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ABSTRACT

Characterizing Metal/Oxygen Batteries with Multiphase Continuum-Scale Models

by

Jing Liu

Chair: Charles W. Monroe

This dissertation focuses on the development of theory and continuum-scale mod-

els to characterize transport and kinetics in metal/oxygen batteries.

Newman’s concentrated-solution theory is extended to elucidate two transport

mechanisms associated with the volumes dissolved electrolytes occupy: the ‘excluded-

volume effect’, which arises when concentration polarization induces solution-density

gradients that drive volume redistribution; and ‘Faradaic convection’, which occurs

when interfacial electrochemical reactions induce bulk flow. The excluded-volume

effect can be accounted for in concentrated-solution theory by incorporating a ther-

modynamic state equation that describes the solution’s local molar volume. Faradaic

convection is introduced through boundary conditions that include volume-average

velocity, which is distributed throughout a solution by a volume-balance governing

equation. Two dimensionless parameters quantify the importances of these phenom-

ena, which prove relevant when modeling nonaqueous electrolytes. Analytical for-

mulas are derived to describe concentration polarization and diffusion potentials in

parallel-electrode cells undergoing symmetric ion-deposition/stripping half-reactions.

xii



In moderately concentrated nonaqueous electrolytes, both solute-volume effects are

found to be significant: Faradaic convection elevates limiting currents by as much

as 10% above those predicted by a theory neglecting it; the excluded-volume effect

similarly impacts diffusion potentials.

Accurately measured material properties are of great significance in the modeling

of battery systems. An analysis of binary electrolytic solutions in planar electro-

chemical cells that support symmetric electrode reactions is performed to serve as a

foundation for experimental measurements of diffusivities and transference numbers.

Prior theory is extended to include a nonlinear relationship between concentration

polarization and cell voltage, as well as accounting for solute-volume effects. The ex-

tended theory provides significant corrections when concentration polarization is very

large or when electrolytes are very concentrated, rationalizing unexpected voltage re-

sponses that have been observed during prior transport-property measurements. Sev-

eral graphs are presented to guide design of galvanostatic-polarization experiments,

and complete sets of properties are provided for two non-aqueous lithium battery

electrolytes: LiPF6 in propylene carbonate and LiPF6 in a carbonate mixture.

The modified concentrated-solution theory is next incorporated into a porous-

electrode theory, which is used to model the positive electrodes in metal/oxygen bat-

teries. Continuum simulations of a discharging lithium/oxygen cell are implemented

and compared with experimental data to examine how cell capacity is controlled by

macroscopic mass transfer, interfacial kinetics, and electronic conduction through the

Li2O2 discharge product. The model accounts for the three-phase nature of the posi-

tive electrode, including an explicit discharge-product layer whose volume distribution

depends on the local depth of discharge. Three hypothetical deposition mechanisms

involving different product morphologies and electron-transfer sites are studied. To

match experimental discharge-voltage vs. capacity and capacity vs. discharge-current

data qualitatively, the discharge-product layer must be assumed to have electronic

xiii



resistivity lower than 108 Ω cm – several orders of magnitude lower than typical insu-

lators. This supports the notion that the presence of Li2O2, whose bulk resistivity is

measured/calculated to be above 1010 Ω cm, does not wholly prevent electrons from

reaching dissolved reactants. The discharge product also appears to allow electron

transport over length scales longer than tunneling permits. ‘Sudden death’ of voltage

in Li/O2 cells is explained by macroscopic oxygen-diffusion limitations in the positive

electrode, which are exacerbated by pore clogging as the discharge product forms.

Finally, the multicomponent, multiphase continuum model is applied to simu-

late the first discharge/charge cycle of a sodium/oxygen battery. Simulated dis-

charge/recharge curves are compared with experiments. Unlike the lithium/oxygen

cell, the sodium/oxygen system exhibits low total overpotential for both discharge

and charge. The discharge and charge overvoltages are comparable, suggesting that

the positive-electrode reaction mechanism may follow a reversible pathway. An

overpotential-breakdown analysis indicates that positive-electrode kinetics accounts

for about 90% of the potential loss during both discharge and charge. The ‘sudden

death’ of voltage at end-of-discharge owes to transport limitations in the porous pos-

itive electrode; the voltage spike at end-of-charge owes to the limited availability of

discharge product.

xiv



CHAPTER I

Introduction

Transportation accounts for about 28% of total US energy usage. Over 90%

of this transportation energy comes from petroleum, a non-renewable energy source.

According to US Energy Information Administration, the transportation technologies

operate at 21% energy efficiency, resulting in a large amount of wasted fuel energy

[1]. Increasing transportation energy efficiency and decreasing the dependence on

petroleum to power vehicles are two promising ways of reducing the waste, both of

which require the exploration of novel energy resources and innovative energy storage

and conversion systems.

Some renewable energy sources, such as solar energy, are intermittent in time

and variable in space, while others, like geothermal energy, are highly dependent

on location [1]. Additionally, energy carriers need to be conveniently delivered to

consumers, so that they can be used to power vehicles. Chemicals are a convenient

way to store energy, and electrochemical batteries are one strategy to harness chemical

energy to power vehicles.

A number of different types of batteries have served as the energy storage systems

in electric vehicles (EVs). Lead-acid batteries were adopted to power some of the

earliest and pioneering EVs such as the first generations of Toyota RAV4 EV and

General Motors EV1. Nickel-metal hydride batteries are successful in powering vari-
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ous EVs nowadays, like Ford Ranger EV, Chevrolet Malibu Hybrid, etc. Lithium-ion

batteries (LIB), with relatively high power-to-weight ratio and energy efficiency, are

most commonly used in today’s EVs, one example of which is the Tesla Roadster.

