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Abstract

For an ergodic probability-measure-preserving action G y (X,µ) of a countable

group G, we define the Rokhlin entropy hRok
G (X,µ) to be the infimum of the Shannon

entropies of countable generating partitions. It is known that for free ergodic actions

of amenable groups this notion coincides with classical Kolmogorov–Sinai entropy. It

is thus natural to view Rokhlin entropy as a close analogue to classical entropy. Under

this analogy we prove that Krieger’s finite generator theorem holds for all countably

infinite groups. Specifically, if hRok
G (X,µ) < log(k) then there exists a generating

partition consisting of k sets. Using this result, we study the properties of Rokhlin

entropy as an isomorphism invariant and investigate the still unsolved isomorphism

problem for Bernoulli shifts. Under the assumption that every countable group admits

a free ergodic action of positive Rokhlin entropy, we prove that Bernoulli shifts having

base spaces of unequal Shannon entropy are non-isomorphic and that Gottschalk’s

surjunctivity conjecture and Kaplansky’s direct finiteness conjecture are true.

vi



CHAPTER I

Introduction

1.1 Background

Let (X,µ) be a standard probability space, meaning X is a standard Borel space

and µ is a Borel probability measure. Let G be a countably infinite group, and let

G y (X,µ) be a probability-measure-preserving (p.m.p.) action. For a collection C

of Borel subsets of X, we let σ-algG(C) denote the smallest G-invariant σ-algebra

containing C ∪ {X} and the null sets. A Borel partition α is generating if σ-algG(α)

is the entire Borel σ-algebra B(X). For finite T ⊆ G we write αT for the join of the

translates t · α, t ∈ T , where t · α = {t · A : A ∈ α}. The Shannon entropy of a

countable Borel partition α is

H(α) =
∑
A∈α

−µ(A) · log(µ(A)).

If β is a partition with H(β) <∞, then the conditional Shannon entropy of α relative

to β is

H(α | β) = H(α ∨ β)− H(β).

We write β ≤ α if β is coarser than α. A probability vector is a finite or countable

ordered tuple p̄ = (pi) of positive real numbers which sum to 1 (a more general

definition will appear in Chapter II). We write |p̄| for the length of p̄ and H(p̄) =∑
−pi · log(pi) for the Shannon entropy of p̄.
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Generating partitions are frequently encountered in the study of entropy theory.

If G is a countable amenable group and G y (X,µ) is a p.m.p. action, then the

classical Kolmogorov–Sinai entropy of the action is defined as

hG(X,µ) = sup
β

finite partition

inf
T⊆G
T finite

1

|T |
· H(βT ),

and the supremum is achieved by generating partitions β. Generating partitions are

powerful objects in the study of entropy. They not only simplify entropy compu-

tations, but also play critical roles in the proofs of some key results such as Sinai’s

factor theorem and Ornstein’s isomorphism theorem. Furthermore, they are not sim-

ply a tool in this setting, but rather are intimately tied to entropy as revealed by the

following fundamental theorems of Rokhlin and Krieger.

Theorem (Rokhlin’s generator theorem [41], 1967). If Z y (X,µ) is a free ergodic

p.m.p. action then its entropy hZ(X,µ) satisfies

hZ(X,µ) = inf
{

H(α) : α is a countable generating partition
}
.

Theorem (Krieger’s finite generator theorem [35], 1970). If Z y (X,µ) is a free

ergodic p.m.p. action and hZ(X,µ) < log(k) then there exists a generating partition

α consisting of k sets.

Both of the above theorems were later superseded by the following result of Denker.

Theorem (Denker [14], 1974). If Z y (X,µ) is a free ergodic p.m.p. action and p̄

is a finite probability vector with hZ(X,µ) < H(p̄), then for every ε > 0 there is a

generating partition α = {A0, . . . , A|p̄|−1} with |µ(Ai)− pi| < ε for every 0 ≤ i < |p̄|.

Grillenberger and Krengel [21] obtained a further strengthening of these results

which roughly says that, under the assumptions of Denker’s theorem, one can control
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the joint distribution of α and finitely many of its translates. In particular, they

showed that under the assumptions of Denker’s theorem there is a generating partition

α with µ(Ai) = pi for every 0 ≤ i < |p̄|.

Over the years, Krieger’s theorem acquired much fame and underwent various

generalizations. In 1972, Katznelson and Weiss [24] outlined a proof of Krieger’s

theorem for free ergodic actions of Zd. Roughly a decade later, Šujan [50] stated

Krieger’s theorem for amenable groups but only outlined the proof. The first proof

for amenable groups to appear in the literature was obtained in 1988 by Rosen-

thal [42] who proved Krieger’s theorem under the more restrictive assumption that

hG(X,µ) < log(k − 2) < log(k). This was not improved until 2002 when Danilenko

and Park [13] proved Krieger’s theorem for amenable groups under the assumption

hG(X,µ) < log(k − 1) < log(k). It is none-the-less a folklore unpublished result that

Krieger’s theorem holds for amenable groups, i.e. if G y (X,µ) is a free ergodic

p.m.p. action of an amenable group and hG(X,µ) < log(k) then there is a generat-

ing partition consisting of k sets. Our much more general investigations here yield

this as a consequence. We believe that this is the first explicit proof of this fact.

Rokhlin’s theorem was generalized to actions of abelian groups by Conze [12] in 1972

and was just recently extended to amenable groups by Seward and Tucker-Drob [48].

Specifically, if G y (X,µ) is a free ergodic p.m.p. action of an amenable group then

the entropy hG(X,µ) is equal to the infimum of H(α) over all countable generating

partitions α. Denker’s theorem on the other hand has not been extended beyond

actions of Z.

Outside of the realm of amenable groups, a new entropy theory is beginning to

emerge. Specifically, Bowen [6] recently introduced the notion of sofic entropy for

p.m.p. actions of sofic groups, and his definition was improved and generalized by Kerr
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[27] and Kerr–Li [29]. We remind the reader that the class of sofic groups contains

the countable amenable groups, and it is an open question whether every countable

group is sofic. Sofic entropy extends classical entropy, as when the acting sofic group

is amenable the two notions coincide [7, 30]. Generating partitions continue to play

an important role in this theory, as sofic entropy is easier to compute when one has a

finite generating partition. Bowen [6, 8] has extended much of Ornstein’s isomorphism

theorem to this new setting, however the status of Sinai’s factor theorem and Ornstein

theory are unknown, and new techniques for generating partitions must be developed

in order to move forward. Additionally, the following questions remain open.

Question I.1.

(1) Does sofic entropy satisfy Rokhlin’s generator theorem when the sofic entropy is

not −∞?

(2) Does sofic entropy satisfy Krieger’s finite generator theorem when the sofic en-

tropy is not −∞?

The most well known application of entropy is the classification of Bernoulli shifts

over Z up to isomorphism. This application in fact lies at the root of its conception

by Kolmogorov in 1958 [33, 34]. Bernoulli shifts were classified over Z by Ornstein

in 1970 [36, 37], over amenable groups by Ornstein–Weiss in 1987 [39], and recently

classified over many sofic groups by Bowen [6, 8] and Kerr–Li [31]. Nevertheless, the

following fundamental problem has not yet been settled.

Question I.2. For every countably infinite group G, are the Bernoulli shifts (LG, λG)

classified up to isomorphism by the Shannon entropy H(L, λ) of their base space?

In summary, generating partitions played a critical role in classical entropy theory

and need to be further studied in the non-amenable setting for the development of
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sofic entropy theory. Additionally, if non-sofic groups exist then a new entropy-style

invariant may be needed in order to complete the classification of Bernoulli shifts.

Drawing motivation from these issues, we introduce the following natural isomorphism

invariant. For an ergodic p.m.p. action Gy (X,µ) we define the Rokhlin entropy as

hRok
G (X,µ) = inf

{
H(α) : α is a countable Borel generating partition

}
.

This invariant is named in honor of Rokhlin’s generator theorem. For free ergodic

actions of amenable groups, Rokhlin’s generator theorem [48] says that Rokhlin en-

tropy is identical to classical entropy. Thus, Rokhlin entropy may be viewed as a

close analogue to entropy.

1.2 The main theorem

Our main theorem is the following generalization of Krieger’s finite generator the-

orem.

Theorem I.3. Let G be a countably infinite group acting ergodically, but not necessar-

ily freely, by measure-preserving bijections on a non-atomic standard probability space

(X,µ). If p̄ = (pi) is any finite or countable probability vector with hRok
G (X,µ) < H(p̄),

then there is a generating partition α = {Ai : 0 ≤ i < |p̄|} with µ(Ai) = pi for every

0 ≤ i < |p̄|.

This theorem supersedes previous work of the author in [46] which, under the

assumption hRok
G (X,µ) < ∞, constructed a finite generating partition without any

control over its cardinality or distribution. The major difficulty which the present

work overcomes is that all prior proofs of Krieger’s theorem relied critically upon the

classical Rokhlin lemma and Shannon–McMillan–Breiman theorem, and these tools

do not exist for actions of general countable groups.
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We remark that in order for a partition α to exist as described in Theorem I.3, it

is necessary that hRok
G (X,µ) ≤ H(p̄). So the above theorem is optimal since in general

there are actions where the infimum hRok
G (X,µ) is not achieved, such as free ergodic

actions which are not isomorphic to any Bernoulli shift (see Corollary I.10 below).

If hRok
G (X,µ) < log(k) then using p̄ = (p0, . . . , pk−1) where each pi = 1/k we obtain

the following:

Corollary I.4. Let G be a countably infinite group acting ergodically, but not nec-

essarily freely, by measure-preserving bijections on a non-atomic standard probability

space (X,µ). If hRok
G (X,µ) < log(k), then there is a generating partition α with

|α| = k.

We mention that Corollary I.4 is the first non-free action version of Krieger’s

finite generator theorem. Furthermore, we believe that Corollary I.4 (together with

the Rokhlin generator theorem for amenable groups [48]) is the first explicit proof

of Krieger’s finite generator theorem for free ergodic actions of countable amenable

groups. In fact, we obtain the following strong form of Denker’s theorem for amenable

groups:

Corollary I.5. Let G be a countably infinite amenable group and let G y (X,µ) be

a free ergodic p.m.p. action. If p̄ = (pi) is any finite or countable probability vector

with hG(X,µ) < H(p̄) then there exists a generating partition α = {Ai : 0 ≤ i < |p̄|}

with µ(Ai) = pi for every 0 ≤ i < |p̄|.

We point out that Theorem I.3 shows that a positive answer to Question I.1.(1)

implies a positive answer to I.1.(2).

Rather than proving Theorem I.3 directly, we instead prove a stronger but more

technical result which is a generalization of the “relative” Krieger finite generator
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theorem. The relative version of Krieger’s theorem for Z actions was first proven

by Kifer and Weiss [32] in 2002. It states that if Z y (X,µ) is a free ergodic

p.m.p. action, F is a Z-invariant sub-σ-algebra, and the relative entropy satisfies

hZ(X,µ|F) < log(k), then there is a Borel partition α consisting of k sets such that

σ-algG(α) ∨ F is the entire Borel σ-algebra B(X). This result was later extended

by Danilenko and Park [13] to free ergodic actions of amenable groups under the

assumption that F induces a class-bijective factor.

For a p.m.p. ergodic action G y (X,µ) and a G-invariant sub-σ-algebra F , we

define the relative Rokhlin entropy hRok
G (X,µ|F) to be

inf
{

H(α|F) : α is a countable Borel partition and σ-algG(α) ∨ F = B(X)
}
.

We refer the reader to Chapter II for the definition of the conditional Shannon entropy

H(α|F), but we remark that when F = {X,∅} we have H(α|F) = H(α). We

observe in Proposition X.1 that for free ergodic actions of amenable groups the relative

Rokhlin entropy coincides with relative Kolmogorov–Sinai entropy. Similar to the

Rudolph–Weiss theorem [43], we observe in Proposition III.4 that hRok
G (X,µ|F) is

invariant under orbit equivalences for which the orbit-change cocycle is F -measurable.

Before stating the stronger version of our main theorem, we introduce some addi-

tional terminology. A pre-partition of X is a countable collection of pairwise-disjoint

subsets of X. We say that another pre-partition β extends α, written β w α, if there

is an injection ι : α → β with A ⊆ ι(A) for every A ∈ α. Equivalently, β w α if and

only if the restriction of β to ∪α coincides with α.

For a Borel pre-partition α, we define the reduced σ-algebra σ-algred
G (α) to be the

collection of Borel sets R ⊆ X such that there is a conull X ′ ⊆ X satisfying:

for every r ∈ R ∩ X ′ and x ∈ X ′ \ R there is g ∈ G with g · r, g · x ∈ ∪α
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and with g · r and g · x lying in distinct classes of α.

It is a basic exercise to verify that σ-algred
G (α) is indeed a σ-algebra.

The definition of reduced σ-algebra may seem a bit odd at first, but comes about

naturally from our work here and significantly simplifies the proof of Theorem I.16

below. A key property of this definition is that if β is any partition extending α then

one automatically has σ-algG(β) ⊇ σ-algred
G (α) (Lemma II.5). Another important

property is that if G y (Y, ν) is a factor of (X,µ) via φ : (X,µ) → (Y, ν), then for

any pre-partition α of Y we have σ-algred
G (φ−1(α)) = φ−1(σ-algred

G (α)) (Lemma II.6).

These properties can be quite useful for specialized constructions. For example, one

could imagine constructing two pre-partitions α1 and α2 which achieve different goals.

If ∪α1 is disjoint from ∪α2, then one can choose a common extension partition α and

automatically have σ-algG(α) ⊇ σ-algred
G (α1) ∨ σ-algred

G (α2).

Theorem I.6. Let G be a countably infinite group acting ergodically, but not nec-

essarily freely, by measure-preserving bijections on a non-atomic standard probability

space (X,µ). Let F be a G-invariant sub-σ-algebra of X. If 0 < r ≤ 1 and p̄ = (pi)

is any finite or countable probability vector with hRok
G (X,µ|F) < r · H(p̄), then there

is a Borel pre-partition α = {Ai : 0 ≤ i < |p̄|} with µ(∪α) = r, µ(Ai) = r · pi for

every 0 ≤ i < |p̄|, and σ-algred
G (α) ∨ F = B(X).

The above result is new even in the case G = Z and F = {X,∅}. We mention

that the parameter r is needed for some of our later results. With r = 1, this result

strengthens the prior versions of the relative Krieger finite generator theorem, and

with F = {X,∅} it implies Theorem I.3. We point out that we do not assume any

properties of F , and in particular we do not require that F induce a class-bijective

factor.
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Observe that by using r = 1, Theorem I.6 implies that we may use H(α) in place

of H(α|F) in the definition of hRok
G (X,µ|F). From this observation, we deduce the

following sub-additive identity.

Corollary I.7. Let G be a countably infinite group acting ergodically, but not nec-

essarily freely, by measure-preserving bijections on a non-atomic standard probability

space (X,µ). If G y (Y, ν) is a factor of G y (X,µ) and F is the sub-σ-algebra of

X associated to Y then

hRok
G (X,µ) ≤ hRok

G (Y, ν) + hRok
G (X,µ|F).

The inequality above can be strict, for example when hRok
G (X,µ) < hRok

G (Y, ν). A

strict inequality is common for actions of non-amenable groups [47].

1.3 Applications

We use Theorem I.6 to study the Rokhlin entropy of Bernoulli shifts and investigate

Question I.2. Recall that for a standard probability space (L, λ) the Bernoulli shift

over G with base space (L, λ) is simply the product space (LG, λG) equipped with the

natural left-shift action of G:

for g, h ∈ G and x ∈ LG (g · x)(h) = x(g−1h).

The Shannon entropy of the base space is

H(L, λ) =
∑
`∈L

−λ(`) · log λ(`)

if λ has countable support, and H(L, λ) =∞ otherwise. Every Bernoulli shift (LG, λG)

comes with the canonical, possibly uncountable, generating partition L = {R` : ` ∈

L}, where

R` = {x ∈ LG : x(1G) = `}.
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Note that if H(L, λ) <∞ then L is countable and H(L ) = H(L, λ). Thus one always

has hRok
G (LG, λG) ≤ H(L, λ).

A fundamental open problem in ergodic theory is to determine, for every count-

ably infinite group G, whether (2G, uG2 ) can be isomorphic to (3G, uG3 ). Here we write

n for {0, . . . , n − 1} and un for the normalized counting measure on {0, . . . , n − 1}.

Note that H(n, un) = log(n). For amenable groups G, the Bernoulli shift (LG, λG)

has Kolmogorov–Sinai entropy H(L, λ), and thus (2G, uG2 ) and (3G, uG3 ) are non-

isomorphic. In 2010, groundbreaking work of Bowen [6], together with improvements

by Kerr and Li [29], created a notion of sofic entropy for p.m.p. actions of sofic

groups. For sofic G, the Bernoulli shift (LG, λG) has sofic entropy H(L, λ) [6, 31].

Thus (2G, uG2 ) and (3G, uG3 ) are non-isomorphic for sofic G. Based on these results, it

seems that the following statement may be true of all countably infinite groups G:

INV : H(L, λ) is an isomorphism invariant for (LG, λG).

Remark I.8. Another important question is whether H(L, λ) = H(K,κ) implies that

(LG, λG) is isomorphic to (KG, κG). In 1970, Ornstein famously answered this ques-

tion positively for G = Z, thus completely classifying Bernoulli shifts over Z up to

isomorphism [36, 37]. This result was extended to amenable groups by Ornstein and

Weiss in 1987 [39]. Work of Stepin shows that this property is retained under passage

to supergroups [49], so the isomorphism result extends to all groups which contain an

infinite amenable subgroup. In 2012, Bowen proved that for every countably infinite

group G, if H(L, λ) = H(K,κ) and the supports of λ and κ each have cardinality at

least 3, then (LG, λG) is isomorphic to (KG, κG) [8]. Thus, this question is nearly

resolved with only the case of a two atom base space incomplete.

We previously noted that one always has hRok
G (LG, λG) ≤ H(L, λ). When G is sofic,
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Rokhlin entropy is bounded below by sofic entropy and thus hRok
G (LG, λG) = H(L, λ)

whenever G is sofic. Since the definition of Rokhlin entropy does not require the

acting group to be sofic, the statement

RBS : hRok
G (LG, λG) = H(L, λ) for every standard probability space (L, λ).

(acronym for Rokhlin entropy of Bernoulli Shifts) may be true for all countably infinite

groups G. Notice that RBS ⇒ INV.

We investigate RBS and along the way we further develop the theory of Rokhlin

entropy. The canonical generating partition L of (LG, λG) has the property that its

translates are mutually independent. Our first result uses the joint distributions of

translates of a generating partition in order to bound Rokhlin entropy.

Theorem I.9. Let G be a countably infinite group, let G y (X,µ) be a free p.m.p.

ergodic action, and let α be a countable generating partition. If T ⊆ G is finite, ε > 0,

and 1
|T | · H(αT ) < H(α)− ε, then hRok

G (X,µ) < H(α)− ε/(16|T |3).

Since the equality H(αT ) = |T | · H(α) implies that the T -translates of α are mu-

tually independent when H(α) <∞, we obtain the following.

Corollary I.10. Let G be a countably infinite group acting freely and ergodically on a

standard probability space (X,µ) by measure-preserving bijections. If α is a countable

generating partition and

hRok
G (X,µ) = H(α) <∞,

then (X,µ) is isomorphic to a Bernoulli shift.

As the sofic entropy of an ergodic action is always bounded above by Rokhlin

entropy [6], we have the following immediate corollary.

Corollary I.11. Let G be a sofic group with sofic approximation Σ, and let G act

freely and ergodically on a standard probability space (X,µ) by measure-preserving
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bijections. If α is a countable generating partition and the sofic entropy hΣ
G(X,µ)

satisfies hΣ
G(X,µ) = H(α) <∞, then (X,µ) is isomorphic to a Bernoulli shift.

From Theorem I.9 we derive a few properties which would follow if RBS were found

to be true. Recall that an action Gy (X,µ) of an amenable group G is said to have

completely positive entropy if every factor Gy (Y, ν) of (X,µ), with Y not essentially

a single point, has positive Kolmogorov–Sinai entropy. For G = Z, these actions are

also called Kolmogorov or K-automorphisms. The standard example of completely

positive entropy actions are Bernoulli shifts (see [43]). In fact, for amenable groups

factors of Bernoulli shifts are Bernoulli [39], but it is unknown if this holds for any

non-amenable group. Recently, it was proven by Kerr that Bernoulli shifts over sofic

groups have completely positive sofic entropy [28]. Along these lines, we obtain the

following corollary of Theorem I.9.

Corollary I.12. Let G be a countably infinite group. Assume that hRok
G (LG, λG) =

H(L, λ) for all standard probability spaces (L, λ). Then every Bernoulli shift over G

has completely positive Rokhlin entropy.

Our next corollary relates to two well-known open conjectures from outside ergodic

theory. The first is Kaplansky’s direct finiteness conjecture, which states that for every

countable group G and every field K, if a and b are elements of the group ring K[G]

and satisfy ab = 1 then ba = 1. Kaplansky proved this for K = C in 1972 [23] (see

also a shorter proof by Burger and Valette [10]). For general fields K, this conjecture

was proven for abelian groups by Ara, O’Meara, and Perera in 2002 [2], and then

proven for sofic groups by Elek and Szabó in 2004 [16]. This conjecture has also been

verified for some groups whose soficity is currently unknown [52, 3].

The second conjecture is Gottschalk’s surjunctivity conjecture, which states that
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if G is a countable group, n ∈ N, and φ : nG → nG is a continuous G-equivariant

injection, then φ is surjective. This conjecture has a simple topological proof when

G is residually finite (this is due to Lawton, see [20] or [54]), and can be proven for

amenable groups using topological entropy. Gromov proved the conjecture for sofic

groups, and in fact he defined the class of sofic groups for this purpose [22, 54]. Later,

after the discovery of sofic entropy, a topological entropy proof was given for sofic

groups [29]. We point out that it is known that Gottschalk’s surjunctivity conjecture

implies Kaplansky’s direct finiteness conjecture [11, Section I.5].

From Corollary I.10 we deduce the following.

Corollary I.13. Let G be a countably infinite group. Assume that hRok
G (LG, λG) =

H(L, λ) for all standard probability spaces (L, λ). Then G satisfies Gottschalk’s sur-

junctivity conjecture and Kaplansky’s direct finiteness conjecture.

If we define the statements

CPE : Every Bernoulli shift over G has completely positive Rokhlin entropy.

GOT : G satisfies Gottschalk’s surjunctivity conjecture.

KAP : G satisfies Kaplansky’s direct finiteness conjecture.

then from earlier comments and Corollaries I.12 and I.13 we deduce that for every

countably infinite group G

RBS ⇒ INV + CPE + GOT + KAP.

We now turn our attention to the validity of RBS. A priori, there is nothing

obvious one can say about hRok
G (LG, λG) except that

hRok
G ((L×K)G, (λ× κ)G) ≤ hRok

G (LG, λG) + hRok
G (KG, κG) ≤ H(L, λ) + H(K,κ).
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Indeed, we do not know if Rokhlin entropy is additive under direct products, even for

Bernoulli shifts.

For a countably infinite group G, define

hRok
sup (G) = sup

Gy(X,µ)

hRok
G (X,µ),

where the supremum is taken over all free ergodic p.m.p. actions G y (X,µ) with

hRok
G (X,µ) < ∞. For non-sofic groups G, we do not know if either of the following

two statements are true.

POS : There is a free ergodic p.m.p. action Gy (X,µ) with hRok
G (X,µ) > 0.

INF : hRok
sup (G) =∞.

In order to study RBS, we first use Theorem I.6 in order to develop the following

analog of the classical Kolmogorov–Sinai theorem from entropy theory. Recall that if

G is amenable then the Kolmogorov–Sinai theorem states that the Kolmogorov–Sinai

entropy hG(X,µ) of Gy (X,µ) satisfies

hG(X,µ) = sup
α

inf
T⊆G
T finite

1

|T |
· H(αT ),

where the supremum is over all countable partitions α with H(α) <∞.

Theorem I.14. Let G be a countable group acting ergodically, but not necessar-

ily freely, by measure-preserving bijections on a standard probability space (X,µ).

Let (αn)n∈N be an increasing sequence of partitions with H(αn) < ∞ and B(X) =∨
n∈N σ-algG(αn). If

inf
n∈N

lim
ε→0

sup
m∈N

inf
k∈N

inf
T⊆G
T finite

inf
{

H(β | αTn ) : β ≤ αTk , H(αm | βT ) < ε
}

is positive then hRok
G (X,µ) =∞. On the other hand, if the expression above is equal

14



to 0 then

hRok
G (X,µ) = lim

ε→0
sup
m∈N

inf
k∈N

inf
T⊆G
T finite

inf
{

H(β) : β ≤ αTk , H(αm | βT ) < ε
}
.

We do not know if requiring the first expression in Theorem I.14 to be 0 is su-

perfluous. Although the connection may not be obvious, this is closely related to

whether POS implies INF (see the discussion following Corollary XV.7).

The main utility of Theorem I.14 is that it reveals new properties of Rokhlin

entropy (in addition to the corollary below, see also Corollaries XIII.4, XIII.5, XIII.7,

XIII.8, and XIII.9). This theorem and its corollaries are important ingredients to our

main theorems.

Corollary I.15. Let G be a countable group, let L be a finite set, and let LG have the

product topology. Then the map taking invariant ergodic Borel probability measures

µ to hRok
G (LG, µ) is upper-semicontinuous in the weak∗-topology.

We investigate RBS by an approximation argument via Corollary I.15. The re-

quired ingredient is the construction of generating partitions α which are almost

Bernoulli in the sense that H(αT )/|T | > H(α) − ε for some large but finite T ⊆ G

and some small ε > 0. By well known properties of Shannon entropy [15, Fact 3.1.3],

this condition is equivalent to saying that the T -translates of α are close to being

mutually independent. This theorem may be viewed as a generalization of a similar

result obtained by Grillenberger and Krengel for G = Z [21].

Theorem I.16. Let G be a countably infinite group acting freely and ergodically on

a standard probability space (X,µ) by measure-preserving bijections. If p̄ = (pi) is

any finite or countable probability vector with hRok
G (X,µ) < H(p̄) <∞, then for every

finite T ⊆ G and ε > 0 there is a generating partition α = {Ai : 0 ≤ i < |p̄|} with
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µ(Ai) = pi for every 0 ≤ i < |p̄| and

1

|T |
· H(αT ) > H(α)− ε.

The proof of Theorem I.3, upon which the above result is based, takes place almost

exclusively within the pseudo-group of the induced orbit equivalence relation. It is

therefore a bit unexpected that we are able to control the interaction among the

T -translates of α in the above theorem.

The above theorem strengthens the result of Abért and Weiss that all free actions

weakly contain a Bernoulli shift [1]. Specifically, assuming only that H(p̄) > 0, they

proved the existence of an α which is not necessarily generating but otherwise satisfies

the conditions stated in Theorem I.16.

Theorem I.16 allows us to investigate RBS for H(L, λ) <∞.

Theorem I.17. Let G be a countably infinite group and let (L, λ) be a standard

probability space with H(L, λ) <∞. Then

hRok
G (LG, λG) = min

(
H(L, λ), hRok

sup (G)
)
.

Note that when hRok
G (LG, λG) < H(L, λ), the supremum hRok

sup (G) is achieved by

(LG, λG). We point out that the above theorem places a significant restriction on the

nature of the map H(L, λ) 7→ hRok
G (LG, λG). Prior to obtaining this theorem, there is

no obvious reason why this map should be monotone or even piece-wise linear.

Next we consider the case H(L, λ) = ∞. In this case we obtain a result stronger

than Theorem I.17. This is surprising from a historical perspective, since when Kol-

mogorov defined entropy in 1958 he could only handle Bernoulli shifts with a finite

Shannon entropy base [33, 34]. It was not until the improvements of Sinai that infi-

nite Shannon entropy bases could be considered [44]. Similarly, when Bowen defined
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sofic entropy he studied Bernoulli shifts with both finite and infinite Shannon entropy

bases [6], but he was only fully successful in the finite case. The infinite case was

resolved through improvements by Kerr and Li [29, 31, 27].

