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ABSTRACT 

 

DNA double strand breaks (DSBs) pose a serious threat to cellular and organism well-being. In 

response to DSBs, MRE11/RAD50/NBS1 (MRN) initiates DNA repair and facilitates signaling 

via ataxia-telangiectasia mutated (ATM) and ataxia-telangiectasia- and rad3-related (ATR) 

kinases. Though alteration of any one of several MRE11 protein interaction partners contributes 

to human genetic disease and/or carcinogenesis, the role MRE11A mutation plays in these 

processes remains unclear. I have set out to clarify this role with potential implications in cancer 

prevention, prognostication, and treatment. 

I studied four human disease-associated MRE11 mutants. Mutants had altered phosphodiesterase 

domain (MRE11 W243R (ATLD17) and MRE11 Del340-366 (ASM)), glycine-arginine-rich 

(GAR) motif (MRE11 R572Q (GRM)), or cyclin-dependent kinase (CDK) 2-interacting motif 

(MRE11 R633X (ATLD1)). Murine versions of the mutants were expressed to physiologic 

MRE11 levels in murine embryonic fibroblasts, and conditional deletion abolished wild-type 

MRE11 expression. In this context, I assessed the mutant proteins’ abilities to facilitate DSB 

response (DSBR) signaling. 

Each cancer-associated mutant had distinct effects on ionizing radiation (IR)-induced DSBR. 

ATLD17, ASM, and GRM were defective in facilitating ATM, ATM and ATR, and ATR 

activity, respectively. Only the impact of ASM obviously disabled the G2/M checkpoint. No 

defect in ATLD1-facilitated kinase activity was detected. Whereas ATLD17- and ASM-

associated deficits appeared to be attributable to varying disruptions in the MRN complex, no 

such disruptions were evident with GRM or ATLD1.  

MRE11 functional roles clarified include those of the phosphodiesterase domain and 

homodimerization motif in ATM activation and those of the MRE11 GAR and CDK2-interacting 

motifs in DSBR signaling. Physiologic MRE11 levels were found to be crucial for optimal 

DSBR signaling. Because our findings concern the influences of MRE11 protein levels, protein 

folding, protein-protein interactions, and post-translational modifications on fundamental cellular 

processes, these findings may broadly inform understanding of MRE11 and protein complexes 

containing MRE11 in normal and disease states.
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CHAPTER 1: INTRODUCTION 

 

1.1: Damage happens  

DNA damage is commonplace; each human cell sustains on the order of 10
4
-10

6
 lesions per day, 

yet cellular and organism viability rely upon maintenance of genomic integrity for survival and 

reproduction [1]. Damage can arise from endogenous processes. DNA is subject to nonenzymatic 

alkylation, or DNA can undergo uncatalyzed hydrolytic production of deaminated bases or 

abasic sites [2-6]. Cellular respiration gives rise to an abundance of intracellular reactive oxygen 

species (ROS) [7]. Some ROS invariably make it to the DNA and cause damage. ROS - along 

with nitrogen species - are made even more abundant during inflammation [8]. Additionally, 

DNA is damage-prone during replication. In part because ribonucleotides are far more prevalent 

than deoxyribonucleotides – even during DNA replication, ribonucleotides are often 

misincorporated [9]. This constitutes by far the most common cause of endogenous nucleotide 

base lesion in proliferating cells. After being incorporated, ribonucleotides are more susceptible 

than their deoxy counterparts to undergoing hydrolysis to produce SSBs [10]. Additionally, 

deoxyribonucleotides can be misincorporated during replication, resulting in base mismatches 

[11]. Replication of highly repetitive regions of DNA can be problematic and - through processes 

such as polymerase slippage - can result in addition to or deletion of repetitive elements [12]. In 

addition, abortive topoisomerase activity can produce SSBs or DNA double strand breaks 

(DSBs) that require additional cell machinery to be fixed [13-16]. DNA damage can also be 

programmed. Lymphocyte development requires DNA breaks or alteration during V(D)J 

recombination, class-switch recombination, and somatic hypermutation [17]. Moreover, DNA 

breaks are required for crossing over during meiosis in gametes [18]. 

The genome is under constant assault from exogenous agents. Ultraviolet radiation (UV) is 

ubiquitous and is capable of producing 10
5
 lesions per exposed cell per hour [19]. UV light 

produces cyclobutane dimers and pyrimidine-(6-4)-pyrimidone photoproducts [20]. Exposure to 



 

2 
 

chemicals, such as those in tobacco products, heterocyclic amines in over-cooked meats, and 

aflatoxins in moldy food, can result in DNA adduct formation [21]. Infectious agents often cause 

DNA damage indirectly through incitement of inflammation and replication stress as well as 

interference with DNA maintenance machinery, but they can also directly cause damage – e.g. 

via viral integration [22]. Iatrogenic DNA damage arises from use of cancer chemotherapeutic 

agents including alkylating agents, antimetabolites, and topoisomerase inhibitors [23-25]. 

Ionizing radiation (IR) is another exogenous cause of DNA damage. IR can arise from natural 

sources or iatrogenically. Naturally occurring radioisotopes can decay into radon, which 

accumulates in some basements and exposure to which has been associated with lung cancer 

[26]. Iatrogenic sources of IR include computed tomography scans, plain film X-rays, 

fluoroscopy, and nuclear medical imaging using 
123

I, 
99m

Tc, and 
18

F [27,28]. Though DSBs are 

not necessarily the most common type of damage caused by IR, DSBs are a particularly 

cytotoxic result of IR exposure [29]. Because of this trait, IR is often used therapeutically [30]. 

131
I is use to treat benign and malignant thyroid diseases. Common cancer treatments include 

photon therapy and brachytherapy using 
137

Cs, 
60

Co, 
192

Ir, 
125

I, 
103

Pd, or 
106

Ru. Finally, nuclear 

weapons use at Hiroshima, Nagasaki, and test sites around the world and nuclear meltdowns the 

likes of Chernobyl and Fukushima serve as tangible if somber reminders of the damaging powers 

of ionizing radiation. 

 

1.2: The DNA damage response (DDR) 

The DNA damage response (DDR) encompasses DNA lesion detection, signaling of lesion 

presence, and mediation of DNA repair.  

DNA repair, overview 

To deal with the myriad DNA lesions, cells have evolved a diverse array of complementary and 

sometimes overlapping DNA repair pathways. O
6
-alkyguanines undergo direct reversal, i.e. 

dealkylation [31]. The mismatch repair machinery detects DNA mismatches and 

insertion/deletion loops and performs nicking of a single strand; the mismatch is subsequently 

resolved by nuclease, polymerase, and ligase activities [32]. Abnormal DNA bases and simple 
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base adducts may be handled by base excision repair (BER) which begins with glycolytic base 

removal followed by nuclease, polymerase, and ligase activities [33]. Single strand breaks – such 

as those which might occur with backbone hydrolysis following ribonucleotide misincorporation, 

oxidative damage, and abortive topoisomerase I activity commonly feed into the BER pathways. 

Helix-distorting base lesions, e.g. bulky base adducts and UV photoproducts, undergo nucleotide 

excision repair (NER) [34]. Difficulty transcribing across lesions can result in transcription-

coupled NER. A global NER pathway also exists. In either case, nucleolytic activity results in 

excision of 22-30 bases which is followed by polymerase and ligase activity. Replication fork 

blockage can be bypassed by translesion synthesis polymerases [35].  

Double strand break (DSB) repair occurs by one of two types of mechanisms: non-homologous 

end-joining (NHEJ) and homology-directed repair (HDR) (Figure 1) [36,37]. Classical NHEJ (C-

NHEJ) involves detection by the highly abundant KU70/80 complex, signal transduction by 

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) activation and activity, Artemis 

nuclease, X-ray repair cross-complimenting protein (XRCC) 4, ligase (LIG) 4, and XRCC4-like 

factor (XLF). KU70/80 and XRCC4/LIG4 are considered the NHEJ core and are sufficient for 

blunt end ligation. DNA-PKcs and Artemis are responsible for processing non-blunt ends prior to 

ligation. Unlike C-NHEJ, alternative end-joining (A-EJ) remains poorly defined. Though no 

proteins have been identified as functioning exclusively in A-EJ, several proteins - including 

ADP-ribosyl transferases (ARTs, more commonly known as PARPs), meiotic recombination 

(MRE) 11, C-terminal binding protein-interacting protein (CTIP), Werner syndrome helicase 

(WRN), LIG1, and LIG3 - have been implicated in A-EJ. C-NHEJ and A-EJ – but especially the 

latter - are considered error-prone. NHEJ can occur during any phase of the cell cycle but 

especially predominates during G1/G0, and C-NHEJ is relatively fast and efficient. Consequently, 

C-NHEJ is the predominate means of general DSB repair in mammalian cells. V(D)J 

rearrangements and class-switch recombination (CSR) are also catalyzed by C-NHEJ and C-

NHEJ or A-EJ, respectively [38]. 

Homology-directed repair includes homologous recombination (HR) [37]. For HR, a complex of 

MRE11, RAD50, and Nijmegen breakage syndrome (NBS) 1 (MRN) and CTIP promote 

resection to yield ssDNA intermediates. RAD51, breast and ovarian cancer susceptibility protein 

(BRCA) 1, and BRCA2 are involved in invasion of the resulting 3ʹ-ssDNA into the homologous 
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sister chromatid sequence. Polymerases, nucleases, helicases, and ligase all subsequently 

cooperate in substrate resolution and ligation. HR results in high-fidelity repair. HR is restricted 

to S and G2 phases of the cell cycle, when a sister chromatid is present; during that time, HR is 

the predominant general DSB repair pathway. Components of the HR machinery are also 

involved in DNA replication restart at stalled replication forks, resolution of inter-strand cross-

links, A-EJ, and meiotic recombination. 

 

Figure 1: DNA double strand break repair pathways, overview 

 

 

DNA damage response signaling, overview 

In addition to activating various DNA repair pathways, DNA breaks can activate apical 

phosphatidylinositol 3-kinase-related kinases: DNA-PKcs, ataxia-telangiectasia mutated (ATM), 

and/or ataxia telangiectasia- and rad3-related (ATR) (Figure 2) [39]. After DSBs are sensed by 

KU70/80 or MRN, DNA-PKcs or ATM is activated, respectively. DSB resection results in 

replication protein A (RPA)-coated ssDNA, ATR interacting protein (ATRIP) and ATR 

recruitment, and ATR activation [40,41]. Following activation, these kinases target proteins 

containing their (S/T)Q consensus sequence [42-44]. Amongst ATR and ATM targets are 
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checkpoint kinase (CHK) 1 and CHK2 which together regulate cyclin-dependent (CDK) kinase 

activity [45-48]. DNA damage-induced CDK inhibition results in delays at G1/S, intra-S, and 

G2/M checkpoints which allows cells more time to repair damaged DNA [49]. Apical kinases 

also activate DNA repair: They induce DNA repair protein activity either through transcriptional 

upregulation or post-translational modification, and they promote recruitment of factors for 

damage repair. Recent studies point to the vastness of the ATM and ATR kinomes, suggesting 

these kinases actually regulate many other cellular processes [44].  

Following successful repair, DDR signaling activates its own downregulation [50-54]. If damage 

persists, chronic DDR can often activate cellular senescence or apoptosis [55]. Erroneous DNA 

repair potentially results in a loss of cell functioning- including the ability to accurately repair 

future DNA lesions – and other oncogenic changes [56].  

 

Figure 2: DNA double-strand break response signaling, overview 
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1.3: The MRE11/RAD50/NBS1 (MRN) complex: A key regulator of double strand break 

response signaling and repair 

The MRN complex is a key mediator of the cellular DSB response (DSBR). MRN senses DSBs, 

activates the ATM and ATR apical kinases, mediates homology-directed repair during S and G2 

phases of the cell cycle and meiosis, promotes DSB resection, and serves a broader role in 

tethering DNA ends together [57].  

MRE11/RAD50/NBS1 structure 

MRE11 and RAD50 are highly conserved; orthologues are found in bacteriophages, eubacteria, 

archaea, and eukarya. NBS1 is part of a family limited to eukarya which includes Xrs2 in the 

budding yeast Saccharomyces cerevisiae [58]. 

MRE11 consists of an ordered and conserved N-terminal phosphodiesterase domain and a 

disordered and somewhat less conserved C-terminus (Figure 3A) [59]. The phosphodiesterase 

domain includes the nuclease or catalytic domain and the capping domain. The nuclease domain 

includes five nuclease motifs. These nuclease motifs contain residues responsible for 

coordination of 2 Mn
2+

 ions per nuclease active site. A mechanism of nucleolytic cleavage has 

been proposed based on archaea Pyrococcus furiosus Mre11-nucleotide structures [60-62]. The 

active site residues directly involved in Mn
2+

 coordination and transition state stabilization are 

conserved between archaea and humans, suggesting the same mechanism may be applicable to 

Homo sapiens MRE11 [59]. While one Mn
2+

 ion stabilizes the substrate DNA backbone, the 

other Mn
2+

 ion binds the hydroxide ion nucleophile. PfMre11 H85 (HsMRE11 H129) is 

presumed to be involved in stabilization of the pentacovalent transition state and proton donation 

to the 3ʹ-OH leaving group.  