Despite the merits of these battery, their performance lacks in some regards when

compared to the internal combustion engine (ICE), as shown by the Ragone plot in

Figure 1.1 [2]. The specific energy of ICE is far higher than all the electrochemical

energy storage systems on the plot (i.e., a given amount of gasoline can power a ve-

hicle to run farther than the same amount of battery active species.) The chemistry

of alkali-metal/oxygen (M/O2) batteries, however, delivers batteries with theoretical

specific energy comparable or even higher than ICE. For example, the theoretical

specific energy of a lithium/oxygen (Li/O2) battery is about 3500 Wh/kg of lithium

peroxide (Li2O2, the main discharge product), and that of a sodium/oxygen (Na/O2)

battery is about 1100 Wh/kg of sodium superoxide (NaO2, the main discharge prod-

uct) [3–5]. The high theoretical specific energies of M/O2 batteries suggest that they

are quite promising in matching and surpassing the performance of ICE for powering

vehicles.

Before the commercialization and the massive usage of M/O2 batteries in EVs,

we need to have a good understanding and a feasible design. Numerous research

efforts have pursued high practical energy capacity, high power efficiency, and un-

derstanding of the positive-electrode kinetics, etc.[6]. This dissertation is dedicated

to applying multiphase continuum-scale models to simulate transport and kinetics

in M/O2 batteries. In Chapter II, the concentrated-solution theory is improved to

simulate transport in the electrolyte phase, which occupies the battery separator and

pores in the positive electrode. The model accounts for solute-volume effects, which

are intrinsic in all electrochemical transport processes, and are of great importance

in (even moderately) concentrated non-aqueous electrolytic solutions. In Chapter

III, the modified concentrated-solution theory is applied in the measurements of elec-
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trolyte properties, which are essential inputs in transport models. In Chapter IV,

the modified concentrated-solution model is incorporated into the porous-electrode

theory to model the first discharge process of a Li/O2 battery. Positive-electrode

kinetics and capacity-limiting factors of the battery system are studied. In Chapter

V, the recharge process and kinetics of a Na/O2 battery are studied with the same

model developed in Chapter IV.
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CHAPTER II

Transport in Electrolyte

2.1 Introduction

Concentrated-solution theory is widely applied when simulating dynamic electro-

chemical systems, and is useful for rationalizing or predicting how material properties

determine microscopic distributions of concentration and potential, as well as macro-

scopic current/voltage relationships [7–20]. Models based on this theory are also

employed to characterize battery electrolytes [21–27].

Newman and colleagues [28–32] were among the first to apply the Onsager-Stefan-

Maxwell formalism [33, 34] to electrolyte transport. Extended Stefan-Maxwell con-

stitutive laws are force-explicit, and therefore harder to incorporate into material

balances than typical flux-explicit laws. Within the concentrated-solution theory,

the independent Stefan-Maxwell equations are inverted—a process that involves the

selection of a convective velocity [28–30].

If one chooses the solvent velocity, v⃗0, as the reference for convection, the material

balance for a binary electrolyte (comprising one anion and one cation) in a locally

electroneutral binary solution (comprising one electrolyte and one neutral solvent)

becomes [31, 32]

∂c

∂t
+ ∇⃗ ⋅ (cv⃗0) = ∇⃗ ⋅ {D [1 − (d ln c0

d ln c
)
T,p

] ∇⃗c} − i⃗ ⋅ ∇⃗t0+
z+ν+F

, (2.1)
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where c is the molar electrolyte concentration, i⃗ is the current density, and F is Fara-

day’s constant; z+ and ν+ respectively represent the cation’s equivalent charge and its

stoichiometry in an electrolyte formula unit. Two transport properties appear: t0+, the

cation transference number relative to the solvent velocity, andD, the Fickian diffusiv-

ity. A thermodynamic derivative of the solvent concentration c0 serves to convert the

molarity-gradient driving force in equation 2.1 into the molal-concentration-gradient

force classically used to define (and measure) D [31, 32].

Almost all contemporary lithium-ion battery models that include liquid-phase

transport use balances referred to the solvent velocity [35–47]. Since heterogeneous

reactions involving solvent are (ideally) minimal, v⃗0 can be taken to vanish uniformly.

This makes equation 2.1 simpler from the viewpoint of convection, but requires con-

sideration of the excluded-volume factor [1 − (d ln c0/d ln c)T,p].

In their development of the popular ‘Dualfoil’ model, Doyle et al. assumed explic-

itly that (d ln c0/d ln c)T,p ≈ 0, stating that the solvent concentration depended weakly

on the electrolyte concentration in the system they considered [35, 36]. Modeling

groups that followed this initial work have almost uniformly applied the same ap-

proximation without considering its validity in different circumstances [41–60]. Con-

centration gradients could cause significant local variation in the excluded-volume

factor, leading to an apparent driving force for bulk diffusion—a phenomenon we call

the ‘excluded-volume effect’.1

Electrolyte volume can impact concentrated-solution transport by another mech-

anism, which we call ‘Faradaic convection’. This occurs when bulk flow is induced

by interfacial reactions that consume or produce constituents of the solution phase.

When analyzing interfacial instability during electrodeposition, Sundstrøm and Bark

[61] described Faradaic convection in a liquid, probably making them the first to de-

1For a binary electrolytic solution, equations 2.4 and 2.6 combine to show that [1 −
(d ln c0/d ln c)T,p] equals (c0V 0)−1—the inverse of the local solvent volume fraction. Thus the
excluded-volume effect is likely significant if the electrolyte volume fraction is large.
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scribe the effect formally. But ultimately the phenomenon was eliminated from their

model by a dilute-solution approximation.

