Similarly, we will use the term probability vector more freely
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than described in the introduction. A probability vector p = (p;) will be any finite or
countable ordered tuple of non-negative real numbers which sum to 1 (so some terms
p; may be 0). We say that another probability vector ¢ is coarser than p if there is
a partition @ = {Q); : 0 < j < ||} of the integers {0 < i < |p|} such that for every

0<7<]|q

45 = Zpi-

1€Q;
For a countable ordered partition @ = {4; : 0 < i < ||} we let dist(a) denote

the probability vector p satisfying p; = p(A;). For two partitions « and /3, we say
[ is coarser than «, or « is finer than (3, written 8 < a, if every B € [ is the
union of classes of a. We let &y denote the set of countable Borel partitions o with
H(a) < oo. The space Py is a complete separable metric space [I5] Fact 1.7.15]

under the Rokhlin metric df}‘)k defined by
d;"(, B) = H(a | ) + H(B | ).

At times, we will consider the space of all Borel probability measures on X. Recall
that the space of Borel probability measures on X has a natural standard Borel struc-
ture which is generated by the maps p +— p(A) for A C X Borel [25, Theorem 17.24].
If X is furthermore a compact space, then we equip the space of Borel probability
measures on X with the weak*-topology. This topology is defined to be the weakest
topology such that for every continuous function f : X — R the map p — [ f du
is continuous. For a standard Borel space X and a Borel action G ~ X, we write
éc(X) for the collection of ergodic invariant Borel probability measures on X.

A probability space (Y,v) is a factor of (X, u) if there exists a measure-preserving
map 7 : (X,u) — (Y,v). Every factor 7 : (X, ) — (Y,v) is uniquely associated

(mod p-null sets) to a sub-o-algebra F of X, and conversely every sub-c-algebra F
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of (X, u) is uniquely associated (up to isomorphism) to a factor 7 : (X, u) — (Y, v)
[19, Theorem 2.15]. Since the factor Y is always standard Borel and thus countably
generated, for any sub-c-algebra F of X there is an increasing sequence of finite
partitions v, with 7 =\/, .y o-alg(y,) mod p-null sets.

If G acts on (X, p) and on (Y,v), then we say that G ~ (Y, v) is a factor of (X, u)
if there exists a measure-preserving G-equivariant map = : (X, u) — (Y,v). Under
the correspondence described in the previous paragraph, factors G ~ (Y, v) of (X, u)
are in one-to-one correspondence with G-invariant sub-o-algebras F C B(X). We

will make frequent use of the following theorem.

Theorem II.1 (Seward—Tucker-Drob [48]). Let G be a countably infinite group and
let G ~ (X, ) be a free p.m.p. ergodic action. Then for every € > 0 there is a factor

G~ (Y,v) of (X, u) such that h2*%(Y,v) < € and G acts freely on Y.

If 7:(X,u) = (Y,v) is a factor map, then there is an essentially unique Borel
map associating each y € Y to a Borel probability measure p, on X such that
pw= [y dv(y) and p, (7' (y)) = 1 [19, Theorem A.7]. We call this the disintegration
of u over v.

Let (X, i) be a probability space, and let F be a sub-o-algebra. Let 7 : (X, u) —
(Y,v) be the associated factor, and let pn = [ p1, dv(y) be the disintegration of p over
v. For a countable Borel partition o of X, the conditional Shannon entropy of «
relative to F is

H(a | F) = / S 1y (A) - log 1y (A) d(y) = /Y H,,(a) dv(y).

Y Aca
When necessary, we will write H,,(« | F) to emphasize the measure. If F = {X, @} is

the trivial o-algebra then H(a | F) = H(«). For a countable partition 8 of X we set
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H(a | 8) = H(a | o-alg(B)). For B C X we write
HB(a|f) :HMB(a|‘F)7

where pp is the normalized restriction of u to B defined by pg(A) = n(ANB)/u(B).
Since for B € F we have ug = [ p, dv(p)(y), it follows that if 3 C F is a countable

partition of X then

H(a | F) = Z,u )-Hp(a | F).
Begp

In particular,

H(o | 8) = > u(B)

Bep

We will need the following standard properties of Shannon entropy (proofs can be

found in [15]):

Lemma I1.2. Let (X, u) be a standard probability space, let a and 8 be countable

Borel partitions of X, and let F and ¥ be sub-o-algebras. Then
(i) H(a | F) = 0 if and only if a« C F mod null sets;

(ii) Ha | F) < log|al;

(iii) if a > § then H(a | F) > H(8| F);

() if X C F then H(a | ¥) > H(a | F);

(v) H(a'V 8| F) = H(3| F) + H(a | o-alg(8) v F);

(vi) if H(a), H(8) < oo then H(a V 5) = H(«a) + H(B) if and only if a and 5 are

independent;
(vii) if a =\, cy an is countable, then H(a | F) = limy, oo H(V g<ppcp e | F);

(viii) if H(a) < oo then H(a |V, ey Fn) = limyyoo H(ox | vogngk Fn)-
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We will also need the following basic fact.

Lemma I1.3. Let (X, p) be a probability space and let (cv,) be a sequence of countable

partitions of X. If > _yH(ay,) < 0o then =\, yan is essentially countable.

neN neN

Proof. 1f for each n there is a coarsening ¢, = {Z,,X \ Z,} of a, such that the
sequence of measures ((Z,) has an accumulation point in (0, 1), then co = > H((,) <
> H(a,), a contradiction. Let C), be the piece of a, of largest measure, and set &, =
{Cn, X\C,}. We must have (C),) tends to 1 as otherwise there would exist partitions
(, as described above. We have Y H(&,) < > H(a,) < co. Since z < H(z,1 — ) for
all x sufficiently close to 0, we deduce that > u(X\C,,) < co. Now the Borel-Cantelli
lemma states that almost-every x € X lies in only finitely many of the sets X \ C,.
So almost-every x € X lies in C), € «,, for all sufficiently large n. Let X,, be the set

of x with & C,, but x € C,, for all m > n. Then the X,,’s are pairwise disjoint, have

conull union, and 3 is countable when restricted to any X,,. O

We note a few lemmas related to o-algebras and reduced o-algebras which we will

need.

Lemma I1.4. Let (X,pu) be a probability space and let C be a countable algebra of
Borel sets. Then A € o-alg(C) if and only if A is Borel and there is a conull X' C X
such that for every a € ANX' and v € X'\ A there is a set C € C which separates a

and x.

Proof. Let ¥ be the collection of sets A satisfying the condition described in the
statement of the lemma. Then ¥ contains C U {X} and the null sets, and it is easy
to see that ¥ is a o-algebra. Thus o-alg(C) C X.

Enumerate C as Cy, Cy, -+ and define 7 : X — {0, 1} by the rule n(z)(n) = 1 if

and only if x € C,,. Note that 7 is o-alg(C)-measurable. Now fix a set A € . Then
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there is a conull X’ C X so that for all a € ANX" and x € X"\ A we have 7(a) # 7(z).
Consider the set (A N X’). Note that X' N7 Y(m(ANX")) = AN X'. A priori,
we do not know if m(A N X’) is Borel. However, since Borel probability measures
are regular |25, Theorem 17.10], there is an F,-set £ C w(A N X’) and a Gs-set
F D m(ANX') with 7, (p)(F\ E) = 0. Then we have X'N7 1 (E) C ANX’' C 7~ 1(F),
7N E), 7 Y(F) € 0-alg(C), and pu(r~(F)\ 7 }(E)) = 0. Since A is Borel and differs

from an element of o-alg(C) by a null set, we must have A € o-alg(C). O

Lemma II.5. Let G ~ (X, ) be a p.m.p. action, and let o be a pre-partition. If B
is a countable pre-partition and § 3 a then o-algl’(8) D o-algl’(a). In particular,

if B is a countable partition and B 3 o then o-algy(8) D o-algh(a).

Proof. Fix R € o-algis®(a). By definition of o-algls’(cx), there is a conull X’ C X
such that for all » € RN X" and x € X'\ R there is gy € G with gy -7, go - € Ua and
such that a separates gy - r and go - x. Since the restriction of 5 to Ua is equal to «,
we also have that [ separates go - r and g - . We conclude that R € o- algred(ﬁ). If

(3 is in fact a partition, then o-algis?(3) = o-alg, () be Lemma [I1.4] m
G

Lemma II.6. Let G ~ (X, u) be a p.m.p. action and let G ~ (Y,v) be a factor of

(X, 1) under the map w: (X, pu) — (Y,v). If a is a countable pre-partition of Y then

o-algg’(m ! (a)) = 7 (o-alg ().

Proof. Tt is a routine exercise to check 7~ (o-algis® () C o-alglsd (7~ 1(a)). So fix
R € o-algisd(n' (). If there is a Borel R C Y with R = 7~ '(R’), then again it
follows easily from the definitions that R’ € o-algls!(a) and thus R € 7~ (o-algs()).
However, by Lemma we necessarily have R € g-alg (77 (a)) = 7 (o-algs(a)).

Thus there is R C Y with R = n~1(R/). O
If G ~ (X,p) is a p.m.p. ergodic action and F is a G-invariant sub-o-algebra,
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then the relative Rokhlin entropy h&°%(X, p | F) is

inf {H(a | F) : « is a countable Borel partition and o-alg,(a) V F = B(X)}.
For a collection C of Borel sets we define the outer Rokhlin entropy as
hgf’)k((ﬂ}") = inf {H(a|]:) : «v is a countable Borel partition and C C a—algG(a)\/}"}.

When F = {X, &} we simply write g% (C) for hi%k (C|F). If G ~ (Y, v) is a factor of
(X, 1), then we define h3%% (V) = hg®% (3), where X is the G-invariant sub-o-algebra

of X associated to Y.
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CHAPTER III

The pseudo-group of an ergodic action

For a p.m.p. action G ~ (X, u) we let EX denote the induced orbit equivalence

relation:
Ef ={(z,y) : 3g€G, g-z=y}.

The pseudo-group of EF, denoted [[EZ]], is the set of all Borel bijections 6 : dom(#) —
rng(f) where dom(), rng(f) C X are Borel and §(z) € G-z for every z € dom(#). The
full group of EZ | denoted [EX], is the set of all § € [[EX]] with dom(f) = rng(f) = X
(i.e. conull in X).

For every 0 € [[EZ]] there is a Borel partition {Z? : g € G} of dom(f) such that
O(x) = g - x for every x € Zg. Thus, an important fact which we will use repeatedly
is that every 6 € [[EJ]] is measure-preserving. We mention that the sets ZJ are in
general not uniquely determined from 6 since the action of G might not be free. It
will be necessary to keep record of such decompositions {Z7} for 6 € [[EZ]]. The

precise notion we need is the following.

Definition ITI.1. Let G ~ (X, u) be a p.m.p. action, let § € [[EZ]], and let F be a
G-invariant sub-c-algebra. We say that 6 is F-expressible if dom(#),rmg(f) € F and
there is a F-measurable partition {Zf : g € G} of dom(#) such that 6(z) = g - = for

every z € Zj and all g € G.
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We observe two simple facts on the notion of expressibility.

Lemma IIL.2. Let G ~ (X, u) be a p.m.p. action and let F be a G-invariant sub-
o-algebra. If 0 € [[EX]] is F-expressible and A C X, then §(A) = (A N dom(6)) is

o-alga({A}) V F-measurable. In particular, if A € F then 0(A) € F.
Proof. Fix a F-measurable partition {Z{ : g € G} of dom(f) such that 0(z) = g - =
for all z € Zg. Then

0(A)=|Jg- (AN Z)) € o-alg,({A}) V F. O

geG

Lemma II1.3. Let G ~ (X, p) be a p.m.p. action and let F be a G-invariant sub-o-

algebra. If 0, ¢ € [[EX]] are F-expressible then so are 6=' and 6 o ¢.

Proof. Fix F-measurable partitions {Zf : g € G} and {Z? : g € G} of dom(f) and
dom(¢), respectively, satisfying 6(z) = g -z for all z € Zg and ¢(x) = g - x for all
x € Z. Define for g € G

. | 0
Zg =g . Zg_l'

Then each Zg_l is F-measurable since F is G-invariant. It is easily checked that
{Zg(’k1 : g € G} partitions rng(f) and satisfies 07! (x) = g -z for all z € Zgil. Thus
6~1 is F-expressible.

Observe that by the previous lemma, ¢~'(Zf) € F for every g € G since ¢! is
F-expressible. Notice that the sets Z¢ N ¢~'(Z})) partition dom(f o ¢). Define for

ge G
2 = (20, no7(2D).

heG

These sets are F-measurable and pairwise-disjoint and we have 6o ¢(x) = g -z for all

T e Zgod). OJ
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With the aid of Lemma [[II.2] we observe a basic property of relative Rokhlin
entropy. The proposition below resembles a theorem of Rudolph and Weiss from
classical entropy theory [43]. Note that if G and I" act on (X, u) with the same orbits
then EY = EX and [[EZ]] = [[F{¥]]. In this situation, we say that 0 € [[E}]] is

(G, C)-expressible if it is C-expressible with respect to the G-action G ~ (X, p).

Proposition I11.4. Let G and T" be countable groups, and let G ~ (X, u) and T' ~
(X, p) be p.m.p. ergodic actions having the same orbits. Suppose that F is a G and
I’ invariant sub-c-algebra such that the transformation associated to each g € G is
(I, F)-expressible and similarly the transformation associated to each v € T' is (G, F)-
expressible. Then

heS (X, plF) = hi* (X, p| F).

Proof. 1t suffices to show that for every countable partition «, c-algs(a) V F =
o-algp(a) V F. Indeed, since the transformation associated to each g € G is (I, F)-
expressible and « C o-algp(a) V F, it follows from Lemma that the o-algebra
o-algp(a) V F is G-invariant. Therefore o-alg,(a) V F C o-algp(a) V F. With the

same argument we obtain the reverse containment. ]

The lemma below and the corollaries which follow it provide us with all elements

of the pseudo-group [[EZ]] which will be needed in forthcoming chapters.

Lemma IIL5. Let G ~ (X, 1) be an ergodic p.m.p. action. Let A, B C X be Borel
sets with 0 < p(A) < u(B). Then there exists a o-alg,({A, B})-expressible function

0 € [[EX]] with dom(f) = A and rng(d) C B.

Proof. Let go, g1, ... be an enumeration of G. Set Zgo = AnNg;' - B and inductively

define

Zo, = (a\ (U 2)) Nait- (B\ (Ui o 22.) ).
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Define 6 : {J, ey Zgn — B by setting 0(x) = g, - x for z € Zgn. Clearly 6 is
o-alg,({A, B})-expressible.
Set C' = A\ dom(#). Towards a contradiction, suppose that p(C) > 0. Then we

have
p(mg(0)) = p(dom(6)) < u(A) < p(B).

So p(B \ rng(f)) > 0 and by ergodicity there is n € N with

p(Cngt - (B\mg0) > 0.

However, this implies that p(C'N Zgn) > 0, a contradiction. We conclude that, up to

a null set, dom(f) = A. O

Corollary II1.6. Let G ~ (X, u) be a p.m.p. ergodic action. If C C B C X and
w(C) = L. u(B) with n € N, then there is a o-alg({C, B})-measurable partition &

of B into n pieces with each piece having measure % - (B) and with C' € €.

Proof. Set Cy = C. Once o-alg({C, B})-measurable subsets C1, ..., Cy_; of B, each
of measure +-(B), have been defined, we apply Lemmal[[IL5[to get a o-alg ({C, B})-

expressible function 0 € [[EX]] with dom(f) = C' and
mg(d) C B\ (CLU---UCy_q).

We set C, = 0(C). We note that u(Cy) = £ - u(B) and C), € o-algq({C, B}) by

Lemma [l11.2| Finally, set £ = {C1,...,C,}. O]

In the corollary below we write idy € [[EX]] for the identity function on A for

ACX.

Corollary II1.7. Let G ~ (X, p) be an ergodic p.m.p. action. If§ = {C,...,C,} is

a collection of pairwise disjoint Borel sets of equal measure, then there is a o-algq(€)-
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expressible function 0 € [[EX]] which cyclically permutes the members of &, meaning

that dom(6) = rng(f) = UE, 0(Cy) = Cyyq for 1 <k <n, 0(C,) = C4, and 0™ = id .

Proof. By Lemma [[I1.5] for each 2 < k < n there is a o-alg.(&)-expressible function

or € [[EX]] with dom(¢y,) = C) and rng(¢x) = Ci. We define 6 : U — UE by

oo() if v € Cy
0(x) = § ¢y o ¢ (r) ifreCrandl<k<n

o (x) if z € C,,.

Then 6 cyclically permutes the members of £ and has order n. Finally, each restriction

0 | Cy is o-alg(§)-expressible by Lemmal|lI1.3|and thus € is o-alg(§)-expressible. [
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CHAPTER IV

Finite subequivalence relations

In this chapter we construct finite subequivalence relations which will be used
to replace the traditional role of the Rokhlin lemma and the Shannon—-McMillan—

Breiman theorem. We begin with a technical lemma.

Lemma IV.1. Let a = (a1, as,...,a,) be a probability vector and let € > 0. Then
there exists n € N, probability vectors 7 = (r!,r], ... ,7“;;) having rational entries with
denominator n, and a probability vector ¢ = (c1, ¢z, ..., ¢,) such that |a; — rl| < € for
alli,j and a=37"_ cj- 7.

Proof. Without loss of generality, we may suppose that a, > 0. Fix n € N with

n> (p—1)/eand n > 2(p—1)/a,. Fori < plet k; € N satisty k;/n < a; < (k;+1)/n

and let \; € (0, 1] be such that

ki+1
n.

ki
a; >\1 n‘l'( )\7,)

Set Ao = 0 and )\, = 1. By reordering a; through a,_; if necessary, we may suppose
that

O=X< A< < <A <\ =1

For 1 <j<psetc; =M\ —Aj_1. Then ¢ = (¢1,...,¢p) is a probability vector. Since
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S e =Nand S ¢; =1 -\, we deduce that

j=1 j=it+1
(4.1) Vi < Z k"+i hit ]
: i a =y ¢ — ¢ .
b — 7 p =T
j=1 j=it1
Now define # = (1,7, . .. ,77) by:
(
" ifj<i#p
r) = ket ifj > i

n

1- SPhl if i =p.
Clearly 7 has rational entries with denominator n. Furthermore |1 — a;| < 1/n < €

for i < p and

p—1
n

J < < €.

=)

From the expression above we also deduce that 7"1])' > 0 so that 7 is indeed a prob-

ability vector. It follows from 1) that a; = ?:1 ¢ rf for all ¢ < p, and since

(a1,...,a,) and 37%_, ¢; -7/ are both length-p probability vectors whose first (p —1)-

many coordinates agree, we must have a, = Z?Zl cj Ty U

For an equivalence relation F on X and x € X, we write [z]g for the E-class of
x. Recall that a set T C X is a transversal for E if |T' N [z]g| = 1 for almost-every
r € X. We will work with equivalence relations which are generated by an element

of the pseudo-group in the following sense.

Definition IV.2. Let G ~ (X, ) be a p.m.p. action, let B C X be a Borel set of
positive measure, and let £ be an equivalence relation on B with £ C E§ N B x B.
We say that F is generated by 6 € [[EX]] if dom(0) = rng(d) = B and [z]p = {0'(z) :

i € Z} for almost-all z € B. In this case, we write E = Ej.
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Lemma IV.3. Let G ~ (X, p) be an ergodic p.m.p. action, let B C X have positive
measure, let o be a finite partition of X, and let € > 0. Then there is an equivalence
relation E on B with E C ES N B x B and n € N so that for u-almost-every x € B,
the E-class of x has cardinality n and

pANB) _|AN[lsl _uANB)
vAca B T W~ B ¢

Moreover, E admits a o-algg(a U {B})-measurable transversal and is generated by a

o-alg,(a U {B})-expressible function 0 : B — B in [[E&]] which satisfies 0™ = idp.