Theorem I.18. Let G be a countably infinite group and let (L, λ) be a standard

probability space with H(L, λ) = ∞. Then hRok
G (LG, λG) = ∞ if and only if there

exists a free ergodic p.m.p. action Gy (X,µ) with hRok
G (X,µ) > 0.

Thus, if H(L, λ) =∞ then hRok
G (LG, λG) is either 0 or infinity.

It follows from Theorems I.17 and I.18 that for every countably infinite group G

INF⇒ RBS.

Theorem I.19. Let P be a countable group containing arbitrarily large finite sub-

groups. If G is any countably infinite group with hRok
sup (G) <∞ then hRok

sup (P ×G) = 0.

Thus (∀G POS)⇒ (∀G INF). Putting all of our results together, we obtain the

following.

Corollary I.20. Assume that every countably infinite group G admits a free ergodic

p.m.p. action with hRok
G (X,µ) > 0. Then:

(i) hRok
G (LG, λG) = H(L, λ) for every countably infinite group G and every probability

space (L, λ);

(ii) Every Bernoulli shift over any countably infinite group has completely positive

Rokhlin entropy;

(iii) Gottschalk’s surjunctivity conjecture is true;

(iv) Kaplansky’s direct finiteness conjecture is true.
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This corollary indicates that the validity of (∀G POS) should be considered an

important open problem.

Finally, for convenience to the reader we summarize the implications we uncovered

in the two lines below:

INF⇒ RBS⇒ INV + CPE + GOT + KAP

(∀G POS)⇒ (∀G INF).

1.4 Outline

The proof of Theorem I.6 is entirely self-contained and only uses the definition

of ergodicity, standard properties of Shannon entropy, and Stirling’s formula. The

proof generally ignores the action of the group but instead works almost exclusively

within the pseudo-group of the induced orbit-equivalence relation. We review basic

properties of the pseudo-group in Chapter III. The important advantage of working

within the pseudo-group is that we are able to obtain a suitable replacement to both

the Rokhlin lemma and the Shannon–McMillan–Breiman theorem. We present this

replacement in Chapter IV. A significant difficulty of working within the pseudo-group

is that the notion of “generating” partition is lost. In a spirit somewhat similar to

work of Rudolph–Weiss [43], we must maintain careful control over sub-σ-algebras

and the measurability properties of cocycles which relate elements of the pseudo-

group to the action of G. This is the most challenging part of the proof, and it is

essentially the only time when we must use the original group action. The coding

machinery needed for this task is presented in Chapters V and VI. One final main

ingredient is a procedure for replacing countably infinite partitions with finite ones.

This procedure originates from prior work of the author in [46] and is presented in

Chapter VII. In Chapter VIII we review a few well known counting lemmas related
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to Shannon entropy. Then in Chapter IX we collect our tools together and mimic the

classical proof of Krieger’s finite generator theorem and thus establish Theorem I.6.

We remark that if one is only interested in obtaining a finite generating partition,

then only Chapters II, III, and VII are needed. Indeed, the latter two chapters essen-

tially recreate the proof of this fact by the author in [46]. The novelty of Theorem I.6

is its precise control over the cardinality and distribution of the generating partition,

and the new ideas needed for this stronger result are the content of Chapters IV, V,

and VI.

In Chapter X we show that relative Rokhlin entropy and relative Kolmogorov–

Sinai entropy coincide. We review the Rokhlin metric on the space of partitions and

some of its basic properties in Chapter XI. Then in Chapter XII we study the joint

distributions among translates of a given generating partition and prove Theorem

I.9. This chapter also contains the proofs of Corollaries I.12 and I.13. Next we

study computability aspects of Rokhlin entropy and present the proof of Theorem

I.14 in Chapter XIII. Chapters XII and XIII not only develop important properties

of Rokhlin entropy, but also serve as vital steps towards the study of the Rokhlin

entropy of Bernoulli shifts. In Chapter XIV we construct generating partitions which

are approximately Bernoulli and establish Theorem I.16. We are then able to study

the Rokhlin entropy of Bernoulli shifts in Chapter XV and prove Theorems I.17, I.18,

and I.19.
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CHAPTER II

Preliminaries

Let (X,µ) be a standard probability space. For C ⊆ B(X), we let σ-alg(C) denote

the smallest sub-σ-algebra containing C∪{X} and the µ-null sets (not to be confused

with the notation σ-algG(C) from the introduction). For a collection of partitions αi,

we let
∨
i∈I αi denote the coarsest partition finer than every αi. Note that

∨
i∈I αi

may be uncountable. Similarly, for a collection of sub-σ-algebras Fi, we let
∨
i∈I Fi

denote the smallest σ-algebra containing every Fi.

Every probability space (X,µ) which we consider will be assumed to be standard.

In particular, X will be a standard Borel space. A well-known property of standard

Borel spaces is that they are countably generated [25, Prop. 12.1], meaning there is

a sequence Bn ⊆ X of Borel sets such that B(X) is the smallest σ-algebra containing

all of the sets Bn. This implies that there is an increasing sequence αn of finite Borel

partitions of X such that B(X) =
∨
n∈N σ-alg(αn).

Throughout this paper, whenever working with a probability space (X,µ) we will

generally ignore sets of measure zero. In particular, we write A = B for A,B ⊆ X if

their symmetric difference is null. Also, by a partition of X we will mean a collection

of pairwise-disjoint Borel sets whose union is conull. In particular, we allow partitions

to contain the empty set. Similarly, we will use the term probability vector more freely
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than described in the introduction. A probability vector p̄ = (pi) will be any finite or

countable ordered tuple of non-negative real numbers which sum to 1 (so some terms

pi may be 0). We say that another probability vector q̄ is coarser than p̄ if there is

a partition Q = {Qj : 0 ≤ j < |q̄|} of the integers {0 ≤ i < |p̄|} such that for every

0 ≤ j < |q̄|

qj =
∑
i∈Qj

pi.

For a countable ordered partition α = {Ai : 0 ≤ i < |α|} we let dist(α) denote

the probability vector p̄ satisfying pi = µ(Ai). For two partitions α and β, we say

β is coarser than α, or α is finer than β, written β ≤ α, if every B ∈ β is the

union of classes of α. We let PH denote the set of countable Borel partitions α with

H(α) < ∞. The space PH is a complete separable metric space [15, Fact 1.7.15]

under the Rokhlin metric dRok
µ defined by

dRok
µ (α, β) = H(α | β) + H(β | α).

At times, we will consider the space of all Borel probability measures on X. Recall

that the space of Borel probability measures on X has a natural standard Borel struc-

ture which is generated by the maps µ 7→ µ(A) for A ⊆ X Borel [25, Theorem 17.24].

If X is furthermore a compact space, then we equip the space of Borel probability

measures on X with the weak∗-topology. This topology is defined to be the weakest

topology such that for every continuous function f : X → R the map µ 7→
∫
f dµ

is continuous. For a standard Borel space X and a Borel action G y X, we write

EG(X) for the collection of ergodic invariant Borel probability measures on X.

A probability space (Y, ν) is a factor of (X,µ) if there exists a measure-preserving

map π : (X,µ) → (Y, ν). Every factor π : (X,µ) → (Y, ν) is uniquely associated

(mod µ-null sets) to a sub-σ-algebra F of X, and conversely every sub-σ-algebra F
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of (X,µ) is uniquely associated (up to isomorphism) to a factor π : (X,µ) → (Y, ν)

[19, Theorem 2.15]. Since the factor Y is always standard Borel and thus countably

generated, for any sub-σ-algebra F of X there is an increasing sequence of finite

partitions γn with F =
∨
n∈N σ-alg(γn) mod µ-null sets.

If G acts on (X,µ) and on (Y, ν), then we say that Gy (Y, ν) is a factor of (X,µ)

if there exists a measure-preserving G-equivariant map π : (X,µ) → (Y, ν). Under

the correspondence described in the previous paragraph, factors Gy (Y, ν) of (X,µ)

are in one-to-one correspondence with G-invariant sub-σ-algebras F ⊆ B(X). We

will make frequent use of the following theorem.

Theorem II.1 (Seward–Tucker-Drob [48]). Let G be a countably infinite group and

let Gy (X,µ) be a free p.m.p. ergodic action. Then for every ε > 0 there is a factor

Gy (Y, ν) of (X,µ) such that hRok
G (Y, ν) < ε and G acts freely on Y .

If π : (X,µ) → (Y, ν) is a factor map, then there is an essentially unique Borel

map associating each y ∈ Y to a Borel probability measure µy on X such that

µ =
∫
µy dν(y) and µy(π

−1(y)) = 1 [19, Theorem A.7]. We call this the disintegration

of µ over ν.

Let (X,µ) be a probability space, and let F be a sub-σ-algebra. Let π : (X,µ)→

(Y, ν) be the associated factor, and let µ =
∫
µy dν(y) be the disintegration of µ over

ν. For a countable Borel partition α of X, the conditional Shannon entropy of α

relative to F is

H(α | F) =

∫
Y

∑
A∈α

−µy(A) · log µy(A) dν(y) =

∫
Y

Hµy(α) dν(y).

When necessary, we will write Hµ(α | F) to emphasize the measure. If F = {X,∅} is

the trivial σ-algebra then H(α | F) = H(α). For a countable partition β of X we set
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H(α | β) = H(α | σ-alg(β)). For B ⊆ X we write

HB(α | F) = HµB(α | F),

where µB is the normalized restriction of µ to B defined by µB(A) = µ(A∩B)/µ(B).

Since for B ∈ F we have µB =
∫
µy dνπ(B)(y), it follows that if β ⊆ F is a countable

partition of X then

H(α | F) =
∑
B∈β

µ(B) · HB(α | F).

In particular,

H(α | β) =
∑
B∈β

µ(B) · HB(α).

We will need the following standard properties of Shannon entropy (proofs can be

found in [15]):

Lemma II.2. Let (X,µ) be a standard probability space, let α and β be countable

Borel partitions of X, and let F and Σ be sub-σ-algebras. Then

(i) H(α | F) = 0 if and only if α ⊆ F mod null sets;

(ii) H(α | F) ≤ log |α|;

(iii) if α ≥ β then H(α | F) ≥ H(β | F);

(iv) if Σ ⊆ F then H(α | Σ) ≥ H(α | F);

(v) H(α ∨ β | F) = H(β | F) + H(α | σ-alg(β) ∨ F);

(vi) if H(α),H(β) < ∞ then H(α ∨ β) = H(α) + H(β) if and only if α and β are

independent;

(vii) if α =
∨
n∈N αn is countable, then H(α | F) = limk→∞H(

∨
0≤n≤k αk | F);

(viii) if H(α) <∞ then H(α |
∨
n∈NFn) = limk→∞H(α |

∨
0≤n≤k Fn).
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We will also need the following basic fact.

Lemma II.3. Let (X,µ) be a probability space and let (αn) be a sequence of countable

partitions of X. If
∑

n∈N H(αn) <∞ then β =
∨
n∈N αn is essentially countable.

Proof. If for each n there is a coarsening ζn = {Zn, X \ Zn} of αn such that the

sequence of measures µ(Zn) has an accumulation point in (0, 1), then∞ =
∑

H(ζn) ≤∑
H(αn), a contradiction. Let Cn be the piece of αn of largest measure, and set ξn =

{Cn, X\Cn}. We must have µ(Cn) tends to 1 as otherwise there would exist partitions

ζn as described above. We have
∑

H(ξn) ≤
∑

H(αn) <∞. Since x < H(x, 1− x) for

all x sufficiently close to 0, we deduce that
∑
µ(X \Cn) <∞. Now the Borel–Cantelli

lemma states that almost-every x ∈ X lies in only finitely many of the sets X \ Cn.

So almost-every x ∈ X lies in Cn ∈ αn for all sufficiently large n. Let Xn be the set

of x with x 6∈ Cn but x ∈ Cm for all m > n. Then the Xn’s are pairwise disjoint, have

conull union, and β is countable when restricted to any Xn.

We note a few lemmas related to σ-algebras and reduced σ-algebras which we will

need.

Lemma II.4. Let (X,µ) be a probability space and let C be a countable algebra of

Borel sets. Then A ∈ σ-alg(C) if and only if A is Borel and there is a conull X ′ ⊆ X

such that for every a ∈ A∩X ′ and x ∈ X ′ \A there is a set C ∈ C which separates a

and x.

Proof. Let Σ be the collection of sets A satisfying the condition described in the

statement of the lemma. Then Σ contains C ∪ {X} and the null sets, and it is easy

to see that Σ is a σ-algebra. Thus σ-alg(C) ⊆ Σ.

Enumerate C as C1, C2, · · · and define π : X → {0, 1}N by the rule π(x)(n) = 1 if

and only if x ∈ Cn. Note that π is σ-alg(C)-measurable. Now fix a set A ∈ Σ. Then
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there is a conull X ′ ⊆ X so that for all a ∈ A∩X ′ and x ∈ X ′\A we have π(a) 6= π(x).

Consider the set π(A ∩ X ′). Note that X ′ ∩ π−1(π(A ∩ X ′)) = A ∩ X ′. A priori,

we do not know if π(A ∩ X ′) is Borel. However, since Borel probability measures

are regular [25, Theorem 17.10], there is an Fσ-set E ⊆ π(A ∩ X ′) and a Gδ-set

F ⊇ π(A∩X ′) with π∗(µ)(F \E) = 0. Then we have X ′∩π−1(E) ⊆ A∩X ′ ⊆ π−1(F ),

π−1(E), π−1(F ) ∈ σ-alg(C), and µ(π−1(F ) \π−1(E)) = 0. Since A is Borel and differs

from an element of σ-alg(C) by a null set, we must have A ∈ σ-alg(C).

Lemma II.5. Let G y (X,µ) be a p.m.p. action, and let α be a pre-partition. If β

is a countable pre-partition and β w α then σ-algred
G (β) ⊇ σ-algred

G (α). In particular,

if β is a countable partition and β w α then σ-algG(β) ⊇ σ-algred
G (α).

Proof. Fix R ∈ σ-algred
G (α). By definition of σ-algred

G (α), there is a conull X ′ ⊆ X

such that for all r ∈ R∩X ′ and x ∈ X ′ \R there is g0 ∈ G with g0 · r, g0 ·x ∈ ∪α and

such that α separates g0 · r and g0 · x. Since the restriction of β to ∪α is equal to α,

we also have that β separates g0 · r and g0 · x. We conclude that R ∈ σ-algred
G (β). If

β is in fact a partition, then σ-algred
G (β) = σ-algG(β) be Lemma II.4.

Lemma II.6. Let G y (X,µ) be a p.m.p. action and let G y (Y, ν) be a factor of

(X,µ) under the map π : (X,µ)→ (Y, ν). If α is a countable pre-partition of Y then

σ-algred
G (π−1(α)) = π−1(σ-algred

G (α)).

Proof. It is a routine exercise to check π−1(σ-algred
G (α)) ⊆ σ-algred

G (π−1(α)). So fix

R ∈ σ-algred
G (π−1(α)). If there is a Borel R′ ⊆ Y with R = π−1(R′), then again it

follows easily from the definitions thatR′ ∈ σ-algred
G (α) and thusR ∈ π−1(σ-algred

G (α)).

However, by Lemma II.4 we necessarily have R ∈ σ-algG(π−1(α)) = π−1(σ-algG(α)).

Thus there is R′ ⊆ Y with R = π−1(R′).

If G y (X,µ) is a p.m.p. ergodic action and F is a G-invariant sub-σ-algebra,
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then the relative Rokhlin entropy hRok
G (X,µ | F) is

inf
{

H(α | F) : α is a countable Borel partition and σ-algG(α) ∨ F = B(X)
}
.

For a collection C of Borel sets we define the outer Rokhlin entropy as

hRok
G,X(C|F) = inf

{
H(α|F) : α is a countable Borel partition and C ⊆ σ-algG(α)∨F

}
.

When F = {X,∅} we simply write hRok
G,X(C) for hRok

G,X(C|F). If Gy (Y, ν) is a factor of

(X,µ), then we define hRok
G,X(Y ) = hRok

G,X(Σ), where Σ is the G-invariant sub-σ-algebra

of X associated to Y .
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CHAPTER III

The pseudo-group of an ergodic action

For a p.m.p. action G y (X,µ) we let EX
G denote the induced orbit equivalence

relation:

EX
G = {(x, y) : ∃g ∈ G, g · x = y}.

The pseudo-group of EX
G , denoted [[EX

G ]], is the set of all Borel bijections θ : dom(θ)→

rng(θ) where dom(θ), rng(θ) ⊆ X are Borel and θ(x) ∈ G·x for every x ∈ dom(θ). The

full group of EX
G , denoted [EX

G ], is the set of all θ ∈ [[EX
G ]] with dom(θ) = rng(θ) = X

(i.e. conull in X).

For every θ ∈ [[EX
G ]] there is a Borel partition {Zθ

g : g ∈ G} of dom(θ) such that

θ(x) = g · x for every x ∈ Zθ
g . Thus, an important fact which we will use repeatedly

is that every θ ∈ [[EX
G ]] is measure-preserving. We mention that the sets Zθ

g are in

general not uniquely determined from θ since the action of G might not be free. It

will be necessary to keep record of such decompositions {Zθ
g} for θ ∈ [[EX

G ]]. The

precise notion we need is the following.

Definition III.1. Let Gy (X,µ) be a p.m.p. action, let θ ∈ [[EX
G ]], and let F be a

G-invariant sub-σ-algebra. We say that θ is F-expressible if dom(θ), rng(θ) ∈ F and

there is a F -measurable partition {Zθ
g : g ∈ G} of dom(θ) such that θ(x) = g · x for

every x ∈ Zθ
g and all g ∈ G.
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We observe two simple facts on the notion of expressibility.

Lemma III.2. Let G y (X,µ) be a p.m.p. action and let F be a G-invariant sub-

σ-algebra. If θ ∈ [[EX
G ]] is F-expressible and A ⊆ X, then θ(A) = θ(A ∩ dom(θ)) is

σ-algG({A}) ∨ F-measurable. In particular, if A ∈ F then θ(A) ∈ F .

Proof. Fix a F -measurable partition {Zθ
g : g ∈ G} of dom(θ) such that θ(x) = g · x

for all x ∈ Zθ
g . Then

θ(A) =
⋃
g∈G

g · (A ∩ Zθ
g ) ∈ σ-algG({A}) ∨ F .

Lemma III.3. Let Gy (X,µ) be a p.m.p. action and let F be a G-invariant sub-σ-

algebra. If θ, φ ∈ [[EX
G ]] are F-expressible then so are θ−1 and θ ◦ φ.

Proof. Fix F -measurable partitions {Zθ
g : g ∈ G} and {Zφ

g : g ∈ G} of dom(θ) and

dom(φ), respectively, satisfying θ(x) = g · x for all x ∈ Zθ
g and φ(x) = g · x for all

x ∈ Zφ
g . Define for g ∈ G

Zθ−1

g = g−1 · Zθ
g−1 .

Then each Zθ−1

g is F -measurable since F is G-invariant. It is easily checked that

{Zθ−1

g : g ∈ G} partitions rng(θ) and satisfies θ−1(x) = g · x for all x ∈ Zθ−1

g . Thus

θ−1 is F -expressible.

Observe that by the previous lemma, φ−1(Zθ
g ) ∈ F for every g ∈ G since φ−1 is

F -expressible. Notice that the sets Zφ
g ∩ φ−1(Zθ

h) partition dom(θ ◦ φ). Define for

g ∈ G

Zθ◦φ
g =

⋃
h∈G

(
Zφ
h−1g ∩ φ

−1(Zθ
h)
)
.

These sets are F -measurable and pairwise-disjoint and we have θ ◦φ(x) = g ·x for all

x ∈ Zθ◦φ
g .
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With the aid of Lemma III.2, we observe a basic property of relative Rokhlin

entropy. The proposition below resembles a theorem of Rudolph and Weiss from

classical entropy theory [43]. Note that if G and Γ act on (X,µ) with the same orbits

then EX
G = EX

Γ and [[EX
G ]] = [[EX

Γ ]]. In this situation, we say that θ ∈ [[EX
G ]] is

(G, C)-expressible if it is C-expressible with respect to the G-action Gy (X,µ).

Proposition III.4. Let G and Γ be countable groups, and let G y (X,µ) and Γ y

(X,µ) be p.m.p. ergodic actions having the same orbits. Suppose that F is a G and

Γ invariant sub-σ-algebra such that the transformation associated to each g ∈ G is

(Γ,F)-expressible and similarly the transformation associated to each γ ∈ Γ is (G,F)-

expressible. Then

hRok
G (X,µ|F) = hRok

Γ (X,µ|F).

Proof. It suffices to show that for every countable partition α, σ-algG(α) ∨ F =

σ-algΓ(α) ∨ F . Indeed, since the transformation associated to each g ∈ G is (Γ,F)-

expressible and α ⊆ σ-algΓ(α) ∨ F , it follows from Lemma III.2 that the σ-algebra

σ-algΓ(α) ∨ F is G-invariant. Therefore σ-algG(α) ∨ F ⊆ σ-algΓ(α) ∨ F . With the

same argument we obtain the reverse containment.

The lemma below and the corollaries which follow it provide us with all elements

of the pseudo-group [[EX
G ]] which will be needed in forthcoming chapters.

Lemma III.5. Let G y (X,µ) be an ergodic p.m.p. action. Let A,B ⊆ X be Borel

sets with 0 < µ(A) ≤ µ(B). Then there exists a σ-algG({A,B})-expressible function

θ ∈ [[EX
G ]] with dom(θ) = A and rng(θ) ⊆ B.

Proof. Let g0, g1, . . . be an enumeration of G. Set Zθ
g0

= A ∩ g−1
0 · B and inductively

define

Zθ
gn =

(
A \

(⋃n−1
i=0 Z

θ
gi

))⋂
g−1
n ·

(
B \

(⋃n−1
i=0 gi · Zθ

gi

))
.
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Define θ :
⋃
n∈N Z

θ
gn → B by setting θ(x) = gn · x for x ∈ Zθ

gn . Clearly θ is

σ-algG({A,B})-expressible.

Set C = A \ dom(θ). Towards a contradiction, suppose that µ(C) > 0. Then we

have

µ(rng(θ)) = µ(dom(θ)) < µ(A) ≤ µ(B).

So µ(B \ rng(θ)) > 0 and by ergodicity there is n ∈ N with

µ
(
C ∩ g−1

n · (B \ rng(θ))
)
> 0.

However, this implies that µ(C ∩ Zθ
gn) > 0, a contradiction. We conclude that, up to

a null set, dom(θ) = A.

Corollary III.6. Let G y (X,µ) be a p.m.p. ergodic action. If C ⊆ B ⊆ X and

µ(C) = 1
n
· µ(B) with n ∈ N, then there is a σ-algG({C,B})-measurable partition ξ

of B into n pieces with each piece having measure 1
n
· µ(B) and with C ∈ ξ.

Proof. Set C1 = C. Once σ-algG({C,B})-measurable subsets C1, . . . , Ck−1 of B, each

of measure 1
n
·µ(B), have been defined, we apply Lemma III.5 to get a σ-algG({C,B})-

expressible function θ ∈ [[EX
G ]] with dom(θ) = C and

rng(θ) ⊆ B \ (C1 ∪ · · · ∪ Ck−1).

We set Ck = θ(C). We note that µ(Ck) = 1
n
· µ(B) and Ck ∈ σ-algG({C,B}) by

Lemma III.2. Finally, set ξ = {C1, . . . , Cn}.

In the corollary below we write idA ∈ [[EX
G ]] for the identity function on A for

A ⊆ X.

Corollary III.7. Let Gy (X,µ) be an ergodic p.m.p. action. If ξ = {C1, . . . , Cn} is

a collection of pairwise disjoint Borel sets of equal measure, then there is a σ-algG(ξ)-
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expressible function θ ∈ [[EX
G ]] which cyclically permutes the members of ξ, meaning

that dom(θ) = rng(θ) = ∪ξ, θ(Ck) = Ck+1 for 1 ≤ k < n, θ(Cn) = C1, and θn = id∪ξ.

Proof. By Lemma III.5, for each 2 ≤ k ≤ n there is a σ-algG(ξ)-expressible function

φk ∈ [[EX
G ]] with dom(φk) = C1 and rng(φk) = Ck. We define θ : ∪ξ → ∪ξ by

θ(x) =



φ2(x) if x ∈ C1

φk+1 ◦ φ−1
k (x) if x ∈ Ck and 1 < k < n

φ−1
n (x) if x ∈ Cn.

Then θ cyclically permutes the members of ξ and has order n. Finally, each restriction

θ � Ck is σ-algG(ξ)-expressible by Lemma III.3 and thus θ is σ-algG(ξ)-expressible.
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CHAPTER IV

Finite subequivalence relations

In this chapter we construct finite subequivalence relations which will be used

to replace the traditional role of the Rokhlin lemma and the Shannon–McMillan–

Breiman theorem. We begin with a technical lemma.

Lemma IV.1. Let ā = (a1, a2, . . . , ap) be a probability vector and let ε > 0. Then

there exists n ∈ N, probability vectors r̄j = (rj1, r
j
2, . . . , r

j
p) having rational entries with

denominator n, and a probability vector c̄ = (c1, c2, . . . , cp) such that |ai − rji | < ε for

all i, j and ā =
∑p

j=1 cj · r̄j.

Proof. Without loss of generality, we may suppose that ap > 0. Fix n ∈ N with

n > (p− 1)/ε and n > 2(p− 1)/ap. For i < p let ki ∈ N satisfy ki/n ≤ ai < (ki + 1)/n

and let λi ∈ (0, 1] be such that

ai = λi ·
ki
n

+ (1− λi) ·
ki + 1

n.

Set λ0 = 0 and λp = 1. By reordering a1 through ap−1 if necessary, we may suppose

that

0 = λ0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λp−1 ≤ λp = 1.

For 1 ≤ j ≤ p set cj = λj − λj−1. Then c̄ = (c1, . . . , cp) is a probability vector. Since
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∑i
j=1 cj = λi and

∑p
j=i+1 cj = 1− λi, we deduce that

(4.1) ∀i < p ai =
i∑

j=1

cj ·
ki
n

+

p∑
j=i+1

cj ·
ki + 1

n
.

Now define r̄j = (rj1, r
j
2, . . . , r

j
p) by:

rji =



ki
n

if j ≤ i 6= p

ki+1
n

if j > i

1−
∑p−1

t=1 r
j
t if i = p.

Clearly r̄j has rational entries with denominator n. Furthermore |rji − ai| ≤ 1/n < ε

for i < p and

∣∣rjp − ap∣∣ =

∣∣∣∣∣1−
p−1∑
t=1

rjt − ap

∣∣∣∣∣ =

∣∣∣∣∣
p−1∑
t=1

(
at − rjt

)∣∣∣∣∣ ≤ p− 1

n
< ε.

From the expression above we also deduce that rjp > 0 so that r̄j is indeed a prob-

ability vector. It follows from (4.1) that ai =
∑p

j=1 cj · r
j
i for all i < p, and since

(a1, . . . , ap) and
∑p

j=1 cj · r̄j are both length-p probability vectors whose first (p− 1)-

many coordinates agree, we must have ap =
∑p

j=1 cj · rjp.

For an equivalence relation E on X and x ∈ X, we write [x]E for the E-class of

x. Recall that a set T ⊆ X is a transversal for E if |T ∩ [x]E| = 1 for almost-every

x ∈ X. We will work with equivalence relations which are generated by an element

of the pseudo-group in the following sense.

Definition IV.2. Let G y (X,µ) be a p.m.p. action, let B ⊆ X be a Borel set of

positive measure, and let E be an equivalence relation on B with E ⊆ EX
G ∩ B × B.

We say that E is generated by θ ∈ [[EX
G ]] if dom(θ) = rng(θ) = B and [x]E = {θi(x) :

i ∈ Z} for almost-all x ∈ B. In this case, we write E = Eθ.
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Lemma IV.3. Let Gy (X,µ) be an ergodic p.m.p. action, let B ⊆ X have positive

measure, let α be a finite partition of X, and let ε > 0. Then there is an equivalence

relation E on B with E ⊆ EX
G ∩B ×B and n ∈ N so that for µ-almost-every x ∈ B,

the E-class of x has cardinality n and

∀A ∈ α µ(A ∩B)

µ(B)
− ε < |A ∩ [x]E|

|[x]E|
<
µ(A ∩B)

µ(B)
+ ε.

