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Chapter 1

Introduction

Inter- and intramolecular charge transfer are important processes in biology, chemistry, and

physics. All redox reactions require intermolecular charge transfer between molecules. Several

life-sustaining biological reactions, such as photosynthesis and the Krebs cycle, depend on inter-

molecular charge transfer [1, 2]. Most solar-energy-harvesting systems, either natural or artificial,

rely on photoinduced charge transfer and separation (except for solar thermal technologies). Im-

proved understanding of photoinduced charge transfer processes may help guide the development

of technologies such as organic photovoltaics, dye-sensitized solar cells, and photoelectrochemi-

cal cells. These technologies hold promise as part of our renewable energy future: for example,

a few key advantages of organic photovoltaics over other technologies include low weight, bend-

ability/flexibility, semitransparency, and integrability into other products [3–5]. Charge transfer

and separation are some of the key processes contributing to organic photovoltaic efficiency [6].

With the goal of better understanding the device physics of organic photovoltaics, this disserta-

tion develops a sensitive spectroscopic method for measuring charge transfer, as well as several

pulse characterization techniques for enhancing the time resolution of the method. I then apply the

method to two model organic photovoltaic systems to study their photoinduced charge transfer and

charge separation processes.

In this introductory chapter, I begin by giving some brief background on organic photovoltaics.

I then outline theories of charge transfer that are relevant for describing organic photovoltaics.

To provide background for the experimental methods, I next explain how nonlinear optical spec-
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troscopy may be used to study charge transfer, with a brief introduction to nonlinear optics, and

with emphasis on the particular spectroscopy I developed in this thesis. Finally, I give some back-

ground in ultrafast optical pulses and pulse measurements, which are important for achieving high

time resolution in nonlinear spectroscopies.

1.1 Organic photovoltaics

Figure 1.1: Diagram of an electron donor and an electron acceptor employed in an organic photo-
voltaic heterojunction. The vertical axis represents energy. The electron will tend to move to the
LUMO of the electron acceptor, while the hole will tend to move to the HOMO of the electron
donor. This creates a polaron pair charge transfer state, which has a lower binding energy than the
initial Frenkel exciton. This picture is a simplification; Section 1.1 discusses the complexities in
more detail.

In organic semiconductors, the electron-hole binding energy is typically large compared to

the thermal energy kBT , where kB is Boltzmann’s constant and T is the temperature. When an

organic photovoltaic absorbs light it usually generates a Frenkel exciton—where the electron and

hole are localized to a single molecule—with a binding energy on the order of one electron volt

(∼1 eV) [3]. In a Frenkel exciton, the hole may be visualized as occupying the highest occupied

molecular orbital (HOMO) of the molecule, and the electron as occupying the lowest unoccupied

molecular orbital (LUMO) of the molecule, as seen in Figure 1.1. However, the energy levels

and molecular orbitals associated with the HOMO and LUMO are modified by the electron-hole

Coulomb attraction and by intra- and intermolecular relaxation processes. The energy of the hole

is thus higher than the HOMO level and the energy of the electron is lower than the LUMO level.
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A Frenkel exciton must therefore be viewed as a holistic state of an organic semiconductor.

A heterojunction is employed to help the electron and hole separate from each other [4]. Using

two kinds of organic semiconducting molecules in the device—an electron donor and an elec-

tron acceptor—it becomes energetically favorable for a Frenkel exciton located on either kind of

molecule to separate such that the donor has the hole and the acceptor has the electron. See Figure

1.1: the electron acceptor has a HOMO and LUMO that are respectively lower in energy than the

HOMO and LUMO of the electron donor. Thus the electron tends to move to the LUMO of the

electron acceptor, and the hole tends to move to the HOMO of the electron donor.

Figure 1.2: Depiction of common organic photovoltaic device geometries. Films are deposited
onto a transparent substrate, through which the device is illuminated. Indium tin oxide (ITO) or
another transparent conductive material forms the anode, while a metal such as aluminum forms
the cathode. Transparent buffer layers—electron- and hole-transporting layers—prevent Frenkel
excitons from reaching the electrodes, and prevent electrons (holes) from reaching the cathode (an-
ode). Planar heterojunctions have separate films of electron donor and electron acceptor molecules
as the active layers. Bulk heterojunctions use a mixed active layer of donor and acceptor molecules,
which typically phase-separate as shown.

There are two device geometries that are particularly common for organic photovoltaics. A

planar heterojunction uses separate layers of donor and acceptor molecules, while a bulk hetero-

junction uses a single layer of mixed donor and acceptor molecules, as depicted in Figure 1.2.

Planar heterojunctions keep the electrons and the holes in separate layers, reducing geminate re-

combination between free charge carriers (meaning free electrons and holes). However, they tend

to be exciton-diffusion-limited because the Frenkel excitons must diffuse a few nanometers to the

interface before they can generate charges. Bulk heterojunctions do not require long diffusion

lengths, thus promoting the generation of charges, at the cost of increased geminate recombination
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because both types of carriers are present in the same layer. Currently, many of the best devices

use the bulk heterojunction geometry, offering power conversion efficiencies in excess of 10% [5].

Figure 1.3: Representation of the Giebink model of an ideal-diode organic photovoltaic, adapted
from [6]. The vertical axis represents energy. (Frenkel) excitons created by absorbed light diffuse
to the interface to create polaron pair states (PP) with some effective current. The PP states may
dissociate to create free carriers, contributing to the interfacial electron nI and hole pI densities,
or they may recombine to the ground state. External current may also contribute to the electron
and hole densities, which can recombine to create polaron pairs. Meanwhile, the ground state will
spontaneously convert to a polaron pair state at some very low equilibrium rate.

The Giebink model [6] describes several important processes in organic photovoltaics, as de-

picted in Figure 1.3. Light absorption creates Frenkel excitons, which diffuse to an interface be-

tween electron donor and acceptor molecules. The exciton splits into a polaron pair where the

hole is on the donor and the electron is on the acceptor, but the charges are still Coulombically

bound. The binding energy is much reduced compared to the Frenkel exciton. At that point, the

polaron pair can recombine (contributing to loss) or it can separate into free charges. Devices have

a built-in electric field coming from the work functions of the electrodes [4], which together with

thermal fluctuations helps separate the polaron pair into free charges. Once the charges are free,

they may contribute to external device current.

1.2 Theories of charge transfer

In the Giebink model, the conversion step between Frenkel excitons and polaron pair states is a

charge transfer process. There are many theories of charge transfer, but a qualitative picture is

often shared, as depicted in Figure 1.4. The Hamiltonian for this system, involving two electronic
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ΔΔΔΔG*

ΔΔΔΔel
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ΔΔΔΔG*

ΔΔΔΔG0

ΔΔΔΔG0

inverted

normal

Figure 1. Energy versus reaction coordinates for the reactants (curve D) and the products for normal
reaction (curve An), inverted reaction (curve Ai) and at the inversion curve (curve Ac). The electron
in the initial state requires a positive excitation energy ��el for the normal reaction, and a negative
excitation energy −��el for the inverted reaction (which could be directly emitted as light). There is
a positive energy barrier �n or �i in both cases between the reactants and products which requires
thermal activation for the reaction to occur. This energy barrier as well as the energy for a direct
electron excitation vanishes for the inversion curve and then the electron transfer becomes ultrafast.

probability of ET per unit time depends on temperature T with the standard Arrhenius form
A(T ) e−�G�/kB T .

The prefactor A(T ) is determined more or less empirically according to the tunnelling
probability at electron resonance. Standard theory of tunnelling assumes that the double-well
potential due to the environment of the electron is static during the time of tunnelling between
the two wells. Actually, the local potential generated by the thermal fluctuations is not static but
varies over the characteristic time of phonons. Because of that, the resonance between the two
electronic levels may not persist long enough to allow electron tunnelling. This fact is taken
into account by considering that tunnelling occurs only with a certain probability which can be
estimated for example from Landau–Zeener models [8].

Two regimes can be defined regarding the tunnelling [8]. The adiabatic regime is obtained
when the overlap between the redox orbitals (although supposed to be small) is nevertheless
sufficiently large (strong reactants) in order that, when resonance occurs, electron tunnelling
is fast at the scale of the phonon frequencies. Thus its probability to occur is almost 1. The
diabatic regime is obtained at small overlap (weak reactants). Then, the tunnelling becomes
slow at the scale of the phonon characteristic time and has a small probability to occur.
In any case, the intrinsic time for tunnelling is usually much shorter than the characteristic
time required for the thermal fluctuations to overcome an energy barrier supposed to be large
compared to the thermal energy.

Despite the fact that the standard theory does not properly describe the electron tunnelling
in a self-consistent deformable potential, it appears that nevertheless the essential contribution
to the time required for ET is the time to reach the top of the energy barrier. When this energy

4

Figure 1.4: Diagram of charge transfer reactions, reproduced from [7]. The red curve labeled ‘D’
represents the energy of the system when the electron is still on the electron donor, as a function
of the nuclear coordinates. The heavy blue curve labeled ‘normal’ represents the energy of the
system when the electron is on the electron acceptor, for systems in the normal Marcus regime.
The thin pink curve labeled ‘inverted’ represents the energy of the system when the electron is
on the electron acceptor, for systems in the inverted Marcus regime. Then thinnest blue curve
represents the boundary between the inverted and normal regimes. ∆el is an indicator of the type
of Marcus regime; the normal Marcus regime has ∆el > 0 while the inverted regime has ∆el < 0.

states, (adapted from [8]) is:

Ĥ = |CT 〉ĤCT 〈CT |+ |D〉(∆G0 + ĤD)〈D|+ |CT 〉VCT−D〈D|+ |D〉VD−CT 〈CT |. (1.1)

Here, |D〉 is the donor state—the exciton state in the Giebink model—and |CT 〉 is the charge trans-

fer (or acceptor) state—the polaron pair state in the Giebink model. ĤCT is the nuclear Hamilto-

nian of the CT state in the diabatic representation, and ĤD is the nuclear Hamiltonian of the D

state. VCT−D = V ∗D−CT is the electronic coupling coefficient, and ∆G0 is the relative energy gap

between the D state and the CT state. The nuclear Hamiltonians ĤD and ĤCT are often taken to be

parabolic (i.e. normal vibrational modes), where the D curve corresponds to ĤD and the ‘normal’

or ‘inverted’ curve corresponds to ĤCT . In photoinduced charge transfer reactions, the D state

corresponds to an excited state created by light absorption. At nonzero temperatures, the nuclear

configuration will tend to fluctuate randomly around the minimal-energy point (the equilibrium
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configuration). Here xDeq. represents the equilibrium configuration of the D state, and xCTeq. the equi-

librium of the CT state. The difference between these two values is ∆xeq.. The fluctuation around

equilibrium enables the D state to reach an intersection with the CT state, allowing a transition to

the CT state, which can then relax to its equilibrium configuration xCTeq. . The intersection is located

∆G∗ above the D-state’s minimal energy point; it is thus an energy barrier. The charge transfer

state’s minimal-energy point is located ∆G0 below the D-state’s minimal energy point.

Marcus theory [7, 9] is a very widely-used theory of electron transfer, for which Marcus re-

ceived the 1992 Nobel Prize in Chemistry [10]. It uses a semi-classical picture where the nuclear

degrees of freedom are treated in a classical manner. The electronic degrees of freedom are treated

somewhat quantum-mechanically, where the electronic energy levels vary with the nuclear degrees

of freedom. The Marcus theory rate equation is

kCT←D =
|VD−CT |2

~

√
π

kBTGr

exp

[
−(∆G0 −Gr)

2

4kBTGr

]
. (1.2)

Here, kB is Boltzmann’s constant, T is the temperature, and Gr is a reorganization energy given by

Gr =
1

2

N∑
α=1

ω2
α∆x2

α, eq., (1.3)

where ωα is the frequency of a given vibrational mode, and ∆xα, eq. is the distance between the

minimal-energy points for vibrational mode α [8, 11]. The rate equation can be simplified by

observing that it is an activated process over the energy barrier ∆G∗, with the activation energy

given by

∆G∗ =
(∆G0 −Gr)

2

4Gr

. (1.4)

Therefore, the rate equation reduces to

kCT←D =
|VD−CT |2

~

√
π

kBTGr

exp

[
−∆G∗

kBT

]
. (1.5)

The activated-process prediction of Marcus theory implies that increasing ∆G∗ decreases the
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charge transfer rate because the thermal fluctuations will reach the intersection point less fre-

quently.

Figure 1.4 diagrams two kinds of systems treated by Marcus theory: those in the normal Marcus

regime, and those in the inverted Marcus regime. I first focus on systems in the normal regime.

The charge transfer state is represented by the ‘normal’ curve in Figure 1.4 (heavy blue). The

defining characteristic of the normal Marcus regime is that the reorganization energy Gr is greater

than the transition energy ∆G0:

Gr > ∆G0. (1.6)

Perhaps more intuitively, in the normal regime the D–CT intersection lies between the two equi-

libria xCTeq. and xDeq., as shown in Figure 1.4. This is because Gr > ∆G0 implies that the

inter-equilibrium distance ∆xeq. >
√

2∆G0/ω2. In general, when ∆xeq. =
√

2∆G0/ω2 then

Gr = ∆G0 and so ∆G∗ = 0, meaning the D–CT intersection is at the D-state equilibrium xDeq..

This dividing line between the normal and inverted regime is depicted in Figure 1.4 by the thin

blue curve. The transition may be visualized by an excitation energy ∆el ≡ Gr − ∆G0, which

is the vertical distance from the equilibrium of the D curve to the CT curve. ∆el > 0 within the

normal regime, and is zero for the thin blue curve.

If there are two systems in the normal Marcus regime, identical in every respect except in

equilibrium separation ∆xeq., then the system with reduced ∆xeq. will also have reduced ∆G∗ and

so the reaction will be faster. Alternatively, if there are two systems in the normal Marcus regime,

identical except that one has a larger transition energy ∆G0, the one with larger ∆G0 will have

smaller ∆G∗ and so the rate will be faster.

Charge transfer systems in the inverted Marcus regime are represented by the ‘inverted’ curve

in Figure 1.4 (pink). The defining characteristic of the inverted Marcus regime is that the reorga-

nization energy Gr is less than the transition energy ∆G0:

Gr < ∆G0, (1.7)
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or equivalently the excitation energy ∆el < 0. Alternatively, in the inverted regime the D–CT

intersection lies to one side of the two equilibria xCTeq. and xDeq., as shown in Figure 1.4. The inverted

regime thus exhibits ∆xeq. <
√

2∆G0/ω2. If there are two systems in the inverted Marcus regime,

identical in every respect except in ∆xeq., then the system with reduced ∆xeq. will have increased

∆G∗ and so the reaction will be slower. Meanwhile, if there are two systems in the inverted Marcus

regime, identical except for their ∆G0, the one with larger ∆G0 will have larger ∆G∗ and so the

rate will be slower. Thus systems in the inverted Marcus regime have very different qualitative

behavior compared to systems in the normal Marcus regime.

Moving on to a more advanced theory of charge transfer, our collaborators Lee et al. introduced

us to a theory based on Fermi’s golden rule (FGR) [8, 12, 13] because they were concerned that

the approximations made in Marcus theory may be violated in the case of organic photovoltaics, or

more generally in the case of intermolecular charge transfer [8, 11]. The theory treats all degrees

of freedom fully quantum-mechanically; this includes the possibility of nuclear tunneling, for

example. Systems in the inverted Marcus regime are especially likely to have contributions to the

charge transfer rate originating from such tunneling, since the nuclear degrees of freedom are very

similar between the D state and the charge transfer state. The FGR theory predicts a rate constant

of

kCT←D =
|VD−CT |2

~

∫ ∞
−∞

dt ei∆G
0t exp

{
N∑
α=1

Sα
[
−(2nα + 1) + (nα + 1)e−iωαt + nαe

iωαt
]}

,

(1.8)

where nα = 1/(e~ωα/kBT − 1) is the expected vibrational-mode occupancy and where

Sα =
ωα
~

∆x2
α, eq. (1.9)

is the Huang-Rhys factor [8].

Marcus theory can be derived from the FGR theory, using a combination of high-temperature

and short-time limits. If either limit becomes suspect for a given system, then Marcus theory as a

whole is suspect. The high-temperature limit is kBT � ~ωα, where ωα is the relevant normal-mode
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frequency or frequencies. At room temperature, this limit is suspect if there are any vibrational

modes over ∼200 wavenumbers that are important to the reaction process. However, Lee et al. [8]

report that in most cases the high-temperature limit of their FGR theory gives very similar results

to their full theory. The short-time limit approximates the summand elements with a second-order

Taylor expansion about t = 0:

− (2nα + 1) + (nα + 1)e−iωαt + nαe
iωαt ≈ −iωαt−

1

2
(2nα + 1)ω2

αt
2. (1.10)

This short-time limit is valid when the integral is dominated by contributions near t = 0. Lee et al.

report that this limit is not applicable in many systems in the inverted regime [8]. They attributed

this to the possibility of nuclear tunneling in the inverted regime. In general, charge transfer recom-

bination, or back electron transfer, is commonly in the inverted Marcus regime [11, 12] because

∆G0 is large but Gr is relatively small. In these cases Marcus theory can give wildly incorrect

rates due to nuclear tunneling [12]. Since charge recombination is a major loss mechanism in the

Giebink model [6] for organic solar cells, the more general FGR rates are desirable.

1.3 Nonlinear optics

Since charge transfer processes typically take place on the femtosecond to nanosecond timescales,

it is difficult to study them using electrical methods. However, a wide variety of ultrafast nonlinear

optical spectroscopic methods have adequate time resolution to study these processes. Nonlinear

optics focuses on phenomena that only arise when very intense light interacts with matter: the

light is so intense that new phenomena occur. No nonlinear optical phenomena were ever observed

before the invention of the laser [14, 15] which enabled unprecedentedly high optical intensities.

The field of nonlinear optics was born over 50 years ago: Peter Franken’s lab here at the University

of Michigan first demonstrated second harmonic generation, and many other nonlinear phenomena

were observed shortly thereafter [14, 15].

Light is an oscillating electric field; as it passes through materials—glass, water, air, organic
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photovoltaics—it causes an oscillating electric dipole moment in the material. This response,

known as polarization density, or simply polarization P , is usually measured in units of electric

dipole per unit volume. The polarization P has a back-action on the electric field E:

∇2E − 1

c2

∂2E

∂t2
=

1

ε0c2

∂2P

∂t2
. (1.11)

For almost all everyday-life situations, it is sufficient to represent P as a linear function of the

electric field E:

P = ε0χE. (1.12)

where ε0 is the permittivity of free space, and χ is known as the susceptibility; it is both a tensor and

frequency-dependent in general. For simplicity, I will ignore its tensorial nature and frequency de-

pendence. Once the laser was invented, it became possible to generate sufficiently intense electric

fields E to observe higher-order, nonlinear corrections to the above expression for the polarization

P . Within the perturbative regime, we may Taylor-expand P in powers of E:

P = ε0
[
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

]
, (1.13)

where χ(1) is the first-order susceptibility, χ(2) is the second-order susceptibility, and so on. In

general, each successively higher-order susceptibility is a higher-order tensor. This Taylor ex-

pansion describes coupling between different frequencies, or frequency mixing. For example,

second harmonic generation (SHG) comes from the second-order susceptibility χ(2). An opti-

cal field E = A sin(ωt) will have a second-order polarization term proportional to P ∝ E2 =

A2 sin2(ωt) = A2 [1− cos(2 ∗ ωt)] /2, which has a frequency component 2ω at twice the funda-

mental frequency ω. Once the polarization P oscillates at 2ω, it acts as a source in the nonlinear
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wave equation:

∇2E − 1

c2

∂2E

∂t2
=

1

ε0c2

∂2P

∂t2

=
1

c2

∂2

∂t2
(
χ(1)E + χ(2)E2 + χ(3)E3 + . . .

)
.

(1.14)

Thus once the polarization P oscillates at 2ω, it acts as a source for new light at 2ω. The material

itself therefore radiates light at 2ω, yielding SHG.

Quite a few kinds of frequency mixing are possible, meaning input light may drive output light

at a wide variety of frequencies. Here I write the material response P in the time domain, including

frequency dependence, but still ignoring the tensor nature of χ:

P (t) = ε0

∫ ∞
0

χ(1)(τ)E(t− τ)dτ

+ ε0

∫ ∞
0

∫ ∞
0

χ(2)(τ1, τ2)E(t− τ1)E(t− τ2)dτ1dτ2

+ ε0

∫ ∞
0

∫ ∞
0

∫ ∞
0

χ(3)(τ1, τ2, τ3)E(t− τ1)E(t− τ2)E(t− τ3)dτ1dτ2dτ3

+ . . .

(1.15)

Fourier-transforming this equation reveals the many kinds of frequency mixing processes that are

possible:

P (ω) = ε0χ̂
(1)(ω)Ê(ω)

+ ε0

∫ ∞
−∞

∫ ∞
−∞

χ̂(2)(ω1, ω2)Ê(ω1)Ê(ω2)δ(ω − (ω1 + ω2))dω1dω2

+ ε0

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

χ̂(3)(ω1, ω2, ω3)Ê(ω1)Ê(ω2)Ê(ω3)δ(ω − (ω1 + ω2 + ω3))dω1dω2dω3

+ . . .

(1.16)

Here, χ̂ refers to the (non)linear susceptibility in the frequency domain, and Ê refers to the electric

field in the frequency domain. In the linear regime, it is clear that polarization components at
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ω can only come from electric field components at that same ω. However, the second-order term

includes an infinite number of contributions from electric field frequencies ω1 and ω2, with the only

requirement that the two source frequencies must sum to the resulting frequency: ω = ω1+ω2. This

leads to the phenomena of sum frequency generation (SFG) and difference frequency generation

(DFG) [16]. The third-order term includes even more possibilities for frequency mixing. Thus

nonlinear optical phenomena are intimately connected with various kinds of frequency mixing.

The concept of wave mixing derives from these optical nonlinearities. The term three wave

mixing refers to second-order processes (those depending on χ(2)) when ω, ω1, and ω2 are three

different frequencies, or waves. The interaction between E and P means that all three of those

waves are coupled (they mix). Occasionally the term is used referring to the spatial generalization

of the above expression for P , where three different spatial frequencies (waves) mix together.

Likewise, four wave mixing refers to third-order nonlinear processes depending on χ(3), especially

when there are four different spatial or temporal frequencies involved.

1.4 Nonlinear optical methods for studying charge transfer

Nonlinear optical spectroscopies are very general tools for understanding how a material or system

behaves [17, 18]. For example, several decades ago Kok et al. used successive short light pulses

from a flash-lamp on chloroplasts from plants, correctly predicting the four oxidative states of

the oxygen-evolving complex in Photosystem II [19]. In this section, I discuss a few nonlinear

spectroscopies, with emphasis on those that can measure photoinduced charge transfer.

1.4.1 Pump probe spectroscopies

In general, nonlinear spectroscopies measure a material’s nonlinear susceptibility χ(n). A very

wide class of such spectroscopies may be termed pump probe, where an optical pump induces some

change in a material, and some kind of probe (optical or otherwise) measures that change. The term

pump probe usually refers to time-domain methods with absorptive probes. These methods employ
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two short pulses of light termed pump and probe, with a controllable time delay t between them

as depicted in Figure 1.5. The researcher measures how the pump pulse changes the transmission

or reflection of the probe pulse, as a function of t. Pump probe spectroscopy is a third-order

nonlinear phenomenon; the material polarization in response to the probe pulse may be written

P = ε0
[
χ(1) + χ(3)|Epump|2

]
Eprobe. Conceptually, this may be thought of as an altered linear

susceptibility χ(1)
altered = χ(1) + χ(3)|Epump|2 and the change in the transmission or reflection of the

probe provides a measure of the altered susceptibility. This is often measured as a change ∆OD in

the optical density (OD).

t

time

pump probe

0

Time t between pump and probe

0

∆
O

D

Figure 1.5: Illustration of absorptive pump probe spectroscopy. Top: illustration of the pulse or-
dering in pump probe spectroscopy. Horizontal axis, real time. The pump pulse (yellow) interacts
first, followed after some time t by the probe pulse (red) which interrogates the optical density
(OD). The pump and probe pulses may be the same optical frequency (degenerate pump probe)
or they may be different frequencies (two-color pump probe). Bottom: illustration of absorptive
pump probe spectroscopy in a dye, showing ∆OD=0 before t=0, showing a sharp decrease at t=0
due to ground state bleach, and a decay back to zero as the molecules relax back down to the
ground state.

Consider absorptive pump probe spectroscopy of a solution of dye molecules. Before the pump

hits the sample, all of the dye molecules are in the ground state and so they all absorb. After the

pump excites some of the molecules, those molecules no longer absorb, and so the OD decreases.
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As the molecules gradually return to the ground state, the optical density returns to its original

value. This change ∆OD in the optical density is plotted in Figure 1.5. The horizontal axis is the

time-delay t between the pump and the probe pulse. The probe pulse interrogates the OD; when

the probe pulse precedes the pump (t < 0) there is no change, however, change is observed when

the probe pulses follows the pump (t > 0). The time resolution of this experiment is governed by

the time duration of the optical pulses.

ground

D

CT

higher states

G
S

B

S
E

E
S

A

E
S

A

Figure 1.6: Illustration of absorptive signals that may be seen in pump probe in a typical molecular
system. Horizontal axis, nuclear coordinate. Thick gray lines, electronic energy levels. Thin
black arrows, optical transitions. Several types of signals are visible: ground state bleach (GSB),
stimulated emission (SE) with a Stokes shift, and multiple excited state absorptions (ESA).