The MRE11 nuclease domain is also involved in homodimer formation. Though many residues 

involved formation of the hydrophobic dimer interaction sites are conserved between eukarya 

and prokarya, the structures are otherwise divergent. The primary dimerization interface in 

prokaryotic Mre11 is a four-helix bundle [61,63,64]. In contrast, the primary dimerization 

interface of HsMRE11 consist of interaction of an extend α2-β3 latching loop – not found in 
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prokarya – and helices H2 and H3 of the opposite protomer [59]. Together this loop and these 

helices have extensive hydrophobic interactions, a water-mediate H-bond, and a disulfide bond. 

Another HsMRE11 dimerization interface occurs by packing of the β3-α3 loop of one protomer 

with the S4-S5 loop – which is much shorter than that found in prokaryotic Mre11 - of the 

opposite protomer.  

PfMre11 co-crystallization with synaptic and branched DNA structures revealed six binding 

loops in the PfMre11 phosphodiesterase domain, and DNA-interacting residues in five of these 

six loops are conserved between humans and P. furiosus [62]. However, when synaptic DNA 

was modeled onto HsMRE11, a much different DNA binding configuration was predicted [59]. 

Furthermore, branched DNA was sterically hindered from binding to HsMRE11 in a manner 

similar to that seen for PfMre11. These modeling studies, the increased compaction of the 

HsMRE11 phosphodiesterase domain, and the differences in homodimer configuration between 

PfMre11 and HsMRE11 together suggest that DNA binding modes are quite different for 

HsMRE11 and prokaryotic Mre11. The disordered mammalian MRE11 C-terminus includes a 

glycine-arginine-rich (GAR) motif – which has no equivalent in prokaryotic Mre11 – that has 

been implicated in DNA binding [65]. Other C-terminal motifs have also been implicated [66]. 

However, the nature of mammalian MRE11 DNA binding is otherwise poorly understood. 

The MRE11 C-terminus may also be involved in binding to RAD50. The prokaryotic Mre11 C-

terminus and capping domain are critical for interaction with the Rad50 coiled-coil and ATPase 

domains, respectively [63,67,68]. The Mre11 C-terminus forms a helix-loop-helix motif that fits 

orthogonally across the end of the Rad50 coiled-coil domain. Conservation of Mre11 C-terminal 

residues suggests the mammalian MRE11 C-terminus could be similarly involved though this 

interaction remains to be defined.  

In addition to potentially being involved in DNA and RAD50 binding, the MRE11 C-terminus 

may serve as a flexible tether to mediate other MRE11-protein interactions. MRE11 has been 

recently shown to interact with CDK2 and enable CDK2-mediate CTIP phosphorylation and 

activity [69].  

MRE11 and RAD50 form are able to form a heterotetrameric DNA binding and processing core 

[61,70]. RAD50 consists of an ATPase domain connected via a long coiled-coil domain to a 
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Zn
2+

-coordinating hook domain (Figure 3B) [71]. The hook domain can either contribute to 

RAD50 homodimerization within an M2R2 complex or interact with other M2R2 complexes to 

bridge DNA ends as far away as 1200Å [70,72]. The coiled-coil domains are involved in MRE11 

binding, DNA binding, and communication of hook domain and ATPase domain binding 

statuses across the complex. In addition to hydrolyzing ATP, the ATPase domain interacts with 

MRE11 and is the primary domain responsible for RAD50 homodimerization. 

NBS1 includes an N-terminal Forkhead homology (FHA) domain and tandem BRCA C-terminal 

(BRCT) domains (Figure 3C). These domains are responsible for interaction with DSBR 

phosphoproteins such as CTIP and mediator of DNA damage checkpoint (MDC) 1. Like 

MRE11, NBS1 has a disordered, flexible C-terminus. The NBS1 C-terminus includes an MRE11 

binding motif and an ATM binding motif. The fission yeast Schizosaccharomyces pombe Nbs1 

Mre11 binding motif has been shown to interact with the SpMre11 capping domain and latching 

loops [73]. This interaction is asymmetrical in nature with only one SpNbs1 molecule making 

contacts with the latching loops of both SpMre11 protomers. Disruption of the SpMre11 or 

HsMRE11 latching loops was found to compromise interaction with SpNbs1 or HsNBS1, 

respectively, consistent with the importance of the latching loops in MRE11-NBS1 interaction 

[59,73]. 
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Figure 3: MRE11, RAD50, and NBS1 structures 

 

 

MRE11/RAD50/NBS1 in DNA metabolism and repair 

MRN facilitates general DSB repair through enzymatic and architectural activities. MRE11 and 

MRN possess Mn
2+

-dependent 3ʹ-5ʹ exonuclease, ssDNA endonuclease, and hairpin opening 

activities in vitro [74,75]. Paradoxically, this nuclease activity is required for efficient 

completion of HR, which requires production of a 3ʹ tail for strand invasion [76]. MRN-CTIP 

nuclease activity appears to be involved in nicking DNA up to a few hundred bases away from 

DSBs and thereby provides sites for other nucleases, e.g. EXO1 or DNA2, to complete DNA 

resection and produce a 3ʹ tail [77,78]. Meanwhile, MRN is able to tether DNA ends over short 

or long distances so that they may eventually be rejoined [79]. Part of MRN’s usefulness in 
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initiation of DSB resection may lie in its ability to cleave 3ʹ adducts from DNA ends [80]. 

Hence, abortive topoisomerase II activity can be repaired with the help of MRN nuclease 

activity. MRN processing could also work to favor HR over C-NHEJ. DNA-PK favors binding 

to dsDNA ends, so DNA end processing could discourage DNA-PK binding and C-NHEJ. The 

functions of MRN in HR promotion are critical for cellular homeostasis. HR is critical during 

proliferation with HR defects resulting in impaired development and stem cell function [81]. 

Furthermore, accumulation of unrepaired DSBs is associated with cellular senescence or loss and 

aging [82]. 

MRN nuclease and tethering activities also appear to play roles in facilitating NHEJ. B cells 

expressing the nuclease-dead MRE11 H129N mutant were found to be defective in class switch 

recombination (CSR), an NHEJ process [38]. The loss of MRN further decreased CSR 

efficiency, consistent with MRN tethering of DSBs being important for general DSB repair. 

MRN mediation of class switch recombination and NBS1 and ATM promotion of V(D)J 

rearrangement collectively promote effective adaptive immunity. 

In addition to its role in general DSB repair, MRN participates in DSB prevention. MRN 

facilitates resection at stalled replication forks to prevent replication fork collapse [83]. Also, 

MRN is able to cleave 3ʹ-phosphotyrosyl bonds and thereby prevent abortive topoisomerase I 

activity from being encountered by a replication fork and becoming a DSB [84].  

Furthermore, MRN is involved in telomere homeostasis [85-87]. MRN binds to telomeres in S 

and G2 phases of the cell cycle where it could be involved in production of leading strand 3ʹ 

overhangs. With the assistance of other components of the HR machinery, these overhangs can 

subsequently be used to form t-loops. T-loop formation, in turn, prevents recognition of 

chromosome ends as DSBs. In this manner, MRN and ATM activity prevent NHEJ-mediated 

telomeric fusions. However, these proteins can also support neoplasia through mediation of HR-

based alternative lengthening of telomeres. 

DNA processing by MRN is also required in meiosis [88,89]. During initiation of crossing over, 

the topoisomerase II-like enzyme SPO11 creates DSBs and remains covalently attached to the 

DNA ends. MRN is required for SPO11 removal and production of ssDNA. The complete set of 

HR machinery, including ATM, participates in progression of HR during meiosis. Additionally, 



 

11 
 

evidence exists that suggests MRN tethering is required for SPO11-mediated DSB induction, 

reinforcing the importance of MRN tethering [90]. 

MRE11/RAD50/NBS1 in signaling 

MRN plays a crucial role in DSB signal transduction. MRN mediates ATM kinase recruitment to 

DSBs [91,92]. Upon ATM recruitment, ATM autophosphorylates, monomerizes, and is 

activated. ATM targets include the CHK2 kinase, the tumor suppressor p53, histone H2AX, 

MRN, CTIP, and KRAB-interacting protein (KAP) 1. MRN also indirectly activates ATR and 

CHK1 through its activities promoting DNA resection. These events and others combine to delay 

progression through the cell cycle, promote repair, and – if necessary – trigger senescence or 

apoptosis.  

The NBS1 C-terminus has been reported to be sufficient and necessary for ATM interaction; 

however, NBS1 lacking an MRE11 binding motif showed decreased interaction with ATM [40]. 

This observation is consistent with ATM relying upon multiple contacts with MRN for activation 

and activity. Furthermore, absence of an NBS1 C-terminus was associated with intact ionizing 

radiation (IR)-induced ATM autophosphorylation but deficiencies in IR-induced CHK2 and p53 

phosphorylation, abrogated γH2AX foci formation, radiosensitivity, and radioresistant DNA 

synthesis. Moreover, MR was sufficient for ATM interaction and activation in biochemical 

assays while the NBS1 N-terminus and MRE11 C-terminus appeared important for MRN-ATM 

interaction [91]. These observations are consistent with the NBS1 C-terminus being important 

for directing ATM activity towards certain substrates but not necessarily for ATM activation per 

se. Therefore, contacts between ATM and MRN sites other than the NBS1 C-terminal ATM 

interacting motif are required for ATM activation in cells. 

ATM activity is important for DNA damage-induced cell cycle checkpoint activation, 

senescence, and apoptosis. ATM can target and activate the CHK2 [46]. CHK2 phosphorylates 

the CDK phosphatase CDC25. This phosphatase is required for CDK-cyclin complex activity, 

and inhibitory phosphorylation of CDC25 prevents CDK-cyclin activity and cell cycle 

progression. ATM and CHK2 both target the tumor suppressor p53. P53 phosphorylation 

activates transcriptional programs specifying DNA repair and cell cycle arrest. Chronic DSBR 

signaling can prolong p53 activation and result in senescence or apoptosis [55,93,94]. 
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Another ATM target is the histone variant H2AX [95]. As a result, γH2AX is able to recruit 

mediator of DNA damage checkpoint (MDC) 1. MDC1 is able to recruit additional MRN and 

ATM thereby closing a positive feedback loop. MDC1-null cells have normal levels of ATM 

autophosphorylation but still display evidence of defective DSBR signaling suggesting that 

MDC1-mediated recruitment is required for appropriate directing of ATM activity [96]. MRN 

recruitment by MDC1 depends upon MDC1 phosphosite interaction with the NBS1 N-terminal 

FHA and BRCT domains [97], and disruption of the interaction results in checkpoint defects 

consistent with its importance in checkpoint activation [98]. 

One critical target of ATM signaling is MRN itself [44,99-105]. ATM mediates MRN 

phosphorylation and affects MRN localization, protein-protein interactions, and DNA repair 

function. ATM-dependent NBS1 phosphorylation is important for proper ATM targeting of 

SMC1 and CHK2, intra-S phase checkpoint activation, and radioresistance [105-109]. RAD50 

S635 phosphorylation dispensable for MRN complex formation and ATM activation but not 

ATM activity towards SMC1, radioresistance, DSB repair, and S phase checkpoint activation 

[110]. Though MRE11 is also an ATM substrate, the functional significance of this relationship 

has not yet been determined. 

ATM targeting of CTIP modulates DNA repair. CTIP participates in and has been proposed to 

modulate choice between HDR and A-EJ [111-114]. CTIP phosphorylation, levels, and complex 

formation with MRN and BRCA1 are controlled by CDK activity in a cell cycle-dependent 

manner (Figure 4) [115]. Following DNA damage in S or G2 phases, CTIP is phosphorylated in 

an ATM-dependent manner. Hyperphosphorylated CTIP promotes MRN-mediated DNA 

resection, BLM and EXO1 recruitment, checkpoint signaling, and homologous recombination 

[111,115]. Resected DNA is loaded with replication protein A (RPA). RPA-ssDNA recruits ATR 

along with its interacting protein ATRIP [40,41]. In this context ATR is activated. A critical 

target of ATR is checkpoint kinase (CHK) 1 [45,48,116,117]. ATR-mediated CHK1 S345 

phosphorylation is required for mitotic catastrophe avoidance and cellular viability. In fact, 

CHK1 S345A is unable to support cellular proliferation [117]. 
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Figure 4: DNA resection and repair is modulated by cell cycle- and ATM-controlled CTIP 

modification 

 

 

Condensed chromatin presents a major impediment to DNA repair. ATM acts to alleviate this 

issue through phosphorylation of the transcriptional corepressor KAP1 [118]. Under unstressed 

conditions, KAP1 activity promotes heterochromatin formation through autoSUMOylation and 

recruitment of nucleosome deacetylases, methylases, and remodelers. ATM-dependent KAP1 

S824 phosphorylation results in abrogation of KAP1-chromatin remodeler CHD3 interaction and 

chromatin relaxation [119]. 