Nyman et al. have provided the most detailed accounting for both the excluded-

volume effect and Faradaic convection in simulations, and have created models that

improve the agreement between theoretical and experimental transference-number

measurements [62–65]. Although that group has implemented sophisticated numeri-

cal analyses, the contributions that solute-volume effects make to their high-quality

results have not been quantified.

This chapter illustrates how the excluded-volume effect and Faradaic convection

can impact transport simulations. Rather than using equation 2.1, the analysis fol-

lows an alternative approach suggested by Newman and Chapman, who employed

the volume-average velocity as the reference for convection [30]. This reference ve-

locity simplifies the material balance by eliminating the excluded-volume factor, but

it necessitates a local volume balance [62–67]. Models accounting for volume flow in

multicomponent and binary electrolytic solutions are developed in section 2.2, which

also addresses model closure.

The importance of solute-volume effects is measured in section 2.3 by dimensional

analysis of governing equations based on the volume-average velocity and boundary

conditions that account for reaction-induced volume flow. Two key dimensionless pa-

rameters quantify solute-volume effects in binary solutions; their values are provided

for a number of electrolytes. Solute-volume effects prove to be particularly significant

in non-aqueous electrolytes.

Under the assumptions that solution density varies linearly with electrolyte con-

centration, and that the Fickian diffusivity and transference number are relatively

constant, analytical solutions of the transport equations are provided in section 2.4

to describe parallel-electrode cells undergoing symmetric deposition/stripping half

reactions at both electrodes. Both the limiting current and the overpotential asso-
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ciated with concentration polarization in these cells are noticeably affected by finite

electrolyte volume.

2.2 Governing equations with solute volume

2.2.1 Excluded-volume effect: definition

In a phase comprising n constituents at constant absolute temperature T and

pressure p, the Gibbs phase rule mandates that there are only n − 1 independent

composition variables. More concretely, in an n-ary phase described by the Gibbs

free energy, the extensivity of volume V implies that it can be expressed in the

functional form

V (T, p,{nk}n) =
n

∑
k=1

V knk, (2.2)

where nk is the molar content of species k, and V k = (∂V /∂nk)T,p,nj≠k
the partial

molar volume, which also depends on T , p, and composition. Division of both sides

of equation 2.2 by V and the total molar concentration cT, defined as

cT =
n

∑
k=1

nk
V
, (2.3)

yields a thermodynamic relation governing the total molar volume (inverse total con-

centration),

1

cT

=
n

∑
k=1

V kyk. (2.4)

This equation of state introduces the particle fraction of species k, yk, which relates

to the molar species concentration ck through ck = ykcT. Particle fractions are a

convenient composition basis because they are independent of T and p, and their

sum always satisfies
n

∑
k=1

yk = 1, (2.5)
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showing clearly that any one of the composition variables depends on the others. The

key observation underpinning analysis of the excluded-volume effect is that equations

2.4 and 2.5 should hold true locally (pointwise throughout a phase), as well as globally

(for the phase as a whole).

By using the isothermal, isobaric Gibbs-Duhem equation on V (T, p,{nk}n), which

can be expressed as
n

∑
k=1

ykdV k = 0, (2.6)

it can be shown that if all the species in a multicomponent solution have positive

partial molar volumes—which, to the best of our knowledge, is true in all cases—

then inducing a gradient in the molar concentration of one species will always induce

an opposing gradient in the molar concentration of another, if all remaining species

contents are fixed. For a given species, this observation defines formally the ‘excluded-

volume effect’ within the solution as a whole.

2.2.2 Volume flow

Given cT as an intensive variable that quantifies local solution volume, it remains

to develop a variable that conveniently measures local volume flux. Within an n-ary

phase at constant T and p, the increment of total volume dV carried through a surface

element dS⃗ in an instant dt can be expressed in terms of the volumes species carry as

dV =
n

∑
k=1

V kdnk =
n

∑
k=1

V kN⃗k ⋅ dS⃗dt = v⃗◻ ⋅ dS⃗dt, (2.7)

where N⃗k is the molar flux of species k relative to a stationary coordinate frame. This

equation introduces the volume-average velocity v⃗◻, defined as

v⃗◻ =
n

∑
k=1

V kN⃗k. (2.8)
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Through equation 2.7, it is seen that individual species fluxes can lead to bulk volume

flow, which is quantified by the volume-average velocity field.

Although it is well known that convective mass transfer can be represented equally

well by any reference velocity [68], such as the mass-average velocity [69], the mole-

average velocity [70], the velocity of a particular species [32], etc., the volume-average

velocity v⃗◻ is a particularly useful choice for multicomponent transport analysis [30].

To show why, consider the molar material balances, which can be written for each

species k as

∂(cTyk)
∂t

= −∇⃗ ⋅ N⃗k. (2.9)

Multiply each of equations 2.9 by V k, then sum over all species, use the scalar product

rule d(AB) = AdB + BdA and the scalar/vector product rule ∇⃗ ⋅ (sv⃗) = s∇⃗ ⋅ v⃗ + v⃗ ⋅

∇⃗s, apply volume Gibbs-Duhem equation 2.6, insert the definition of volume-average

velocity from equation 2.8, and simplify using equation of state 2.4 to show that

∇⃗ ⋅ v⃗◻ =
n

∑
k=1

N⃗k ⋅ ∇⃗V k. (2.10)

This volume-continuity equation depends linearly on the n independent material bal-

ances 2.9, and can replace any one of them; it has the advantage that no accumulation

term appears. Introduction of equation 2.8 and replacement of one of equations 2.9

with equation 2.10 eliminates an apparent coupling among the balances through time

derivatives.

2.2.3 Charge flow

Multicomponent-electrolyte dynamics involves several electrical state variables.