There are several kinds of signals that may be seen with absorptive pump probe spectroscopy,

as seen in Figure 1.6. This shows an energy diagram for a hypothetical molecular system, with

several energy levels. The molecules start out in the ground state, and the pump pulse puts some

of them in the excited state labeled ‘D.’ The D-state molecules can transition to the CT state or

remain in the D state; in both cases there will be an eventual decay back to ground. Since the

pump decreases the number of ground-state molecules, when the probe arrives there are fewer

ground-state molecules absorbing light, and so the optical density at the main transition frequency

decreases. This negative feature is termed ground state bleach (GSB). Meanwhile, any D-state

molecules may undergo stimulated emission (SE) back to the ground state when the probe arrives,

also decreasing the optical density. The SE negative feature is typically red-shifted (has lower
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energy) compared to the GSB feature due to nuclear relaxation; the shift is called the Stokes shift.

Molecules in either of the accessible excited states (the D or CT states) can undergo excited state

absorption (ESA) to higher-energy states; different ESA transitions can be different frequencies

which can be a signature for population in the D versus CT states.

It is often desirable to use many different probe wavelengths to capture as many different types

of absorptive signals as possible (there are many possible SE and ESA transitions, for example).

Many probe wavelengths may be multiplexed at once by using a broadband probe pulse, and spec-

trally dispersing the probe frequencies onto an array detector. This multiplexed method is often

called transient absorption (TA), because the change in the absorption spectrum, induced by the

pump pulse, is measured.

Many kinds of non-absorptive probes may be used within the conceptual pump probe umbrella.

These non-absorptive pump probe spectroscopies are no longer third-order spectroscopies, but are

generally higher order. In all of them, an optical pump pulse excites some of the molecules. Instead

of being absorptive (optically linear), the probe might use some optical nonlinearity itself, or use

some other mode of detection. For example, much of this dissertation uses a SHG probe, where the

probe pulse produces SHG, and changes in the SHG are measured as function of the time-delay

between pump and probe pulses. Other types of probes include structural ones, such as X-ray

or electron diffraction [20, 21]. As another example, Kok et al. [19] detected molecular oxygen

evolution in the gas phase after illuminating with a probe pulse to study the oxygen-evolving

complex in chloroplasts.

1.4.2 Using pump probe spectroscopies to measure charge transfer

There are several different ways to investigate charge transfer using spectroscopies within the pump

probe umbrella. Several of the most popular methods use absorptive probes, chosen to be resonant

with some spectral signature associated with the charge transfer state. The pump pulse excites

some of the molecules—creating D states in the language of Figures 1.4 and 1.6. These gradually

transition to the charge transfer state CT, and the probe detects this based on the chosen spectral
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Figure 1.7: Illustration of absorptive pump probe spectroscopy on a charge transfer system, using
a probe resonant a spectral signature associated with the charge transfer. Observe ∆OD=0 before
t=0, followed by an increase in the charge transfer spectral signature as the excited state relaxes to
the charge transfer state. There will be a slow decay back to the ground state (and ∆OD=0) but
this is not shown.

signature. In this case the pump probe trace would look something like that in Figure 1.7: after

photoexcitation, a slow increase in ∆OD at the probe wavelength occurs as the excited states

transition to the charge transfer states. At very long times, ∆OD would return to zero as the charge

transfer states decay back to the ground state. This experiment does not actually establish the

presence of charge transfer; the charge transfer is inferred by proxy from the spectral signature.

Many researchers use TA spectroscopy to study organic photovoltaics, with a visible pump and

a probe bandwidth spanning much of the visible and near-infrared (NIR) [22–26]. The visible

pump creates the population of D states. Some time t later, the visible-NIR probe interrogates

the SE and ESA in the sample. ESA in the NIR is commonly attributed to charge transfer states

[22–25]. For example, C60 fullerene derivative anions in solution have absorptions in the NIR

[27] and so organic photovoltaic materials using fullerenes as electron acceptors probably have

similar absorptions in the charge transfer states. Unfortunately, in real devices the signals aren’t

nearly as simple as those in Figure 1.7, as seen in [22–26]. There are many spectral signatures of

many different phenomena that overlap, all across the visible and NIR; sophisticated analysis and

modeling are required to tease apart the phenomena.

Time-resolved microwave and terahertz methods use a visible pump and a GHz- or THz-

frequency probe; a nice review of these methods is given in [28]. Most materials are fairly trans-
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parent in the GHz and THz, but free carriers usually absorb. Therefore as semiconductors become

optically excited by the visible pump, the photogenerated free carriers give a response measured

by the probe. The data can be transformed to give the real and imaginary parts of the electrical

conductivity, which can be measured as a function of time after photoexcitation. Sophisticated

models of carrier scattering are employed, and in organic photovoltaics the morphology plays a

critical role as well [28].

3. Free carrier formation dynamics

Polymeric OPV materials are distinguished from their inorganic
counterparts because their primary excitations (excitons) and
charge carriers (polarons) are localized to a large extent on
individual conjugated segments. Polymeric OPV materials also
have relatively low dielectric constants. As a consequence,
Coulombic interactions between charge carriers can be long-
ranged and quite strong.52 Considering a bulk heterojunction
polymer blend, the charge carriers that result from interfacial
electron transfer from the polymer to the fullerene are initially
bound to the interface by a Coulombic potential that can be
several tenths of an electron volt.52,53 Binding energies of this
order are much larger than thermal energy at room temperature
(B0.025 eV). It is an outstanding question as to why charge
separation occurs as readily as is observed in functional OPV
devices. The carbonyl bleach spectra in the transient IR data
displayed in Fig. 5 provide a means to investigate this question
using the 1 : 1 CN-MEH-PPV : PCBM blend as a model system.

The fitting procedure used to extract the bleach spectra from
the transient IR data generates a unique bleach spectrum for
each time delay between the visible pump and the IR probe
pulses. Fig. 9A displays the best fit Gaussian line shapes
extracted from the transient IR spectra in a two-dimensional
surface plot versus the corresponding time delay (horizontal
axis). We will refer to the best-fit Gaussian line shapes as the
bleach spectra in the subsequent discussion unless otherwise
indicated. The time axis has been plotted on a logarithmic
scale to highlight the extended time dependence of the bleach

spectra. The dashed curve is a guide to the eye that shows the
shift of the bleach spectrum at longer time delays toward
the equilibrium center frequency of 1740 cm"1 (marked by the
horizontal dotted line). Fig. 9B depicts the time dependence of
the bleach spectrum quantitatively by plotting the center
frequency versus the time delay on a logarithmic time axis.
The data lead to the surprising conclusion that the carbonyl
bleach spectrum immediately following interfacial electron
transfer is shifted several wavenumbers to higher frequency
relative to the equilibrium line center.76 The subset of
molecules that are involved in interfacial electron transfer
apparently reside in environments that cause their carbonyl
bonds to possess higher frequencies in comparison to the
ensemble. Following the initial charge transfer process, the
bleach spectrum shifts monotonically toward the equilibrium
center on the sub-ps to 10 ns time scales (circled region,
Fig. 9B).

3.1 Correlation of carbonyl frequency with radial position

To elucidate the nature of PCBMmolecules that absorb on the
higher frequency side of the carbonyl transition, we undertook
a linear IR study of CN-MEH-PPV : PCBM blends of various
composition. Linear IR spectra of four films are represented in
Fig. 10. The spectra were collected at room temperature and
have been normalized for comparison. The spectrum of a film
of pure PCBM (labeled PCBM) appears with a peak at
1735 cm"1. The addition of 3 mass% of polymer relative to
PCBM shifts the carbonyl absorption to 1738 cm"1 (spectrum
labeled 0.03 : 1). The addition of significantly more polymer up
to a mass ratio of 1 : 1 results in a further shift of the carbonyl
absorption to 1740 cm"1 (spectrum labeled 1 : 1). The spec-
trum labeled PPV in Fig. 10 demonstrates that CN-MEH-PPV
has little spectral density in this frequency window. The
carbonyl absorption exhibits little further blue-shift with
continued addition of polymer to the blend. The shift to
higher frequency results from perturbation of the carbonyl
mode of PCBM by the presence of the polymer rather than
from a simple superposition of the polymer absorption. Simple
addition of the polymer spectrum to the pure PCBM carbonyl
peak cannot explain the direction of the observed shift with
increasing polymer content. For comparison, the transient IR
spectrum of the carbonyl bleach at 1 ps time delay is included.
The comparison shows that the component of the carbonyl
bleach spectrum that arises from the addition of polymer to
the PCBM film is also the component that is preferentially
involved in interfacial electron transfer.
The composition-dependent linear IR study indicates that

the carbonyl frequencies of PCBM molecules are correlated
with their proximity to the interfaces of the PCBM domains.
This correlation is illustrated in Fig. 11. The linear IR spectra
in Fig. 10 show that the shift of the carbonyl vibration to a
higher frequency arises from a perturbation of the bond by the
presence of the polymer. Since molecules near the interfaces of
the PCBM domains experience the strongest interactions with
the polymer, it follows that these molecules absorb on the
higher frequency side of the equilibrium carbonyl transition.
This conclusion is supported by the appearance of the
carbonyl bleach spectrum at higher frequencies for short delay

Fig. 9 (A) Two-dimensional surface plot of the carbonyl bleach

spectra of the CN-MEH-PPV : PCBM polymer blend versus the

corresponding time delay. The horizontal axis represents the time

delay on a logarithmic scale. The data indicate that the center

frequency of the carbonyl bleach peak shifts to lower frequency and

toward the equilibrium value of 1740 cm"1 indicated by the dotted

line. The dashed line is a guide to the eye. (B) Plot of the carbonyl

bleach center frequency versus corresponding time delay. The shift

toward lower frequency highlighted in the circled region results from

spatial motion of electrons that diffuse away from the PCBM domain

interfaces following the primary interfacial electron transfer event

(see text).
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Figure 1.8: Illustration of MIR probing of a charge transfer system, reproduced from [29]. The top
subfigure A shows ∆OD as a function of detection frequency and pump probe time delay t. The
dashed line guides the eye as to the central frequency changing over time. The bottom subfigure B
shows the central frequency as a function of time.

In visible pump, mid-infrared (MIR) probe spectroscopy, an ultrafast visible-light pump pulse

creates a population of D states. Some time t later, an ultrafast MIR probe pulse interrogates

the vibrational modes of the sample. In some cases, the vibrational frequencies will shift as a

function of t, as seen in Figure 1.8. There are two ways that charge transfer can alter the vibrational

modes: either the charge transfer state itself can have altered vibrational modes, or an unrelated

spectator vibration can be shifted due to the vibrational Stark effect. Pensack et al. [29, 30] reported

that the electron acceptor [6,6]-Phenyl C61 butyric acid methyl ester (PCBM)—a functionalized
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fullerene—has a carbonyl stretch vibrational mode that shifts by several wavenumbers once PCBM

accepts the electron from an electron donor. Baiz et al. [31] reported a vibrational-mode shift of

almost 20 wavenumbers in a probe molecule, due to charge transfer in a neighboring molecule.

The neighboring molecule’s charge transfer created an electric field, which Stark-shifted the probe

molecule’s vibrations.

Moving to non-absorptive probes, time-resolved photo-luminescence (PL) can also be used to

observe charge transfer [30, 32, 33]. In this approach a visible pump pulse creates the population

of excited states, as before. In the common case where the charge transfer state is long-lived, much

of the PL comes from the charge transfer state, especially in the NIR. Bernardo et al. [32] used a

streak camera to time-resolve the NIR PL from a small-molecule organic photovoltaic, achieving

time resolution on the order of 100 ps. Chen et al. [33] used a Kerr gate to achieve ∼200 fs time

resolution on the PL from a polymer-based organic photovoltaic film. It is unfortunate that many

systems have charge transfer states that do not have an appreciable dipole-allowed transition to the

ground state, so PL does not work for those systems.

All nonlinear spectroscopies use proxies to observe the charge transfer: they look at the SE

and ESA, the time-resolved conductivity, vibrational modes, or the PL. In many cases, these

are good proxies, where most or all of the observed signal comes from the charge transfer state.

The time-resolved conductivity is likely an especially good proxy, because free carriers represent

what’s being observed. Quite recently, a few groups have started to use an ultrafast measurement

of electric field in the sample as a proxy [34–36]. This is a visible pump, second harmonic probe

spectroscopy, where a visible pump pulse creates the population of excited states, as before. Some

time t later, a non-resonant or quasi-resonant probe pulse, often in the NIR, interrogates the electric

field in the sample. The signal is actually the second harmonic of the probe pulse. This works by

the phenomenon of electric field induced second harmonic (EFISH): a third order nonlinear optical

phenomenon, where a quasi-static (non-oscillating) electric field EDC enables the material polar-

ization to oscillate at the second harmonic of a probe pulse: P = ε0χ
(3)EDCE

2
probe, where Eprobe

is the probe pulse and χ(3) is the third-order nonlinear susceptibility. Charge transfer creates the
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quasi-static field EDC, leading to the observed EFISH. Since this field EDC is likely a particularly

good proxy for charge transfer, time-resolved second harmonic generation (TRSHG) can unam-

biguously resolve the charge transfer as a function of time. This is a cascaded nonlinear optical

signal; the pump pulse creates the EDC through a second order nonlinearity (PDC ∝ χ(2)|Epump|2)

which then interacts with the probe pulse and the third order nonlinearity to produce the EFISH

signal. The cascading makes this spectroscopy effectively fourth order in the input fields: second

order in Epump and second order in Eprobe.

1.4.3 Using pump probe TRSHG to measure charge transfer

t

time

pump probe

signal

0

Time t between pump and probe

0

1

S
H

G
 (

a
.u

.)

Figure 1.9: Illustration of TRSHG pump probe spectroscopy on a charge transfer system. Top:
illustration of TRSHG spectroscopy pulse ordering. Horizontal axis, real time. The pump pulse
(yellow) interacts first, followed by a probe pulse (red) after some time t. The probe pulse creates
a SHG signal (blue). The pump, probe, and signal frequencies are typically all different. Bottom:
illustration of TRSHG signals on a charge transfer system. The SHG is constant (normalized to
unity) when the probe precedes the pump (t < 0), but falls—or rises (not shown)—for t > 0 as the
charges separate. There will be a slow decay back to the ground state (and a corresponding return
to unity SHG) but this is not shown.

There are two main sample geometries that exploit EFISH to measure charge transfer and

charge separation in organic photovoltaics. One possibility employs a planar heterojunction as
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depicted in Figure 1.2, without the electrodes and buffer layers [34, 35]. In this case, there is a

small intrinsic second-order susceptibility χ(2) leading to SHG even when the probe precedes the

pump (t < 0). After photoexcitation (t > 0), the charge transfer states across the bilayer interface

create an electric field which gives SHG signal through EFISH. Depending on the relative phases

of χ(2) and χ(3) the SHG may either increase or decrease after photoexcitation. Figure 1.9 depicts

this process, where the observed rate corresponds to the charge transfer.

The other sample geometry uses a bulk heterojunction with buffer layers and external electrodes

[36]. There is a strong built-in electric field throughout the sample, which is directly detected by

the SHG probe. After photoexcitation, free carriers are formed, which tend to migrate to oppose

the built-in field. Figure 1.9 depicts this process; in the bulk heterojunction case the SHG tends to

fall after photoexcitation since the carrier movement decreases the electric field. Since charges may

continue to move as free carriers to oppose the built-in field, this experiment actually measures a

time-dependent mobility after photoexcitation [36].

1.5 Theory of ultrafast pulses, dispersion, and ultrafast mea-

surements

All of the above spectroscopic methods rely on short pulses of light for their time resolution. The

shorter the pulses, the better the time resolution. Most of the methods described above may be

termed ultrafast, meaning the pulses of light are shorter than ∼1 ps in duration. Since there are

many claims of charge transfer happening in <100 fs [26, 34, 35, 37] it is desirable that the time

resolution of the experiment (the time duration of the pulses) be much better than that, around

10–30 fs. Investigating claims of vibronic enhancement of charge transfer needs especially short

pulses, around 10 fs [26, 37].

There are two key ideas to ultrafast pulses. First, the Fourier time-frequency relationships

prove that if you want a pulse that is short in time, then it needs to be broad in frequency. A

monochromatic light beam is infinitely long in time, and an infinitely short pulse in time requires
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equal contributions from all frequencies. Second, just having a broadband pulse does not make

it short: the phases of the different frequencies must be synchronized, or mode-locked. When all

the phases interfere constructively, the pulse will be short. In the case of sunlight, the light is very

broadband but the phases are totally random—sunlight is not pulsed at all. In general, we may

represent an electromagnetic pulse Ê(ω) using a combination of its spectral amplitude |Ê(ω)| and

its spectral phase φ(ω):

Ê(ω) = |Ê(ω)| exp(−iφ(ω)). (1.17)

We use the term transform limited or compressed to refer to pulses that are as short as their spectra

allow; when the spectral phase φ(ω) is zero, Ê(ω) corresponds to a transform limited pulse. Some

trivial nonzero adjustments in φ are also OK: a phase φ(ω) + φ0 + φ1ω will yield the same pulse

duration as φ(ω), for arbitrary φ0 and φ1. The constant term φ0 will alter the carrier-envelope

phase (CEP), and the linear term φ1ω will alter the time-delay of the pulse, but the time duration

will not be affected.

It is common to Taylor-expand the phase φ(ω) of a pulse around its central frequency ω0:

φ(ω) = φ0 + φ1(ω − ω0) +
1

2
φ2(ω − ω0)2 +

1

6
φ3(ω − ω0)3 + . . . , (1.18)

where

φi ≡
di

dωi
φ(ω)

∣∣∣∣
ω=ω0

. (1.19)

φ1 is also known as the group delay (GD), since it simply adjusts the time-delay of the pulse. φ2 is

known as group delay dispersion (GDD), since different frequencies acquire different time-delays.

This is the phenomenon of chirp, where the instantaneous frequency of a pulse varies over the

course of time, much like an audible chirp. φ3 is known as third order dispersion (TOD), φ4 is

known as fourth order dispersion (FOD), and so on.

If a transform limited pulse passes through material, it becomes longer, due to the dispersion

it acquires as it propagates—it is no longer transform limited. All materials have a frequency-

dependent index of refraction n(ω); after propagation through a length ` of material the pulse
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will acquire a phase φ(ω) = ω`n(ω)/c where c is the speed of light in vacuum. The frequency

dependence of n ensures there are second- and higher-order derivatives of φ(ω), leading to GDD,

TOD, and so on.

A variety of methods have been devised to counteract the dispersion acquired by propagating

through material. Prism compressors and grating compressors [38] exhibit a net negative GDD,

compensating for the positive GDD elsewhere in the optical setup. So long as the bandwidth is

not too large—so TOD doesn’t matter—these work wonderfully for compressing the pulses [38].

More recently, chirped mirrors using multilayer optical interference have been created with a net

negative GDD [38]. Chirped mirrors can be used with very large bandwidths, without introducing

additional TOD, but their phase functions tend to be ripply. The ripples can be viewed as very high

order dispersion, reducing pulse symmetry and lengthening the pulse slightly. Some researchers

use a pulse shaper which can apply an arbitrary spectral phase (and/or amplitude) to an ultrafast

pulse, and therefore can be used to compensate arbitrary dispersion to high orders. There are two

dominant geometries; the 4-f geometry disperses the laser frequencies onto a spatial light modula-

tor [39], while the acousto-optic programmable dispersive filter [40, 41] employs a fully collinear

geometry where a programmable acoustic wave controls the spectral amplitude and spectral phase

of a diffracted output.

No matter what method is used to counteract the dispersion, some kind of pulse measurement is

necessary to characterize the time resolution of nonlinear spectroscopies. The pulse measurement

quantifies the spectral phase φ(ω), and then the pulse shaper, prism compressor, or chirped mirrors

can be set to compensate that phase. All ultrafast pulse measurement methods are based on optical

nonlinearities. Fundamentally, this is because all optical detectors are square-law devices: they

respond to the intensity of the light but not the phase. There are no light detectors with few-

femtosecond time resolution. As discussed above in the example of sunlight, knowledge of the

phase is critical to knowing the time duration of the pulse. Using nonlinear optical methods, it is

possible to measure the relative phases between the different frequencies in pulses, which is enough

information to determine pulse duration. There are several classes of ultrafast pulse measurement
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methods. A few of the most common methods are frequency resolved optical gating (FROG) [42],

spectral interferometry for direct electric field reconstruction (SPIDER) [43–45], and multiphoton

intrapulse interference phase scan (MIIPS) [46–49].

1.5.1 FROG

There are several variations of FROG; one example is second harmonic generation frequency re-

solved optical gating (SHG-FROG). In SHG-FROG an unknown test pulse is split in two, and then

recombined in a material with a second-order nonlinearity. The SHG spectrum coming from the

two pulses is measured in a spectrometer, as a function of the time-delay between the two pulses.

If the time-delay between the two is τ , we may write an expression for the SHG-FROG signal:

ESHG-FROG(t, τ) ∝ E(t)E(t− τ). (1.20)

This comes from the above definition of nonlinear polarization in Equation 1.15, assuming χ is es-

sentially impulsive and frequency-independent [42]. What is measured in the spectrometer comes

from the Fourier transform,

ISHG-FROG(ω, τ) ∝
∣∣∣∣∫ ∞
−∞
∝ E(t)E(t− τ) exp(−iωt)dt

∣∣∣∣2 (1.21)

Measuring this as a function of the detection frequency ω and the time-delay τ between pulse

replicas gives a spectrogram ISHG-FROG(ω, τ); numerical algorithms have been developed to invert

the spectrogram to yield the spectral amplitude and phase of the pulse [42]. For FROG to be

accurate, the spectrometer needs to be well-calibrated and the delay-stage producing τ needs to

be calibrated in relative terms, but these requirements are easy to meet. The biggest advantage of

FROG methods is that they provide very direct measures of pulse duration. Effects like spatial

chirp [50] or phase noise [51] can cause other methods to falsely report a very short pulse, when

FROG would reveal the true longer pulse duration.
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1.5.2 SPIDER

There are many versions of SPIDER [43–45], but they all work by making two nonlinear replicas

of the test pulse, with slightly different frequencies and time-delays. For example, sum frequency

generation between a very narrowband pulse with central frequency Ω and the test pulse with

central frequency ω0 will produce a (weak) replica of the test pulse, with central frequency Ω +ω0.

Using two different narrowband pulses, with frequencies Ω + ∆/2 and Ω − ∆/2, will yield two

replicas of the test pulse, with central frequencies Ω + ∆/2 + ω0 and Ω − ∆/2 + ω0. If the two

narrowband pulses are almost the same frequency (|∆| is small), then the replicas will interfere,

with spectral shear. A time delay τ is added to one of the replicas. Therefore the signal field may

be represented as

ÊSPIDER(ω) = Ê(ω − Ω−∆/2) + Ê(ω − Ω + ∆/2) exp(−iωτ), (1.22)

where in this expression ω takes on values near Ω + ω0. With a change of variable ν = ω −Ω, the

detected spectral intensity becomes

ISPIDER(ν + Ω) ∝
∣∣∣ÊSPIDER(ν + Ω)

∣∣∣2
∝
∣∣∣Ê(ν −∆/2)

∣∣∣2 +
∣∣∣Ê(ν + ∆/2)

∣∣∣2 + Ê(ν −∆/2)Ê∗(ν + ∆/2) exp(i(ν + Ω)τ)

+ Ê∗(ν −∆/2)Ê(ν + ∆/2) exp(−i(ν + Ω)τ).

(1.23)

Using the techniques of spectral interferometry [52–54] a quickly-oscillating interference term can

be separated from the others:

ISI(ν + Ω) = Ê∗(ν −∆/2)Ê(ν + ∆/2) exp(−i(ν + Ω)τ). (1.24)
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I now explicitly rewrite the unknown pulse Ê(ν) in terms of its amplitude |Ê(ν)| and phase φ(ν):

ISI(ν + Ω) =
∣∣∣Ê∗(ν −∆/2)Ê(ν + ∆/2)

∣∣∣ exp [−i(ν + Ω)τ − iφ(ν −∆/2) + iφ(ν + ∆/2)] .

(1.25)

Computing the complex argument (the phase) and dividing by ∆ starts to look like the first deriva-

tive of the phase φ′(ν)—the spectral GD, meaning the group delay as a function of frequency—plus

a linear term:

arg{ISI(ν + Ω)}
∆

= −(ν + Ω)τ

∆
+
φ(ν + ∆/2)− φ(ν −∆/2)

∆
. (1.26)

In particular, taking the limit of small ∆ yields that spectral GD plus a linear term:

lim
∆→0

arg{ISI(ν + Ω)}
∆

= −(ν + Ω)τ

∆
+ φ′(ν). (1.27)

Assuming τ/∆ is well-calibrated, the linear term can be easily removed. Precise knowledge of Ω

is not required, since a constant term in the spectral GD φ′(ν) does not affect the pulse duration.