Moreover, E admits a σ-algG(α ∪ {B})-measurable transversal and is generated by a

σ-algG(α ∪ {B})-expressible function θ : B → B in [[EX
G ]] which satisfies θn = idB.

Proof. Let π : (X,µ)→ (Y, ν) be the factor map associated to the G-invariant sub-σ-

algebra generated by α∪{B}. Enumerate α as α = {A1, A2, . . . , Ap}. Set B′ = π(B)

and α′ = {A′i : 1 ≤ i ≤ p} where A′i = π(Ai). Note that α′ is a partition of (Y, ν)

and that ν(A′i ∩B′) = µ(Ai ∩B).

First, let’s suppose that (Y, ν) is non-atomic. By Lemma IV.1 there are n ∈ N,

probability vectors r̄j having rational entries with denominator n, and a probability

vector c̄ such that ∣∣∣∣ν(A′i ∩B′)
ν(B′)

− rji
∣∣∣∣ < ε

for all i, j and(
ν(A′1 ∩B′)
ν(B′)

,
ν(A′2 ∩B′)
ν(B′)

, . . . ,
ν(A′p ∩B′)
ν(B′)

)
=

p∑
j=1

cj · (rj1, r
j
2, . . . , r

j
p).

Since (Y, ν) is non-atomic and since α′ is a partition, we can partition B′ into sets

{Z ′1, Z ′2, . . . , Z ′p} such that for every j, ν(Z ′j)/ν(B′) = cj and(
ν(Z ′j ∩ A′1)

ν(B′)
,
ν(Z ′j ∩ A′2)

ν(B′)
, . . . ,

ν(Z ′j ∩ A′p)
ν(B′)

)
= cj · (rj1, r

j
2, . . . , r

j
p).

It follows that ν(Z ′j ∩A′i)/ν(Z ′j) = rji is rational with denominator n for all i, j. This

implies that there is a partition ξ′j of Z ′j into n pieces each of measure 1
n
· ν(Z ′j) such

that for every i, Z ′j ∩ A′i is the union of n · rji many classes of ξ′j.
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Set Zj = π−1(Z ′j) and ξj = π−1(ξ′j). Then Zj and the classes of ξj all automatically

lie in σ-algG(α ∪ {B}). For each j, apply Corollary III.7 to get a σ-algG(α ∪ {B})-

expressible function φj ∈ [[EX
G ]] which cyclically permutes the classes of ξj. So in

particular dom(φj) = rng(φj) = Zj, and φnj = idZj . Set θ = φ1 ∪ φ2 ∪ · · · ∪ φp and

set E = Eθ. Then for µ-almost-every x ∈ B, the E-class of x has cardinality n and

if x ∈ Zj then

∀i
∣∣∣∣µ(Ai ∩B)

µ(B)
− |Ai ∩ [x]E|

|[x]E|

∣∣∣∣ =

∣∣∣∣µ(Ai ∩B)

µ(B)
− rji

∣∣∣∣ < ε.

Finally, if we fix some Cj ∈ ξj for each j, then
⋃

1≤j≤pCj ∈ σ-algG(α ∪ {B}) is a

transversal for E.

In the case that (Y, ν) has an atom, we deduce by ergodicity that, modulo a null

set, Y is finite. Say |Y | = m and each point in Y has measure 1
m

. Set n = |B′|.

Clearly there are integers ki ∈ N, with
∑p

i=1 ki = n and

µ(Ai ∩B)

µ(B)
=
ν(A′i ∩B′)
ν(B′)

=
ki/m

n/m
=
ki
n
.

Let ξ′ be the partition of B′ into points, and pull back ξ′ to a partition ξ of B. Now

apply Corollary III.7 and follow the argument from the non-atomic case.

Corollary IV.4. Let Gy (X,µ) be an ergodic p.m.p. action, let B ⊆ X have positive

measure, let ε > 0, and let F = {f : B → R} be a finite collection of finite valued

Borel functions. Then there is an equivalence relation E on B with E ⊆ EX
G ∩B×B

and n ∈ N so that for µ-almost-every x ∈ B, the E-class of x has cardinality n and

∀f ∈ F 1

µ(B)
·
∫
B

f dµ− ε < 1

|[x]E|
·
∑
y∈[x]E

f(y) <
1

µ(B)
·
∫
B

f dµ+ ε.

Moreover, if each f ∈ F is F-measurable then E admits a σ-algG(F∪{B})-measurable

transversal and is generated by a σ-algG(F ∪ {B})-expressible function θ : B → B in

[[EX
G ]] which satisfies θn = idB.
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Proof. Define a partition α of B so that x, y ∈ B lie in the same piece of α if and only

if f(x) = f(y) for all f ∈ F . Then α is a finite partition. Now the desired equivalence

relation E is obtained from Lemma IV.3.

The conclusions of the previous lemma and corollary are not too surprising since

you are allowed to “see” the sets which you wish to mix, i.e. you are allowed to use

σ-algG(α ∪ {B}). The following proposition however is unexpected. It roughly says

that you can achieve the same conclusion even if you are restricted to only seeing a

very small sub-σ-algebra. We will use this in the same fashion one typically uses the

Rokhlin lemma and the Shannon–McMillan–Breiman theorem, although technically

the proposition below bears more similarity with the Rokhlin lemma and the ergodic

theorem.

Let us say a few words on the Rokhlin lemma to highlight the similarity. For a free

p.m.p. action Z y (X,µ), n ∈ N, and ε > 0, the Rokhlin lemma provides a Borel set

S ⊆ X such that the sets i ·S, 0 ≤ i ≤ n− 1, are pairwise disjoint and union to a set

having measure at least 1− ε. The set S naturally produces a subequivalence relation

E defined as follows. For x ∈ X set xS = (−i) · x where (−i) · x ∈ S and (−j) · x 6∈ S

for all 0 ≤ j < i. We set x E y if and only if xS = yS. Clearly every E class

has cardinality at least n, and a large measure of E-classes have cardinality precisely

n. A key fact which is frequently used in classical results such as Krieger’s theorem

is that the equivalence relation E is easily described. Specifically, S is small since

µ(S) ≤ 1/n, and so E can be defined by using the small sub-σ-algebra σ-algZ({S}).

Proposition IV.5. Let G y (X,µ) be an ergodic p.m.p. action with (X,µ) non-

atomic, let α be a finite collection of Borel subsets of X, let ε > 0, and let N ∈

N. Then there are n ≥ N , Borel sets S1, S2 ⊆ X with µ(S1) + µ(S2) < ε, and

a σ-algG({S1, S2})-expressible θ ∈ [EX
G ] such that Eθ admits a σ-algG({S1, S2})-
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measurable transversal, and for almost-every x ∈ X we have |[x]Eθ | = n and

∀A ∈ α µ(A)− ε < |A ∩ [x]Eθ |
|[x]Eθ |

< µ(A) + ε.

Proof. Pick m > max(4/ε, N) with m ∈ N and

|α| · log2(m+ 1) <
ε

4
·m.

Let S1 ⊆ X be any Borel set with µ(S1) = 1
m
< ε

4
. Apply Corollaries III.6 and III.7 to

obtain a σ-algG({S1})-expressible function h ∈ [EX
G ] such that dom(h) = rng(h) = X,

hm = idX , and such that {hi(S1) : 0 ≤ i < m} is a partition of X. The induced Borel

equivalence relation Eh is finite, in fact almost-every Eh-class has cardinality m, and

it has S1 as a transversal. We imagine the classes of Eh as extending horizontally to

the right, and we visualize S1 as a vertical column.

We consider the distribution of α � [s]Eh for each s ∈ S1. For A ∈ α define

dA : S1 → R by

dA(s) =
|A ∩ [s]Eh|
|[s]Eh|

=
1

m
·
∣∣∣A ∩ [s]Eh

∣∣∣.
Note that for each A ∈ α∫

S1

dA dµ =
1

m
· µ(A) = µ(S1) · µ(A).

By Corollary IV.4 there is k ∈ N and an equivalence relation Ev ⊆ EX
G ∩ S1 × S1 on

S1 such that for almost every s ∈ S1, the Ev-class of s has cardinality k and

∀A ∈ α µ(A)− ε < 1

|[s]Ev |
·
∑

s′∈[s]Ev

dA(s′) < µ(A) + ε.

Moreover, if we let F denote the G-invariant sub-σ-algebra generated by the func-

tions dA, A ∈ α, then Ev admits a σ-algG(F ∪ {S1})-measurable transversal T and

is generated by a σ-algG(F ∪ {S1})-expressible function v ∈ [[EX
G ]] which satisfies

dom(v) = rng(v) = S1 and vk = idS1 .
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Let E = Ev∨Eh be the equivalence relation generated by Ev and Eh. Then T ⊆ S1

is a transversal for E, and for every s ∈ T∣∣∣[s]E∣∣∣ =
∑

s′∈[s]Ev

∣∣∣[s′]Eh∣∣∣ = k ·m.

Setting n = k ·m ≥ N , we have that almost every E-class has cardinality n. Also,

for every A ∈ α and s ∈ T we have

|A ∩ [s]E|
|[s]E|

=
1

k ·m
·
∑

s′∈[s]Ev

∣∣∣A ∩ [s′]Eh

∣∣∣ =
1

|[s]Ev |
·
∑

s′∈[s]Ev

dA(s′).

It follows that for µ-almost-every x ∈ X

∀A ∈ α µ(A)− ε < |A ∩ [x]E|
|[x]E|

< µ(A) + ε.

Now consider the partition ξ = {Ti,j : 0 ≤ i < k, 0 ≤ j < m} of X where

Ti,j = hj ◦ vi(T ).

Note that Ti,j ∈ σ-algG(F∪{S1}) by Lemmas III.2 and III.3. We will define a function

θ ∈ [EX
G ] which generates E by defining θ on each piece of ξ. We define

θ � Ti,j =


h � Ti,j if j + 1 < m

v ◦ h � Ti,j if j + 1 = m.

In regard to the second case above, one should observe that h(Ti,m−1) = Ti,0 since

hm = idX . Since v satisfies vk = idS1 and n = k ·m, we see that θ satisfies θn = idX .

We also have E = Eθ. Finally, θ is σ-algG(F ∪{S1})-expressible since each restriction

θ � Ti,j is σ-algG(F ∪ {S1})-expressible by Lemma III.3.

To complete the proof, we must find a Borel set S2 ⊆ X with µ(S2) < 3
4
· ε <

ε − µ(S1) such that F ⊆ σ-algG({S1, S2}). Notice that |rng(dA)| ≤ m + 1 for every

A ∈ α and therefore the product map

dα =
∏
A∈α

dA : S1 →
{

0,
1

m
,

2

m
, . . . , 1

}α
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has an image of cardinality at most (m+1)α. Set ` = d(ε/4) ·me (i.e. the least integer

greater than or equal to (ε/4) ·m). Since (ε/4) ·m > 1 we have that ` < (ε/2) ·m.

By our choice of m we have

(m+ 1)|α| < 2(ε/4)·m ≤ 2`.

Therefore there is an injection

r : {0, 1/m, . . . , 1}α → {0, 1}`.

Now we will define S2 so that, for every s ∈ S1, the integers {1 ≤ i ≤ ` : hi(s) ∈ S2}

will encode the value r ◦ dα(s). Specifically, we define

S2 = {hi(s) : 1 ≤ i ≤ `, s ∈ S1, r(dα(s))(i) = 1}.

We have that S2 ⊆
⋃

1≤i≤` h
i(S1) and therefore

µ(S2) ≤ ` · µ(S1) <
( ε

2
·m
)
· 1

m
=
ε

2

as required. Finally, we check that F ⊆ σ-algG({S1, S2}). Fix p ∈ {0, 1/m, . . . , 1}α.

Set

I0
p = {1 ≤ i ≤ ` : r(p)(i) = 0} and I1

p = {1 ≤ i ≤ ` : r(p)(i) = 1}.

Then for s ∈ S1 we have

dα(s) = p⇐⇒ r(dα(s)) = r(p)

⇐⇒ (∀i ∈ I0
p ) hi(s) 6∈ S2 and (∀i ∈ I1

p ) hi(s) ∈ S2

⇐⇒ s ∈ S1 ∩

⋂
i∈I0

p

h−i(X \ S2)

 ∩
⋂
i∈I1

p

h−i(S2)

 .

So d−1
α (p) ∈ σ-algG({S1, S2}) by Lemmas III.2 and III.3. Thus F ⊆ σ-algG({S1, S2}).
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CHAPTER V

Construction of a non-trivial reduced σ-algebra

This chapter is devoted to building a pre-partition β with σ-algred
G (β) 6= {X,∅}.

We will in fact build β with some additional properties which will be needed in the

next chapter.

The pre-partition β will consist of two (disjoint) sets B0, B1. On an intuitive

level, it is likely helpful to imagine points in B0 as “labeled with 0”, points in B1

as “labeled with 1”, and points in X \ (B0 ∪ B1) as “unlabeled.” The purpose of

this chapter is to build B0, B1 and a set R, 0 < µ(R) < 1, with R ∈ σ-algred
G (β).

Intuitively, this means that for every point x ∈ X and every {0, 1}-labeling of the

orbit of x which extends the {0, 1}-labeling coming from {B0, B1}, one can determine

from this labeling whether or not x ∈ R. In approaching this coding problem we are

guided by previous works of the author. Specifically, we draw upon the notions of and

constructions for “locally recognizable functions” and “membership tests” developed

in [17] and [18]. Those constructions were done in a purely combinatorial framework.

Some of these constructions were generalized to the Borel setting in [48] under the

name “recognizable sets,” and this influences our methods here as well. However, our

constraints and goals are different in the present work, and the constructions in this

chapter and the next differ greatly from those in [17, 18, 48].
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A naive but suggestive idea for building R,B0, B1 is to fix a finite window W ⊆ G,

label all points in W ·R with 1 (i.e. set B1 = W ·R) and try to arrange B0 so that for

every x 6∈ R there is a point in W · x labeled 0. This naive approach is the right idea

but does not quite work. For example, this will fail if W has too much symmetry,

such as if W is a finite subgroup. If W is a finite subgroup then this construction

might not distinguish R from W ·R. In the case of free actions it is not hard to choose

W in a more intelligent way and get this argument to work (see the construction of

locally recognizable functions in [18]). However, for non-free actions it is not easy

to make this argument work, but we do so in this chapter. One indication of the

difficulty for non-free actions is that there may be points x for which W ·x = {x}. To

overcome the difficulties of non-free actions we will construct group elements c and

Q = {q1, . . . , q6}. We will arrange the construction so that for r ∈ R the labels of the

points qi · r (“query points”) will contain useful information (q1 and q2 will be used

in this chapter, while q3, . . . , q6 will be used in the next). The point c · r will be one

final checkpoint for verifying that r ∈ R.

We remark that this is the only chapter where we truly work with the original

action of G rather than the pseudo-group. We thus believe that allowing for non-free

actions does not significantly impact the length or the complexity of the proof of the

main theorem.

Lemma V.1. Let G y (X,µ) be a p.m.p. action. If Y ⊆ X is Borel and F ⊆ G is

finite, then there exists a Borel set D ⊆ Y such that Y ⊆ F−1F ·D and F ·d∩F ·d′ = ∅

for all d 6= d′ ∈ D. In particular, if µ(Y ) > 0 then µ(D) > 0.

This is a special case of a more general result due to Kechris–Solecki–Todorcevic

[26, Prop. 4.2 and Prop. 4.5]. As a convenience to the reader, we include a proof

below.
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Proof. Since X is a standard Borel space, there is a sequence Bn of Borel sets which

separates points, meaning that for all x 6= y ∈ X there is n with Bn containing

one, but not both, of x and y [25, Prop. 12.1]. For 1 ≤ k ≤ |F−1F |, set Yk =

{y ∈ Y : |F−1F · y| = k}. Let C be the G-invariant algebra generated by the sets

{Bn : n ∈ N} ∪ {Yk : 1 ≤ k ≤ |F−1F |}. Then C is countable. Let Cn, n ∈ N,

enumerate the elements of C satisfying F · x ∩ F · x′ = ∅ for all x 6= x′ ∈ Cn.

Inductively define D1 = Y ∩ C1 and

Di+1 = Di ∪
(

(Y ∩ Ci+1) \ F−1F ·Di

)
.

Set D =
⋃
i∈NDi ⊆ Y .

Consider y ∈ Y . Say y ∈ Yk and suppose that F−1F ·y consists of the distinct points

f1 · y, . . . , fk · y. Since C separates points and is an algebra, there are pairwise disjoint

sets A1, . . . , Ak ∈ C with fi ·y ∈ Ai for each 1 ≤ i ≤ k. Set Ay = Yk∩
⋂k
i=1 f

−1
i ·Ai ∈ C.

Then for y′ ∈ Ay we have that F−1F · y′ has cardinality k and consists of the points

fi · y′ ∈ Ai for 1 ≤ i ≤ k. It follows that F · y′ ∩ F · y′′ = ∅ for all y′ 6= y′′ ∈ Ay.

Thus Ay = Cn for some n. Clearly y ∈ Ay = Cn. It follows that either y ∈ Dn or else

y ∈ F−1F ·Dn−1. In either case, y ∈ F−1F ·D. We conclude that Y ⊆ F−1F ·D.

Finally, fix d 6= d′ ∈ D. Let i and j be least with d ∈ Ci and d′ ∈ Cj. If i = j then

F · d ∩ F · d′ = ∅ and we are done. So without loss of generality, suppose that i > j.

Since d′ ∈ Cj ∩ D we must have d′ ∈ Dj. As d ∈ D ∩ Ci and i > j is minimal, we

have d ∈ Di \Di−1 and therefore d 6∈ F−1F · d′. Thus Fd ∩ Fd′ = ∅.

Lemma V.2. Let G y (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic,

and let δ > 0. Then there exists a finite symmetric set W ⊆ G with 1G ∈ W and a

Borel set D ⊆ X such that 0 < µ(D) < δ and W · x ∩D 6= ∅ for all x ∈ X.

Proof. Since Gy (X,µ) is ergodic and (X,µ) is non-atomic, it must be that almost-
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every orbit is infinite. So there is a finite set F ⊆ G such that

A = {x ∈ X : |F · x| > 2/δ}

satisfies µ(A) > 1 − δ/2. Fix such a set F . Apply Lemma V.1 to obtain a Borel

set DA ⊆ A of positive measure with A ⊆ F−1F · DA and F · d ∩ F · d′ = ∅ for all

d 6= d′ ∈ DA. Then

2

δ
· µ(DA) ≤

∫
DA

|F · x| dµ(x) ≤ 1

and µ(DA) ≤ δ/2. Again apply Lemma V.1 to obtain a Borel set D0 ⊆ (X\F−1F ·DA)

with (X \ F−1F · DA) ⊆ F−1F · D0 and F · d ∩ F · d′ = ∅ for all d 6= d′ ∈ D0. Set

D = D0 ∪DA. Then F · d ∩ F · d′ = ∅ for all d 6= d′ ∈ D and F−1F ·D = X. Also,

0 < µ(D) ≤ µ(DA) + µ(X \ F−1F ·DA) ≤ µ(DA) + µ(X \ A) < δ/2 + δ/2 = δ.

We set W = F−1F . Then W is symmetric and 1G ∈ W . Finally, since X =

F−1F ·D = W ·D, we obtain W · x ∩D 6= ∅ for all x ∈ X.

Lemma V.3 (B.H. Neumann, [40]). Let G be a group, and let Hi, 1 ≤ i ≤ n, be

subgroups of G. Suppose there are group elements gi ∈ G so that

G =
n⋃
i=1

gi ·Hi.

Then there is i such that |G : Hi| <∞.

As a convenience to the reader, we include a proof below.

Proof. The lemma is immediate if all of the Hi are equal to a fixed subgroup H. Now

inductively assume that the lemma is true for every n whenever there are less than c

distinct groups among H1, . . . , Hn. Let n ≥ 1 and let H1, . . . , Hn be a sequence of c

distinct subgroups, and let g1, . . . , gn ∈ G be such that G =
⋃
gi ·Hi. Set H = Hn.

By reordering the Hi’s if necessary, we may suppose that there is m ≤ n with Hi = H
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if and only if i ≥ m. If G =
⋃n
i=m gi ·H then H = Hn has finite index in G and we

are done. Otherwise, there is a ∈ G with a ·H disjoint from each of gi ·H for i ≥ m.

Then we must have

a ·H ⊆
m−1⋃
i=1

gi ·Hi and hence H ⊆
m−1⋃
i=1

a−1gi ·Hi.

So we obtain

G =
m−1⋃
i=1

gi ·Hi ∪
n⋃

j=m

m−1⋃
i=1

gja
−1gi ·Hi.

Since there are now c − 1 distinct subgroups appearing on the right-hand side, we

conclude from the inductive hypothesis that there is i ≤ m−1 with |G : Hi| <∞.

Corollary V.4. Let G y (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic.

Let R ⊆ X have positive measure and let W,T ⊆ G be finite. Then there are a Borel

set R′ ⊆ R with µ(R′) > 0 and c ∈ G such that cW ·R′ ∩ T ·R′ = ∅.

Proof. Our assumptions imply that almost-every orbit is infinite. So for µ-almost-

every r ∈ R the stability group Stab(r) = {g ∈ G : g · r = r} has infinite index in G

and thus by Lemma V.3

T · Stab(r) ·W−1 =
⋃
t∈T

⋃
w∈W

tw−1 · (wStab(r)w−1) 6= G.

As G is countable, there is c ∈ G and a non-null Borel set R0 ⊆ R with

c 6∈ T · Stab(r) ·W−1

for all r ∈ R0. It follows that cW · r ∩ T · r = ∅ for all r ∈ R0. Now apply Lemma

V.1 to get positive measure Borel set R′ ⊆ R0 with (cW ∪ T ) · r ∩ (cW ∪ T ) · r′ = ∅

for all r 6= r′ ∈ R′.

Lemma V.5. Let G y (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic.

Let R, Y ⊆ X be positive measure Borel sets and let T ⊆ G be finite. Then there
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are q ∈ G and a Borel set R′ ⊆ R of positive measure such that q · R′ ⊆ Y and

q ·R′ ∩ T ·R′ = ∅.

Proof. Let R0 ⊆ R be a Borel set with µ(R0) > 0 and µ(Y \T ·R0) > 0. By ergodicity,

there is q ∈ G such that q ·R0 ∩ (Y \ T ·R0) has positive measure. Set

R′ = q−1 ·
(
q ·R0 ∩ (Y \ T ·R0)

)
.

The following lemma is rather technical to state, but its proof is short. This lemma

will play an important role in the proposition which follows.

Lemma V.6. Let Gy (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic. Let

Y ⊆ X be a Borel set of positive measure, let W ⊆ G be finite and symmetric with

1G ∈ W , and let m ∈ N. Then there exist n ∈ N, F ∪Q ∪ {c} ⊆ G, and a Borel set

R ⊆ X with Q = {q1, . . . , q6}, µ(R) = 1
n

, n > m · |F |, and satisfying the following:

(i) Q ·R ⊆ Y ;

(ii) |({c} ∪Q) · r \W · r| = 7 for all r ∈ R;

(iii) (W ∪ {c} ∪Q)2 ⊆ F ;

(iv) F · r ∩ F · r′ = ∅ for all r 6= r′ ∈ R;

(v) Wq ·R ∩ (W ∪ {c} ∪Q) ·R ⊆ q ·R for every q ∈ Q;

(vi) Qc ·R ∩ (W ∪ {c} ∪Q) ·R ⊆ c ·R;

(vii) cW ·R ∩ (W ∪ {c} ∪Q) ·R ⊆ c ·R;

(viii) for all r ∈ R, either q1c · r 6= c · r or q2c · r = c · r.

Proof. Set R0 = X. By induction on 1 ≤ i ≤ 6 we choose qi ∈ G and a Borel set

Ri ⊆ Ri−1 such that µ(Ri) > 0, qi ·Ri ⊆ Y , and

qi ·Ri ∩W (W ∪ {qj : j < i}) ·Ri = ∅.
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Both the base case and the inductive steps are taken care of by Lemma V.5. Set

Q = {q1, q2, . . . , q6}. Then qi · R6 ⊆ qi · Ri ⊆ Y and |Q · r \W · r| = 6 for all r ∈ R6.

Now apply Corollary V.4 to obtain c ∈ G and a Borel set Rc ⊆ R6 with µ(Rc) > 0

and

cW ·Rc ∩ ({1G} ∪Q−1)(W ∪Q ∪WQ) ·Rc = ∅.

Set F = (W ∪ {c} ∪Q)2 so that (iii) is satisfied.

If there is q ∈ Q with qc · r = c · r for all r ∈ Rc, then set R′ = Rc and re-index

the elements of Q so that q2 = q. Otherwise, we may re-index Q and find a Borel set

R′ ⊆ Rc of positive measure with q1c · r 6= c · r for all r ∈ R′. Now apply Lemma

V.1 to obtain a positive measure Borel set R ⊆ R′ with F · r ∩ F · r′ = ∅ for all

r 6= r′ ∈ R. By shrinking R if necessary, we may suppose that µ(R) = 1
n
< 1

m·|F | for

some n > m · |F |. Then (iv) is immediately satisfied, (viii) is satisfied since R ⊆ R′,

and (i) is satisfied since R ⊆ R6. Clause (ii) also holds since c · r ∈ cW · r is disjoint

from (W ∪Q) · r for every r ∈ R.

Recall that W = W−1 and 1G ∈ W . Fix 1 ≤ i ≤ 6. By the definition of qi we have

Wqi ·R ∩W ·R = ∅, and if j 6= i then Wqi ·R ∩ qj ·R = ∅. Also, the definition of c

implies that Wqi ·R ∩ c ·R = ∅. Therefore

Wqi ·R ∩ (W ∪ {c} ∪Q) ·R ⊆ qi ·R,

establishing (v). By definition of c we have Qc ·R∩ (W ∪Q) ·R = ∅. So (vi) follows.

Similarly, cW ·R ∩ (W ∪Q) ·R = ∅ and (vii) follows.

Proposition V.7. Let Gy (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic.

Let W ⊆ G be finite and symmetric with 1G ∈ W , and let D ⊆ X be a Borel set with

W · x ∩ D 6= ∅ for all x ∈ X. Assume that the set Y = {x ∈ X : |W · x| ≥ 2}
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has positive measure, and let F ∪ Q ∪ {c} ⊆ G and R ⊆ X be as in Lemma V.6. If

β = {B0, B1} is a pre-partition with:

(1) (W ∪ {c, q1}) ·R ⊆ B1;

(2) B1 ∩ F ·R ⊆ (W ∪ {c} ∪Q) ·R; and

(3) (D \ F ·R) ∪ (F ·R \B1) ∪ q2 ·R ⊆ B0,

then R ∈ σ-algred
G (β).

Proof. We will make use of clauses (i) through (viii) of Lemma V.6. We first make

three claims.

Claim: If q ∈ Q and r ∈ R then W · (q · r) 6⊆ B1.

Fix q ∈ Q and r ∈ R. By (i) q · r ∈ Y and hence there is w ∈ W with wq · r 6= q · r.

It follows wq · r 6∈ q ·R by (iii) and (iv). Thus (v) and (2) imply

wq · r 6∈ (W ∪ {c} ∪Q) ·R ⊇ B1 ∩ F ·R.

Since wq · r ∈ F ·R, we deduce that wq · r 6∈ B1, establishing the claim.

Claim: If r ∈ R then either q1 · (c · r) 6∈ B1 or q2 · (c · r) 6∈ B0.

Fix r ∈ R. By (viii) we have that either q1c · r 6= c · r or q2c · r = c · r. In the

latter case, (1) gives q2c · r = c · r ∈ B1, and since B1 ∩ B0 = ∅, we conclude that

q2c · r 6∈ B0. So we may assume q1c · r 6= c · r. Then q1c · r 6∈ c · R by (iii) and (iv).

Hence (vi) and (2) give

q1c · r 6∈ (W ∪ {c} ∪Q) ·R ⊇ B1 ∩ F ·R.

Since q1c · r ∈ F ·R, we obtain q1c · r 6∈ B1 and we are done.

Claim: R ∈ σ-algred
G (β).