Proof. Let w: (X, ) — (Y, v) be the factor map associated to the G-invariant sub-o-
algebra generated by a U{B}. Enumerate o as a = {A;, As,..., Ay}. Set B' = n(B)
and o/ = {A] : 1 <i < p} where A, = 7w(4;). Note that o/ is a partition of (Y,v)
and that v(A; N B') = u(A; N B).

First, let’s suppose that (Y, v) is non-atomic. By Lemma there are n € N,
probability vectors ¥ having rational entries with denominator n, and a probability

vector ¢ such that

v(A,NB') j
W—Ti < €
for all 7, 7 and
v(AiNB) v(ALNB) v(A,NB') P o :
( (B By ) ) T2 k)

J=1

Since (Y,v) is non-atomic and since ' is a partition, we can partition B’ into sets

{21, Zy, ..., Z)} such that for every j, v(Z})/v(B’) = ¢; and

v(Z; AT v(Z;N Ay) v(Z;NA) e (] )
JBY  wB) B i (11,19, 1),

It follows that v(Z} N A})/v(Z}) = 7] is rational with denominator n for all 4, j. This
implies that there is a partition & of Z} into n pieces each of measure % -v(Z}) such

that for every i, Z; N Aj is the union of n - rf many classes of &/
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Set Z; = n~'(Z}) and & = 77 '(¢}). Then Z; and the classes of §; all automatically
lie in o-alg, (o U {B}). For each j, apply Corollary to get a o-alg(a U {B})-
expressible function ¢; € [[EZ]] which cyclically permutes the classes of &;. So in
particular dom(¢;) = mg(¢;) = Z;, and ¢7 = idz;. Set § = ¢ Upp U--- U ¢, and
set £ = FEy. Then for p-almost-every z € B, the E-class of z has cardinality n and
if x € Z; then

J

pAiNB) AN [a]gl| _ ‘M(AWB) _
(B) [7]5] (B) '

Finally, if we fix some C; € ; for each j, then J,.,;.,C; € o-algg(a U {B}) is a

Vi < €.

transversal for E.

In the case that (Y,v) has an atom, we deduce by ergodicity that, modulo a null

set, Y is finite. Say |Y| = m and each point in ¥ has measure =. Set n = |B’|.

Clearly there are integers k; € N, with Y% | k; = n and

wB)  v(B)  n/m n

Let & be the partition of B’ into points, and pull back £ to a partition £ of B. Now

apply Corollary [[T[.7] and follow the argument from the non-atomic case. O

Corollary IV.4. Let G ~ (X, u) be an ergodic p.m.p. action, let B C X have positive
measure, let € > 0, and let F' = {f : B — R} be a finite collection of finite valued
Borel functions. Then there is an equivalence relation E on B with E C EX N B x B

and n € N so that for p-almost-every x € B, the E-class of x has cardinality n and

1 1 1
VieF —— | fdu—e<——-. [ fdu+e
R AL v 20 < i [, e

Moreover, if each f € F is F-measurable then E admits a o-alg(FU{B})-measurable

transversal and is generated by a o-algo(F U {B})-expressible function 8 : B — B in

[[EX]] which satisfies 0™ = idp.
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Proof. Define a partition a of B so that x,y € B lie in the same piece of « if and only
if f(x) = f(y) for all f € F. Then « is a finite partition. Now the desired equivalence

relation E is obtained from Lemma [V.3l O

The conclusions of the previous lemma and corollary are not too surprising since
you are allowed to “see” the sets which you wish to mix, i.e. you are allowed to use
o-alg.(a U {B}). The following proposition however is unexpected. It roughly says
that you can achieve the same conclusion even if you are restricted to only seeing a
very small sub-o-algebra. We will use this in the same fashion one typically uses the
Rokhlin lemma and the Shannon-McMillan-Breiman theorem, although technically
the proposition below bears more similarity with the Rokhlin lemma and the ergodic
theorem.

Let us say a few words on the Rokhlin lemma to highlight the similarity. For a free
p.m.p. action Z ~ (X, ), n € N, and € > 0, the Rokhlin lemma provides a Borel set
S C X such that the sets -5, 0 < i <n—1, are pairwise disjoint and union to a set
having measure at least 1 —e. The set S naturally produces a subequivalence relation
E defined as follows. For € X set g = (—i) -« where (—i)-z € Sand (—j)-x & S
for all 0 < 7 < i. Weset x F y if and only if g = yg. Clearly every E class
has cardinality at least n, and a large measure of E-classes have cardinality precisely
n. A key fact which is frequently used in classical results such as Krieger’s theorem
is that the equivalence relation F is easily described. Specifically, S is small since

1(S) < 1/n, and so E can be defined by using the small sub-c-algebra o-alg,({S}).

Proposition IV.5. Let G ~ (X, pn) be an ergodic p.m.p. action with (X, p) non-
atomic, let o be a finite collection of Borel subsets of X, let € > 0, and let N €
N. Then there are n > N, Borel sets S1,S2 C X with pu(S1) + pu(S2) < €, and

a o-alg({S1, Sa})-expressible 0 € [EX] such that Ep admits a o-algg({Si,S2})-
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measurable transversal, and for almost-every x € X we have |[z|g,| = n and

VAca  p(A)—e< A0BEL oy

(] |

Proof. Pick m > max(4/e, N) with m € N and

la - logy(m +1) < — - m.

‘.
4
Let S; € X be any Borel set with p(S;) = + < <. Apply Corollaries and to
obtain a o-alg, ({5 })-expressible function h € [EX] such that dom(h) = rng(h) = X,
h™ = idx, and such that {h?(S;) : 0 <4 < m} is a partition of X. The induced Borel
equivalence relation E}, is finite, in fact almost-every Ej-class has cardinality m, and
it has S as a transversal. We imagine the classes of E} as extending horizontally to
the right, and we visualize S; as a vertical column.

We consider the distribution of « [ [s]g, for each s € S;. For A € « define
dy:S1 — R by

AN [slel _

1
U = gl = AN

Note that for each A € «

/S dadp = p(A) = p(S1) - u(A).

By Corollary there is k € N and an equivalence relation £, C EX NS} x S on

St such that for almost every s € S, the F,-class of s has cardinality k£ and

VA € a u(A) —e <

L da(s') < u(A) +e.
el 2

s'€[s] g,

Moreover, if we let F denote the G-invariant sub-o-algebra generated by the func-
tions d4, A € «, then E, admits a o-alg,(F U {S;})-measurable transversal 7" and
is generated by a o-alg,(F U {S;})-expressible function v € [[EZ]] which satisfies

dom(v) = rng(v) = S; and v* = idg,.
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Let £ = E,V E}, be the equivalence relation generated by E, and Ej,. Then T' C S

is a transversal for F, and for every s € T’

s'€[s] g,

Setting n = k-m > N, we have that almost every F-class has cardinality n. Also,

for every A € o and s € T we have

Anblel _ 1y~ AN s,

— C > dals).

|[s]el k-m lsle.| 530,
It follows that for p-almost-every x € X
AN
VA€ a u(A)—e<|—mE| p(A) +e.
|[2] 2|

Now consider the partition { ={T;; : 0 <i <k, 0 <j <m} of X where
Ti,j = hj e} UI(T)

Note that 7T} ; € o-algo(FU{S:1}) by Lemmas|[11.2|and [[11.3] We will define a function

0 € [EZ] which generates E by defining 6 on each piece of £. We define

hIT,  ifj+l<m
01T, =

voh [T, ifj+1=m.
In regard to the second case above, one should observe that h(7;,,—1) = T} since
h™ = idy. Since v satisfies v* = idg, and n = k - m, we see that 6 satisfies 0" = idy.
We also have £ = Ejy. Finally, 0 is o-alg.(F U{S; })-expressible since each restriction
0| Ty is o-algg(F U {S1})-expressible by Lemma [[T1.3]
To complete the proof, we must find a Borel set Sy C X with u(S;) < % e <
e — u(S1) such that F C o-alg,({S1, S2}). Notice that |rng(da)| < m + 1 for every

A € a and therefore the product map

1 2 o
da:HdAisl—){O,E,E,...,l}

Acx
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has an image of cardinality at most (m+1)®. Set £ = [(e/4)-m] (i.e. the least integer
greater than or equal to (¢/4) - m). Since (¢/4) - m > 1 we have that ¢ < (¢/2) - m.

By our choice of m we have
(m + 1)l < 2le/m < ot
Therefore there is an injection
r:{0,1/m,...,1}* — {0,1}".

Now we will define Sy so that, for every s € Sy, the integers {1 < i < ¢ : hi(s) € Sy}

will encode the value r o d,(s). Specifically, we define
Sy ={h(s) : 1<i<{ s€Sy, r(ds(s))(i) =1}.

We have that Sy C |J,,,h'(S1) and therefore

€

p(S2) < Ly < (5om) =

€
2 2

as required. Finally, we check that F C o-alg.({S1,S2}). Fix p € {0,1/m, ..., 1}°.

Set
D={1<i<l:7(p)(i)=0} and I, ={1<i<{:r(p)i)=1}
Then for s € S; we have

da(s) = p <= r(da(s)) = r(p)

— (Viel)) hi(s)¢ S, and (Viel)) hi(s) €S,

e=seSn | (VA X\S) | n|[)h(S)

ielf iel}

So d;t(p) € o-algy ({51, S2}) by Lemmas [[T11.2] and [II1.3, Thus F C o-alg,({S1, S.}).

[]
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CHAPTER V

Construction of a non-trivial reduced o-algebra

This chapter is devoted to building a pre-partition 3 with o-algls?(8) # {X, @}
We will in fact build # with some additional properties which will be needed in the
next chapter.

The pre-partition § will consist of two (disjoint) sets By, B;. On an intuitive
level, it is likely helpful to imagine points in By as “labeled with 0”7, points in B;
as “labeled with 17, and points in X \ (By U By) as “unlabeled.” The purpose of
this chapter is to build By, B; and a set R, 0 < u(R) < 1, with R € o-algis?(3).
Intuitively, this means that for every point x € X and every {0, 1}-labeling of the
orbit of x which extends the {0, 1}-labeling coming from { By, B; }, one can determine
from this labeling whether or not z € R. In approaching this coding problem we are
guided by previous works of the author. Specifically, we draw upon the notions of and
constructions for “locally recognizable functions” and “membership tests” developed
in [I7] and [18]. Those constructions were done in a purely combinatorial framework.
Some of these constructions were generalized to the Borel setting in [48] under the
name ‘“recognizable sets,” and this influences our methods here as well. However, our
constraints and goals are different in the present work, and the constructions in this

chapter and the next differ greatly from those in [I7] [I8, [48].
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A naive but suggestive idea for building R, By, B; is to fix a finite window W C G,
label all points in W - R with 1 (i.e. set By = W - R) and try to arrange By so that for
every x ¢ R there is a point in W - x labeled 0. This naive approach is the right idea
but does not quite work. For example, this will fail if W has too much symmetry,
such as if W is a finite subgroup. If W is a finite subgroup then this construction
might not distinguish R from W - R. In the case of free actions it is not hard to choose
W in a more intelligent way and get this argument to work (see the construction of
locally recognizable functions in [I8]). However, for non-free actions it is not easy
to make this argument work, but we do so in this chapter. One indication of the
difficulty for non-free actions is that there may be points x for which Wz = {z}. To
overcome the difficulties of non-free actions we will construct group elements ¢ and
Q=A{q,...,q}. We will arrange the construction so that for » € R the labels of the
points ¢; - r (“query points”) will contain useful information (¢; and g, will be used
in this chapter, while g¢s, ..., gs will be used in the next). The point ¢ - r will be one
final checkpoint for verifying that r € R.

We remark that this is the only chapter where we truly work with the original
action of GG rather than the pseudo-group. We thus believe that allowing for non-free
actions does not significantly impact the length or the complexity of the proof of the

main theorem.

Lemma V.1. Let G ~ (X, ) be a p.m.p. action. If Y C X is Borel and ' C G is
finite, then there exists a Borel set D C'Y such thatY C F~'F-D and F-dNF-d = &

foralld # d € D. In particular, if p(Y) > 0 then u(D) > 0.

This is a special case of a more general result due to Kechris—Solecki-Todorcevic
[26, Prop. 4.2 and Prop. 4.5]. As a convenience to the reader, we include a proof

below.
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Proof. Since X is a standard Borel space, there is a sequence B,, of Borel sets which
separates points, meaning that for all x # y € X there is n with B, containing
one, but not both, of z and y [25, Prop. 12.1]. For 1 < k < |F7'F|, set ¥}, =
{yeY : |F'F-y| = k}. Let C be the G-invariant algebra generated by the sets
{B, : ne NJU{Y, : 1 <k <|F'F|}. Then C is countable. Let C,,, n € N,
enumerate the elements of C satisfying F'- 2 N F -2’ = @ for all z # 2/ € C,.

Inductively define D; =Y N} and
Di+1 - Dz U ((Y N CiJrl) \ FﬁlF . Dz)

Set D =J;enDi C Y.

Consider y € Y. Say y € Y; and suppose that £~ F-y consists of the distinct points
fi-y,..., fr-y. Since C separates points and is an algebra, there are pairwise disjoint
sets Ay,..., Ay € Cwith f;-y € A;foreach 1 <¢ < k. Set A, = Ykﬂﬂle fit-Aec.
Then for y' € A, we have that F~'F -y has cardinality & and consists of the points
fi-y € A for 1 <i < k. It follows that F'-y'NF -y" = @ for all y # y" € A,.
Thus A, = C,, for some n. Clearly y € A, = C,,. It follows that either y € D,, or else
y € F7'F-D,_;. In either case, y € F~'F - D. We conclude that Y C F~'F - D.

Finally, fix d # d' € D. Let i and j be least with d € C; and d’ € C;. If i = j then
F-dNF-d =@ and we are done. So without loss of generality, suppose that i > j.
Since d' € C; N D we must have d € D;. Asd € DNC; and 7 > j is minimal, we

have d € D; \ D;_; and therefore d ¢ F~'F -d'. Thus FdN Fd = @. O

Lemma V.2. Let G ~ (X, u) be a p.m.p. ergodic action with (X, ) non-atomic,
and let 0 > 0. Then there exists a finite symmetric set W C G with 1 € W and a

Borel set D C X such that 0 < u(D) <6 and W -xND # & for allxz € X.

Proof. Since G ~ (X, p) is ergodic and (X, ) is non-atomic, it must be that almost-
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every orbit is infinite. So there is a finite set F' C G such that
A={ze X : |F-x|>2/}

satisfies u(A) > 1 — §/2. Fix such a set F. Apply Lemma to obtain a Borel
set Dy C A of positive measure with A C F7'F-Dyand F-dNF-d = @ for all
d+#d € Dy. Then

2

5D < [ 1P al dute) <1

D4

and p(D4) < §/2. Again apply Lemma|[V.1|to obtain a Borel set Dy C (X\F~1F-D,)
with (X \ F-'F-D4) C F-'F-Dyand F-dNF-d = @ for all d # d' € Dy. Set

D=DyUDy. Then F-dNF-d =@ foralld#d € D and F~'F-D = X. Also,
0 < u(D) < p(Da) + p(X\ FUE - D) < u(Da) + (X \ A) < 5/2 4 5/2= 4

We set W = F~'F. Then W is symmetric and 15 € W. Finally, since X =

FIF.-D=W.D, weobtain W-zND# & for all z € X. O

Lemma V.3 (B.H. Neumann, [40]). Let G be a group, and let H;, 1 < i < n, be

subgroups of G. Suppose there are group elements g; € G so that
G = U gi - H;.
i=1
Then there is i such that |G : H;| < oo.
As a convenience to the reader, we include a proof below.

Proof. The lemma is immediate if all of the H; are equal to a fixed subgroup H. Now
inductively assume that the lemma is true for every n whenever there are less than ¢
distinct groups among Hi,...,H,. Let n > 1 and let Hy,..., H, be a sequence of ¢
distinct subgroups, and let gy, ..., g, € G be such that G = |Jg; - H;. Set H = H,,.

By reordering the H;’s if necessary, we may suppose that there is m < n with H; = H
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if and only if i > m. If G = J_  ¢;- H then H = H, has finite index in G and we
are done. Otherwise, there is a € G with a - H disjoint from each of g; - H for ¢« > m.

Then we must have
m—1 m—1
a-HC U g; - H; and hence HC U alg; - H;.
i=1 i=1

So we obtain

m—1 n m—1
G = UnglLJU Ugjaflgrﬂi.
i=1 j=m i=1

Since there are now ¢ — 1 distinct subgroups appearing on the right-hand side, we

conclude from the inductive hypothesis that there is i < m—1 with |G : H;| < co. [

Corollary V.4. Let G ~ (X, p) be a p.m.p. ergodic action with (X, p) non-atomic.
Let R C X have positive measure and let W, T C G be finite. Then there are a Borel

set R C R with u(R') > 0 and ¢ € G such that W - R'NT-R = @.

Proof. Our assumptions imply that almost-every orbit is infinite. So for p-almost-
every r € R the stability group Stab(r) ={g € G : g -7 = r} has infinite index in G
and thus by Lemma

T -Stab(r) - W' = U U tw™" - (wStab(r)w ™) # G.

teT weW

As ( is countable, there is ¢ € G and a non-null Borel set Ry C R with
c ¢ T -Stab(r) - W1

for all r € Ry. It follows that cW -rNT -r = & for all r € Ry. Now apply Lemma
to get positive measure Borel set R’ C Ry with (¢(W UT)-r0N(cWUT) -r' =2

forall r #£ 1" € R. O

Lemma V.5. Let G ~ (X, u) be a p.m.p. ergodic action with (X, ) non-atomic.

Let R)Y C X be positive measure Borel sets and let T" C G be finite. Then there
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are ¢ € G and a Borel set R' C R of positive measure such that ¢- R C'Y and

qg-RRNT-R =o.

Proof. Let Ry C R be a Borel set with p(Ry) > 0 and pu(Y'\T- Ry) > 0. By ergodicity,

there is ¢ € G such that ¢- Ro N (Y \ T - Ry) has positive measure. Set
R’:q*.(q-Rom(Y\T.RO)). O

The following lemma is rather technical to state, but its proof is short. This lemma

will play an important role in the proposition which follows.

Lemma V.6. Let G ~ (X, p) be a p.m.p. ergodic action with (X, i) non-atomic. Let
Y C X be a Borel set of positive measure, let W C G be finite and symmetric with
lg € W, and let m € N. Then there exist n € N, FUQ U {c} C G, and a Borel set

RC X withQ ={q,...,q}, p(R) = %, n>m- |F|, and satisfying the following:
(i) Q- RCY;
(1) |({c}UQ)-r\W-r| =7 forallr € R;
(iii) (W U{ctUQ)? C F;
(w) F-rOF-r"=o forallr#r €R;
(v) Wqg-RN(WU{c}uQ) -RCq-R for every q € Q;
(vi) Qc- RO (W U{c}uUQ)-RCc-R;
(vii) W - RN (W U{c}UQ)-RCc-R;
(viit) for all v € R, either qc-r #c-1 orgeec-r=c-7.

Proof. Set Ry = X. By induction on 1 < i < 6 we choose ¢; € GG and a Borel set

R; C R;_; such that u(R;) >0, ¢;- R; CY, and
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Both the base case and the inductive steps are taken care of by Lemma [V.5] Set
Q={q1,q,.-.,9} Then ¢;- R¢ C ¢;- R, CY and |Q-r\ W -r| =6 for all r € Rg.
Now apply Corollary to obtain ¢ € G and a Borel set R. C Rg with u(R.) > 0
and

W-RN{lgluQ HWUQUWQ) R, = 2.