Speed is SPIDER’s biggest advantage: in principle only one laser pulse is necessary, and the

above computations are very fast. There are two main disadvantages to SPIDER: first, there

are quite a few parameters that need to be carefully adjusted to make things work. τ needs to

be large enough to avoid contamination between the terms in the spectral interferometry, while

small enough that the spectrometer’s resolution is not an issue. ∆ needs to be small enough to

make the limit in Equation 1.27 applicable, but large enough to get good S/N on the difference

φ(ν + ∆/2) − φ(ν − ∆/2). Making matters worse, some implementations of SPIDER couple τ

and ∆, where a change in τ also changes ∆. Second, SPIDER requires precise knowledge of τ/∆

in absolute terms, which is not easy to achieve in many implementations.
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1.5.3 MIIPS

MIIPS was designed from the ground up to be used with a pulse shaper. On the other hand, FROG

and SPIDER were designed to be built with conventional optics; separate optics like prism/grism

compressors or chirped mirrors are required to adjust the spectral phase to make it zero. However,

a pulse shaper can perform both duties: it can measure the pulse and adjust its phase. Thus MIIPS

was designed for simultaneous measurement and correction of the spectral phase. This saves the

researcher a lot of time, by reducing optics and alignment time. The pulse shaper applies a series

of sinusoidal phase functions fj(ω) = α sin(γω − δj), yielding the following pulse shapes:

Êj(ω) = |Ê(ω)| exp [−iφ(ω)− iα sin(γω − δj)] , (1.28)

which have total phase ϕj(ω) = φ(ω) + fj(ω). The second harmonic spectrum of each resulting

pulse is recorded with a spectrometer:

Ij(ω) ∝
∣∣∣∣∫ ∞
−∞

E2
j (t) exp(−iωt)dt

∣∣∣∣2 . (1.29)

As discussed in [47], this may be rewritten as a convolution:

Ij(2ω) ∝
∣∣∣∣∫ ∞
−∞

∣∣∣Ê(ω + Ω)
∣∣∣ ∣∣∣Ê(ω − Ω)

∣∣∣ exp [iϕ(ω + Ω) + iϕ(ω − Ω)] dΩ

∣∣∣∣2 . (1.30)

This convolution will tend to maximize when the phase term ϕ(ω+Ω)+ϕ(ω−Ω) is approximately

zero, corresponding to a compressed pulse or a compressed portion of a pulse. Therefore it is

expected the spectrum for a given ω will be maximized when ϕ′′(ω) = φ′′(ω) + f ′′(ω) ≈ 0. By

scanning the values δj and choosing the δm(ω) that maximizes Ij(2ω) for a particular frequency ω,

we can use that as a heuristic estimate for φ′′(ω). Specifically,

φ′′(ω) ≈ αγ2 sin(γω − δm(ω)). (1.31)
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Now, the GDD φ′′(ω) + f ′′(ω) is equal to zero for two values of δ between 0 and 2π, so there are

actually two δ-values named δ(1)
m and δ(2)

m that maximize Ij(2ω). Averaging the two corresponding

heuristic estimates gives a better heuristic, in practice:

φ′′(ω) ≈ 1

2
αγ2

[
sin(γω − δ(1)

m (ω)) + sin(γω − δ(2)
m (ω))

]
. (1.32)

The pulse shaper is then set to compensate the measured phase, and then the pulse shaper runs

the MIIPS algorithm again starting from the corrected phase. After several iterations, the process

converges to a fully-compensated phase, corresponding to a very short pulse. MIIPS has the ad-

vantage of being particularly accurate: it has been used for impressively precise measurements of

materials’ dispersion [48].

1.6 Outline of this dissertation

I now outline the remainder of this dissertation. I first develop TRSHG as a spectroscopy a bit

further. In organic photovoltaics, exciton-exciton annihilation can be very strong because the dis-

tance between excitons is so small. To avoid this problem, very low pump fluences are used;

this decreases signal strength. Coupled with the fact that SHG as a phenomenon is already weak,

TRSHG signals from organic photovoltaics become extremely low. It is therefore desirable to add

optical heterodyne detection to TRSHG, decreasing sensitivity to read noise, dark current, and

stray light. Heterodyne detection also allows both the amplitude and the phase of the SHG to

be directly detected, which can aid physical understanding; for example, providing information

about molecular orientations or the direction of charge transfer. Chapter 2 contains “Heterodyne-

detected and ultrafast time-resolved second-harmonic generation for sensitive measurements of

charge transfer” (doi:10.1364/OL.39.004274) describing such a heterodyne-detected version of

TRSHG spectroscopy [55].

A prototypical organic photovoltaic planar heterojunction employs boron subphthalocyanine

chloride as the electron donor and C60 as the electron acceptor. We investigate charge transfer in
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this system using a combination of TRSHG and our collaborators’ theory of electron transfer based

on FGR. This work is described in Chapter 3, which contains “Ultrafast charge-transfer dynamics

at the boron subphthalocyanine chloride / C60 heterojunction: Comparison between experiment

and theory” (as it was first submitted to the Journal of Physical Chemistry Letters).

The Forrest group recently reported a particularly efficient organic photovoltaic [56, 57] based

on tetraphenyldibenzoperiflanthene as the electron donor and C70 as the electron acceptor. It em-

ployed the bulk heterojunction geometry. They were surprised that the maximal efficiency was

reached at a donor:acceptor mixing ratio of 1:8 rather than a more even mixture. We investi-

gated this system and its concentration dependence using a novel two-dimensional heterodyne-

detected TRSHG technique, in Chapter 4: “Concentration dependence of ultrafast carrier dynamics

in tetraphenyldibenzoperiflanthene / C70 bulk heterojunctions” (not yet submitted to any journal).

The next two chapters focus on ultrafast pulse measurements using a pulse shaper. A method to

adapt FROG, using a pulse shaper as the only active element, is developed. This is helpful because

no extra optics or alignment are necessary. However, some extra signals are generated, requiring

separation of the FROG signals from the other signals. Chapter 5, “Fast second harmonic gen-

eration frequency resolved optical gating using only a pulse shaper” (doi:10.1364/OL.38.002980)

[58], discusses a SHG-FROG implemented using only a pulse shaper, using a phase cycling method

to remove unwanted signals.

It is difficult to determine which pulse compression method is the best for any particular ap-

plication. Pulse energies, bandwidth, repetition rates, and many other experimental considerations

factor into the decision. For the most part, if a pulse shaper is already in use, I believe using a

pulse-shaper-only method makes the most sense, because a researcher’s time is a precious com-

modity. Complicating the decision of which pulse compression method is best, very few direct

comparisons between pulse measurement methods have been performed, and none at all in the

pulse-shaper-only regime. To address this problem, Chapter 6 contains “Comparison of pulse com-

pression methods using only a pulse shaper” (doi:10.1364/JOSAB.31.001544) [59]. It performs an

explicit comparison between several different pulse-shaper-only methods. It also introduces a new
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method named spectral phase of electric field by analytic reconstruction (SPEAR), and includes it

in the comparison. It is perhaps surprising that the best methods, at least within pulse-shaper-only

contexts, do not include the widely-used methods FROG, SPIDER, and MIIPS.

Finally, Chapter 7 summarizes the main scientific results in this dissertation, and discusses

future directions for research.
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Jie Shu, Michael Ryan Hansen, Klaus Müllen, and Frédéric Laquai. The effect of solvent ad-
ditives on morphology and excited-state dynamics in PCPDTBT:PCBM photovoltaic blends.
Journal of the American Chemical Society, 134:10569–83, (2012).

[24] Sanjeev Singh and Zeev Vardeny. Ultrafast transient spectroscopy of polymer/fullerene
blends for organic photovoltaic applications. Materials, 6:897–910, (2013).

[25] Ajay Ram Srimath Kandada, Giulia Grancini, Annamaria Petrozza, Stefano Perissinotto,
Daniele Fazzi, Sai Santosh Kumar Raavi, and Guglielmo Lanzani. Ultrafast energy trans-
fer in ultrathin organic donor/acceptor blend. Scientific Reports, 3:2073, (2013).

[26] Sarah Maria Falke, Carlo Andrea Rozzi, Daniele Brida, Margherita Maiuri, Michele Am-
ato, Ephraim Sommer, Antonietta De Sio, Angel Rubio, Giulio Cerullo, Elisa Molinari, and
Christoph Lienau. Coherent ultrafast charge transfer in an organic photovoltaic blend. Sci-
ence, 344:1001–5, (2014).

[27] Dirk M. Guldi and Maurizio Prato. Excited-state properties of C60 fullerene derivatives.
Accounts of Chemical Research, 33:695–703, (2000).

30



[28] Ronald Ulbricht, Euan Hendry, Jie Shan, Tony F. Heinz, and Mischa Bonn. Carrier dynamics
in semiconductors studied with time-resolved terahertz spectroscopy. Reviews of Modern
Physics, 83:543–586, (2011).

[29] Ryan D. Pensack, Kyle M. Banyas, Larry W. Barbour, Maureen Hegadorn, and John B.
Asbury. Ultrafast vibrational spectroscopy of charge-carrier dynamics in organic photovoltaic
materials. Physical Chemistry Chemical Physics : PCCP, 11:2575–91, (2009).

[30] Ryan D. Pensack and John B. Asbury. Ultrafast probes of charge transfer states in organic
photovoltaic materials. Chemical Physics Letters, 515:197–205, (2011).

[31] Carlos R. Baiz and Kevin J. Kubarych. Ultrafast vibrational Stark-effect spectroscopy: ex-
ploring charge-transfer reactions by directly monitoring the solvation shell response. Journal
of the American Chemical Society, 132:12784–5, (2010).

[32] B. Bernardo, D. Cheyns, B. Verreet, R. D. Schaller, B. P. Rand, and N. C. Giebink. Delocal-
ization and dielectric screening of charge transfer states in organic photovoltaic cells. Nature
Communications, 5:3245, (2014).

[33] Kai Chen, Alex J. Barker, Matthew E. Reish, Keith C. Gordon, and Justin M. Hodgkiss.
Broadband ultrafast photoluminescence spectroscopy resolves charge photogeneration via
delocalized hot excitons in polymer:fullerene photovoltaic blends. Journal of the American
Chemical Society, 135:18502–12, (2013).

[34] L. G. Kaake, A. Jailaubekov, K. J. Williams, and X.-Y. Zhu. Probing ultrafast charge sep-
aration at organic donor/acceptor interfaces by a femtosecond electric field meter. Applied
Physics Letters, 99:083307, (2011).

[35] Askat E. Jailaubekov, Adam P. Willard, John R. Tritsch, Wai-Lun Chan, Na Sai, Raluca
Gearba, Loren G. Kaake, Kenrick J. Williams, Kevin Leung, Peter J. Rossky, and X.-Y.
Zhu. Hot charge-transfer excitons set the time limit for charge separation at donor/acceptor
interfaces in organic photovoltaics. Nature Materials, 12:66–73, (2013).
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Chapter 2

Heterodyne-detected and ultrafast time-resolved

second harmonic generation for sensitive

measurements of charge-transfer

Photo-induced charge transfer is a key step in light-harvesting systems. Organic photovoltaics,

biological photosynthesis, many fluorescent proteins, and many photoelectrochemical systems all

crucially depend on the conversion process that begins with light absorption and its generation

of charge transfer states. In all of these systems, molecules absorb light, creating an exciton that

moves to an interface between electron donor and acceptor molecules, driving charge transfer and

eventually charge separation. The charge-transfer and separation steps are critical to system perfor-

mance because the charge carriers are spatially proximate and Coulombically bound, enhancing

the probability of recombination. In organic photovoltaics for example, theory predicts that the

charge-transfer rate, charge separation rate, and charge recombination rate all crucially affect de-

vice performance [1]. Because these processes occur on femtosecond to nanosecond timescales,

they are difficult to measure using electrical methods. However, ultrafast laser spectroscopy sensi-

tive to charge transfer can achieve the required time resolution.

Traditional methods for studying charge transfer using ultrafast spectroscopy include pump-

probe (also called transient absorption or photoinduced absorption) and time-resolved fluores-

cence (or photoluminescence) [2–6]. These methods use proxies for charge-transfer: they track

spectral signatures believed to be due to charge-transfer or charge-separated states. For example,
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near-infrared transient absorption in organic photovoltaics is commonly ascribed to charge trans-

fer states [2–4]. These spectroscopies generate signal throughout the bulk of the device, which

must be distinguished from the charge-transfer and charge-separation signals specific to the inter-

face [7]. Due to symmetry considerations, second-harmonic-generation (SHG) when used with

amorphous or centrosymmetric materials only occurs at interfaces [8]. Therefore ultrafast time-

resolved second-harmonic-generation spectroscopy (TRSHG) [7, 9–12] has the advantage of being

interface-specific. It is sensitive to several time-resolved surface phenomena, including charge-

transfer using electric field induced second harmonic (EFISH) generation [7, 9–12].

Organic photovoltaics produce extremely small amounts of SHG; they do not withstand much

laser fluence. Stray light, read noise, detector dark current, and shot noise must be addressed with

care. Optical heterodyne detection helps with these issues [13] by interfering the signal field with a

reference field, or local oscillator (LO). This increases signal amplitude, reducing the influence of

read noise and dark current. The impact of stray light is reduced because it is not coherent with the

LO. It also allows for phase-sensitive detection of the nonlinear response, which can aid physical

understanding; for example, providing information about molecular orientations or the direction

of charge transfer [14, 15]. Many implementations of heterodyne-detected surface SHG have been

done in the time domain [16, 17], measuring the intensity of the LO interfering with the signal

as a function of their relative time-delay. Other implementations have been done in the frequency

domain [14, 15, 18], where a multi-channel spectrometer records the spectral intensity of the LO

interfering with the signal at a fixed relative time-delay (spectral interferometry). This frequency-

domain implementation has been used for TRSHG; Wilson et al. [14] tracked thermally-induced

changes in the surface SHG of pure silicon with∼1 s time-resolution. I present a frequency-domain

heterodyne-detected TRSHG with ultrafast time resolution, using a pump-probe configuration.

I briefly describe the theory of spectral interferometry in optical heterodyne contexts and how

it applies to TRSHG. I then experimentally demonstrate how S/N scales with LO strength, and

demonstrate a time-resolved trace using an archetypal boron subphthalocyanine chloride / fullerene

heterojunction.
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I perform spectral interferometry by linearly mixing the nonlinear signal field ESHG with a

time-delayed LO field ELO that is mutually coherent with the signal, and measure the resulting

spectral intensity [19]. The relative spectral phase between ESHG and ELO can be modeled as

φ (ω) = φ0 + τ (ω − ω0) + φ2 (ω − ω0)2 /2 where φ0 is a constant phase, ω0 is some central

frequency, τ is the time-delay between the two fields, and φ2 is the group delay dispersion (causing

negligible pulse-broadening). The interference is detected using a spectrometer, yielding I(ω) =

|ELO(ω) + ESHG(ω) exp (−iφ (ω))|2. Expanding this expression yields four terms; the one equal to

|ESHG(ω)|2 is negligible because it is much weaker than the other terms. The remaining three terms

are separable using a Fourier transform [19], yielding two independent terms I0 (ω) = |ELO(ω)|2

and I1 (ω) = E∗LO(ω)ESHG(ω) exp (−iφ(ω)). ELO(ω) is taken to be purely real by defining it to

be the reference against which phases are measured. The nonlinear signal ESHG can be written

as ESHG = χ
(2)
eff E

2
probe where χ(2)

eff is the effective nonlinear susceptibility of the sample leading to

second-harmonic-generation, and the LO can be written ELO = AE2
probe where A is the effective

nonlinear susceptibility of the local-oscillator-generating optic. These expressions are valid in the

regime where the probe’s spectral phase is approximately the same at both the sample and the

local-oscillator-generating crystal. Therefore χ(2)
eff = AESHG/ELO leading to a single-shot direct

measurement of χ(2)
eff by dividing by I0 (ω): χ(2)

eff = AI1 (ω) exp (iφ (ω)) /I0 (ω). This division

allows for some laser-noise removal beyond that described by Levenson and Eesley [13] because

the laser noise of the probe is divided out. In practice, A and φ0 are unknown, but τ and φ2 are

known to high precision using the spectral phase of I1(ω). Meanwhile, in the present experiments

the spectral dependence of χ(2)
eff is negligible. Therefore I define a measured signal S = Ĩ1/Ĩ0

proportional to χ
(2)
eff , where Ĩ1 =

∫ ωmax

ωmin
I1 (ω) exp

(
iτ (ω − ω0) + i

2
φ2 (ω − ω0)2) dω and Ĩ0 =∫ ωmax

ωmin
I0(ω) dω. Time-resolved SHG measures the changing S(t) as a function of the time-delay t

between a pump pulse creating excited molecules and a probe pulse creating SHG. I mention two

extensions of this measurement. First, broadband probe pulses can generate helpful frequency-

dependent information about χ(2)
eff (ω). Second, establishing an absolute phase relationship between

the measured signal S and the nonlinear susceptibility χ(2)
eff can aid in relating microscopic models
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Figure 2.1: Diagram of the heterodyne-detected TRSHG setup. Collinear beams are visually offset
for clarity. The visible pump beam (yellow) is time-delayed relative to the 800 nm NIR probe beam
(red) with a hollow retroreflector on a motor-controlled stage. The combined beams interact with
the sample, generating a 400 nm signal (blue). A second 400 nm beam, the LO (blue), is generated
in a nonlinear crystal. The pump and probe are filtered out before the spectrometer. NOPA, non-
collinear optical parametric amplifier. BBWP, broad-band (achromatic) half-waveplate designed
for 400-700 nm. WP, half-waveplate for 800 nm. BBP, broad-band wire grid polarizer. DM, ul-
trafast dichroic mirror reflecting 800 nm and transmitting 550-700 nm. LP, long-pass filter with
500 nm cutoff. S, sample oriented 45 degrees to the pump and probe beams. G, removable glass
to introduce variable time-delay between signal and local oscillator. DBWP, dual-band waveplate
with full-wave retardance at 400 nm and half-wave retardance at 800 nm. BBO, 10-micron-thick
beta barium borate crystal, oriented to prevent phase-matching. P, dielectric thin-film polarizer for
400 nm. BPF, bandpass filter centered at 400 nm.

of the surface with measured results [16]. Both of these extensions are discussed in depth by

Wilson et al. [18].

The experimental setup is depicted in Figure 2.1. A Spectra-Physics Mai Tai SP™ oscillator

seeded a Spectra-Physics Spitfire Pro™ regenerative amplifier yielding 4 mJ,∼40 fs pulses at 1 kHz

centered at 800 nm. This powered a home-built double-pass noncollinear optical parametric am-

plifier [20] yielding broadband pump pulses tunable over much of the visible spectrum. A portion

of the regenerative amplifier’s output was the probe pulse. I controlled the relative delay between

the pump and probe pulses using a hollow retroreflector on a motorized delay stage. The two

beams were collinearly combined with an ultrafast dichroic mirror, and interacted with the sample

at 45 degrees using a 5–10 mm diameter round beam with a 2–10µJ/cm2 pump fluence and a 50–

100µJ/cm2 probe fluence. Such large spot sizes allow for acceptable signal strength when using
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the extremely low laser fluences and repetition rates required to avoid laser-induced damage and

nonlinear kinetics of the organic films being studied. For comparison, many previous experiments

had laser fluences and/or laser repetition rates many times larger than the present study [10, 11].

Both pump and probe were p-polarized. After the sample, the collinear beams’ size was option-

ally reduced with a Galilean telescope. A controllable-power LO was generated using a dual-band

waveplate followed by a polarizer and a beta barium borate (BBO) crystal. The waveplate was full-

wave at 400 nm but half-wave near 800 nm and constructed from magnesium fluoride, which is

centrosymmetric, preventing second harmonic generation (Karl Lambrecht Corp.). The waveplate

and polarizer transmitted a variable amount of 800 nm probe but almost all of the 400 nm sig-

nal. A 10 µm-thick BBO generated the LO from the transmitted probe; it was oriented to prevent

phase-matching to reduce the amount of LO. A controllable time-delay of ∼1 ps between signal

and LO was generated, using removable glass windows. The beam was then polarized again, fil-

tered to remove most of the non-400 nm light, focused into a spectrometer (Horiba Jobin-Yvon

iHR-320), and detected by a CCD (Princeton Instruments PIXIS-100B with UV coating). The

time-resolution of the setup was∼200 fs as measured by a second-order cross-correlation between

the pump and probe pulses using a 10µm thickness BBO placed at the sample position. This time

resolution could easily be improved by compressing the pump pulse, which was not done here to

avoid compressor losses. Samples were prepared on an ultra-smooth c-cut sapphire wafer (Preci-

sion Micro-Optics LLC) with a 20 nm film of C60 capped by 3 nm of boron subphthalocyanine

chloride (SubPc). Films were deposited onto room-temperature substrates using vacuum thermal

evaporation at a pressure below 5 × 10−7 Torr and at deposition rates of 1 Å/s and 0.5 Å/s for

C60 and SubPc, respectively. Samples were encapsulated under a pure nitrogen atmosphere using

a thin BK7 window and solvent-free UV-cured epoxy to prevent oxygen and moisture induced

degradation. The SHG from the non-organic interfaces was negligible.

To demonstrate how the signal-to-noise (S/N) scales with LO power, the S/N at twenty-nine

different LO strengths was measured as depicted in Figure 2.2. There are three regimes: a read-

noise-dominated regime where the S/N scales with the square root of the LO power, a shot-noise-
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Figure 2.2: Comparison of signal-to-noise with respect to local-oscillator strength on a log-log
plot. Blue dots, measured signal-to-noise for different local-oscillator strengths; green solid line,
fitted curve to the measured data based on equation 17 of [13]; red dashed line, theoretical signal-
to-noise of 2.7 for a similar experiment without a local-oscillator and without stray light. Left side
of measured data, read-noise-dominated regime; middle of measured data, shot-noise-dominated
regime; right side of measured data, onset of 1/f-noise-dominated regime. Compare to Figure 1 of
[13].

dominated regime where the S/N does not vary, and the onset of a 1/f-noise-dominated regime

where the S/N scales with the inverse square root of the LO power. This compares favorably with

Figure 1 of [13] depicting heterodyned measurements’ S/N scaling with LO power. Also depicted

is the theoretical S/N of 2.7 for a similar experiment lacking a local-oscillator and without stray

light; it was calculated by dividing the SHG signal intensity by the known photodetector read

noise. The S/N of any particular TRSHG setup is strongly dependent on photodetector read noise,

stray light, photodetector dark current, and whether the measurement is spectrally resolved; using

heterodyne detection makes it easier to avoid problems from read noise, stray light, and dark

current [13].

As a heterodyned TRSHG demonstration, I scanned the time-delay between pump and probe,

measuring the heterodyned signal S(t), as plotted in Figure 2.3. I used a 580 nm pump wavelength

to excite the SubPc. Fitting a bi-exponential curve to the complex data finds two rates, ∼ 2 ps−1

and ∼ 0.1 ps−1. The two exponentials both decrease the amplitude, but they change the phase in

opposite directions. This may be explained by two dominant SubPc-C60 configurations at the in-

terface, with different local environments and therefore different EFISH responses. To understand

these results better, I am performing further experimental and theoretical studies on the SubPc-
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Figure 2.3: Typical measured TRSHG trace S(t), measured relative to the second-harmonic field in
the absence of a pump. Top, absolute value; bottom, relative phase in degrees. Blue dots, measured
data; green solid line, fitted bi-exponential curve. Fractional noise in absolute signal is less than
one percent, and relative noise in measured phase is less than one degree.

C60 system. For comparison, [7] reported a > 10 ps−1 charge-transfer rate in a similar organic

photovoltaic system (copper phthalocyanine-C60) using a traditional TRSHG experiment.

In principle the pump could cause phase and amplitude changes in the transmitted probe, and

therefore the LO. However, the films’ optical density is .0.1, and the pump excites only ∼0.1%

of the molecules. The pump therefore changes the optical density by .10−4, changing the LO

amplitude by .0.02%, which is much less than the noise floor. The index of refraction of organic

films is usually ∼2, and since few of the molecules are excited the index of refraction of the film

is likely to change by .0.05%. The excited portion of the film is likely <5 nm thick, and so the

phase-change in the LO due to the pump is .0.005 degrees, which again is much less than the

noise floor.