MRE11/RAD50/NBS1 confirmation in DSB detection, signaling, and effector responses 

An integrated model of MRN as a molecular clamp has been proposed (Figure 5) [67,73,120-

122]. In it, MRN alternates between extended and compact states depending upon nucleotide and 

DNA binding status. The open configuration consists of M2R2N2 splayed such that DNA binding 

and nuclease sites are unobstructed, RAD50 coiled-coils are lax, and homodimerization is 
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mediated through MRE11 phosphodiesterase domains and intracomplex Zn
2+

 hook interactions. 

MRN of this configuration could bind DNA ends with large covalent adducts, e.g. SPO11 or 

topoisomerase II. Recognition and processing of a DSB or DNA hairpin and ATP binding 

together promote a more compact M2R2N2 catalytic head and tighter DNA binding. RAD50 

coiled-coil domain rigidity is increased, and RAD50 Zn
2+

 hooks make intercomplex interactions 

to tether DSBs over large distances. In this closed configuration, MRE11 is sterically hindered 

from binding dsDNA, and therefore, its dsDNA exonuclease activity is stymied. On the other 

hand, MRE11 retains binding and endonuclease activities towards ssDNA and hairpins. Iterative 

ATP hydrolysis results in partial melting of dsDNA and hairpin opening. Finally, the closed form 

promotes and is promoted by tighter NBS1 binding. This configuration thereby promotes MRN-

mediated ATM activation and activity. 

 

Figure 5: An integrated model of MRE11/RAD50/NBS1 structure-function relationships 
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1.4: MRE11/RAD50/NBS1 and ATM dysfunction in human disease 

Human genetic disease 

Lesions to MRE11 or its partners have been associated with human genetic disease (Tables 1 and 

2). Biallelic hypomorphic or null mutations in ATM result in ataxia-telangiectasia (AT; MIM 

208900) [123]. AT is characterized by progressive cerebellar ataxia, oculocutaneous 

telangiectasia, immunodeficiency, radiation hypersensitivity, sterility, and marked predisposition 

to malignancy, especially lymphoreticular neoplasia. Inheritance of two hypomorphic NBN 

(NBS1) alleles causes Nijmegen breakage syndrome (NBS; MIM 251260) [124]. Like AT, NBS 

includes immunodeficiency, radiation hypersensitivity, and a marked cancer predisposition. NBS 

is distinguishable from AT by the lack of ataxia and telangiectasia and by the presence of 

microcephaly and growth retardation. Also notable is that the predisposition to malignancy is 

more marked in NBS; NBS patients have a lower age of incidence and a higher lifetime 

prevalence of cancer.  

 

Table 1: Human genetic diseases associated with MRE11 partners 

disorder

ataxia 

telangiectasia 

(AT)

Nijmegen 

breakage 

syndrome (NBS)

Nijmegen 

breakage 

syndrome-like 

disorder (NBSLD)

mutated gene ATM NBN (NBS1) RAD50

cerebellar ataxia + - +

microcephaly - + +

telangiectasia + - nr

immunodeficiency + + -

malignancy + + -

MRE11 protein wild-type wild-type wild-type

MRE11/RAD50/NBS1 levels* ++++/++++/++++ ++++/++++/+ +++/+/+

defective MRE11 IRIF formation + + +

deficiency in ATM-dep events + + +

spontaneous chromosomal 

aberrations
+ + +

cellular IR hypersensitivity + + +

nr=not reported

*: +=very low, ++=low, +++=moderate, ++++=normal, +++++=high  
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Table 2: MRE11A mutation-associated human genetic diseases 

disorder
ATLD1-2, 

19-20
ATLD3-4 ATLD5-6 ATLD7-16 ATLD17-18 NBSLSM1 NBSLSM2

cerebellar ataxia + + + + + - +

microcephaly - - - ± - + +

telangiectasia - - - - - nr nr

immunodeficiency - - - - - - -

malignancy - - - - + - -

MRE11 protein R633X
N117S, 

(R571X)

T481K, 

(R571X)
W210C

W243R, 

(Δ340-366)
wild-type

wild-type, 

D113G

MRE11/RAD50/NBS1 levels* +/+/+ ++/++/+ ++/++/++ +++++/+++++/+ ++/++/+ +/+/++ +/+/++

defective MRE11 IRIF formation + + + + nr + +

deficiency in ATM-dep events + + + + + + +

spontaneous chromosomal 

aberrations
+ + - - + nr nr

cellular IR hypersensitivity + + + + nr + +

ATLD=ataxia telangiectasia-like disorder, NBSLSM=Nijmegen breakage syndrome-like severe microcephaly

nr=not reported

*: +=very low, ++=low, +++=moderate, ++++=normal, +++++=high

 

Autosomal recessive syndromes due to mutation of RAD50 or MRE11A (MRE11) appear to be 

much rarer and were more recently discovered than those caused by ATM or NBN mutation; 

therefore, the former are mostly thought of in terms of their likeness to AT or NBS. 

Hypomorphic RAD50 mutation has been associated with autosomal recessive NBS-like disorder 

(NBSLD; MIM 613078) [125]. NBSLD resembled NBS in terms of microcephaly and growth 

retardation. Unlike NBS, NBSLD was not associated with immunodeficiency or lymphoid 

malignancy, and it included uncoordinated movements and nonprogressive ataxia. Biallelic 

hypomorphic MRE11A mutation has been associated with NBS-like severe microcephaly 

(NBSLSM) though it has been more commonly associated with ataxia telangiectasia-like 

disorder (ATLD; MIM 604391) [126-132]. The former was characterized by severe 

microcephaly, developmental delay, and lack of coordination or nonprogressive ataxia without 

obvious predisposition to malignancy or immunodeficiency. ATLD is characterized by cerebellar 

ataxia and cellular genomic instability similar to but milder than that seen in classic AT. Neither 

immunodeficiency nor telangiectasia have been associated with ATLD. 

These diseases are alike in that they show neurologic phenotypes though the phenotypes appear 

to vary from those representing developmental defects - exemplified by microcephaly, for 

instance -  to those representing neurodegeneration - e.g. progressive cerebellar ataxia. Because 

HR is required for cellular proliferation and stem cell function, the developmental defects could 
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arise due to decreased HR efficiency [81,133-135]. On the other hand, the neurodegeneration 

could be due to decreased capacity to deal with the DNA damage common to terminally-

differentiated neurons. Neurons have a high rate of mitochondrial respiration and therefore 

possess high levels of ROS [136]. As a result, neurons experience a high rate of oxidative DNA 

damage. Oxidative lesions often block transcription, upon which neurons rely heavily. Hence, 

neurons without the capacity to efficiently deal with these lesions would be expected to 

experience a substantial loss of function due to inability to sustain the necessary rate of 

transcription. Moreover, the limited regenerative capacity of adult central nervous system 

neurons means there is little ability to replace underperforming neurons. Accumulation of ROS-

associated DNA lesions is associated with common neurodegeneration phenotypes, including 

Alzheimer's, Huntington's, and Parkinson's diseases [137]. ATM plays a role in the cellular 

oxidative stress response [138], and ATLD patient cerebella have been found to accumulate 

oxidized DNA species [139]. Hence, defective responses to ROS-induced DNA damage could 

contribute to the AT and ATLD neurodegeneration phenotypes. On top of increased ROS-related 

lesions, terminally-differentiated neurons are in G0. With no sister chromatids available, they 

have to rely on lower-fidelity repair of DSBs by C-NHEJ or A-EJ [81]. Because MRN and ATM 

promote these processes, their deficiency could result in decreased ability of neurons to properly 

repair DSBs. Hence, defective DSB repair could also contribute to the neurodegeneration 

phenotype seen in AT and ATLD patients. 

AT, NBS, ATLD, NBSLD, and NBSLSM are also all associated with a cellular genomic 

instability phenotype. This was typically exemplified by deficiency in ATM signaling, cell cycle 

checkpoint dysfunction, cellular radiation hypersensitivity, and spontaneous translocations of 

chromosomes 7 and 14 in circulating lymphocytes [125,126,132,140,141]. Lack of ATM or 

NBS1 especially appears to result in impaired NHEJ-mediated antigen receptor rearrangement 

[135,142]. The decrease in productive rearrangement efficiency results in decreased circulating 

lymphocytes, agammaglobulinemia, and immunodeficiency. Inefficient DSB repair also results 

in DSB persistence and misrepair. This misrepair accounts for the high levels of circulating 

lymphocytes with spontaneous translocations involving antigen receptor loci and predisposition 

to lymphomagenesis. Predisposition to infection and malignancy account for substantial disease-

associated morbidity and mortality.  
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Cancer 

Genomic instability is a characteristic of cancer and its development [19,56]. Most carcinogens 

contribute to carcinogenesis through inducing DNA mutation. Such mutations can contribute to 

tumor suppressor inactivation and proto-oncogene activation. Oncogenic replication stress can 

result in continuous genomic instability. During cancer development, DDR is selected against 

resulting in DDR defects and increased rates of mutation. In advanced cancers, cycles of 

hypoxia-normoxia may cause DNA oxidation. 

Efficient DDR is crucial to prevention of tumorigenesis. DDR is often upregulated during the 

early stages of oncogenesis [143], consistent with its role in tumor suppression. Enhanced DDR 

has been shown to protect against tumorigenesis in certain contexts [144]. On the other hand, 

inherited DDR defects can contribute to mutator phenotypes and may allow continued 

proliferation despite accumulation of DNA damage. Inherited perturbations in the DSBR 

machinery often manifest as autosomal dominant familial cancer syndromes. Lesions to the 

tumor suppressors BRCA1, BRCA2, or their partners are responsible for familial breast cancer 

syndromes [145-147]. Moreover, inheritance of a single ATM mutation appears to predispose to 

breast cancer, and NBN mutation carriers are malignancy prone [148-156]. 

Somatic disruptions of DSBR genes also play roles in sporadic malignancies. Biallelic somatic 

ATM mutations are common in certain lymphomas and leukemias [157]. Somatic disruptions of 

BRCA1/2 and their partners are even more common in tumors than their germline defects [158].  

 

1.5: Insights from murine models of MRE11/RAD50/NBS1 or ATM dysfunction 

Mice lacking any member of the MRN complex are inviable [133,134,159,160]. Conditional 

allele deletion of any of the corresponding genes in cultured cells or in vivo proliferating tissues 

results in dramatic genomic instability and cell death [133,161,162]. These observations are 

consistent with the view that MRN is required to resolve DNA replication-associated breaks via 

homology-directed recombination. It should be noted that human genetic diseases have been 

associated with MRE11A, RAD50, or NBN hypomorphism and not nullizygosity [124-

132,163,164]. Hence, nullizygosity of any of these complex components is expected to be 
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embryonic lethal in humans, and the most appropriate murine models of these disorders are those 

with Mre11a, Rad50, or Nbn hypomorphism. 

Mice expressing hypomorphic Mre11a alleles have revealed striking phenotypes. 

Mre11a
ATLD1/ATLD1

 mice expressed murinized versions of the first ATLD allele identified 

[126,165]. ATLD1 lacks the C-terminal 76 amino acid residues including the CDK2 interaction 

motif [69]. These mice appeared to reiterate the patient phenotype. They were viable and had no 

predisposition to lymphomagenesis. Mre11a
ATLD1/ATLD1

 cells exhibited DSBR signaling defects - 

including reduced ATM signaling and checkpoint deficiencies, radiation hypersensitivity, and 

genomic instability. Though M(ATLD1)RN complex stability appeared intact, complex levels 

were very low. Still unknown is whether the cellular phenotypes were due to low levels of MRN 

complex or more directly due to the lack of MRE11 C-terminus. The lack of lymphomagenesis 

despite reduced NBS1 and ATM function suggests loss of some MRE11 function requisite for 

oncogenesis. Whether the requirement is for higher MRN levels and non-C-terminus functions or 

C-terminus-specific functions remains an open question. 

A nuclease-dead Mre11a allele, Mre11a
H129N

, has also been knocked in [76]. MRE11 H129N 

supported normal levels of the MRN complex, ATM activation, and G2/M checkpoint activation 

but failed to rescue embryonic lethality, cellular proliferation, radiation and replication stress 

hypersensitivity, homology-directed repair, and genomic stability. These findings show that 

nuclease function is essential for cellular proliferation during development but dispensable for 

ATM activation. 

Mre11a
RK/RK

 mice - in which the MRE11 glycine-arginine-rich domain arginines have been 

changed to lysines - exhibited radiation hypersensitivity. MRE11 RK appeared defective in 

MRE11 DSB localization, DNA binding, exonuclease activity, and mediation of ATR activity, 

cell cycle checkpoint function, and chromosomal stability [65,166-168]. However, once again 

the MRE11 mutant levels were sub-physiologic. In this case, Mre11a
RK/RK

 cells had MRE11 RK 

levels 50% of physiologic MRE11 levels. Hence, the MRE11 RK-associated phenotypes could 

potentially be attributed to low cellular MRE11 RK levels and/or some MRE11 RK-specific 

dysfunction. 
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Mice have also been engineered to express hypomorphic Nbn. The predominant NBN mutation is 

c.657Δ5 [124,169]. Internal ribosomal entry is required to produce a hypomorphic p70 product 

with N-terminal truncation. Nbn
ΔB/ΔB

, Nbn
m/m

, and Nbn
-/-

+NBN
657Δ5

 mice were created to mimic 

this truncation [170-172]. Each mutant is associated with loss of the N-terminal FHA domain. 