Set F' = (W U {c}UQ)? so that (iii) is satisfied.

If there is ¢ € Q with gc-r = ¢-r for all r € R,, then set R = R, and re-index
the elements of ) so that ¢, = ¢q. Otherwise, we may re-index () and find a Borel set
R C R, of positive measure with qic-r # c¢-r for all r € R'. Now apply Lemma
to obtain a positive measure Borel set R C R’ with F-rNF -7 = & for all
r # r’ € R. By shrinking R if necessary, we may suppose that u(R) = % < ﬁ for
some n > m - |F|. Then (iv) is immediately satisfied, (viii) is satisfied since R C R/,
and (i) is satisfied since R C Rg. Clause (ii) also holds since ¢ - r € ¢W - r is disjoint
from (W UQ) - r for every r € R.

Recall that W = W' and 15 € W. Fix 1 < i < 6. By the definition of ¢; we have
Wgq-RNW-R=@,and if j # i then Wq;- RNg;- R = @. Also, the definition of ¢

implies that Wgq; - RNc- R = @. Therefore
Wgi- RO(WU{c}UQ) - RCgq R,

establishing (v). By definition of ¢ we have Qc- RN (W UQ) - R = &. So (vi) follows.

Similarly, cW - RN (W UQ) - R = @ and (vii) follows. O

Proposition V.7. Let G ~ (X, ) be a p.m.p. ergodic action with (X, i) non-atomic.
Let W C G be finite and symmetric with 1 € W, and let D C X be a Borel set with

W.axnND# @ forall z € X. Assume that the set Y = {x € X : |[W - x| > 2}
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has positive measure, and let F U QU {c} C G and R C X be as in Lemma . If

B ={By, B1} is a pre-partition with:

(1) (WU{c,qi}) - R C By;

(2) BINF-RC(WuU{ctuQ)-R; and

(3) (D\F-R)U(F-R\B;)Ug - R C By,

then R € o-algls(f).

Proof. We will make use of clauses (i) through (viii) of Lemma [V.6] We first make
three claims.

Claim: If g € Q and r € R then W - (¢ - 1) € By.

Fixge Q and r € R. By (i) ¢-r € Y and hence there is w € W with wq-r # q-r.

It follows wq - r € q - R by (iii) and (iv). Thus (v) and (2) imply
wqg-rgd (WuUu{ctuQ)- RO B NF:R.

Since wq - r € F - R, we deduce that wq - r ¢ By, establishing the claim.

Claim: If € R then either ¢, - (¢-7) € By or q2 - (¢c- 1) & By.

Fix r € R. By (viii) we have that either ¢ic-r # c¢-r or gac-r = c-r. In the
latter case, (1) gives goc -7 = ¢-r € By, and since B; N By = &, we conclude that
q@2c -1 &€ Bpy. So we may assume gic -1 # ¢-r. Then ¢ic-r ¢ ¢+ R by (iii) and (iv).

Hence (vi) and (2) give
qe-rg (WUu{ctuQ)-RD B NF-R.

Since qic-r € F' - R, we obtain ¢ic - r ¢ By and we are done.
Claim: R € o-algis?(B).
If » € R then it is immediate from (1) and (3) that (W U {c,¢:}) - r € By and

¢2 -7 € By. So it suffices to show that if © € R then either (W U{c,q1}) - 2N By # @
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or ¢o-x € By. Let w € W be such that w-z € D. If w-x € By then we are done. So
suppose that w-x ¢ By. Since w-x € D\ By, it follows from (3) that w-x € F'- R. By
(3) we also have F'- R C ByU By, and since w-x ¢ By we must have w-z € F'- RN B;.
Soby 2) w-z e (WU{c}UQ)-R. If x € By then we are done since 15 € W. So
suppose that = € By. Since W is symmetric, x € W - w - x and hence x € F - R by
(iii). Again, by (3) we have z € F'- R C ByU By, so « ¢ By implies ¢ € B N F - R.
Applying (2), we obtain z € (W U {c} UQ) - R. From the previous two claims we see
that we are done if z € ({c} UQ) - R. So suppose that x € W - R. Since = ¢ R, it
follows from (vii) that ¢- o ¢ (W U {c} UQ) - R. By (iii) we have ¢-x € F' - R, so by
applying (2) we find that ¢z ¢ By. Again, (3) gives c-z € F'- R C By U By, so we

must have ¢ -z € By. This completes the proof. O
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CHAPTER VI

Coding small sets

In this chapter we develop a method for perturbing a given pre-partition a to
obtain a pre-partition o/ with the property that a—alnged(a’ ) contains pre-specified
small sets. The construction in this chapter is intended to complement Proposition

[V.5. The construction we present involves a delicate coding procedure which is

inspired by techniques in [17], [18], and [4§].

Proposition VI.1. Let G ~ (X,u) be a p.m.p. ergodic action with (X, u) non-
atomic and let 0 < k < 1. Then there are 0 < € < k and a Borel set M C X with
w(M) = k with the following property: if Si,Ss C X satisfy pu(S1) + 1(Ss2) < €, then

there is a two-piece partition 3 = {By, B1} of M such that Sy, Sy € o-algls(3).

Proof. By Lemma [V.2] there is a finite symmetric set W C G with 1o € W and a
Borel set D C X with pu(D) < /2 such that W -2 N D # @ for all x € X. Note
that if |IW - z| =1 then x € D. Thus the set Y = {z € X : |W - x| > 2} has positive
measure. Apply Lemma to obtain FFU{c} UQ C G with Q@ = {q1,...,q} and
R C X with u(R) = &, where n > 2|F|/k. Fix k € N with

log,(2nk) < k —1
and let Z; and Z, be disjoint Borel subsets of R with u(Z;) = u(Zs) = 5. Set

2nk
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Z = 7y U Zy and note that u(Z) = - = 1 - p(R). Fix € > 0 with € < 7= < k. Let

M C X be any Borel set with DU F - R C M and u(M) = k.

Apply Corollaries [I11.6| and [[I1.7] to obtain a o-alg.({Z, R})-expressible function

p € [[EZ]] such that dom(p) = rg(p) = R, p* = idg, and such that {p’(Z) : 0 <
i < k} is a partition of R. For each j = 1,2, again apply these corollaries to obtain
a o-alg({Z;})-expressible function ; € [EZ] such that dom(v;) = rmg(y;) = X,
Y?2"F = idx, and such that {¢}(Z;) : 0 < i < 2nk} is a partition of X. We mention
that there are no assumed relationships between 1, 15, and p.

Let 51,52 € X be Borel sets with p(Sy) + u(S2) < e. Our intention will be to
encode how the sets 1 (Z;) meet S; and similarly how the sets 14(Z) meet Sy. For

1 <m <2nkand j =1,2, let Z7" be the set of z € Z; such that
{0 <i<2nk : ¥i(z) € S;} > m.

Then ZJ1 D ZJ? D..-D ZJan and

2nk

D w(Zr 0z = p(S) + p(Sa) < e.

m=1

Setting ZF = Z; \ Z;, we have

1 1
75 = u(Z;) — u(Z} — — — > 2e.
IL(/( ]) M( J) /’L( ])>2nk 6>3nk> €
In particular,
2nk
(6.1) w(Zi U Zz3) — Z p(Z7 U Z3") > 4e — € = 3e.
m=1

Set Z™ = Z" U Zy and Z* = ZF U Z5.
For each 1 < m < 2nk we wish to build a function 6,, € [[EZ]] which is expressible

with respect to o-alg,({Z*, Z,..., Z™}) and satisfies dom(,,) = Z™ and

m—1

ng(0,) € Z°\ | 0:(2%).

k=1
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We construct these functions inductively. When m = 1, we have pu(Z') < e < u(Z*)
and thus 6; is obtained immediately from Lemma[[II.5] Now suppose that 6; through

0,,—1 have been defined. Then

m—1

z\ | 6:(2%)

k=1

lies in o-alg,({Z*, Z',..., Z™'}) by Lemma [[I.2 By (6.1)) we have
—1

p(Zm) < e<u(Z) =y w2k = p (Z* \ U Gk(Zk)> :

1

3

=
Il

Therefore we may apply Lemma to obtain 6,,. This completes the construction.
Define f : Uf:il mg(0,) — {0,1,...,2nk — 1} by setting f(0,(2)) = £ for z € Z]*

if and only if ¢§(z) € S}, and
{0<i<:9i(z) €S} =m.

For i,t € N we let B;(t) € {0,1} denote the i*" digit in the binary expansion of ¢ (so

B;(t) = 0 for all 7 > log,(t) + 1). Now define a Borel set B; C X by the rule

¢

reW-R or
rec- R or
req-R or
rTeEq3- 4 or
r€B <= Sreq- 7 or
xEqs- It or
T € qg - 0,n(Z™H)  for some 1 < m < 2nk, or
T =qs- p'(2) where 1 <i < k, z € dom(f),
and B,;(f(z)) = 1.
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It is important to note that By C (W U {c} U Q) - R. In particular, B; C F' - R by

Lemma [V.6] (iii). We also define the Borel set
Bo=M\Bi=(M\(DUF-R)U(D\F-RU(F-R\B).
Note that clauses (iii) and (iv) of Lemma imply that for every r #r' € R
(WuUu{ctUuQ) - rn(Wu{ctuQ) -r =a.

Thus from clause (ii) of Lemma we obtain the following one-way implications

7

rTE Q- -R or
r€qs-(R\2) or
r€q - (R\7Z1) or
T € By <— x€q5.(R\Zl) or

€ s oty (Z\ Ou(Z27F)) or

m=1

T =qs- pi(2) where 1 <i < k, 2z € dom(f),

and B,(f(z)) =0.

\

In particular, go- R C By. We therefore see that 5 = { By, By } satisfies the assumptions
of Proposition [V.7]

We will now check that S;, S, € o-algis’(8). By Proposition we have R €
o-algisd(B). By G-invariance of o-algis?(3), we have ¢; - R € o-algis’(3) for 1 < i < 6.
It immediately follows from the definition of U—alglgd(ﬁ) that ByNg;- R and B1Ng;- R

lie o-algis?(/3). Defining the partition

7:{R,X\(RUQ-R)}U{Bgﬂqi-R: 1§i§6}U{Blﬂqi-R: 1§2’§6},
we have o-alg.(7y) C cr—algrc'fd(ﬁ). It suffices to show that 57, s € g-alg, (7).
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We have x € Z if and only if g3-x € B1Ng3- R € 7. Since R € 7, we have that both
Z and R\ Z lie in o-alg (7). Similarly, z € Z; if and only if ¢4 - € By Nqy - R. We
conclude that 7, Z,, Z, R € o-alg, (7). It follows that p, ¥4, and ¢, are o-algq(7)-
expressible.

We prove by induction on 1 < m < 2nk that Z™, Z7", ZI' € o-alg,(y) and that
0,, is o-alg;(y)-expressible. Since x € Z! if and only if g5 - 2 € B; N g5 - R, we
have Z! € o-alg;(y). Also Z] = Z' N Z, and Z; = Z' N Zy are in o-alg,(7y). So
Z*=7\ZY Zft =Z,\Z!, and Z; = Z,\ Z} are in o-alg,(7) as well. It follows that
0, is o-alg,(~y)-expressible. Now inductively suppose that Z* € o-alg, () and that 6,
is o-alg (y)-expressible for all 1 <4 < m. Then z € Z™"! if and only if z € Z™ and

g6 - Om(2) € By Ngg - R. In other words,

Zm+t = g1 <q6_1 (ByNgs R)).

Thus Z™*! € o-algo(y) by Lemmas [II1.2| and [[IL.3} Similarly, Z]"™' = Z™+1 N Z;

and Zy't = Zm*tL N Z, are in g-algg (). Finally, 6,4 is expressible with respect to
o-alg,({Z*, 21, ..., Z™1}) C g-alg; (7). This completes the inductive argument.

Now to complete the proof we show that S;, Sy € o-alg, (7). We first argue that f
is o-alg(y)-measurable. It follows from the previous paragraph and Lemmal[[II.2]that
dom(f) € o-algs (7). Observe that the numbers ¢ € rng(f) are distinguished by their
first (k — 1)-binary digits B;(¢), 1 < ¢ < k, since by construction log,(2nk) < k — 1.
So for 0 < ¢ < 2nk,if weset Iy ={1<i<k:B;(¢)=0}and I, ={1 <i<k}\ I
then we have

f7H(0) = dom(f ﬂp ( (BoNgs- R ) ﬂp ( “(BiNgs - R))

i€l i€l

Thus f~1(¢) € o-alg,(7y) by Lemmas |[I1.2) and [[I1.3] Now suppose that = € S;. Then
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there is z € Z; and 0 < ¢ < 2nk with = ¢{(z). It follows that z € Z* where
m=[{0<i</0:Yi(z) e S}

Furthermore, ¢ = f(0,(2)). Conversely, if there is 1 < m < 2nk, z € Z", and

0 <0 < 2nk with 2 = ¢§(2) and f(6m(z)) = ¢, then 2 € S;. Therefore

2nk—1 2nk

;= U U ei(Zn6107©)) € o-alge(y) € o-alg () =

/=0 m=1
We call a probability vector p = (p;) non-trivial if there are ¢ # j with p;, p; > 0.
Corollary VI.2. Let G ~ (X, ) be a p.m.p. ergodic action with (X, u) non-atomic,
let p be a mnon-trivial probability vector, let 0 < r < 1, and let § > 0. Then there are
0 <e<rd, and a Borel set M C X with p(M) = ré with the following property: if
S1,5 C X satisfy u(S1) + p(S2) < € and o = {A; : 0 < i < |p|} is a pre-partition

with Uoe € X \ M and

p(A:) < min (rp; + 7€) - (X \ M), rp)
for all 0 < i < |p|, then there is a pre-partition o = {A; : 0 <i < |p|} with A; C A
and pu(A}) = rp; for every i and Sy, Sy € o-algls’(a’).

Proof. Without loss of generality, we may suppose that pg,p; > 0. Pick 0 < k < rd
so that for ¢ = 0,1
(rp; + 1K) - (1 —71d) < rp; — K.
Apply Proposition to get 0 < e < k and M’ C X with u(M’) = k. Fix any set
M D M’ with (M) = ré.
Now let Sy, 52 € X with u(S1) + p(S2) < e and let @ = {4; : 0 < i < |p|} be a

pre-partition with Ua C X \ M and
f1(A;) < min ((Tpi +re) - (X \ M), Tpi)
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for all i. Then by Proposition there is a partition § = {By, B} of M’ such that

S1,9; € a—algg’d(ﬂ). For i = 0, 1, our choice of k gives

1(A;) < min <(Tpi +re)- (1 —7‘5),7“pi> < (rpi+7rr)-(1—=71) <rp;—rK < rp; — pu(B;).

Set Cy = AgU By, C; = A;UB;, and C; = A; for 2 < i < |p|. Then {C; : 0 <1i < |p|}
is a collection of pairwise disjoint Borel subsets of X with p(C;) < rp; for every 0 <
i < |p|. Since (X, u) is non-atomic, there exists a pre-partition o/ = {A] : 0 <i < |p|}
with A; C C; C A} and p(A,) = rp; for every i. By construction o/ extends § and

hence Sy, S, € o-algs?(B) C o-algls? (o) by Lemma . O
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CHAPTER VII

Countably infinite partitions

In this chapter, we show how to replace countably infinite partitions by finite ones.
This will allow us to carry-out counting arguments in proving the main theorem. Our
work in this section improves upon methods used by the author in [46].

For a finite set S we let S<“ denote the set of all finite words with letters in S (the
w in the superscript denotes the first infinite ordinal). For z € S<“ we let |z| denote
the length of the word z. The lemma below is a strengthened version of a similar

lemma due to Krieger [35].

Lemma VII.1. Let (X, pu) be a probability space, let F be a sub-o-algebra, let (Y, v)
be the associated factor of (X,u), and let p = [, p, dv(y) be the corresponding
decomposition of p. If & is a countable Borel partition of X with H({|F) < oo, then
there is a Borel function L Y x & — {0,1,2}<¥ such that v-almost-every restriction
L(y,-): € —{0,1,2}<% is injective and
[ IO (€ dv(y) < o,
Y cee
Proof. If ¢ is finite then we can simply fix an injection L : & — {0,1,2}* for some
k € N. So suppose that £ is infinite. Say £ = {C4,C%,...}. Let 0 : Y — Sym(N) be

the unique map satisfying for all n € N: either 11,(Coyyni1)) < ty(Coyym)) or else
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Py (Coynt1)) = ty(Cowymy) and o(y)(n 4+ 1) > o(y)(n). Since each map y — 1, (Cy)
is Borel (see Chapter [LI)), we see that o is Borel.

For each n let t(n) € {0, 1,2}<“ be the ternary expansion of n. Note that [t(n)| <
logs(n) + 1. For y € Y and C}, € ¢ define L(y, Cy) = t(o(y) "' (k)). Then L is a Borel

function and it can be equivalently expressed as

L(y, Co(y(n)) = t(n).
If [t(n)| = |L(y, Coyn))| > — 108 iy (Co()(ny) then for all k <n

o logs(n) — L —logy(e)

ey 1
/'Ly(CU(y)(k)) Z uy(co'(y)(n)) > e lt(n)] Z g

1
e

Thus

1 1 -
s = = os© < N (Coa) < 1
e

and hence n < exp(1/(1 — logs(e))). Letting m be the least integer greater than

[

exp(1/(1 — logs(e))), we have that |L(y, Cowyym))| < —log ity (Coym)) for all y € Y

and all n > m. Therefore

D LW, Copyin)| - 1y (Contryimy) < m- [Hm)] + Y 1LY, Coggym)| - 1y (Cayym)
neN n>m
<m-[t(m)]+ ) =y (Cy) log 1, (Cr)
neN

=m - [t(m)| + H,, (§)-

Integrating both sides over Y and using [, H,, (§) dv(y) = H({|F) < oo completes

the proof. O

Proposition VIL.2. Let G ~ (X,u) be an ergodic p.m.p. action, let F be a G-
invariant sub-o-algebra, and let £ be a countable Borel partition with H(|F) < oo.
Then for every € > 0 there is a finite Borel partition o with o-algs(a) V F =

o-algo (&) V. F and H(a|F) < H(E|F) + e.
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Proof. Let m : (X,u) — (Y,v) be the factor map associated to F, and let pu =
[ 11y dv(y) be the corresponding decomposition of . Apply Lemma [VIL1] to obtain
a Borel function L : Y x & — {0,1,2}<% such that v-almost-every restriction L(y, ) :

¢ — {0,1,2}<¥ is injective and

/YZ|L Yy, O)| - 11, (C) dv(y) < o0.

ceg

We define ¢ : X — {0,1,2}<% by

for z € C € €. Observe that ¢ is o-alg(£) V F-measurable and

J 1@l dnta) = [ [ 1) dute) dvtn) = [ 312001 (C) doty) < .

ceg

For n € Nlet P, = {P,, X \ P,} where
={re X : |l(x)] >n}.