In summary, I have demonstrated a simultaneous phase- and ultrafast time-resolved surface

second-harmonic-generation spectrometer in a pump-probe configuration. I employed optical het-

erodyne detection and spectral interferometry to reduce sensitivity to stray light, to control the

noise characteristics, and provide phase resolution. I expect heterodyne-detected TRSHG mea-

surements will be very useful in the study of charge-transfer in organic photovoltaics, and more

generally in many kinds of time-resolved surface phenomena [7, 9–12]. It will be particularly use-
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ful in systems like organic photovoltaics where the interfacial processes of interest are typically

masked by bulk material response.
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Chapter 3

Ultrafast charge-transfer dynamics at the boron

subphthalocyanine chloride / C60 heterojunction:

Comparison between experiment and theory

Photoinduced charge-transfer is a key component of many chemically-, biologically- and

technologically-relevant processes, including photocatalysis, photovoltaics and photosynthesis. In

the case of organic photovoltaics, light absorption by the electron donor or acceptor layer even-

tually triggers the creation of a charge separated state across the donor/acceptor interface, which

upon dissociation of the interfacial electron-hole pair gives rise to an electrical current. Similarly,

photosynthetic reactions correspond to transforming the energy of the absorbed photons into that

of charge separated states, which can drive life-sustaining reactions such as water splitting [1].

A variety of experimental methods have been used to measure charge-transfer rates. For ex-

ample, ultrafast transient absorption (also called pump-probe or photoinduced absorption) and

time-resolved fluorescence (or photoluminescence) spectroscopies have been used to track spec-

tral signatures attributed to charge-transfer or charge separated states [2–6]. Near infrared transient

absorption in organic photovoltaic systems is commonly attributed to charge-transfer states [2–4].

Unfortunately, charge-transfer states are often dark [7]. Furthermore, the signal obtained via such

methods as transient absorption pump-probe spectroscopy correspond to a third-order optical re-

sponse, which is dominated by the bulk material. This makes it difficult to resolve contributions

from interfacial charge-transfer and charge separation processes [8].
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Recently, a number of groups have employed time-resolved second harmonic generation (TR-

SHG) as a more direct way of probingcharge-transfer dynamics in organic photovoltaic materials

[8–10]. Importantly, the second harmonic generation (SHG) signal vanishes in centrosymmetric

materials [11], thereby making it insensitive to bulk processes, and highly sensitive to processes

that occur at the donor/acceptor interface, where the centrosymmetry is broken. TRSHG can be

used to provide an interface-specific measure of charge-transfer using electric field induced second

harmonic generation (EFISH) [8]. The latter is a four-wave mixing nonlinear optical phenomenon,

where a quasi-static electric field EDC allows an optical signal PNL to be produced as the second

harmonic of a probe pulse: PNL = χ(3)EDCE
2
probe. Charge-transfer at the interface then creates the

quasi-static field EDC, which leads to a measurable EFISH signal.

The electronic structure of excited charge-transfer states of complex molecular systems can

be calculated by high quality many-body expansion methods, for example using the GW approxi-

mation with the Bethe-Salpeter (BSE) equation [12–15]. However, the prohibitive computational

cost of such techniques requires using more feasible alternatives such as time-dependent density

functional theory (TD-DFT). Indeed, implemented with recently developed range-separated hybrid

(RSH) functionals [16–21], TD-DFT was shown to reproduce GW-BSE energies [13, 22]. Further-

more, combining TD-DFT/RSH with a description of the electrostatic environment as a polarizable

dielectric continuum was recently shown to yield charge-transfer states whose energies are in good

agreement with experiment [23–25].

Most computational studies on charge-transfer rates in organic photovoltaic materials [26–29]

are based on the semiclassical Marcus picture of photoinduced charge-transfer [30–32]. However,

Marcus theory relies on a number of simplifying assumptions that do not hold in general when con-

sidering organic semiconducting materials [33–35]. Marcus theory can be derived from the more

general fully quantum-mechanical Fermi’s golden rule (FGR) expression for the charge-transfer

rate constant [36–40]. However, doing so requires imposing both the high-temperature and short

time limits. Importantly, since charge-transfer in organic photovoltaic materials may occur in the

(far) inverted regime, nuclear tunneling can become a dominant mechanism for electronic transi-
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Figure 3.1: Depiction of the charge-transfer process under investigation. Boron subphthalocyanine
chloride (SubPc) absorbs light, creating a bound electron-hole pair, or exciton. In proximity to a
C60 molecule, the electron is donated to the C60, generating a charge-transfer state.

tions due to enhanced overlap between the nuclear wavefunctions [41, 42]. Furthermore, the above

mentioned short-time expansion may not be valid. Indeed, my collaborators Lee et al. have re-

cently demonstrated the importance in using the less approximate fully quantum-mechanical FGR

expression for calculating charge-transfer rates. The calculated FGR rate constants thus obtained

were found to be in good agreement with corresponding experimental values, whereas the classical

Marcus rate constants were found to significantly underestimate the experimental values [33–35].

In this chapter, I study a model system of an organic photovoltaic heterojunction, in which

boron subphthalocyanine chloride (SubPc) and C60 function as the electron donor and accep-

tor, respectively. Upon photoexcitation, the SubPc transfers an electron to the C60, generating

a charge-transfer state. To directly observe the charge-transfer, I used my recently-developed

heterodyne-detected TRSHG (hTRSHG) spectroscopy [43]. Adding heterodyne detection to TR-

SHG decreases sensitivity to read noise, dark current, and stray light. It also allows both the

amplitude and the phase of the SHG to be directly detected, which can aid physical understanding;

for example, providing information about molecular orientations or the direction of charge-transfer

[43].

A detailed description of my hTRSHG setup was published previously [43]. For this experi-

ment, a 580 nm pump pulse created a subpopulation of excited molecules, after which an 800 nm
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Figure 3.2: Laser spectra and samples’ absorbance. The probe pulse, centered at 800 nm, is well-
separated from main absorption. The pump pulse, centered at 580 nm, maximizes absorption from
the SubPc.

probe pulse was used to probe the electric field at the interface, and thereby charge-transfer, as

a function of the time-delay between pump and probe pulses. I found that very low laser flu-

ences were necessary to avoid higher-order processes such as exciton-exciton annihilation and

laser-induced aging, as discussed in detail in the supporting information given in Appendix A. I

therefore reduced the probe fluence to 50 µJ/cm2 and the pump fluence to 2 µJ/cm2; I estimate that

under these conditions the pump excites ∼0.1% of the SubPc molecules. Three types of samples

were prepared on an ultra-smooth c-cut sapphire wafer (Precision Micro-Optics LLC): (1) A 3 nm

film of SubPc capped by 20 nm of C60; (2) A neat 20 nm film of C60; (3) A neat 3 nm film of

SubPc. Films were deposited onto room-temperature substrates using vacuum thermal evaporation

at a pressure below 5× 10−7 Torr and at deposition rates of 1 Å/s and 0.5 Å/s for C60 and SubPc,

respectively. Samples were encapsulated under a pure nitrogen atmosphere using a BK7 window

and solvent-free UV-cured epoxy to prevent oxygen- and moisture-induced degradation.

Figure 3.2 shows the pump and probe laser spectra, and the samples’ linear absorption spectra.

The 580 nm pump wavelength primarily excites the SubPc molecules. The probe pulse is well-

separated from absorption and so primarily interacts nonlinearly, producing SHG. Here I report

two representative sets of bilayer charge-transfer data, taken on different days, with fresh samples.

A separate hTRSHG trace was taken with the probe pulse in the s and p polarizations. I best-fit the
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data using a single-exponential model, with the same rate k for both polarizations:

Si(t) = Ai +Bi θ(t) [1− exp(−kt)] . (3.1)

Here, Si(t) represents the measured complex hTRSHG signal as a function of polarization i and

pump-probe relative time delay t. Ai represents the ground-state signal (t < 0) and Bi represents

the change in SHG due to the presence of the pump, in the limit of large t. Both Ai and Bi are

complex and depend on the polarization i. θ(t) is the Heaviside step function. k is the (real) rate

constant, and does not depend on polarization. I used the curve fit function in the open-source

scipy.optimize module [44] to perform the fitting. The unknowns in the fit were Ai, Bi, and

k. The measured data and their fits are shown in Figure 3.3 by plotting the principal projection

P of the data onto the ~A– ~B line, as defined in the supporting information given in Appendix A.

This projection starts at 0 before time-zero, and converges to 1 in the limit of large pump-probe

time-delay. I found that this projection captured the majority of the information in the data; the

data-components orthogonal to this projection were dominated by noise. The fitted time-constants

and associated confidence intervals for the bilayer films are shown in Figure 3.3, indicating that
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the charge-transfer rate is k ∼ 0.1 ps−1, reasonably consistently across the two bilayer films. This

rate is likely an average charge-transfer rate, since different individual molecules in different local

environments are expected to have different charge-transfer rates. Control studies of neat films

showed no changes in the SHG due to the pump, indicating that no charge-transfer occurred.

For the theoretical calculations, my collaborators Lee et al. considered two representative

molecular models of likely interfacial configurations based on optimized donor-acceptor dimers

in a dielectric continuum model, namely the hollow and on-top configurations, shown in the inset

of Figure 3.4 [45]. The irregular shape of SubPc suggests that interfacial donor-acceptor geome-

tries in actual thin films might deviate from optimal geometries, where they are expected to be less

tightly packed. I therefore expect the calculated charge-transfer rates to serve as upper bounds to

experimentally measured rates.

The photoinduced charge transfer involves coupling a dark charge transfer state to an absorb-

ing bright state. In the system considered here, the electron is transferred from SubPc to C60 as

illustrated by the detachment and attachment electron densities shown in Figure 3.4. However, it

should be noted that some of the donor-excited states of the on-top configuration already exhibit

charge-transfer character due to some delocalization across the donor and acceptor regions.

Since a TRSHG measurement tracks the electric field at the interface, a comparison between

the experimental and computational results can be made by following the time-dependent electric

dipole moment µ(t),

µ(t) =
∑
i

µiPi(t). (3.2)

Here, Pi(t) is the evolving occupancy of excited state i, and the electric dipole moment µi for

state i is given by µi = qiD|riD − riA|, where qiD(= −qiA) is the total Mulliken charge on donor (D)

molecule obtained from the TD-DFT calculation and riD/A is the center of charge of D/A molecules

defined by

riD/A =

∑
j∈D/A |qij|rij∑
j∈D/A |qij|

. (3.3)

The excited states’ occupancies, Pi(t), were obtained by solving a Master equation under the
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assumption that the initial state is dominated by states that absorb within the pump bandwidth:

Ṗi(t) =
∑
j 6=i

[−kjiPi(t) + kijPj(t)] , where Pi(t = 0) ≡ |OSi|∑
j |OSj|

,
∑
i

Pi(t) = 1. (3.4)

Here, kji is the FGR rate constant for the electronic transition from state i to state j, and OSi is

the oscillator strength of excited state i. My collaborators Lee et al. used an effective oscillator

strength of zero (OSi = 0) for all of the charge-transfer states, including the bright ones, since my

pump laser pulse was relatively narrowband and not resonant with the charge-transfer states.

The FGR rate constant for an electronic transition from the electronic state b to a is given by

[36–40]:

ka←b =
|Vba|2

~2

∫ ∞
−∞

dteiωbatF (t), (3.5)

where F (t) = exp
[∑N

α=1 [−Sα(2nα + 1) + Sα[(nα + 1)e−iωαt + nαe
iωαt]]

]
. Here, Vba, ωba =

(Eb − Ea)/~, {ωα} and
{
nα = [e

~ωα
kBT − 1]−1

}
are the electronic coupling coefficient, transi-

tion frequency, normal-mode frequencies and thermal equilibrium occupancies, respectively. The

Huang-Rhys factor Sα [46] represents the electron-vibration coupling strength, which is obtained

by projecting the displacement between the initial and final equilibrium geometries onto the normal

modes of the ground state.

Density functional theory (DFT) was employed for the ground-state, time-dependent density

functional theory (TD-DFT) for excited states, and charge-constrained density functional theory

(C-DFT) [47] for determining the CT state geometry and energy as affected by the electrostatic

environment [45]. All the calculations were performed with the 6-31G* basis set. Geometry

optimization of the ground and the CT states was based on the ωB97X-D dispersion-corrected

functional, designed for accurately describing non-covalent interactions [48, 49]. The optimal

geometries of the π-π∗ excited state were assumed to be the same as the ground state optimal

geometry. TD-DFT gas-phase calculations were based on the range-separated hybrid functional of

Baer-Neuhauser-Livshits (BNL) [17, 18], designed to accurately describe CT states by employing

a tunable range-separation parameter γ [17–21, 23]. My collaborators Lee et al. employed the
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Figure 3.4: Calculated electric dipole moment µ(t) as a function of time for two SubPc/C60 in-
terface configurations. Red solid line, hollow configuration; blue solid line, on-top configuration.
Green dotted lines, best-fit curves. Inset shows the detachment and attachment of electron densities
upon photoexcitation, indicating the electron transfer from SubPc to C60. The hollow best-fit curve
was bi-exponential, with a 51 ps−1 component and a 2.0 ps−1 component. The on-top best-fit curve
was single-exponential, showing an average charge-transfer rate of 2.3 ps−1.

J2(γ) range-separation parameter tuning scheme [50]. Finally, the electronic coupling coefficient

between electronic states, Vba, was obtained via the fragment-charge difference (FCD) method

[51]. The effect of the solid-state environment was modeled by treating it as a dielectric medium

when performing the geometry optimization of the ground and the CT states. The value of the

dielectric constant used was 4.2, which is close to the value of this parameter in SubPc (3.9) [52]

and C60 (4.0-4.5) [53–56]. To this end, my collaborators Lee et al. employed the conductor-like

polarizable continuum model (CPCM) [57] with the switching/Gaussian (SWIG) method [58–60]

for surface discretization.

The FGR rate constants for the electronic transitions from the bright excited states to the (bright

or dark) charge-transfer states are in the range of 0.02–27 ps−1 for the hollow configuration and

0.1–2.7 ps−1 for the on-top configuration [45]. In Figure 3.4 I plot the resulting total dipole moment

µ(t), normalizing with respect to the steady-state dipole moment for the hollow configuration. The

hollow configuration had a stronger dipole moment compared to the on-top configuration, due to

its stronger charge-transfer character and longer donor-acceptor separation. By fitting the dipole

moment kinetics to multi-exponential curves, two exponential components with rate constants of

51 ps−1 and 2.0 ps−1 were indicated in the case of the hollow configuration. Only a single expo-
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nential with a 2.3 ps−1 rate constant was indicated in the case of the on-top configuration.

The FGR and classical Marcus theory charge-transfer rate constants are roughly comparable

in this system [45], which is reasonable considering the charge-transfer reaction is only barely in

the inverted region [45]. However, the recombination transitions from the CT states back to the

ground state occur in the far-inverted region [45]. In the hollow configuration, the recombination

FGR rate constants range approximately from 105 to 108 s−1, which is orders of magnitude faster

than the corresponding classical Marcus theory rate constants [45]. Since I did not detect charge

recombination within the time scale of my experiment, I can establish a lower bound for the charge

recombination rate constant at approximately 103 s−1, based on the laser repetition rate (500 Hz)

and the fact that I did not observe an EFISH background for t < 0. Thus, the calculated FGR

recombination rate constants are at least consistent with experiment.

As expected, the k ∼ 2 ps−1 FGR charge-transfer rate constants are somewhat faster than

the corresponding experimentally measured value, k ∼ 0.1ps−1. This result is consistent with

the view that the calculated FGR rate constants represent an upper bound for the experimentally

measured rate constants. First, I note that variations in measured charge-transfer rate constants

were observed from one sample to another, where differences of a factor of three were observed.

Second, the irregular shape of SubPc suggests that interfacial donor-acceptor geometries in actual

thin film samples would most likely deviate from the dimer optimal geometries on which the

calculations were performed. Third, charge-transfer for the hollow configuration was found to

follow bi-exponential kinetics, with fast (∼50 ps−1) and slow (∼2 ps−1) components, while charge-

transfer in the on-top configuration could be described by a single ∼2 ps−1 rate constant. Thus, a

faster CT process can be attained with samples in which the interface is dominated by the hollow

configuration and where the photoexcitation is tuned to selectively populate the relevant excited

states.

In summary, I compared experimentally measured and theoretically predicted charge-transfer

rate constants for the SubPc/C60 electron donor/acceptor system used in organic photovoltaics. My

combined experimental and computational study represents a first step towards understanding the
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complex relationship between molecular interfacial structure and charge transfer dynamics. The

experimentally measured value was k ∼ 0.1 ps−1, while the computational value was k ∼ 2ps−1.

Considering the approximations underlying the theoretical model and experimental uncertainties

regarding sample preparation and spectroscopic measurements, I believe that the agreement be-

tween experiment and theory is reasonable. In addition, it is likely that charge-transfer rate con-

stants calculated using optimal dimer geometries represent an upper bound for the experimentally

measured rate constants. In particular, I find a fundamental difference in the dynamics between the

two optimal geometries considered, namely a bi-exponential behavior in the hollow geometry and

a single exponential in the on-top geometry. Thus, measurements of the dipole moment can be used

to resolve the dominant form of the molecular interface in an organic photovoltaic sample. Further

advances of our understanding of charge-transfer dynamics in such systems towards improving the

agreement between experiment and theory would require improving both the characterization of

the interface structure and the modeling of the charge-transfer rates. Work towards achieving those

objectives is underway.
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Chapter 4

Concentration dependence of ultrafast carrier

dynamics in tetraphenyldibenzoperiflanthene / C70

bulk heterojunctions

4.1 Introduction

The Forrest group at the University of Michigan investigates a wide variety of organic photo-

voltaics. They recently reported a device with high power conversion efficiency, above 8%, using a

bulk heterojunction pictured in Figure 4.1, based on tetraphenyldibenzoperiflanthene (DBP) as the

electron donor and C70 as the electron acceptor [1, 2]. The concentration dependence is surprising;

the best devices used a DBP:C70 ratio of 1:8 [1] which offered the best balance of open-circuit

voltage Voc and short-circuit current Jsc.

We investigated the influence of DBP:C70 concentration on the charge separation process in

these devices, aiming to improve understanding of the device physics. We used several different

pump wavelengths in conjunction with the heterodyne-detected TRSHG described in Chapter 2.

This pump-frequency-resolved version of TRSHG is the first effective demonstration of a two-

dimensional TRSHG method; we demonstrated a two-dimensional TRSHG method earlier this

year using Fourier transforms [3], but the measured bandwidth was too small to observe differences

across pump wavelengths.
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Figure 4.1: Illustration of the DBP / C70 charge transfer process. The pump laser primarily excites
DBP molecules, creating a Frenkel exciton. The electron is transferred to a nearby C70 molecule,
creating a Coulombically-bound polaron pair state. Charge separation frees the charge carriers.

Table 4.1: Pump fluence as measured from normal incidence as a function of pump wavelength
for the DBP / C70 experiment.

PUMP WAVELENGTH (NM) EXCITATION FLUENCE (µJ/CM2)
585 0.4
600 0.4
615 0.4
630 0.4
645 0.4
660 0.6
675 0.8
690 1.0
705 1.0
720 1.0

4.2 Methods

A detailed description of the experimental setup was given in Chapters 2 and 3. For these experi-

ments, we used a ∼16 mm2 laser spot area with a ∼300 µJ/cm2 probe fluence, both as measured

from normal incidence. The pump light source was a home-built double-pass noncollinear optical

parametric amplifier (NOPA) [4]. For this experiment it was tuned to be broadband, covering 575–

730 nm. The pump beam next passed through a FASTLITE Dazzler™ acousto-optic programmable

dispersive filter, providing dispersion compensation and selecting a 15 nm bandwidth around an

arbitrary central wavelength. This provided a tunable-frequency pump pulse. The pump fluence
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varied as a function of pump wavelength, maximizing pump power while ensuring the signal still

scaled linearly with the pump power. The resulting pump fluences and pump wavelengths are given

in Table 4.1. While the pump fluences were much lower than that used in Chapter 3, they were

comparable to that used in [5] which was a similar experimental study investigating charge move-

ments in a bulk heterojunction device. The time resolution of this experiment was <100 fs, close

to the Fourier limit, as measured by a second-order cross-correlation frequency resolved optical

gating (XFROG) between the pump and probe in a 10 µm thick β-barium borate (BBO) crystal

placed at the sample position. Each data point was averaged for three seconds, before changing

the pump wavelength and/or time-delay. The time-points were spaced hyperbolically (following a

hyperbolic sine function) so more points were close to time-zero than far from time-zero. Samples

were manufactured by Xiao Liu of the Forrest group, with DBP:C70 ratios of 1:1, 1:2, 1:3, 1:4,

and 1:8. These had ITO and aluminum electrodes, MoO3 and bathophenanthroline (BPhen) buffer

layers, and 54 nm of active layer. There were also control samples, including a neat DBP sample,

a neat C70 sample, and a sample with no active layer; these control samples had electrodes and

buffer layers.

4.2.1 Background signals

Since these films have several interfaces between dissimilar materials, each interface may con-

tribute a background second-order nonlinear susceptibility χ(2) due to the lack of inversion sym-

metry at the interface [6]. This would make the SHG not strictly proportional to the EFISH. A

model for this background signal is

ESHG ∝
[
χ

(2)
background + χ

(3)
EFISHEDC

]
E2

probe. (4.1)

It is possible to use heterodyne detection to separate the background from the signal, since both

the real and imaginary parts of ESHG are measured. This is therefore an additional advantage of

heterodyne detection over traditional detection. It is simple to measure χ(2)
background by measuring
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ESHG as a function of applied external bias V , with the pump beam blocked; it should be a (com-

plex) straight line as a function of EDC = V/T +Eintrinsic where T is the active-layer film thickness

and Eintrinsic is the intrinsic electric field. Future measurements will adopt this approach; here we

measure and subtract the background contribution using a method described below.

Chapter 2 details computing a TRSHG signal S that is proportional to the effective nonlinear

susceptibility χ(2)
eff = χ

(2)
background + χ

(3)
EFISHEDC. However, the constant of proportionality may vary

sample to sample, making comparisons between χ(2)
eff across samples more difficult. The solution is

to define a slightly different signal S that preserves the constant of proportionality. It was observed

in Chapter 2 that the effective nonlinear susceptibility may be written in terms of the spectral

interferometry functions I0(ω) and I1(ω), together with a (complex) constant of proportionality A

and a phase function φ(ω):

χ
(2)
eff = A

I1(ω) exp(iφ(ω))

I0(ω)
. (4.2)

A problem is that the measured signal S of Chapter 2 may have a different A and φ for

different samples. However, since I0(ω) = |ELO|2 = |A|2|Eprobe|4 and since I1(ω) =

E∗LOESHG exp(−iφ(ω)) = A∗χ
(2)
eff |Eprobe|4 exp(−iφ(ω)) we can define a new measured signal S

proportional to χ(2) that does not depend on |A|:

S ≡ I1(ω)√
I0(ω)

= S
√
I0(ω)

=
A∗

|A|
χ

(2)
eff |Eprobe|2 exp(−iφ(ω)).

(4.3)

Here, the same φ(ω) must be used across samples to make S proportional to χ(2)
eff across samples. In

order to help compensate for laser noise, I compute S = S ·
√
I0(ω) where the over-line indicates

taking the mean. Since A should be time-invariant, this is a better way to compute S as long as the

long-term laser noise in the probe pulse is small.

We observed that S does not depend on |A| but it still depends on the phase of A (the data

are not phased). Therefore phase differences in S between samples are not meaningful, al-

60



though amplitude differences between samples are meaningful. Using a data-trace S(t) as a

function of the pump-probe time delay t, all of the data should lie on a line in the complex

plane. This will define the complex direction n̂EFISH of χ(3)
EFISH for the current data-trace. Then

S = Sbackground + Cn̂EFISHEDC defines Sbackground up to the real constant of proportionality C. Us-

ing multiple data-traces, taken with different internal fields EDC on the same sample, the constant

C and the background Sbackground can be determined using a least-squares framework. The least-

squares model is this:

Sj(t < 0) exp(iϕj) = Sbackground + CEj,DC(t < 0). (4.4)

Here, Sj(t < 0) is the measured complex SHG signal of data-trace j in the absence of the pump.

ϕj is a measured phase for trace j that makes the EFISH signal real—it comes from n̂j,EFISH

which comes from the dynamics of Sj(t > 0). Meanwhile, Ej,DC(t < 0) is the known internal

electric field in the absence of the pump, controlled by the external voltage Vj . As before, this is

Ej,DC = Vj/T + Eintrinsic where T is the film thickness and Eintrinsic is the built-in electric field.

The unknowns are the complex background Sbackground and the real coefficient C. So long as two

or more traces j with different external voltages Vj are used, the background can be fit. Then the

measured internal field can be directly computed:

Ej,DC(t) =
1

C
Re {Sj(t) exp(iϕj)− Sbackground} . (4.5)

4.3 Results

We measured TRSHG time traces on the neat films (the control samples), but they showed no

appreciable dynamics over the timescales we measured, as shown in Figure 4.2. This is expected,

because very little charge transfer and separation should occur in these films. The small amount

of signal we saw in the neat DBP sample is probably due to charge transfer from the DBP to the

BPhen buffer layer. The 1:1 mixed sample also showed very little dynamics, as shown in Figure

61



0 10 20 30 40 50

Time t between pump and probe (ps)

0.0

0.1

0.2

0.3

0.4

0.5

Fr
a
ct

io
n
a
l 
ch

a
n
g
e
 i
n
 S

H
G

 f
ie

ld

neat DBP

no active layer

neat C70

Figure 4.2: TRSHG results on neat DBP and C70 samples, and a no-active-layer sample. No
appreciable dynamics are observed. The plotted data used a pump wavelength of 600 nm and an
applied voltage of 0 V (short-circuit conditions); other pump wavelengths similarly did not show
any dynamics.