If r ∈ R then it is immediate from (1) and (3) that (W ∪ {c, q1}) · r ⊆ B1 and

q2 · r ∈ B0. So it suffices to show that if x 6∈ R then either (W ∪ {c, q1}) · x∩B0 6= ∅
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or q2 · x ∈ B1. Let w ∈ W be such that w · x ∈ D. If w · x ∈ B0 then we are done. So

suppose that w ·x 6∈ B0. Since w ·x ∈ D\B0, it follows from (3) that w ·x ∈ F ·R. By

(3) we also have F ·R ⊆ B0∪B1, and since w ·x 6∈ B0 we must have w ·x ∈ F ·R∩B1.

So by (2) w · x ∈ (W ∪ {c} ∪ Q) · R. If x ∈ B0 then we are done since 1G ∈ W . So

suppose that x 6∈ B0. Since W is symmetric, x ∈ W · w · x and hence x ∈ F · R by

(iii). Again, by (3) we have x ∈ F · R ⊆ B0 ∪ B1, so x 6∈ B0 implies x ∈ B1 ∩ F · R.

Applying (2), we obtain x ∈ (W ∪ {c} ∪Q) ·R. From the previous two claims we see

that we are done if x ∈ ({c} ∪ Q) · R. So suppose that x ∈ W · R. Since x 6∈ R, it

follows from (vii) that c · x 6∈ (W ∪ {c} ∪Q) ·R. By (iii) we have c · x ∈ F ·R, so by

applying (2) we find that c · x 6∈ B1. Again, (3) gives c · x ∈ F · R ⊆ B0 ∪ B1, so we

must have c · x ∈ B0. This completes the proof.
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CHAPTER VI

Coding small sets

In this chapter we develop a method for perturbing a given pre-partition α to

obtain a pre-partition α′ with the property that σ-algred
G (α′) contains pre-specified

small sets. The construction in this chapter is intended to complement Proposition

IV.5. The construction we present involves a delicate coding procedure which is

inspired by techniques in [17], [18], and [48].

Proposition VI.1. Let G y (X,µ) be a p.m.p. ergodic action with (X,µ) non-

atomic and let 0 < κ < 1. Then there are 0 < ε < κ and a Borel set M ⊆ X with

µ(M) = κ with the following property: if S1, S2 ⊆ X satisfy µ(S1) + µ(S2) < ε, then

there is a two-piece partition β = {B0, B1} of M such that S1, S2 ∈ σ-algred
G (β).

Proof. By Lemma V.2, there is a finite symmetric set W ⊆ G with 1G ∈ W and a

Borel set D ⊆ X with µ(D) < κ/2 such that W · x ∩ D 6= ∅ for all x ∈ X. Note

that if |W · x| = 1 then x ∈ D. Thus the set Y = {x ∈ X : |W · x| ≥ 2} has positive

measure. Apply Lemma V.6 to obtain F ∪ {c} ∪ Q ⊆ G with Q = {q1, . . . , q6} and

R ⊆ X with µ(R) = 1
n
, where n > 2|F |/κ. Fix k ∈ N with

log2(2nk) < k − 1

and let Z1 and Z2 be disjoint Borel subsets of R with µ(Z1) = µ(Z2) = 1
2nk

. Set
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Z = Z1 ∪ Z2 and note that µ(Z) = 1
nk

= 1
k
· µ(R). Fix ε > 0 with ε < 1

6nk
< κ. Let

M ⊆ X be any Borel set with D ∪ F ·R ⊆M and µ(M) = κ.

Apply Corollaries III.6 and III.7 to obtain a σ-algG({Z,R})-expressible function

ρ ∈ [[EX
G ]] such that dom(ρ) = rng(ρ) = R, ρk = idR, and such that {ρi(Z) : 0 ≤

i < k} is a partition of R. For each j = 1, 2, again apply these corollaries to obtain

a σ-algG({Zj})-expressible function ψj ∈ [EX
G ] such that dom(ψj) = rng(ψj) = X,

ψ2nk
j = idX , and such that {ψij(Zj) : 0 ≤ i < 2nk} is a partition of X. We mention

that there are no assumed relationships between ψ1, ψ2, and ρ.

Let S1, S2 ⊆ X be Borel sets with µ(S1) + µ(S2) < ε. Our intention will be to

encode how the sets ψi1(Z1) meet S1 and similarly how the sets ψi2(Z2) meet S2. For

1 ≤ m ≤ 2nk and j = 1, 2, let Zm
j be the set of z ∈ Zj such that

|{0 ≤ i < 2nk : ψij(z) ∈ Sj}| ≥ m.

Then Z1
j ⊇ Z2

j ⊇ · · · ⊇ Z2nk
j and

2nk∑
m=1

µ(Zm
1 ∪ Zm

2 ) = µ(S1) + µ(S2) < ε.

Setting Z∗j = Zj \ Z1
j , we have

µ(Z∗j ) = µ(Zj)− µ(Z1
j ) >

1

2nk
− ε > 1

3nk
> 2ε.

In particular,

(6.1) µ(Z∗1 ∪ Z∗2)−
2nk∑
m=1

µ(Zm
1 ∪ Zm

2 ) > 4ε− ε = 3ε.

Set Zm = Zm
1 ∪ Zm

2 and Z∗ = Z∗1 ∪ Z∗2 .

For each 1 ≤ m ≤ 2nk we wish to build a function θm ∈ [[EX
G ]] which is expressible

with respect to σ-algG({Z∗, Z1, . . . , Zm}) and satisfies dom(θm) = Zm and

rng(θm) ⊆ Z∗ \
m−1⋃
k=1

θk(Z
k).
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We construct these functions inductively. When m = 1, we have µ(Z1) < ε < µ(Z∗)

and thus θ1 is obtained immediately from Lemma III.5. Now suppose that θ1 through

θm−1 have been defined. Then

Z∗ \
m−1⋃
k=1

θk(Z
k)

lies in σ-algG({Z∗, Z1, . . . , Zm−1}) by Lemma III.2. By (6.1) we have

µ(Zm) < ε < µ(Z∗)−
m−1∑
k=1

µ(Zk) = µ

(
Z∗ \

m−1⋃
k=1

θk(Z
k)

)
.

Therefore we may apply Lemma III.5 to obtain θm. This completes the construction.

Define f :
⋃2nk
m=1 rng(θm)→ {0, 1, . . . , 2nk− 1} by setting f(θm(z)) = ` for z ∈ Zm

j

if and only if ψ`j(z) ∈ Sj, and

|{0 ≤ i ≤ ` : ψij(z) ∈ Sj}| = m.

For i, t ∈ N we let Bi(t) ∈ {0, 1} denote the ith digit in the binary expansion of t (so

Bi(t) = 0 for all i > log2(t) + 1). Now define a Borel set B1 ⊆ X by the rule

x ∈ B1 ⇐⇒



x ∈ W ·R or

x ∈ c ·R or

x ∈ q1 ·R or

x ∈ q3 · Z or

x ∈ q4 · Z1 or

x ∈ q5 · Z1 or

x ∈ q6 · θm(Zm+1) for some 1 ≤ m < 2nk, or

x = q6 · ρi(z) where 1 ≤ i < k, z ∈ dom(f),

and Bi(f(z)) = 1.
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It is important to note that B1 ⊆ (W ∪ {c} ∪ Q) · R. In particular, B1 ⊆ F · R by

Lemma V.6.(iii). We also define the Borel set

B0 = M \B1 = (M \ (D ∪ F ·R)) ∪ (D \ F ·R) ∪ (F ·R \B1).

Note that clauses (iii) and (iv) of Lemma V.6 imply that for every r 6= r′ ∈ R

(W ∪ {c} ∪Q) · r ∩ (W ∪ {c} ∪Q) · r′ = ∅.

Thus from clause (ii) of Lemma V.6 we obtain the following one-way implications

x ∈ B0 ⇐=



x ∈ q2 ·R or

x ∈ q3 · (R \ Z) or

x ∈ q4 · (R \ Z1) or

x ∈ q5 · (R \ Z1) or

x ∈ q6 ·
⋂2nk−1
m=1 (Z \ θm(Zm+1)) or

x = q6 · ρi(z) where 1 ≤ i < k, z ∈ dom(f),

and Bi(f(z)) = 0.

In particular, q2·R ⊆ B0. We therefore see that β = {B0, B1} satisfies the assumptions

of Proposition V.7.

We will now check that S1, S2 ∈ σ-algred
G (β). By Proposition V.7 we have R ∈

σ-algred
G (β). By G-invariance of σ-algred

G (β), we have qi ·R ∈ σ-algred
G (β) for 1 ≤ i ≤ 6.

It immediately follows from the definition of σ-algred
G (β) that B0∩qi ·R and B1∩qi ·R

lie σ-algred
G (β). Defining the partition

γ =
{
R,X \ (R ∪Q ·R)

}
∪
{
B0 ∩ qi ·R : 1 ≤ i ≤ 6

}
∪
{
B1 ∩ qi ·R : 1 ≤ i ≤ 6

}
,

we have σ-algG(γ) ⊆ σ-algred
G (β). It suffices to show that S1, S2 ∈ σ-algG(γ).
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We have x ∈ Z if and only if q3 ·x ∈ B1∩q3 ·R ∈ γ. Since R ∈ γ, we have that both

Z and R \ Z lie in σ-algG(γ). Similarly, x ∈ Z1 if and only if q4 · x ∈ B1 ∩ q4 ·R. We

conclude that Z1, Z2, Z,R ∈ σ-algG(γ). It follows that ρ, ψ1, and ψ2 are σ-algG(γ)-

expressible.

We prove by induction on 1 ≤ m ≤ 2nk that Zm, Zm
1 , Z

m
2 ∈ σ-algG(γ) and that

θm is σ-algG(γ)-expressible. Since x ∈ Z1 if and only if q5 · x ∈ B1 ∩ q5 · R, we

have Z1 ∈ σ-algG(γ). Also Z1
1 = Z1 ∩ Z1 and Z1

2 = Z1 ∩ Z2 are in σ-algG(γ). So

Z∗ = Z \Z1, Z∗1 = Z1 \Z1
1 , and Z∗2 = Z2 \Z1

2 are in σ-algG(γ) as well. It follows that

θ1 is σ-algG(γ)-expressible. Now inductively suppose that Zi ∈ σ-algG(γ) and that θi

is σ-algG(γ)-expressible for all 1 ≤ i ≤ m. Then z ∈ Zm+1 if and only if z ∈ Zm and

q6 · θm(z) ∈ B1 ∩ q6 ·R. In other words,

Zm+1 = θ−1
m

(
q−1

6 · (B1 ∩ q6 ·R)
)
.

Thus Zm+1 ∈ σ-algG(γ) by Lemmas III.2 and III.3. Similarly, Zm+1
1 = Zm+1 ∩ Z1

and Zm+1
2 = Zm+1 ∩ Z2 are in σ-algG(γ). Finally, θm+1 is expressible with respect to

σ-algG({Z∗, Z1, . . . , Zm+1}) ⊆ σ-algG(γ). This completes the inductive argument.

Now to complete the proof we show that S1, S2 ∈ σ-algG(γ). We first argue that f

is σ-algG(γ)-measurable. It follows from the previous paragraph and Lemma III.2 that

dom(f) ∈ σ-algG(γ). Observe that the numbers ` ∈ rng(f) are distinguished by their

first (k − 1)-binary digits Bi(`), 1 ≤ i < k, since by construction log2(2nk) < k − 1.

So for 0 ≤ ` < 2nk, if we set I0 = {1 ≤ i < k : Bi(`) = 0} and I1 = {1 ≤ i < k} \ I0

then we have

f−1(`) = dom(f) ∩
⋂
i∈I0

ρ−i
(
q−1

6 · (B0 ∩ q6 ·R)
)
∩
⋂
i∈I1

ρ−i
(
q−1

6 · (B1 ∩ q6 ·R)
)
.

Thus f−1(`) ∈ σ-algG(γ) by Lemmas III.2 and III.3. Now suppose that x ∈ Sj. Then
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there is z ∈ Zj and 0 ≤ ` < 2nk with x = ψ`j(z). It follows that z ∈ Zm
j where

m = |{0 ≤ i ≤ ` : ψij(z) ∈ Sj}|.

Furthermore, ` = f(θm(z)). Conversely, if there is 1 ≤ m ≤ 2nk, z ∈ Zm
j , and

0 ≤ ` < 2nk with x = ψ`j(z) and f(θm(z)) = `, then x ∈ Sj. Therefore

Sj =
2nk−1⋃
`=0

2nk⋃
m=1

ψ`j

(
Zj ∩ θ−1

m (f−1(`))
)
∈ σ-algG(γ) ⊆ σ-algred

G (β).

We call a probability vector p̄ = (pi) non-trivial if there are i 6= j with pi, pj > 0.

Corollary VI.2. Let Gy (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic,

let p̄ be a non-trivial probability vector, let 0 < r ≤ 1, and let δ > 0. Then there are

0 < ε < rδ, and a Borel set M ⊆ X with µ(M) = rδ with the following property: if

S1, S2 ⊆ X satisfy µ(S1) + µ(S2) < ε and α = {Ai : 0 ≤ i < |p̄|} is a pre-partition

with ∪α ⊆ X \M and

µ(Ai) < min
(

(rpi + rε) · µ(X \M), rpi

)
for all 0 ≤ i < |p̄|, then there is a pre-partition α′ = {A′i : 0 ≤ i < |p̄|} with Ai ⊆ A′i

and µ(A′i) = rpi for every i and S1, S2 ∈ σ-algred
G (α′).

Proof. Without loss of generality, we may suppose that p0, p1 > 0. Pick 0 < κ < rδ

so that for i = 0, 1

(rpi + rκ) · (1− rδ) < rpi − κ.

Apply Proposition VI.1 to get 0 < ε < κ and M ′ ⊆ X with µ(M ′) = κ. Fix any set

M ⊇M ′ with µ(M) = rδ.

Now let S1, S2 ⊆ X with µ(S1) + µ(S2) < ε and let α = {Ai : 0 ≤ i < |p̄|} be a

pre-partition with ∪α ⊆ X \M and

µ(Ai) < min
(

(rpi + rε) · µ(X \M), rpi

)
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for all i. Then by Proposition VI.1 there is a partition β = {B0, B1} of M ′ such that

S1, S2 ∈ σ-algred
G (β). For i = 0, 1, our choice of κ gives

µ(Ai) < min
(

(rpi + rε) · (1− rδ), rpi
)
< (rpi + rκ) · (1− rδ) < rpi−κ < rpi−µ(Bi).

Set C0 = A0∪B0, C1 = A1∪B1, and Ci = Ai for 2 ≤ i < |p̄|. Then {Ci : 0 ≤ i < |p̄|}

is a collection of pairwise disjoint Borel subsets of X with µ(Ci) < rpi for every 0 ≤

i < |p̄|. Since (X,µ) is non-atomic, there exists a pre-partition α′ = {A′i : 0 ≤ i < |p̄|}

with Ai ⊆ Ci ⊆ A′i and µ(A′i) = rpi for every i. By construction α′ extends β and

hence S1, S2 ∈ σ-algred
G (β) ⊆ σ-algred

G (α′) by Lemma II.5.
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CHAPTER VII

Countably infinite partitions

In this chapter, we show how to replace countably infinite partitions by finite ones.

This will allow us to carry-out counting arguments in proving the main theorem. Our

work in this section improves upon methods used by the author in [46].

For a finite set S we let S<ω denote the set of all finite words with letters in S (the

ω in the superscript denotes the first infinite ordinal). For z ∈ S<ω we let |z| denote

the length of the word z. The lemma below is a strengthened version of a similar

lemma due to Krieger [35].

Lemma VII.1. Let (X,µ) be a probability space, let F be a sub-σ-algebra, let (Y, ν)

be the associated factor of (X,µ), and let µ =
∫
Y
µy dν(y) be the corresponding

decomposition of µ. If ξ is a countable Borel partition of X with H(ξ|F) < ∞, then

there is a Borel function L : Y × ξ → {0, 1, 2}<ω such that ν-almost-every restriction

L(y, ·) : ξ → {0, 1, 2}<ω is injective and∫
Y

∑
C∈ξ

|L(y, C)| · µy(C) dν(y) <∞.

Proof. If ξ is finite then we can simply fix an injection L : ξ → {0, 1, 2}k for some

k ∈ N. So suppose that ξ is infinite. Say ξ = {C1, C2, . . .}. Let σ : Y → Sym(N) be

the unique map satisfying for all n ∈ N: either µy(Cσ(y)(n+1)) < µy(Cσ(y)(n)) or else
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µy(Cσ(y)(n+1)) = µy(Cσ(y)(n)) and σ(y)(n+ 1) > σ(y)(n). Since each map y 7→ µy(Ck)

is Borel (see Chapter II), we see that σ is Borel.

For each n let t(n) ∈ {0, 1, 2}<ω be the ternary expansion of n. Note that |t(n)| ≤

log3(n) + 1. For y ∈ Y and Ck ∈ ξ define L(y, Ck) = t(σ(y)−1(k)). Then L is a Borel

function and it can be equivalently expressed as

L(y, Cσ(y)(n)) = t(n).

If |t(n)| = |L(y, Cσ(y)(n))| > − log µy(Cσ(y)(n)) then for all k ≤ n

µy(Cσ(y)(k)) ≥ µy(Cσ(y)(n)) > e−|t(n)| ≥ 1

e
· e− log3(n) =

1

e
· n− log3(e).

Thus

1

e
· n1−log3(e) = n · 1

e
· n− log3(e) <

n∑
k=1

µy(Cσ(y)(k)) ≤ 1,

and hence n ≤ exp(1/(1 − log3(e))). Letting m be the least integer greater than

exp(1/(1 − log3(e))), we have that |L(y, Cσ(y)(n))| ≤ − log µy(Cσ(y)(n)) for all y ∈ Y

and all n > m. Therefore

∑
n∈N

|L(y, Cσ(y)(n))| · µy(Cσ(y)(n)) ≤ m · |t(m)|+
∑
n>m

|L(y, Cσ(y)(n))| · µy(Cσ(y)(n))

≤ m · |t(m)|+
∑
n∈N

−µy(Cn) log µy(Cn)

= m · |t(m)|+ Hµy(ξ).

Integrating both sides over Y and using
∫
Y

Hµy(ξ) dν(y) = H(ξ|F) < ∞ completes

the proof.

Proposition VII.2. Let G y (X,µ) be an ergodic p.m.p. action, let F be a G-

invariant sub-σ-algebra, and let ξ be a countable Borel partition with H(ξ|F) < ∞.

Then for every ε > 0 there is a finite Borel partition α with σ-algG(α) ∨ F =

σ-algG(ξ) ∨ F and H(α|F) < H(ξ|F) + ε.
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Proof. Let π : (X,µ) → (Y, ν) be the factor map associated to F , and let µ =∫
µy dν(y) be the corresponding decomposition of µ. Apply Lemma VII.1 to obtain

a Borel function L : Y × ξ → {0, 1, 2}<ω such that ν-almost-every restriction L(y, ·) :

ξ → {0, 1, 2}<ω is injective and∫
Y

∑
C∈ξ

|L(y, C)| · µy(C) dν(y) <∞.

We define ` : X → {0, 1, 2}<ω by

`(x) = L(π(x), C)

for x ∈ C ∈ ξ. Observe that ` is σ-alg(ξ) ∨ F -measurable and∫
X

|`(x)| dµ(x) =

∫
Y

∫
X

|`(x)| dµy(x) dν(y) =

∫
Y

∑
C∈ξ

|L(y, C)| · µy(C) dν(y) <∞.

For n ∈ N let Pn = {Pn, X \ Pn} where

Pn = {x ∈ X : |`(x)| ≥ n}.

Then the Pn’s are decreasing and have empty intersection. Refine Pn to βn = {X \

Pn, B
0
n, B

1
n, B

2
n} where for i ∈ {0, 1, 2}

Bi
n = {x ∈ Pn : `(x)(n) = i}.

For n ∈ N define

γn =
∨
k≤n

βk.

Since each restriction L(y, ·) : ξ → {0, 1, 2}<ω is injective we have that

(7.1) ξ ⊆ F ∨
∨
n∈N

σ-alg(γn).

Fix 0 < δ < min(1/4, ε/2) with

−δ · log(δ)− (1− δ) · log(1− δ) + δ · log(7) < ε.

58



Since ∑
n∈N

µ(Pn) =

∫
X

|`(x)| dµ(x) <∞

we may fix N ∈ N so that
∑∞

n=N µ(Pn) < δ. Observe that in particular µ(PN) < δ

and thus

µ(PN) +
∞∑
n=N

µ(Pn) < 2δ < 1/2.

For n ≥ N we seek to build σ-algG(Pn ∨ γn−1)-expressible functions θn ∈ [[EX
G ]]

with dom(θn) = Pn and

rng(θn) ⊆ X \

(
PN ∪

n−1⋃
k=N

θk(Pk)

)
.

We build the θn’s by induction on n ≥ N . To begin we note that µ(PN) < µ(X \PN)

and we apply Lemma III.5 to obtain θN . Now assume that θN , . . . , θn−1 have been

defined and posses the properties stated above. Then since γn−1 refines Pk ∨ γk−1 for

every k < n, we obtain from Lemma III.2

PN ∪
n−1⋃
k=N

θk(Pk) ∈ σ-algG(γn−1).

Also, by our choice of N we have that

µ(Pn) ≤ µ(PN) <
1

2
< 1− 2δ < 1− µ(PN)−

n−1∑
k=N

µ(Pk)

= µ
(
X \

(
PN ∪

⋃n−1
k=N θk(Pk)

))
.

Therefore we may apply Lemma III.5 to obtain θn. This defines the functions θn,

n ≥ N .

Define the partition β = {X \ P,B0, B1, B2} of X by

P =
⋃
n≥N

θn(Pn);

Bi =
⋃
n≥N

θn(Bi
n).
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Note that the above expressions do indeed define a partition of X since the images

of the θn’s are pairwise disjoint. Also define Q = {Q,X \Q} where

Q =
⋃
n≥N

θn(Pn+1).

Note that Q is contained in P and so β might not refine Q. Set α = γN ∨ β ∨ Q.

Then α is finite. Using Lemma II.2 and the facts that X \P ∈ β ∨Q, µ(P ) < δ, and

Hµy(γN) ≤ Hµy(ξ) for ν-almost-every y ∈ Y (since ξ µy-almost-everywhere refines

γN), we obtain

H(α|F) ≤ H(γN |F) + H(β ∨Q)

= H(γN |F) + H({P,X \ P}) + H(β ∨Q|{P,X \ P})

≤ H(γN |F)− µ(P ) · log µ(P )− µ(X \ P ) log µ(X \ P ) + µ(P ) · log(7)

< H(γN |F) + ε

=

∫
Y

Hµy(γN) dν(y) + ε

≤
∫
Y

Hµy(ξ) dν(y) + ε

= H(ξ|F) + ε.

Thus it only remains to check that σ-algG(α) ∨ F = σ-algG(ξ) ∨ F .

First notice that the function ` and all of the partitions γn and Pn are σ-algG(ξ)∨F -

measurable and therefore each θk is σ-algG(ξ)∨F -expressible. It follows from Lemma

III.2 that β,Q, and α are σ-algG(ξ)∨F -measurable. Thus σ-algG(α)∨F ⊆ σ-algG(ξ)∨

F . Now we consider the reverse inclusion. By induction and by (7.1) it suffices

to assume that γk ⊆ σ-algG(α) and prove that γk+1 ⊆ σ-algG(α) as well. This is

immediate when k ≤ N . So assume that k ≥ N and that γk ⊆ σ-algG(α). Since θk is

expressible with respect to σ-algG(γk) ⊆ σ-algG(α), we have that

Pk+1 = θ−1
k (Q) ∈ σ-algG(α)
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by Lemmas III.2 and III.3. Therefore Pk+1 ⊆ σ-algG(α). Now since θk+1 is expressible

with respect to σ-algG(Pk+1 ∨ γk) ⊆ σ-algG(α) we have that for i ∈ {0, 1, 2}

Bi
k+1 = θ−1

k+1(Bi) ∈ σ-algG(α)

by Lemmas III.2 and III.3. Thus βk+1 ⊆ σ-algG(α) and we conclude that γk+1 ⊆

σ-algG(α). This completes the proof.
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CHAPTER VIII

Distributions on finite sets

For a finite probability vector q̄, ε > 0, and n ∈ N, we let Lnq̄,ε be the set of

functions ` : {0, 1, . . . , n−1} → {0, 1, . . . , |q̄|−1} which approximate the distribution

of q̄, meaning

∀0 ≤ t < |q̄|
∣∣∣∣ |`−1(t)|

n
− qt

∣∣∣∣ ≤ ε.

Similarly, if (X,µ) is a probability space and ξ is a finite partition of X, then we let

Lnξ,ε be the set of functions ` : {0, 1, . . . , n− 1} → ξ such that

∀C ∈ ξ
∣∣∣∣ |`−1(C)|

n
− µ(C)

∣∣∣∣ ≤ ε.

We define a metric d on the set Lnq̄,∞ by

d(`, `′) =
1

n
·
∣∣∣{0 ≤ i < n : `(i) 6= `′(i)}

∣∣∣.
If ξ and β are finite partitions of (X,µ) and ξ is finer than β, then we define the

coarsening map πβ : ξ → β to be the unique map satisfying C ⊆ πβ(C) for all C ∈ ξ.

By applying πβ coordinate-wise, we obtain a map πβ : Lnξ,∞ → Lnβ,∞.

This chapter consists of some simple counting lemmas related to the sets Lnq̄,ε and

Lnξ,ε.

Lemma VIII.1. Let (X,µ) be a probability space, let ξ and β be finite partitions of

X, and let δ > 0. Suppose that ξ refines β and let πβ : ξ → β be the coarsening map.
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Then there is ε0 > 0 and n0 ∈ N so that for all 0 < ε ≤ ε0, n ≥ n0/ε, and every

b ∈ Lnβ,ε

exp
(
n · H(ξ|β)− n · δ

)
≤
∣∣∣{c ∈ Lnξ,ε : πβ(c) = b

}∣∣∣ ≤ exp
(
n · H(ξ|β) + n · δ

)
.

Proof. Without loss of generality, we may assume that µ(C) > 0 for all C ∈ ξ.

For a ξ-indexed probability vector q̄ = (qC)C∈ξ we let πβ(q̄) = (qB)B∈β denote the

coarsening of q̄ induced by πβ, specifically qB =
∑

C⊆B qC . Note that if qC = µ(C)

for every C ∈ ξ then

H(ξ|β) =
∑
B∈β

∑
C⊆B

−qC · log(qC/qB).

Choose ε0 > 0 so that whenever q̄ is a ξ-indexed probability vector with |qC−µ(C)| <

ε0 for all C ∈ ξ we have∣∣∣∣∣H(ξ|β)−
∑
B∈β

∑
C⊆B

−qC · log(qC/qB)

∣∣∣∣∣ < δ/3.

By shrinking ε0 further, we may assume that µ(C) > 2ε0 for all C ∈ ξ.

Recall that Stirling’s formula states that n! is asymptotic to
√

2πn · nn · e−n.

Therefore 1
n

log(n!)− log(n) + 1 converges to 0. Let n0 be such that both

∣∣∣ 1
n
· log(n!)− log(n) + 1

∣∣∣ < δ

3(|ξ|+ |β|)

and (3ε0 · n)|ξ| < exp(n · δ/3) for all n ≥ n0.

Fix 0 < ε ≤ ε0, n ≥ n0/ε and b ∈ Lnβ,ε. Let Q be the set of ξ-indexed probability

vectors q̄ = (qC)C∈ξ such that |qC − µ(C)| ≤ ε, n · qC ∈ N for all C ∈ ξ, and

n · qB = |b−1(B)| for all B ∈ β. For q̄ ∈ Q, basic combinatorics gives

∣∣∣{` ∈ Lnq̄,0 : πβ(`) = b}
∣∣∣ =

∏
B∈β

(n · qB)!∏
C⊆B(n · qC)!

.
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Since qC · n ≥ ε · n ≥ n0 for all C ∈ ξ, there is κ with |κ| < δ/3 such that

1

n
· log |{` ∈ Lnq̄,0 : πβ(`) = b}|

=
1

n
·
∑
B∈β

log((n · qB)!)− 1

n
·
∑
C∈ξ

log((n · qC)!)