Then the P,’s are decreasing and have empty intersection. Refine P, to 3, = {X \
P,, B°, B! B2} where for i € {0, 1,2}

B. ={r € P, : {(x)(n) =1}.

For n € N define

=V B

k<n

Since each restriction L(y, ) : £ — {0, 1,2}<“ is injective we have that

(7.1) ¢CFV\/ o-alg(m).
neN
Fix 0 < § < min(1/4,¢/2) with
—0 -log(0) — (1 —0) -log(1 — ) + 0 - log(7) < e
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Since

S uPo) = [ 1) duta) < o0

neN
we may fix N € N so that Y 2\ u(P,) < 0. Observe that in particular u(Py) < d

and thus
p(Py)+ Y p(P) <20 <1/2.
n=N
For n > N we seek to build o-algs (P, V v,_1)-expressible functions 6,, € [[EZ]]
with dom(6,,) = P, and

k=N

We build the 6,,’s by induction on n > N. To begin we note that pu(Py) < u(X \ Py)
and we apply Lemma to obtain 0y. Now assume that Oy, ...,60,_; have been
defined and posses the properties stated above. Then since ~,,_; refines Py V v, for

every k < n, we obtain from Lemma

n—1

Py U [ 0x(Py) € o-alge (1)
k=N

Also, by our choice of N we have that

—_

n—

p(P) < p(Py) < 5 < 1-25 < 1= u(Py) = 3 p(P2)

i
Z

= (X (PruULZN 6:(R)).
Therefore we may apply Lemma to obtain 6,. This defines the functions 6,,
n>N.
Define the partition 3 = {X \ P, B°, B*, B?} of X by

P = 0.(P);

n>N

B' =[] 6.(B)).

n>N
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Note that the above expressions do indeed define a partition of X since the images

of the 6,,’s are pairwise disjoint. Also define @ = {Q, X \ @} where

Q= ou(Pusr).

n>N

Note that @) is contained in P and so § might not refine Q. Set a = vy V SV Q.
Then « is finite. Using Lemma and the facts that X \ P € §V Q, u(P) < 4, and
H,,(vv) < Hg,(§) for v-almost-every y € Y (since { p,-almost-everywhere refines

YN ), we obtain

H(a|F) < H(yw|F) +H(BV Q)
= H(w|F) + H{P, X\ P}) + H(BV Q{P, X\ P})
< HOwl[F) = u(P) - log u(P) — p(X \ P)log (X \ P) + p(P) - 1og(7)
< H(wl|F) +e

/Y H,, (1) dv(y) + e
< /Y H, (€) du(y) +
=H({|F) + e

Thus it only remains to check that o-alg.(a) V F = o-alg.(£) V F.

First notice that the function ¢ and all of the partitions 7,, and P,, are o-alg(§)VF-
measurable and therefore each 6y, is o-alg(§) V F-expressible. It follows from Lemma
MI.2that 8, Q, and « are o-alg;(£) V. F-measurable. Thus o-alg(a)VF C o-alg,(&)V
F. Now we consider the reverse inclusion. By induction and by it suffices
to assume that v, C o-alg,(«) and prove that v,y C o-algs(«) as well. This is
immediate when k£ < N. So assume that £ > N and that v, C o-alg,(«). Since 0, is

expressible with respect to o-alg(vx) C o-alg,(«), we have that
Pe1 = 6,1(Q) € o-algg(a)
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by Lemmas[[T1.2)and [I11.3| Therefore Py, 1 C o-alg, (). Now since 6,1 is expressible

with respect to o-algs(Pri1 V Yk) C o-algs () we have that for ¢ € {0, 1,2}
By = 011(B') € o-algg(a)

by Lemmas |[l1I.2| and [[I1.3l Thus fx41 C o-algs(a) and we conclude that v C

o-alg; (). This completes the proof. O
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CHAPTER VIII

Distributions on finite sets

For a finite probability vector g, ¢ > 0, and n € N, we let L7 _ be the set of
functions ¢ : {0,1,...,n—1} — {0,1,...,|q| — 1} which approximate the distribution

of ¢, meaning

0

— 4

V0 <t <|q| ‘

Similarly, if (X, i) is a probability space and ¢ is a finite partition of X, then we let

L¢ . be the set of functions £: {0,1,...,n — 1} — £ such that
Y
wee IO <

We define a metric d on the set L7 by

d(e, ) = % Jo<i<n iy £ 0wy

If £ and (8 are finite partitions of (X, ) and & is finer than 3, then we define the
coarsening map mg : & — [ to be the unique map satistying C' C ng(C) for all C' € €.

By applying 75 coordinate-wise, we obtain a map mg : L

— Lj -

This chapter consists of some simple counting lemmas related to the sets Ly and
Lg ..
Lemma VIII.1. Let (X, pn) be a probability space, let & and § be finite partitions of

X, and let 6 > 0. Suppose that & refines B and let g : £ — [ be the coarsening map.
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Then there is g > 0 and ng € N so that for all 0 < € < €, n > ng/e, and every

be Ly,

exp (n.H(gw)_n.a) < HCG 2, ms(c) :bH < exp (n-H(§|ﬁ)+n.5>.

Proof. Without loss of generality, we may assume that p(C) > 0 for all C' € ¢&.
For a &-indexed probability vector ¢ = (go)cee we let m3(q) = (¢)pes denote the
coarsening of ¢ induced by g, specifically ¢p = ZCQB gc- Note that if ¢ = u(C)
for every C' € £ then
HEB) =D ) —qe - loglac/as).
BeB CCB

Choose ¢y > 0 so that whenever ¢ is a {-indexed probability vector with |gc —pu(C)| <
eo for all C' € € we have

HEB) =Y 0 —qo - log(ge/qs)

BEBCCB

< /3.

By shrinking ¢, further, we may assume that p(C) > 2¢, for all C' € €.
Recall that Stirling’s formula states that n! is asymptotic to v2mn - n™ - e ".

Therefore < log(n!) — log(n) + 1 converges to 0. Let ng be such that both

) )
~ log(n!) —log(n) + 1| < m

and (3¢q - n)l < exp(n - §/3) for all n > ng.
Fix 0 < e <€, n>mng/eand b € Lj . Let @ be the set of {-indexed probability
vectors ¢ = (qc)cee such that |goc — p(C)|] < €, n-gec € N for all C € &, and

n-qpg = |b"*(B)| for all B € . For q € Q, basic combinatorics gives

R (n-gp)!
(et mio=n| =Tl 20y
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Since go - n > €-n > ng for all C € £, there is k with |k| < /3 such that

1
~-log[{ € Ly : ma(t) = b}

= S los((n - ap)!) — -+ 3 los((n- ge))

Bep ceg

= a5 (log(n-qp) —1) = Y qc - (log(n-qc) —1) + &

Bep ceg

= qp-log(gs) — > qc -log(qc) + &
Begp ceg

=> ") —qc-loglac/as) + 1
BeBCCB

So our choice of €y gives

exp (nH(£|B) —n'2§/3) < ‘{f €Ly, : ma(l) = b}’ < exp (nH(ﬂB) +25/3>.

Finally,
{ee Ly, male) =b} = | J{t e L}, : ma(t) =0},
qeQ
and since |Q| < (3¢ - n)ll < exp(n - §/3), the claim follows. O

By taking g to be the trivial partition in the previous lemma, we obtain the

following.

Corollary VIIL.2. Let g be a finite probability vector and let 6 > 0. Then there is

€0 > 0 and ng € N so that for all 0 < € < ey and all n > ng/e

exp(n-H(cj)—n-(S)S

n
Lq7e

< exp (nH(q) +n-5).
Corollary VIIL.3. Fiz 0 < k < 1. Then for sufficiently large n we have
") < ( 2. H(k, 1 ))
exp (n-2-H(k,1—-k&
Lf{ . nJ — p Y Y
where |k - n] is the greatest integer less than or equal to kK - n.
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Proof. Set § = (1—£, k). By definition (

Lr-n)

) is the number of subsets of {0,...,n—1}
having cardinality | -n]. Such subsets naturally correspond, via their characteristic

functions, to elements of Ly when n > 1/e. Thus when n > 1/e we have (L':n J) <

|L7 |. Now apply Corollary |VIIL.2| with § < H(k,1 — k) to obtain e with

K-n|

for all n > 1/e. O

Corollary VIIL.4. Let (X, u) be a probability space, let & and § be finite partitions of
X with & finer than B, let ¢ be a finite probability vector, and let 0 < r < 1. Assume
that H(¢|B) < r-H(q). Then there are 6 > 0, €9 > 0, and ny € N such that for all

0 <e<eand all n > ng/e, there are injections
fo e € L« mple) = b} = Ly
for every b € Lj _ such that d(fy(c), fv(c')) > 206|q| whenever fy(c) # fw ().
Proof. Fix § > 0 such that 204|g| < 1/2, and
H(|B) <r-H(g) —0 —rd — 2r - H(204]q|, 1 — 206|q|) — 206|q|r - log|q|.

Fix m € N with rm - (6/2) > H(g). By Lemma [VIIIL.1| and Corollaries [VIII.2| and

VIII.3| there are ¢g > 0 and ny > m such that for all 0 < € < ¢y, n > ng/e, and all

be Ly,

o)
B
(o}
VRS
—
3
3
| I
| I—
~
VAN
0]
o]
to]
=
3
[\]
e
~—~
[\)
o
=
=1
vr—t
|
[\
o
i)
|
-
——
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Then by our choice of § we have that for all € < ey, n > ng/e, and all b € L”76

{c € Lg. : ms(c) = bH < exp (nH(ﬂﬁ) +n-5>

< exp (nr -H(g) —n-rd —n-2r-H(200|q|, 1 — 200|q]) — n - 204|g|r - log |cj|>

(o ng)

Now fix 0 < e < ey and n > ng/e. For V C Lg:o'zj let

[ron)
(8.1) 3175

Ba(Vip)={te LiZ) v eV dt,v) <p}.

Basic combinatorics implies that for p < 1/2

Ba(Vip)| < IV (Lp ,LTL,;,%D gl < v (t;',%) Jalr .

Let K C LCL{;"J be maximal with the property that d(k, k") > 200|q| for all k # k' € K.
Then by maximality of K we have L™ C Bqy(K;206|G|). Therefore

q?e

Lr-n]
Lq76

_ [ n] _1206]q|r-
< |By(K:2 < |K]| - . alrn

So [{c € L¢, : mg(c) = b}| < |K]| for every b € Lj by (8.1). Thus we may choose

injections fy : {c € L, : ma(c) =b} = K C L,%TE'"J for every b € Lj,. O

Lemma VIIL.5. Let g be a finite probability vector, let €,6 > 0, and let n € N.
Assume that € <0 <1, and 0 -n > 1. If £ € L7 _then there is J C {0,1,...,n — 1}

such that |J| < 36|q] - n and

VO <t < | % : ]e—l(t) \ J‘ < min ((qt +e)(1—9), qt>.
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Proof. For 0 <t < |g| we have

V*@ﬁ—mm(m-%+n-@Q—5%7y%)
gn-qt—i-n'e—min((n'qt—i—nf)(l—6), n-qt)
gmax(d-(n-qt—l—n-e), n-e)
<20-n.

Therefore we may pick J; C £71(¢t) with
Ji

V*uﬂ_mm<mﬂ%+n-@a—5%7p%)< <25-n+1<35-n.

Finally, we set J = Uﬂgl Jy.
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CHAPTER IX

Krieger’s finite generator theorem

Let (X, u) be a probability space. If £ = {C; : 0 < t < [£]} is an ordered
partition of X, then we let dist(£) be the probability vector with dist(&)(t) = p(Cy)
for 0 <t < |£]. By associating £ to the probability vector dist({) in this manner, we
also identify the two sets L¢  and Liist(e)..- We will also find it helpful to write L"

for the set of all functions ¢ : {0,1,...,n — 1} - NU{0}. For k <n, £ € L", and

(' € L* we define
(e, 0y = d(',0) = % Jo<i<k ey #emn|

When n = k, d(-,) coincides with the metric defined at the start of Chapter .
Let G ~ (X, p) be a p.m.p. action, and let £ be a partition of X. If n € N and
6 € [EX] has the property that almost-every Fj class has cardinality n, then we can
associate to each z € X its (&, #)-name N{(z) € L _ defined by setting N¢ (x)(i) = C
if 0'(x) € C' € & If furthermore ¢ is an ordered partition then we may view NV¢(z) as
an element of Lgist(f),oo cC L™

We now present the main theorem. As a corollary we will obtain Theorem [[.6[ from

the introduction.

Theorem IX.1. Let G ~ (X, p) be a p.m.p. ergodic action with (X, ) non-atomic,

and let F be a G-invariant sub-o-algebra. If & is a countable Borel partition of X,
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0 < r <1, and p is a probability vector with H({|F) < r - H(p), then there is
a Borel pre-partition o = {A; : 0 < i < [p|} with u(A;) = rp; for every i and

o-algg(€) V F C o-algli(a) vV F.

Proof. Apply Proposition to obtain a finite Borel partition ¢’ with o-alg (&) V
F =o-alg,(§) vV F and H({'|F) < r - H(p). Since ¢ is finite, by Lemma we have
that H(&'|F) is equal to the infimum of H({'|) over finite F-measurable partitions
p of X. So fix a finite F-measurable partition 5 with H(¢'|3) < r - H(p). Since
H(¢' Vv 5|5) = H(¢'|B) and o-alg (' V B) VF = g-alg. (') V F, we may replace & with
&'V B if necessary and assume that £ refines 5. Let 75 : & — (3 be the coarsening map.
Finally, by Lemma we may let ¢ be a finite probability vector which coarsens p
and satisfies H(¢'|B) < r - H(q) < r - H(p).

Let 0 < d < 1, €9 > 0, and ng € N be as given by Corollary [VITI.4]l Let 0 < € < rJ,
and M C X with u(M) = r - § be as given by Corollary [VL.2] Note that replacing
€ by a smaller quantity will not interfere with applying Corollary SO we may
assume that € < ¢;. We may also increase ng if necessary so that ng -6 > 1 and
|7 - no| > r-no/2. By Proposition there are n > ng/e, Borel sets S1,5y C X
with p(S1) + 1(S2) < €, and a o-alg,({S1, S2})-expressible 6§ € [EZ] such that Ej
admits a o-alg({S1, S2})-measurable transversal Y and such that for p-almost-every

x € X, the Fy class of x has cardinality n,

VC e Up M(C)—E<m<u(0)+€,
(] |

[ M N 2],

< p(M)+7r-0=2r-9.
sl M)

and

So we have that N{(y) € L, . and N§(y) € L} for almost-every y € Y. Set k = |r-n]
and let f, : {c € L}, : ms(c) = b} — Lk be the injections provided by Corollary

VIIL4|for b € L . Fory €Y set b, = Ni(y), ¢, = Ni(y), and a, = f,, (c,) € LE .
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Also define

={0<i<n:§(y)eM}

Then |M,| < 20r-n for p-almost-every y € Y. Since a, € L%, Lemma [VIIL5| provides

aset J, C{0,1,...,k— 1} with |J,| < 3rd|q| - n such that for all 0 <t < |g]

1.
r a, ()\(Myu']y)

< min ((qt +€)(1 —rd), qt>

— min ((g + (X \ M), q)

(9.1)

Clearly we can arrange the map y — J, to be Borel. We then let J be the Borel set
J={0(y) - yeY, je}
Define a pre-partition Q = {Q; : 0 <t < |q|} by setting
={0'(y) :yeY, 0<i<k, i¢g M,UJ,, and a,(i) = t}.

Observe that p(Y) = 1/n since Y is a transversal for Ey. By (9.1) we have that for

every 0 <t < |q]

(@) = [ 18 @\ (M, U )] duy) < i (g + (X \ M), )

<min<(r-qt—|—'r’-e)u(X\M), T'qze)

Now apply Corollary to get a pre-partition o/ = {A] : 0 <t < |g|} of X with
Q: € A7 and p(A)) =7 - ¢ for every t, and with Sy, S, € o-algls!(a’). We have that
0 is expressible and Y is measurable with respect to o-alg({S1, S2}) C o-algis? ().
By Lemma it follows that 6 is o-algls!(a’)-expressible for all i € Z.

We claim that the map y € Y > a, is o- algmd( ")-measurable. We check this via
the definition of a reduced o-algebra. Fix y € Y and x € X with either z € Y or

G, # @, If 2 ¢ Y then we are done since Y € o-algis®(a/). So suppose that z € YV’

70



and a, # a,. Then d(ay,,a,) > 206|q|. Set I ={0 <i <k : a,(i) # a,(7)} and note

|| > 206]q| - k. Since
M, U J, UM, U J,| <10r8|g - n < 200|g| - k < |1,

we may fix i € I\ (M, UJ,UM,U.J,). Since & is o-algls" (a/)-expressible, there is
a o-algls!(a’)-measurable partition {Z, : g € G} of X such that §'(z) = g - z for all
g € Gand z € Z,. If y and z are separated by the partition {Z, : g € G} then, since
this partition is o-algfs®(a’)-measurable, there must be h € G with both A -y and
h - x lying in Ua/ and separated by o/. We are done in this case. So assume there is
g € Gwithy,x € Z,. Then g-y = 0'(y) lies in Q; C A} where t = a,(i) and similarly
g-z=0"(x) lies in Q, C A, where s = a,(i). Ast # s we have that g-y and g -z lie
in Ua/ and are separated by o/. This proves the claim.

We observe that the map y € YV + b, is o-algis®(e/) V F-measurable since the

value of b, is entirely determined by the location of y in the partition \/?;01 (B 1Y

of Y. This partition is o-alg}s’(a’) V F-measurable by Lemmas [[T1.2/and [II1.3} So the

map y € Y + (b, a,) is o-algls?(a’) V F-measurable. Since ¢, = fb_yl(dy), it follows

that the map y € Y > ¢, is o-algs®(’) V F-measurable as well. For C; € & we have
Ci={0'(y) : ye€Y, 0<i<n, and ¢, (i) =t}

:Um({yey (i) =1}).

Therefore & C o-algis?(a’) V F by Lemmas [I11.2 and [II1.3, We conclude that

o-algo (&) V F = o-algg(¢) V F C o-algsd (o)) V F.

Finally, since (X, u) is non-atomic, u(A;) = r - ¢, and g is a coarsening of p, there
is a refinement « of o/ with p(A;) = r - p; for all 0 < ¢ < |p|. Clearly we still have

o-alg (&) V F C o-algsd(a) V F. O
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Now Theorem [[.6] follows quickly.

Proof of Theorem .6 By assumption h3°(X, u|F) < r - H(p). Thus there exists a
partition ¢ satisfying H(¢|F) < r - H(p) and o-alg,(§) V F = B(X). By applying
Theorem we obtain a pre-partition a = {A4; : 0 < i < |p|} with u(A;) = rp; for

every 0 < i < |p| and B(X) = o-alg,(¢) V F C o-algls?(a) V F. O
By letting F = {X, @} be the trivial o-algebra, we obtain the following.

Corollary IX.2. Let G ~ (X, p) be a p.m.p. ergodic action with (X, u) non-atomic.
If € is a countable Borel partition of X, 0 < r < 1, and p is a probability vector
with H(§) < r - H(p), then there is a Borel pre-partition o = {A; : 0 < i < |p|} with
w(As) =1 -p; for every 0 < i < |p| and & C o-algl(a).

Just as Theorem [[.6] follows from Theorem [[X.1] we see that Theorem [[.3] follows
from Corollary . We mention that in the above corollary, o-alg.(§) could corre-

spond to a purely atomic factor G ~ (Y, v) of G ~ (X, p). In this case Theorem

would not be applicable, and so Corollary offers a bit more generality.

Corollary IX.3. Let G ~ (X, ) be a p.m.p. ergodic action with (X, u) non-atomic,
and let F be a G-invariant sub-o-algebra. If G ~ (Y,v) is a factor of G ~ (X, p)

and Y 1s the sub-c-algebra of X associated to'Y then
he? (X, ulF) < he? (Y, v) + (X, ul F Vv D).