4.3. Some dynamics are visible, but they are surprisingly slow for the applied voltage of −2 V

(see Figure 4.4). The four remaining samples, the 1:2, 1:3, 1:4, and 1:8 mixtures, all showed

qualitatively similar dynamics, in that a strong signal with a relatively simple temporal shape is

immediately evident after time zero. Several representative examples are given in Figure 4.4.

The TRSHG data on the mixed films were converted to measurements of electric fieldEDC(t) in

the active layer, using Equation 4.5. We used an active-layer film thickness of T =54 nm and a built-

in electric field Eintrinsic = (0.9 V)/T coming from the open-circuit voltage of these devices [1, 2].

We considered exponential and stretched exponential kinetic models, together with a simplified

power law with a fixed exponent of −1; the mean error of these models is shown in Figure 4.5.

A double exponential model (not shown) did fit well, but needed more free parameters and the

data did not effectively constrain those parameters. For the most part, the best model was a simple

power law with a fixed exponent of−1, achieving a good representation of the dynamics with only

three free parameters A, B, and k (the same number of free parameters as a single exponential
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Figure 4.3: TRSHG results on a DBP:C70 ratio of 1:1. Only small and relatively slow dynamics
are observed, despite the large applied voltage of −2 V. Compare with the much larger and faster
dynamics recorded in Figure 4.4.

model):

EDC(t) = A−H(t)B

(
1− 1

1 + kt

)
. (4.6)

Here, EDC(t) is the electric field in the active layer as a function of time (given by Equation 4.5),

H(t) is the Heaviside step function, A is the electric field before photoexcitation, B is the late-time

change in EDC induced by the pump, and k is a rate constant with units of inverse time. This power

law may be interpreted as an exponential distribution of exponential rates with mean k; under this

interpretation the probability density function ρ(κ) for a particular molecule to have a rate κ would

be ρ(κ) = exp(−κ/k)/k.

For the data with the -2 V external bias, we additionally included a slow (linear) component in

the model:

EDC(t) = A+H(t)

[
−B

(
1− 1

1 + kt

)
+Dt

]
, (4.7)

whereD is the amplitude of the slow component. There are several processes that could explain its

presence; for example, hole transport in DBP is expected to be much slower than electron transport

in C70. Alternatively, the linear component may reflect the steady-state charge carrier mobility. We
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Figure 4.4: Representative TRSHG results on DBP:C70 ratios of 1:3, 1:4, and 1:8. Dots, measured
data. Solid lines, fits. Some general trends are observable here: the rate(s) associated with −2 V
are faster than those of 0 V, which are faster than those of 0.7 V. Fractional changes for −2 V are
small because the electric field is high, and vice versa for 0.7 V.
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Figure 4.5: Root mean square error for different fitting models, expressed as a percentage of the
amplitude of the signal. Each column of subfigures contains a single voltage, while each row
contains a single mixture. Three types of models are pictured: the blue curves contain a single
exponential model with three parameters. The green curves are a stretched exponential model with
four parameters. The red curves are the power-law model defined in 4.6 with three parameters.
All −2 V data included an additional linear term akin to Equation 4.7, requiring one extra fitting
parameter. All models perform fairly well, with fitted errors typically on a several-percent level,
but in most cases the power-law model is the best. However, the exponential model does perform
slightly better for the 1:8 mixture at −2 V. The error increases for red pumping wavelengths due
decreased pump absorption decreasing the amplitude of the signal.
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Figure 4.6: Fitted rates as a function of sample concentration and applied voltage. Rates k are
defined in Equation 4.6. Error bars are 95% confidence intervals. Left subfigures compare across
samples at fixed external voltage (legend at the top). Right subfigures provide comparisons be-
tween voltages for each sample (legend at the top).
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Figure 4.7: Fitted amplitudes as a function of sample concentration and applied voltage. The
change in internal electric field B is plotted (defined in Equation 4.6), per unit pump fluence Φ
(given in Table 4.1). This B/Φ is expected to be proportional to the separation ` between electron
and hole after the initial charge separation event, times the absorption spectrum. Left subfigures
compare across samples at fixed external voltage (legend at the top). Right subfigures provide
comparisons between voltages for each sample (legend at the top).
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Figure 4.8: Trends for mobility as a function of sample concentration and applied voltage, for the
initial charge separation event. kB/ΦF is expected to be proportional to the effective mobility for
the initial charge separation event, times the absorption spectrum. k and B are defined in Equation
4.6. Pump fluence Φ is given in Table 4.1. I used F = (0.9 V− V)/T as the internal field, where
0.9 V is the open-circuit voltage [1, 2], V is the applied bias voltage, and T =54 nm is the active-
layer film thickness. Left subfigures compare across samples at fixed external voltage (legend at
the top). Right subfigures provide comparisons between voltages for each sample (legend at the
top).
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only observe the slow component in the -2 V external bias case; this is likely because charge

transport becomes much faster with such a strong internal field. We expect that if we scanned

to sufficiently long pump-probe delays t that the 0 V and 0.7 V data would also show the slow

component.

These power-law models were fitted to the data for the 1:3, 1:4, and 1:8 mixtures,

using the leastsq Levenberg-Marquart least-squares fitting algorithm in the open-source

scipy.optimize package [7]. The fitted rate constants k as a function of pump wavelength,

applied voltage, and sample are plotted in Figure 4.6. Using the estimated covariance matrix, 95%

confidence intervals for the rates were obtained. Meanwhile, the fitted amplitudes per unit pump

fluence B/Φ are plotted in Figure 4.7, where Φ is the pump fluence. While not plotted, the data

for the 1:2 mixture look qualitatively similar and show similar trends.

A power-law model is not expected to work for very long times, on the scales of nanoseconds

to milliseconds. The instantaneous mobility—proportional to the derivative of the model—should

eventually converge to the steady-state mobility. As mentioned above, we saw the first hints of

longer-term components to the kinetics with the −2 V data, where some slow process was visible,

which may even represent the steady-state mobility.

4.4 Discussion

Our prefactual expectation was that the SHG would always decrease after photoexcitation, follow-

ing the EFISH explicitly [5]. This was observed to be true, except in the case where we applied a

positive external bias of 0.7 V to the 1:3 ratio sample. This was strong evidence for the background

SHG signal as described in Section 4.2.1 that does not come from EFISH. If the phase of χ(2)
background

is more than π/2 away from the phase of χ(3)
EFISH then the total amount of |ESHG|2 may increase as

EDC decreases, for cases where χ(3)EDC is small, as in cases of small internal fields enabled by

positive external bias voltages. Amarasinghe Vithanage et al. did not observe this phenomenon

[5], but that may be because they did not use positive external bias voltages.
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The data suggest that there is a discrete phenomenon of initial charge separation, where the

electron and hole separate by several nanometers, after which the separation process slows dra-

matically. The initial charge separation occurs over a time period of 1/k = 7–500 ps, depending

on applied voltage and mixture. After subtracting the background to yield measured fields, the

change in field B = ∆EDC(t) is proportional to the average distance `(t) the carriers have traveled

along that field:

∆EDC =
ne`(t)

εε0
, (4.8)

where n is the number density of carriers, e is the fundamental charge, ε is the relative permittivity

of the active layer, and ε0 is the permittivity of free space [5]. The number density n is propor-

tional to the number of absorbed photons. Therefore the amplitudes per pump fluence B/Φ are

proportional to the final displacement ` times the absorption spectrum. These displacements may

be estimated to be on the order of several nanometers, based on reasonable assumptions. For ex-

ample, in Figure 4.7 we see B/Φ ∼ 0.25 MV cm−1 µJ−1 cm2 for a pump wavelength of 630 nm in

the 1:8 sample, nearly independent of applied bias. Meanwhile, n/Φ ≈ (630 nm)/hcT for near-

total pump absorption, where h is Planck’s constant and c is the speed of light in vacuum. Taking

ε ∼ 3 for these films, and taking into account the 45-degree angle of incidence for the pump, the

approximate final ` will be ∼10 nm. The other samples will have a smaller final `, in the range of

∼2–7 nm.

We may interpret this ultrafast charge separation event in terms of an effective mobility. Since

B/Φ is proportional to displacement `, multiplying it by the rate k is proportional to the carrier

velocity: v ∝ kB/Φ. Dividing this velocity by the field strength F gives an effective mobility for

the initial charge separation process µ ∝ kB/ΦF , where F is the field inside the sample. These

are plotted in Figure 4.8; it should be remembered that kB/ΦF is also proportional to the light

absorption.

70



4.4.1 Trends in the 1:3, 1:4, and 1:8 mixtures

There are several trends that can be observed in the data shown in Figures 4.6, 4.7, and 4.8. First,

larger internal electric fields EDC(t < 0) (more-negative voltages) make for larger changes in

field B. Since carrier densities n are likely independent of internal field, this means that larger

fields cause the carriers to travel farther during the initial charge separation (larger `). For some

samples and voltages, this effect is small. For example, the 1:4 sample shows nearly-identical

amplitudes for −2 V and 0 V, although it does decrease for 0.7 V. Also, all three voltages on the

1:8 sample show similar amplitudes even though the same trend is apparent. On the other hand,

larger fields EDC(t < 0) correspond to much larger rates k, by more than an order of magnitude.

So larger fields make the carriers travel a little farther, but they get there much faster. This makes

the effective mobility of the initial charge separation event generally increase for more-negative

voltages, as seen in Figure 4.8.

Second, larger amounts of C70 in the ratio between DBP and C70 also make for a significantly

larger amplitudeB, and a significantly faster rate k. Therefore larger amounts of C70 cause carriers

to travel further before stopping, and they do so in less time. The effective carrier mobility is much

larger with increasing C70—especially for the 0.7 V bias which is close to the maximum power

point [1]. It is probable that this further, faster separation decreases polaron pair recombination in

the 1:8 sample.

Third, the fitted rates k depend on pump wavelength, although the effect is not large. The

effect is most interesting on the red edge of the spectrum, where the rates trend downwards for

0 V and 0.7 V but they trend upwards for −2 V. This may be due to the nature of the absorptions

on that edge. Neither C70 nor DBP absorb appreciably around 700 nm by themselves, but the

mixture absorbs quite a bit more, as seen in Figure 4.9 and Ref. [1]. Clearly, mixing the two

materials creates new optical transitions to newly-accessible states. It seems logical that those

states would have direct charge-transfer character, due to the donor-acceptor nature of C70 and

DBP. For example, linking donor and acceptor subunits together in the same conjugated polymer

enables new, lower-energy transitions with charge-transfer properties [8]. Also, our collaborators
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Figure 4.9: Measured reflectance of several devices, measured by Xiao Liu. Shown are reflectance
for the 1:1, 1:4, and 1:8 mixtures; the neat-DBP control sample is also shown for comparison.

predict at least some configurations of boron subphthalocynanine chloride (SubPc) next to C60

can produce optically bright charge transfer states [9] with lower energy than molecules’ original

absorptions. If the 700 nm absorptions in DBP / C70 are indeed charge-transfer states, then they

are in essence directly-excited polaron pair states. The separation rate k may trend downwards

for small internal fields, since the polaron pair is a cold polaron pair having no extra vibrational

energy. By contrast, bluer pumping wavelengths would yield a hot polaron pair; the energy in

the Frenkel exciton is significantly more than the energy in the polaron pair state, and the extra

energy would likely go into local vibrational modes. The increased effective localized temperature

may promote charge separation when the internal fields are not very large. On the other hand, at

large internal fields such as the −2 V external bias, the separation rate k may trend upwards due

to a combination of the large field overcoming the effect of hot versus cold polaron pairs, together

with the fact that direct optical excitation of polaron pairs means it is not necessary to convert the

Frenkel exciton to a polaron pair.

Fourth, much of the pump wavelength dependence in the kB/ΦF plot (Figure 4.8) is likely

due to the frequency dependence of the absorption, as illustrated by the films’ reflectance shown

in Figure 4.9. However, the 0.7 V data on the 1:8 film shows nearly the same kB/ΦF for 645 nm
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permitting phase separation to occur in the bulk of the organic film
leading to the desired highly folded bulk heterojunction.

Annealing of completed devices was previously used to improve
the lifetime19 and luminous efficiency20,21 of organic light-emitting
diodes, and to improve the efficiency of polymer photovoltaic cells7.

However, these effects were not attributed to changes in the inter-
face morphology but to polymer chain alignment, an increase in the
charge carrier mobility or the formation of an interfacial layer at the
organic/cathode interface.

Scanning electron microscope (SEM) images of the film surfaces

Figure 1 Diagrams of types of organic donor–acceptor photovoltaic cells and SEM images

of the surface of a ,5,000-Å-thick CuPc:PTCBI film on ITO. a–c, Diagrams. a, Bilayer

cell. b, Bulk heterojunction cell. c, Mixed-layer cell. In these diagrams, the incident light

(wavy arrows), electrons (filled circles), holes (open circles) and excitons (paired circles)

are indicated. d–g, SEM images. In d the film was annealed in the absence of a metal cap.

White arrows indicate several pinholes. e, Cross-section of the same film obtained by

cleaving the substrate. f, The film was capped by a 1,000-Å -thick film of Ag which was

removed before imaging. For comparison, in g the organic surface of a non-annealed ITO/

400 Å CuPc/400 Å PTCBI/1,000 Å Ag is shown after removal of the Ag cap. The features

in this image correspond to crystalline domains of pure, planar-stacking PTCBI18. Scale

bars, all 500 nm.

Figure 2 SEM images of cross-sections of a 5,000-Å-thick CuPc:PTCBI(4:1) film on ITO.

a, Not annealed. b–d, Annealed for b, 15 min at 450 K, c, 500 K and d, 550 K. e–h, The

simulated effects of annealing on the interface morphology of a mixed-layer photovoltaic

cell. The initial configuration (e) is generated using a random number generator, and

assumes a mixture composition of 1:1. This also assumes that no significant phase

segregation occurs during deposition. The interface between CuPc and PTCBI is shown as

a green surface. CuPc is shown in red and PTCBI is left ‘transparent’. The as-grown, or

initial, configuration is shown in a. The configurations after annealing at f,

T A1 ¼ 0.067E coh/N Ak, g, T A1 ¼ 0.13E coh/N Ak and h, T A1 ¼ 0.20E coh/N Ak are also

shown. Note the resemblance between the structure in images a–d and the simulated

structures e–h. The vertical axis represents film thickness, and hence is the direction of

film growth.
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Figure 4.10: Depiction of phase separation in organic photovoltaic films, reproduced from [10].
Simulation of progressive phase-separation upon annealing using a 1:1 mixture of copper phthalo-
cyanine (CuPc) and 3,4,9,10-perylene tetracarboxylic bis-benzimidazole (PTCBI). CuPc is shown
in red while PTCBI is transparent; the interface between CuPc and PTCBI is shown in green. The
simulation shows clear interpenetrating percolating networks of CuPC and PTCBI. Left, no anneal-
ing; left-center, annealed for 15 min at 450 K; right-center, annealed for 15 min at 500 K; right,
annealed for 15 min at 550 K. Progressively larger domain sizes are visible with higher annealing
temperatures.

and 660 nm pump wavelengths, despite having significantly different absorption. This indicates

that the 660 nm pump wavelength gives a significantly higher effective mobility than the 645 nm

wavelength.

4.4.2 The initial charge separation event

It is very interesting that the initial charge separation mobility is so much faster than the steady-

state mobility. This observation may be related to the morphology: efficient bulk heterojunctions

typically phase separate into two interpenetrating percolating networks of electron donor and elec-

tron acceptor phases [11]. This structure ensures a small physical distance between donor and

acceptor materials throughout the device, enhancing Frenkel excition to polaron pair conversion.

The structure also allows holes to travel efficiently through the donor and electrons to travel ef-

ficiently through the acceptor, suppressing geminate recombination at the same time. This phase
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separation is qualitatively depicted in Figure 4.10. While the figure shows phase separation as

a function of annealing temperature, it is expected that some phase separation would be visible

even without any annealing, due to the kinetic energy imparted by the vacuum thermal deposition

process, and even due to molecular motions at room temperature.

In the particular case of a bulk DBP:C70 heterojunction, Xiao Liu in the Forrest group reports

that C70 forms small crystallites, based on electron diffraction data. Larger fractions of C70 in the

mixture result in larger crystallites. Due to the very small amounts of DBP in these devices, the

DBP must fill up small gaps between C70 crystallites. With these constraints in mind, I would

expect the C70 crystallites to form a variety of mostly-convex shapes that adjoin each other into

a percolating network, and I would expect the amorphous DBP domains to be threadlike perco-

lating networks reminiscent of a reticulated foam. For large amounts of DBP, I would expect the

amorphous DBP domains to wrap around the C70 crystallites such that the C70 network doesn’t per-

colate, harming electron mobility and increasing geminate recombination. For very small amounts

of DBP, the threads of DBP might cease to percolate, harming the hole mobility and increasing

geminate recombination.

There are a large number of possible explanations for the initial charge separation phenomenon,

some of which deal with morphology and some more general. Some of them have been eliminated

outright, while others need further investigation. In general, the picture is this: the electron and hole

separate by several nanometers measured along the electric field line during the first 10–500 ps,

depending on applied voltage and DBP:C70 ratio, after which they stop, at least on the time-scale

of around a nanosecond. The rate is much faster for larger fields, and somewhat faster for larger

C70 concentrations. The distance traveled and even the effective mobilities are also somewhat

increased for larger fields and larger C70 concentrations.

• The observed carrier stopping is not attributable to charges piling up edges of the active layer,

canceling the electric field. We only observe small changes in electric field, not a complete

cancellation of the field.

• The stopping is not attributable to a charge transfer picture where polaron pairs are created
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but no further changes happen on the timescale of a nanosecond. Charge-transfer states keep

the electron and hole close together; to cause the kinds of field dynamics we observe, either

the electron and hole need to be several nanometers apart—unrealistic for a polaron pair—

or the polaron pair number density needs to be much higher than our pump photon fluence

would allow.

• The dynamics cannot be solely due to charge transfer states tunneling directly to long-range

charge separated states, escaping the Coulombic binding energy. Movements of free carriers

are necessarily faster than movements of bound carriers; the process of tunneling out of the

Coulombic binding energy would then make the carriers move faster afterwards, not come

to a stop.

• Excitons in organic photovoltaics have some characteristic delocalization over several

molecules; it has been observed that this increased exciton size can enhance dissociation

efficiency [10]. However, it seems unlikely that this delocalization could lead to the charges

stopping after a nanosecond.

• It is conceivable that the percolating-network structure of these films could lead to large

initial mobility followed by greatly-reduced mobility. In this picture, electrons move until

they hit a ‘dead end’, after which they must thermally move around until they can escape.

The extreme case here is the 1:1 film, where perhaps the C70 network does not percolate

and so almost no dynamics occur. In support of this idea, the 1:3, 1:4, and 1:8 films exhibit

faster rates for larger fields, and larger amounts of C70 do allow for more charge movement.

However, larger amounts of C70 also allow for a faster rate, which is inconsistent with this

picture unless the electron mobility is much higher in these films. Also, larger amounts

of C70 only have a little more charge movement before stopping; larger amounts of C70 in

a percolating-network picture should drastically reduce the number of dead ends, enabling

much more charge movement.

• Charge traps may explain the dynamics. These traps would likely come from defects in the
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crystalline structure of C70; crystallite boundaries and interfaces with DBP are obvious sites

for defects. Larger amounts of C70 might therefore be expected to decrease the carrier trap

density, promoting increased travel distance. This would enhance the electron mobility and

therefore could also explain the increased rate k with larger amounts of C70.

• The sizes of the C70 crystallites may also be a key explanatory factor. Larger amounts of C70

should increase the crystallite size somewhat. This would explain the increased separation `.

Perhaps the crystallinity would also be improved, which could enhance the electron mobility

and therefore the rate k. Larger crystallites have a decreased surface area-to-volume ratio,

decreasing the density of surface states which may be traps. This is a second mechanism by

which larger crystallites may lead to improved electron mobility.

• It is common for mobilities to increase with larger internal fields in disordered organic semi-

conductors [12–16]. The mobility dependence on the electric field appears somewhat less-

ened in the 1:4 and 1:8 samples compared to the 1:3 sample, suggesting the C70 disorder

may indeed decrease with larger C70 concentrations (enhanced crystallinity and/or decreased

amount of crystallite surface).

4.4.3 The 1:1 mixture

By contrast, the 1:1 sample shows almost no kinetics as a function of time, as shown in Figure

4.3. This implies the effective charge mobility in the 1:1 mixture is much lower than the other

mixtures. The total mobility is likely dominated by electrons since the C70 crystallites should

have a high electron mobility. It is tempting to attribute this to my prediction earlier—that too

much DBP allows it to wrap around the C70 crystallites, preventing percolation in the network

of C70. However, the most promising explanation above for the rest of our data is that dynamics

are only observed within a single crystallite, and so this theory would still predict rapid initial

kinetics for the 1:1 sample. On the other hand, we also suggested that decrease C70 in the mixture

may inhibit C70 electron mobility, by decreasing the crystallinity and/or decreasing the density

76



of surface states. The electron mobility is therefore expected to be particularly poor for the 1:1

sample, which is consistent with our data.

4.4.4 The meaning of the power-law model

It is also interesting that our best fitting model was a simplified power law of the form 1/(1+kt). A

good question is, what is the origin of such behavior? As mentioned above, it could come from an

exponential distribution of individual rates, but what phenomena would lead to such a distribution?

As mentioned above, the sizes of the C70 crystallites could be key. A broad distribution of sizes of

the C70 crystallites could lead to the 1/(1 + kt) form of the kinetics.

We did see differences in form for the 1:8 sample at high field (−2 V)—that data trace looked

slightly more exponential in character as seen in Figure 4.5. However, the fitted rate for that

case was very high, around 0.14 ps−1, and so relatively few of our data-points contributed to the

observed kinetics, making determination of the best model more difficult. In addition, including

a linear component to the model may have biased our fitting towards preferring the exponential

model.

4.5 Conclusions

To summarize, using TRSHG spectroscopy we measured ultrafast charge separation in DBP:C70

bulk heterojunction devices as a function of the ratio between DBP and C70. We used several

different pump wavelengths, spanning 585 to 720 nm, resolving both the excitation frequency and

the time dependence of the charge separation. We came to several interesting conclusions. In

particular, it appears that photoexcitation is followed by a relatively fast initial charge separation

event where the electron and hole separate by several nanometers, measured along the direction

of the external electric field. After the initial charge separation, they separate much more slowly.

Our best explanation for this effect is that the electrons are quite mobile within the C70 crystallites

but take some time to hop from crystallite to crystallite. Surprisingly, the kinetics of this initial
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separation followed a 1/(1 + kt) simplified power law, suggesting a broad size distribution of

the crystallites. This crystallite-based explanation of our data is consistent with perhaps our most

important observation. Specifically, larger concentrations of C70 enable longer separations between

electron and hole during the initial charge separation—and the separation happens faster. Certainly

the C70 crystallite size should increase with larger C70 concentration, promoting longer separations;

perhaps the crystallinity also increases and/or the surface trap density decreases with the decreasing

surface area density, elevating within-crystallite mobility and thus the rate. This farther, faster

effect may promote charge separation and suppress polaron pair recombination, enhancing device

performance.

In addition, a 1:1 mixture of DBP:C70 showed very small, very slow dynamics. This drastic

reduction in carrier mobility compared to samples with more C70 suggests the C70 crystallinity is

quite poor for the 1:1 mixture and/or the surface trap density is very high, harming the electron

mobility. Also, trends in our data suggested that ‘hot’ polaron pairs may enhance the charge

separation rate, so bluer absorption wavelengths produce charge separation more quickly.

Several important avenues for future work remain. The data raise several interesting questions

such as the effect of crystallite size and crystallite size distribution, which are not fully answered.

An X-ray or electron diffraction experiment could establish the size distribution more quantita-

tively.
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Chapter 5

Fast second-harmonic generation frequency-resolved

optical gating using only a pulse shaper

Several important ultrafast experiments employ a pulse-shaper in a collinear geometry. Coherent

control experiments [1, 2], pulse-shaper-assisted nonlinear microscopy [3, 4], and two-dimensional

electronic spectroscopy in the all-collinear [5] and pump-probe geometries [6] all employ a pulse-

shaper producing a single beam of ultrafast pulses. In all of these contexts, it is critical to mini-

mize and measure pulse durations to optimize time resolution and the information content avail-

able from ultrafast measurements [7]. For example, in two-dimensional electronic spectroscopy

transform-limited pulses are required in order to avoid peakshape distortions [8]. Many nonlin-

ear microscopies require short pulse durations to optimize signal-to-noise [9]. In coherent control

experiments, transform-limited pulse durations are not always necessary, but well-defined spectral

phase functions are required [1].

A large number of pulse-measurement techniques exist for measuring pulse durations and spec-

tral phase [7]; common techniques include frequency-resolved optical gating (FROG) [10], spectral

interferometry for direct electric field reconstruction (SPIDER) [11], and multiphoton intrapulse

interference phase scan (MIIPS) [12].