Though Nbn
ΔB/ΔB

 mice only reiterated the cellular phenotypes (radiation hypersensitivity, intra-S 

and G2/M checkpoint dysfunction, and IR-induced chromosomal instability) and subfertility, 

Nbn
m/m

 and Nbn
-/-

+NBN
657Δ5

 mice also reflected other patient phenotypes (including growth 

retardation, immunodeficiency, decreased lymphocyte maturation, increased spontaneous 

chromosomal translocations, and – for Nbn
m/m

 mice only –predisposition to lymphomagenesis). 

Nbn
m/m

 cells had intact DSB-induced ATM activation, but DSB-induced ATM activity towards 

other targets, including CHK2, was diminished in Nbn
m/m

 and Nbn
-/-

+NBN
657Δ5

 cells. This 

phenotype was partially phenocopied in cells expressing another NBS patient allele, NBN
H45A

, 

which disrupted a highly conserved NBS1 FHA domain residue [172,173]. These results are 

consistent with the NBS1 N-terminus – and the FHA domain in particular - being dispensable for 

ATM activation but essential for appropriate ATM targeting. 

Lack of the NBS1 ATM binding motif in Nbn
ΔC/ΔC

 and Nbn
tr735

 mice resulted in mild phenotypes 

[173,174]. Nbn
ΔC/ΔC

 and Nbn
tr735

 cells did not have gross defects in DSB-induced ATM 

activation or ATM activity towards CHK2. Moreover, no change in MRN levels, subcellular 

localization, or localization to DSBs was detected. However, thymocytes were defective in IR-

induced apoptosis, a very mild intra-S phase defect was detected, and ATM-dependent SMC1 

and BID phosphorylation was impaired. These results suggest the NBS1 C-terminal ATM 

interaction motif is dispensable for ATM activation but necessary for appropriate ATM-mediated 

DSBR.  

AT differs from ATLD, NBSLSM, NBLD, and NBS in that it can result from ATM nullizygosity 

as well as hypomorphism. The majority of reported AT cases have been associated with two 

ATM frameshift, nonsense, splice site, or large gene deletion mutations that resulted in loss of 

detectable protein [163,164]. Other patients had missense mutations, in-frame deletions, or 

aberrant splicing and detectable ATM by immunoblot. Atm
-/-

 mice largely reiterated the classic 

AT patient phenotype, including growth retardation, infertility, impaired lymphocyte 

development, dramatic lymphoma predisposition, and cellular genomic instability [175-177]. In 
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contrast to the patient phenotype, no cerebellar ataxia was evident. Mice expressing the 

murinized AT patient allele Atm
ΔSRI

 had a somewhat milder phenotype than nullizygous mice 

[178]. Notably, though Atm
ΔSRI

 mice were also cancer-predisposed, they outlived their 

nullizygous counterparts. The cancers to which the mice succumbed varied by genotype, too: 

While nullizygous mice uniformly died of thymic lymphoma, Atm
ΔSRI

 mice developed a variety 

of malignancies.  

In striking contrast to the viability seen in AT mouse models, ATM kinase dead mice are 

inviable [179]. Murine cells expressing kinase dead ATM displayed increased spontaneous 

genomic instability and decreased HR efficiency relative to Atm
-/-

 cells. Hence, kinase dead 

ATM appears to actually interfere with HR and maintenance of genomic integrity. 

As is seen in humans, mice with heterozygosity in DSB repair components are cancer 

predisposed. Mice with Nbn heterozygosity or hypomorphism are predisposed to oncogenesis 

[171,180]. Mice carrying one hypomorphic Atm allele are cancer-predisposed [181] as are Ctip
+/-

 

mice [182]. These results support the importance of DSB repair machinery component gene 

dosage in tumor suppression. 

 

1.6: MRE11A mutation and oncogenesis 

Cancer-associated DSBR alterations can be exploited for prognostic and therapeutic purposes. 

For example, higher tumor MRN complex levels have been associated with better response to 

radiotherapy and better prognosis [183-186]. Hence, knowledge of tumor MRN levels could 

inform prognostication and treatment choice. Furthermore, cancer-specific DSBR alterations can 

be used for development of therapeutic targeting strategies; this point is well-illustrated by the 

success of PARP inhibitors against tumors with BRCA1 or BRCA2 deficiency [187,188].  

Despite the importance of the DSBR in cancer predisposition, prognostication, treatment choice, 

and therapeutic development, the role of MRE11A mutations in carcinogenesis remains poorly 

understood. MRE11 participates in the activation of several tumor suppressors and is frequently 

downregulated in malignancies [186,189-192]; however, an abundance of evidence suggests 

MRE11 is not a simple tumor suppressor. When MRE11A is altered in malignancies, a wild-type 
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allele usually remains intact. ATLD is assumed to be a cancer-prone syndrome; however, cancer 

has only been associated with a small subset of reported ATLD patients [126-130]. Moreover, 

Mre11a
ATLD1/ATLD1

 mice are not predisposed to the development of lymphoma - the malignancy 

to which AT and NBS patients are most markedly predisposed [165]. Organism viability and 

normal cellular proliferation require MRE11 nuclease activity [76], suggesting MRE11 may be 

required for carcinogenesis as well.  Additionally, many human genetic diseases resulting from 

hypomorphic mutations in the DSBR machinery do not appear to feature cancer predisposition. 

RAD50, ATR, or CTIP (RBBP8) mutations have been associated with the autosomal recessive 

NBS-like disorder (MIM 613078) [125], Seckel syndrome (MIM 210600) [193], or Jawad 

syndrome (MIM 251255) [125,194], yet none of these syndromes have been linked to gross 

cancer predisposition. 

We set out to help clarify the role of MRE11A mutation in carcinogenesis. To this end, the major 

impacts of previously reported MRE11A mutations were sought. A few mutants were found to 

have distinct deficits in apical kinase activation. Because of the centrality of MRN complex 

stability to many well-recognized MRE11 functions, including apical kinase activation, mutants’ 

abilities to complex were also assessed. For two mutants, MRN complex instability could 

explain the signaling defects observed. These findings provide new insight into MRN function 

and human disease pathogenesis and treatment.  



 

23 
 

CHAPTER 2: RESULTS 

 

2.1: Meta-analysis of disease-associated MRE11A mutations 

Several categories of MRE11A mutation were uncovered. Most common were loss of nucleotides 

from the accessory splice signal upstream of exon 5 [191,192,195-202]. Shortening of the poly-T 

tract in microsatellite instable cells lines and primary tumor cells was linked to exon 5 skipping 

and decreased MRE11 expression [191]. A few other mutations were associated with aberrant 

MRE11A splicing [129,132]. One such mutation, c.338A>G, was also associated with exon 5 

skipping and a small amount of full length transcript [132]. The resulting mRNAs potentially 

encoded F106QfsX10 or D113G, respectively. Exon 7 was reported to be skipped more 

frequently in the context of point mutations at the exon 7-intron 7 border – c.658A>C and 

c.659+1G>A [132]. The resulting mRNA potentially encoded MRE11 S183VfsX31 though none 

of this species was detected. C.1098+5G>A was reported in an allele that produced MRE11A 

mRNA lacking exon 10 [129]. This loss of 81 bp maintained downstream codons in frame. 

Hence, the mRNA potentially encoded MRE11 Δ340-366 though this species did not appear to 

have been detected. In rare instances, MRE11A was amplified [203]. More commonly, MRE11A 

was deleted [186,204]. MRE11A missense and nonsense mutations were not obviously clustered 

(Figure 6) [129,130,205-210]. Mutations were distributed both within the N-terminal 

phosphodiesterase domain and the C-terminal region.  

MRE11A mutations arose in a variety of contexts. Twenty ATLD patients have been reported 

thus far who inherited some combination of missense and nonsense mutations. A couple of these 

mutants, W243R and R633X, along with a few additional mutants were associated with familial 

cancer syndromes when inherited along with a wild-type allele. Several somatic missense and 

nonsense mutations were found in spontaneous malignancies. Microsatellite instable cancer cells 

were found to have MRE11A exon 5 skipping and reduced MRE11 levels. Two NBS-like severe 

microcephaly patients were each found to have inherited two miss-splicing alleles.  
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Figure 6: MRE11 mutant meta-analysis results 

 

 

2.2: MRE11 mutant selection 

We sought to determine how select cancer-associated MRE11A mutations (Figure 7A) impacted 

MRE11 function [129,205,207]. Alleles encoding ataxia-telangiectasia-like disorder 17/18 

(ATLD17) and an alternative splice mutant (ASM) were found in two brothers with ATLD who 

succumbed to pulmonary adenocarcinoma at the ages of 16 and 9 years [129]. These two mutants 

were interesting for several reasons. Until report of these brothers, no association between ATLD 

and cancer had been reported. Also, the young age of incidence of pulmonary adenocarcinoma – 

a disease of old age [211] – in carriers of both mutations suggests a marked genetic cancer 

predisposition. Furthermore, the substitution in ATLD17 occurred at a highly conserved residue 

– W243 – near motif IV of the phosphodiesterase domain (Figure 7B). This motif contains Mn
2+

-

coordinating residues important for MRE11 folding and nuclease activity [59,73]. Hence, 

W243R might plausibly affect MRE11 folding and nuclease function. The other MRE11A allele 

of these brothers contained an intronic mutation, c.1098+5G>A, and encoded mRNA lacking 

exon 10. This mRNA could potentially give rise to a protein lacking 27 amino acid residues. 

Codons downstream of the deletion would be read in frame. The deleted residues reside in the 
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capping motif of the phosphodiesterase domain and include several conserved broadly amongst 

eukarya and even a few conserved between eukarya and prokarya.  

Mutational analysis of MRE11A in unselected primary tumors revealed a mutation encoding 

MRE11 R572Q (GRM) [205]. The mutation was identified in a heterozygous lymphoma. R572 

lies in the disordered C-terminus of MRE11 [59]; hence, no structural information is available 

for the residue. Nonetheless, R572 is in the MRE11 glycine-arginine-rich (GAR) motif, elements 

of which are conserved amongst mammals, birds, amphibians, insects, nematodes, and plants. 

Studies of MRE11 RK suggest R572Q could affect MRE11 nuclease activity, apical kinase 

activity, checkpoint activation, and genomic stability [65,166-168].  

Ataxia-telangiectasia-like 1/2 (ATLD1) was first identified in an ATLD-afflicted kindred [126]. 

MRE11A
ATLD1/ATLD1

 patients and Mre11a
ATLD1/ATLD1

 mice exhibited the cellular hallmarks of 

cancer though they did not appear to be cancer predisposed [126,165]. The lack of malignancy 

could be a consequence of very low cellular MRN levels. In contrast with MRE11A
ATLD1

 

homozygosity, MRE11A
ATLD1

 heterozygosity has been linked with cancer predisposition [207]. 

We sought to determine the functional status of ATLD1 in order to clarify its role in 

carcinogenesis and to further delineate the role of the MRE11 C-terminus in DSBR signaling. 
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Figure 7: An overview of the mutants discussed 

(A) A table summarizing the name, nickname, amino acid change, and clinical context for each 

mutant. (B) A HsMRE11 stick diagram with pertinent domains and motifs. Note that the 

phosphodiesterase domain includes both the nuclease (or catalytic) domain and the capping 

domain. Amino acid changes are labeled along with mutant aliases and associated human 

diseases. Alignments of the residues surrounding the mutant sites are also shown.  

 

 

2.3: Mutant-expressing MEF creation and validation 

SV40 large T antigen immortalized Mre11a
cond/Δ

 murine embryonic fibroblasts (MEFs) [76] 

were transfected with pEF6-Mre11a constructs encoding mutants of interest, clones were 

isolated, and the remaining endogenous allele was deleted by adeno-cre treatment to yield 

mutant-expressing MEFs. Mutant-expressing clones with at least physiologic levels of MRE11 

A

B
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were deemed desirable to avoid low MRE11 levels as a possible confounding variable in 

characterization. Additionally, clones that allowed efficient deletion of Mre11a
cond

 were desired. 

To determine whether clones were maintaining mutant levels to at least physiologic MRE11 

levels during experiments, whole cell lysates were obtained before and after each experimental 

time period (Figure 8A). To probe for MRE11, an antibody recognizing the residues around 

HsMRE11 K496 was used. This region of the protein was not mutated in any mutants; hence, we 

had no a priori reason to think that antibody-MRE11 affinity would vary between wild-type 

MRE11 and any of the mutants. Each MRE11-expressing clone chosen for characterization 

possessed at least physiologic MRE11 levels (Figure 8B). The loss of a wild-type MRE11 band 

in empty-vector controls and ASM and ATLD1 clones was consistent with efficient deletion of 

the remaining endogenous Mre11a
cond

. However, for clones with missense mutants, the MRE11 

type remained undetermined by MRE11 immunoblot alone. Untagged proteins were expressed 

exogenously in order to avoid disruption of any MRE11-protein interactions [69]. As such, 

MRE11 type in these mutants was monitored indirectly by determining Mre11a mRNA type. An 

RT-PCR strategy was designed to amplify only Mre11a mRNA encoding functional protein 

(Figure 8C). Bands were only detected with the use of reverse transcriptase, consistent with these 

bands representing the amplification of Mre11a mRNA rather than pEF6-Mre11a DNA. Sanger 

sequencing of cDNA from ATLD17-, ASM-, and GRM-expressing clones revealed little wild-

type species (Figure 8D-F) consistent with mutant MRE11 being the predominant MRE11 type 

present in the cells during experimentation. 
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Figure 8: Validation of MEF mutant expression 

(A) The peri-experimental timeline. (B) Physiologic MRE11 levels are represented to the far left. 