=
∑
B∈β

qB · (log(n · qB)− 1)−
∑
C∈ξ

qC · (log(n · qC)− 1) + κ

=
∑
B∈β

qB · log(qB)−
∑
C∈ξ

qC · log(qC) + κ

=
∑
B∈β

∑
C⊆B

−qC · log(qC/qB) + κ

So our choice of ε0 gives

exp
(
n · H(ξ|β)− n · 2δ/3

)
<
∣∣∣{` ∈ Lnq̄,0 : πβ(`) = b}

∣∣∣ < exp
(
n · H(ξ|β) + 2δ/3

)
.

Finally,

{c ∈ Lnξ,ε : πβ(c) = b} =
⋃
q̄∈Q

{` ∈ Lnq̄,0 : πβ(`) = b},

and since |Q| ≤ (3ε · n)|ξ| ≤ exp(n · δ/3), the claim follows.

By taking β to be the trivial partition in the previous lemma, we obtain the

following.

Corollary VIII.2. Let q̄ be a finite probability vector and let δ > 0. Then there is

ε0 > 0 and n0 ∈ N so that for all 0 < ε ≤ ε0 and all n ≥ n0/ε

exp
(
n · H(q̄)− n · δ

)
≤
∣∣∣Lnq̄,ε∣∣∣ ≤ exp

(
n · H(q̄) + n · δ

)
.

Corollary VIII.3. Fix 0 < κ < 1. Then for sufficiently large n we have(
n

bκ · nc

)
≤ exp

(
n · 2 · H(κ, 1− κ)

)
,

where bκ · nc is the greatest integer less than or equal to κ · n.
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Proof. Set q̄ = (1−κ, κ). By definition
(

n
bκ·nc

)
is the number of subsets of {0, . . . , n−1}

having cardinality bκ · nc. Such subsets naturally correspond, via their characteristic

functions, to elements of Lnq̄,ε when n > 1/ε. Thus when n > 1/ε we have
(

n
bκ·nc

)
≤

|Lnq̄,ε|. Now apply Corollary VIII.2 with δ < H(κ, 1− κ) to obtain ε with(
n

bκ · nc

)
≤ |Lnq̄,ε| ≤ exp

(
n · 2 · H(κ, 1− κ)

)
for all n > 1/ε.

Corollary VIII.4. Let (X,µ) be a probability space, let ξ and β be finite partitions of

X with ξ finer than β, let q̄ be a finite probability vector, and let 0 < r ≤ 1. Assume

that H(ξ|β) < r · H(q̄). Then there are δ > 0, ε0 > 0, and n0 ∈ N such that for all

0 < ε ≤ ε0 and all n ≥ n0/ε, there are injections

fb : {c ∈ Lnξ,ε : πβ(c) = b} → L
br·nc
q̄,ε

for every b ∈ Lnβ,ε such that d(fb(c), fb′(c
′)) > 20δ|q̄| whenever fb(c) 6= fb′(c

′).

Proof. Fix δ > 0 such that 20δ|q̄| < 1/2, and

H(ξ|β) < r · H(q̄)− δ − rδ − 2r · H(20δ|q̄|, 1− 20δ|q̄|)− 20δ|q̄|r · log |q̄|.

Fix m ∈ N with rm · (δ/2) > H(q̄). By Lemma VIII.1 and Corollaries VIII.2 and

VIII.3 there are ε0 > 0 and n0 ≥ m such that for all 0 < ε ≤ ε0, n ≥ n0/ε, and all

b ∈ Lnβ,ε ∣∣∣{c ∈ Lnξ,ε : πβ(c) = b
}∣∣∣ ≤ exp

(
n · H(ξ|β) + n · δ

)
,∣∣∣Lbr·ncq̄,ε

∣∣∣ ≥ exp
(
brnc · H(q̄)− brnc · δ/2

)
≥ exp

(
rn · H(q̄)− rn · δ

)
,

and

(
br · nc

b20δ|q̄|r · nc

)
≤ exp

(
rn · 2 · H(20δ|q̄|, 1− 20δ|q̄|)

)
.
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Then by our choice of δ we have that for all ε ≤ ε0, n ≥ n0/ε, and all b ∈ Lnβ,ε∣∣∣{c ∈ Lnξ,ε : πβ(c) = b
}∣∣∣ ≤ exp

(
n · H(ξ|β) + n · δ

)
< exp

(
nr · H(q̄)− n · rδ − n · 2r · H(20δ|q̄|, 1− 20δ|q̄|)− n · 20δ|q̄|r · log |q̄|

)

(8.1) ≤
∣∣∣Lbr·ncq̄,ε

∣∣∣ · ( br · nc
b20δ|q̄|r · nc

)−1

· |q̄|−n20δ|q̄|r.

Now fix 0 < ε ≤ ε0 and n ≥ n0/ε. For V ⊆ L
br·nc
q̄,∞ let

Bd(V ; ρ) = {` ∈ Lbr·ncq̄,∞ : ∃v ∈ V d(`, v) ≤ ρ}.

Basic combinatorics implies that for ρ < 1/2

∣∣∣Bd(V ; ρ)
∣∣∣ ≤ |V | · ( br · nc

bρ · br · ncc

)
· |q̄|ρr·n ≤ |V | ·

(
br · nc
bρr · nc

)
· |q̄|ρr·n.

Let K ⊆ L
br·nc
q̄,ε be maximal with the property that d(k, k′) > 20δ|q̄| for all k 6= k′ ∈ K.

Then by maximality of K we have L
br·nc
q̄,ε ⊆ Bd(K; 20δ|q̄|). Therefore

∣∣∣Lbr·ncq̄,ε

∣∣∣ ≤ ∣∣∣Bd(K; 20δ|q̄|)
∣∣∣ ≤ |K| · ( br · nc

b20δ|q̄|r · nc

)
· |q̄|20δ|q̄|r·n.

So |{c ∈ Lnξ,ε : πβ(c) = b}| < |K| for every b ∈ Lnβ,ε by (8.1). Thus we may choose

injections fb : {c ∈ Lnξ,ε : πβ(c) = b} → K ⊆ L
br·nc
q̄,ε for every b ∈ Lnβ,ε.

Lemma VIII.5. Let q̄ be a finite probability vector, let ε, δ > 0, and let n ∈ N.

Assume that ε < δ < 1, and δ · n > 1. If ` ∈ Lnq̄,ε then there is J ⊆ {0, 1, . . . , n − 1}

such that |J | < 3δ|q̄| · n and

∀0 ≤ t < |q̄| 1

n
·
∣∣∣`−1(t) \ J

∣∣∣ < min
(

(qt + ε)(1− δ), qt

)
.
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Proof. For 0 ≤ t < |q̄| we have

∣∣∣`−1(t)
∣∣∣−min

(
(n · qt + n · ε)(1− δ), n · qt

)
≤ n · qt + n · ε−min

(
(n · qt + n · ε)(1− δ), n · qt

)
≤ max

(
δ · (n · qt + n · ε), n · ε

)
≤ 2δ · n.

Therefore we may pick Jt ⊆ `−1(t) with

∣∣∣`−1(t)
∣∣∣−min

(
(n · qt + n · ε)(1− δ), n · qt

)
<
∣∣∣Jt∣∣∣ ≤ 2δ · n+ 1 < 3δ · n.

Finally, we set J =
⋃|q̄|−1
t=0 Jt.
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CHAPTER IX

Krieger’s finite generator theorem

Let (X,µ) be a probability space. If ξ = {Ct : 0 ≤ t < |ξ|} is an ordered

partition of X, then we let dist(ξ) be the probability vector with dist(ξ)(t) = µ(Ct)

for 0 ≤ t < |ξ|. By associating ξ to the probability vector dist(ξ) in this manner, we

also identify the two sets Lnξ,ε and Lndist(ξ),ε. We will also find it helpful to write Ln

for the set of all functions ` : {0, 1, . . . , n − 1} → N ∪ {0}. For k ≤ n, ` ∈ Ln, and

`′ ∈ Lk we define

d(`, `′) = d(`′, `) =
1

k
·
∣∣∣{0 ≤ i < k : `(i) 6= `′(i)}

∣∣∣.
When n = k, d(·, ·) coincides with the metric defined at the start of Chapter VIII.

Let G y (X,µ) be a p.m.p. action, and let ξ be a partition of X. If n ∈ N and

θ ∈ [EX
G ] has the property that almost-every Eθ class has cardinality n, then we can

associate to each x ∈ X its (ξ, θ)-nameN θ
ξ (x) ∈ Lnξ,∞ defined by settingN θ

ξ (x)(i) = C

if θi(x) ∈ C ∈ ξ. If furthermore ξ is an ordered partition then we may view N θ
ξ (x) as

an element of Lndist(ξ),∞ ⊆ Ln.

We now present the main theorem. As a corollary we will obtain Theorem I.6 from

the introduction.

Theorem IX.1. Let Gy (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic,

and let F be a G-invariant sub-σ-algebra. If ξ is a countable Borel partition of X,
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0 < r ≤ 1, and p̄ is a probability vector with H(ξ|F) < r · H(p̄), then there is

a Borel pre-partition α = {Ai : 0 ≤ i < |p̄|} with µ(Ai) = rpi for every i and

σ-algG(ξ) ∨ F ⊆ σ-algred
G (α) ∨ F .

Proof. Apply Proposition VII.2 to obtain a finite Borel partition ξ′ with σ-algG(ξ′)∨

F = σ-algG(ξ) ∨ F and H(ξ′|F) < r ·H(p̄). Since ξ′ is finite, by Lemma II.2 we have

that H(ξ′|F) is equal to the infimum of H(ξ′|β) over finite F -measurable partitions

β of X. So fix a finite F -measurable partition β with H(ξ′|β) < r · H(p̄). Since

H(ξ′∨β|β) = H(ξ′|β) and σ-algG(ξ′∨β)∨F = σ-algG(ξ′)∨F , we may replace ξ′ with

ξ′∨β if necessary and assume that ξ′ refines β. Let πβ : ξ′ → β be the coarsening map.

Finally, by Lemma II.2 we may let q̄ be a finite probability vector which coarsens p̄

and satisfies H(ξ′|β) < r · H(q̄) ≤ r · H(p̄).

Let 0 < δ < 1, ε0 > 0, and n0 ∈ N be as given by Corollary VIII.4. Let 0 < ε < rδ,

and M ⊆ X with µ(M) = r · δ be as given by Corollary VI.2. Note that replacing

ε by a smaller quantity will not interfere with applying Corollary VI.2, so we may

assume that ε ≤ ε0. We may also increase n0 if necessary so that n0 · rδ > 1 and

br · n0c > r · n0/2. By Proposition IV.5 there are n ≥ n0/ε, Borel sets S1, S2 ⊆ X

with µ(S1) + µ(S2) < ε, and a σ-algG({S1, S2})-expressible θ ∈ [EX
G ] such that Eθ

admits a σ-algG({S1, S2})-measurable transversal Y and such that for µ-almost-every

x ∈ X, the Eθ class of x has cardinality n,

∀C ∈ ξ′ ∪ β µ(C)− ε < |C ∩ [x]Eθ |
|[x]Eθ |

< µ(C) + ε,

and
|M ∩ [x]Eθ |
|[x]Eθ |

< µ(M) + r · δ = 2r · δ.

So we have thatN θ
ξ′(y) ∈ Lnξ′,ε andN θ

β (y) ∈ Lnβ,ε for almost-every y ∈ Y . Set k = br·nc

and let fb : {c ∈ Lnξ′,ε : πβ(c) = b} → Lkq̄,ε be the injections provided by Corollary

VIII.4 for b ∈ Lnβ,ε. For y ∈ Y set by = N θ
β (y), cy = N θ

ξ′(y), and ãy = fby(cy) ∈ Lkq̄,ε.
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Also define

My = {0 ≤ i < n : θi(y) ∈M}.

Then |My| < 2δr ·n for µ-almost-every y ∈ Y . Since ãy ∈ Lkq̄,ε, Lemma VIII.5 provides

a set Jy ⊆ {0, 1, . . . , k − 1} with |Jy| < 3rδ|q̄| · n such that for all 0 ≤ t < |q̄|

(9.1)

1

k
·
∣∣∣ã−1
y (t) \ (My ∪ Jy)

∣∣∣ < min
(

(qt + ε)(1− rδ), qt

)
= min

(
(qt + ε)µ(X \M), qt

)
.

Clearly we can arrange the map y 7→ Jy to be Borel. We then let J be the Borel set

J = {θj(y) : y ∈ Y, j ∈ Jy}.

Define a pre-partition Q = {Qt : 0 ≤ t < |q̄|} by setting

Qt = {θi(y) : y ∈ Y, 0 ≤ i < k, i 6∈My ∪ Jy, and ãy(i) = t}.

Observe that µ(Y ) = 1/n since Y is a transversal for Eθ. By (9.1) we have that for

every 0 ≤ t < |q̄|

µ(Qt) =

∫
Y

|ã−1
y (t) \ (My ∪ Jy)| dµ(y) <

k

n
·min

(
(qt + ε)µ(X \M), qt

)
< min

(
(r · qt + r · ε)µ(X \M), r · qt

)
Now apply Corollary VI.2 to get a pre-partition α′ = {A′t : 0 ≤ t < |q̄|} of X with

Qt ⊆ A′t and µ(A′t) = r · qt for every t, and with S1, S2 ∈ σ-algred
G (α′). We have that

θ is expressible and Y is measurable with respect to σ-algG({S1, S2}) ⊆ σ-algred
G (α′).

By Lemma III.3 it follows that θi is σ-algred
G (α′)-expressible for all i ∈ Z.

We claim that the map y ∈ Y 7→ ãy is σ-algred
G (α′)-measurable. We check this via

the definition of a reduced σ-algebra. Fix y ∈ Y and x ∈ X with either x 6∈ Y or

ãx 6= ãy. If x 6∈ Y then we are done since Y ∈ σ-algred
G (α′). So suppose that x ∈ Y
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and ãx 6= ãy. Then d(ãy, ãx) > 20δ|q̄|. Set I = {0 ≤ i < k : ãy(i) 6= ãx(i)} and note

|I| > 20δ|q̄| · k. Since∣∣∣My ∪ Jy ∪Mx ∪ Jx
∣∣∣ < 10rδ|q̄| · n < 20δ|q̄| · k < |I|,

we may fix i ∈ I \ (My ∪ Jy ∪Mx ∪ Jx). Since θi is σ-algred
G (α′)-expressible, there is

a σ-algred
G (α′)-measurable partition {Zg : g ∈ G} of X such that θi(z) = g · z for all

g ∈ G and z ∈ Zg. If y and x are separated by the partition {Zg : g ∈ G} then, since

this partition is σ-algred
G (α′)-measurable, there must be h ∈ G with both h · y and

h · x lying in ∪α′ and separated by α′. We are done in this case. So assume there is

g ∈ G with y, x ∈ Zg. Then g · y = θi(y) lies in Qt ⊆ A′t where t = ãy(i) and similarly

g · x = θi(x) lies in Qs ⊆ A′s where s = ãx(i). As t 6= s we have that g · y and g · x lie

in ∪α′ and are separated by α′. This proves the claim.

We observe that the map y ∈ Y 7→ by is σ-algred
G (α′) ∨ F -measurable since the

value of by is entirely determined by the location of y in the partition
∨n−1
i=0 θ

−i(β) � Y

of Y . This partition is σ-algred
G (α′)∨F -measurable by Lemmas III.2 and III.3. So the

map y ∈ Y 7→ (by, ãy) is σ-algred
G (α′) ∨ F -measurable. Since cy = f−1

by
(ãy), it follows

that the map y ∈ Y 7→ cy is σ-algred
G (α′)∨F -measurable as well. For Ct ∈ ξ′ we have

Ct = {θi(y) : y ∈ Y, 0 ≤ i < n, and cy(i) = t}

=
n−1⋃
i=0

θi
(
{y ∈ Y : cy(i) = t}

)
.

Therefore ξ′ ⊆ σ-algred
G (α′) ∨ F by Lemmas III.2 and III.3. We conclude that

σ-algG(ξ) ∨ F = σ-algG(ξ′) ∨ F ⊆ σ-algred
G (α′) ∨ F .

Finally, since (X,µ) is non-atomic, µ(A′t) = r · qt, and q̄ is a coarsening of p̄, there

is a refinement α of α′ with µ(At) = r · pt for all 0 ≤ t < |p̄|. Clearly we still have

σ-algG(ξ) ∨ F ⊆ σ-algred
G (α) ∨ F .
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Now Theorem I.6 follows quickly.

Proof of Theorem I.6. By assumption hRok
G (X,µ|F) < r · H(p̄). Thus there exists a

partition ξ satisfying H(ξ|F) < r · H(p̄) and σ-algG(ξ) ∨ F = B(X). By applying

Theorem IX.1 we obtain a pre-partition α = {Ai : 0 ≤ i < |p̄|} with µ(Ai) = rpi for

every 0 ≤ i < |p̄| and B(X) = σ-algG(ξ) ∨ F ⊆ σ-algred
G (α) ∨ F .

By letting F = {X,∅} be the trivial σ-algebra, we obtain the following.

Corollary IX.2. Let Gy (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic.

If ξ is a countable Borel partition of X, 0 < r ≤ 1, and p̄ is a probability vector

with H(ξ) < r · H(p̄), then there is a Borel pre-partition α = {Ai : 0 ≤ i < |p̄|} with

µ(Ai) = r · pi for every 0 ≤ i < |p̄| and ξ ⊆ σ-algred
G (α).

Just as Theorem I.6 follows from Theorem IX.1, we see that Theorem I.3 follows

from Corollary IX.2. We mention that in the above corollary, σ-algG(ξ) could corre-

spond to a purely atomic factor Gy (Y, ν) of Gy (X,µ). In this case Theorem I.3

would not be applicable, and so Corollary IX.2 offers a bit more generality.

Corollary IX.3. Let Gy (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic,

and let F be a G-invariant sub-σ-algebra. If G y (Y, ν) is a factor of G y (X,µ)

and Σ is the sub-σ-algebra of X associated to Y then

hRok
G (X,µ|F) ≤ hRok

G (Y, ν) + hRok
G (X,µ|F ∨ Σ).

Proof. This is immediate if either hRok
G (Y, ν) or hRok

G (X,µ|F∨Σ) is infinite, so suppose

that both are finite. Fix ε > 0 and fix a generating partition β′ for G y (Y, ν) with

H(β′) < hRok
G (Y, ν) + ε/2. Pull back β′ to a partition β of X. Then H(β) = H(β′) and

σ-algG(β) = Σ. By definition of hRok
G (X,µ|F ∨ Σ), there is a partition γ′ of X with

H(γ′|F ∨ Σ) < hRok
G (X,µ|F ∨ Σ) + ε/2
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and σ-algG(γ′)∨F ∨Σ = B(X). Apply Theorem IX.1 to get a partition γ of X with

H(γ) < hRok
G (X,µ|F ∨ Σ) + ε/2

and σ-algG(γ) ∨ F ∨ Σ = B(X). Then

B(X) = σ-algG(γ) ∨ F ∨ Σ = σ-algG(γ ∨ β) ∨ F ,

and hence

hRok
G (X,µ|F) ≤ H(β ∨ γ|F) ≤ H(β) + H(γ) < hRok

G (Y, ν) + hRok
G (X,µ|F ∨ Σ).

Essentially the same proof yields the following.

Corollary IX.4. Let Gy (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic,

and let F be a G-invariant sub-σ-algebra. If α is a partition and C ⊆ B(X) then

hRok
G,X(α | F) ≤ hRok

G,X(C | F) + hRok
G,X(α | F ∨ σ-algG(C)),

and hRok
G (X,µ | F) ≤ hRok

G,X(C | F) + hRok
G (X,µ | F ∨ σ-algG(C)).
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CHAPTER X

Relative Rokhlin entropy and amenable groups

We verify that for free ergodic actions of amenable groups, relative Rokhlin entropy

and relative Kolmogorov–Sinai entropy agree. This result was previously established

in the non-relative case by the author and Tucker-Drob [48].

We first recall the definition of relative Kolmogorov–Sinai entropy. Let G be a

countably infinite amenable group, and let G y (X,µ) be a free p.m.p. action.

For a partition α and a finite set T ⊆ G, we write αT for the join
∨
t∈T t · α, where

t·α = {t·A : A ∈ α}. Given a G-invariant sub-σ-algebra F , the relative Kolmogorov–

Sinai entropy is defined as

hG(X,µ|F) = sup
α

inf
T⊆G

1

|T |
· H(αT |F),

where α ranges over all finite partitions and T ranges over finite subsets of G [13].

Equivalently, one can replace the infimum with a limit over a Følner sequence (Tn)

[39]. Recall that a sequence Tn ⊆ G of finite sets is a Følner sequence if

lim
n→∞

|∂K(Tn)|
|Tn|

= 0

for every finite K ⊆ G, where ∂K(T ) = {t ∈ T : tK 6⊆ T}. We also write IK(T ) for

T \ ∂K(T ).
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Proposition X.1. Let G be a countably infinite amenable group, let G y (X,µ) be

a free ergodic action, and let F be a G-invariant sub-σ-algebra. Then the relative

Kolmogorov–Sinai entropy and relative Rokhlin entropy coincide:

hG(X,µ|F) = hRok
G (X,µ|F).

Proof. We first show that hG(X,µ|F) ≤ hRok
G (X,µ|F). If hRok

G (X,µ|F) = ∞ then

there is nothing to show. So suppose that hRok
G (X,µ|F) <∞ and fix ε > 0. Let α be

a countable partition with σ-algG(α) ∨ F = B(X) and H(α|F) < hRok
G (X,µ|F) + ε.

Let β be any finite partition of X and let (Tn) be a Følner sequence. Then by Lemma

II.2

0 = H(β|σ-algG(α) ∨ F) = inf
K⊆G

H(β|αK ∨ F),

where K ranges over finite subsets of G. Fix K ⊆ G so that H(β|αK ∨ F) < ε. Note

that H(t · β|αtK ∨ F) < ε for all t ∈ G. Therefore

lim
n→∞

1

|Tn|
· H(βTn|F)

≤ lim
n→∞

1

|Tn|
· H(αTn ∨ βTn|F)

= lim
n→∞

1

|Tn|
· H(αTn|F) +

1

|Tn|
· H(βTn|αTn ∨ F)

≤ lim
n→∞

1

|Tn|
·
∑
t∈Tn

(
H(t · α|F) + H(t · β|αTn ∨ F)

)
< lim

n→∞
hRok
G (X,µ|F) + ε+

|IK(Tn)|
|Tn|

· ε+
|∂K(Tn)|
|Tn|

· H(β)

= hRok
G (X,µ|F) + 2ε.

Now let ε tend to 0 and then take the supremum over all β.

Now we argue that hRok
G (X,µ|F) ≤ hG(X,µ|F). Since the action of G is free, a

theorem of Seward and Tucker-Drob [48] states that there is a factor action G y

(Z, η) of (X,µ) such that the action of G on Z is free and hRok
G (Z, η) < ε. Let

75



Σ be the G-invariant sub-σ-algebra of X associated to Z, and let G y (Y, ν) be

the factor of (X,µ) associated to F ∨ Σ. Then G acts freely on (Y, ν) since (Y, ν)

factors onto (Z, η). By the Ornstein–Weiss theorem [38], all free ergodic actions of

countably infinite amenable groups are orbit equivalent. In particular, there is a free

ergodic p.m.p. action Z y (Y, ν) which has the same orbits as Gy (Y, ν) and has 0

Kolmogorov–Sinai entropy, hZ(Y, ν) = 0. By the Rokhlin generator theorem [41], we

have hRok
Z (Y, ν) = 0 as well.

Let’s say Z = 〈t〉. Define c : Y → G by

c(y) = g ⇐⇒ t · y = g · y.

Let f : (X,µ)→ (Y, ν) be the factor map, and let Z act on (X,µ) by setting

t · x = c(f(x)) · x.

Then F ∨Σ and the actions of G and Z on (X,µ) satisfy the assumptions of Proposi-

tion III.4. Equivalently, in the terminology of Rudolph–Weiss [43], the orbit-change

cocycles between the actions ofG and Z onX are F∨Σ-measurable. Thus hG(X,µ|F∨

Σ) = hZ(X,µ|F ∨Σ) by [43, Theorem 2.6]. Also, since hRok
Z (X,µ|F ∨Σ) ≤ hRok

Z (X,µ)

and hRok
Z (Y, ν) = 0, it follows from Corollary IX.3 that

(10.1) hRok
Z (X,µ|F ∨ Σ) = hRok

Z (X,µ).

We have

hG(X,µ|F ∨ Σ) = hZ(X,µ|F ∨ Σ) by the Rudolph–Weiss theorem [43]

= hZ(X,µ)− hZ(Y, ν) by the Abramov–Rokhlin theorem [4]

= hZ(X,µ) since hZ(Y, ν) = 0

= hRok
Z (X,µ) by the Rokhlin generator theorem [41]

= hRok
Z (X,µ|F ∨ Σ) by Equation 10.1

= hRok
G (X,µ|F ∨ Σ) by Proposition III.4
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So hG(X,µ|F ∨ Σ) = hRok
G (X,µ|F ∨ Σ). Also, it is immediate from the definitions

that hG(X,µ|F ∨ Σ) ≤ hG(X,µ|F). Finally, by Corollary IX.3 we have

hRok
G (X,µ|F) ≤ hRok

G (Z, η)+hRok
G (X,µ|F ∨Σ) < ε+hG(X,µ|F ∨Σ) ≤ ε+hG(X,µ|F).

Now let ε tend to 0.
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CHAPTER XI

Metrics on the space of partitions

Let (X,µ) be a probability space. Recall that the measure algebra of (X,µ) is

the algebra of equivalence classes of Borel sets mod null sets together with the metric

dµ(A,B) = µ(A4B). There is a closely related metric dµ on the space of all countable

Borel partitions P defined by

dµ(α, β) = inf
{
µ(Y ) : Y ⊆ X and α � (X \ Y ) = β � (X \ Y )

}
.

We will tend to work more frequently with the space PH of countable Borel partitions

α satisfying H(α) <∞. In addition to the metric dµ, this space also has the Rokhlin

metric dRok
µ defined by

dRok
µ (α, β) = H(α | β) + H(β | α).

In this chapter we collect some known properties of these metric spaces for which

there is no good reference in the existing literature.

Lemma XI.1. Let G be a countable group, let G y (X,µ) be a p.m.p. action, and

let α, β, ξ ∈PH. Then:

(i) dRok
µ (βT , ξT ) ≤ |T | · dRok

µ (β, ξ) for every finite T ⊆ G;

(ii) dRok
µ (α ∨ β, α ∨ ξ) ≤ dRok

µ (β, ξ);
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(iii) |H(β)− H(ξ)| ≤ dRok
µ (β, ξ);

(iv) |H(β | α)− H(ξ | α)| ≤ dRok
µ (β, ξ);

(v) |H(α | β)− H(α | ξ)| ≤ 2 · dRok
µ (β, ξ).

Proof. We have

H(βT | ξT ) ≤
∑
t∈T

H(t · β | ξT ) ≤
∑
t∈T

H(t · β | t · ξ) = |T | · H(β | ξ),

where the final equality holds since G acts measure-preservingly. This establishes (i).

Item (ii) is immediate since H(α ∨ β | α ∨ ξ) = H(β | α ∨ ξ) ≤ H(β | ξ). For (iii), we

may assume that H(β) ≥ H(ξ). Then we have

H(β)− H(ξ) ≤ H(β ∨ ξ)− H(ξ) = H(β | ξ) ≤ dRok
µ (β, ξ).

Items (iv) and (v) follow from (ii) and (iii) by using the identities H(β | α) = H(α ∨

β)− H(α) and H(α | β) = H(α ∨ β)− H(β).

In the next lemma we will use the well-known property [15, Fact 1.7.7] that for

every n ∈ N, the restrictions of dµ and dRok
µ to the space of n-piece partitions are

uniformly equivalent. Moreover, dµ is always uniformly dominated by dRok
µ , meaning

that for every ε > 0 there is δ > 0 such that if α, β ∈ PH and dRok
µ (α, β) < δ then

dµ(α, β) < ε.

Lemma XI.2. Let Gy (X,µ) be a p.m.p. action. Let T ⊆ G be finite, let α ∈PH,

and let β be a coarsening of αT . For every ε > 0 there is δ > 0 so that if α′ ∈ PH

and dRok
µ (α′, α) < δ, then there is a coarsening β′ of α′T with dRok

µ (β′, β) < ε.