In the context of collinear pulse-shaping experiments, it is convenient to employ a collinear

pulse-measurement technique where the pulse-shaper is the only active element and where no

additional beams are required to characterize the pulses at the sample position. This avoids a

large number of extra optics, motorized delay stages, and alignment time. The MIIPS method
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satisfies these requirements, and is very useful for compressing pulses with a pulse-shaper [12].

However, it is a frequency-domain technique, and thus does not provide a direct measurement of

pulse duration. Time-domain methods of measuring pulse duration are often useful since certain

effects like spatial chirp [13] or phase noise [14] can cause frequency-domain methods to falsely

report a well-compressed pulse, whereas a time-domain method would reveal the true longer pulse

duration. Combining these expanded requirements suggests a pulse-shaped collinear FROG as the

method of choice, as both SPIDER and MIIPS are frequency-domain techniques. In addition, a

second-order FROG is preferred such a second-harmonic-generation FROG (SHG-FROG) because

second-order FROGs are more sensitive than higher-order FROGs [7]. Many experiments require

very weak pulses, such as nonlinear spectroscopy or microscopy on biological systems, making

high sensitivity crucial.

There are several existing methods meeting the above criteria which can be performed with a

pulse-shaper by directing the shaper to produce pairs of identical pulses with a controllable rela-

tive time-delay. One method uses two pulses of different polarizations in a type-II SHG crystal

[15]. However, most pulse-shapers produce only one polarization of light. A second method is

essentially a frequency-resolved interferometric autocorrelation [16]; the traditional SHG-FROG

signal (as defined by Trebino [10]) is isolated from the interferometric trace using Fourier filtering.

Alternatively, a different signal can be isolated from the frequency-resolved interferometric auto-

correlation with Fourier filtering, yielding a new kind of FROG with a specialized phase-retrieval

algorithm [17] although in my opinion this trace is not as intuitive as the standard SHG-FROG. It is

even possible to analytically extract the spectral phase from the frequency-resolved interferomet-

ric autocorrelation trace [18], although this is fundamentally a frequency-domain technique. All

of the above interferometric techniques require many time-delays between the two pulses in order

to fully sample the interferometric trace; the Nyquist period is almost always much less than the

pulse duration. This lengthens the data-acquisition time. Meanwhile, for very short pulses where

the pulse duration begins to approach the Nyquist period, it becomes impossible to do Fourier fil-

tering without distorting the FROG trace. This would happen when the width of the Fourier peaks
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is comparable to the spacing between the Fourier peaks. I estimate that as the pulse duration be-

comes shorter than about two optical cycles (longer for non-Gaussian pulses), the Fourier filtering

starts to introduce distortions.

Forget et al. [19] introduced a pulse-shaper-based ‘baseband interferometric SHG-FROG’ tech-

nique where the shaper produces a pair of identical pulses with a controllable relative time-delay

and a controllable relative carrier-envelope phase. By choosing the relative carrier-envelope phase

to correspond to the rotating frame, the required number of time-points is greatly reduced. How-

ever, the resulting trace is qualitatively different from the traditional SHG-FROG and requires a

modified phase-retrieval algorithm; I again feel the resulting trace is not as intuitive as the standard

SHG-FROG. Here I propose and demonstrate a new collinear SHG-FROG method combining four

carrier-envelope phases with the same time-delay, making it possible to retrieve the traditional

SHG-FROG signal so standard FROG software can be used and so that the trace is as intuitive

as possible. This phase-cycled technique does not require many time-delays, nor does it require

Fourier filtering. The technique is well-suited to almost any experiment using a pulse-shaper; all

that is needed is a second-order nonlinear crystal such as beta barium borate (BBO) and a spec-

trometer.

I describe the phase-cycled FROG technique following the derivation of Stibenz and Stein-

meyer [17], altering their derivation to allow for controllable carrier-envelope phase as permitted

by a pulse shaper. The complex electric field of a pulse can be written E (t) = E(t) exp (iω0t)

where E(t) is the complex amplitude and ω0 is the carrier frequency. Only the relative phase be-

tween the two pulses matters for a FROG measurement, so it is only necessary to apply a phase

φ to one of the pulses. The pair of pulses can then be written as E (t) + E (t − τ) exp(iφ) where

τ is the relative time-delay between the two pulses. What is sent to the pulse-shaper to create the

pulse-pair is the frequency-domain version of this, or Ẽ (ω) [1 + exp(−iωτ + iφ)]. Therefore the

measured spectral intensity of the collinear SHG-FROG is given by

I(ω, τ, φ) =

∣∣∣∣∫ ∞
−∞

[E (t) + E (t− τ) exp(iφ)]2 exp(−iωt) dt
∣∣∣∣2 . (5.1)
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Continuing to follow Stibenz and Steinmeyer, substituting ∆ω = ω − 2ω0 I define the second-

harmonic of a single pulse as

ESH(∆ω) =

∫ ∞
−∞

E2(t) exp(−i∆ωt) dt. (5.2)

The SHG-FROG field is then given by

EFROG(∆ω, τ) =

∫ ∞
−∞

E(t)E(t− τ) exp(−i∆ωt) dt. (5.3)

These definitions permit expansion of Equation 5.1:

I(∆ω, τ, φ) =∣∣∣ [1 + exp(2iφ− i(2ω0 + ∆ω)τ)]ESH(∆ω) + 2 exp(iφ− iω0τ)EFROG(∆ω, τ)
∣∣∣2. (5.4)

Expanding this further yields

I(∆ω, τ, φ) =2 |ESH(∆ω)|2 + 4 |EFROG(∆ω, τ)|2

+ 8 cos [φ− (ω0 + ∆ω/2) τ ] Re [EFROG(∆ω, τ)E∗SH(∆ω) exp (i∆ωτ/2)]

+ 2 cos [2φ− (2ω0 + ∆ω) τ ] |ESH(∆ω)|2 .

(5.5)

If four different carrier-envelope phases are combined, the cosine terms can be completely elimi-

nated:

I(∆ω, τ, 0) + I(∆ω, τ, π/2) + I(∆ω, τ, π) + I(∆ω, τ, 3π/2)

= 8 |ESH(∆ω)|2 + 16 |EFROG(∆ω, τ)|2 . (5.6)

This is identical to the Fourier-filtered result given by Amat-Roldán et al. [16] and Stibenz and

Steinmeyer [17]. It is simple to eliminate the τ -independent term by evaluating the above expres-

sion at a sufficiently large τ that the FROG term is zero and 8 |ESH(∆ω)|2 is all that remains [16].
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Figure 5.1: Phase-cycled SHG-FROG simulation results. (a) Temporal intensity and phase of
the simulated test pulse, which is temporally a double-pulse with significant quadratic and cubic
spectral phase. (b) Spectral intensity and phase of the simulated test pulse. (c) Simulated standard
SHG-FROG trace of the test pulse. (d) Simulated phase-cycled collinear SHG-FROG trace of the
test pulse, showing excellent agreement with (c).

This term can then be subtracted.

To explore the effectiveness of my technique, I performed both a computer simulation and an

experimental demonstration. For the simulation, I calculated the scheme using a known test pulse.

I chose a complicated test pulse to provide a more rigorous test. The simulated test pulse included

a small double-pulse and exhibited both quadratic and cubic spectral phase. In Figure 5.1(a,b) the

spectral intensity, spectral phase, temporal intensity, and temporal phase of the simulated test pulse

are plotted. Figure 5.1(c) shows the simulated standard non-collinear SHG-FROG trace. Figure

5.1(d) shows the simulated phase-cycled collinear SHG-FROG trace. The simulation included shot

noise and camera readout noise, modeled after the characteristics of the actual camera, with real-

istic intensity levels and averaging times. Roughly speaking, this corresponded to approximately

a fifty-to-one signal-to-noise ratio for a single laser shot, with one hundred laser shots averaged

per time-delay. The agreement between the standard and the phase-cycled-collinear SHG-FROG

traces is excellent.

More simulated data are plotted in Figure 5.2, illustrating how the four phase shifts combine

to remove the interferometric modulation. The four individual shifts (a-d), and the sum of the first

two (e), and the sum of all four (f) are plotted, restricting τ to clearly show the modulation. Each of
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Figure 5.2: Phase-cycled SHG-FROG phase shift simulations. (a-d) Interferometric FROG traces
of the simulated test pulse with 0, π/2, π, and 3π/2 relative carrier-envelope phase shifts respec-
tively, zoomed in along τ to show the interferometric modulation. (e) The sum of the first two
phase shifts showing removal of the second-harmonic frequency. (f) The sum of all four phase
shifts, showing removal of all modulation along τ ; the modulation along the detection axis is part
of the traditional SHG-FROG trace (see Figure 5.1).

the individual shifts shows modulation at both the fundamental and second-harmonic frequencies,

but the sum of the first two shifts or last two shifts removes the second-harmonic modulation (this

is especially visible at later times such as 30 fs). With all four, all interferometric modulation is

removed.

As an experimental demonstration, I measured the phase-cycled collinear SHG-FROG trace of

a compressed laser pulse. To perform this experiment, a titanium-doped sapphire oscillator (Femto

Lasers Femtosource™ Synergy™) seeded a regenerative amplifier (Spectra-Physics Spitfire® Pro™)

yielding 4 mJ, 30 fs pulses centered at 800 nm at a 1 KHz repetition rate. This powered a home-

built two-stage non-collinear optical parametric amplifier generating broad-bandwidth light tun-

able over much of the visible spectrum [20, 21]. The beam passed through a FASTLITE Dazzler™

pulse-shaper, which provided the dispersion compensation, and it split the input beam into pairs

of identical pulses with a controllable time-delay and relative carrier-envelope phase. The pulses

were compressed by scanning the second-order spectral phase to maximize the second-harmonic

intensity produced by focusing into a 10-micron-thick BBO (Eksma Optics). At the BBO, there

were∼20 nJ of energy in each of the two pulse copies with a spot size of∼150 µm. The beam was

filtered to remove most of the fundamental light (Hoya U-330) and focused into a spectrometer

(Horiba Jobin-Yvon iHR320). The light was detected with a CCD camera (Princeton Instruments
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PIXIS 100B with a UV coating). Figure 5.3(a) depicts a simplified schematic of the setup.

I used 40 time-delays between the two pulses spaced evenly between 0 and 150 fs; SHG-FROG

traces are time-symmetric so only positive delays are necessary. This required 160 waveforms in

the pulse shaper. I took data for 30 seconds. To extract the temporal amplitude and phase of the

pulses, I used the MATLAB® code published by Rick Trebino’s group [22]. Figure 5.3(b–e) shows

the measured and extracted SHG-FROG traces, with the extracted temporal and spectral intensities

and phases. The interferometric components are clearly absent from the data, demonstrating the

phase-cycling is working as designed. The reconstruction matches the measured data well (G′ =

0.057 [23]), showing measurement errors are minimal. The extracted temporal and spectral phase

are near zero as expected for a compressed pulse, yielding a pulse-duration of 32 fs FWHM as

shown in Figure 5.3(d).

For comparison with other methods, for a Fourier-filtered FROG variant I estimate needing

∼1200 waveforms, requiring roughly 7.5x more data-acquisition time. This estimate is based on

a Nyquist period of the highest-frequency term being ∼0.5 fs, so 0.33 fs sampling out to 400 fs

would take∼1200 waveforms (careful choice of window could reduce the number of needed wave-

forms). Many ultrafast lasers have longer pulse durations than the present demonstration, causing

the phase-cycled FROG method to be even faster relative to the Fourier-filtered FROGs. The

amount of data required for a Fourier-filtered FROG scales with the pulse duration divided by the

Nyquist period, while the amount of data required for the phase-cycled technique scales only with

pulse complexity.

I conclude by observing that a wide variety of research groups use an ultrafast laser in a

collinear geometry with a pulse-shaper; many of these groups do collinear nonlinear microscopy

with a pulse-shaper. There are also groups doing pulse-shaper-assisted Fourier-transform spec-

troscopy [5, 6, 24] and groups doing pulse-shaper-assisted coherent control [1]. In all of these

cases, a readily-accessible FROG is helpful. While MIIPS [12] and SPIDER [11] are certainly

useful, they do not provide as direct a measure of pulse duration as a FROG. Fundamentally, they

are all frequency-domain methods while FROG is fundamentally a time-domain method. Using
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Figure 5.3: Phase-cycled SHG-FROG experimental results. (a) Diagram of experimental setup
for the new phase-cycled technique. (b) Measured SHG-FROG trace using the technique. (c)
Reconstructed SHG-FROG trace using the standard FROG algorithm; the reconstruction error is
low at G′ = 0.057. (d) Measured temporal intensity and phase showing a 31.6 fs pulse duration
FWHM; linear component of temporal phase subtracted. (e) Measured spectral intensity and phase;
linear component of spectral phase subtracted.
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FROG as a cross-check against one of these other methods boosts confidence that the compressed

laser pulse really is transform-limited.

While collinear FROGs suitable for use with a pulse-shaper have existed for approximately a

decade, this phase-cycled SHG-FROG method saves time compared with Fourier-filtered variants

and yields a standard SHG-FROG trace which is more intuitive than non-standard FROGs and

which does not require specialized analysis software. These attributes make it a valuable tool for

pulse measurement in pulse-shaping contexts.
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Chapter 6

Comparison of pulse compression methods using

only a pulse shaper

6.1 Introduction

Pulse-shapers are commonly used in a variety of important ultrafast spectroscopy experiments:

coherent control experiments [1, 2], pulse-shaper-assisted nonlinear microscopy experiments [3–

5], and pulse-shaper-based two-dimensional electronic spectroscopy [6–9] are several examples.

Minimizing pulse durations is critical for optimizing time resolution and the information content

available from ultrafast measurements [10]. For example, many nonlinear microscopies require

short pulse durations to optimize signal-to-noise [11]. Two-dimensional electronic spectroscopy

requires transform-limited pulses to avoid peakshape distortions [12]. Coherent control experi-

ments do not always require transform-limited pulse durations, but well-defined spectral phase

functions are important [1].

When working with very short pulses, dispersion management becomes a critical aspect of

the experiment. Third-, fourth-, and higher-order spectral phase distortions can have a significant

effect on pulse duration and on pulse symmetry. Using a pulse-shaper is a flexible way to man-

age these high-order phase distortions. It is convenient for this pulse-shaper to be the only active

element used in pulse measurement and compression, reducing alignment time and optics. Many

techniques exist for measuring these high-order spectral phase distortions in general; some good

sources include Walmsley and Dorrer [13] and Trebino [14]. Several more techniques are exclu-
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sive to the present pulse-shaper-only context as given by Lozovoy et al. [15] and Forget et al. [16].

To my knowledge there has been no systematic study of how much time these pulse-shaper-only

methods require to achieve a given amount of error. Some studies focus on very fast ‘single shot’

methods [17, 18] but these methods require dedicated optics and alignment time, and generally re-

quire intense pulses which are not always available. Other studies discuss how individual methods

respond to noise [19–21], but do not predict how noise varies by method. I am aware of two direct

experimental comparisons between a small number of methods [22, 23], but they reported experi-

mental noise likely dominated by spatial and temporal pulse-overlap noise and laser noise. These

are not issues for pulse-shaper-only methods because there is only one beam so pulse-overlap is

not a noise source and rapid pulse-shape-cycling can eliminate laser noise. I investigate the speed

of several pulse-shaper-only methods using a computer simulation, as measured by the amount

of time required to achieve a similar accuracy of characterization. I perform the simulations on

several different test cases of varying spectral phase and amplitude complexity.

One of the most common pulse-shaper-only pulse-compression techniques is multiphoton in-

trapulse interference phase-scan (MIIPS) [15]. To be clear, many pulse-shaper-only phase mea-

surement techniques can be considered a formal multiphoton intrapulse interference phase-scan,

including all of the phase-only methods discussed here. However, the algorithms used to convert

measured data to measured phase vary widely between the original MIIPS algorithm and those

other methods. For ease of terminology, here I use the term ‘MIIPS’ to refer to the original MIIPS

algorithm. MIIPS is a simple and highly accurate integrated method for pulse compression that

only requires a pulse-shaper that can perform phase shaping. Its accuracy makes it an excellent

way to measure the group delay dispersion of a material [24]. A relatively large number of pulse-

shapes—on the order of one hundred—are needed to measure a MIIPS trace. Further, a single

round of the MIIPS algorithm only provides an approximate measure of the spectral phase; several

rounds are required for an accurate measure.

Alternatively, a pulse-shaper-only frequency-resolved optical gating (FROG) [16, 25] or a

pulse-shaper-only spectral interferometry for direct electric field reconstruction (SPIDER) [16]
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could be used to measure the spectral phase. The pulse-shaper could then be set to compensate the

measured distortions [26]. Ultimately, these techniques are less convenient than MIIPS because

they require a shaper capable of both amplitude and phase shaping, which not all shapers can pro-

vide. Pulse-shaper-based FROG is additionally inconvenient because it is a form of SHG-FROG

and therefore has a direction-of-time ambiguity.

A sonogram-like MIIPS variant named MIIPS-S demonstrated a remarkable ability to com-

pensate very high order phase distortions [27]. However, this method requires both phase and

amplitude shaping, and requires even more pulse-shapes than traditional MIIPS—on the order of

one thousand. Further, the method’s amplitude shaping discards most of the laser power and so

signals are likely to be relatively weak, harming S/N.

Meanwhile, the dispersion scan method by Miranda et al. [28] (recently extended to pulse-

shapers by Loriot et al. [29] as ‘chirp scan’) makes extremely few approximations, and due to its

holistic data-fitting approach could be a particularly efficient way to measure spectral phase. It is

additionally convenient because the pulse-shaper only needs to perform phase shaping. Another

option is the Chirp Reversal Technique (CRT) [29] as a ‘far-field’ limit of the chirp scan tech-

nique. This method uses an impressively small amount of data, using only two pulse-shapes to

measure the phase, thus having the potential to be particularly fast. I present a technique having a

similar theory, but differing in the transformation from measured data to measured spectral phase,

named Spectral Phase of Electric field by Analytic Reconstruction (SPEAR). Like CRT, SPEAR

is computationally simple, but allows for more of the chirp scan data to be used than the CRT

technique. After discussing the SPEAR theory, I experimentally demonstrate it. I then proceed to

the computer simulation of the various methods, and discuss their strengths and weaknesses.

6.2 Theory of SPEAR

The methods here investigated all have well-known theory with the exception of SPEAR. Its the-

oretical background is similar to CRT’s as described by Loriot et al. [29] but with a different
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transformation from measured data to measured spectral phase. Fundamentally CRT and SPEAR

work by adding enough quadratic spectral phase to the laser pulse so that only second-harmonic-

generation (SHG) occurs at each laser frequency; there is little to no sum-frequency-generation

(SFG) between different laser frequencies. Essentially these methods prevent SFG by adding lin-

ear chirp to introduce a temporal separation of the different laser frequencies. By looking at how

the amplitude of the SHG changes as a function of chirp for each laser frequency, it is possible to

extrapolate at what chirp each of those frequencies would be optimally compressed—the negative

second derivative of the phase.

Here the SPEAR theory is briefly discussed in terms of the physical processes. Suppose a laser

pulse E(ω) has unknown spectral amplitude |E(ω)| and unknown spectral phase ϕ(ω):

E(ω) = |E(ω)| exp (−iϕ(ω)) . (6.1)

A quadratic known phase function is applied to the unknown pulse by the pulse-shaper:

Ei(ω) = |E(ω)| exp

(
−iϕ(ω)− i

2
φ

(i)
2 (ω − ω0)2

)
, (6.2)

where ω0 is some central angular frequency, and φ(i)
2 is the chirp coefficient. There are multiple

applied phase functions and each one has a φ(i)
2 . As derived by Loriot et al. [29] in equation 5,

in the far-field limit—meaning the applied chirps φ(i)
2 are sufficiently strong—a relatively simple

expression exists for the spectral intensity of the SHG:

I
(i)
SHG(2ω) = β

∣∣∣∣∣ 1

ϕ′′ (ω) + φ
(i)
2

∣∣∣∣∣ |E(ω)|4 , (6.3)

where β is a constant of proportionality that describes the efficiency of the SHG process. This

formula is the basis of the CRT and SPEAR methods, and it becomes exact in the limit of strong

φ
(i)
2 . Essentially, the measured intensity at a second-harmonic frequency 2ω is related only to the

characteristics of the pulse at laser frequency ω. The CRT authors used this relationship to derive
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a formula for the second-derivative of the phase ϕ′′(ω) using second-harmonic spectral intensity

measurements I(1)
SHG(2ω) and I(2)

SHG(2ω) from two applied chirp-values φ(1)
2 and φ(2)

2 ; the formula

is given in equation 6 of [29]:

ϕ′′ (ω) ≈ φ
(1)
2 I

(1)
SHG(2ω) + φ

(2)
2 I

(2)
SHG(2ω)

I
(1)
SHG(2ω) + I

(2)
SHG(2ω)

. (6.4)

On the other hand, SPEAR works by calculating a least-squares fit for ϕ′′(ω) and |E(ω)| given

several applied chirp-values and associated second-harmonic spectral intensity measurements. The

fitting procedure minimizes the following weighted least-squares objective function L which con-

sists of the sum of the squared residuals as compared to Equation 6.3:

L(c, b) =
∑
i,ω

Wi(ω)

(
I

(i)
SHG(2ω)−

∣∣∣∣∣ c (ω)

b (ω) + φ
(i)
2

∣∣∣∣∣
)2

. (6.5)

In this objective function, c (ω) represents the best-fit estimate for β |E(ω)|4. b (ω) represents the

best-fit estimate for ϕ′′ (ω). Wi(ω) represents the weighting factors, which should be chosen such

that they approximate the inverse variance of the measurements I(i)
SHG(2ω). I use

Wi(ω) =
1

r + I
(i)
SHG(2ω)

, (6.6)

where r represents the known variance of the detector read noise (
√
r ≈ 11 photoelectrons for our

detector) and I(i)
SHG(2ω)—the measured spectral intensity—doubles as an estimate of the variance

due to shot noise because the variance of a Poisson process is the same as its mean (this requires

intensities measured in photoelectrons). Since independent variances add, r + I
(i)
SHG(2ω) is an

estimate of the noise variance, leading to my chosen weight. Unfortunately, the absolute value

in the objective function introduces a discontinuity in the objective function’s gradient, making

minimization unwieldy. However, in practice the sign of b(ω)+φ
(i)
2 is already known since |φ(i)

2 | �

b(ω). This permits an equivalent objective function lacking the absolute value that is consequently
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easier to handle analytically:

L(c, b) =
∑
i,ω

Wi(ω)

(
I

(i)
SHG(2ω)− si · c (ω)

b (ω) + φ
(i)
2

)2

. (6.7)

Here, the values si = sgn
[
b (ω) + φ

(i)
2

]
are known and constant. Solving for zero gradient

with respect to the two unknowns gives an analytic equation for the best-fit b(ω) that can be

quickly and deterministically solved to within machine precision using numerical methods such

as Brent’s [30] or Ridders’ method [31] (I use Brent’s method as implemented in the open-source

scipy.optimize module [32]):

[∑
i

si ·Wi(ω)I
(i)
SHG(2ω)

b (ω) + φ
(i)
2

]∑
i

Wi(ω)(
b (ω) + φ

(i)
2

)3


=

∑
i

Wi(ω)(
b (ω) + φ

(i)
2

)2


∑

i

si ·Wi(ω)I
(i)
SHG(2ω)(

b (ω) + φ
(i)
2

)2

 . (6.8)

The solution b(ω) of this equation constitutes the best-fit estimate for ϕ′′ (ω). This is the central

difference between SPEAR and CRT: the data-to-phase transformation is derived in a least-squares

sense and allows the data from more than two applied pulse-shapes to be used. More than two

applied pulse-shapes can be desirable because it adds redundancy to the measurement. It is also

convenient that the SPEAR formula is only marginally more complicated to program than the CRT

formula. Once b (ω) is found, the following formula can be used to find c(ω), which is the best-fit

estimate for β |E(ω)|4:

c(ω) =

∑
i

si ·Wi(ω)I
(i)
SHG(2ω)

b (ω) + φ
(i)
2∑

i

Wi(ω)(
b (ω) + φ

(i)
2

)2

. (6.9)

Once the two parameters b(ω) and c(ω) have been fit, the spectral and temporal amplitude and

phase can be directly calculated. In practice c(ω) can be distorted relative to the squared spectral
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intensity β |E(ω)|4. This depends on SHG crystal thickness and therefore phase-matching band-

width and the spectral transmittance of any filters in between the crystal and the spectrometer.

Other factors affecting c(ω) include any spectral distortions from the spectrometer itself including

the grating, and any clipping on the entrance slit combined with spatial chirp in the beam. How-

ever, as noted by Miranda et al. [28] the measured data should only be distorted by a constant

spectral filter—assuming the fundamental beam is not depleted by the SHG process—and so while

c(ω) can be distorted, b(ω) remains correct.

In principle CRT and SPEAR do not require multiple iterations to produce a compressed pulse.