Proof. This is immediate if either h2°%(Y, v) or h2°%( X, u| FVY) is infinite, so suppose
that both are finite. Fix € > 0 and fix a generating partition ' for G ~ (Y, v) with
H(B') < hZX(Y,v) +¢/2. Pull back 8’ to a partition 3 of X. Then H(3) = H(') and

o-alg, () = 3. By definition of h3¥(X, u|F V X), there is a partition 4 of X with
H(+/|FV E) < h§™(X, | F V I) + €/2
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and o-alg. (7)) V FVE = B(X). Apply Theorem to get a partition v of X with
H(7) < hé™(X, p|F vV E) + ¢/2
and o-alg.(vy) VF VY = B(X). Then
B(X) = o-algs(v) VF VY =oc-algg(yV p) V F,
and hence
™ (X, plF) < H(BVA|F) <H(B) + H(y) < hg™(YVv) + he™ (X, ul FVE). O

Essentially the same proof yields the following.

Corollary IX.4. Let G ~ (X, u) be a p.m.p. ergodic action with (X, i) non-atomic,

and let F be a G-invariant sub-c-algebra. If « is a partition and C C B(X) then

héfx (| F) < hGX(CF) + héx(a| FV o-algg(C)),

and  he (X, ju| F) < h&% (C | F) + he™ (X, 1| F V 0-algg (C)).
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CHAPTER X

Relative Rokhlin entropy and amenable groups

We verify that for free ergodic actions of amenable groups, relative Rokhlin entropy
and relative Kolmogorov-Sinai entropy agree. This result was previously established
in the non-relative case by the author and Tucker-Drob [48].

We first recall the definition of relative Kolmogorov—Sinai entropy. Let G be a
countably infinite amenable group, and let G ~ (X, u) be a free p.m.p. action.
For a partition o and a finite set 7" C G, we write o for the join Viert - o, where
t-a={t-A: A€ a}. Given a G-invariant sub-g-algebra F, the relative Kolmogorov—

Sinai entropy is defined as

.1 .
ha (X, p|lF) = Sgp;ggm -H(a" [F),

where « ranges over all finite partitions and 7' ranges over finite subsets of G [13].

Equivalently, one can replace the infimum with a limit over a Fglner sequence (7},)

[39]. Recall that a sequence T,, C G of finite sets is a Folner sequence if

lim —‘aK(TnN =0

n—00 ‘Tn‘
for every finite K C G, where O (T) = {t € T : tK < T'}. We also write Zx(T') for

T\ 0k (T).
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Proposition X.1. Let G be a countably infinite amenable group, let G ~ (X, p) be
a free ergodic action, and let F be a G-invariant sub-o-algebra. Then the relative

Kolmogorov—-Sinai entropy and relative Rokhlin entropy coincide:
hG’(Xnu‘JT_-) = thk(X’lu’JT_')

Proof. We first show that hg(X, u|F) < hEX(X, u|F). If hB¥(X, u|F) = oo then
there is nothing to show. So suppose that h&%(X, u|F) < oo and fix € > 0. Let a be
a countable partition with o-alg,(a) V F = B(X) and H(a|F) < hEX(X, u|F) + «.
Let 8 be any finite partition of X and let (7},) be a Fglner sequence. Then by Lemma
L2l

0 = H(lo-algg(0) v F) = inf H(Fla" v F),

where K ranges over finite subsets of G. Fix K C G so that H(B|a® vV F) < e. Note

that H(t - Bla*® v F) < € for all t € G. Therefore

lim - H(8™"|F)

n—00 |Tn|
< lim T ~H(a™ v ™| F)
n—o0 n
=l T+ g H )
< lim =Y (H(t CalF) + H(t - flaT vf))
oo | T teT,
| Zx (T2 |0k (T

-H(B)

< lim A28 (X, p|F -

— RN(X, | F) + 2.

Now let € tend to 0 and then take the supremum over all 5.
Now we argue that h3°%(X, u|F) < hg(X,u|F). Since the action of G is free, a
theorem of Seward and Tucker-Drob [48] states that there is a factor action G ~

(Z,m) of (X,u) such that the action of G on Z is free and hE%(Z,n) < e. Let

75



¥ be the G-invariant sub-c-algebra of X associated to Z, and let G ~ (Y,v) be
the factor of (X, u) associated to F VvV X. Then G acts freely on (Y, v) since (Y,v)
factors onto (Z,n). By the Ornstein-Weiss theorem [3§], all free ergodic actions of
countably infinite amenable groups are orbit equivalent. In particular, there is a free
ergodic p.m.p. action Z ~ (Y, v) which has the same orbits as G ~ (Y, v) and has 0
Kolmogorov—Sinai entropy, hz(Y,rv) = 0. By the Rokhlin generator theorem [41], we
have h3°%(Y,v) = 0 as well.

Let’s say Z = (t). Define ¢ : Y — G by

cy)y=g=t-y=g-y.

Let f:(X,u) — (Y,v) be the factor map, and let Z act on (X, ) by setting

t-x=c(f(zx)) -z
Then F V¥ and the actions of G and Z on (X, u) satisfy the assumptions of Proposi-
tion [[I1.4] Equivalently, in the terminology of Rudolph—Weiss [43], the orbit-change
cocycles between the actions of G and Z on X are FVX-measurable. Thus he (X, pu|FV
¥) = hz(X, u|FVY) by [43, Theorem 2.6]. Also, since hE%(X, u|FVE) < hRK(X, 1)

and h5°%(Y,v) = 0, it follows from Corollary that
(10.1) hy (X, ulF v 2) = BN (X, ).

We have
ha(X,u|lFVE) = hg(X,plFVE) by the Rudolph—Weiss theorem [43]
= hz(X,u) — hz(Y,v) by the Abramov—Rokhlin theorem [4]
= hz(X,p) since hz(Y,v) =0
= hE%(X p) by the Rokhlin generator theorem [41]
= h¥F(X,ulFVYE) by Equation [T0.1

= hE%(X,ulFVYE) by Proposition
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So ha(X, pu|F Vv E) = hBK(X, u|F v ). Also, it is immediate from the definitions

that ha(X, p|F V E) < ha(X, p|F). Finally, by Corollary we have
& (X, plF) < hE(Z,m)+he™ (X, pl FVE) < e+ha(X, p|lFVE) < e+ha(X, plF).

Now let € tend to 0. O
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CHAPTER XI

Metrics on the space of partitions

Let (X, ) be a probability space. Recall that the measure algebra of (X, pu) is
the algebra of equivalence classes of Borel sets mod null sets together with the metric
d, (A, B) = p(AAB). There is a closely related metric d,, on the space of all countable

Borel partitions & defined by
dul, ) =t {u(Y) : Y € X and o | (X\Y) =5 [ (X\V)}.

We will tend to work more frequently with the space &y of countable Borel partitions
a satisfying H(a) < co. In addition to the metric d,,, this space also has the Rokhlin

metric dllj”(’k defined by

d,*(a, B) = H(ar | B) + H(B | ).

In this chapter we collect some known properties of these metric spaces for which

there is no good reference in the existing literature.

Lemma XI.1. Let G be a countable group, let G ~ (X, ) be a p.m.p. action, and

let a, 5,6 € Py. Then:
(i) A7, ") < |T| - di°(B,€) for every finite T C G;
(i1) di*(aV B,a V&) < di(B,€);
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(iii) [H(8) — H(&)| < d;j°5(8,€);
(iv) [H(B | a) — H(E | )| < di8(B,¢);
(v) [H(ar| B) = H(ar [ §)] < 2 (B, ).

Proof. We have

HBT €)<Y H(E-B1€) <Y H(t-Bt-€) =|T|-H(B|¢),

teT teT

where the final equality holds since G acts measure-preservingly. This establishes (i).
Item (ii) is immediate since Hla vV 8 |a V&) = H(B |a Vv E) < H(B|E). For (iii), we

may assume that H(5) > H({). Then we have

H(B) — H(§) < H(BV &) — H(€) = H(B|€) < d;°(B,€).

Items (iv) and (v) follow from (ii) and (iii) by using the identities H(5 | a) = H(av Vv

#) —H(a) and H(a | §) = H(a vV 5) — H(B). =

In the next lemma we will use the well-known property [15, Fact 1.7.7] that for
every n € N, the restrictions of d, and dff(’k to the space of n-piece partitions are
uniformly equivalent. Moreover, d,, is always uniformly dominated by d}}"k, meaning

that for every € > 0 there is 6 > 0 such that if a, 5 € Yy and dEOk(oz,b’) < ¢ then

d, (o, B) <e.

Lemma XI.2. Let G ~ (X, p) be a p.m.p. action. Let T C G be finite, let a € Py,
and let B be a coarsening of a. For every e > 0 there is § > 0 so that if o/ € Py

and df}"k(a’, a) < 6, then there is a coarsening 3 of o/ with d}j"k(ﬁ’,ﬁ) < €.

Proof. By Lemma m, there is a finite partition 3y coarser than  with d}j‘Ok(ﬁo, B) <
€/2. Set n = |fp| and let & > 0 be such that d;°*(¢, (') < €/2 whenever ¢ and ¢’ are n-

piece partitions with d,,(¢,(’) < k. Let § > 0 be such that d,(, ') < x/|T| whenever
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§,& € Py satisty d(€,¢') < 6. Now let o/ € Py with dj**(a/,a) < 4. Then
d,(o/,a) < k/|T| and hence d,(a/", ™) < k. This means there is a set Y C X with
p(Y)<kand o7 | (X\Y)=0al | (X\Y). Thus there is a n-piece coarsening 3" of
oM with 5/ [ (X\Y) = fo [ (X\Y). Sod,(f, o) < k and hence d;i°* (5, Bp) < €/2.

We conclude that di°%(3’, §) < e. O

Lemma XI1.3. Let (X, p) be a probability space, and let A be an algebra of Borel sets
which is d,-dense in a sub-c-algebra F. If B € Pu, B C F, and € > 0 then there is

a partition 8 C A with df}"k(ﬂ’, p) < e.

Proof. By Lemma there is a finite partition Sy coarser than 3 with d}**(5o, 8) <
€/2. Set n = || and let § > 0 be such that d°*(¢,(’) < €/2 whenever ¢ and (' are
n-piece partitions with d,(¢, (") < 6. Since A is dense in F there is a n-piece partition

B € A with d,(f, By) <. Then df}c’k(ﬁ’,ﬁo) < €/2 and dE‘Ok(ﬁ/,B) < e ]

Corollary XI1.4. Let G ~ (X, ) be a p.m.p. action, let F be a sub-o-algebra, and
let o be a partition with F C o-alg.(«). If € Py, B C F, and € > 0, then there

exists a finite T C G and a coarsening B’ of o with d}j“’k(ﬁ’, p) < e.

Proof. The o-algebra generated by the sets g- A, g € G, A € a, contains F. Therefore

the algebra generated by these sets is dense in F. O]
The same proof also provides the following.

Corollary X1.5. Let G ~ (X, u) be a p.m.p. action, let F be a sub-c-algebra, and let
(an) be an increasing sequence of partitions with F C \/, .y o-algg(ay). If B € Py,
B C F, and € > 0, then there exist k € N, a finite T C G, and a coarsening ' of a}

with dB%(5, B) < .
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CHAPTER XII

Translations and independence

In this chapter we show that if the Rokhlin entropy of a free ergodic action is

realized by a generating partition, then the action is isomorphic to a Bernoulli shift.

Lemma XII.1. Let G be a countably infinite group, let G ~ (X, ) be a free p.m.p.
action, and let T' C G be finite. Then there is a Borel partition & of X such that for

every C € & we have u(C) > 1 -|T|™ andt-CNs-C =2 forallt £seT.

1
Proof. If |T'| = 1 then by setting £ = {X} we are done. So assume |T'| > 2. Since
the action is free, the condition t - C'Ns-C = @ for all t # s € T is equivalent to the
condition T'-cNT - = & for all ¢ # ¢ € C. By repeatedly applying Lemma we

can inductively construct disjoint sets C, Cy, ... such that for every i
X\(ClLJCQU"'UCi_l) QT_ITC’Z

and T-cNT-c =@ for all ¢ # ¢ € C;. We claim that there is n < |T~'T| + 1 such
that X = C; U---UC,. If not, then there is x € X \ (C; U--- U Cjp-1741). Then
x € T7'T - C; for every ¢ and hence T7'T - x meets every C;, 1 < ¢ < |[T'T| + 1.
This contradicts the C;’s being disjoint.

Set £ ={C; : 1 <i<n}. If u(C;) < 5-|T|~* for some i, then since ¢ is a partition
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of X with |£] < 2|T|?, there must be some j with u(C;) > $|T|72. So

_ 1 TP 1 N 1
T2T|2 4T 4T 4|4

p(C\TT- )
Thus by removing from C; a subset B C C;\T~*T-C; having measure u(B) = 1-|T|*
and by enlarging C; to contain B, we will have reduced the number of sets in £ having

measure less than }1 -|T'|=*. This process can be repeated until every set in ¢ has

measure at least ;- T~ O

Let G ~ (X, ) be a free ergodic p.m.p. action, and let a be a generating partition
with H(a) < oo. If (X, p) is not isomorphic to a Bernoulli shift, then the G-translates
of a cannot be mutually independent. Thus, there is a finite set T C G with H(a”) <
IT| - H(«). So it suffices to show that H(a®) < |T| - H(«) implies h3°%(X, u) < H().
It is interesting to note that when G is amenable and the action on (X, p) is free and
ergodic, the Rokhlin entropy coincides with Kolmogorov—Sinai entropy and therefore
hPk( X, 1) is equal to the infimum of H(a®)/|T| for finite T C G. While this equality

is known to fail for non-amenable groups, it is unknown if an inequality holds.

Question XII.2. Let G be a countably infinite group, let G ~ (X, u) be a free
ergodic p.m.p. action, and let « be a generating partition with H(«) < oo. Is it true
that

1
Rok < i . T ?
he™ (X, 1) _T%friglg T H(a")
nite

What if the right-hand side is 07

We remark that the f-invariant, an isomorphism invariant for actions of finite rank
free groups introduced by Bowen [5], does satisfy the inequality appearing in Question
).

The theorem below is an attempt at answering Question Recall the notion

of outer Rokhlin entropy h¢% (C | ) defined in Chapter .
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Theorem XII.3. Let G be a countably infinite group, let G ~ (X,pu) be a free
p.m.p. ergodic action, and let F be a G-invariant sub-o-algebra. If o is a countable
partition, T C G is finite, ¢ > 0, and % ‘H(a"| F) < H(a|F) —¢, then h§ (| F) <

H(a | F) — ¢/(16|T).

Proof. By invariance of pu and F, H(a*T | F) = H(a® | F) for all s € G. So by
replacing 7' with a translate sT" we may assume that 1 € 7. By Theorem [[I.1]
there is a factor G ~ (Z,n) of (X, u) such that the action of G on Z is free and
h&k(Z n) < €e/(16 - |T)?). Let ¥ be the G-invariant sub-o-algebra of X associated to

Z. IfH(a| FVE) <H(a|F)—e€/2, then by Corollary

hex (o) F) < he% (S| F) + héx (| FV E)
< he?™(Z,n) +H(a | FVY)
€ €
B & _ £
< g T HE 1)~

€

<Ho | F)~ g

and thus we are done. So assume H(a | ¥V F) > H(a | F) — ¢/2. Note that
1
‘H" | FVvY) < m-H(aTU—') <H(a|F)—e<H(a| FVIE)—¢/2.

By definition the action G ~ (Z,n) is free. So we can apply Lemma [XII.1|to obtain

7]

a partition ¢ C ¥ of X such that for every C' € € we have t™'-CNst-C = & for

allt #s €T and p(C) > 1 - |T|™

Let 7 : (X, ) — (Y,v) be the factor associated to F V I, and let p = [ p, dv(y)
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be the disintegration of 1 over v. We have

> /. (Z H,, (- ) - Huy<aT>) v(y)

Ceg teT

= /Y (ZHuy(t'O‘)_Huy(O‘T)> dv(y)

teT

=Y H(t-a|FVI)-H"|FVY)

teT

= |T|-Ha|FVYE)—-H"| FVvY)

€
> |7 -
7| §

So we can fix D € £ with

/(D) (Z o, (¢ ) = Huy(aT)> dv(y) > |T]- % - (D).

teT

Set R = T~ - D and observe that u(R) = |T|- u(D). Note that for almost-every
y € Y and all g € G we have u,(E) = py,(g - E) for Borel £ C X and hence also

H,, (o) =H,, (g a). Thus

Hg-y

1
HR(a|fv2)—m-HD(aT|fv2)

1 ™ 0
= m'/T_lhﬂ(D) Hy, (@) dv(y) —m-/ﬂw) H,, (aT) dv(y)

1 1
- . H, («) dv . H, (o7 dv
, > (@) dv(y) /ﬂ ) (@) dv(y)

e Jt1m(D) 7| - u(D)

- L (Z H,, () - HWT)) av(y)

teT

Define a new partition

5=(ar(X\R))u{R\D}u(aTrD).
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Observe that D C R since 1 € T. Let v be the partition of X consisting of the sets
t7'-D,t€T,and X \ R. Then v C X and « is coarser than

a\/'y:(a[(X\R))UU<a[t_1-D>.

teT
Since o | (X \ R) C B and for each ¢t € T the partition ¢ - (o [ t7'- D) = (¢t -« | D)

of D is coarser than o’ | D, we see that
a<aVyCoalg:(8) V.

Therefore h¢% (a | F V) <H(B | F V).

Since R, D € ¥ and p(R) = |T'| - w(D) > ;- |T|™ we have

H(3 | FVE) = u(X \ R) - Hyyrl(a | FVE) + (D) - Hp(a” | FVE)

— WX\ R)-Hyyp(a | FVE) + u(R) - o Hp(a” | FVE)

7]
€
< p(X\R)-Hy\g(a | FVE) + u(R) - Hela | FVE) = u(R) - 5
= H(a| FVE) = u(R) -
€
<H VYY) — —=
Therefore
héx (@] FVE) + hi™(Z,m) < H(B | F V) + hé™(Z,n)
€ €
H ) —
<H(a|FVE) 8|T|3+ 6. [T
€
<H —-— .
< H(a | F) 16|T]?
Thus we are done by Corollary [X.4] O

We will also need the following variant of Theorem where we replace both

instances of H(a | F) with H(a).
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Corollary XII1.4. Let G be a countably infinite group, let G ~ (X, pu) be a free
p.m.p. ergodic action, and let F be a G-invariant sub-o-algebra. If o is a countable

partition, T C G s finite, € > 0, and ﬁ -H(a" | F) < H(a) — ¢, then hi% (a | F) <

H(a) —€/(32|T3).
Proof. If H(ar| F) < H(a) — €/2 then clearly

€

Rok < -
he’x(a| F) < H(a | F) < H(a) TP

So suppose that H(a | F) > H(a) — €/2. Then
H(a” | F) <|T|-H(a) — |T|- e <|T|-H(a | F) — |T| - €/2.

In this case we can apply Theorem [XII.3] O

We recall the simple fact that a free ergodic p.m.p. action G ~ (X, i) is isomorphic
to a Bernoulli shift if and only if there is a generating partition whose G-translates

are mutually independent.

Corollary XII.5. Let G be a countably infinite group and let G ~ (X, u) be a free
p.m.p. ergodic action. If a is a generating partition with H(a) = h3° (X, u) < oo
then G ~ (X, p) is isomorphic to a Bernoulli shift.

Proof. Since h°%(X, u) = H(c), Theorem [XIL.3| implies that H(aT) = |T'| - H(«) for
every finite T C G. Since H(a) < oo, this implies that the G-translates of « are

mutually independent. As « is a generating partition, it follows that G ~ (X, u) is

isomorphic to a Bernoulli shift. O

As a quick corollary of Theorem we obtain a relationship between the

Rokhlin entropy values of Bernoulli shifts and Gottschalk’s surjunctivity conjecture.
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Corollary XII1.6. Let G be a countably infinite group. Assume that hE*% (kS uf) =
log(k) for every k € N. Then G satisfies Gottschalk’s surjunctivity conjecture and

Kaplansky’s direct finiteness conjecture.