Proof. By Lemma II.2, there is a finite partition β0 coarser than β with dRok
µ (β0, β) <

ε/2. Set n = |β0| and let κ > 0 be such that dRok
µ (ζ, ζ ′) < ε/2 whenever ζ and ζ ′ are n-

piece partitions with dµ(ζ, ζ ′) < κ. Let δ > 0 be such that dµ(ξ, ξ′) < κ/|T | whenever
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ξ, ξ′ ∈ PH satisfy dRok
µ (ξ, ξ′) < δ. Now let α′ ∈ PH with dRok

µ (α′, α) < δ. Then

dµ(α′, α) < κ/|T | and hence dµ(α′T , αT ) < κ. This means there is a set Y ⊆ X with

µ(Y ) < κ and α′T � (X \ Y ) = αT � (X \ Y ). Thus there is a n-piece coarsening β′ of

α′T with β′ � (X \ Y ) = β0 � (X \ Y ). So dµ(β′, β0) < κ and hence dRok
µ (β′, β0) < ε/2.

We conclude that dRok
µ (β′, β) < ε.

Lemma XI.3. Let (X,µ) be a probability space, and let A be an algebra of Borel sets

which is dµ-dense in a sub-σ-algebra F . If β ∈ PH, β ⊆ F , and ε > 0 then there is

a partition β′ ⊆ A with dRok
µ (β′, β) < ε.

Proof. By Lemma II.2 there is a finite partition β0 coarser than β with dRok
µ (β0, β) <

ε/2. Set n = |β0| and let δ > 0 be such that dRok
µ (ζ, ζ ′) < ε/2 whenever ζ and ζ ′ are

n-piece partitions with dµ(ζ, ζ ′) < δ. Since A is dense in F there is a n-piece partition

β′ ⊆ A with dµ(β′, β0) < δ. Then dRok
µ (β′, β0) < ε/2 and dRok

µ (β′, β) < ε.

Corollary XI.4. Let G y (X,µ) be a p.m.p. action, let F be a sub-σ-algebra, and

let α be a partition with F ⊆ σ-algG(α). If β ∈ PH, β ⊆ F , and ε > 0, then there

exists a finite T ⊆ G and a coarsening β′ of αT with dRok
µ (β′, β) < ε.

Proof. The σ-algebra generated by the sets g ·A, g ∈ G, A ∈ α, contains F . Therefore

the algebra generated by these sets is dense in F .

The same proof also provides the following.

Corollary XI.5. Let Gy (X,µ) be a p.m.p. action, let F be a sub-σ-algebra, and let

(αn) be an increasing sequence of partitions with F ⊆
∨
n∈N σ-algG(αn). If β ∈ PH,

β ⊆ F , and ε > 0, then there exist k ∈ N, a finite T ⊆ G, and a coarsening β′ of αTk

with dRok
µ (β′, β) < ε.
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CHAPTER XII

Translations and independence

In this chapter we show that if the Rokhlin entropy of a free ergodic action is

realized by a generating partition, then the action is isomorphic to a Bernoulli shift.

Lemma XII.1. Let G be a countably infinite group, let G y (X,µ) be a free p.m.p.

action, and let T ⊆ G be finite. Then there is a Borel partition ξ of X such that for

every C ∈ ξ we have µ(C) ≥ 1
4
· |T |−4 and t · C ∩ s · C = ∅ for all t 6= s ∈ T .

Proof. If |T | = 1 then by setting ξ = {X} we are done. So assume |T | ≥ 2. Since

the action is free, the condition t ·C ∩ s ·C = ∅ for all t 6= s ∈ T is equivalent to the

condition T · c∩ T · c′ = ∅ for all c 6= c′ ∈ C. By repeatedly applying Lemma V.1 we

can inductively construct disjoint sets C1, C2, . . . such that for every i

X \ (C1 ∪ C2 ∪ · · · ∪ Ci−1) ⊆ T−1T · Ci

and T · c ∩ T · c′ = ∅ for all c 6= c′ ∈ Ci. We claim that there is n ≤ |T−1T |+ 1 such

that X = C1 ∪ · · · ∪ Cn. If not, then there is x ∈ X \ (C1 ∪ · · · ∪ C|T−1T |+1). Then

x ∈ T−1T · Ci for every i and hence T−1T · x meets every Ci, 1 ≤ i ≤ |T−1T | + 1.

This contradicts the Ci’s being disjoint.

Set ξ = {Ci : 1 ≤ i ≤ n}. If µ(Ci) <
1
4
· |T |−4 for some i, then since ξ is a partition
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of X with |ξ| ≤ 2|T |2, there must be some j with µ(Cj) >
1
2
|T |−2. So

µ
(
Cj \ T−1T · Ci

)
≥ 1

2|T |2
− |T |

2

4|T |4
=

1

4|T |2
> 2 · 1

4|T |4
.

Thus by removing from Cj a subset B ⊆ Cj\T−1T ·Ci having measure µ(B) = 1
4
·|T |−4

and by enlarging Ci to contain B, we will have reduced the number of sets in ξ having

measure less than 1
4
· |T |−4. This process can be repeated until every set in ξ has

measure at least 1
4
· |T |−4.

Let Gy (X,µ) be a free ergodic p.m.p. action, and let α be a generating partition

with H(α) <∞. If (X,µ) is not isomorphic to a Bernoulli shift, then the G-translates

of α cannot be mutually independent. Thus, there is a finite set T ⊆ G with H(αT ) <

|T | ·H(α). So it suffices to show that H(αT ) < |T | ·H(α) implies hRok
G (X,µ) < H(α).

It is interesting to note that when G is amenable and the action on (X,µ) is free and

ergodic, the Rokhlin entropy coincides with Kolmogorov–Sinai entropy and therefore

hRok
G (X,µ) is equal to the infimum of H(αT )/|T | for finite T ⊆ G. While this equality

is known to fail for non-amenable groups, it is unknown if an inequality holds.

Question XII.2. Let G be a countably infinite group, let G y (X,µ) be a free

ergodic p.m.p. action, and let α be a generating partition with H(α) <∞. Is it true

that

hRok
G (X,µ) ≤ inf

T⊆G
T finite

1

|T |
· H(αT )?

What if the right-hand side is 0?

We remark that the f-invariant, an isomorphism invariant for actions of finite rank

free groups introduced by Bowen [5], does satisfy the inequality appearing in Question

XII.2 [45].

The theorem below is an attempt at answering Question XII.2. Recall the notion

of outer Rokhlin entropy hRok
G,X(C | F) defined in Chapter II.
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Theorem XII.3. Let G be a countably infinite group, let G y (X,µ) be a free

p.m.p. ergodic action, and let F be a G-invariant sub-σ-algebra. If α is a countable

partition, T ⊆ G is finite, ε > 0, and 1
|T | ·H(αT |F) < H(α |F)−ε, then hRok

G,X(α |F) <

H(α | F)− ε/(16|T |3).

Proof. By invariance of µ and F , H(αsT | F) = H(αT | F) for all s ∈ G. So by

replacing T with a translate sT we may assume that 1G ∈ T . By Theorem II.1,

there is a factor G y (Z, η) of (X,µ) such that the action of G on Z is free and

hRok
G (Z, η) < ε/(16 · |T |3). Let Σ be the G-invariant sub-σ-algebra of X associated to

Z. If H(α | F ∨ Σ) ≤ H(α | F)− ε/2, then by Corollary IX.4

hRok
G,X(α | F) ≤ hRok

G,X(Σ | F) + hRok
G,X(α | F ∨ Σ)

≤ hRok
G (Z, η) + H(α | F ∨ Σ)

<
ε

16 · |T |3
+ H(α | F)− ε

2

< H(α | F)− ε

16|T |3
,

and thus we are done. So assume H(α | Σ ∨ F) > H(α | F)− ε/2. Note that

1

|T |
· H(αT | F ∨ Σ) ≤ 1

|T |
· H(αT | F) < H(α | F)− ε < H(α | F ∨ Σ)− ε/2.

By definition the action Gy (Z, η) is free. So we can apply Lemma XII.1 to obtain

a partition ξ ⊆ Σ of X such that for every C ∈ ξ we have t−1 · C ∩ s−1 · C = ∅ for

all t 6= s ∈ T and µ(C) ≥ 1
4
· |T |−4.

Let π : (X,µ)→ (Y, ν) be the factor associated to F ∨ Σ, and let µ =
∫
µy dν(y)
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be the disintegration of µ over ν. We have

∑
C∈ξ

∫
π(C)

(∑
t∈T

Hµy(t · α)− Hµy(α
T )

)
dν(y)

=

∫
Y

(∑
t∈T

Hµy(t · α)− Hµy(α
T )

)
dν(y)

=
∑
t∈T

H(t · α | F ∨ Σ)− H(αT | F ∨ Σ)

= |T | · H(α | F ∨ Σ)− H(αT | F ∨ Σ)

> |T | · ε
2
.

So we can fix D ∈ ξ with∫
π(D)

(∑
t∈T

Hµy(t · α)− Hµy(α
T )

)
dν(y) > |T | · ε

2
· µ(D).

Set R = T−1 · D and observe that µ(R) = |T | · µ(D). Note that for almost-every

y ∈ Y and all g ∈ G we have µy(E) = µg·y(g · E) for Borel E ⊆ X and hence also

Hµy(α) = Hµg·y(g · α). Thus

HR(α | F ∨ Σ)− 1

|T |
· HD(αT | F ∨ Σ)

=
1

µ(R)
·
∫
T−1·π(D)

Hµy(α) dν(y)− 1

|T | · µ(D)
·
∫
π(D)

Hµy(α
T ) dν(y)

=
1

|T | · µ(D)
·
∑
t∈T

∫
t−1·π(D)

Hµy(α) dν(y)− 1

|T | · µ(D)
·
∫
π(D)

Hµy(α
T ) dν(y)

=
1

|T | · µ(D)
·
∫
π(D)

(∑
t∈T

Hµy(t · α)− Hµy(α
T )

)
dν(y)

>
ε

2
.

Define a new partition

β =
(
α � (X \R)

)
∪
{
R \D

}
∪
(
αT � D

)
.
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Observe that D ⊆ R since 1G ∈ T . Let γ be the partition of X consisting of the sets

t−1 ·D, t ∈ T , and X \R. Then γ ⊆ Σ and α is coarser than

α ∨ γ =
(
α � (X \R)

)
∪
⋃
t∈T

(
α � t−1 ·D

)
.

Since α � (X \ R) ⊆ β and for each t ∈ T the partition t · (α � t−1 ·D) = (t · α � D)

of D is coarser than αT � D, we see that

α ≤ α ∨ γ ⊆ σ-algG(β) ∨ Σ.

Therefore hRok
G,X(α | F ∨ Σ) ≤ H(β | F ∨ Σ).

Since R,D ∈ Σ and µ(R) = |T | · µ(D) ≥ 1
4
· |T |−3 we have

H(β | F ∨ Σ) = µ(X \R) · HX\R(α | F ∨ Σ) + µ(D) · HD(αT | F ∨ Σ)

= µ(X \R) · HX\R(α | F ∨ Σ) + µ(R) · 1

|T |
· HD(αT | F ∨ Σ)

< µ(X \R) · HX\R(α | F ∨ Σ) + µ(R) · HR(α | F ∨ Σ)− µ(R) · ε
2

= H(α | F ∨ Σ)− µ(R) · ε
2

≤ H(α | F ∨ Σ)− ε

8|T |3

Therefore

hRok
G,X(α | F ∨ Σ) + hRok

G (Z, η) ≤ H(β | F ∨ Σ) + hRok
G (Z, η)

< H(α | F ∨ Σ)− ε

8|T |3
+

ε

16 · |T |3

≤ H(α | F)− ε

16|T |3
.

Thus we are done by Corollary IX.4.

We will also need the following variant of Theorem XII.3 where we replace both

instances of H(α | F) with H(α).
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Corollary XII.4. Let G be a countably infinite group, let G y (X,µ) be a free

p.m.p. ergodic action, and let F be a G-invariant sub-σ-algebra. If α is a countable

partition, T ⊆ G is finite, ε > 0, and 1
|T | · H(αT | F) < H(α)− ε, then hRok

G,X(α | F) <

H(α)− ε/(32|T |3).

Proof. If H(α | F) < H(α)− ε/2 then clearly

hRok
G,X(α | F) ≤ H(α | F) < H(α)− ε

32|T |3
.

So suppose that H(α | F) ≥ H(α)− ε/2. Then

H(αT | F) < |T | · H(α)− |T | · ε ≤ |T | · H(α | F)− |T | · ε/2.

In this case we can apply Theorem XII.3.

We recall the simple fact that a free ergodic p.m.p. action Gy (X,µ) is isomorphic

to a Bernoulli shift if and only if there is a generating partition whose G-translates

are mutually independent.

Corollary XII.5. Let G be a countably infinite group and let G y (X,µ) be a free

p.m.p. ergodic action. If α is a generating partition with H(α) = hRok
G (X,µ) < ∞

then Gy (X,µ) is isomorphic to a Bernoulli shift.

Proof. Since hRok
G (X,µ) = H(α), Theorem XII.3 implies that H(αT ) = |T | · H(α) for

every finite T ⊆ G. Since H(α) < ∞, this implies that the G-translates of α are

mutually independent. As α is a generating partition, it follows that G y (X,µ) is

isomorphic to a Bernoulli shift.

As a quick corollary of Theorem XII.3, we obtain a relationship between the

Rokhlin entropy values of Bernoulli shifts and Gottschalk’s surjunctivity conjecture.
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Corollary XII.6. Let G be a countably infinite group. Assume that hRok
G (kG, uGk ) =

log(k) for every k ∈ N. Then G satisfies Gottschalk’s surjunctivity conjecture and

Kaplansky’s direct finiteness conjecture.

Proof. We verify Gottschalk’s surjunctivity conjecture as Kaplansky’s direct finiteness

conjecture will then hold automatically [11, Section I.5]. Let k ≥ 2 and let φ :

kG → kG be a continuous G-equivariant injection. Set (Y, ν) = (φ(kG), φ∗(u
G
k ))

where ν = φ∗(u
G
k ) is the push-forward measure. Let L = {Ri : 0 ≤ i < k} denote

the canonical generating partition for kG, where

Ri = {x ∈ kG : x(1G) = i}.

Note that L � Y is generating for Y . Since φ is injective, it is an isomorphism

between (kG, uGk ) and (Y, ν). Therefore

log(k) = hRok
G (kG, uGk ) = hRok

G (Y, ν) ≤ Hν(L ) ≤ log |L | = log(k).

So hRok
G (Y, ν) = Hν(L ) = log(k). In particular, Hν(L T ) = |T | · Hν(L ) for all finite

T ⊆ G by Theorem XII.3.

Towards a contradiction, suppose that φ is not surjective. Then its image is a

proper closed subset of kG and hence there is some finite T ⊆ G and w ∈ kT−1
such

that y � T−1 6= w for all y ∈ Y . This implies that |L T � Y | ≤ k|T | − 1. So

Hν(L
T ) ≤ log |L T � Y | ≤ log(k|T | − 1) < |T | · log(k) = |T | · Hν(L ),

a contradiction.

Finally, we use Theorem XII.3 to investigate the completely positive outer Rokhlin

entropy property of Bernoulli shifts. We say that an ergodic action G y (X,µ) has

completely positive outer Rokhlin entropy if every factor G y (Y, ν) which is non-

trivial (i.e. Y is not a single point) satisfies hRok
G,X(Y ) > 0.
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Corollary XII.7. Let G be a countably infinite group. Assume that hRok
G (LG, λG) =

H(L, λ) for every probability space (L, λ). Then every Bernoulli shift over G has

completely positive outer Rokhlin entropy.

Proof. Let (L, λ) be a probability space, and let Gy (Y, ν) be a non-trivial factor of

(LG, λG). Let F be the G-invariant sub-σ-algebra of LG associated to (Y, ν).

First let us outline the idea of the proof in the case that H(L, λ) <∞. Let L be

the canonical partition of LG. If P is any non-trivial partition contained in F then

since L is a generating partition there must be a finite T ⊆ G and β ≤ L T with

dRok
λG (β,P) very small. It follows that

H(L T | β) = H(L T )− H(β) = |T | · H(L )− H(β)

is very close to H(L T | P) ≥ H(L T | F). Therefore H(L T | F) < |T | · H(L ) and

thus hRok
G,LG(L | F) < H(L ) by Corollary XII.4. If hRok

G,LG(Y, ν) = 0 then by applying

Corollary IX.4 we obtain

hRok
G (LG, λG) ≤ hRok

G,LG(Y, ν) + hRok
G,LG(L | F) = hRok

G,LG(L | F) < H(L ) = H(L, λ),

a contradiction.

Note that in the argument above we only needed that hRok
G (LG, λG) = H(L, λ)

for this fixed choice of (L, λ). Below we discuss the general case where H(L, λ)

need not be finite. In this case the argument is more technical and requires that

hRok
G (LG, λG) = H(L, λ) for all probability spaces (L, λ).

Fix an increasing sequence of finite partitions Ln of L with B(L) =
∨
n∈N σ-alg(Ln),

and let (Lk, λk) denote the factor of (L, λ) associated to Lk. Let L = {R` : ` ∈ L}

be the canonical partition of LG, where R` = {x ∈ LG : x(1G) = `}. We identify each

of the partitions Lk as coarsenings of L ⊆ B(LG). Note that (LGk , λ
G
k ) is the factor
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of (LG, λG) associated to σ-algG(Lk). When working with LGk , for m ≤ k we view

Lm as a partition of LGk in the natural way.

Fix a non-trivial finite partition P ⊆ F , and fix ε > 0 with 8ε < H(P). By

Corollary XI.5, there is m ∈ N, finite T ⊆ G, and β ≤ L T
m with dRok

λG (β,P) < ε. Now

fix δ > 0 with

δ <
ε

128|T |4
.

Fix a partition Q with F ⊆ σ-algG(Q) and H(Q) < hRok
G,LG(Y ) + δ. By Corollary XI.4,

there is a finite U ⊆ G and P ′ ≤ QU with dRok
λG (P ′,P) < ε. Now by Lemma XI.2 and

Corollary XI.5 there is k ≥ m, γ ⊆ σ-algG(Lk) with dRok
λG (γ,Q) < δ, and β′ ≤ γU

with dRok
λG (β′,P ′) < ε. Note that

H(γ) ≤ H(Q) + dRok
λG (γ,Q) < hRok

G,LG(Y ) + 2δ.

Since β′ ⊆ σ-algG(γ), β ≤ L T
m , and

dRok
λG (β′, β) ≤ dRok

λG (β′,P ′) + dRok
λG (P ′,P) + dRok

λG (P , β) < 3ε,

it follows from Lemma XI.1.(v) that

H(L T
m | σ-algG(γ)) ≤ H(L T

m | β′)

< H(L T
m | β) + 6ε

= H(L T
m )− H(β) + 6ε

< H(L T
m )− H(P) + 7ε

< H(L T
m )− ε

= |T | · H(Lm)− ε.

Since γ ∪Lm ⊆ σ-algG(Lk), we may work inside (LGk , λ
G
k ) and apply Corollary XII.4

to get

(12.1) hRok
G,LGk

(Lm | σ-algG(γ)) < H(Lm)− ε

32|T |4
.
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Now two applications of Corollary IX.4 and (12.1) give

hRok
G (LGk , λ

G
k ) ≤ hRok

G,LGk
(γ) + hRok

G (LGk , λ
G
k | σ-algG(γ))

≤ H(γ) + hRok
G,LGk

(Lm | σ-algG(γ)) + hRok
G (LGk , λ

G
k | σ-algG(Lm ∨ γ))

< hRok
G,LG(Y ) + 2δ + H(Lm)− ε

32|T |4
+ hRok

G (LGk , λ
G
k | σ-algG(Lm)).(12.2)

By assumption hRok
G (LGk , λ

G
k ) = H(Lk, λk) = H(Lk). So by Corollary IX.3 we have

hRok
G (LGk , λ

G
k ) ≤ H(Lm) + hRok

G (LGk , λ
G
k | σ-algG(Lm))

≤ H(Lm) + H(Lk |Lm)

= H(Lk)

= hRok
G (LGk , λ

G
k ),

implying that H(Lm)+hRok
G (LGk , λ

G
k |σ-algG(Lm)) = hRok

G (LGk , λ
G
k ). Plugging this into

(12.2) we obtain

hRok
G,LG(Y ) >

ε

32|T |4
− 2δ >

ε

64|T |4
> 0.
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CHAPTER XIII

Kolmogorov and Kolmogorov–Sinai theorems

In this chapter we study the computational properties of hRok
G (X,µ) for an ergodic

p.m.p. action G y (X,µ). It will be advantageous to allow (X,µ) to be either

atomless or purely atomic, and therefore we will need the following simple observation.

Lemma XIII.1. Let G y (X,µ) be a p.m.p. ergodic action, and let F be a G-

invariant sub-σ-algebra. If (X,µ) has an atom and F 6= B(X) then hRok
G (X,µ | F) is

the minimum of H(β | F) over all Borel partitions β with H(β | F) > 0.

Proof. By ergodicity, X is finite after removing a null set. Say |X| = n with each

point having measure 1/n. Then F is a finite σ-algebra and is therefore generated

by a finite G-invariant partition ζ of X. Each Z ∈ ζ has the same cardinality, say

|Z| = k for all Z ∈ ζ. So µ(Z) = k/n for every Z ∈ ζ. Our assumption B(X) 6= F

implies that k > 1. Let α = {A0, A1} be a two-piece partition with A0 consisting of

a single point. Then α is generating and in particular σ-algG(α) ∨ F = B(X). If β

is any Borel partition of X with H(β | F) > 0, then it admits a two-piece coarsening

ξ = {C,X \ C} with H(ξ | F) > 0. Pick any Z ′ ∈ ζ with ξ � Z ′ non-trivial and set

m = |C ∩ Z ′|. Then 1 ≤ m ≤ k − 1 and we have

H(β | F) ≥ H(ξ | F) ≥ k

n
· H
(m
k
, 1− m

k

)
≥ k

n
· H
(

1

k
, 1− 1

k

)
= H(α | F).
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Recall that a real-valued function f on a topological space X is called upper-

semicontinuous if for every x ∈ X and ε > 0 there is an open set U containing x with

f(y) < f(x) + ε for all y ∈ U . When X is first countable, this is equivalent to saying

that f(x) ≥ lim sup f(xn) whenever (xn) is a sequence converging to x. We observe

a simple property.

Lemma XIII.2. Let X be a topological space, let fε : X → [0,∞), ε > 0, be a family

of upper-semicontinuous functions and set g = limε→0 fε. Assume that fδ(x) ≥ fε(x)

for δ < ε and that fε(x) ≥ g(x)− ε. Then g : X → R is upper-semicontinuous.

Proof. Fix x ∈ X and ε > 0. Since fε/2 is upper-semicontinuous, there is an open

neighborhood U of x with fε/2(y) < fε/2(x) + ε/2 for all y ∈ U . Then for y ∈ U we

have g(y) ≤ fε/2(y) + ε/2 ≤ fε/2(x) + ε ≤ g(x) + ε.

We now present the analogue of the Kolmogorov–Sinai theorem [44]. We remind

the reader that the partitions αn and γn mentioned below always exist (see Chapter

II). The theorem below is a relative version of Theorem I.14 stated in the introduction.

In particular, Theorem I.14 follows immediately from the theorem below by taking

F = {X,∅}.

Theorem XIII.3. Let G y (X,µ) be a p.m.p. ergodic action, and let F be a G-

invariant sub-σ-algebra. Let (αn)n∈N and (γn)n∈N be increasing sequences of par-

titions satisfying H(αn),H(γn) < ∞, B(X) =
∨
n∈N σ-algG(αn ∨ γn), and F =∨

n∈N σ-algG(γn). If

(13.1) inf
n∈N

lim
ε→0

sup
m∈N

inf
k∈N

inf
T⊆G
T finite

inf
{

H(β |αTn ∨γTk ) : β ≤ αTk ∨γTk , H(αm |βT ∨γTk ) < ε
}

is positive then hRok
G (X,µ | F) = ∞. On the other hand, if the expression above is
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equal to 0 then hRok
G (X,µ | F) is equal to

(13.2) lim
ε→0

sup
m∈N

inf
k∈N

inf
T⊆G
T finite

inf
{

H(β | γTk ) : β ≤ αTk ∨ γTk , H(αm | βT ∨ γTk ) < ε
}
.

Note that one can equivalently use limits for n, m, and k in the above formulas.

In particular, the expressions above are only of interest when n << m << k.

Proof. If F = B(X) then hRok
G (X,µ | F) and all expressions above are 0. So we

assume that F is a proper sub-σ-algebra. First suppose that hRok
G (X,µ |F) <∞. Fix

a countable partition ξ with H(ξ | F) <∞ and σ-algG(ξ) ∨ F = B(X). Fix δ > 0. If

(X,µ) has an atom then X is essentially finite and H(ξ) <∞. In this case set ξ′ = ξ.

Otherwise, if (X,µ) is non-atomic then we can apply Theorem I.6 to get a partition

ξ′ with H(ξ′) < ∞, H(ξ′ | F) < H(ξ | F) + δ/2 and σ-algG(ξ′) ∨ F = B(X). Since

H(ξ′) <∞, we can fix n ∈ N with

H(ξ′ | σ-algG(αn ∨ γn)) < δ/2 and H(ξ′ | σ-algG(γn)) < H(ξ | F) + δ/2.

Fix m ∈ N and 0 < ε < δ. Let k0 ∈ N and T0 ⊆ G be finite with:

H(ξ′ | αT0
n ∨ γT0

n ) < δ/2,

H(ξ′ | γT0
n ) < H(ξ | F) + δ/2,

and H(αm | ξ′T0 ∨ γT0
k0

) < ε/2.

Apply Corollary XI.5 to get k ≥ max(k0, n), a finite T ⊆ G with T0 ⊆ T , and a

partition β ≤ αTk ∨ γTk with dRok
µ (β, ξ′) < ε/(4|T0|). Then

H(αm | βT ∨ γTk ) ≤ H(αm | βT0 ∨ γT0
k0

) ≤ H(αm | ξ′T0 ∨ γT0
k0

) + 2|T0| · dRok
µ (β, ξ′) < ε.

Furthermore,

H(β | αTn ∨ γTk ) ≤ H(β | αT0
n ∨ γT0

n ) ≤ H(ξ′ | αT0
n ∨ γT0

n ) + dRok
µ (β, ξ′) < δ
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and

H(β | γTk ) ≤ H(β | γT0
n ) ≤ H(ξ′ | γT0

n ) + dRok
µ (β, ξ′) < H(ξ | F) + δ.

Thus since m and ε do not depend on ξ or δ we deduce that (13.1) is less than or equal

to δ and (13.2) is less than or equal to H(ξ |F)+δ. Since ξ and δ were arbitrary, (13.1)

must be 0 and (13.2) must be at most hRok
G (X,µ |F). Note that (13.2) must always be

bounded above by hRok
G (X,µ | F) since this trivially holds when hRok

G (X,µ | F) =∞.

Now suppose that (13.1) is 0. We will show that hRok
G (X,µ | F) is less than or

equal to (13.2). Denote the value of (13.2) by h′. This is automatic if h′ is infinite,

so we assume that it is finite.

First assume that (X,µ) has an atom. Fix m sufficiently large so that H(αm |F) >

0. Such an m exists since we are assuming that F is properly contained in B(X).

Now let ε < H(αm | F). If β is a partition and H(αm | βT ∨ γTk ) < ε then βT 6⊆ F .

Since F is G-invariant, β 6⊆ F and hence H(β | F) > 0 by Lemma II.2. Therefore it

follows from Lemma XIII.1 that hRok
G (X,µ | F) is less than or equal to h′.

Now assume that (X,µ) is non-atomic. Fix δ > 0. Since (13.1) is 0, for each i ≥ 1

we can pick n(i) with

lim
ε→0

sup
m∈N

inf
k∈N

inf
T⊆G
T finite

inf
{

H(β | αTn(i) ∨ γTk ) : β ≤ αTk ∨ γTk , H(αm | βT ∨ γTk ) < ε
}
<

δ

2i
.