However, any slight miscalibration or imperfection in the pulse-shaper or the spectrometer could

mean that some MIIPS-like iteration may be required to converge to the solution. Specifically, a

single iteration yields a measure of ϕ′′(ω) which is sent to the pulse-shaper to compensate; the

next iteration runs CRT or SPEAR starting from a mostly-compensated phase. In addition, some

trials may be necessary to find a good value of applied chirp large enough to prevent SFG but

small enough to have good signal-to-noise; Appendix B discusses how to do this. In my experi-

ence, using well-chosen applied chirp values, one or two iterations works well; the first provides a

good measure of ϕ′′ (ω) and the second provides validation and corrects for any miscalibration or

imperfection errors.

6.3 Experimental demonstration of SPEAR

For an experimental demonstration of SPEAR, a Spectra-Physics Mai Tai SP™ oscillator seeded a

Spectra-Physics Spitfire Pro™ regenerative amplifier yielding 4 mJ,∼40 fs pulses at 1 kHz centered

at 800 nm. This powered a home-built double-pass noncollinear optical parametric amplifier [33,

34] yielding broadband pulses tunable over much of the visible. A FASTLITE Dazzler™ pulse-

shaped the result. The resulting beam, which was a few tens of nanojoules of pulse-energy, was

focused into a 10 micron thick beta barium borate (BBO) crystal (Eksma Optics). The output

was collimated, filtered to remove most of the fundamental light, focused into a spectrometer
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Figure 6.1: Demonstration of the SPEAR method. (a) Measured
√
c(ω) which is a measure of

spectral intensity. (b) Measured and true group-delay as a function of wavelength relative to the
group-delay of 590 nm. (c) Difference between measured and true group-delay. Red solid line, the
true group-delay based on the published dispersion formula. Black dotted line, the average of five
independent measurements of the group-delay using the SPEAR method. Blue shaded area, the
range of those five measurements showing excellent repeatability and accuracy everywhere there
is significant spectral intensity. Vertical green lines, boundaries of the region of interest over which
there is significant spectral intensity.

(Horiba Jobin-Yvon iHR-320) and detected by a CCD (Princeton Instruments PIXIS-100B with

UV coating).

The dispersion of a glass window in between the pulse-shaper and the nonlinear crystal was

measured. I used SPEAR on an uncompressed pulse, with and without the window in the optical

path. Four values of φ2 were used, ±1500 fs2 and ±1167 fs2. Only two seconds of laser time (two

thousand laser shots) were used per measurement. The difference between the measured b(ω) for

the with-glass and without-glass measurements is proportional to the intrinsic group delay disper-

sion of the glass. Integrating that difference with respect to ω yields the group delay as a function

of laser frequency. The window’s thickness was measured with a Mitutoyo ABSOLUTE digital

caliper (∼10 micron precision) to be T=2.09 mm thick. The material was CDGM H-K9L, which

has a published dispersion formula n(λ) [35]. The spectral phase φ(ω) = n(ω)Tω/c was differen-

tiated to compute the group delay dφ/dω as a function of wavelength. Figure 6.1 shows the com-
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puted group delay and the measured group delay. The measurements were performed five times,

and the full range of those measurements are plotted, together with the mean. This demonstrates

exceptional repeatability and accuracy; the group-delay dispersion at 590 nm, using data from

560nm to 620nm (the spectral region exhibiting significant laser intensity) is measured at 147.4 fs2

but calculated at 146.7 fs2, a 0.5% difference. This slight error can be attributed to window thick-

ness measurement error, pulse-shaper calibration error, and/or spectrometer calibration error. For

comparison with previous measurements in the literature, Figure 4 of [24] shows measured fs2 of

deionized water using several different path-lengths; much like the present measurement they best-

fit a polynomial to the detection bandwidth. After fitting along detection bandwidth, they best-fit

a line through different path-lengths as shown in Figure 4(b); their R2 value indicates the residual

noise is 3–4 fs2 for any one path-length. My 0.7 fs2 error compares favorably with this.

6.4 Speed comparison of pulse-shaper-only spectral phase

measurements

Having established the SPEAR method, I compare the speed of several pulse-shaper-only methods

using a computer simulation. The speed metric was the minimum number of laser shots needed

to achieve about a femtosecond of RMS error of spectral group-delay over a spectral region-of-

interest. I use spectral group-delay as the metric because it corresponds to actual pulse broadening,

unlike spectral phase or spectral group-delay dispersion. I also evaluated the amount of computa-

tion time each method required. The simulation included shot noise, camera readout noise, finite

BBO thickness, and finite spectrometer resolution. It neglected laser noise because in my ex-

perience that can typically be overcome by rapid pulse-shape-cycling. The source code for the

simulation is available under an open-source license to facilitate scrutiny of the results [36].

Four different test cases centered at 650 nm were used, with varying complexity of spectral

intensity and phase, as shown in Figure 6.2. These test cases characterized how the different meth-

ods perform with different types of pulse complexity. Case 1 was a relatively simple somewhat-

99



In
te

n
si

ty
 (

a
.u

.)

0

20

40

G
ro

u
p
-d

e
la

y
 (

fs
)

case 1

In
te

n
si

ty
 (

a
.u

.)

10

5

0

P
h
a
se

 (
ra

d
.)

case 1

In
te

n
si

ty
 (

a
.u

.)

0

20

40

G
ro

u
p
-d

e
la

y
 (

fs
)

case 2

In
te

n
si

ty
 (

a
.u

.)

10

5

0

P
h
a
se

 (
ra

d
.)

case 2

In
te

n
si

ty
 (

a
.u

.)

0

10

G
ro

u
p
-d

e
la

y
 (

fs
)

case 3

In
te

n
si

ty
 (

a
.u

.)

4

2

0

P
h
a
se

 (
ra

d
.)

case 3

550 600 650 700 750 800

Wavelength (nm)

In
te

n
si

ty
 (

a
.u

.)

0

20

40

G
ro

u
p
-d

e
la

y
 (

fs
)

case 4

40 30 20 10 0 10 20

Time (fs)

In
te

n
si

ty
 (

a
.u

.)
4

0

4

P
h
a
se

 (
ra

d
.)

case 4

Figure 6.2: Depiction of the four test cases being used to evaluate pulse-shaper-only spectral phase
measurements. Left column, spectral intensity and group-delay; right column, temporal intensity
and phase. Blue dotted line, spectral or temporal intensity; red solid line, spectral group-delay
or temporal phase; vertical thin green lines: edges of region of interest with appreciable spectral
intensity.

asymmetric Gaussian spectral intensity profile and a relatively simple spectral phase consisting

of second-order and third-order components. Case 2 was a more complex spectral intensity with

multiple peaks, but the same simple spectral phase. Case 3 had the simpler intensity profile with

a spectral phase close to zero, but with significant ripple in the group delay dispersion, as might

occur with several bounces off of chirped mirrors or by transmission through certain antireflection

coatings or interference filters. While the pulse was not significantly broadened in the time do-

main, its symmetry was significantly reduced. Case 4 had the more-complex spectral intensity and

a strong ripple to the spectral phase, in addition to second-order and third-order components.

Second harmonic generation was simulated by squaring the time-domain field and multiplying

by a spectral filter mimicking a 200 micron spot-size (D4σ) on a ten micron thick BBO crystal cut

for optimal phase-matching. Because the simulation included shot noise and read noise, signal-to-

noise increased dramatically with increasing pulse energy; I used 20 nJ of energy per laser shot,
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Table 6.1: Comparison of different methods’ speed, both laser time and computation time.
METHOD LASER TIME (SHOTS) COMPUTE TIME (MINUTES)
SPIDER 10K–2M negligible
MIIPS 260–2M negligible
MIIPS-S 210K–180M negligible
FROG 2100 3–4
CRT 250–15K negligible
SPEAR 250–15K negligible
Chirp-scan 30 < 1

which is a typical energy for our two-dimensional electronic spectroscopy experiments. Spectral

and temporal discretization of the simulated pulses and spectral filters were chosen to be signifi-

cantly higher than the Nyquist limit over the entire field profile. The added noise and spectrometer-

induced blurring were based on the physical characteristics of our spectrometer and camera. See

Appendix C for more details. None of the retrieval methods were provided with knowledge of the

BBO’s SHG efficiency curve, nor were any special parameters given for different test cases.

For each method, 120 independent simulations were performed, in order to characterize the

distribution of retrieved results. In Figures 6.3, 6.4, 6.5, and 6.6, the percentiles of the retrieved

distributions are plotted for cases 1, 2, 3, and 4 respectively. Table 6.1 summarizes the results; a

detailed discussion is given below.

6.4.1 SPIDER

For the SPIDER simulations, the pulse-shaper created a sum of two time-delayed pulse replicas

and a bandwidth-limited chirped pulse, as described by Forget et al. [16] in equation 26. There

were four applied pulse-shapes representing different sums and differences of the relevant pulse

components. A τ = 200 fs separation was used between pulse replicas to minimize pulse overlap

and therefore reduce error. Different test cases needed different levels of spectral resolution; case

1 used spectral resolution δω = 0.34 fs−1 (55 THz), case 2 had δω = 0.25 fs−1 (39 THz), case 3

had δω = 0.098 fs−1 (16 THz), and case 4 had δω = 0.058 fs−1 (9.4 THz). The chirped pulse had

τ/δω of quadratic spectral phase and a 10δω-bandwidth bandpass filter. The biases in the retrieved
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Figure 6.3: Simulated spectral group-delay and retrieved distribution of spectral group delay for
the case 1 pulse under the methods being simulated. Retrieved group-delays from FROG were
artificially rectified to have the correct direction of time. Red line, the simulated true spectral
group-delay. Dark shaded area, the 30th to 70th percentiles of the retrieved group-delay; light
shaded area, the 10th to 90th percentiles. Vertical green lines, boundaries of the spectral region of
interest. Retrieved group-delay errors are root-mean-square deviations between retrieved and true
group-delay over the region of interest.

group-delays are due the limited spectral resolution. Smaller bias can be achieved with smaller

δω, but that reduces the signal strength, requiring more laser shots to mitigate the noise, which

decreases as the square root of the number of laser shots. Because the signals were weak, SPIDER

was slow, requiring 10,000 laser shots for case 1, 40,000 shots for case 2, 500,000 shots for case 3,

and 2,000,000 shots for case 4. Computation time for converting measured data to measured phase

was negligible.

6.4.2 MIIPS

For MIIPS to achieve the necessary spectral resolution to see the ripples in the spectral group

delay, α as defined by Xu et al. [23] was increased from the default 1.5π to 30π for case 1, 2.0π

for case 2, 70π for case 3, and 120π for case 4. γ = 4 fs was used with 64 pulse shapes per MIIPS

iteration. Four MIIPS iterations achieved convergence. The step-like behavior of the measured
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Figure 6.4: Simulated spectral group-delay and retrieved distribution of spectral group delay for
the case 2 pulse under the methods being simulated. Retrieved group-delays from FROG were
artificially rectified to have the correct direction of time. Red line, the simulated true spectral
group-delay. Dark shaded area, the 30th to 70th percentiles of the retrieved group-delay; light
shaded area, the 10th to 90th percentiles. Vertical green lines, boundaries of the spectral region of
interest. Retrieved group-delay errors are root-mean-square deviations between retrieved and true
group-delay over the region of interest.

group-delay comes from the number of pulse-shapes used per iteration. If more pulse-shapes are

used per iteration, the retrieved group-delay becomes smoother, but more laser pulses are needed.

I used 81,920 shots for case 1, 256 shots for case 2, 327,680 for case 3, and 1,966,080 for case 4. I

found that the MIIPS algorithm tended to be biased in spectral regions where the spectral intensity

and spectral group-delay and SHG efficiency are strongly sloped (see Figure C.1 for the SHG

efficiency); the problem is especially visible in cases 1 and 3 on the blue edge of the spectrum,

although case 2 shows it as well. The bias dominated the retrieved error of case 1 until I increased

the spectral resolution by increasing α. Unfortunately, this made the signal weaker and so the

number of laser shots needed to be increased to compensate. Case 2 didn’t show the bias problem

nearly as much, and so I could use low spectral resolution and a quite low number of laser shots

were needed. Cases 3 and 4 both required much higher spectral resolution to see the ripples, which

made the signals weak and required many more laser shots to average out the noise. In addition,
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Figure 6.5: Simulated spectral group-delay and retrieved distribution of spectral group delay for
the case 3 pulse under the methods being simulated. Retrieved group-delays from FROG were
artificially rectified to have the correct direction of time. Red line, the simulated true spectral
group-delay. Dark shaded area, the 30th to 70th percentiles of the retrieved group-delay; light
shaded area, the 10th to 90th percentiles. Vertical green lines, boundaries of the spectral region of
interest. Retrieved group-delay errors are root-mean-square deviations between retrieved and true
group-delay over the region of interest.

large spectral regions of low spectral intensity such as the red side of cases 1 and 3 tended to

accumulate more errors, since the noisy measured group-delay dispersion (GDD) integrated to

produce variable smooth errors over that spectral region; this required more laser shots on those

cases. Another reason why many laser shots were needed to average out the observed noise is

because of the way the MIIPS noise scales with spectral intensity; the ratio R of the noise on the

edges of the spectrum to the noise in the middle of the spectrum is much larger than SPIDER. This

is because SPIDER measures sum-frequency signals between a narrowband reference sub-pulse

and the rest of the pulse, so the signal scales linearly with the spectral field. On the other hand,

traditional MIIPS only creates second-harmonic-generation of a single part of the pulse at a time,

so the signal scales with the spectral field squared. Computation time for converting measured data

to measured phase was negligible.
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Figure 6.6: Simulated spectral group-delay and retrieved distribution of spectral group delay for
the case 4 pulse under the methods being simulated. Retrieved group-delays from FROG were
artificially rectified to have the correct direction of time. Red line, the simulated true spectral
group-delay. Dark shaded area, the 30th to 70th percentiles of the retrieved group-delay; light
shaded area, the 10th to 90th percentiles. Vertical green lines, boundaries of the spectral region of
interest. Retrieved group-delay errors are root-mean-square deviations between retrieved and true
group-delay over the region of interest.

6.4.3 MIIPS-S

The sonogram-like MIIPS-S method is nice because it is unbiased in its estimates of group-delay.

However, because the signal is generated by two narrowband pulses with a tiny fraction of the

total laser power, the signal is very weak and so many laser shots are required to average out the

noise. Further, many pulse-shapes are scanned which further increases the number of laser shots

required. I controlled the spectral resolution by dividing the region of interest into k equal-sized

T-slits as defined in [27]. For cases 1 and 2 I used k = 9, and for cases 3 and 4 I used k = 15. The

time-delay between the two T-slits was scanned in 15 steps from −10k fs to 10k fs. I used two

iterations of the method as suggested in [27]. I needed very large numbers of laser shots, ranging

from 210,000 shots for case 1 to 180,000,000 shots for case 4. That said, the noise ratio R was

more similar to SPIDER than that of traditional MIIPS. This is because like SPIDER, MIIPS-S
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measures sum-frequency signals between a narrowband reference sub-pulse and the rest of the

pulse, so the signal scales linearly with the spectral field.

6.4.4 FROG

I was unable to get sufficiently good results with the standard generalized-projections-based FROG

inversion algorithm, for two reasons. First, many time-delays are required to sample sufficiently

large delays such that the FROG trace decays to zero, while satisfying the Fourier relationship

between the time and frequency grids that the FROG algorithm requires. Second, the algorithm

requires non-negative data and so all negative values are replaced with zero. This made the tails of

the trace have an average positive value, when they really average to zero. Therefore the retrieval

algorithm adds noise to the retrieved pulse to increase the amplitude of the tails of the retrieved

trace. Smoothing the data before replacing non-negative values with zero helps, but not enough.

My solution was to use a chirp-scan-like direct fitting algorithm described in Appendix C; this

allowed for fewer pulse-shapes and better accuracy of fitting. There was no need to force the data

to be non-negative. Perhaps surprisingly, the significant modulation imposed by the finite thickness

of the BBO (see Figure C.1) caused negligible aberrations in the results. For the FROG simulation

parameters, there were thirty-five time-delays Ti according to the formula Ti = a sinh(i/b), for i

an integer in the range [0, 34]. The constants a and b were chosen such that a/b = 1 fs and such

that the last Ti was 60 fs. This nonlinear spacing of the time-delays provided good performance

both for the nearly-compressed pulse in case 3, which needed more time-delays near time zero,

and the more-chirped pulses in the other cases, which needed more time-delays far from time zero.

Four phase cycles were used per time-delay as described in Chapter 5. Instead of adding the phase

cycles together, the data for all of the measured pulse-shapes were simultaneously directly fitted.

Due to FROG’s direction-of-time ambiguity, in this simulation the retrieved traces were artificially

rectified to have the correct time-direction, for the purpose of meaningful comparison. The noise

ratio R was especially good; I believe that is because the time-delay-scanning nature of FROG

allows for good sum-frequency-generation to occur between the weak portions of the pulse and the
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many of the strong portions of the pulse. 2,100 laser shots per FROG trace were needed; there were

no significant changes in performance for the different cases. Three or four minutes of computation

time were needed for the fitting algorithm on a workstation computer.

6.4.5 CRT and SPEAR

There are actually two scenarios for using CRT or SPEAR. In the first one, a chirp-scan is taken and

CRT or SPEAR is used to provide an initial guess to the nonlinear optimization of the chirp-scan

algorithm. Here, SPEAR is likely to be the better option because more than two of the data-points

can be used at once: as many data-points as can be considered ‘far-field’ can be used. The extra data

provides redundancy and improves signal-to-noise. The second scenario utilizes CRT or SPEAR

exclusively for pulse-compression; the chirp-scan least-squares fitting algorithm is not used. Only

two far-field applied chirps are involved. To capture these different scenarios, I performed three

simulations: one of CRT with two chirps, one of SPEAR with the same chirps and the same

number of laser shots, and one of SPEAR with eight chirps and the same number of laser shots per

pulse-shape as the other two. For the CRT simulation and the two-chirp SPEAR simulation, the

applied chirps were -300 fs2 and 300 fs2, except for case 4 which needed more spectral resolution

and therefore used -1000 fs2 and 1000 fs2. For the eight-chirp SPEAR simulation, I used four

positive and four negative chirps, starting at the CRT chirps and moving outward in increments of

50 fs2. CRT showed excellent performance in the middle of the spectrum, although much poorer

performance on the edges. The two-chirp SPEAR simulation has nearly identical performance

to CRT in the middle of the spectrum, but more reasonable results on the edges, allowing for a

slight improvement in accuracy most of the time. I believe this is because the SPEAR equation

(Equation 6.8) has a solution between the positive-si and negative-si values of φ(i)
2 whenever the

S/N is reasonable; when the equation has no solution the S/N is known to be poor, and a regularized

result can be returned ensuring |φ(i)
2 | � b(ω). As expected, the eight-chirp SPEAR simulation

does better than the CRT and two-chirp SPEAR simulations. Both CRT and SPEAR had relatively

strong signals and so required relatively small numbers of laser shots, with 1,000 shots in cases 1
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and 3, 300 shots in case 2, and 15,000 shots in case 4. Both of the methods have a noise ratio R

comparable to MIIPS, because they rely on pure second-harmonic-generation of each portion of the

pulse. For the same reason, the measured GDD was relatively noisy in the dip region of cases 2 and

4 near 610 nm and so the slope of the retrieved group-delay was noisy at 610 nm. This is visible

in Figures 6.4 and 6.6 where the retrieved group-delay appears noisy for frequencies bluer than

610 nm. The retrieved group-delay of any one simulation actually tracks the true-group delay quite

nicely over that whole spectral region bluer than 610 nm, but the offset is different for each one

due to that noisy slope at 610 nm. In addition, large spectral regions of low spectral intensity such

as the red side of cases 1 and 3 tended to accumulate more errors, much like MIIPS. Computation

time for converting measured data to measured phase was negligible for both methods.

6.4.6 Chirp-scan

For the chirp-scan method, there were ten applied quadratic phases, linearly spaced in increments

of about 44 fs2 over a range of -200 fs2 to 200 fs2. I found that large numbers of applied chirps were

unnecessary and that large scan ranges were unnecessary. The algorithm producing the measured

phase from the measured data is described in Appendix C. The measured bias and noise are both

low. Perhaps surprisingly, the significant modulation imposed by the finite thickness of the BBO

(see Figure C.1) caused negligible aberrations in the results, much like FROG. The noise ratio R

was comparable to FROG, since again the weak portions of the pulse interacted with many of the

strong portions of the pulse. Only 30 laser shots were needed because the signals were very strong

because the applied chirps were weak; there were no significant changes in performance for differ-

ent test cases. Approximately one minute of computation time was needed for the fitting algorithm

on a workstation computer. I also simulated the method with the same amount of laser time as

FROG (2,100 laser shots) yielding significantly better accuracy than FROG; the computation time

increased with more laser shots but remained smaller than FROG’s.

108



6.5 Discussion

On the surface these simulations could seem to indicate that the chirp-scan method should be used

exclusively over the other methods, due to the dramatically smaller amount of laser time required

for good signal-to-noise. However, there are several considerations that might affect which pulse-

compression method is best for a particular application. For example, the computational time for

the chirp-scan algorithm can be the limiting factor instead of laser time. In this case, CRT or

SPEAR seem the best choices, keeping the laser time down while minimizing the computational

time. On the other hand, for low-repetition-rate systems chirp-scan is likely optimal. For pulses

with spectral ‘holes,’ MIIPS, CRT, and SPEAR may be problematic because the relative group

delay between the two sides of the hole is unmeasurable. High-energy pulses do not have a sen-

sitivity concern and so large numbers of laser shots are unnecessary. In this case CRT might be

the most convenient method, being the simplest of the methods allowing for only two pulse-shapes

(and therefore only two laser shots). There are many other cases not tested here, that may have

special requirements: extremely strong phase modulations might make FROG or chirp-scan the

best options, since all of the methods except FROG and chirp-scan get dramatically slower with

more complex pulses. Octave-spanning pulses may present additional difficulties, since the funda-

mental and second harmonics spectrally overlap. Also, the present study did not address the issue

of pulse-shaper spectral resolution: low-resolution and/or pixelated shapers might not be able to

create the pulse-shapes required by some of these methods. For example, Comin et al. [37] re-

port MIIPS exhibiting phase-wrapping problems when used with high spectral resolution like the

present study. Therefore in cases with low-resolution pulse-shapers chirp-scan may be the best

option because it uses small applied phase functions. Further, the present study did not address

several more considerations: laser noise, pixel-to-pixel variations in detector quantum efficiency,

detector 1/f noise, detector dark current and associated shot noise, spectrometer-coupling noise,

nonlinearities in pulse-shaper response, spatio-temporal coupling from the pulse-shaper, pulse-

shaper misalignment, and imperfect calibration of the pulse-shaper.

I observe three trends across methods. First, FROG and chirp-scan perform equally well with
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both simple and complex pulses; the other methods get much slower with increasing complexity.

Second, methods requiring both phase and amplitude shaping (SPIDER, MIIPS-S, and FROG) on

average performed worse than methods requiring only phase shaping (MIIPS, CRT, SPEAR, and

chirp-scan). This is reasonable because the amplitude-shaped methods necessarily discard some of

the laser power, decreasing the signal strength. Finally, methods with weak applied phases (low-

resolution MIIPS, CRT, SPEAR, and chirp-scan) perform better than methods with strong applied

phases (SPIDER, high-resolution MIIPS, MIIPS-S, and FROG), probably because strong applied

phases decrease the nonlinear signal strength.

6.6 Conclusions

Following investigation of the speed of several pulse-shaper-only techniques, a wide variety of

performance was observed in several typical simulated cases. Chirp-scan consistently required the

smallest amount of laser time to achieve a femtosecond of RMS error by far, and required less than

a minute of computation time. CRT and SPEAR also required small amounts of laser time and

negligible amounts of computation time. The other methods were generally slower.

The new method SPEAR has proven to be a reliable pulse-compression technique. It is accurate

and fast in terms of measurement and computation time. It can be a drop-in replacement for

MIIPS because it has the same experimental requirements, so it could be useful to a wide variety

of researchers using pulse-shapers since it automates the pulse-compression. It especially has an

advantage when the spectral phase drifts over time, due to the improved speed. Even in the absence

of drift, the improved speed of compression can be very convenient.
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Chapter 7

Conclusions

This dissertation describes several innovations and scientific advances. In order to improve the

signal-to-noise ratio of very weak TRSHG signals from organic photovoltaics, in Chapter 2 we

developed a new version of it employing optical heterodyne detection. The new setup is much

less sensitive to stray light and read noise than our initial non-interferometric implementation.

The fully-linear interferometer is easy to use and align, and is very phase-stable. The heterodyne

detection also measures both the amplitude and phase of the SHG; Chapter 4 exploits this to

remove a background signal. The collinear geometry aids time resolution: non-collinear nonlinear

spectroscopies have a spatial variation in the time delay between pump and probe, leading to a

temporal smear that harms time resolution. The lack of temporal smear in the collinear geometry

permits the use of very large laser spot sizes, enhancing signal strength in our typical constrained-

laser-fluence experimental situation.