Proof. We verify Gottschalk’s surjunctivity conjecture as Kaplansky’s direct finiteness
conjecture will then hold automatically [I1, Section 1.5]. Let &k > 2 and let ¢ :
kY — k% be a continuous G-equivariant injection. Set (Y,v) = (¢(k), ¢.(u))
where v = ¢,(uf) is the push-forward measure. Let .2 = {R; : 0 < i < k} denote

the canonical generating partition for k£, where
R, = {l‘ S kS x(lg) = ’L}

Note that .Z [ Y is generating for Y. Since ¢ is injective, it is an isomorphism

between (k% uf) and (Y, v). Therefore
loa(k) = HE(KE, u) = WEPH(Y, ) < H, () < log|.Z]| = log(k).

So hEk(Y,v) = H,(£) = log(k). In particular, H,(£T) = |T'| - H, (&) for all finite
T C G by Theorem [XII.3|

Towards a contradiction, suppose that ¢ is not surjective. Then its image is a
proper closed subset of k¢ and hence there is some finite T C G and w € k7' such

that y | T~ # w for all y € Y. This implies that |.Z7 [ Y| < kTl — 1. So
H,(£7) <log|£" | Y| <log(k" — 1) < |T| -log(k) = |T| - H,(£),
a contradiction. O

Finally, we use Theorem [XIL.3|to investigate the completely positive outer Rokhlin
entropy property of Bernoulli shifts. We say that an ergodic action G ~ (X, i) has
completely positive outer Rokhlin entropy if every factor G ~ (Y, v) which is non-

trivial (i.e. Y is not a single point) satisfies h¢ox (Y) > 0.
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Corollary XII.7. Let G be a countably infinite group. Assume that hE%(LE \Y) =
H(L,\) for every probability space (L,\). Then every Bernoulli shift over G has

completely positive outer Rokhlin entropy.

Proof. Let (L, \) be a probability space, and let G ~ (Y, v) be a non-trivial factor of
(LY, \%). Let F be the G-invariant sub-o-algebra of LY associated to (Y, v).

First let us outline the idea of the proof in the case that H(L, \) < co. Let £ be
the canonical partition of L¢. If P is any non-trivial partition contained in F then
since .Z is a generating partition there must be a finite 7 C G and f < Z7 with

d32(8,P) very small. Tt follows that
H(Z" | B8) =H(L") - H(B) = |T|- H(Z) - H(B)

is very close to H(ZT | P) > H(ZT | F). Therefore H(ZT | F) < |T| - H(Z) and
thus hg?fg (Z | F) < H(Z) by Corollary [XII.4] If hg?fG(Y, v) = 0 then by applying

Corollary we obtain
&P (L9, X9) < heglfa(Yov) + hiLe (L | F) = hipe (L | F) <H(L) = H(L,N),

a contradiction.

Note that in the argument above we only needed that hR%(LY N\%) = H(L,\)
for this fixed choice of (L, \). Below we discuss the general case where H(L,\)
need not be finite. In this case the argument is more technical and requires that
hEk(LY NE) = H(L, \) for all probability spaces (L, \).

Fix an increasing sequence of finite partitions ., of L with B(L) = \/, .y 0-alg(.%,),
and let (Lg, \) denote the factor of (L, \) associated to . Let & = {R,: ¢ € L}
be the canonical partition of LY, where R, = {z € LY : x(1¢) = ¢}. We identify each

of the partitions .%, as coarsenings of . C B(LY). Note that (L{, \¢) is the factor
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of (LY, \%) associated to o-alg,(-%). When working with LY, for m < k we view
%, as a partition of LY in the natural way.

Fix a non-trivial finite partition P C F, and fix ¢ > 0 with 8¢ < H(P). By
Corollary , there is m € N, finite T C G, and 8 < £} with d5g5(8, P) < e. Now

fix 6 > 0 with

€
0 < ———.
128|774

Fix a partition Q with F C o-algg(Q) and H(Q) < hi’fc(Y) +4. By Corollary [XI.4]
there is a finite U C G and P’ < QV with dy55(P’,P) < e. Now by Lemma and
Corollary there is k > m, v C o-alg, (%) with di‘gk(% Q) < 4§, and B <Y
with d¥g5(8', P') < e. Note that
H(y) < H(Q) + d3& (7, Q) < hiFa(Y) + 26.
Since 3’ C o-alg;(7), 8 < ZF and
A& (8, 8) < A& (8, P') + dy&“ (P, P) + d& (P, B) < 3¢,
it follows from Lemma [XL.1](v) that
H(Z,, | o-alge(7)) < H(Z, | B)
< H(ZLL | B) + 6¢
=H(Z)) — H(B) + 6¢
< H(ZLE) — H(P) + Te
<H(ZLY) — ¢
=|T| -H(%,) — e
Since yU %, C g-alg, (%), we may work inside (L$, A¢) and apply Corollary

to get

€

Rok
(12.1) here (Lm | 0-algg(v)) < H(Zn) — 32T
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Now two applications of Corollary and (12.1)) give

BEN(LENE) < MK (7) + EPR(LE, AT | o-alge())

< H(y) + hgf’fkc (L | 0-alga (7)) + hER(LE NG | o-algo(ZLn V 7))

€

Rok -

+he (LY, AL | o-alga(Zin)).
By assumption h2%(LE, XE) = H(Ly, \r) = H(Z,). So by Corollary we have

hePN (LY AY) < H(Zn) + he™ (L, A | o-algg (L)
=H(Z,)

= hg™ (LY, A,

implying that H(.%,,,) + h3K (L, A\ |o-alg (L)) = hER(LE, XY). Plugging this into
(12.2) we obtain

]’Lg?gc (Y) > 0. O

€ €
SUNLER)} § -
32| T[4 64|T1*

90



CHAPTER XIII

Kolmogorov and Kolmogorov—Sinai theorems

In this chapter we study the computational properties of h3°%(X, ;1) for an ergodic
p.m.p. action G ~ (X, u). It will be advantageous to allow (X, u) to be either

atomless or purely atomic, and therefore we will need the following simple observation.

Lemma XIIL.1. Let G ~ (X, pu) be a p.m.p. ergodic action, and let F be a G-
invariant sub-o-algebra. If (X, ) has an atom and F # B(X) then h3%(X,p | F) is

the minimum of H(B | F) over all Borel partitions 5 with H(S | F) > 0.

Proof. By ergodicity, X is finite after removing a null set. Say | X| = n with each
point having measure 1/n. Then F is a finite o-algebra and is therefore generated
by a finite G-invariant partition ¢ of X. Each Z € ( has the same cardinality, say
|Z| = k for all Z € (. So u(Z) = k/n for every Z € (. Our assumption B(X) # F
implies that £ > 1. Let o = {Ag, A1} be a two-piece partition with Ay consisting of
a single point. Then « is generating and in particular o-alg,(a) V F = B(X). If
is any Borel partition of X with H(5 | F) > 0, then it admits a two-piece coarsening
¢ ={C, X\ C} with H¢ | F) > 0. Pick any Z’ € ¢ with £ | Z’ non-trivial and set

m=|CNZN|. Then 1 <m <k —1 and we have

H(3 | F) > HGe| F) > © o (T =)
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Recall that a real-valued function f on a topological space X is called upper-
semicontinuous if for every x € X and € > 0 there is an open set U containing x with
f(y) < f(z)+€forall y € U. When X is first countable, this is equivalent to saying
that f(z) > limsup f(z,) whenever (x,) is a sequence converging to x. We observe

a simple property.

Lemma XIIIL.2. Let X be a topological space, let fo: X — [0,00), € > 0, be a family
of upper-semicontinuous functions and set g = lim._,o f.. Assume that fs(x) > f.(z)

for § < e and that f.(x) > g(z) —e. Then g: X — R is upper-semicontinuous.

Proof. Fix x € X and € > 0. Since f./; is upper-semicontinuous, there is an open

neighborhood U of x with f2(y) < fej2(x) +¢/2 for all y € U. Then for y € U we

have g(y) < fep2(y) +€/2 < fepao() + € < g(z) + €. O

We now present the analogue of the Kolmogorov—Sinai theorem [44]. We remind
the reader that the partitions «a,, and ~, mentioned below always exist (see Chapter
. The theorem below is a relative version of Theorem MStated in the introduction.
In particular, Theorem follows immediately from the theorem below by taking

F={X, o}

Theorem XIIIL.3. Let G ~ (X, ) be a p.m.p. ergodic action, and let F be a G-
invariant sub-o-algebra. Let (a)nen and (Vn)nen be increasing sequences of par-
titions satisfying H(ay,), H(y,) < oo, B(X) = V,cyo-algg(an V v), and F =

vneNJ'algG<7n)' If

1) inf i . . . T\aTY - 3 < ol yaT T\, T }
(13.1) iﬂgli%fn‘é%égﬁ %ﬁEfG mf{H(ﬂl%V%) B<ap VvV, Hlam |8 V) <e
T finite

is positive then hi**(X,u | F) = oco. On the other hand, if the expression above is
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equal to 0 then h3°(X, | F) is equal to

. . . e Y. 3< T vyAT T\, T }
(13.2) lim sup inf ;ﬁgg mf{H(ﬁ [Y6) + B < Ve, Hlam |87 V) <e
T finite

Note that one can equivalently use limits for n, m, and k in the above formulas.

In particular, the expressions above are only of interest when n << m << k.

Proof. If F = B(X) then h3°%(X, u| F) and all expressions above are 0. So we
assume that F is a proper sub-g-algebra. First suppose that h3°%(X, | F) < oo. Fix
a countable partition { with H(¢ | F) < oo and o-alg,(§) V F = B(X). Fix § > 0. If
(X, ) has an atom then X is essentially finite and H(£) < oo. In this case set &' = €.
Otherwise, if (X, ) is non-atomic then we can apply Theorem to get a partition
¢ with H(¢') < oo, H({' | F) < H(E | F) +0/2 and o-alg,(¢') V F = B(X). Since

H(¢') < oo, we can fix n € N with
H(¢ | o-algg(an V vn)) < 0/2 and H(E | o-algy(v,)) < HE | F) +46/2.
Fix m e Nand 0 < e < ¢. Let kg € N and Ty C G be finite with:

H(E | o V 7,°) < 6/2,
H(E | ") < H(E | F) +9/2,

and  H(ou, | €7 VA0) <e/2.

Apply Corollary to get k > max(ko,n), a finite T C G with Ty C T, and a

partition § < ol V4 with di°%(5,¢') < €/(4]Tp|). Then
H(ap | 57V AT) < H(a | 670V 1T) < Hap | €70V AT0) + 2/Ty| - (5, €) < .
Furthermore,
H(B | oy V) S HB | ag? Vag?) S HE [ agd V) +do(8,€) <6
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and
H(B | 7)) S H(B[7,") < H(E | ") +di™(8,€) < HE | F) +4.

Thus since m and € do not depend on & or § we deduce that is less than or equal
to 0 and is less than or equal to H({|F)+4. Since £ and § were arbitrary, (13.1)
must be 0 and must be at most h&%(X, | F). Note that must always be
bounded above by h2°%(X, 1| F) since this trivially holds when h3°(X, | F) = oc.

Now suppose that is 0. We will show that hZ°%(X, u | F) is less than or
equal to (|13.2)). Denote the value of by A'. This is automatic if A’ is infinite,
so we assume that it is finite.

First assume that (X, ) has an atom. Fix m sufficiently large so that H(a, | F) >
0. Such an m exists since we are assuming that F is properly contained in B(X).
Now let € < H(a, | F). If 8 is a partition and H(ay, | 87 VAf) < € then 7 € F.
Since F is G-invariant, 8 ¢ F and hence H(8 | ) > 0 by Lemma [[I.2] Therefore it
follows from Lemma that h2°%(X, i | F) is less than or equal to A’

Now assume that (X, u) is non-atomic. Fix 6 > 0. Since ((13.1]) is 0, for each ¢ > 1

we can pick n(i) with

J
. . . . T Ty . T T T T
lli%f@‘é%é%{; %ﬁgfé 1nf{H(5|ozn(i)\/'yk) B <ap V7, Han| B \/'yk)<e}<§.
T finite

Next, for i > 1 we consider ¢ = §/2 and m = n(i + 1) in the above expression in

order to obtain a partition 5; of X with

) )
o-algg (@) V ]-‘) < — and H(ozn(Hl)’a—algG(/Bi) V F) < —

b 5 9i

By Theorem , there are partitions & with H(&;) < 6/2" and ay41) C o-algg (5 V
&)V F. Apply Theorem again to obtain partitions 8/ with H(8]) < §/2" and

Bi C o-algq(B; V an)) V F. Observe that
n@ir1y C o-algq (B V &)V F C o-algg(ane V B V&)V F.
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Now, by considering ((13.2)) with € < ¢ and m = n(1) we obtain a partition ¢ with
H(C|F) < I + 6 and H(ay,) | 0-algg(¢) V F) < d. Apply Theorem [L.6] to obtain a
partition ¢ with H(¢') < § and o) C o-alge(¢ V (') V F. Then by induction we

have that for all 7

(13.3) an(y C o-algg <( VIVBIVEV- VBV gi_1> v F.

Since

i (H(ﬁf) + H(@)) < 3 2. % — 25

i=1 i=1

is finite, the partition x = V5, B} V¢ is essentially countable and satisfies H(x) < 2§

(see Lemmas and [I1.3)). From ((13.3)) we see that B(X) = c-alg(C V(' 'V x) VF

and hence
R (X | F) <HECV VX F) <H{C|F)+H) +H(x) <h +45. O

Recall that for a standard Borel space X and a Borel action G ~ X, we write

&c(X) for the collection of ergodic invariant Borel probability measures on X.

Corollary XIII.4. Let G be a countable group, let X be a standard Borel space,
let G ~ X be a Borel action, and let F be a G-invariant sub-o-algebra. Suppose
there is a countable collection of Borel sets C such that F is the smallest G-invariant

o-algebra containing C. Then the map pu € Eg(X) — hEX(X, u | F) is Borel.

Proof. Since X is a standard Borel space, there is a countable collection of Borel
sets A = {4, : n € N} such that B(X) is the smallest o-algebra containing A.
In particular, there is an increasing sequence («,,) of finite Borel partitions of X
which mutually generate B(X). Similarly, our assumptions imply that there is an
increasing sequence (,) of finite Borel partitions such that F is the smallest G-

invariant o-algebra containing all of the 7,’s. The space &5(X) of invariant ergodic
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Borel probability measures p on X has a natural standard Borel structure which
is generated by the maps u +— p(A) for A C X Borel [25 Theorem 17.24]. In
particular, for finite 7 C G and for finite Borel partitions 8 the maps p — H, (8|7} ),
p— Hy (B al val), and p Hy (o, | BT VAE) are Borel. So the claim follows from

Theorem XITL3l O

From Theorem we derive the following analogue of the Kolmogorov theorem
from entropy theory [33 34]. Recall that the classical Kolmogorov theorem states
that if G is amenable, G ~ (X, p1) is an ergodic p.m.p. action, and « is a generating

partition with H(«) < oo, then the Kolmogorov—Sinai entropy hq(X, ) satisfies

ha(X,p) = inf, T H(a").
T finite

Corollary XIIL.5. Let G ~ (X,u) be a p.m.p. ergodic action. Let F be a G-
invariant sub-o-algebra and let (,)nen be an increasing sequence of partitions with
H(v,) < o0 and F = \,en0-algs(Vn). If o is a partition with H(a) < oo and

o-algg(a) VF = B(X) then

Rok i . . Y. 53< ol yAT T, . T }
he™ (X, p| F) = lim inf Tlﬁgg lnf{H(ﬁm) B<a’ Vo and H(a |57 V) <e
T finite

Proof. We have that h3°%(X, u| F) < H(a) < oo. So, setting a,, = a for all n € N, we

know by Theorem [XIIL3| that h3%(X, pu | F) is given by (13.2). Since each a,, = «,

this is identical to the formula above. O
Next, we make a simple observation.

Lemma XIIL.6. Let G ~ (X, p) be a p.m.p. ergodic action. Let F be a G-invariant
sub-o-algebra and let (Y, )nen be an increasing sequence of partitions with H(vy,) < oo

and F = \/, ey 0-algq(m). If a is a partition with H(a) < oo and o-algg(a) V F =
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B(X) then for every e >0

]ignlg Tlrclgv inf {H(ﬁ ) B<al vaf and H(a |1 Vi) < e} > hE(X, | F) —e.
c T finite
Proof. Fix € > 0. First suppose that (X, u) has an atom. Then by ergodicity X is
finite. Fix k e N, T C G, and 8 < o V~{ with H(a | BT VAl) <e TH(B|F) >0
then

H(B [7i) = H(B | F) = he™ (X, | F)
by Lemma [XIII.1| and we are done. On the other hand, if H(g | ) = 0 then § C F

by Lemma and thus
h&™ (X, p| F) <H(a | F) < H(a| 87 V) <e.

It follows that H(B | vF) > 0 > hE( X, u| F) —e.
Now suppose that (X, i) is non-atomic. If 3 is a partition with H(a | 87 VAT) < e,
then by applying Theorem [[.6 we can obtain a partition & with H(¢) < € and a C

o-alg,(BVE)VF. Then B(X) = o-alg,(a) VF = o-alg,(8 V&) V F so that
he (X, | F) <H(BVE|F) SH(B|F) +H(E) < HB|7) +e.
It follows that H(S |71) > h3°%(X, u | F) — € as required. O

For a p.m.p. action G ~ (X, 1) and a partition a of X, the G-invariant o-algebra
o-alg, () is associated to a factor G ~ (Y,v) of (X, u). From Corollary [XIIL.5| we
obtain the following dependence of h3°%(Y,v) on a. Recall from Chapter [II] that Py

is the space of all countable Borel partitions a with H(«) < oo.

Corollary XIIL.7. Let G ~ (X,pu) be a p.m.p. ergodic action and let F be a G-
invariant sub-o-algebra. For o € Py, let G ~ (Ya,vs) be the factor of (X, )

associated to o-algs(a) V F, and let F, be the image of F in Y,. Then the map

a € Py — thk(Ya, Vo | Fa)
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18 upper-semicontinuous in the metric df}Ok.

Proof. Fix an increasing sequence (7, )nen of finite partitions of X satisfying F =

Vnen -alga (7). Such a sequence always exists; see Chapter [LIL Set

fla) = inf inf inf {H(8|+]) : B < aT Vol and H(a |57 Vaf) < e}
T finite

and set g(a) = lim o f.(ov). Using the natural one-to-one measure-preserving cor-
respondence between the o-algebras B(Y,) and c-alg,(«) V F, we see by Corollary

XIIL5| that g(a) = hB%(Y,, v, | Fo). Each function f. is upper-semicontinuous in

d°% by Lemmas [XI.1| and [XI.2, and f.(a) > g(«) — € by Lemma [XIIL.6, Therefore

g(«) is upper-semicontinuous by Lemma [XIII.2| ]

In fact, with the same proof we obtain the following.

Corollary XIII.8. Let G ~ (X, pu) be a p.m.p. ergodic action. For o,y € Py, let
G ~ (Yiany): Yan)) be the factor of (X, ) associated to o-algg (o V 7y), and let o' be

the image of v in Y(a). Then the map
(a,v) € Py x Py — thk(Y(aﬁ), Viam|o-algg (7))

is upper-semicontinuous in the metric d;\° x d;i°x.