Next, for i ≥ 1 we consider ε = δ/2i and m = n(i + 1) in the above expression in

order to obtain a partition βi of X with

H
(
βi

∣∣∣σ-algG(αn(i)) ∨ F
)
<

δ

2i
and H

(
αn(i+1)

∣∣∣σ-algG(βi) ∨ F
)
<

δ

2i
.

By Theorem I.6, there are partitions ξi with H(ξi) < δ/2i and αn(i+1) ⊆ σ-algG(βi ∨

ξi) ∨ F . Apply Theorem I.6 again to obtain partitions β′i with H(β′i) < δ/2i and

βi ⊆ σ-algG(β′i ∨ αn(i)) ∨ F . Observe that

αn(i+1) ⊆ σ-algG(βi ∨ ξi) ∨ F ⊆ σ-algG(αn(i) ∨ β′i ∨ ξi) ∨ F .
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Now, by considering (13.2) with ε < δ and m = n(1) we obtain a partition ζ with

H(ζ | F) < h′ + δ and H(αn(1) | σ-algG(ζ) ∨ F) < δ. Apply Theorem I.6 to obtain a

partition ζ ′ with H(ζ ′) < δ and αn(1) ⊆ σ-algG(ζ ∨ ζ ′) ∨ F . Then by induction we

have that for all i

(13.3) αn(i) ⊆ σ-algG

(
ζ ∨ ζ ′ ∨ β′1 ∨ ξ1 ∨ · · · ∨ β′i−1 ∨ ξi−1

)
∨ F .

Since
∞∑
i=1

(
H(β′i) + H(ξi)

)
<
∞∑
i=1

2 · δ
2i

= 2δ

is finite, the partition χ =
∨
i≥1 β

′
i∨ ξi is essentially countable and satisfies H(χ) < 2δ

(see Lemmas II.2 and II.3). From (13.3) we see that B(X) = σ-algG(ζ ∨ ζ ′ ∨ χ) ∨ F

and hence

hRok
G (X,µ | F) ≤ H(ζ ∨ ζ ′ ∨ χ | F) ≤ H(ζ | F) + H(ζ ′) + H(χ) < h′ + 4δ.

Recall that for a standard Borel space X and a Borel action G y X, we write

EG(X) for the collection of ergodic invariant Borel probability measures on X.

Corollary XIII.4. Let G be a countable group, let X be a standard Borel space,

let G y X be a Borel action, and let F be a G-invariant sub-σ-algebra. Suppose

there is a countable collection of Borel sets C such that F is the smallest G-invariant

σ-algebra containing C. Then the map µ ∈ EG(X) 7→ hRok
G (X,µ | F) is Borel.

Proof. Since X is a standard Borel space, there is a countable collection of Borel

sets A = {An : n ∈ N} such that B(X) is the smallest σ-algebra containing A.

In particular, there is an increasing sequence (αn) of finite Borel partitions of X

which mutually generate B(X). Similarly, our assumptions imply that there is an

increasing sequence (γn) of finite Borel partitions such that F is the smallest G-

invariant σ-algebra containing all of the γn’s. The space EG(X) of invariant ergodic
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Borel probability measures µ on X has a natural standard Borel structure which

is generated by the maps µ 7→ µ(A) for A ⊆ X Borel [25, Theorem 17.24]. In

particular, for finite T ⊆ G and for finite Borel partitions β the maps µ 7→ Hµ(β |γTk ),

µ 7→ Hµ(β |αTn ∨ γTk ), and µ 7→ Hµ(αm | βT ∨ γTk ) are Borel. So the claim follows from

Theorem XIII.3.

From Theorem XIII.3 we derive the following analogue of the Kolmogorov theorem

from entropy theory [33, 34]. Recall that the classical Kolmogorov theorem states

that if G is amenable, Gy (X,µ) is an ergodic p.m.p. action, and α is a generating

partition with H(α) <∞, then the Kolmogorov–Sinai entropy hG(X,µ) satisfies

hG(X,µ) = inf
T⊆G
T finite

1

|T |
· H(αT ).

Corollary XIII.5. Let G y (X,µ) be a p.m.p. ergodic action. Let F be a G-

invariant sub-σ-algebra and let (γn)n∈N be an increasing sequence of partitions with

H(γn) < ∞ and F =
∨
n∈N σ-algG(γn). If α is a partition with H(α) < ∞ and

σ-algG(α) ∨ F = B(X) then

hRok
G (X,µ | F) = lim

ε→0
inf
k∈N

inf
T⊆G
T finite

inf
{

H(β | γTk ) : β ≤ αT ∨ γTk and H(α | βT ∨ γTk ) < ε
}
.

Proof. We have that hRok
G (X,µ |F) ≤ H(α) <∞. So, setting αn = α for all n ∈ N, we

know by Theorem XIII.3 that hRok
G (X,µ | F) is given by (13.2). Since each αn = α,

this is identical to the formula above.

Next, we make a simple observation.

Lemma XIII.6. Let Gy (X,µ) be a p.m.p. ergodic action. Let F be a G-invariant

sub-σ-algebra and let (γn)n∈N be an increasing sequence of partitions with H(γn) <∞

and F =
∨
n∈N σ-algG(γn). If α is a partition with H(α) < ∞ and σ-algG(α) ∨ F =
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B(X) then for every ε > 0

inf
k∈N

inf
T⊆G
T finite

inf
{

H(β | γTk ) : β ≤ αT ∨ γTk and H(α | βT ∨ γTk ) < ε
}
≥ hRok

G (X,µ | F)− ε.

Proof. Fix ε > 0. First suppose that (X,µ) has an atom. Then by ergodicity X is

finite. Fix k ∈ N, T ⊆ G, and β ≤ αT ∨ γTk with H(α | βT ∨ γTk ) < ε. If H(β | F) > 0

then

H(β | γTk ) ≥ H(β | F) ≥ hRok
G (X,µ | F)

by Lemma XIII.1 and we are done. On the other hand, if H(β | F) = 0 then β ⊆ F

by Lemma II.2 and thus

hRok
G (X,µ | F) ≤ H(α | F) ≤ H(α | βT ∨ γTk ) < ε.

It follows that H(β | γTk ) ≥ 0 > hRok
G (X,µ | F)− ε.

Now suppose that (X,µ) is non-atomic. If β is a partition with H(α |βT ∨γTk ) < ε,

then by applying Theorem I.6 we can obtain a partition ξ with H(ξ) < ε and α ⊆

σ-algG(β ∨ ξ) ∨ F . Then B(X) = σ-algG(α) ∨ F = σ-algG(β ∨ ξ) ∨ F so that

hRok
G (X,µ | F) ≤ H(β ∨ ξ | F) ≤ H(β | F) + H(ξ) < H(β | γTk ) + ε.

It follows that H(β | γTk ) > hRok
G (X,µ | F)− ε as required.

For a p.m.p. action Gy (X,µ) and a partition α of X, the G-invariant σ-algebra

σ-algG(α) is associated to a factor G y (Y, ν) of (X,µ). From Corollary XIII.5 we

obtain the following dependence of hRok
G (Y, ν) on α. Recall from Chapter II that PH

is the space of all countable Borel partitions α with H(α) <∞.

Corollary XIII.7. Let G y (X,µ) be a p.m.p. ergodic action and let F be a G-

invariant sub-σ-algebra. For α ∈ PH, let G y (Yα, να) be the factor of (X,µ)

associated to σ-algG(α) ∨ F , and let Fα be the image of F in Yα. Then the map

α ∈PH 7→ hRok
G (Yα, να | Fα)
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is upper-semicontinuous in the metric dRok
µ .

Proof. Fix an increasing sequence (γn)n∈N of finite partitions of X satisfying F =∨
n∈N σ-algG(γn). Such a sequence always exists; see Chapter II. Set

fε(α) = inf
k∈N

inf
T⊆G
T finite

inf
{

H(β | γTk ) : β ≤ αT ∨ γTk and H(α | βT ∨ γTk ) < ε
}

and set g(α) = limε→0 fε(α). Using the natural one-to-one measure-preserving cor-

respondence between the σ-algebras B(Yα) and σ-algG(α) ∨ F , we see by Corollary

XIII.5 that g(α) = hRok
G (Yα, να | Fα). Each function fε is upper-semicontinuous in

dRok
µ by Lemmas XI.1 and XI.2, and fε(α) ≥ g(α) − ε by Lemma XIII.6. Therefore

g(α) is upper-semicontinuous by Lemma XIII.2.

In fact, with the same proof we obtain the following.

Corollary XIII.8. Let G y (X,µ) be a p.m.p. ergodic action. For α, γ ∈ PH, let

G y (Y(α,γ), ν(α,γ)) be the factor of (X,µ) associated to σ-algG(α ∨ γ), and let γ′ be

the image of γ in Y(α,γ). Then the map

(α, γ) ∈PH ×PH 7→ hRok
G (Y(α,γ), ν(α,γ)|σ-algG(γ′))

is upper-semicontinuous in the metric dRok
µ × dRok

µ .

The upper-semicontinuity property provides the following alternative method for

computing Rokhlin entropy.

Corollary XIII.9. Let Gy (X,µ) be a p.m.p. ergodic action, let F be a G-invariant

sub-σ-algebra, and let α be a partition with H(α) < ∞ and σ-algG(α) ∨ F = B(X).

Fix an increasing sequence of partitions αn ≤ α with α =
∨
n∈N αn, and for each n

let Gy (Yn, νn) be the factor of (X,µ) associated to σ-algG(αn) ∨ F . Also let Fn be

the image of F in Yn. Then hRok
G (X,µ | F) = limn→∞ h

Rok
G (Yn, νn | Fn).
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Proof. If (X,µ) has an atom then X is essentially finite and so is α. Thus the claim is

trivial in this case since αn = α, Yn = X, and Fn = F for all sufficiently large n. Now

suppose that (X,µ) is non-atomic. Observe that dRok
µ (αn, α) = H(α |αn) tends to 0 by

Lemma II.2. Fix ε > 0. By Corollary XIII.7 there is δ > 0 so that if β is any partition

with dRok
µ (β, α) < δ then hRok

G (Yβ, νβ | Fβ) < hRok
G (X,µ | F) + ε, where (Yβ, νβ) is the

factor associated to σ-algG(β)∨F and Fβ is the image of F . Let n be sufficiently large

so that dRok
µ (αn, α) < min(δ, ε/2). Then hRok

G (Yn, νn | Fn) < hRok
G (X,µ | F) + ε. For

the other inequality, fix a partition ξn of Yn with H(ξn | Fn) < hRok
G (Yn, νn | Fn) + ε/2

and σ-algG(ξn) ∨ Fn = B(Yn). Pull back ξn to a partition ξ of X. Then

H(ξ | F) = H(ξn | Fn) < hRok
G (Yn, νn | Fn) + ε/2

and σ-algG(ξ)∨F = σ-algG(αn)∨F . We have H(α |σ-algG(ξ)∨F) ≤ H(α |αn) < ε/2,

so by Theorem I.6 there is a partition ζ with H(ζ) < ε/2 and α ⊆ σ-algG(ζ ∨ ξ) ∨F .

Thus σ-algG(ζ ∨ ξ) ∨ F = B(X) and hence

hRok
G (X,µ | F) ≤ H(ζ ∨ ξ | F) ≤ H(ξ | F) + H(ζ) < hRok

G (Yn, νn | Fn) + ε.

Finally, we consider the upper-semicontinuity of Rokhlin entropy as a function of

the ergodic probability measure.

Corollary XIII.10. Let G be a countable group, let L be a finite set, and let LG

have the product topology. Let C be a countable collection of clopen sets, and let F

be the smallest G-invariant σ-algebra containing C. Then the map µ ∈ EG(LG) 7→

hRok
G (LG, µ | F) is upper-semicontinuous in the weak∗-topology.

Proof. Let L = {R` : ` ∈ L} be the canonical generating partition for LG, where

R` = {x ∈ LG : x(1G) = `}. Choose an increasing sequence of finite partitions γk

contained in the algebra generated by C with F =
∨
k∈N σ-algG(γk). Then any set D
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in L T , γTk , or any β ≤ L T is clopen and hence the map µ 7→ µ(D) is continuous.

Similarly, the maps µ 7→ Hµ(β|γTk ) and µ 7→ Hµ(L |βT∨γTk ) are continuous. Therefore

each function

fε(µ) = inf
k∈N

inf
T⊆G
T finite

inf
{

Hµ(β | γTk ) : β ≤ L T and Hµ(L | βT ∨ γTk ) < ε
}

is upper-semicontinuous. Setting g(µ) = limε→0 fε(µ), Corollary XIII.5 implies that

g(µ) = hRok
G (LG, µ | F). By Lemmas XIII.6 and XIII.2 we have that g(µ) is upper-

semicontinuous.
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CHAPTER XIV

Approximately Bernoulli partitions

In this chapter we will show how to construct generating partitions which are

approximately Bernoulli. This will allow us to use Corollary XIII.10 in order to

study the Rokhlin entropy values of Bernoulli shifts. We begin with a few lemmas.

Lemma XIV.1. Let G y (X,µ) be a p.m.p. ergodic action, let F be a G-invariant

sub-σ-algebra, and let B ∈ F with µ(B) > 0. Then there is a finite collection

Φ ⊆ [[EX
G ]] of F-expressible functions such that {dom(φ) : φ ∈ Φ} partitions X

and rng(φ) ⊆ B for every φ ∈ Φ.

Proof. We claim that there is a finite partition γ ⊆ F with µ(C) ≤ µ(B) for every

C ∈ γ. If the factor Gy (Y, ν) of (X,µ) associated to F is purely atomic then we can

simply let γ be the pre-image of the partition of Y into points. On the other hand,

if (Y, ν) is non-atomic then we can find such a partition in Y and let γ be its pre-

image. Now by Lemma III.5, for every C ∈ γ there is an F -expressible φC ∈ [[EX
G ]]

with dom(φC) = C and rng(φC) ⊆ B. Then Φ = {φC : C ∈ γ} has the desired

properties.

Lemma XIV.2. Let Gy (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic,

let F be a G-invariant sub-σ-algebra, and let B ∈ F . If ξ is a countable partition of
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X and p̄ = (pi) is a probability vector with

H(ξ | F) < µ(B) · H(p̄),

then there is a partition α = {Ai : 0 ≤ i < |p̄|} of B with µ(Ai) = pi · µ(B) for every

0 ≤ i < |p̄| and with ξ ⊆ σ-algG(α′) ∨ F for every partition α′ of X extending α.

Proof. Let Φ ⊆ [[EX
G ]] be as given by Lemma XIV.1. For φ ∈ Φ, define a partition ξφ

of X by

ξφ =
{
X \ rng(φ)

}
∪ φ
(
ξ � dom(φ)

)
,

and set ζ =
∨
φ∈Φ ξφ. Note that ζ is countable since Φ is finite. Also observe that

(14.1) µ(rng(φ)) · Hrng(φ)(ξφ | F) = µ(dom(φ)) · Hdom(φ)(ξ | F)

since φ is a B(X) and F measure-preserving bijection from dom(φ) to rng(φ) by

Lemma III.2.

We claim that ξ ⊆ σ-algG(ζ) ∨ F . Consider C ∈ ξ and φ ∈ Φ. Since φ is F -

expressible, we have rng(φ) ∈ F . Thus ξφ � rng(φ) ⊆ σ-algG(ζ) ∨ F . It follows from

Lemmas III.2 and III.3 that

φ−1(ξφ � rng(φ)) ⊆ σ-algG(ζ) ∨ F .

Since C ∩ dom(φ) is an element of the set on the left, and since C is the union of

C ∩ dom(φ) for φ ∈ Φ, we conclude that ξ ⊆ σ-algG(ζ) ∨ F .

For g ∈ G define γg ∈ [[EX
G ]] with dom(γg) = rng(γg) = B by the rule

γg(x) = y ⇐⇒ y = gi · x where i > 0 is least with gi · x ∈ B.

By the Poincaré recurrence theorem, the domain and range of γg are indeed conull in

B. Note that γg is F -expressible since B ∈ F . Let Γ be the group of transformations
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of B generated by {γg : g ∈ G}. Then every γ ∈ Γ is F expressible by Lemma III.3.

Let µB denote the normalized restriction of µ to B, so that µB(A) = µ(A∩B)/µ(B).

Since µ is ergodic, it is not difficult to check that the action of Γ on (B, µB) is ergodic.

Similarly, since µ is non-atomic µB is non-atomic as well. Using (14.1) and the fact

that dom(φ), rng(φ) ∈ F , we have

µ(B) · HµB(ζ | F) = µ(B) · HB(ζ | F)

≤
∑
φ∈Φ

µ(B) · HB(ξφ | F)

=
∑
φ∈Φ

µ(rng(φ)) · Hrng(φ)(ξφ | F)

=
∑
φ∈Φ

µ(dom(φ)) · Hdom(φ)(ξ | F)

= H(ξ | F)

< µ(B) · H(p̄).

So by Theorem I.6 there is a partition α = {Ai : 0 ≤ i < |p̄|} of B with µB(Ai) = pi

for every 0 ≤ i < |p̄| and with ζ � B ⊆ σ-algΓ(α)∨F . Since ζ � (X \B) is trivial and

X \B ∈ F , it follows that ζ ⊆ σ-algΓ(α) ∨ F .

Since Ai ⊆ B and µB(Ai) = pi, it follows that µ(Ai) = pi · µ(B). Now let α′

be a partition of X extending α. Since Γ is F -expressible, it follows from Lemma

III.2 that σ-algG(α′) ∨ F is Γ-invariant. Since also B ∈ F and α = α′ � B, we have

σ-algΓ(α) ∨ F ⊆ σ-algG(α′) ∨ F . Therefore ζ ⊆ σ-algG(α′) ∨ F and hence

ξ ⊆ σ-algG(ζ) ∨ F ⊆ σ-algG(α′) ∨ F .

The following lemma is, in some ways, a strengthening of Theorem I.6.

Lemma XIV.3. Let Gy (X,µ) be a p.m.p. ergodic action with (X,µ) non-atomic,

let F be a G-invariant sub-σ-algebra, and let ξ be a countable Borel partition of X. If
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β ⊆ F is a collection of pairwise disjoint Borel sets and {p̄B : B ∈ β} is a collection

of probability vectors with

H(ξ | F) <
∑
B∈β

µ(B) · H(p̄B),

then there is a partition α = {Ai : 0 ≤ i < |α|} of ∪β with µ(Ai ∩B) = pBi · µ(B) for

every B ∈ β and 0 ≤ i < |α| and with ξ ⊆ σ-algG(α′)∨F for every partition α′ of X

extending α.

Proof. Fix ε > 0 with

H(ξ | F) <
∑
B∈β

µ(B) · H(p̄B)− ε · µ(∪β).

For each B ∈ β, fix any probability vector q̄B satisfying

µ(B) · H(p̄B)− ε · µ(B) < H(q̄B) < µ(B) · H(p̄B).

Let r̄ be the probability vector which represents the independent join of the q̄B’s.

Specifically, r̄ = (rπ)π∈Nβ where

rπ =
∏
B∈β

qBπ(B).

Then

H(r̄) =
∑
B∈β

H(q̄B) >
∑
B∈β

µ(B) · H(p̄B)− ε · µ(∪β) > H(ξ | F).

So by Theorem I.6 there is a partition γ = {Cπ : π ∈ Nβ} with ξ ⊆ σ-algG(γ) ∨ F

and with µ(Cπ) = rπ for every π ∈ Nβ.

For each B ∈ β, let γB be the coarsening of γ associated to q̄B. Specifically,

γB = {CB
i : 0 ≤ i < |q̄B|} where

CB
i =

⋃
π∈Nβ
π(B)=i

Cπ.
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Note that γ =
∨
B∈β γ

B. Also note that µ(CB
i ) = qBi and H(γB) = H(q̄B) < µ(B) ·

H(p̄B). For each B ∈ β we apply Lemma XIV.2 to γB in order to obtain a partition

αB = {ABi : 0 ≤ i < |p̄B|} of B with µ(ABi ) = µ(B) · pBi and γB ⊆ σ-algG(ζ) ∨ F for

every partition ζ of X extending αB. Now define α = {Ai : 0 ≤ i < |α|} where Ai =⋃
B∈β A

B
i . Then for B ∈ β and 0 ≤ i < |α| we have µ(Ai ∩ B) = µ(ABi ) = pBi · µ(B).

Furthermore, if α′ is a partition of X which extends α, then α′ extends every αB and

hence γB ⊆ σ-algG(α′) ∨ F . It follows that

ξ ⊆ σ-algG(γ) ∨ F ⊆ σ-algG(α′) ∨ F .

We will need the result of Abért and Weiss that all free actions weakly contain

Bernoulli shifts [1]. The following is a slightly modified statement of their result,

obtained by invoking [1, Lemma 5] and performing a perturbation.

Theorem XIV.4 (Abért–Weiss [1]). Let Gy (X,µ) be a p.m.p. free action, and let

p̄ = (pi) be a finite probability vector. If T ⊆ G is finite and ε > 0, then there is a

partition γ = {Ci : 0 ≤ i < |p̄|} of X such that µ(Ci) = pi for every 0 ≤ i < |p̄| and

H(γT )/|T | > H(γ)− ε.

We are almost ready to construct approximately Bernoulli generating partitions.

For this construction we will find it more convenient to use Borel partitions of

([0, 1], λ), where λ is Lebesgue measure, in place of probability vectors. We first

make a simple observation.

Lemma XIV.5. If Q ≤ P are finite partitions of ([0, 1], λ) and 0 < r < H(P | Q),

then there is a finite partition R such that Q ≤ R and H(P | R) = r.

Proof. Fix a dRok
λ -continuous 1-parameter family of finite partitions Qt, 0 ≤ t ≤ 1,

such that Q0 = Q, Q1 = P , and Q ≤ Qt for all t. The function t 7→ H(P | Qt) is
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continuous, H(P | Q0) = H(P | Q) > r, and H(P | Q1) = H(P | P) = 0. Therefore

there is t ∈ (0, 1) with H(P | Qt) = r. Set R = Qt.

For countable partitions α and β of (X,µ) recall from Chapter XI the metric

dµ(α, β) = inf
{
µ(Y ) : Y ⊆ X and α � (X \ Y ) = β � (X \ Y )

}
.

For every n ∈ N the restrictions of dµ and dRok
µ to the space of n-piece partitions are

uniformly equivalent [15, Fact 1.7.7]. We will temporarily need to use this metric in

the proof of the next theorem.

Recall that for a countable ordered partition α = {Ai : 0 ≤ i < |α|} we let

dist(α) denote the probability vector having ith term µ(Ai). For B ⊆ X we also write

distB(α) for the probability vector having ith term µ(Ai ∩B)/µ(B).

Theorem XIV.6. Let G be a countably infinite group and let G y (X,µ) be a free

p.m.p. ergodic action. Let P and Q be ordered countable partitions of ([0, 1], λ) with

Q ≤ P and H(P) < ∞. If hRok
G (X,µ) < H(P | Q), then for every finite T ⊆ G and

ε > 0 there is an ordered generating partition α with dist(α) = dist(P),

1

|T |
· H(αT ) > H(α)− ε,

and hRok
G,X(β) < ε, where β is the coarsening of α corresponding to Q ≤ P.

We point out that we do not prove any relative Rokhlin entropy version of this

theorem. We believe that a relative version should be true, but its proof would require

modifying the Abért–Weiss argument.

Proof. First assume that P is finite. Apply Lemma XIV.5 to obtain a finite partition

R of [0, 1] which is finer than Q and satisfies

hRok
G (X,µ) < H(P | R) < hRok

G (X,µ) +
ε

256 · |T |3
.
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Without loss of generality, we may assume that λ(R) > 0 for every R ∈ R. Set s =

minR∈R λ(R). Since dµ and dRok
µ are uniformly equivalent on the space of partitions

of X having at most |P| pieces, there is

0 < κ <
ε

256 · |T |3 · H(P)

satisfying

hRok
G (X,µ) < (1− κ) · H(P | R)

such that dRok
µ (ξ, ξ′) < ε/8 whenever ξ and ξ′ are partitions of X with at most |P|

pieces and with dµ(ξ, ξ′) ≤ κ.

By Theorem II.1, there is a factor Gy (Y, ν) of (X,µ) such that

hRok
G (Y, ν) < sκ · H(P) <

ε

256 · |T |3

and G acts freely on (Y, ν). Let F be the sub-σ-algebra of X associated to (Y, ν).

Note that by Corollary IX.3

hRok
G (X,µ) ≤ hRok

G (X,µ | F) + hRok
G (Y, ν) < hRok

G (X,µ | F) +
ε

256 · |T |3
.

Therefore

(14.2) H(P | R) < hRok
G (X,µ) +

ε

256 · |T |3
< hRok

G (X,µ | F) +
ε

128 · |T |3
.

Since G acts freely on (Y, ν), the Abért–Weiss theorem implies that there is an ordered

partition γ = {Ck : 0 ≤ k < |R|} ⊆ F with dist(γ) = dist(R) and

(14.3)
1

|T |
· H(γT ) > H(γ)− ε

2
.

By construction hRok
G (Y, ν) < sκ · H(P). So by applying Theorem I.6 to (Y, ν)

(and invoking Lemma II.6) we obtain a set Z0 ∈ F with µ(Z0) = sκ and a partition

α0 = {A0
i : 0 ≤ i < |P|} ⊆ F of Z0 with F = σ-algred

G (α0) and

(14.4) µ(A0
i ) = sκ · λ(Pi) = µ(Z0) · λ(Pi)
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for every 0 ≤ i < |P|. Note that

µ(Z0 ∩ Ck) ≤ µ(Z0) = sκ ≤ κ · λ(Rk) = κ · µ(Ck)

for all 0 ≤ k < |R| since dist(γ) = dist(R). Since (Y, ν) is non-atomic and {Z0}∪γ ⊆

F , it follows from the above inequality that there exists Z1 ∈ F such that Z1∩Z0 = ∅,

µ(Z1) = 1− κ, and µ(Z1 ∩ C) = (1− κ) · µ(C) for every C ∈ γ.

Consider the collection γ � Z1 of pairwise disjoint sets. For each Ck ∩ Z1 ∈ γ � Z1

define the probability vector p̄Ck∩Z1 = distRk(P). We have

hRok
G (X,µ | F) ≤ hRok

G (X,µ)

< (1− κ) · H(P | R)

=
∑

0≤k<|R|

(1− κ)λ(Rk) · HRk(P)

=
∑

0≤k<|R|

µ(Ck ∩ Z1) · H(p̄Ck∩Z1).

So by Lemma XIV.3, there is a partition α1 = {A1
i : 0 ≤ i < |P|} of Z1 with

(14.5) µ(A1
i ∩ Ck ∩ Z1) =

λ(Rk ∩ Pi)
λ(Rk)

· µ(Ck ∩ Z1) = (1− κ) · λ(Rk ∩ Pi)

for every i and k and with σ-algG(α′) ∨F = B(X) for all partitions α′ extending α1.

Note that

(14.6) µ(A1
i ) = (1− κ) · λ(Pi) = µ(Z1) · λ(Pi)

for every i.

Set Z2 = X \ (Z0 ∪ Z1). Pick any partition α2 = {A2
i : 0 ≤ i < |P|} of Z2 with

(14.7) µ(A2
i ) = λ(Pi) · µ(Z2)

for every i. Set α = {Ai : 0 ≤ i < |P|} where Ai = A0
i ∪ A1

i ∪ A2
i . Then µ(Ai) =

λ(Pi) for every i by (14.4), (14.6), and (14.7). Additionally, α extends α0 and thus
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F ⊆ σ-algG(α) by Lemma II.5. Similarly, α extends α1 so

B(X) = σ-algG(α) ∨ F = σ-algG(α).

Thus α is generating.