Chapter 3 progressed to measuring charge transfer in organic photovoltaic films using the

TRSHG method. We measured a∼0.1 ps−1 charge transfer rate for a SubPc / C60 bilayer film, and

compared it to theoretical calculations of the rate. We used a fully quantum mechanical theoretical

framework based on Fermi’s golden rule. Two different optimized SubPc / C60 configurations were

used in the calculations, but in real devices it is likely that a wide variety of SubPc / C60 config-

urations are present due to SubPc’s irregular shape. Therefore our theoretical calculations were

expected to be an upper bound for the experimentally-measured rate, as was observed. Our frame-

work for comparing theory to experiment will continue to be useful for any future work employing
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more realistic SubPc / C60 geometries.

In Chapter 4 we continued our TRSHG measurements on a DBP / C70 bulk heterojunction.

This heterojunction boasts impressive conversion efficiency [1, 2] but has a surprising concentra-

tion dependence. Specifically, only one part DBP to eight parts C70 yields the best performance.

We therefore investigated ultrafast charge dynamics as a function of concentration. We came to

several interesting conclusions. In particular, it appears that photoexcitation is followed by a rela-

tively fast initial charge separation event where the electron and hole separate by several nanome-

ters, measured along the direction of the external electric field. After the initial charge separation,

they separate much more slowly. Our best explanation for this effect is that the electrons are quite

mobile within the C70 crystallites but take some time to hop from crystallite to crystallite. Surpris-

ingly, the kinetics of this initial separation followed a 1/(1 + kt) simplified power law, suggesting

an exponential size distribution of the crystallites. This crystallite-based explanation of our data

dovetails nicely with perhaps our most important observation. Specifically, larger concentrations

of C70 enable longer separations between electron and hole during the initial charge separation—

and the separation happens faster. Certainly the C70 crystallite size should increase with larger

C70 concentration, promoting longer separations; perhaps the crystallinity also increases, elevat-

ing within-crystallite mobility and thus the rate. This farther, faster effect may promote charge

separation and suppress polaron pair recombination, enhancing device performance.

Moving on to ultrafast pulse measurements, in Chapter 5 I describe a new FROG technique em-

ploying only a pulse shaper, using fewer pulse shapes than previous pulse-shaper-only techniques

that yield a straightforward SHG-FROG trace. This enables more rapid acquisition of such traces,

reducing the influence of laser noise and increasing productivity. A FROG measurement—because

it is a very direct measure of pulse duration—helps ensure effects like pulse front tilt, spatial chirp,

and phase noise are negligible. In Chapter 6 I describe a new pulse measurement technique named

SPEAR that enables a particularly fast and direct measure of the spectral phase of an ultrafast

pulse. In our experience, this method is much more precise and repeatable than FROG measure-

ments for real-world use. It is also much faster than the MIIPS method we’d contemplated. Once
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SPEAR was introduced, pulse compression to <15 fs became routine in the Ogilvie group. I then

became very interested in which methods perform the best in general, so Chapter 6 also presents

an extensive computer simulation comparing the signal-to-noise of several pulse-shaper-only pulse

measurement techniques. The simulation included shot noise and read noise, but not laser noise.

The performance disparity between methods was surprisingly large: methods differ by several or-

ders of magnitude. The best-performing methods—chirp reversal technique (CRT), SPEAR, and

chirp scan—are all quite new. I hope that many researchers will change their pulse measurement

methods from commonly-used older methods such as MIIPS or SPIDER to these newer meth-

ods. This will enable them to reduce the amount of time they spend on pulse measurement and

compression.

There are many possibilities for future research extending this work. The TRSHG experiment

itself can be extended in several useful ways. Phasing the data is one possibility; at present only

relative changes in SHG phase are measured but absolute knowledge of the SHG phase could en-

hance comparisons to microscopic models of SHG generation. I am particularly excited about

another possibility, using broadband probe pulses for TRSHG, since different spectral regions

could have different resonances with different kinds of charge transfer states. This TRSHG variant

would have two measurement axes: a time axis T and a detection frequency ω. I hope it will per-

form much like transient absorption spectroscopy, where tracking multiple kinds of states at once

is a key ability. My coworker Andrew Niedringhaus is already planning out such an experiment. It

would be very straightforward to combine the pump wavelength tuning approach of Chapter 4 with

the broadband probe, yielding a measurement with a pump frequency axis ω1, a probe detection

frequency axis ω3, and a time axis T . This would be very analogous to two-dimensional electronic

spectroscopy (2DES) [3–6], but would have the distinct advantage of probing charge transfer. For

better time resolution, it would be straightforward to instead use two broadband pump pulses with a

time-delay t1 between them; the pump frequency axis would be obtained by Fourier transforming

over the t1 axis as in Fourier-transform 2DES. Phase cycling translates perfectly from Fourier-

transform 2DES to this Fourier-transform TRSHG. I’ve already done a preliminary demonstration
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of this [7]; Andrew is planning to continue that work.

Having developed heterodyne-detected TRSHG, there are many further possibilities for re-

search on organic photovoltaics. It is interesting that copper pthalocyanine / C60, a seemingly-

similar system to our SubPc / C60 one, yields charge transfer times two orders of magnitude faster,

>10 ps−1 [8, 9]. A survey of what kinds of (sub)phthalocyanine / fullerene heterojunctions pro-

duce what kinds of charge transfer rates might yield a predictive semi-empirical or even fully

ab-initio law relating molecules to charge transfer rates. This could greatly improve understand-

ing of devices. As mentioned above, a careful structural characterization of interfaces could be

key here. Meanwhile, a survey of high-performance organic photovoltaics would also be interest-

ing; for example the Forrest group has mentioned ‘push-pull’ molecules that yield especially good

performance—even better than DBP—and TRSHG could give insights into why they perform so

well. Measuring polaron-pair recombination rates could also be useful for device researchers,

since it is a major loss mechanism. Measuring the recombination rates would require a much

larger experimental temporal range—nanoseconds to microseconds—but it would be feasible at

the recently-funded Laboratory for Ultrafast Multidimensional Optical Spectroscopy (LUMOS) at

the University of Michigan.

Some recent high-profile work [10, 11] has suggested that charge transfer in organic photo-

voltaics may be enhanced vibronically. While suggestive, these experiments were not conclusive

and further work must be done to establish this claim. Since they used visible probe pulses, I

am concerned there may be other signals in addition to the charge transfer ones, contaminating

their results. I can see a few different experiments that could settle the question more fully. A

2DES experiment with a NIR probe would be more believable, since there are fewer signals in the

NIR besides the charge-transfer ones. A suitably short (<7 fs) 700–900 nm probe pulse can be

generated using a degenerate optical parametric amplifier (DOPA) [12]; Andrew Niedringhaus has

already made us one so this experiment would be straightforward. TRSHG would be even more

believable, being an even more direct measure of charge transfer than a NIR absorptive probe.

To achieve the needed time resolution, the Fourier-transform version of TRSHG with broadband,
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very short, pump and probe pulses is probably necessary. Finally, a coherent control experiment,

where the pump pulse is phase-shaped to drive a vibrational mode [13], could provide very direct

evidence of vibronic enhancement of charge transfer. This could work well with either a NIR

absorptive or a SHG probe.

Many other systems would be interesting to study via TRSHG. Dye-sensitized solar cells

are an obvious candidate, as are hybrid organic / inorganic solar cells based on organometal halide

perovskites [14]. Biological photosynthetic complexes such as Photosystem II—the water-splitting

complex in plants and cyanobacteria [15]—could be particularly interesting, since the charge trans-

port pathway is complex. Some difficulties would first need to be overcome; these complexes are

large proteins with a single reaction center that separates the charges, and the proteins usually

reside in solution. This presents two difficulties: first, to achieve appreciable optical density the

sample will need to be many microns thick—making the sample much thicker than an optical

wavelength, in contrast to organic photovoltaic films which are only tens of nanometers thick.

This means that phase matching may be an issue, since the phase velocities of the probe and signal

frequencies differ. I estimate the sample thickness would need to be kept to .10 microns, which

would require very high concentration. However, such high concentrations have been reported

[16]. Second, as the charges move, the average electric field will change very little, since the car-

rier number density is necessarily low. However, the fields next to the carriers will be much higher.

Chlorophylls and pheophytins are important components of the charge transport pathway, and so

their electric fields are likely to be high as the charges separate. They have a large absorption com-

ponent at∼650 nm, and so a∼1400 nm probe wavelength would yield a signal at∼700 nm, which

is quasi-resonant with those absorptions. The nonlinear susceptibility χ(3) of the chlorophylls and

pheophytins would likely be increased by orders of magnitude, due to the resonant enhancement,

and so the signal from their electric fields would be enhanced relative to the bulk signal from the

average electric field in the sample.

It is difficult to predict how pulse measurement methods will evolve; FROG methods espe-

cially are very mature and so any future improvements are likely to be incremental. It is possible
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that a totally new time-domain method could arise; I observe in Chapter 6 that phase-only meth-

ods generally work better than amplitude-and-phase methods. Therefore while traditional FROG

pulse shapes are of the form S(ω, τ) = [1 + exp(−iωτ)] /2, a phase-only pulse shape of the form

S(ω, τ) = exp [−i sin((ω − ω0)τ)] might provide time-domain information with better signal-to-

noise. It wouldn’t need to be phase-cycled and may therefore have multiple practical advantages

over the FROG method described. More generally, the field of optimal pulse measurement meth-

ods is quite young, so there are innumerable possibilities for optimizing pulse measurement. Many

people use pulse measurement techniques that are not based on a pulse shaper, so we could investi-

gate which no-pulse-shaper methods perform best. Alternatively, while Chapter 6 compares several

existing methods, we could investigate which method performs best in a global sense, out of the

set of all possible pulse-measurement methods. Such an investigation would likely be based on

information theory; I’ve already done some preliminary work in this area. Laser noise and other

non-idealities are other important considerations for future research: how do different methods

perform in the presence of these non-idealities? Are certain methods particularly sensitive or in-

sensitive to them? Extremely large bandwidths such as octave-spanning pulses cause problems for

the methods analyzed in Chapter 6 because the fundamental and second harmonic pulses overlap

spectrally; how can we accurately measure such large bandwidths using a pulse shaper? One pos-

sibility would be a collinear geometry based on cross-polarized wave generation, which has no

bandwidth restrictions and which phase-matches very well.
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APPENDIX A

Supporting Information: Ultrafast charge-transfer

dynamics at the boron subphthalocyanine chloride /

C60 heterojunction: Comparison between

experiment and theory

This appendix contains supporting information with respect to Chapter 3, which studied the SubPc /

C60 charge transfer process. I include additional experimental details, a discussion of laser fluence,

and a description of the principal projection used in Chapter 3.

A.1 Additional experimental details

For the TRSHG experiments, a titanium-doped sapphire oscillator (Spectra-Physics® Mai Tai® SP)

seeded a regenerative amplifier (Spectra-Physics® Spitfire® Pro) yielding 4 mJ, ∼40 fs pulses cen-

tered at 800 nm at 500 Hz. A portion of this beam formed the probe pulse. Another portion powered

a home-built double-pass noncollinear optical parametric amplifier (NOPA) [1] forming the pump

pulse, which for this experiment was tuned to 580 nm. A motorized delay stage controlled the

relative time-delay between the pump and the probe pulses. The pulses interacted collinearly at the

sample, with the sample oriented at 45 degrees. The beams were approximately 1 cm in diameter,

which allowed for appreciable signal generation while maintaining the very low laser fluences re-
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Figure A.1: Measured and fitted p-polarized hTRSHG data, showing the SHG amplitude and phase
as a function of the time-delay t between pump and probe pulses. Amplitudes and phases are
measured relative to the SHG before time zero. Green dots, measured data. Blue line, fitted single-
exponential curve.

quired by these samples, as discussed later on. After the sample, the second-harmonic signal was

linearly mixed with a reference field or local oscillator (LO) in order to perform heterodyne de-

tection. The signal and LO were dispersed with a spectrometer (Horiba Jobin-Yvon iHR-320) and

detected with a CCD (Princeton Instruments PIXIS-100B). The time resolution of this experiment

was ∼200 fs as measured by a second-order cross-correlation between the pump and probe in a

10 µm thick beta barium borate (BBO) crystal placed at the sample position. This time resolution

could easily be improved by compressing the pump pulse, but that was not done here to avoid com-

pressor losses. The observed dynamics were much slower than the time resolution. Each TRSHG

trace with a single probe polarization took about half an hour, with ten seconds of data averaging

for each of 150 time-points. The time-points were spaced hyperbolically (following a hyperbolic

sine function) so more points were close to time-zero than far from time-zero.

Three types of samples were prepared on an ultra-smooth c-cut sapphire wafer (Precision

Micro-Optics LLC): a 3 nm film of SubPc capped by 20 nm of C60, a neat 20 nm film of C60, and

a neat 3 nm film of SubPc. Films were deposited onto room-temperature substrates using vacuum

thermal evaporation at a pressure below 5× 10−7 Torr and at deposition rates of 1 Å/s and 0.5 Å/s

for C60 and SubPc, respectively. Samples were encapsulated under a pure nitrogen atmosphere
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Figure A.2: Measured and fitted high-fluence p-polarized hTRSHG data, showing the SHG ampli-
tude and phase as a function of the time-delay t between pump and probe pulses. Amplitudes and
phases are measured relative to the SHG before time zero. Green dots, measured data. Blue line,
fitted curve containing an exponential component (k ∼ 1 ps−1) and a linear component.

using a BK7 window and solvent-free UV-cured epoxy to prevent oxygen- and moisture-induced

degradation. The layer of SubPc was extremely thin (∼3 nm) to prevent exciton diffusion from

being a significant driver of the observed dynamics. I verified this by observing the same charge-

transfer rate in both a 1.5 nm SubPc film and a 3 nm SubPc film, each capped with C60.

For each trace, I measured a real and imaginary component to the signal at each time-point,

corresponding to its amplitude and phase. For the present experiment, I did not “phase” the data,

meaning there is an unknown phase between the measured signal and the second-order nonlinear

susceptibility χ(2), so only relative measured phases are meaningful rather than absolute phases.

While absolute phases should provide for more meaningful comparisons against microscopic mod-

els of the interface, relative phases still provide a second data-point at every measured time-point,

which aids in resolving the dynamics. Figure A.1 shows representative data, where I plot the mea-

sured amplitude and phase of the SHG signal as a function of the time-delay t between the pump

and probe pulses, using a p-polarized probe pulse on a SubPC/C60 bilayer sample.
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A.2 Laser fluence

I found that very low laser fluences were necessary to avoid higher-order processes such as exciton-

exciton annihilation and laser-induced aging. For example, Figure A.2 shows a hTRSHG trace

taken with higher laser fluence (10 µJ/cm2 in the pump and 100 µJ/cm2 in the probe) showing

obviously-different dynamics as compared to the low-fluence data shown in Figure A.1. Figure A.2

shows both faster dynamics near time zero (k ∼ 1 ps−1) and slower dynamics far from time zero,

which I was not able to resolve with this experiment. I attribute the large slow component to the

formation of long-lived triplet states after exciton-exciton annihilation. That is, two nearby excited

SubPc molecules can undergo exciton-exciton annihilation via a variety of spin-allowed processes:

S1 + S1 → S2 + S0 → S1 + S0, S1 + S1 → T1 + T1, or even S1 + S1 → T2 + T1 → T1 + T1

depending on what the energy levels are. The triplet state T1 is presumed to be long-lived; my

experiments seem to indicate on the order of milliseconds. It is evident from Figure A.2 that the

magnitude of the two-photon cross section associated with the triplet state(s) is very large, since

the slowly-growing-in signal is so large and shows no signs of stopping within the range of this

experiment. The faster dynamics near time zero also has the opposite sign of phase-change when

compared to the low-fluence data, as seen in Figure A.1 compared to Figure A.2. The fast kinetics

are therefore likely to be due to a fundamentally-different process than the low-fluence processes;

I attribute the fast kinetics to absorption events starting from a pre-existing population of triplet

states: T1 + hν → T2.

As I decreased the laser fluence, the faster and slower kinetic components decreased, and could

not be detected at the final pump fluence of 2 µJ/cm2. I likewise reduced the probe fluence to

50 µJ/cm2 to eliminate laser-induced aging in the film, as determined by the kinetics staying the

same over multiple repetitions of the experiment in the same spot on the sample.

124



A.3 Description of the principal projection

I best-fit the data using a single-exponential model, with the same rate k for both polarizations:

Si(t) = Ai +Bi θ(t) [1− exp(−kt)] . (A.1)

Here, Si(t) represents the measured complex hTRSHG signal as a function of polarization i and

pump-probe relative time delay t. Ai represents the ground-state signal (t < 0) and Bi represents

the change in SHG due to the presence of the pump, in the limit of large t. Both Ai and Bi are

complex and depend on the polarization i. θ(t) is the Heaviside step function. k is the (real) rate

constant of the process, and does not depend on polarization. The unknowns in the fit were Ai,

Bi, and k. The measured data and their fits are plotted using the principal projection P of the data

onto the ~A– ~B line—essentially, the first principal component of the data—where ~A and ~B are the

four-component vectors

~A =



Re {A1}

Im {A1}

Re {A2}

Im {A2}


, ~B =



Re {B1}

Im {B1}

Re {B2}

Im {B2}


.

Mathematically, what is plotted is P(t) = B̂ · (~S(t)− ~A)/‖ ~B‖ where ‖ · ‖ is the Euclidean norm

and B̂ = ~B/‖ ~B‖ is the normalized (unit) vector. This projection starts at 0 before time-zero, and

converges to 1 in the limit of large pump-probe time-delay. I found that this projection captured

the majority of the information in the data; the data-components orthogonal to this projection were

dominated by noise.
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APPENDIX B

Choice of chirp-scanning range for the SPEAR

method

In the SPEAR method, the numbers φ(i)
2 define the applied pulse-shapes used to measure the spec-

tral phase. They should be chosen so that the second derivative of the total phase ϕ′′(ω) + φ
(i)
2 is

far from zero over the whole spectral range. In the case where the pulse is close to compressed,

then |φ2| � τ 2
TL is usually a good choice, where τTL is the compressed (transform-limit) pulse

duration. In many situations, a simple scan of quadratic phase makes the pulse at least roughly

compressed so this condition is relatively easy to meet. However, if the higher-order phase terms

are particularly strong then some experimentation may be necessary to get φ(i)
2 right. I often have

∼ 12 to ∼ 30 fs pulses, and to compress them I typically use two or four values of φ2, on the order

of ±2τ 2
TL, after doing a coarse compression. I find in practice that this is sufficiently larger than

τ 2
TL for most cases.

More generally, the magnitude of φ2 defines a spectral resolution because in a time-frequency

picture only a bandwidth of order 1/
√
|φ2| will be available for sum-frequency-generation at any

point in time. In many experimental situations, only the second- and third-order spectral phase

functions are appreciable, and so relatively low spectral resolution compared to the spectral band-

width is required and therefore relatively small values of φ2 are needed as compared to τ 2
TL. In other

situations that exhibit significant ripple in the group-delay dispersion (in the presence of chirped

mirrors, for example), a higher amount of spectral resolution may be required, so that φ2 is dictated

by the spectral bandwidth between ripples rather than the spectral bandwidth of the pulse.
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APPENDIX C

Details of the computational simulation comparing

several pulse compression methods

For the computer simulation used in Chapter 6, the action of a pulse-shaper was simulated by

multiplying the spectral field by a complex spectral filter with absolute value no greater than one.

To simulate second-harmonic-generation, the fields were Fourier-transformed to the time domain,

squared, Fourier-transformed back into the frequency domain, and multiplied by a spectral filter

to take into account the finite phasematching bandwidth of a 10 micron BBO as pictured in Figure

C.1. There were then losses from mirrors, the spectrometer slit, the 600 groove/mm spectrom-

eter grating, and the finite quantum efficiency of the CCD. There was spectrometer blurring to

approximate a 50-micron slit, and discretization onto a 1340-pixel CCD with 20-micron pixels to

approximate the experimental camera. Shot noise and read noise (11 photoelectron standard de-

viation) were added, again approximating the experimental camera. For comparison, the intensity

of a transform-limited pulse’s SHG was about 1400 photoelectrons at the peak. Since the camera

detects linearly in wavelength, the noisy data were resampled back into the frequency domain,

taking into account the varying frequency width of the pixels. The resulting data were analyzed

using the published methods, with the exception of the FROG data and the chirp-scan data which

were analyzed using an algorithm described below.

To compute the spectral filter associated with the finite phasematching bandwidth of a 10 mi-
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Figure C.1: Intensity of the spectral filter associated with the finite phasematching bandwidth of a
10-micron-thickness BBO crystal, cut at 42 degrees. The cut angle was chosen to ensure there was
appreciable amplitude over the full second-harmonic laser bandwidth.

cron BBO, I started with the nonlinear wave equation:

∂2

∂x2
E− n2

c2

∂2

∂t2
E =

χ(2)

c2

∂2

∂t2
E2. (C.1)

Using peturbation theory, I assumed the second-harmonic light is small and does not affect the

first-harmonic light, and the first-harmonic light propagates essentially linearly, and the light only

propagates in the x-direction defined as normal to the BBO, yielding separate wave equations

for the first-harmonic and second-harmonic. Assuming pure polarization of both first and second

harmonics leads to a scalar form of these equations:

∂2

∂x2
E1st −

n2

c2

∂2

∂t2
E1st = 0; (C.2)

∂2

∂x2
E2nd −

n2

c2

∂2

∂t2
E2nd =

χ(2)

c2

∂2

∂t2
E2

1st. (C.3)

The simulation represented fields F in units of
√

nJ/fs in the time domain, with a separate spot

size σ so

E (x, y, z, t) = F (x, t)
1√
2πσ

exp

(
−y

2 + z2

4σ2

)
. (C.4)

Since the BBO is only 10 microns thick, there is negligible group-velocity dispersion of the first-

harmonic, leading to the following solution of the wave equations, transforming first-harmonic F
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to second-harmonic F :

F2nd (x, ω) =

χ(2)ω

4n (ω) c

1√
2πσ

exp
(
−iT

(
−k (ω) + ω/vg − 2ω2

0
dn
dω

∣∣
ω0
/c
))
− 1(

−k (ω) + ω/vg − 2ω2
0
dn
dω

∣∣
ω0
/c
) ∫

dt e−iωtF 2
1st (t) (C.5)

This defined the spectral filter associated with a 10-micron-thick BBO, pictured in Figure C.1.

Here, T is the BBO thickness, ω0 is the central frequency of the first-harmonic light, vg is the

group velocity of the first-harmonic light, ω is the second-harmonic frequency, n(ω) is the index

of refraction of the second-harmonic light, dn
dω

∣∣
ω0

is the derivative of the index of refraction of the

first-harmonic light, evaluated at ω0, and k(ω) is ωn(ω)/c, the angular wavenumber corresponding

to the frequency ω. χ(2) is represented in units of nm/
√

nJ/fs. According to Shoji et al. [1], the

effective nonlinearity in the phase-matched direction for 650 nm light in BBO is approximately

deff = 2 pm/V, which after change of units is 40 nm/
√

nJ/fs.

The FROG and chirp-scan data were analyzed using a general direct-fitting algorithm that

minimized a weighted least-squares objective function L.

L =

∫
dω
∑
i

R2
i,weighted (ω) (C.6)

Ri,weighted (ω) =
1

n
(i)
estimate (ω)

[
I

(i)
measured (ω)− Vi (ω)

]
(C.7)

Vi (ω) = Ui (ω)U∗i (ω) (C.8)

Ui (ω) = Ft→ω
{
T 2
i (t)

}
(C.9)

Ti (t) = F−1
ω→t {Si (ω)E (ω)} (C.10)

Here, R2
i,weighted (ω) is a residual comparing the measured data I(i)

measured (ω) to the computed result

Vi (ω), weighted by an estimate of the noise n(i)
estimate (ω) (both read noise and shot noise). The

unknown spectral filter imposed by the BBO was ignored, but that did not significantly affect

130



the accuracy of reconstruction. Vi(ω) is the second-harmonic spectral intensity of pulse-shape i.

Ui(ω) is the second-harmonic spectral field of pulse-shape i. Ti is the time-domain of pulse-shape

i. Si(ω) is the known complex spectral filter (amplitude and phase) imposed by the pulse-shaper.

E(ω) is the current estimate of the complex field to be measured. The free parameters are the

values E(ω). It is straightforward to analytically differentiate this objective function with respect

to the unknowns; this speeds the minimization.

The actual minimization of the objective function was performed using the L-BFGS-B algo-

rithm [2] implemented in the open-source scipy.optimize module [3]. The starting points

for minimization were random pulses, roughly localized in both time and frequency. I did not use

CRT or SPEAR to provide starting points to the minimization algorithm for chirp-scan because

none of the applied chirps were far-field. The minimization was performed from multiple initial

guesses to ensure convergence to the global minimum. The minimization was performed in two

stages: first the above objective function was minimized, and that provided the initial guess to

a slightly different objective function that allowed for an unknown Gaussian spectral filter, as a

coarse approximation to the BBO’s SHG efficiency curve. Once the nonlinear minimizer found

the least-squares estimate of E(ω), the spectral phase of this field was smoothed and then differ-

entiated to yield spectral group-delay.
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