The upper-semicontinuity property provides the following alternative method for

computing Rokhlin entropy.

Corollary XIIL.9. Let G ~ (X, ) be a p.m.p. ergodic action, let F be a G-invariant
sub-o-algebra, and let a be a partition with H(a) < oo and o-alg,(a) V F = B(X).
Fiz an increasing sequence of partitions o, < a with o = \/, .y, and for each n
let G ~ (Y, v,) be the factor of (X, ) associated to o-alg,(ay,) VvV F. Also let F,, be

the image of F in Y,. Then h2"(X,p| F) = lim, 00 h3X (Yo, v | Fo).
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Proof. 1f (X, ) has an atom then X is essentially finite and so is «. Thus the claim is
trivial in this case since «,, = «, Y,, = X, and F,, = F for all sufficiently large n. Now
suppose that (X, i) is non-atomic. Observe that di*(a,, a) = H(a|ay,) tends to 0 by
Lemmal[[[.2] Fix ¢ > 0. By Corollary [XTIL.7] there is 6 > 0 so that if 5 is any partition
with di°%(8, ) < 6 then hi**(Ys,v5 | Fg) < h§™(X, | F) + €, where (Y3, v3) is the
factor associated to o-alg,(8)VF and Fp is the image of F. Let n be sufficiently large
so that d}*(ay,, a) < min(d,€/2). Then A3 (Y, v, | Fn) < h¢™ (X, | F) + €. For
the other inequality, fix a partition &, of Y, with H(&, | F,.) < h3°%(Y,,, v, | Fn) +€/2

and o-alg.(&,) V F, = B(Y,,). Pull back &, to a partition £ of X. Then
H(E | F) = H(& | Fo) < he™ (Yo, v | Fu) +€/2

and o-alg, (&) VF = o-algs(a,) VF. We have H(a|o-alg, (&) VF) < H(a|a,) < €/2,
so by Theorem [[.6] there is a partition ¢ with H(¢) < €/2 and o C g-alg, (¢ V §) V F.

Thus o-alg;(¢ V&) vV F = B(X) and hence
W (X, p | F) SH(CVEF) SHEF) +HQ) < he™(Ya,vn | Fa) +e. O

Finally, we consider the upper-semicontinuity of Rokhlin entropy as a function of

the ergodic probability measure.

Corollary XIII.10. Let G be a countable group, let L be a finite set, and let L
have the product topology. Let C be a countable collection of clopen sets, and let F
be the smallest G-invariant o-algebra containing C. Then the map p € Eg(LY)

thk(LG7 i | F) is upper-semicontinuous in the weak*-topology.

Proof. Let # = {R, : £ € L} be the canonical generating partition for LY, where
Ry = {x € LY : 2(1¢) = {}. Choose an increasing sequence of finite partitions

contained in the algebra generated by C with F =\/, . 0-algg (k). Then any set D
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in ZT, 4l or any 8 < £7 is clopen and hence the map u + (D) is continuous.
Similarly, the maps p +— H,(8]7}) and u — H,(Z| 87 V~}l) are continuous. Therefore

each function

fe(p) = irelg %Iglg inf {Hu(ﬁ %) B< LT and H,(Z | BT Vo) < 6}
T finite

is upper-semicontinuous. Setting g(u) = lim._,o fc(1), Corollary [XIIL5 implies that

g(u) = hEX(LE p| F). By Lemmas [XIIL6| and [XII1.2| we have that g(u) is upper-

semicontinuous. OJ
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CHAPTER XIV

Approximately Bernoulli partitions

In this chapter we will show how to construct generating partitions which are
approximately Bernoulli. This will allow us to use Corollary in order to

study the Rokhlin entropy values of Bernoulli shifts. We begin with a few lemmas.

Lemma XIV.1. Let G ~ (X, p) be a p.m.p. ergodic action, let F be a G-invariant
sub-o-algebra, and let B € F with n(B) > 0. Then there is a finite collection
® C [[EZ]] of F-expressible functions such that {dom(p) : ¢ € ®} partitions X

and rng(¢p) C B for every ¢ € ®.

Proof. We claim that there is a finite partition v C F with u(C) < u(B) for every
C € ~. If the factor G ~ (Y, ) of (X, ) associated to F is purely atomic then we can
simply let v be the pre-image of the partition of Y into points. On the other hand,
if (Y,v) is non-atomic then we can find such a partition in Y and let v be its pre-
image. Now by Lemma [[IL.5] for every C € ~ there is an F-expressible ¢¢ € [EE]]
with dom(¢pc) = C and rng(¢c) € B. Then ® = {¢¢ : C € v} has the desired

properties. O

Lemma XIV.2. Let G ~ (X, ) be a p.m.p. ergodic action with (X, u) non-atomic,

let F be a G-invariant sub-o-algebra, and let B € F. If £ is a countable partition of
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X and p = (p;) is a probability vector with

H({ | F) < w(B) - H(p),
then there is a partition o« = {A; : 0 <@ < |p|} of B with u(A;) = p; - w(B) for every
0 <i < |p| and with £ C o-alg,(a’) V F for every partition o' of X extending .

Proof. Let ® C [[EZ]] be as given by Lemma [XIV.1| For ¢ € ®, define a partition &4
of X by

& = {X \ms(0) } Uo(¢ I dom(@)),

and set ( =\/ sca §o- Note that ¢ is countable since ® is finite. Also observe that

(14.1) 1(rng(¢)) - Hing(g) (& | F) = p(dom(e)) - Haom(e) (€ [ F)

since ¢ is a B(X) and F measure-preserving bijection from dom(¢) to rng(¢) by
Lemma [TL.2]

We claim that £ C o-alg,(() V F. Consider C' € £ and ¢ € ®. Since ¢ is F-
expressible, we have rng(¢) € F. Thus {, [ rng(¢) C o-alg(¢) V F. It follows from

Lemmas [T1.2] and [IL.3 that

¢~ (& ' mg(¢)) C o-alge(C) V F.

Since C'N dom(¢) is an element of the set on the left, and since C' is the union of
C' Ndom(g) for ¢ € @, we conclude that & C o-alg,(() V F.

For g € G define v, € [[EZ]] with dom(v,) = rng(v,) = B by the rule
Y,(z) =y <=y =g' - 2 where i > 0 is least with ¢' - = € B.

By the Poincaré recurrence theorem, the domain and range of v, are indeed conull in

B. Note that v, is F-expressible since B € F. Let I' be the group of transformations
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of B generated by {7, : ¢ € G}. Then every v € I is F expressible by Lemma .
Let pp denote the normalized restriction of p to B, so that ug(A) = p(ANB)/u(B).
Since p is ergodic, it is not difficult to check that the action of I' on (B, ug) is ergodic.
Similarly, since p is non-atomic pp is non-atomic as well. Using and the fact

that dom(¢), rng(¢) € F, we have

w(B) - H,, (C| F) = u(B)-Hp((| F)

<" u(B)-Ha(g, | F)

ped

= p(rng(6)) - Hung(e) (6 | F)
ped

= Z p(dom()) - Haom(g) (€ | F)
peD

=H( | F)

< uw(B) - H(p).

So by Theorem [[.6] there is a partition o = {4; : 0 < i < |p|} of B with ug(A4;) = p;
for every 0 < i < |p| and with ¢ [ B C o-algp(a) vV F. Since ¢ [ (X \ B) is trivial and
X\ B € F, it follows that ¢ C o-algp(a) V F.

Since A; € B and ug(A;) = p;, it follows that pu(A4;) = p; - u(B). Now let o/
be a partition of X extending a. Since I' is F-expressible, it follows from Lemma
that o-alg,(a’) vV F is I'-invariant. Since also B € F and @ = o/ [ B, we have

o-algp(a) VF C o-alg.(a’) V F. Therefore ¢ C o-alg.(a’) V F and hence
£ Co-alg,(¢) VF Co-alg,(a)VF. O

The following lemma is, in some ways, a strengthening of Theorem [[.6]

Lemma XIV.3. Let G ~ (X, 1) be a p.m.p. ergodic action with (X, u) non-atomic,

let F be a G-invariant sub-o-algebra, and let € be a countable Borel partition of X . If
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B C F is a collection of pairwise disjoint Borel sets and {p® : B € B} is a collection
of probability vectors with

H(¢| F) <) w(B)

Beg
then there is a partition o = {A; : 0 <14 < |a|} of UB with u(A; N B) = p? - u(B) for
every B € 8 and 0 < i < |a] and with £ C o-alg, (') V F for every partition o of X

extending o.

Proof. Fix € > 0 with
H(E | F) <> u(B)-H(p") — € p(Up).
Bep

For each B € 3, fix any probability vector §° satisfying

u(B)-H(p") — e p(B) < H(g") < u(B) - H(p").
Let 7 be the probability vector which represents the independent join of the g®’s.
Specifically, 7 = (7 )rens Where

T'r = I]:QﬂB)

Begp

Then

)= ST > 3 p(B)H(P) e u(UB) > H(E | F).

Beg Bep

So by Theorem there is a partition v = {C; : 7 € N°} with ¢ C o-alg,(y) V F
and with u(Cy) = r, for every 7 € N°.
For each B € B, let 7% be the coarsening of 7 associated to ¢®. Specifically,
B ={CP:0<i<|g?|} where

U ¢

7ENP
m(B)=t
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Note that v = \/ 5577, Also note that u(C) = ¢ and H(+") = H(¢") < u(B) -
H(p?). For each B € 3 we apply Lemma to 42 in order to obtain a partition
aB ={AB 0 <i < |pP|} of B with u(AP) = u(B) - pP and v? C g-alg,(¢) V F for
every partition ¢ of X extending a”. Now define o = {4; : 0 < i < |a|} where A; =
Uses AB. Then for B € B and 0 < i < |a] we have u(A4; N B) = u(AP) = pP - u(B).
Furthermore, if o is a partition of X which extends o, then o/ extends every a® and

hence v? C g-alg; (/) V F. Tt follows that
¢ Co-alg,(y) V.F Co-algs(a) vV F. O

We will need the result of Abért and Weiss that all free actions weakly contain
Bernoulli shifts [I]. The following is a slightly modified statement of their result,

obtained by invoking [I, Lemma 5] and performing a perturbation.

Theorem XIV.4 (Abért—-Weiss [1]). Let G ~ (X, 1) be a p.m.p. free action, and let
p = (p:;) be a finite probability vector. If T C G 1is finite and € > 0, then there is a
partition v = {C; : 0 < i < |p|} of X such that u(C;) = p; for every 0 < i < |p| and
H(y")/IT| > H(y) —e.

We are almost ready to construct approximately Bernoulli generating partitions.
For this construction we will find it more convenient to use Borel partitions of

([0,1], A), where A is Lebesgue measure, in place of probability vectors. We first

make a simple observation.

Lemma XIV.5. If Q < P are finite partitions of ([0,1],\) and 0 < r < H(P | Q),

then there is a finite partition R such that @ <R and H(P |R) =r.

Proof. Fix a d¥°*-continuous 1-parameter family of finite partitions Q;, 0 < ¢ < 1,

such that Qg = Q, Q; = P, and Q < Q, for all t. The function ¢t — H(P | Q,) is
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continuous, H(P | Qy) = H(P | Q) > r, and H(P | Q1) = H(P | P) = 0. Therefore

there is t € (0,1) with H(P | Q;) =r. Set R = Q. O

For countable partitions « and 3 of (X, uu) recall from Chapter the metric
d,(a, B) :inf{u(Y) YCXanda|(X\Y)=4] (X\Y)}.

For every n € N the restrictions of d,, and dE‘Ok to the space of n-piece partitions are
uniformly equivalent [15, Fact 1.7.7]. We will temporarily need to use this metric in
the proof of the next theorem.

Recall that for a countable ordered partition o = {4; : 0 < i < ||} we let
dist() denote the probability vector having i*" term u(4;). For B C X we also write

distg(c) for the probability vector having i*" term p(A; N B)/u(B).

Theorem XIV.6. Let G be a countably infinite group and let G ~ (X, ) be a free
p.m.p. ergodic action. Let P and Q be ordered countable partitions of ([0,1], \) with
Q < P and H(P) < co. If hB¥(X, ) < H(P | Q), then for every finite T C G and

€ > 0 there is an ordered generating partition o with dist(«) = dist(P),

1

m-H(a ) > H(a) — e,

and hi (B) < €, where (3 is the coarsening of o corresponding to Q < P.

We point out that we do not prove any relative Rokhlin entropy version of this
theorem. We believe that a relative version should be true, but its proof would require

modifying the Abért—Weiss argument.
Proof. First assume that P is finite. Apply Lemma [XIV.5 to obtain a finite partition
R of [0, 1] which is finer than Q and satisfies

€

Rok X H Rok X )
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Without loss of generality, we may assume that A(R) > 0 for every R € R. Set s =
minger A(R). Since d, and df}"k are uniformly equivalent on the space of partitions
of X having at most |P| pieces, there is

€

0<kr<
NS 956 TP - H(P)

satisfying

h$™ (X, p) < (1= k) -H(P|R)

such that d°*(¢,£’) < €/8 whenever & and ¢’ are partitions of X with at most |P|
pieces and with d,(¢,¢') < k.
By Theorem [[L1] there is a factor G ~ (Y, v) of (X, u) such that

€

hROkY .H -
o (Yv) < sk (P)<256-|T|3

and G acts freely on (Y,v). Let F be the sub-c-algebra of X associated to (Y, v).

Note that by Corollary

WX, ) < (X | )+ RV o) < RGN ) + e
Therefore

€

Rok _
(14.2) H(P | R) < hBX(X, p) + 55 T

€ (o]
W<hgk()(,ﬂ|]:)+

Since G acts freely on (Y, v), the Abért—Weiss theorem implies that there is an ordered
partition v = {Cy : 0 < k < |R|} C F with dist(y) = dist(R) and

1

(14.3) m

“H(Y) > H(y) - 5.

By construction h&¥(Y,v) < sk - H(P). So by applying Theorem [L.6] to (Y,v)
(and invoking Lemma [[1.6) we obtain a set Zy € F with u(Zy) = s« and a partition

a’ ={AY:0<i<|P|} CFof Zy with F = o-algls*(a) and
(14.4) WA?) = sk MP) = u(Zo) - M(P)
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for every 0 <i < |P|. Note that
120 N1 Ch) < ju(Zo) = s < - M(Ry) = w0+ (Ch)

for all 0 < k < |R| since dist(y) = dist(R). Since (Y, v) is non-atomic and {Z,} U~y C
F, it follows from the above inequality that there exists Z; € F such that Z,NZy, = &,
w(Zy) =1—k,and u(Z; N C) = (1 — k) - u(C) for every C € .

Consider the collection v [ Z; of pairwise disjoint sets. For each C, N2, € v | Z;

define the probability vector p“*"#1 = distg, (P). We have

het® (X, | F) < hg?®(X, )
<(1—-k)-H(P|R)

= 3 (- RARL) - Hp, (P)

0<k<|R|

= Y w(Cinzy)-HEOR),

0<k<[R|
So by Lemma [XIV.3], there is a partition o' = {A} : 0 <i < |P|} of Z; with

MR N F)

(14.5) w(AlNCyN Zy) = )

pu(CrNZy) = (1 - k) MR N F)

for every ¢ and k and with o-alg, (/) V F = B(X) for all partitions o extending a?.

Note that

(14.6) uA;) = (1= k) - MP) = u(Z1) - M)

for every 1.

Set Zo = X \ (Zy U Z;). Pick any partition a? = {A? : 0 < i < |P|} of Zy with
(14.7) A7) = \(P;) - 1(Ze)

for every i. Set a = {A; : 0 < i < |P|} where 4; = A) U A} U A2, Then u(4;) =

A(P) for every i by (14.4), (14.6), and (14.7). Additionally, o extends o’ and thus

108



F C o-algg(a) by Lemma[[L5 Similarly, o extends a! so
B(X) = o-alg.(a) V F = o-algq(a).

Thus « is generating.

By , the partition oV almost has the same distribution as PV'R. We next
perturb « so that the joint distribution with + will be precisely the distribution of
PV R. Using (14.5)), we may pick a partition a* = {4} : 0 < i < |P|} extending a!
and satisfying u(A: N Cy) = AM(P, N Ry) for all 0 < ¢ < [P| and 0 < k < |R|. Then
dist(ar) = dist(a*) = dist(P) and d,(a, o*) < u(Zp U Z3) = k. It follows from the

definition of x that d}**(a, ) < €/8 and thus by (14.2)

H(a[v) <H(a"[v) +¢€/8
=H(P|R)+¢/8
< hg(X, | F) +e/4

(14.8) < H(a| F) + ¢/4.

Let 8 and (8* be the coarsenings of o and o, respectively, corresponding to the
coarsening Q of P. Since p(Af N Cy) = AP, N Ry) for all i and k, there is an
isomorphism (X, ) — ([0, 1], A) of measure spaces which identifies a* with P and
~v with R. Since Q is coarser than R, it follows that §* is coarser than 7. So
B* C F and hence h¢% (8%) < hi*(Y,v) < ¢/8. Additionally, d, (o, a*) < & implies
d,(B,5%) < r and thus d°%(8, 5*) < €/8. It follows that H(3 | *) < €/8 and hence
héox (B) < €/4 < € as required.

Finally, we check that H(a®)/|T| > H(a) — e. Using (14.2) and the fact that
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Zo, L1, Zoy € F, we have

H(a | F) = (2o U Z3) - Hyyuz, (o | F) 4+ p(Z1) - Hz (o | F)
< (ZyU Zy) - Hyyuz, () + Hy (a | 7)

= k- H(P) + H(P|R)

€
< —
256 - [T?

€

he™ (X, 1| F) + =3

€

he™ (X, | F) + =5
< hg ( uul )+64|T|3

Applying Theorem [XIT.3| we conclude that

1 €

H(a" [7") 2 o - H(a" | F) = H(a | F) — .
[T [T 4
From the above inequality and ({14.8]) we obtain

(14.9) BT 197) > H(a |7) = .

Also, we observe that

(14.10) H" [aT) <Y H(t-y|a") <Y H(t-vy[t-a) = |T|-H(y|a).

teT teT
Therefore, using ((14.3)), (14.9), and (14.10)), we have
1 1 1
= H(a") = — - H(a" va') — — - H(y" [ ")
T T T
= o HOP) 4 - H(a” [47) = o HGT )
T T T

>H(v) —€¢/2+ H(a|7) —¢/2=H(y | a)
=H(aVv~y)—e—H(v[a)

=H(a) — .

To complete the proof, we consider the case where P is countably infinite. By

Lemma , there is a finite Qy < Q so that H(Q| Qp) < €/2. Note that h2°% (X, u) <

110



H(P|Q) < H(P| Qo). Now choose a finite Py < P such that Qy < Py, H(P|Py) < €/2,
and A% (X, 1) < H(Py| Qo). Apply the above argument to get a generating partition
g with dist(ag) = dist(Po), H(af )/|T| > H(ag) — €/2, and kg (8o) < €/2, where
Bo is the coarsening of ag corresponding to Qy. Since (X, i) is non-atomic, we may
choose @ > «p with dist(ar) = P. Clearly « is still generating. Since H(a | ap) =
H(P | Py) < €/2, we have

|LT] ‘H(aT) > % -H(ad) > H(ag) — €¢/2 > H(a) —e.

Finally, if 3 is the coarsening of « corresponding to Q then H(3|5y) = H(Q| Qo) < €/2

and hence hi%s (6) < hé®x (Bo) + €/2 < e. O
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CHAPTER XV

Rokhlin entropy of Bernoulli shifts

In order to investigate the Rokhlin entropy values of Bernoulli shifts, we first

restate Theorem in terms of isomorphisms.