Peri-experimental MRE11 levels are shown for each clone. Empty-vector control and ASM- or 

ATLD1-expressing clone lysates had wild-type MRE11 bands of ≥90% reduced intensity. In 

most cases, no wild-type MRE11 was detected by immunoblot of these cell lysates. The 

observations are consistent with efficient deletion of Mre11a
cond

 and loss of endogenously-

produced MRE11 prior to experimentation. Each MRE11-expressing cell line possessed at least 

physiologic levels of MRE11 at P1 and P2. (C) The RT-PCR strategy to type Mre11a mRNA of 

MRE11-expressing clones is shown (above) along with RT-PCR results (below). Bands of the 

expected sizes were detected for each clone (upper panel). No bands were detected in the 

absence of reverse transcriptase (lower panel). (D-F) Sanger sequencing of Mre11a cDNA from 

ATLD17 (D)-, ASM (E)-, or GRM (F)- expressing clones revealed little wild-type Mre11a. 
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2.4: Apical kinase activation and activity 

We chose to monitor MRN-mediated DSB-induced ATM activation and activity by measuring 

ionizing radiation (IR)-induced ATM S1987 and KAP1 S824 phosphorylation [92,212]. To 

determine the ability of each MRE11 mutant to facilitate ATR activity, IR-induced pCHK1 S345 

was measured [45].  

Controls showed robust IR-induced pKAP1 S824 and pCHK1 S345 induction in the presence of 

wild-type MRE11 (Figure 9A). On the other hand, only weak induction was observed in the 

absence of MRE11 or ATM (Figure 9A and 9B), consistent with IR-induced KAP1 S824 and 

CHK1 S345 phosphorylation being both MRE11- and ATM-dependent. 

ATLD17-expressing cells showed deficiencies in pATM and pKAP1 but not pCHK1 induction 

following IR treatment (Figure 9C and 9D). Hence, despite an upstream defect in ATM 

activation, ATLD17 appears competent enough in facilitating ATM activity to complement IR-

induced ATR activity towards CHK1 S345. Induction of pKAP1 and pCHK1 were substantially 

abrogated in ASM cells. These findings are consistent with ASM being grossly defective in 

facilitating apical kinase activity (Figure 9D).  

GRM appeared to complement ATM activation and activity (Figure 9E and 9F). MRE11 RK 

studies left open the possibility that the more subtle nature of the alteration in GRM might allow 

GRM to complement ATR activity [65]. In fact, GRM cells showed reduced CHK1 

phosphorylation post-IR. Therefore, even a subtle disruption of the GAR motif is sufficient to 

compromise ATR activity. Expression of ATLD1 to physiologic levels complemented both 

ATM and ATR activities (Figure 9F and [69]). Quantitation of pKAP1 and pCHK1 induction is 

also shown (Figure 9G through 9J). 

Dose-response and time-course studies were consistent with our findings 30 minutes after 10 Gy 

of IR. In ATLD17-expressing cells, decreased pKAP1 induction was observed following IR 

doses ranging from 0.5 Gy to 10 Gy and following recovery times from 6 minutes to 8 hours 

(Figure 10A-10C). These cells also had decreased pATM but not pCHK1 30 minutes to 8 hours 

post-IR compared to wild-type MRE11-expressing cells. Cells with ASM had reduced pKAP1 
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and pCHK1 throughout this time (Figure 10D). GRM-expressing cells complemented pATM and 

pKAP1 but had reduced pCHK1 levels during this time period (Figure 10E).  

 

Figure 9: Ionizing radiation-induced apical kinase activation and activity 

The indicated MEF clones were either left untreated or treated with 10 Gy IR and allowed to 

recover for 30 minutes. Whole cell lysates were immunoblotted for the proteins shown. GAPDH 

is a loading control. (A-F) Immunoblots are representative of at least three independent 

experiments. (A) Comparison of empty-vector and wild-type controls. Whereas only weak pKAP 

or pCHK1 induction was observed in empty-vector controls, these species were robustly induced 

in cells with wild-type MRE11. The extent of induction was similar across the range of wild-type 

MRE11 levels seen. (B) Induction of these phosphoproteins was ATM-dependent. (C,D) 

Induction of pATM and pKAP1, but not pCHK1, was partially abrogated in ATLD17-expressing 

clones. (D)ASM-expressing cells showed dramatic defects in pKAP1 and pCHK1 induction. 

(E,F) GRM expression largely complemented pATM and pKAP1 induction; however, GRM 

complemented pCHK1 induction to a much lesser extent. (F) Cells expressing ATLD1 displayed 

wild-type levels of pKAP1 and pCHK1 induction. (G-J) Quantitation of pKAP S824 and pCHK 

S345 induction by cell line (G, I) or cell type (H, J). After accounting for protein loading, 

induction was normalized to the weighted mean induction of the wild-type lines. Each bar 

represents at least three independent experiments. Error bars represent standard error of the 

mean.  
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Figure 10: Ionizing radiation-induced apical kinase activation and activity, dose-response 

and time-course studies 

(A) ATLD17 expression failed to fully complement pKAP1 induction over a wide range of IR 

doses. (B) Early pKAP1 induction was not fully complemented by ATLD17 expression. (C) 

ATLD17 expression fully complemented pCHK1 but not pATM or pKAP1 levels 30 minutes to 

8 hours post-IR. (D) ASM-associated defects in pKAP1 and pCHK1 induction persisted 30 

minutes to 8 hours post-IR. (E) Over the duration of several hours post-IR, GRM complemented 

pATM and pKAP1 induction but failed to fully complement pCHK1 induction. 
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IR-induced early G2/M checkpoint activation is MRN- and ATM-dependent [165,213]. We 

chose to measure the competency of this checkpoint in mutant-expressing cells. To do so, MEFs 

were mock-treated or treated with 10 Gy IR, and the percentages of cells positive for the mitosis-

specific phospho-histone H3 S10 marker were compared [214]. A relatively high mitotic index 

post-IR was interpreted as a G2/M checkpoint defect. Wild-type MRE11-expressing MEFs 

displayed a reduced mitotic index post-IR reflecting G2/M checkpoint activation (Figure 11A and 

11B). Relative to the wild-type control, significantly more MEFs lacking MRN or ATM were in 

mitosis after IR treatment, consistent with previous findings that the G2/M checkpoint is 

mediated by both MRN and ATM.  

Mutants defective in facilitating ATM activation would also be expected to fail to properly 

activate the G2/M checkpoint. Such a defect was observed in ASM cells; Atm
-/-

 and ASM cells 

had similar mitotic indexes post-IR. However, ATLD17, which exhibited relatively minor 

defects in facilitating apical kinase activation, was associated with decreased mitotic entry post-

IR similar to what was seen for wild-type MRE11.  

Mre11a
RK/RK 

cells are G2/M checkpoint defective post-IR, and these cells and GRM-expressing 

cells exhibit(ed) defects in ATR activity [65]. Thus, GRM was expected to be G2/M checkpoint 

defective. However, GRM cells appeared checkpoint competent. The more subtle nature of the 

substitution in GRM compared to MRE11 RK potentially accounts for the discrepancy. 

Alternatively, phenotypic dissimilarities might reflect the differences in cellular protein levels, 

with Mre11a
RK/RK 

cells having only about 50% of physiologic MRE11 levels.  

ATLD1 was previously associated with defects in apical kinase activity and G2/M checkpoint 

activation [165]. However, we found ATLD1 expression to result in wild-type levels of mitotic 

entry following IR treatment; therefore, we found no evidence of gross defect. This discrepancy 

likely reflects a difference in cellular ATLD1 levels. Our results showed no proof that the lack of 

a C-terminus hindered the ability of ATLD1 to facilitate apical kinase activity or G2/M 

checkpoint function. 
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Figure 11: G2/M checkpoint assay 

MEFs were either mock treated or treated with 10 Gy IR and allowed to recover for an hour. 

Cells were stained for the mitosis-specific p-histone H3 S10 modification. Mitotic index was 

obtained by comparison of the percentage of pH3-positive IR-treated cells to that for mock-

treated cells for each cell line. Results are shown by cell line (A) or cell type (B). A minimum of 

three independent experiments were performed for each cell line shown. Error bars represent 

standard error of the mean. At least 80% of wild-type-expressing MEFs that would otherwise be 

in mitosis were not in mitosis 1h post-IR, consistent with efficient IR-induced G2/M checkpoint 

activation. In contrast, IR treatment reduced the proportion of MRE11- or ATM-deficient cells in 

mitosis to a much lesser extent, which suggests a G2/M checkpoint defect. ATLD17-, GRM-, or 

ATLD1-expressing cells all appeared checkpoint proficient while ASM-expressing cells 

displayed a pronounced checkpoint defect. 

 

 

2.5: MRE11/RAD50/NBS1 complex stability 

Mutant-associated defects in apical kinase activity could be a consequence of MRN complex 

disruption [40,41,215,216]. MRE11 plays a role in maintaining RAD50 and NBS1 levels. ATLD 

and NBS-like severe microcephaly patient cells as well as breast cancer tissue with reduced 

MRE11 levels have reduced RAD50 and NBS1 levels [126,127,129,131,132,189]. Additionally, 

disrupted MRN complex formation has been previously detected as abnormal ratios of the 

complex components; patients with MRE11 mutations that compromise MRE11-NBS1 

interaction have reduced NBS1:MRE11 molar ratios [128,129,131]. We assessed cellular 

RAD50:MRE11 and NBS1:MRE11 molar ratios in order to determine whether they suggested 

any defect in MRN complex stability. 
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MRE11 depletion resulted in proportionally decreased RAD50 levels (Figure 12A and 12B). 

Expression of wild-type MRE11, ATLD17, ASM, GRM, or ATLD1 resulted in proportionally 

similar increases in RAD50 levels. A least-squares best fit for all MRE11 types yielded a line 

with an R
2
=0.93. RAD50:ATLD17 and RAD50:ATLD1 molar ratios were consistent with those 

found in ATLD17 and ATLD1 patient cells [126,129]. These results suggest that each mutant 

can maintain RAD50 levels to a similar extent as wild-type MRE11. Whether these observations 

are due to MRE11-mediated RAD50 stabilization through MRN complex formation is not 

entirely clear. 

Depletion of MRE11 also resulted in decreased NBS1 levels (Figures 12A and 12C). MEFs 

expressing either ATLD17 or ASM had reduced NBS1:MRE11 ratios suggestive of 

compromised ATLD17-NBS1 and ASM-NBS1 interaction. ATLD17 patient cells, which express 

the ATLD17 mutant, have reduced NBS1:MRE11 ratios [129], consistent with our findings for 

the ATLD17 mutant. In contrast, MEFs expressing GRM or ATLD1 had wild-type-like 

NBS1:MRE11 molar ratios. Therefore, MRN complex molar ratios failed to reveal any defect in 

GRM- or ATLD1-mediated complex formation. Consistent with these findings, ATLD1 patient 

cells have NBS1:MRE11 molar ratios at least those of wild-type cells [126]. The least squares fit 

for wild-type-like cell lines had a slope appreciably different from the best fit for ATLD17- or 

ASM-expressing lines. 
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Figure 12: MRE11/RAD50/NBS1 molar ratios 

(A) MRN complex component levels in empty-vector controls and wild-type MRE11- or mutant-

expressing MEF clones. Though ATLD17- and ASM-expressing cells had a wild-type-like 

RAD50:MRE11, NBS1:MRE11 was reduced in these cells. In contrast, both RAD50:MRE11 

and NBS1:MRE11 were wild-type-like in GRM- and ATLD1-expressing cells. GAPDH was 

used as a loading control. (B-C) Quantitation of cellular MRN complex component levels. 

MRE11, RAD50 (B), and NBS1 (C) levels were normalized to those in wild-expressing clone 1 

(WT 1) whole cell lysate after accounting for protein loading. Each data point represents a 

minimum of three measurements (range: 3-15, median: 5), and error bars represent standard error 

of the mean. (B) Each MRE11 type complemented RAD50 levels to a similar extent; the 

trendline shown with R
2
 value represents the least-squares best fit for all cell types. (C) ATLD17 

and ASM failed to complement NBS1 levels to the same extent as wild-type MRE11, GRM, or 

ATLD1; the trendlines shown with R
2
 values represent the least-squares best fits for wild-type-

like cell lines (EV, WT, GRM, and ATLD1) or non-wild-type-like clones (ATLD17 and ASM).  
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To further investigate whether the mutants affected MRN complex stability, co-

immunoprecipitation of complex components was checked. Wild-type MRE11 pulled down and 

was pulled down by RAD50 and NBS1 (Figure 13). ATLD17 co-immunoprecipitated with 

RAD50 to a slightly lesser degree than wild-type MRE11. This defect was notably less than that 

observed with the analogous S. pombe mutant [217]. Co-IP of ATLD17 and NBS1 appeared 

substantially abrogated – similar to what was previously reported for S.pombe ATLD17 [217]. 