Some standard equations will be restated here because they are needed to assess

model closure. The forms given also help to emphasize the use of yk as a basis for

composition and N⃗k as a basis for flux.
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Faraday’s law relates the local current density to the species fluxes,

i⃗ = F
n

∑
k=1

zkN⃗k, (2.11)

in which zk represents the equivalent charge of species k. Sufficiently far from inter-

faces [71, 72], and within volume elements whose characteristic sizes are much larger

than the Debye length [73], local electroneutrality holds,

n

∑
k=1

zkyk ≈ 0. (2.12)

Although it is algebraic, equation 2.12 can be seen to arise from the differential form

of Gauss’s law: on the length scales of typical electrochemical cells, the electric-field

gradients associated with ionic currents induce relatively small local excess charge

densities, which, due to the large value of Faraday’s constant and the small values of

typical permittivities, suggest that local stoichiometric imbalances of ion concentra-

tions are negligible [32].

Last a thermodynamic basis for the potential is needed. The electrochemical

potential of species k, µk, can be defined generally as

µk = µ⊖k +RT ln (λkyk) + zkFΦ, (2.13)

where µ⊖k is the electrochemical potential of k in a secondary reference state [74], λk

its activity coefficient on a particle-fraction basis, and Φ an electrical potential. Elec-

trochemical potentials must satisfy the isothermal, isobaric Gibbs-Duhem equation

on internal energy,
n

∑
k=1

ykdµk = 0, (2.14)

a constraint that must be used to ensure thermodynamic consistency of the activ-

ity coefficients. The particle-fraction basis is particularly convenient for expressing
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activity in µk because equation 2.14 is satisfied by the case of an ‘ideal electrolytic

solution’, in which λk = 1 for every species.

It is customary to replace one of the material fluxes with the electric current,

which is more readily measured or controlled and can be viewed as a driving force

for migration that does not require explicit consideration of the electrical potential

[75]. Multiplying each of equations 2.9 by Fzk, summing over all species, applying

approximation 2.12, and substituting equation 2.11 yields

∇⃗ ⋅ i⃗ = 0, (2.15)

which expresses continuity of charge. Similarly to equation 2.10, this depends linearly

on the material balances, and can replace any one of them whenever any constituent

of a phase is charged and local electroneutrality maintains. Equation 2.15 eliminates

a second apparent coupling among the material balances through time derivatives.

2.2.4 Multicomponent flux laws

Transport in concentrated electrolytic solutions can be described by Onsager-

Stefan-Maxwell theory following Newman [31]. At constant T and p, the balance

among the thermodynamic driving force associated with diffusion of species i, −cTyi∇⃗µi,

and the drag forces exerted on i by all other species obeys an extended Stefan-Maxwell

equation,

−cTyi∇⃗µi =
n

∑
k=1
k≠i

RT

Dik

(ykN⃗i − yiN⃗k) . (2.16)

Here R is the gas constant, and Dij is the Stefan-Maxwell coefficient that quantifies

diffusional interactions between species i and j.
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2.2.5 Closure of the multicomponent bulk-solution model

Table 2.1 denumerates a set of governing equations applicable to electrolytic trans-

port under isothermal, isobaric conditions, along with the dependent variables in-

volved. The table also lists the total number of dependent scalar variables (each

vector is treated as d scalars, where d is the dimensionality of the geometry) and the

total number of equations of each type (each vector equation is counted as d scalar

equations); the numbers of unknowns and equations differ by d − 1, demonstrating

model closure for one-dimensional simulations.

If transport occurs in two or three directions, the model in table 2.1 will be under-

determined. In such cases a kinematic relation like equation 2.10 may not be enough

to specify the volume-average velocity; closure necessitates including pressure, and

carrying a momentum balance alongside the other equations.2 Appendix A discusses

how multidimensional or non-isobaric models can be closed.

2.2.6 Constitutive laws for binary electrolytic solutions

Although the governing system outlined in Table 2.1 is valid generally, it is more

typical to use mass balances in the form of the convective diffusion equation. Af-

ter incorporating flux-explicit transport constitutive equations, the material balances

for binary electrolytic solutions can be linearly recombined to obtain a single bal-

ance equation similar in form to equation 2.1, which is accompanied by two time-

independent local balances of volume and charge.

Consider a salt with a single cation (index k = +, equivalent charge z+ > 0) and

anion (k = −, z− < 0) dissolved in an electrically neutral solvent (k = 0, z0 = 0). The

2A momentum balance and pressure variable may also be needed in one-dimensional systems to
account for ‘free convection’, which occurs when the density gradients that accompany concentration
polarization induce a buoyant force, causing a pressure gradient that drives bulk flow [76].
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variables governing equations

# symbol # description equation

1 cT 1 equation of state Eq. 2.4

n yk 1 particle-fraction sum Eq. 2.5

n − 1 µk n − 2 material balances Eq. 2.9

1 Φ 1 volume continuity Eq. 2.10

d v⃗◻ 1 charge continuity Eq. 2.15

d i⃗ d definition of volume- Eq. 2.8

nd N⃗k average velocity

d Faraday’s law Eq. 2.11

1 electroneutrality Eq. 2.12

n − 1 electrochemical pot’l Eq. 2.13

constitutive laws

dn − d Stefan-Maxwell laws Eq. 2.16

Table 2.1: Summary of model equations to describe excluded-volume effects in an
isothermal, isobaric, locally electroneutral concentrated electrolytic solution compris-
ing n species. The numbers of scalar dependent variables and equations are provided;
vectors are taken to have dimensionality d. Note that the model is underdetermined
if transport occurs in more than one direction.
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electrolyte partial molar volume V e is defined as [32]

V e = ν+V + + ν−V −, (2.17)

where νk indicates the stoichiometry of ion k in a formula unit. A general composition

variable y,

y = y+
ν+
, (2.18)

can be adopted to describe local electrolyte content. The Guggenheim relation z+ν++

z−ν− = 0 relates the ionic equivalent charges with their stoichiometries in a formula

unit. Electroneutrality and the Guggenheim relation imply that y = y−/ν− as well.