By (14.5), the partition α∨γ almost has the same distribution as P ∨R. We next

perturb α so that the joint distribution with γ will be precisely the distribution of

P ∨ R. Using (14.5), we may pick a partition α∗ = {A∗i : 0 ≤ i < |P|} extending α1

and satisfying µ(A∗i ∩ Ck) = λ(Pi ∩ Rk) for all 0 ≤ i < |P| and 0 ≤ k < |R|. Then

dist(α) = dist(α∗) = dist(P) and dµ(α, α∗) ≤ µ(Z0 ∪ Z2) = κ. It follows from the

definition of κ that dRok
µ (α, α∗) < ε/8 and thus by (14.2)

H(α | γ) < H(α∗ | γ) + ε/8

= H(P | R) + ε/8

< hRok
G (X,µ | F) + ε/4

≤ H(α | F) + ε/4.(14.8)

Let β and β∗ be the coarsenings of α and α∗, respectively, corresponding to the

coarsening Q of P . Since µ(A∗i ∩ Ck) = λ(Pi ∩ Rk) for all i and k, there is an

isomorphism (X,µ) → ([0, 1], λ) of measure spaces which identifies α∗ with P and

γ with R. Since Q is coarser than R, it follows that β∗ is coarser than γ. So

β∗ ⊆ F and hence hRok
G,X(β∗) ≤ hRok

G (Y, ν) < ε/8. Additionally, dµ(α, α∗) ≤ κ implies

dµ(β, β∗) ≤ κ and thus dRok
µ (β, β∗) < ε/8. It follows that H(β | β∗) < ε/8 and hence

hRok
G,X(β) < ε/4 < ε as required.

Finally, we check that H(αT )/|T | > H(α) − ε. Using (14.2) and the fact that
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Z0, Z1, Z2 ∈ F , we have

H(α | F) = µ(Z0 ∪ Z2) · HZ0∪Z2(α | F) + µ(Z1) · HZ1(α | F)

≤ µ(Z0 ∪ Z2) · HZ0∪Z2(α) + HZ1(α | γ)

= κ · H(P) + H(P | R)

<
ε

256 · |T |3
+ hRok

G (X,µ | F) +
ε

128 · |T |3

< hRok
G (X,µ | F) +

ε

64 · |T |3

Applying Theorem XII.3, we conclude that

1

|T |
· H(αT | γT ) ≥ 1

|T |
· H(αT | F) ≥ H(α | F)− ε

4
.

From the above inequality and (14.8) we obtain

(14.9)
1

|T |
· H(αT | γT ) > H(α | γ)− ε

2
.

Also, we observe that

(14.10) H(γT | αT ) ≤
∑
t∈T

H(t · γ | αT ) ≤
∑
t∈T

H(t · γ | t · α) = |T | · H(γ | α).

Therefore, using (14.3), (14.9), and (14.10), we have

1

|T |
· H(αT ) =

1

|T |
· H(αT ∨ γT )− 1

|T |
· H(γT | αT )

=
1

|T |
· H(γT ) +

1

|T |
· H(αT | γT )− 1

|T |
· H(γT | αT )

> H(γ)− ε/2 + H(α | γ)− ε/2− H(γ | α)

= H(α ∨ γ)− ε− H(γ | α)

= H(α)− ε.

To complete the proof, we consider the case where P is countably infinite. By

Lemma II.2, there is a finite Q0 ≤ Q so that H(Q|Q0) < ε/2. Note that hRok
G (X,µ) <
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H(P|Q) ≤ H(P|Q0). Now choose a finite P0 ≤ P such thatQ0 ≤ P0, H(P|P0) < ε/2,

and hRok
G (X,µ) < H(P0 |Q0). Apply the above argument to get a generating partition

α0 with dist(α0) = dist(P0), H(αT0 )/|T | > H(α0) − ε/2, and hRok
G,X(β0) < ε/2, where

β0 is the coarsening of α0 corresponding to Q0. Since (X,µ) is non-atomic, we may

choose α ≥ α0 with dist(α) = P . Clearly α is still generating. Since H(α | α0) =

H(P | P0) < ε/2, we have

1

|T |
· H(αT ) ≥ 1

|T |
· H(αT0 ) > H(α0)− ε/2 > H(α)− ε.

Finally, if β is the coarsening of α corresponding toQ then H(β |β0) = H(Q|Q0) < ε/2

and hence hRok
G,X(β) < hRok

G,X(β0) + ε/2 < ε.

111



CHAPTER XV

Rokhlin entropy of Bernoulli shifts

In order to investigate the Rokhlin entropy values of Bernoulli shifts, we first

restate Theorem XIV.6 in terms of isomorphisms.

Corollary XV.1. Let G be a countably infinite group and let G y (X,µ) be a free

p.m.p. ergodic action. Let (L, λ) be a probability space with L finite. Let L be the

canonical partition of LG, and let K be a partition coarser than L . If hRok
G (X,µ) <

H(L |K ), then for every open neighborhood U ⊆ EG(LG) of λG and every ε > 0, there

is a G-equivariant isomorphism φ : (X,µ)→ (LG, ν) with ν ∈ U and hRok
G,(LG,ν)(K ) <

ε.

Proof. By definition, L = {R` : ` ∈ L} where

R` = {y ∈ LG : y(1G) = `}.

Since U is open, there are continuous functions f1, . . . , fn on LG and κ1 > 0 such that

for all ν ∈ EG(LG)

∣∣∣∫ fi dλG − ∫ fi dν∣∣∣ < κ1 for all 1 ≤ i ≤ n =⇒ ν ∈ U.

Since LG is compact, each fi is uniformly continuous and therefore there is a finite

T ⊆ G and continuous L T -measurable functions f ′i such that ‖fi − f ′i‖ < κ1/2 for
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each 1 ≤ i ≤ n, where ‖ · ‖ denotes the sup-norm. Therefore there is κ2 > 0 such that

for all ν ∈ EG(LG)

∣∣∣λG(D)− ν(D)
∣∣∣ < κ2 for all D ∈ L T =⇒ ν ∈ U.

Enumerate T as t1, . . . , tm and set Ti = {t1, . . . , ti−1}. If D =
⋂m
i=1 ti ·Ri ∈ L T , then

setting Dj =
⋂j−1
i=1 ti ·Ri ∈ L Tj we have Di+1 = Di ∩ ti ·Ri and hence

ν(D) =
m∏
i=1

ν(Di ∩ ti ·Ri)

ν(Di)
.

Sincem-fold multiplication of elements of [0, 1] is uniformly continuous, there is κ3 > 0

such that the condition∣∣∣∣λG(R)− ν(D ∩ ti ·R)

ν(D)

∣∣∣∣ < κ3 for all 1 ≤ i ≤ m, D ∈ L Ti , and R ∈ L

implies ν ∈ U . Above we have used the fact that λG(D ∩ ti · R)/λG(D) = λG(R)

for 1 ≤ i ≤ m, D ∈ L Ti , and R ∈ L . Finally, by standard properties of Shannon

entropy [15, Fact 3.1.3], there is κ4 > 0 such that the condition

|λG(R)−ν(R)| < κ4 and Hν(ti ·L |L Ti) > Hν(L )−κ4 for all R ∈ L and 1 ≤ i ≤ m

implies ν ∈ U .

Now apply Theorem XIV.6 to obtain a generating partition α = {A` : ` ∈ L} of X

satisfying µ(A`) = λG(R`) for every ` ∈ L, H(αT ) > |T | ·H(α)−κ4, and hRok
G,X(β) < ε,

where β is the coarsening of α corresponding to K . Since α is generating and its

classes are indexed by L, it induces a G-equivariant isomorphism φ : (X,µ)→ (LG, ν)

which identifies α with L and β with K . We immediately have ν(R`) = µ(A`) =

λG(R`) for every ` ∈ L and hRok
G,(LG,ν)(K ) = hRok

G,X(β) < ε. Also,

m∑
i=1

(
H(α)− H(ti · α | αTi)

)
= |T | · H(α)− H(αT ) < κ4.
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Since each summand on the left is non-negative, we deduce that

Hν(ti ·L |L Ti) = H(ti · α | αTi) > H(α)− κ4 = Hν(L )− κ4

for every 1 ≤ i ≤ m. We conclude that ν ∈ U .

Fix a countably infinite group G. Recall from the introduction the quantity

hRok
sup (G) = sup

Gy(X,µ)

hRok
G (X,µ),

where the supremum is taken over all free ergodic p.m.p. actions G y (X,µ) with

hRok
G (X,µ) <∞. If there is a free ergodic p.m.p. action Gy (X,µ) with hRok

G (X,µ) =

∞, we do not know if it necessarily follows that hRok
sup (G) = ∞. In particular, we do

not know if Gy (X,µ) must factor onto free actions having large but finite Rokhlin

entropy values. However, we have the following.

Lemma XV.2. Let G be a countably infinite group and let G y (X,µ) be a free

p.m.p. ergodic action. If hRok
G (X,µ) < ∞ then for every 0 ≤ t ≤ hRok

G (X,µ) and

δ > 0 there is a factor G y (Y, ν) of (X,µ) such that G acts freely on Y and

hRok
G (Y, ν) ∈ (t− δ, t+ δ).

Proof. Let p̄ be a probability vector with H(p̄) = t, and let q̄ be a probability vector

with hRok
G (X,µ)−t < H(q̄) < hRok

G (X,µ)−t+δ. Let r̄ be the probability vector which

represents the independent join of p̄ and q̄. Specifically, r̄ = (ri,j) where ri,j = pi · qj.

We have H(r̄) = H(p̄) + H(q̄) so hRok
G (X,µ) < H(r̄). By Theorem I.3 there is a

generating partition γ = {Ci,j} with µ(Ci,j) = ri,j. Let α = {Ai : 0 ≤ i < |p̄|} be the

coarsening of γ associated to p̄, meaning

Ai = ∪{Ci,j : 0 ≤ j < |q̄|}.

Similarly define β = {Bj : 0 ≤ j < |q̄|} by

Bj = ∪{Ci,j : 0 ≤ i < |p̄|}.
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Then dist(α) = p̄, dist(β) = q̄, and α ∨ β = γ.

By Theorem II.1, there is a factor G y (Z, η) of (X,µ) with hRok
G (Z, η) < δ. Let

ζ ′ be a generating partition for Z with H(ζ ′) < δ, and let ζ be the pre-image of ζ ′

in X. Let G y (Y, ν) be the factor of (X,µ) associated to σ-algG(α ∨ ζ). Clearly

α ∨ ζ pushes forward to a generating partition α′ ∨ ζ ′′ of Y with H(α′) = H(p̄) and

H(ζ ′′) < δ. So hRok
G (Y, ν) ≤ H(α′ ∨ ζ ′′) < t+ δ. By Corollary IX.3 we also have

hRok
G (Y, ν) ≥ hRok

G (X,µ)− hRok
G (X,µ | σ-algG(α ∨ ζ)) ≥ hRok

G (X,µ)− H(β) > t− δ.

Finally, Gy (Y, ν) must be a free action since it factors onto (Z, η).

We now focus our attention on the Rokhlin entropy values of Bernoulli shifts. Let

(L, λ) be a probability space and let L be the canonical partition of LG. If K is a

partition coarser than L , then the translates of K are mutually independent and

the factor associated to σ-algG(K ) is a Bernoulli shift G y (KG, κG). In order to

emphasize the fact that σ-algG(K ) corresponds to a Bernoulli factor of (LG, λG), for

the remainder of this chapter we will write K G for σ-algG(K ).

Proposition XV.3. Let G be a countably infinite group and let (L, λ) be a probability

space with L finite. Let L be the canonical partition of LG and let K be a partition

coarser than L . Then

hRok
G

(
LG, λG |K G

)
= min

(
H(L |K ), hRok

sup (G)
)
.

Proof. We immediately have hRok
G (LG, λG |K G) ≤ H(L |K ) since L is a generating

partition. We will show that there does not exist any free p.m.p. ergodic action

Gy (X,µ) with

hRok
G (LG, λG |K G) < hRok

G (X,µ) < H(L |K ).
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From Lemma XV.2 it will follow that either hRok
G (LG, λG |K G) = H(L |K ) or else

hRok
G (LG, λG |K G) ≥ hRok

G (X,µ) for every free p.m.p. ergodic action Gy (X,µ) with

hRok
G (X,µ) <∞.

Towards a contradiction, suppose that G y (X,µ) is a free p.m.p. ergodic action

with hRok
G (LG, λG |K G) < hRok

G (X,µ) < H(L |K ). Fix ε > 0 with

hRok
G (LG, λG |K G) + ε < hRok

G (X,µ).

By Corollary XIII.10, there is an open neighborhood U ⊆ EG(LG) of λG such that

hRok
G (LG, ν |K G) < hRok

G (LG, λG |K G) + ε/2 for all ν ∈ U . By Corollary XV.1, there

is a G-equivariant isomorphism φ : (X,µ)→ (LG, ν) with ν ∈ U and hRok
G,(LG,ν)(K ) <

ε/2. Then by Corollary IX.4

hRok
G (X,µ) = hRok

G (LG, ν)

≤ hRok
G,(LG,ν)(K ) + hRok

G (LG, ν |K G)

< hRok
G (LG, λG |K G) + ε

< hRok
G (X,µ),

a contradiction.

Theorem XV.4. Let G be a countably infinite group and let (L, λ) be a probability

space with H(L, λ) <∞. Then

hRok
G (LG, λG) = min

(
H(L, λ), hRok

sup (G)
)
.

Proof. Let L = {R` : ` ∈ L} be the canonical partition of LG where

R` = {y ∈ LG : y(1G) = `}.

Let Ln be an increasing sequence of finite partitions which are coarser than L and

satisfy L =
∨
n∈N Ln. The algebra generated by Ln corresponds to a factor (Ln, λn)
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of (L, λ), and the factor of (LG, λG) corresponding to L G
n is (LGn , λ

G
n ). By Corol-

lary XIII.9 hRok
G (LG, λG) = limn→∞ h

Rok
G (LGn , λ

G
n ). The claim now follows by applying

Proposition XV.3 to each (LGn , λ
G
n ) and using the fact that H(Ln, λn) = H(Ln) con-

verges to H(L ) = H(L, λ).

We next handle the case where H(L, λ) =∞, but first we need a lemma.

Lemma XV.5. Let (L, λ) be a probability space with H(L, λ) = ∞, and let c > 0.

Then there exists a sequence of finite partitions (Ln)n∈N with
∨
n∈N σ-alg(Ln) = B(L)

and

H
(
Lm

∣∣∣∨n6=m Ln

)
> c

for all m ∈ N.

Proof. First suppose that L is essentially countable. For ` ∈ L we will write λ(`) for

λ({`}). Since ∑
`∈L

−λ(`) · log λ(`) = H(L, λ) =∞,

we can partition L into finite sets In with

∑
`∈In

−λ(`) · log λ(`) > c+ log(2)

for all n. Define

Ln = {L \ In} ∪
{
{`} : ` ∈ In

}
.

Note that H(Ln) > c + log(2). Clearly Ln is finite and
∨
n∈N σ-alg(Ln) = B(L).

Additionally, we have In ∈
∨
k 6=n σ-alg(Lk) since L \ In is the union of all singleton
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sets contained in
∨
k 6=n σ-alg(Lk). Therefore

H
(
Ln |

∨
k 6=n Lk

)
= H(Ln | {In, L \ In})

= H(Ln)− H({In, L \ In})

> H(Ln)− log(2)

> c.

Now suppose that (L, λ) is not essentially countable. Then L decomposes into a

non-atomic part B ⊆ L and a purely atomic part A ⊆ L with {B,A} a partition

of L and λ(B) > 0. Fix any increasing sequence αn of finite partitions of A with

B(L) � A =
∨
n∈N σ-alg(αn) � A. Choose a probability vector p̄ with µ(B) · H(p̄) > c,

and let λB be the normalized restriction of λ to B. Since B has no atoms, we can

find a sequence of λB-independent ordered partitions βn of B with distλB(βn) = p̄ for

every n and with B(L) � B =
∨
n∈N σ-alg(βn) � B. Now set Ln = βn ∪ αn. Then Ln

is finite and B(L) =
∨
n∈N σ-alg(Ln). Finally, since {B,A} is coarser than every Ln

we have

H
(
Lm |

∨
n 6=m Ln

)
≥ λ(B) · HB

(
Lm |

∨
n6=m Ln

)
= λ(B) · HB

(
βm |

∨
n6=m βn

)
= λ(B) · H(p̄)

> c.

Theorem XV.6. Let G be a countably infinite group, and let (L, λ) be a probability

space with H(L, λ) =∞. Then hRok
G (LG, λG) =∞ if and only if there is a free ergodic

p.m.p. action Gy (X,µ) with hRok
G (X,µ) > 0.
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Proof. One implication is immediate: if hRok
G (LG, λG) =∞ then hRok

G (X,µ) > 0 with

(X,µ) = (LG, λG). So suppose that G y (X,µ) is a free p.m.p. ergodic action with

hRok
G (X,µ) > 0. Let (αn) be an increasing sequence of finite partitions of X with

B(X) =
∨
n∈N σ-algG(αn). Using Theorem II.1, we may choose α1 so that G acts

freely on the factor (Z, η) of (X,µ) associated to σ-algG(α1). From Theorem XIII.3

we have that at least one of the following two quantities is positive:

inf
n∈N

lim
ε→0

sup
m∈N

inf
k∈N

inf
T⊆G
T finite

inf
{

H(β | αTn ) : β ≤ αTk , H(αm | βT ) < ε
}

lim
ε→0

sup
m∈N

inf
k∈N

inf
T⊆G
T finite

inf
{

H(β) : β ≤ αTk , H(αm | βT ) < ε
}
.

Since the first expression is less than or equal to the second, the second expression

must be positive. Fix ε0 and m ∈ N with

inf
k∈N

inf
T⊆G
T finite

inf
{

H(β) : β ≤ αTk , H(αm | βT ) < ε0

}
> 0.

Since the above expression increases in value as ε0 decreases, we see that

(15.1) lim
ε→0

inf
T⊆G
T finite

inf
{

H(β) : β ≤ αTm, H(αm | βT ) < ε
}
> 0.

Let G y (Y, ν) be the factor of (X,µ) associated to σ-algG(αm). From Corollary

XIII.5 and (15.1) we obtain hRok
G (Y, ν) > 0. Additionally, (Y, ν) factors onto (Z, η)

since αm refines α1. So G acts freely on Y and 0 < hRok
G (Y, ν) ≤ H(αm) < ∞. Set

c = hRok
G (Y, ν).

Apply Lemma XV.5 to get a sequence Ln of finite non-trivial partitions of L with

B(L) =
∨
n∈N σ-alg(Ln) and H(Lm |

∨
n 6=m Ln) ≥ c for all m. For m ≤ k set

L[0,k] =
∨

0≤i≤k

Li and L[0,k],m =
∨

0≤i 6=m≤k

Li.

Note that for k ≥ m we have H(L[0,k] | L[0,k],m) ≥ c by construction. We let

(L[0,k], λ[0,k]) denote the factor of (L, λ) associated to L[0,k]. Let L = {R` : ` ∈ L}
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be the canonical (possibly uncountable) partition of LG defined by

R` = {w ∈ LG : w(1G) = `}.

Note that B(LG) = L G. We identify each of the partitions Lm, L[0,k], and L[0,k],m as

coarsenings of L ⊆ B(LG). Note that (LG[0,k], λ
G
[0,k]) is the factor of (LG, λG) associated

to L G
[0,k]. As each Ln is non-trivial, the space (L[0,k], λ[0,k]) is not essentially a single

point and hence λG[0,k] is non-atomic.

The partitions L[0,k] are increasing with k and L G =
∨
k∈N L G

[0,k]. By Theorem

XIII.3, it suffices to show that

(15.2) inf
n∈N

lim
ε→0

sup
m∈N

inf
k∈N

inf
T⊆G
T finite

inf
{

H(β |L T
[0,n]) : β ≤ L T

[0,k], H(L[0,m] | βT ) < ε
}

is positive. Note that above one can change infk∈N to limk→∞ without changing the

value of the expression. So it suffices to fix n < m ≤ k and 0 < ε < c/2 and show

that the remaining portion of (15.2) is uniformly bounded away from 0. Suppose

that β ⊆ L G
[0,k] and H(L[0,m] | σ-algG(β)) < c/2. Since L[0,m] ≤ L[0,k] and λG[0,k] is

non-atomic, by Theorem I.6 there is a partition γ ⊆ L G
[0,k] with H(γ) < c/2 and

L[0,m] ⊆ σ-algG(β ∨ γ). Then

L[0,k] ⊆ σ-algG(β ∨ γ) ∨L G
[0,k],m

and

H(β ∨ γ |L G
[0,k],m) ≤ H(β |L G

[0,n]) + H(γ) < H(β |L G
[0,n]) + c/2.

Therefore

hRok
G

(
LG[0,k], λ

G
[0,k]

∣∣∣L G
[0,k],m

)
≤ H(β |L G

[0,n]) + c/2.
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Applying Proposition XV.3 with K = L[0,k],m we obtain

c = min
(

H(L[0,k] |L[0,k],m), hRok
G (Y, ν)

)
≤ hRok

G

(
LG[0,k], λ

G
[0,k]

∣∣∣L G
[0,k],m

)
< H(β |L G

[0,n]) + c/2.

So H(β | L G
[0,n]) > c/2 and hence (15.2) is at least c/2 > 0. We conclude that

hRok
G (LG, λG) =∞.

Corollary XV.7. Let G be a countably infinite group. The following are equivalent:

(i) hRok
sup (G) > 0;

(ii) there is a free ergodic p.m.p. action with 0 < hRok
G (X,µ) <∞;

(iii) there is a free ergodic p.m.p. action with hRok
G (X,µ) =∞.

Proof. The equivalence of (i) and (ii) is by definition. Theorem XV.6 shows that (ii)

implies (iii), and the implication (iii) implies (ii) was deduced in the first paragraph

of the proof of Theorem XV.6.

We mention that if in Theorem XIII.3 the second expression always coincides with

Rokhlin entropy, then from a free ergodic action Gy (Y, ν) with hRok
G (Y, ν) =∞ one

could use the argument in the first paragraph of the proof of Theorem XV.6 to show

that (Y, ν) has free factors with arbitrarily large but finite Rokhlin entropy values.

From Corollary XV.7 it would then follow that hRok
sup (G) > 0 implies hRok

sup (G) =∞.

Theorem XV.8. Let P be a countable group containing arbitrarily large finite sub-

groups. If G is any countably infinite group with hRok
sup (G) <∞ then hRok

sup (P ×G) = 0.

Proof. Set Γ = P×G. Let (L, λ) be a probability space with L finite and H(L, λ) > 0,

and consider the Bernoulli shift (LΓ, λΓ). By Theorem XV.4 it suffices to show that

hRok
Γ (LΓ, λΓ) = 0.
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Fix ε > 0, fix k ∈ N with hRok
sup (G) < log(k), and fix a finite subgroup T ≤ P with

log(k)/|T | < ε. Let L = {R` : ` ∈ L} be the canonical partition of LΓ, where

R` = {x ∈ LΓ : x(1Γ) = `}.

Consider the partition L T . We may write L T = {Dπ : π ∈ LT} where

Dπ =
⋂
t∈T

t ·Rπ(t).

Since T is a group, it naturally acts on LT by shifts: (t · π)(s) = π(t−1s). For u ∈ T

we have u ·Dπ = Du·π since

u ·Dπ =
⋂
t∈T

ut ·Rπ(t) =
⋂
t∈T

t ·Rπ(u−1t) = Du·π.

Let Q = {Q[π] : π ∈ LT} be the partition of LΓ where [π] denotes the T -orbit of π

and

Q[π] =
⋃
t∈T

Dt·π.

Since T ∩ G = {1Γ}, the G-translates of Q are mutually independent. As LT has at

least two distinct T -orbits, the factor G y (Z, η) associated to σ-algG(Q) is isomor-

phic to a G-Bernoulli shift and is in particular a free action.

By Theorem II.1, there is a factor Γ y (Y, ν) of (LΓ, λΓ) such that hRok
Γ (Y, ν) < ε

and the action of Γ on Y is free. The T -orbits of Y are finite and partition Y , so

there is a Borel set M ′ ⊆ Y which meets every T -orbit precisely once. Let F be the

Γ-invariant sub-σ-algebra of LΓ associated to Y , and let M ∈ F be the pre-image of

M ′.

Define ξ = {Cπ : π ∈ LT} to be the partition of LΓ defined by

Cπ =
⋃
s∈T

s · (Dπ ∩M).
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This is indeed a partition of LΓ since the T -translates of M partition LΓ and the

sets Dπ ∩ M partition M . To add clarification to this definition, we remark that

x1, x2 ∈ LΓ lie in the same class of ξ if and only if s−1
1 · x1 and s−1

2 · x2 lie in the same

class of L T , where s1, s2 ∈ T are defined by the condition s−1
1 · x1, s

−1
2 · x2 ∈M . We

observe that σ-algΓ(ξ) ∨ F = B(LΓ) since for ` ∈ L

R` =
⋃
π∈LT
π(1Γ)=`

Dπ =
⋃
s∈T

⋃
π∈LT
π(1Γ)=`

(
Dπ ∩ s ·M

)
=
⋃
s∈T

⋃
π∈LT
π(1Γ)=`

s · (Ds−1·π ∩M)

=
⋃
s∈T

⋃
π∈LT

π(s−1)=`

s · (Dπ ∩M) =
⋃
s∈T

⋃
π∈LT

π(s−1)=`

(
Cπ ∩ s ·M

)
.

Each Cπ ∈ ξ is T -invariant since for u ∈ T and π ∈ LT we have

u · Cπ =
⋃
s∈T

(us) · (Dπ ∩M) = Cπ.

Furthermore, ξ is finer than Q as

Q[π] =
⋃
t∈T

Dt·π =
⋃
s,t∈T

(
Dt·π ∩ s ·M

)
=
⋃
s,t∈T

(
Dst·π ∩ s ·M

)
=
⋃
s,t∈T

s · (Dt·π ∩M) =
⋃
s,t∈T

(
Ct·π ∩ s ·M

)
=
⋃
t∈T

Ct·π.

Let G y (W,ω) be the factor of (LΓ, λΓ) associated to σ-algG(ξ). Since ξ is

finer than Q, (W,ω) factors onto (Z, η). Thus G acts freely on (W,ω). We have

hRok
G (W,ω) ≤ H(ξ) < ∞ and thus by assumption hRok

G (W,ω) ≤ hRok
sup (G) < log(k).

Apply Theorem I.3 to get a k-piece generating partition β′ for W , and let β ⊆

σ-algG(ξ) be the pre-image of β′. Then ξ ⊆ σ-algG(β) and hence

B(LΓ) = σ-algΓ(ξ) ∨ F ⊆ σ-algΓ(β) ∨ F .

We observed that every Cπ ∈ ξ is T -invariant. Since G and T commute, it follows

that every set in σ-algG(ξ) is T -invariant. In particular, each B ∈ β is T -invariant.
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Therefore, setting

α = {LΓ \M} ∪ (β �M),

we have β ⊆ σ-algT (α) ∨ F . Thus B(LΓ) = σ-algΓ(α) ∨ F . Therefore by Corollary

IX.3

hRok
Γ (LΓ, λΓ) ≤ hRok

Γ (Y, ν) + hRok
Γ (LΓ, λΓ | F)

< ε+ H(α | F)

≤ ε+ λΓ(M) · HM(α)

= ε+
1

|T |
· HM(β)

≤ ε+
1

|T |
· log(k)

< 2ε.

Since ε > 0 was arbitrary, we conclude that hRok
Γ (LΓ, λΓ) = 0.

Corollary XV.9. Assume that every countably infinite group G admits a free ergodic

p.m.p. action with hRok
G (X,µ) > 0. Then:

(i) hRok
G (LG, λG) = H(L, λ) for all countably infinite groups G and all probability

spaces (L, λ).

(ii) All Bernoulli shifts over countably infinite groups have completely positive outer

Rokhlin entropy.

(iii) Gottschalk’s surjunctivity conjecture and Kaplansky’s direct finiteness conjecture

are true.

Proof. It follows from Corollary XV.7 and Theorem XV.8 that hRok
sup (G) = ∞ for all

countably infinite groups G. By applying Theorems XV.4 and XV.6 we obtain (i).

From Corollaries XII.6 and XII.7 we obtain (ii) and (iii).
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[12] J. P. Conze, Entropie d’un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie
verw. Geb. 15 (1972), 11–30.

[13] A. Danilenko and K. Park, Generators and Bernoullian factors for amenable actions and
cocycles on their orbits, Ergod. Th. & Dynam. Sys. 22 (2002), 1715–1745.

[14] M. Denker, Finite generators for ergodic, measure-preserving transformations, Prob. Th. Rel.
Fields 29 (1974), no. 1, 45–55.

[15] T. Downarowicz, Entropy in Dynamical Systems. Cambridge University Press, New York,
2011.
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