Similar outcomes were observed whether cells were untreated, treated with 10 Gy IR and 

allowed a 12 minute recovery, or treated with 10 Gy IR and allowed a 30 minute recovery 

(Figure 14). Because NBS1 makes contacts with both MRE11 and RAD50 [218], the defect in 

ATLD17-RAD50 co-IP may reflect both a lack of NBS1 to stabilize M(ATLD17)R and 

decreased ATLD17-NBS1 interaction. Therefore, these findings are consistent with disrupted 

M(ATLD17)RN complex stability though the low levels of NSB1 in ATLD17 cells confounded 

the interpretation of these results. 

ASM displayed dramatically reduced co-IP with RAD50 and NBS1. As was the case for 

ATLD17, the low NBS1:MRE11 ratios in ASM-expressing cells confounded the interpretation 

of the ASM co-IP results; however, the observations are consistent with a substantial defect in 

M(ASM)RN complex stability. In contrast, GRM appeared just as capable as wild-type MRE11 

of pulling down and being pulled down by RAD50 and NBS1. Hence, no defect in M(GRM)RN 

complex stability was evident by co-IP. Previous work has shown ATLD1 to stably complex by 

co-IP [69,165].  
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Figure 13: MRE11/RAD50/NBS1 co-immunoprecipitation 

MRE11, RAD50, or NBS1 were pulled down, and immunoprecipitates were immunoblotted for 

each MRN complex component. GAPDH was used as a whole cell lysate loading control. 

Results shown are representative of a minimum of three co-IPs. ATLD17 pulled down and was 

pulled down by RAD50 to a slightly lesser extent than was observed for wild-type MRE11. 

Additionally, in ATLD17-containing lysates, less NBS1 was pulled down by MRE11 or RAD50, 

and less MRE11 and RAD50 were pulled down by NBS1. The results for ASM were similar to 

those for ATLD17 except that the defect in MRE11-RAD50 co-immunoprecipitation was more 

pronounced. GRM appeared as capable as wild-type MRE11 to co-IP with RAD50 and NBS1. 
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Figure 14: M(ATLD17)RN co-immunoprecipitation did not change with ionizing radiation 

treatment. 
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2.6: MRE11 homodimerization and MRE11-NBS1 direct interaction 

Yeast two-hybrid was used to assess the abilities of each mutant to homodimerize. Yeast were 

cotransformed with vectors encoding bait (pGBK) and prey (pGAD) fusion proteins. Empty 

vectors were used as negative controls. Following cotransformation, yeast were grown on 

synthetic defined medium without leucine or tryptophan (SD-L-W) in order to select for yeast 

possessing the bait- and prey-encoding plasmids. Fusion protein interaction resulted in α-

galactosidase expression, which in turn, could be used to quantitate homodimerization (Figure 

15A). ATLD17 homodimerization was reduced compared to that for wild-type MRE11. ASM 

homodimerization was not detected. No defects in GRM or ATLD1 homodimerization were 

apparent. Homodimerization was also assayed by colony growth (Figure 15B). During the final 

round of plating, yeast clones were plated onto SD-L-W without histidine or adenine (SD-L-W-

H-ade) in order to test for fusion protein interaction and onto SD-L-W for a loading control. As 

was seen previously [69], no autoactivation was detected with MRE11 fusion proteins, and yeast 

with MRE11 in both the bait and prey showed robust growth consistent with MRE11 

homodimerization. Wild-type MRE11, GRM, and ATLD1 homodimerized to similar extents 

whereas ASM showed no evidence of homodimerization, and ATLD17 homodimerization was 

intermediate. 

Α-galactosidase assay was also used to assess direct interaction between MRE11 mutants and 

NBS1 (Figure 15C). Autoactivation was minimal. Wild-type MRE11, GRM, and ATLD1 

directly interacted with NBS1 to similar extents. A gross defect in NBS1 interaction was seen for 

ATLD17 whereas ASM-NBS1 interaction was not detected. Similar results were found by 

colony growth assay (Figure 15D). Wild-type MRE11 fusion proteins and ASM fusion proteins 

were of similar levels (Figure 16A-16C); hence, ASM fusion protein instability could not explain 

the results. Full colony growth assay plates are shown (Figure 16D and 16E). 
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Figure 15: MRE11 homodimerization and direct interaction between MRE11 and NBS1 

Yeast two-hybrid analysis was performed using pGBK and pGAD – encoding the bait and prey, 

respectively. Empty vectors were negative controls. Plasmids were selected for by culturing in 

the absence of leucine and tryptophan (SD-L-W). (A) MRE11 homodimerization by Y2H 

colorimetric assay. Bait-prey interaction resulted in α-galactosidase expression. Α-galactosidase 

activity was visualized as conversion of p-nitrophenyl-α-D-galactopyranoside (colorless) to p-

nitrophenoxide (yellow, λmax=410nm). Bait-prey combinations are shown below each bar. Each 

bar represents at least three clones per combination with at least three measurements per clone. 

Error bars represent standard error of the mean. Wild-type MRE11, GRM, and ATLD1 showed 

similar amounts of homodimerization. ATLD17 homodimerized less than wild-type MRE11, and 

ASM interaction appeared similar to that of empty vector controls. (B) MRE11 

homodimerization by Y2H colony growth assay. Bait and prey proteins are indicated on the left. 

Ten-fold serial dilution series are shown on interaction test plates (SD-L-W-H-ade, center) and 

loading control plates (SD-L-W, right). Results are representative of those for at least three 

clones per bait-prey combination. ATLD17 homodimerization was slightly abrogated. No ASM 

homodimerization was detected. No defects in GRM or ATLD1 homodimerization were 

apparent. (C) MRE11-NBS1 interaction by Y2H colorimetry. Similar to panel A in setup. 

ATLD17 showed a 54% reduction in NBS1 interaction compared to wild-type MRE11. ASM did 

not appear to interact with NBS1. GRM and ATLD1 interacted with NBS1 to the same extent as 

wild-type MRE11. (D) Bait and prey proteins (left), interaction test plates (center), and loading 

control plates (right) are shown as in panel B. The interaction of ATLD17 with NBS1 was 

slightly but consistently abrogated. ASM-NBS1 interaction was not appreciated. No defects were 

detected in GRM or ATLD1 interaction with NBS1. 
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Figure 16: MRE11 homodimerization and direct interaction with NBS1 by yeast two-

hybrid, supplemental 

(A) ASM fusion protein levels were similar to wild-type fusion protein levels. Bait and prey 

were fused to a MYC-tag or HA-tag, respectively. Tubulin was used as a loading control. (B) 

and (C) Quantitation of bait and prey levels. Fusion protein levels are presented relative to wild-

type MRE11 fusion protein levels after accounting for loading. Error bars represent the standard 

error of the mean for three clones per bait-prey combination. (D) MRE11 homodimerization 

showing full plates except for where a row or two were cropped out. (E) MRE11-NBS1 

interaction showing full plates except for where a row or two were cropped out. 
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2.7: Dimerization mutant 

We wished to determine the extent to which decreased MRE11-NBS1 interaction could be 

caused by disruption of the NBS1 binding site across the MRE11 homodimer interface. To ablate 

this binding site, an MRE11 homodimerization mutant (DM) was made. MRE11 L72 is a highly 

conserved residue – being an aliphatic hydrophobic residue in eukarya and prokarya (Figure 

17A) – located at the MRE11 homodimer interface where loop α2-β3 packs against helix H2 of 

the opposite protomer [59]. Along with the latching loops, this residue participates in formation 

of a hydrophobic pocket (Figure 17B). MRE11 L72D was designed to perturb this hydrophobic 

pocket and thereby disrupt MRE11 homodimerization and NBS1 binding across the latching 

loops. 

Yeast two-hybrid was used as before to assess DM homodimerization and direct interaction with 

NBS1 (Figure 17C-F). DM homodimerization was substantially impaired. Hence, MRE11 L72D 

is the first mammalian homodimerization mutant described. DM interaction with NBS1 was also 

impaired. These results are consistent with L72D disrupting NBS1 binding across the latching 

loops.  

Notably, DM showed a similar degree of NBS1 binding deficiency as ATLD17. These results are 

consistent with ablation of the same NBS1 binding site on DM and ATLD17. The mutant residue 

in ATLD17, W243, is highly conserved and is near Mn
2+

-coordinating residues important for 

MRE11 folding [59,73]. Hence, W243R might result in local misfolding and thereby disrupt the 

latching loop-mediated homodimerization and NBS1 binding. The other NBS1 binding sites 

could remain intact in this scenario explaining why NBS1 binding is only partially disrupted. 

This disruption of ATLD17-NBS1 interaction, in turn, could cause ATLD17 to be defective in 

facilitating ATM activation and activity.  

 

Results are summarized in Tables 3 and 4. 
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Figure 17: Dimerization mutant 

(A) MRE11 stick diagram and alignment showing L72, the residue changed in the DM. (B) 

HsMRE11 phosphodiesterase domain dimer showing L72 (pink), W243 (violet), and residues 

340-366 (mocha). One MRE11 protomer is depicted as light gray while the other is light blue. 

Note that the latching loops in these structures were mostly disordered and therefore are not 

shown. The two images shown are rotated ~90° about the long axis of M2 from each other. (C) 

DM homodimerization was similar to background by yeast two-hybrid colorimetric assay. (D) 

Y2H colony growth assay revealed substantially abrogated DM homodimerization. (E) Direct 

interaction between DM and NBS1 was reduced by 59% compared to wild-type by α-

galactosidase assay. (F) DM-NBS1 interaction was slightly but reproducibly reduced by Y2H 

colony growth assay. 
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Table 3: A summary of kinase activity findings 

 

Table 4: A summary of MRE11/RAD50/NBS1 complex integrity results 

 

 

  

assay ATLD17 ASM GRM ATLD1

pATM induction + ND ++++ ND

pKAP1 induction + <+ +++ ++++

G2/M checkpoint ++++ ++ ++++ ++++

ATR 

activity
pCHK1 induction ++++ + + ++++

mutant

ATM 

activity

symbol + ++ +++ ++++ ND

% of wild-type [12.5%,37.5%) [37.5%,62.5%) [62.5%,87.5%) [87.5%,112.5%) not determined

method DM ATLD17 ASM GRM ATLD1

homodimerization Y2H <+ ++ <+ ++++ ++++

molar ratios ND ++++ ++++ ++++ ++++

coIP ND +++ ++ ++++ ND

molar ratios ND ++ ++ ++++ ++++

Y2H ++ ++ <+ ++++ ++++

coIP ND ≥++ ≥++ ++++ ND

RAD50 interaction 

NBS1 interaction

mutant

symbol + ++ +++ ++++ ND

% of wild-type [12.5%,37.5%) [37.5%,62.5%) [62.5%,87.5%) [87.5%,112.5%) not determined
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CHAPTER 3: DISCUSSION 

 

3.1: Roles of mutants in carcinogenesis 

Here we have shown ATLD17, ASM, and GRM - even when expressed to physiologic MRE11 

levels - to exhibit defects in facilitating IR-induced apical kinase activity (Figure 18A-C). For 

ATLD17 and ASM, the defects appeared to reflect varying degrees of abrogation of MRN 

complex stability. In contrast, though ATLD1 was previously associated with defects in apical 

kinase activity [165], ATLD1 expression to physiologic MRE11 levels complemented apical 

kinase activity. This characterization is the first of any kind for ASM, GRM, or a mammalian 

MRE11 homodimerization mutant. In addition, we were the first to describe ATLD17 in the 

context of physiologic MRE11 levels. Finally, no prior reports had been made regarding the 

effects of ATLD1 expressed to physiologic MRE11 levels on ATR activity or cell cycle 

checkpoint function. 

Though ATLD17 patient cell lines displayed defects in IR-induced ATM activation, they also 

possessed reduced MRE11 levels [132]. Hence, our study is the first to show ATM activity 

defects in ATLD17-expressing mammalian cells to be due to ATLD17 hypomorphism per se. S. 

pombe were engineered to express SpMre11 W248R, a mutant analogous to ATLD17 [217]. This 

mutant was not found to be defective in facilitating the activity of Tel1, the S.pombe ATM 

orthologue, but it did have a defect in facilitating Chk1 phosphorylation. These findings in 

S.pombe were counterintuitive because authors of the same study found dramatic disruption of 

SpM(ATLD17)RN complex stability and decreased cellular complex component levels, and in 

mammals, ATM activation is known to rely upon intact MRN [215]. Evolutionary divergence in 

MRN function could explain the discrepancies between yeast and mammalian ATLD17 findings.  
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Figure 18: Model depicting ionizing radiation-induced apical kinase activity in mutant-

expressing cells 

Schematics are shown for cells expressing ATLD17 (A), ASM (B), or GRM (C). Thick arrows 

represent normal flux whereas thin arrows represent suspected deficiency. 
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Due to the decreased NBS1 levels in ATLD17 cells and disrupted ATLD17-NBS1 interaction, 

ATLD17 is likely more cytoplasmic than wild-type MRE11. However, because some ATM-

dependent events were observed and events downstream of DNA resection did not appear 

deficient, enough ATLD17 seemed to get to the nucleus to exert its functions on DNA resection 

and ATR activation. The result was cells that appeared to have suboptimal DSBR yet could 

possibly avoid mitotic catastrophe by G2/M checkpoint activation following DNA damage. 