In isothermal, isobaric systems, the total molar concentration and the solvent

particle fraction both depend solely on the electrolyte content y. An electrolyte

formula unit is taken to consist of ν = ν+ + ν− ions in total, so that equation of state

2.4 can be written as

1

cT

= V 0 + (V e − νV 0) y, (2.19)

and particle-fraction sum 2.5 becomes

y0 + νy = 1. (2.20)

The Stefan-Maxwell equation describing the thermodynamic force driving solvent

diffusion can be rearranged to get transport laws that express the excess ion fluxes

relative to the solvent velocity. With equations 2.8 and 2.11, these yield a cation flux

law with v⃗◻ as the convective velocity,

N⃗+ =
ν+DV 0cT2

νRT
y0∇⃗µ0 +

t0+i⃗

F z+
+ ν+cTy (v⃗◻ − Qi⃗

F ) . (2.21)
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A similar equation was derived by Newman and Chapman [30]. Here

D = (z+ − z−)D0+D0−

z+D0+ − z−D0−

, t0+ =
z+D0+

z+D0+ − z−D0−

,and Q = V +t0+
z+

+ V − (1 − t0+)
z−

(2.22)

define t0+ and the thermodynamic diffusion coefficient of the electrolyte, D , in terms

of Stefan-Maxwell coefficients; the additional property Q that appears [30] can be

interpreted as an electro-osmotic coefficient for solvent relative to the volume-average

velocity.

Volume-average velocity always appears in the combination v⃗◻ − Qi⃗/F seen in

the convective term of equation 2.21. Thermodynamic rigor requires this ambiguity

because the partial molar volumes of individual ions are not measurable [77]. A

solution to any physical problem will be invariant with respect to the value of Q in v⃗◻−

Qi⃗/F because any boundary conditions that specify v⃗◻ will prove to involve Q in the

same proportion. It is conventional to take Q = 0 for simplicity—a convention adopted

hereafter. As Newman and Chapman discussed, the convention allows individual

ionic partial molar volumes to be computed in principle, but no physical significance

should be attached to values so obtained [30]. To express the volume-average velocity

in terms of the species fluxes under the convention that Q = 0, one can use equations

2.8 and 2.17, the Guggenheim relation, and t0+ from equation 2.22, yielding

v⃗◻ = V e [
(1 − t0+)
ν+

N⃗+ +
t0+
ν−
N⃗−] + V 0N⃗0. (2.23)

In equation 2.21, the chemical-potential driving force relates to electrolyte com-

position gradients through a Darken thermodynamic factor χ [78],

y0

νRT
∇⃗µ0 = −χ∇⃗y. (2.24)

Darken factors are usually expressed in terms of mean molar electrolyte activities,
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such as λ+− = λν+/ν+ λ
ν−/ν
− ; the definition here is equivalent through Gibbs-Duhem equa-

tion 2.14, which shows with equations 2.12 and 2.20 that3

χ = 1 + (∂ lnλ0

∂ ln y0

)
T,p

= 1 + (∂ lnλ+−
∂ ln y

)
T,p

. (2.25)

With Q = 0, the cation flux is described in terms of composition gradients and the

Darken factor as

N⃗+ = −ν+DχV 0c
2
T∇⃗y +

t0+i⃗

F z+
+ ν+cTyv⃗

◻, (2.26)

obtained by insertion of equation 2.24 into equation 2.21. Through equations 2.11

and 2.23, this law can also be used to express N⃗− and N⃗0 in terms of v⃗◻, i⃗, and ∇⃗y.

2.2.7 Closure of the bulk binary-electrolyte model

Flux law 2.21 closes the governing system describing binary electrolytic transport.

Material balances 2.9 govern cations, anions, and solvent. Elimination of N⃗− and N⃗0

with equations 2.11 and 2.23, followed by insertion of equation 2.21 and rearrangement

using equations 2.10 and 2.15, equation 2.12, the Guggenheim relation, equations 2.6

and 2.20, vector identities, and the convention Q = 0 result in the governing equations

∂ (cTy)
∂t

+ v⃗◻ ⋅ ∇⃗ (cTy) = ∇⃗ ⋅ (DV 0c
2
T∇⃗y) −

i⃗ ⋅ ∇⃗t0+
Fz+ν+

− cTy∇⃗ ⋅ v⃗◻, (2.27)

∇⃗ ⋅ v⃗◻ = −V ei⃗ ⋅ ∇⃗t0+
Fz+ν+

− DcTχ

1 − νy ∇⃗y ⋅ ∇⃗V e, (2.28)

which hold in addition to charge-continuity equation 2.15.

Information about the cell potential is gained from a second independent Stefan-

Maxwell equation (in addition to the solvent equation already used). The Stefan-

Maxwell law expressing the force on cations is chosen here, although the force on

3Although apparently different, the definition of thermodynamic factor in equation 2.24 actually
matches Newman’s definition in terms of an activity based on molal concentration m [32]. In a

binary, χ = cT
c0

[1 + (∂ lnγ+−
∂ lnm

)
T,p

] = cTV 0 [1 + (∂ lnf+−
∂ ln c

)
T,p

].
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anions would be an equally valid alternative. With equations 2.4, 2.5, 2.11, 2.12,

2.19, 2.20, 2.22, and 2.24, the cation Stefan-Maxwell equation rearranges to

∇⃗ µ+
Fz+

= − i⃗
κ
+ νRT (1 − t0+)χ

Fz+ν+
∇⃗ ln y, (2.29)

in which the ionic conductivity κ is identified to be a function of electrolyte content

y through

1

κ
= RTν+ν−V 0

(Fz+ν+)2
y
[ y

D+−

+ 1 − νy
ν−D0+ + ν+D0+

] [1 + (V e

V 0

− ν) y] . (2.30)

Equation 2.29 is a MacInnes equation—a modified version of Ohm’s law accounting for

overpotentials that arise from electrolyte-composition gradients. Equilibria involving

µ+ can be used to establish a thermodynamic potential relative to a reference electrode

of a given kind [74]. Alternatively, by choosing a reference state where µ⊖+ = 0 and

γ+ = 1 in constitutive equation 2.13, it can be used to define Φ as a quasi-electrostatic

potential referred to cations [79].