Corollary XV.1. Let G be a countably infinite group and let G ~ (X, ) be a free
p.m.p. ergodic action. Let (L, \) be a probability space with L finite. Let £ be the
canonical partition of LY, and let 2 be a partition coarser than L. If hi®(X, u) <
H(ZL|X), then for every open neighborhood U C &g(LY) of A and every e > 0, there
is a G-equivariant isomorphism ¢ : (X, ) — (LY v) with v € U and hg")(lzc’y)(%) <

€.

Proof. By definition, . = {R, : ¢ € L} where
Ry={yeL%:y(lg) = {}.

Since U is open, there are continuous functions fi, ..., f, on L and x; > 0 such that

for all v € &5(LY)
A= [ fidv| <miforal1<i<n—veU

Since LY is compact, each f; is uniformly continuous and therefore there is a finite

T C G and continuous £ -measurable functions f/ such that ||f; — f/|| < 1/2 for
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each 1 < i < n, where || -|| denotes the sup-norm. Therefore there is £y > 0 such that

for all v € &(LY)
M(D) —v(D)| < kg forall D € T —= v e U.

Enumerate T as t1, ..., t, and set T, = {t1,...,t;-1}. U D =" t;- R, € £7, then
setting D; = ﬂ] 1t R; € % we have D, 1 = D;Nt; - R; and hence
ﬁ v(D; ﬁt R;)
i=1
Since m-fold multiplication of elements of [0, 1] is uniformly continuous, there is k3 > 0

such that the condition

A(R) —

DAt -
M‘<Fc3foralllgi§m, De%% andRe &

v(D)
implies v € U. Above we have used the fact that \“(D Nt; - R)/A9(D) = \(R)

for 1 <i<m, D€ L% and R € Z. Finally, by standard properties of Shannon

entropy [15], Fact 3.1.3], there is x4 > 0 such that the condition
IAN(R)—v(R)| < kg and H, (t;- L |.L") > H, (L) —ky forall R€ £ and 1 < i <m

implies v € U.

Now apply Theorem to obtain a generating partition o« = {Ay: ¢ € L} of X
satisfying p(Ag) = A9(Ry) for every ¢ € L, H(a™) > |T|- H(ar) — k4, and hi%% (68) < e,
where [ is the coarsening of a corresponding to J#. Since « is generating and its
classes are indexed by L, it induces a G-equivariant isomorphism ¢ : (X, u) — (L%, v)
which identifies o with Z and § with JZ". We immediately have v(R,) = u(A,) =

N(Ry) for every £ € L and hgo(kLG () = héx (B) < e. Also,

m

3 (H(a) CH(t - al aT")> — |T] - H(a) — H(a?) < 4.

=1
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Since each summand on the left is non-negative, we deduce that
H(t;- Z | L) =H(t;-a|a’) > H(a) — ky = H (L) — k4
for every 1 < i < m. We conclude that v € U. O]

Fix a countably infinite group G. Recall from the introduction the quantity

hEN(G) = sup hEN(X, p),
G (X,p)

where the supremum is taken over all free ergodic p.m.p. actions G ~ (X, ) with
hEPk (X, 1) < oco. If there is a free ergodic p.m.p. action G ~ (X, ) with h3°%(X, u) =
oo, we do not know if it necessarily follows that hos(G) = oo. In particular, we do

not know if G ~ (X, ) must factor onto free actions having large but finite Rokhlin

entropy values. However, we have the following.

Lemma XV.2. Let G be a countably infinite group and let G ~ (X, ) be a free
p.m.p. ergodic action. If hE%(X ) < oo then for every 0 < t < hE(X,p) and
d > 0 there is a factor G ~ (Y,v) of (X,u) such that G acts freely on Y and
hEOk(Y,v) € (t —§,t +6).

Proof. Let p be a probability vector with H(p) = ¢, and let ¢ be a probability vector
with h3K (X, u) —t < H(q) < h2°%(X, u) —t+6. Let 7 be the probability vector which
represents the independent join of p and ¢. Specifically, 7 = (r; ;) where r; ; = p; - g;.
We have H(7) = H(p) + H(q) so hE*(X,u) < H(7). By Theorem there is a
generating partition v = {C; ;} with u(C; ;) =1 ;. Let « = {A4; : 0 <14 < |p|} be the

coarsening of v associated to p, meaning

A =U{Ci; : 0<j <|q]}-
Similarly define 5 = {B; : 0 < j < |q|} by

B; =U{C;; : 0<i<|p|}.

114



Then dist(«) = p, dist(8) = ¢, and a V 5 = .

By Theorem , there is a factor G ~ (Z,n) of (X, p) with h3°%(Z,n) < §. Let
¢’ be a generating partition for Z with H(¢') < J, and let ¢ be the pre-image of ¢’
in X. Let G ~ (Y,v) be the factor of (X, u) associated to o-algs(a V ). Clearly

a V ¢ pushes forward to a generating partition o V (" of Y with H(a/) = H(p) and

H(¢") < 4. So hk(Y,v) < H(a/ V(") < t+ 4. By Corollary we also have
he? (Y, v) 2 BE™(X, p) — he? (X, p | o-algg(a V Q) = hé™(X, p) — H(B) > t — 6.

Finally, G ~ (Y, v) must be a free action since it factors onto (Z, 7). O

We now focus our attention on the Rokhlin entropy values of Bernoulli shifts. Let
(L, \) be a probability space and let .Z be the canonical partition of LE. If ¢ is a
partition coarser than ., then the translates of . are mutually independent and
the factor associated to o-alg,(#") is a Bernoulli shift G ~ (K% ). In order to
emphasize the fact that o-alg,(#) corresponds to a Bernoulli factor of (L%, %), for

the remainder of this chapter we will write #'¢ for o-alg(¢).

Proposition XV.3. Let G be a countably infinite group and let (L, \) be a probability
space with L finite. Let £ be the canonical partition of LE and let J# be a partition

coarser than . Then

h2K (LG, NG | #€) = min (H(f | ), hROk(G)>-

sup

Proof. We immediately have h3°K(LY \C| %) < H(Z | X) since £ is a generating
partition. We will show that there does not exist any free p.m.p. ergodic action

G ~ (X, p) with

BE(LO NG | HC) < hEN(X, ) < H(L | ).
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From Lemma it will follow that either h2°k(LY \¢ | #C) = H(ZL | ) or else
hERK(LE NG | 2 F) > hBX( X, ) for every free p.m.p. ergodic action G ~ (X, 1) with
R (X, p) < oo.

Towards a contradiction, suppose that G ~ (X, p1) is a free p.m.p. ergodic action
with hBK(LY NG| 2 ¢) < hBM( X p) < H(Z | #). Fix € > 0 with

he?K (LY | H9) + € < hé?™ (X, ).

By Corollary [XIII.10, there is an open neighborhood U C &g(L%) of \¥ such that
hRK(LG v | ) < hBN(LE NG| #C) +¢/2 for all v € U. By Corollary [XV.1] there
is a G-equivariant isomorphism ¢ : (X, u) — (L, v) with v € U and h§c (%) <
€/2. Then by Corollary
AKX, 1) = HEH(LC, )
< e (H) + R (LS v | A7)
< hER(LE NG| o 9) + €

< he™ (X, ),
a contradiction. O

Theorem XV.4. Let G be a countably infinite group and let (L, \) be a probability

space with H(L, \) < co. Then

Bk (LE, AC) = min (H(L, 2, hROk(G)).

sup

Proof. Let ¥ = {R, : { € L} be the canonical partition of LY where
Re={y € L% y(lc) = (}.

Let £, be an increasing sequence of finite partitions which are coarser than . and

satisfy .Z =/ _-Z,. The algebra generated by .%,, corresponds to a factor (L,, \,)

neN
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of (L,)\), and the factor of (LY \Y) corresponding to £ is (L&, \¢). By Corol-

n)»’'n

lary [XTIL.9| A2k (LY AE) = lim,, o0 h2X(LY AS). The claim now follows by applying

nr’'n

Proposition to each (LY \Y) and using the fact that H(L,, \,) = H(.%,) con-

nr»’n

verges to H(.Z) = H(L, \). O
We next handle the case where H(L, \) = oo, but first we need a lemma.

Lemma XV.5. Let (L, \) be a probability space with H(L,\) = oo, and let ¢ > 0.
Then there exists a sequence of finite partitions (£, )nen with \/, oy 0-alg(Z£,) = B(L)
and

H(Z| Vo ) > ¢

for all m € N.

Proof. First suppose that L is essentially countable. For ¢ € L we will write A(¢) for
A({¢}). Since
D =A(0) -log A(6) = H(L, \) = o0

leL

we can partition L into finite sets I,, with

Z —\(0) -log A(£) > ¢+ log(2)

lely

for all n. Define
L= {L\In}u{{é}:ﬁe In}.
Note that H(.Z,) > ¢ + log(2). Clearly .%, is finite and \/, .y o-alg(.Z,) = B(L).

Additionally, we have I, € \/,,, 0-alg(%}) since L \ I, is the union of all singleton
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sets contained in \/,_, 0-alg(Z},). Therefore

H(Z | Vi %) = H(Zo | {L L\ )
= H(Z,) —H({IL., L\ I.})
> H($n> - 10g(2)

> C.

Now suppose that (L, A) is not essentially countable. Then L decomposes into a
non-atomic part B C L and a purely atomic part A C L with {B, A} a partition
of L and A(B) > 0. Fix any increasing sequence «, of finite partitions of A with
B(L) I A=V, eyo-alg(ay) [ A. Choose a probability vector p with u(B) - H(p) > c,
and let Ag be the normalized restriction of A\ to B. Since B has no atoms, we can
find a sequence of Ap-independent ordered partitions 3, of B with disty,(3,) = p for
every n and with B(L) [ B =\/, .yo-alg(B,) | B. Now set .2}, = 3, U a,,. Then .Z,
is finite and B(L) = \/,,cy 0-alg(.%,). Finally, since {B, A} is coarser than every .Z,

we have

(L | Vo ) 2 A(B) - Hi (L |V, 1)

= \(B) - Hp <6m | Vistm 5")

]

Theorem XV.6. Let G be a countably infinite group, and let (L, \) be a probability
space with H(L, \) = co. Then hE%(LE \) = oo if and only if there is a free ergodic

p.m.p. action G ~ (X, p) with h¥%(X, p) > 0.

118



Proof. One implication is immediate: if h3°(LY A\%) = oo then h2%(X, u) > 0 with
(X, 1) = (LY \Y). So suppose that G ~ (X, i) is a free p.m.p. ergodic action with
Rk (X, ) > 0. Let (ay,) be an increasing sequence of finite partitions of X with
B(X) = V,en0-algg(ay). Using Theorem [II.1, we may choose oy so that G acts
freely on the factor (Z,n) of (X, u) associated to o-alg,(ay). From Theorem

we have that at least one of the following two quantities is positive:

. . . . . T : < T T }
;gglggfngigggl?g mf{H(ﬁ |ay) 1 B < g, Hlan | 87) <e
nite

. . . . - B< ol T }
o fof jaf, f{H(3) < 3 o, Ho | 7)<
nite

Since the first expression is less than or equal to the second, the second expression

must be positive. Fix ¢y and m € N with

uf it o {1(3) 5 < o Hoe | 97) <0} >0
lgelI{TT’};C_lg inf {H(ﬁ) f<a, Han,|B") <epr >0
nite

Since the above expression increases in value as ¢y decreases, we see that

L . T T
(15.1) E&TTI;&E inf {H(B) B <a,, Ha,|B8") < e} > 0.
nite

Let G ~ (Y,v) be the factor of (X, u) associated to o-algq(ay,). From Corollary
and we obtain hE%(Y,r) > 0. Additionally, (Y,v) factors onto (Z,7n)
since ay, refines a;. So G acts freely on Y and 0 < hE%(Y,v) < H(a,,) < co. Set
c = h3K(Y,v).

Apply Lemma to get a sequence %, of finite non-trivial partitions of L with
B(L) = V,enyo-alg(Zy) and H(Z, [ V4, Zn) = ¢ for all m. For m < k set

L=\ 4 and Loym= \ %

0<i<k 0<i#m<k

Note that for & > m we have H(Zoy | ZLox,m) = ¢ by construction. We let

(Lio,k), Ao,e) denote the factor of (L, \) associated to L. Let £ = {R,: ¢ € L}
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be the canonical (possibly uncountable) partition of L% defined by
Ry={we LC:w(lg) = ¢}.

Note that B(LY) = £%. We identify each of the partitions .%,, Lo, and Lo g),m as
coarsenings of . C B(L%). Note that (L[%’k], )\[%’k]) is the factor of (LY, \%) associated
to .jﬁgk]. As each .7, is non-trivial, the space (Lo, Ajo,x]) is not essentially a single
point and hence /\[C(ik} is non-atomic.

The partitions Zjo ) are increasing with k and £¢ = \/, .,2”[0%]. By Theorem

it suffices to show that

. . . . . T . T T
(15.2) ;gglg%ilé%;ggﬁ?g mf{H(mi”[o,n]) < Losyy Hom | 67) < 6}
nite

is positive. Note that above one can change inficy to limy_, . without changing the
value of the expression. So it suffices to fix n < m < k and 0 < € < ¢/2 and show
that the remaining portion of is uniformly bounded away from 0. Suppose
that g C oiﬁgk] and H(ZLm | 0-algq(B)) < ¢/2. Since Lo < Loy and A[%,k} is
non-atomic, by Theorem there is a partition v C -iﬂ[(cfk} with H(y) < ¢/2 and

ZLro,m) € 0-algg(BVy). Then
Loy Co-algg(BVy)V 'i’p[OG,k],m

and

H(BV Y | LG m) <HB | L5,) +H(y) <H(B| L5, + /2.

Therefore

RE (L iy Moy [ L) < BB | L) + /2.
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Applying Proposition with & = L k,m we obtain
¢ = min (H(.z[o,k] | Losim)s BEH(Y, y))
< W (L Mo LG m)
<H(B| £ + /2.

So H(B | £, > ¢/2 and hence (15.2) is at least ¢/2 > 0. We conclude that

h&K(LY \E) = oo, O
Corollary XV.7. Let G be a countably infinite group. The following are equivalent:

(i) hRK(G) > 0;

sup
(ii) there is a free ergodic p.m.p. action with 0 < hE*¥(X, 1) < oo,
(iii) there is a free ergodic p.m.p. action with h* (X, ) = oo.

Proof. The equivalence of (i) and (ii) is by definition. Theorem shows that (ii)
implies (iii), and the implication (iii) implies (ii) was deduced in the first paragraph

of the proof of Theorem [XV.6] O

We mention that if in Theorem the second expression always coincides with
Rokhlin entropy, then from a free ergodic action G ~ (Y, v) with hg*%(Y,v) = oo one
could use the argument in the first paragraph of the proof of Theorem to show
that (Y,v) has free factors with arbitrarily large but finite Rokhlin entropy values.

From Corollary it would then follow that hZ°%(G) > 0 implies hE%(G) = .

sup sup
Theorem XV.8. Let P be a countable group containing arbitrarily large finite sub-

groups. If G is any countably infinite group with hE°%%(GQ) < oo then hEX(P x G) = 0.

sup sup
Proof. Set I' = Px@G. Let (L, \) be a probability space with L finite and H(L, A) > 0,
and consider the Bernoulli shift (L', \T'). By Theorem it suffices to show that

hROK(LTAT) = 0.
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Fix € > 0, fix k € N with hR(GQ) < log(k), and fix a finite subgroup 7' < P with

sup

log(k)/|T| < e. Let £ = {R,:{ € L} be the canonical partition of L', where
Ry={x e L' : 2(1y) = ¢}.
Consider the partition Z7. We may write £ = {D, : 7 € LT} where

D, = ﬂt'Rw(t)-

teT
Since T is a group, it naturally acts on LT by shifts: (t-7)(s) = n(t7's). Foru e T
we have u - D, = D,,., since

u- Dy = ﬂ ut - Ry = m t Reu—1t) = Dy

teT teT
Let @ = {Qx : m € L'} be the partition of L' where [r] denotes the T-orbit of

and

Q[TI’] = U Dy r.

teT

Since TN G = {1r}, the G-translates of Q are mutually independent. As L” has at
least two distinct T-orbits, the factor G ~ (Z,n) associated to o-alg,(Q) is isomor-
phic to a G-Bernoulli shift and is in particular a free action.

By Theorem [[.1], there is a factor I' ~ (Y, v) of (L', \') such that AR (Y,v) < e
and the action of I" on Y is free. The T-orbits of Y are finite and partition Y, so
there is a Borel set M’ C Y which meets every T-orbit precisely once. Let F be the
I-invariant sub-o-algebra of L' associated to Y, and let M € F be the pre-image of
M.

Define ¢ = {C; : 7 € LT} to be the partition of L' defined by

CW:US-(DﬂﬂM).

seT
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This is indeed a partition of L' since the T-translates of M partition L' and the
sets D, N M partition M. To add clarification to this definition, we remark that
21,2 € L' lie in the same class of ¢ if and only if 31_1 -2 and 52_1 - 29 lie in the same
class of Z7, where s1, s, € T are defined by the condition sfl - X, 351 -x9 € M. We

observe that o-algp(€) V F = B(L") since for £ € L

rR= .= U (Dms-M):U U s (Dyrn M)

relT s€T neLT s€T neLT
w(1p)=¢ w(1p)=¢ w(1p)=¢
-J U s-onm={J U (C,,ms.M>.
s€T geLT s€T el
m(s™1)=¢ (s~ 1)=¢

Each C, € ¢ is T-invariant since for v € T and 7 € LT we have

u-Cr=|J(us) - (Dx N M) = Ch.

seT

Furthermore, £ is finer than Q as

Q= Pin = U (Pennis-ar) = |J (Doun s~ M)

teT s,teT s,teT
= s - (D) = (Ct.ms.M) - JCun
s,teT s;teT teT

Let G ~ (W,w) be the factor of (L', Al') associated to o-algs(€). Since ¢ is
finer than Q, (W,w) factors onto (Z,n). Thus G acts freely on (W,w). We have
h&H(W,w) < H(E) < oo and thus by assumption hg™®(W,w) < hEX(G) < log(k).

Apply Theorem to get a k-piece generating partition 8’ for W, and let 3 C

o-alg (&) be the pre-image of f’. Then £ C g-alg () and hence
B(L"Y) = o-algp(¢) V F C o-algp(B) V F.

We observed that every C, € £ is T-invariant. Since G and T' commute, it follows

that every set in o-alg () is T-invariant. In particular, each B € f is T-invariant.
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Therefore, setting
a={L" \M}u (B M)
we have 3 C o-algy(a) V F. Thus B(L') = o-algp(a) V F. Therefore by Corollary
X3
AROH(L A7) < (Y, 0) + BEH(LE, AT | )
<e+H(a|F)

< e+ A(M)-Hy(a)

1
= e+ = - Hu(P)
T
<e+ ! log (k)
<e+ — -log
T
< 2e.
Since € > 0 was arbitrary, we conclude that hE%(L' \I') = 0. O

Corollary XV.9. Assume that every countably infinite group G admits a free ergodic

p.m.p. action with h%*%(X, ) > 0. Then:

(i) hBX(LY NY) = H(L,\) for all countably infinite groups G and all probability

spaces (L, \).

(11) All Bernoulli shifts over countably infinite groups have completely positive outer

Rokhlin entropy.

(11i) Gottschalk’s surjunctivity conjecture and Kaplansky’s direct finiteness conjecture

are true.

Proof. Tt follows from Corollary and Theorem that hEK(G) = oo for all

sup

countably infinite groups G. By applying Theorems [XV.4] and [XV.6| we obtain (i).

From Corollaries [XI1.6| and [XI1.7| we obtain (ii) and (iii). O
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