Further study of ATLD17 subcellular distribution is merited to discern this mechanism more 

accurately.  

Whether ATLD17 is effective in aiding homologous recombination (HR) or alternative end-

joining (A-EJ) remains to be seen. If ATLD17 alters the balance of pathway choice, it could have 

myriad effects. Error-prone A-EJ has been associated with both tumor-promoting translocations 

and tumor-maintaining DNA repair [187,188,219-226]. Hence, a tipping of the balance in favor 

of A-EJ could enable a mutator phenotype in which DSB repair proceeds efficiently enough to 

allow for continued proliferation. A-EJ inhibitors, such as PARP inhibitors, could prove to be 

synthetic lethal to such malignancies. On the other hand, tipping the balance in favor of HR 

would necessitate a distinct set of therapeutic choices and targeting strategies. Regardless of 

ATLD17’s effects on pathway choice, one potential chemopreventative or chemotherapeutic 

strategy would be to design small molecules that stabilize MRE11-NBS1 interaction to overcome 

ATLD17’s defect. 

Though we did not formally measure protein stability, our observations are consistent with ASM 

being an unstable protein. Despite our attempts to drive expression of each mutant to physiologic 

MRE11 levels, we had lower yield in obtaining MEFs expressing ASM to at least physiologic 

MRE11 levels than we had with any other mutant discussed presently (data not shown). 

Additionally, those clones that did appear to express ASM did so at lower levels and for 

substantially fewer passages under selection compared to cells expressing other mutants (data not 

shown). Notably, other investigators have describe cells and tissues of patients with an MRE11A 

allele encoding MRE11A
ASM

 mRNA, and they showed no evidence that they detected ASM 

protein [129,139]. All together, these results suggest that ASM is misfolded, unstable, and/or 

dysfunctional to the extent that it contributes little to MRE11 function.  
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Because ASM was not detected in MRE11A
ATLD17/ASM

 patient cells or tissues [129,139], 

ATLD17 likely predominates in these patients’ cells. ATLD17 failed to completely complement 

NBS1 levels, to complex with NBS1 optimally, and to efficiently facilitate ATM activation. 

Hence, ATLD17 appeared to impose NBS1 dysfunction, which could explain why ATLD17 

patients exhibited an NBS phenotype, namely cancer predisposition. This notion is supported by 

the observation that some ATLD patients with a mutant defective in NBS1 interaction, MRE11 

W210C, were microcephalic, another phenotype typically associated with NBS and not ATLD 

[128]. 

Unlike ATLD17 and ASM, GRM appeared to form stable MRN complexes and capable of 

facilitating ATM activation and activity similarly to wild-type MRE11. However, GRM did 

display a defect in facilitating ATR activity. This could reflect a defect in any one of several 

steps in DNA end processing: MRN DNA binding, MRE11 nuclease activity, CTIP/BRCA1 

recruitment, recruitment of other nucleases, etc…. An MRE11 mutant in which nine glycine-

arginine-rich motif arginine residues have been changed to lysine residues, MRE11 RK, was also 

defective in ATR activity following IR treatment [65]. In addition, MRE11 RK was found to be 

defective in DNA binding and exonuclease function, which were proposed to result in defective 

end-processing and ATR loading and activity. GRM could be qualitatively similar in its defects 

though, given the more subtle nature of amino acid residue substitution in GRM, the defects 

would be expected to be more subtle. 

Given MRE11 RK DNA binding and exonuclease defects, R572Q could cause a defect in end 

processing. The lymphoma in which GRM was found was only heterozygous mutant [205]. 

Therefore, if GRM contributed to lymphomagenesis, it could have been through reduced MRE11 

function and/or dominant-negative effects. The former possibility is supported by the observation 

that ATLD1 heterozygosity, which is associated with ~50% of physiologic MRE11 levels, has 

also been associated with malignancy [207]. A counter argument can be made based on the 

observation that Mre11a
+/Δ

 mice do not appear to be cancer predisposed. A dominant negative 

effect of GRM is easy to imagine. GRM was able to interact well with wild-type MRE11. 

Moreover, even the more severe MRE11 RK mutant was able to localize to DNA damage, 

suggesting that GRM might as well [65]. In sum, this data suggests that GRM could complex 

with wild-type MRE11 and localize to sites of DNA damage where GRM then might disrupt 
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DNA end processing. Defective end processing could favor lower-fidelity A-EJ pathways, which 

require less end processing than HR. Another interesting possibility is that R572Q disrupts 

MRE11 interaction with the mismatch repair protein mutL homolog (MLH) 1. R572 lies within 

the MRE11 452-632 motif, which was identified as being important for this interaction [227]. 

Disruption of MRE11-MLH1 interaction has been linked to defective mismatch repair [228,229]. 

Also, R572 lies in the C-terminal uncrystallized portion of MRE11. Recent work shows that the 

C-terminal-most 76 amino acid residues interact with CDK2, and other MRE11 residues might 

modulate MRE11-CDK2 interaction [69]. Alteration of this interaction in such a way that CDK2 

interaction is enhanced could conceivably contribute to aberrant proliferation. 

The MRN/CTIP/BRCA1 complex is important for cell cycle-dependent regulation of DNA 

resection and HR [69,115]. Central to the regulation of this complex is CDK-mediated CTIP 

phosphorylation during the S and G2 phases of the cell cycle. In the presence of DSBs, ATM 

mediates further CTIP phosphorylation. Only upon CDK- and ATM-mediated phosphorylation 

does CTIP properly promote DNA resection and HR. Hence, mutant-associated alteration of 

CDK or ATM activity could disrupt this complex and thereby alter DSB repair pathway choice. 

In fact, most of the mutants discussed presently appear(ed) to affect one of these activities. 

ATLD1 fails to enable CDK2-mediated CTIP phosphorylation, which has been shown to result 

in MRN/CTIP/BRCA1 complex disruption [69]; ATLD17 and ASM were each defective in IR-

induced ATM activity. Though still speculative, GRM could plausibly be defective in enabling 

CDK2 activity towards CTIP as ATLD1 is. Indeed, MRN/CTIP/BRCA1 complex disruption is 

potentially a mechanism by which several cancer-associated MRE11A mutations contribute to 

carcinogenesis. Further study of these mutants’ effects on CTIP phosphorylation, HR efficiency, 

and DSB repair pathway choice is requisite to better understanding of how these mutants might 

mediate oncogenesis. 

Cancer-associated MRE11A mutations could alter MRE11 interaction with still other MRE11 

interactors. An unbiased screen of MRE11 wild-type and mutant interactors could identify the 

full range of interactions disrupted by MRE11A mutation. Besides other well-recognized 

mediators of DSB repair, cell cycle machinery and mismatch repair proteins would be of special 

interest.  
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Our study has several limitations. Firstly, we used SV40 large T antigen immortalized cells; 

therefore, any mutant-associated defects in p53 activity were not appreciated [230-232]. 

Moreover, other mutant defects that are p53 function-dependent were not observable using this 

system. Secondly, we used murine embryonic fibroblasts rather than cells of the tissues which 

gave rise to patient malignancies. Therefore, tissue-specific splicing, DNA damage repair 

pathway choice, etc… could not be taken into account. Finally, we transduced our cells using an 

adenoviral vector. Adenoviral proteins have been shown to interfere with and degrade multiple 

DNA repair components, including MRN [233,234]. To minimize experimental artifacts due to 

adenoviral protein interference, we allowed several days between replication-defective adeno-cre 

treatment and our experiments. Nonetheless, it remains possible that adenoviral proteins still 

caused experimental artifacts. For these reasons and more, murine models could prove to be 

invaluable for further understanding of the roles of ATLD17, ASM, and GRM in oncogenesis. 

Ultimately, because MRN and ATM display differences in function between mice and humans 

[235,236], it would be beneficial to reproduce cell-based and in vitro studies using human cells 

and human proteins.  

Nonetheless, our results suggest MRE11 mutants contribute to carcinogenesis through several 

distinct mechanisms. ATLD17, ASM, GRM, and ATLD1 each had unique effects on apical 

kinase activity and MRN complex stability. ATLD17 and GRM exhibited slight defects in 

facilitating apical kinase activity perhaps reflecting localized protein misfolding or defective 

DNA end processing, respectively. Despite the suboptimal DSBR, each of these mutants 

appeared to support proliferation and G2/M checkpoint function. ASM, on the other hand, 

seemed grossly dysfunctional. Because GRM appeared competent in MRN complex formation 

and deficient in facilitating MRN-dependent events, GRM could exert a dominant negative effect 

on wild-type MRE11. Therefore, MRE11A
ATLD17/ASM

 and MRE11A
+/GRM

 cells could possess a 

mutator phenotype. In contrast, ATLD1 could broadly support apical kinase activation but is 

largely absent from MRE11A
ATLD1/ATLD1

 cells. Thus, MRE11A
ATLD1

 carriers could be cancer-

predisposed due to MRE11 haploinsufficiency.  
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3.2: Insights into structure-function relationships 

Our findings are consistent with the MRE11 capping domain being important for nuclease 

domain folding and stability. Disruption of the capping domain by deletion of 27 amino acid 

residues in ASM was accompanied by disruption of every aspect of MRN complex formation 

and apical kinase activation tested. In unicellular organism MRE11 orthologues, the capping 

domain has DNA-, RAD50-, and NBS1-binding sites; however, the capping domain is not 

directly involved in MRE11 homodimerization [62,63,67,68,73]. Here, we found a capping 

domain deletion to affect homodimerization in the nuclease domain, even in the absence of 

RAD50 and NBS1. Therefore, the capping domain appears to be important for folding of the 

greater phosphodiesterase domain. Other investigators have described patient cells with an allele 

encoding MRE11A
ASM

 mRNA; however, they found no evidence of ASM protein [129,139]. 

Hence, the capping domain appears to be important for phosphodiesterase domain folding and 

protein stability. 

Study of ATLD17 supported the notion that the MRE11 nuclease domain plays an important role 

in ATM activation and activity. MRE11 catalytic domain disruption has been shown to affect 

ATM activation independently of nuclease function [121]. Mirin is an MRE11 exonuclease and 

ATM activation inhibitor [237]. Treatment with mirin did not appear to differentially affect 

ATM activation by wild-type MRN or nuclease-deficient M(H129N)RN [121]. Moreover, 

MRE11 H129N was nuclease dead but still facilitated ATM activation while MRE11 D130V 

was deficient in both nuclease activity and ATM activation. 

S.pombe Nbs1 binding has been shown to affect Mre11 homodimer conformation, DNA repair, 

and telomere maintenance [73]. This could serve as a means by which Nbs1 communicates 

information to Mre11 and thereby affects Mre11 function. By analogy, mammalian NBS1 could 

relay CTIP and MDC1 phosphorylation and binding status through modulation of MRE11 

conformation. CTIP could thereby exert its influences on MRE11 nuclease activity. This 

communication would be expected to be bi-directional. MRE11 homodimer confirmation could 

reflect M2R2 DNA or RAD50 nucleotide binding status which could, in turn, be communicated 

to NBS1 via changes in latching loop conformation. Consistent with this idea, prokaryotic MR 

nucleotide binding status has been shown to influence protein conformation [63,67,68], and 

human RAD50 nucleotide binding status has been shown to influence MR NBS1 binding, MRN 
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DNA binding, and ATM activity [66,121]. Inability of MRE11 to communicate DSB sensing to 

NBS1 could result in defective ATM activation and activity. Alternatively, ATM makes multiple 

contacts on the MRN complex [91], so disruption of ATM-MRE11 interaction itself could affect 

ATM activity. 

Our findings further understanding of the importance of arginine methylation in cellular 

processes. An ever-increasing number of proteins, including components of the pre-mRNA 

splicing, polyadenylation, transcription, signal transduction, and DNA damage response 

machinery, are being found to be subject to arginine methylation [238]. This modification often 

occurs around glycine residues. Clusters of glycines and arginines constitute glycine-arginine-

rich (GAR) motifs, and such motifs are commonly found in nucleic acid binding proteins and are 

especially prone to arginine methylation. GAR motifs and their methylation have been shown to 

affect protein subcellular localization, nucleic acid binding, and protein function [65,166-

168,239-244]. In the case of MRE11, GAR motif arginine methylation appears to influence 

MRE11 protein stability, subnuclear localization, DNA binding, and exonuclease activity 

[65,166,168]. MRE11 in which the GAR motif arginines have been replaced with lysines, 

MRE11 RK, exhibited decreased in vitro binding to dsDNA, ssDNA, and splayed-arm DNA and 

decreased in vitro exonuclease activity towards blunt-ended dsDNA in the context of RAD50 

and NBS1 relative to wild-type MRE11. Replacement of the GAR motif arginines with alanines 

in MRE11 RA further reduced MRE11 exonuclease activity towards and binding of dsDNA. 