Table 2.2 lists dependent variables and governing equations that suffice to describe

locally electroneutral concentrated binary electrolytic solutions in terms of a quasi-

electrostatic potential Φ. Although they differ somewhat in their descriptions, the

governing equations in table 2.2 follow directly from those in table 2.1 by a sequence

of linear transformations. The number of variables again differs from the number of

equations by d − 1, demonstrating closure in one-dimensional systems without free

convection. Six material properties are involved: thermodynamic properties V 0, V e,

and χ; and transport properties D , t0+, and κ. In isothermal, isobaric systems, these

depend at most on the electrolyte composition distribution y.
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variables governing equations

# symbol # description equation

1 cT 1 equation of state Eq. 2.19

1 y 1 electrolyte continuity Eq. 2.27

1 µ+ 1 volume continuity Eq. 2.28

1 Φ 1 charge continuity Eq. 2.15

d v⃗◻ d definition of volume- Eq. 2.23

d i⃗ average velocity

d N⃗+ d Faraday’s law Eq. 2.11

d N⃗− d cation flux law Eq. 2.26

d N⃗0 d MacInnes equation Eq. 2.29

1 cation electrochemical Eq. 2.13

potential constitutive law (k = +)

Table 2.2: Equation system sufficient to describe solute-volume effects during one-
dimensional transport in locally electroneutral concentrated binary electrolytic solu-
tions at constant T and p. In addition to the ionic equivalent charges z+ and z−, and
the stoichiometric numbers ν+, ν−, and ν = ν+ + ν−, the system contains six material
parameters, which depend at most on y: thermodynamic properties V 0, V e, and χ;
and transport properties D , t0+, and κ.
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2.2.8 The simple binary electrolytic solution

Analysis in the next sections will focus on a ‘simple’ concentrated binary elec-

trolytic solution of a binary electrolyte, for which the governing system in table 2.2

can be solved analytically in a number of circumstances. A simple binary electrolyte

will be defined by the conditions that:

1. the partial molar volumes V e and V 0 are independent of composition. This

assumes that the solution density varies linearly with molar electrolyte concen-

tration [32], an approximation that a substantial body of data suggests is fair

when electrolytes are not near saturation [62, 80–82]. If density varies linearly

with electrolyte molarity, then the solvent partial molar volume V 0 must also

equal the inverse molar concentration of the pure solvent.

2. the Stefan-Maxwell coefficients describing interactions with solvent, D0+ and

D0− (and consequently D and t0+), are relatively constant with composition.

The validity of this approximation to first order has been justified by a number

of experiments [28].

3. the thermodynamic factor χ is roughly constant with composition, so that the

Fickian diffusivity D does not vary substantially when concentration polar-

ization occurs. Electrochemists often make this assumption when analyzing

voltammetry data by the Randles-Sevcik or Koutecky-Levich methods [83]; it

has been demonstrated to hold very well for some lithium-ion-battery elec-

trolytes [62].

For a simple binary electrolytic solution, the electrolyte and volume continuity

equations simplify to

∂y

∂t
+ v⃗◻ ⋅ ∇⃗y = Dχ

⎡⎢⎢⎢⎢⎣
∇2y −

2 (V e − νV 0) ∇⃗y ⋅ ∇⃗y
V 0 + (V e − νV 0) y

⎤⎥⎥⎥⎥⎦
, (2.31)
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∇⃗ ⋅ v⃗◻ = 0, (2.32)

while charge-continuity equation 2.15 retains the same form. MacInnes equation 2.29

can be path integrated to determine potential distributions.

The material balance presented in equation 2.31 involves two terms that do not

appear in typical models—the v⃗◻ ⋅ ∇⃗y term, which accounts for convection (Faradaic,

free, or forced), and the term proportional to ∇⃗y ⋅ ∇⃗y, which describes the excluded-

volume effect.

2.2.9 Boundary conditions with solution flow

Boundary conditions that describe interfacial mass or charge exchange are needed

to solve the governing systems in table 2.1 and 2.2. The present discussion will focus

on heterogeneous Faradaic processes, in which interfacial electron exchange drives

electrochemistry involving the species in solution and/or adjacent phases.

Generally an interfacial half-reaction can be written in the form

n

∑
k=1

skM
zk
k + ∑

species in
other phases

skM
zk
k ⇋ ne−e−, (2.33)

where ne− is the number of electrons exchanged; Mk represents the symbol for ionic,

molecular, or atomic species k, and sk, its reaction stoichiometry (sk is positive for

a product and negative for a reactant if the half-reaction is written as a reduction;

it vanishes when a species does not react). The left side of the half-reaction balance

contains two sums: one sum over the n species in the electrolytic-solution phase,

governed by the equation systems summarized in tables 2.1 or 2.2; and one sum over

species in other phases, which are not necessarily involved in the description of interior

points within the electrolyte. Conservation of charge requires that ∑all species skzk =

ne−ze− , where ze− = −1 is the electron’s equivalent charge and ‘all species’ counts

both solution-phase constituents and those of other phases participating in the half-
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reaction.

Given an interfacial electrochemical reaction in the form of equation 2.33, the

flux of each species k should be driven by the electric current passing through the

interface in proportion to its reaction stoichiometry. Forced or free convection may

also occur with velocity v⃗conv, which generally can vary independently of the current

density [84]. Thus the total molar flux of species k normal to an interface is

(N⃗k ⋅ n⃗)∣S⃗ = [(ykcTv⃗conv +
sk i⃗

F ze−ne−
) ⋅ n⃗]∣

S⃗

, (2.34)

where S⃗ is a vector function describing the evolution of interfacial position relative to

a stationary frame, and n⃗ is a unit surface normal vector pointing from that interfacial

position into the solution phase. (Note that the sign convention for sk implies that i⃗

is an anodic current.)

To express the interfacial charge balance, multiply both sides of equation 2.34 by

Fzk, sum over all liquid-phase species, and apply Faraday’s law and electroneutrality,

(ze−ne− −
n

∑
k=1

zksk) (⃗i ⋅ n⃗)∣
S⃗
= 0. (2.35)

The current density normal to an interface is therefore independent of v⃗conv. Note

that if all the charged species involved in half-reaction 2.33 come from the electrolytic

solution phase, this equation holds true for any i⃗; otherwise, this equation may require

that (⃗i ⋅ n⃗)∣
S⃗
= 0.

2.2.10 Faradaic convection: definition

Multiplication of both sides of equation 2.34 by V k, summation over all species,

insertion of equation 2.8, and simplification with equation 2.4 leads to an expression
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for the volume-average velocity component normal to a boundary,

(v⃗◻ ⋅ n⃗)∣S⃗ =
∆V

sol

rxn

Fze−ne−
(⃗i ⋅ n⃗)∣

S⃗
+ (v⃗conv ⋅ n⃗)∣S⃗ . (2.36)

Here ∆V
sol

rxn quantifies the solution-volume change per mole of limiting reactant as

reaction 2.33 goes to completion,

∆V
sol

rxn =
n

∑
k=1

V ksk. (2.37)

Faradaic convection is formally defined as ‘bulk mass transport associated with the

portion of volume-average solution velocity driven by interfacial charge-transfer reac-

tions’, which is to say, the part of v⃗◻ associated with (⃗i ⋅ n⃗)∣
S⃗

in boundary-condition

2.36. After being induced at the interface, this part of v⃗◻ is distributed across the

solution phase in accord with volume continuity (equation 2.10, 2.28, or 2.32), driving

bulk convection.

After inserting equation 2.26 into flux law 2.34 for cations, elimination of the

volume-average velocity with equation 2.36 and introduction of y through equation

2.18 show that

− (c2
T∇⃗y ⋅ n⃗)∣S⃗ =

⎡⎢⎢⎢⎢⎣

⎛
⎝
s+ − ν+cTy∆V

sol

rxn

ze−ne−
− t

0
+

z+

⎞
⎠

i⃗ ⋅ n⃗
Fν+DχV 0

⎤⎥⎥⎥⎥⎦

RRRRRRRRRRRRS⃗
, (2.38)

a boundary condition that determines how Faradaic convection and migration lead

to interfacial composition gradients, independent of v⃗conv.
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2.3 Symmetric deposition/stripping cells

2.3.1 Boundary and auxiliary conditions

Analysis of an experimental configuration can help to illustrate the impact of the

excluded-volume effect and Faradaic convection on concentration profiles and current-

voltage relationships. The rest of this discussion will focus on a parallel-electrode cell

of the type shown schematically in figure 2.1—the ‘symmetric deposition/stripping

cell’. In such a cell both electrodes are imagined to be covered by solid films that

can reversibly form from or decompose into constituents of the electrolyte. On one

electrode, reaction 2.33 occurs in the anodic direction; on the other, it occurs ca-

thodically. It will further be assumed that all the charged species involved in the

deposition/stripping reaction come from the solution phase; that identical solid films

form or degrade on both electrode surfaces; that the system is oriented to suppress

the effects of free convection; and that there is no externally driven flow.

The most common example of this configuration is the ‘plating/stripping cell’, in

which two identical metallic electrodes are separated by an electrolytic solution, and

applied voltage or current causes metal ions to plate out of the solution phase on one

electrode while being stripped into it from the other. Symmetric deposition/stripping

cells have also been used for transport-property measurement by restricted diffusion

and galvanostatic polarization, and for general characterization by electrochemical

impedance spectroscopy [21, 23–25, 27, 62, 64].

Due to the congruence of the anodic and cathodic reactions, the masses of all

species in the solution phase are conserved, so

1

V ∫
V

ykcTdV = ⟨ck⟩ , (2.39)

in which ⟨ck⟩ represents the volume-averaged molar concentration of species k. (In

an isothermal, isobaric solution at equilibrium, ck = ⟨ck⟩ uniformly for all species.)

24



i i

x

vsurf vsurf

L

L

x’

Figure 2.1: Schematic diagram of a planar symmetric deposition/stripping cell.
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Equation 2.39 can be useful for describing galvanostatic steady states, in which flux

boundary conditions may not suffice to specify concentration distributions.

When analyzing cells in the configuration shown in figure 2.1, it is critical to

recognize that electrode surfaces can move as reactions progress, potentially changing

the total volume between the electrodes or inducing flow. Generally the volume V

in equation 2.39 may vary with time, and the interfacial position S⃗ in boundary

conditions 2.34 through 2.36 should be taken to differ from its initial position S⃗0

through a time integral of interfacial velocity v⃗surf,

S⃗(t) − S⃗0 =
t

∫
0

v⃗surfdt. (2.40)

Equation 2.33 distinguishes species in the electrolytic solution from those in other

phases to isolate quantities that could contribute to this interfacial motion—a source

of forced, rather than Faradaic, convection. In the absence of externally driven flow

and free convection, one has that v⃗conv = v⃗surf in equations 2.34 and 2.36.