Deletion of MRE11 residues 498-615, which includes the MRE11 GAR motif, substantially 

abrogated MRE11 binding of and exonuclease activity on blunt-ended dsDNA. This region was 

intrinsically able to bind DNA in a manner which required methylation of the GAR motif. 

Moreover, MRE11 methylation was required for DNA damage-induced MRE11 movement from 

the nucleoplasm to chromatin, and MRE11 RK was defective in IR-induced CHK1 

phosphorylation. All together, these results suggest that the MRE11 GAR motif is required for 

optimal MRE11 DNA binding and that disruption of the methylation or charge of the GAR 

motif, in turn, disrupts MRE11 localization to DSBs, DNA end resection, and checkpoint kinase 

activation. Our results are consistent with these conclusions and go further to suggest that even a 

subtle disruption of GAR motif methylation or charge is sufficient to affect these processes. 
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GAR motifs can be found in other proteins involved in maintenance of genomic stability, 

including p53 binding protein 1 (53BP1) and telomere repeat factor (TRF) 2. 53BP1 plays 

important roles in facilitating non-homologous end-joining and suppressing resection of DNA 

ends [241,245-247]. Substitutions of 53BP1 GAR motif arginines with lysines or alanines 

yielded 53BP1 RK or 53BP1 RA, respectively, and disrupted 53BP1 DNA binding in vitro 

[239,240]. Despite these DNA binding defects, the 53BP1 GAR motif is not essential for 

shelterin dysfunction-associated telomeric fusion; 53BP1 RK and 53BP1 ΔGAR mutants 

complemented shelterin dysfunction-associated telomeric fusion to 80% of wild-type levels 

whereas complete loss of 53BP1 reduced the frequency of such fusion events to less than 10% of 

wild-type levels [241,242]. The DNA binding defect of 53BP1 RK is not reflected by defects in 

53BP1-facilitated class switch recombination either; 53BP1 RK was able to support 53BP1 

functions in class switch recombination [245]. Indeed, though the 53BP1 GAR motif appeared 

important for DNA binding in vitro, it appears to be largely dispensable for 53BP1 function in 

promoting NHEJ and preventing CTIP-mediated DNA end resection.  

TRF2 is a component of the telomeric repeat-binding shelterin complex crucial for protection of 

telomeres against aberrant DNA repair processes [248]. In contrast to the largely negative results 

observed for the 53BP1 GAR motif to date, TRF2 RK expression resulted in telomere 

deprotection and fusion [243]. The TRF2 GAR motif might be required for TRF2 interaction 

with telomere-repeat-encoding RNA (TERRA) and recruitment of the origin recognition 

complex (ORC) to telomeres [244]. This complex could facilitate timely replication of telomeres 

and help modulate telomeric chromatin compaction. Hence, subtle alterations of the TRF2 GAR 

motif like that seen for the MRE11 GAR motif in the GRM mutant could potentially affect 

telomere integrity, chromosomal stability, and cellular viability. 

Unlike the other motifs studied, the CDK2 interacting motif was not required for stable MRN 

complex formation, apical kinase activity, or G2/M checkpoint activation. Hence, MRE11-

enabled CDK2 activity toward CTIP appeared dispensable for these functions. In contrast with 

our findings, the MRE11 C-terminus was required for ATM activity in biochemical assays [91]. 

It could be that the C-terminus is essential for directing ATM activity towards certain substrates. 

However, this requirement could be masked in cells by as yet unidentified compensatory 

mechanisms. 
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More broadly, our results point to the complexity and delicacy of protein complex regulation in 

vivo. Links between even subtle changes in essential proteins and human pathology should be 

carefully studied. Catalytic domain mutations might actually exert their pathogenic influences 

through alterations of protein-protein interactions. Kinase activation can be indirectly controlled 

via subtle conformational changes in protein sensors. Glycine-arginine-rich motifs are found on 

many proteins, methylated arginines on many more, and post-translational modifications abound 

in the proteome, and their control over protein function is evident here. Given the prevalence and 

centrality of protein environmental sensors, protein-protein communication through subtle 

conformational modulation, kinase regulation, and post-translational modification to life, the 

protein physiology and pathophysiology studied here may very well translate to elsewhere in the 

human proteome and mutatome. We hope our efforts inform future discernment of these 

fundamental processes. 
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CHAPTER 4: MATERIALS AND METHODS 

 

DNA construct creation 

Select Mre11a mutations were introduced into pEF6-MmMre11a using site-directed mutagenesis 

(Stratagene) or – for the alternative splice mutant – PCR amplification followed by ligation. 

These mutants were shuttled into pGBKT7 and pGADT7 (Clontech).  MmNbn (GeneCopoeia) 

was TOPO PCR subcloned (Life Technologies) and shuttled into the Y2H vectors. 

MEF engineering and culture 

Mre11a
cond/Δ

 murine embryonic cell lines [76] were maintained using standard culture 

conditions. Cells were stably transfected with wild-type- or mutant-expressing pEF6-MmMre11a 

per manufacturer’s instructions (Lipofectamine 2000, Life Technologies). Briefly, cells were 

grown to 50-90% confluency in six-well plates. Cells were treated with 10 µl lipofectamine 2000 

transfection reagent and 2.5-10 µg pEF6-MmMre11a in 2.5 ml serum- and antibiotic-free 

medium per well. Twenty-four hours post-transfection, cells were split; they were seeded at 

3200-200 cells per six-well plate well. Forty-eight hours post-transfection, the cells were treated 

with 5-10 µg/ml blasticidin. Blasticidin-containing medium was subsequently refreshed every 

two days. Four days post-transfection, it was decided whether the cells were seeded sparsely 

enough to allow for clonal isolation. Where that appeared to be the case, colonies were allowed 

to grow to confluency at which time they were picked using a pipette tip and seeded into a 

twenty-four-well plate well with blasticidin-containing medium.  

Prior to each experiment, cells were grown under blasticidin selection for three days, split 

(seeded at a density of 5x10
5
 cells per 10 cm plate), allowed to recover for a day, treated with 

replication-defective adeno-cre (University of Michigan Vector Core; 3 µl adeno-cre and 5 ml 
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medium per 10 cm plate), allowed to recover for two days (in the presence of complete medium), 

split (seeded at a density of 5-7.5x10
5
 cells per 10 cm plate), and allowed to recover for two-

three days after which time experiments were performed. Where ionizing radiation treatment is 

indicated, slightly subconfluent cells were exposed to a 
137

Cs source. 

Mre11a RNA typing 

5e5 cells per sample were pelleted, and RNA was isolated (AllPrep DNA/RNA Mini Kit, 

Qiagen). RNA concentration was determined by Nanodrop. RT-PCR was performed with the 

following specifications: forward primer: GCAATCTCAACATTTCCATTCC, reverse primer: 

GTTTCTTCTTGGGCAACTACTG; 200 ng RNA per reaction; Platinum Taq with or without 

Superscript III reverse transcriptase (Life Technologies) was used per manufacturer’s protocol; 

PCR program: 55°C for 30 minutes, 94°C for 2 minutes, 94°C for 15 seconds, 59°C for 30 

seconds, 68°C for 3.5 minutes, back to step 3 39 times, and 68°C for 7 minutes. Amplicons were 

run on an agarose gel or subjected to Sanger sequencing (sequencing primers: 

CAGTATTTAGTATCCACGGCAAC, CATCGTCATCATCCTCATCTG, 

GGAGAAGAGATCAACTTTGGG, and CTCTTCCTTGTCCACAAACTC). 

Immunoblot 

Cells were lysed in Laemmli buffer (BioRad; 200-300 µl 1:1 2x buffer:1x PBS per 10 cm plate) 

and heated at 100°C for 10 minutes. Protein concentrations were ascertained by BCA assay 

(Thermo Scientific). Beta-mercaptoethanol was then added to the samples to a final 

concentration of 2.5%. Proteins were resolved by SDS-PAGE (4% polyacrylamide stacking gels; 

6% polyacrylamide separation gels were used if probing for pATM; otherwise, 8% 

polyacrylamide separation gels were fine), transferred (for 20-24 hours at 25V in 20% methanol-

containing transfer buffer (National Diagnostics) or for 2-2.5 hours at 25V in 10% methanol-

containing transfer buffer) to PVDF membranes (Immobilon), and blocked in 5% milk TBST (25 

mM Tris-Cl, 150 mM NaCl, 0.05% tween-20, pH 7.6). Primary antibodies used were as follows: 

MRE11 (Cell Signaling 4895, 1:1000 in 5% BSA TBST for 16-20 hours), RAD50 (Bethyl A300-

184A, 1:500 in 3% milk TBST for two days), NBS1 (Novus NB110-57272, 1:500 in 3% milk 

TBST for two days), pATM S1987 (Rockland 200-301-400, 1:500 in 3% milk TBST for 2-4 

days), ATM (Cell Signaling 2873, 1:1000 in 5% BSA TBST for two days), pKAP1 (Bethyl 
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A300-767A, 1:2500 in 3% milk TBST for 1-2 days), KAP1 (Cell Signaling 4124, 1:1000 in 5% 

BSA TBST for 2 days), pCHK1 S345 (Cell Signaling 2341, 1:500 in 5% BSA TBST for two 

days), CHK1 (Cell Signaling 2360, 1:1000 in 3% milk TBST for two days), GAPDH (Abcam 

ab8245, 1:4000 in 5% milk TBST for 1.5 hours to overnight), HA-tag (Cell Signaling 2367, 

1:1000 in 5% milk TBST overnight), MYC-tag (Cell Signaling 2278, 1:1000 in 5% BSA TBST 

overnight), and tubulin (Pierce MA1-80017, 1:1000 in TBST overnight). Either fluorophore (Li-

Cor, 1:4000-1:2000 in 3-5% milk TBST for 1.5 hours to overnight)- or peroxidase (Jackson 

Immunolabs, 1:2000 in 3-5% milk TBST for 1.5 hours)-conjugated secondary antibodies were 

used. When called for, membranes were stripped for 30-60 minutes at room temperature 

(stripping buffer recipe: 60 ml 0.5M Tris-HCl pH 6.8, 3.5 ml of β-mercaptoethanol, 50 ml of 

20% SDS, and 386.5 ml of ultrapure water), rinsed, and reblocked with 5% milk TBST prior to 

being reprobed. Quantitation was performed following the use of Li-Cor secondaries. 

G2/M checkpoint 

7.5e5 cells were plated per 10 cm dish, grown for 48 hours, treated with 10 Gy IR from a 
137

Cs 

source or mock treated, allowed to recover for an hour, and fixed. Cells were probed for the 

mitotic marker p-histone H3 S10 [214] using Cell Signaling primary antibody and FITC 

conjugated secondary antibody (BD Pharmingen). Flow cytometry (Accuri C6, BD Biosciences) 

was performed as described previously [249]. 

Immunoprecipitation 

10-20 million cells per 14.5-cm plate were lysed with 300 µl 50mM TrisCl, 300mM NaCl, 10% 

glycerol, and 1% NP-40. Lysates were precleared with protein A agarose beads (Roche); lysate 

protein concentrations were measured by BCA assay (Thermo Scientific); 20 µg/µl protein 

solutions were made; beads were incubated with either anti-MRE11 antibody (Cell Signaling), 

anti-RAD50 antibody (Bethyl), or anti-NBS1 antibody (Novus); and 0.5 mg protein was added 

along with phosphatase and protease inhibitors (Roche). After an overnight incubation, beads 

were washed four times. Proteins were eluted from the beads with Laemmli buffer (BioRad), and 

extracts were heated at 95°C for 10 minutes. 
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Yeast two-hybrid 

Y2HGold (Clontech) were cotransformed using the Yeastmaker Yeast Transformation system 

(Clontech) per the manufacturer’s protocol. To select for cotransformed cells, transformation 

reactions were plated onto SD-L-W agar (Clontech) plates, and colonies were picked and 

streaked onto SD-L-W agar plates. To test for interaction by colorimetric assay, the restreaked 

yeast were picked, grown in SD-L-W (Clontech) overnight, assessed for their density (by 

OD600nm), and briefly centrifuged. 16 µl of supernatant was aliquoted per reaction, 48 µl assay 

buffer (2 volumes 0.5M NaOAc, pH 4.5 (aq) and 1 volume 100mM p-nitrophenyl-α-D-

galactopyranoside (Sigma-Aldrich) (aq)) was added, and the reactions were incubated at least 

overnight. Each reaction was quenched with 136 µl 1M Na2CO3 (aq), and OD410nm readings were 

taken by microplate reader. Colony growth was assessed by culturing yeast overnight, 

normalizing yeast density by OD600nm, and plating five 10X serial dilutions onto SD-L-W 

(loading control) and SD-L-W-H-ade (interaction test) agar plates.  
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