Under the present circumstances, where it is assumed that all the species that

leave the electrolytic-solution phase contribute to the growth or depletion of the solid

deposition layers on the electrodes, the interfacial velocities are proportional to the

current through

v⃗surf =
∆V

surf

rxn

ze−ne−F
i⃗, where ∆V

surf

rxn = ∑
species in

other phases

V ksk. (2.41)

Application of local electroneutrality simplifies auxiliary condition 2.39 for a binary

electrolyte in a symmetric deposition/stripping cell to

1

V ∫
V

ycTdV = ⟨c⟩ , (2.42)

where ⟨c⟩ is the equilibrium electrolyte concentration.

Sundstrøm and Bark showed how the moving-boundary problem for a planar
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symmetric deposition/stripping cell could be simplified by introducing a reference

frame that moves uniformly at instantaneous velocity v⃗surf [61], a transformation

detailed in Appendix B. The only changes to the governing system when thrown into

the moving frame are that the boundaries appear stationary; that v⃗surf vanishes; and

that all fluxes, currents, and velocities are rescaled to remove apparent convection

due to the relative motion of the new coordinate system.

2.3.2 Dimensional analysis

It is convenient to non-dimensionalize the equations governing the experiment

described in section 2.3.1. For transport along the x′-axis in a cell of thickness L (see

figure 2.1), one can introduce dimensionless independent variables describing time τ

and position ξ, as well as dependent variables describing electrolyte composition Y ,

current I, and flow rate (or Péclet number) V ◻,

τ = Dχt′

L2
, ξ = x

′

L
, Y = y

⟨y⟩ , I =
i

i∞L
, and V ◻ = Lv

◻

Dχ
. (2.43)

Composition y is scaled by ⟨y⟩ so that Y remains finite and of order 1 in the limit of

extreme dilution; I is scaled by i∞L , the limiting current density at infinite dilution,

i∞L = 2Fz+ν+Dχ ⟨c⟩
( s+z+
ze−ne−

− t0+)L
, (2.44)

so that its maximum value at steady state is of order 1. (Note the equivalence

⟨c⟩ = ⟨cTy⟩ = ⟨cT⟩ ⟨y⟩.) Two parameters associated with solute-volume effects appear

in the dimensionless governing system,

α = ⟨c⟩ (νV 0 − V e) and β = z+ν+ ⟨c⟩∆V
sol

rxn

z+s+ − ze−ne−t0+
. (2.45)
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Both α and β are proportional to the average electrolyte concentration. In simple

binary electrolytes, both properties are also constant with respect to composition.

Charge and volume continuity equations 2.15 and 2.32 take the dimensionless

forms

∂I

∂ξ
= 0 and

∂V ◻

∂ξ
= 0. (2.46)

These imply that current and volume-average velocity are independent of position,

I (τ) and V ◻ (τ). Application of boundary condition 2.36 shows that the Péclet

number instantaneously relates to the current through

V ◻ (τ) = 2βI (τ) , (2.47)

allowing the convective velocity to be eliminated from the governing system in favor

of the current. Electrolyte balance equation 2.31 can thus be stated dimensionlessly

as

∂Y

∂τ
+ 2βI

∂Y

∂ξ
= ∂

2Y

∂ξ2
+ 2α

1 + (1 − Y )α (∂Y
∂ξ

)
2

, (2.48)

a second-order partial differential equation on Y .

To set up current/voltage relationships, it is helpful to have a form of MacInnes

equation 2.29, which transforms to

∂u+
∂ξ

= ∂ lnY

∂ξ
− I

K
, (2.49)

in which the dimensionless cation electrochemical potential u+ is

u+ =
ν+µ+

νχRT (1 − t0+)
, (2.50)
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and K is a dimensionless conductivity,

K = RTν (1 − t0+)κ
2F 2z2

+ν
2
+D ⟨c⟩ ⋅ (

s+z+
ze−ne−

− t0+) . (2.51)

Incorporating the variables and parameters defined in equations 2.43 and 2.45,

boundary condition 2.38 becomes

∂Y

∂ξ
∣
τ,0

= 2{βY − [1 + (1 − Y )α]}[1 + (1 − Y )α]I
1 + α ∣

τ,0

, (2.52)

and auxiliary condition 2.42 transforms to

1

∫
0

Y

1 + (1 − Y )αdξ = 1. (2.53)

2.3.3 Quantification of volume effects

Equation 2.45 defines the two key properties that quantify solute-volume effects:

the excluded-volume number α measures the solution volume change incurred when

electrolyte is exchanged for solvent; the Faradaic-convection number β quantifies the

solution volume change caused by interfacial reactions. Since I, Y and ∂Y /∂ξ are

all of order unity in equations 2.48, 2.52, and 2.53, the general importances of the

two solute-volume phenomena are signified directly by the magnitudes of α and β.

In the limit of infinite dilution, both α and β tend to zero, and equation 2.48 reduces

to Fick’s second law. When both solvent and electrolyte have identical partial molar

volumes, equation 2.48 reduces to the convective diffusion equation, as it would under

the Nernst-Planck theory with constant ion mobilities.

Table 2.3 presents excluded-volume numbers for some exemplary solutions. The

relative sizes of solute and solvent determine the sign and magnitude of α. When

the electrolyte is relatively small compared to the solvent, α is positive. High-

molar-mass solutes, such as tetraethylammonium tetrafluoroborate (teaBF4), tetra-
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solute solvent α ref. solute solvent α ref.

HCl H2O 0.016 [80] LiBF4 DMA 0.164 [85]

HNO3 H2O −0.002 [80] LiPF6 PC 0.117 [86]

KCl H2O 0.006 [80] LiPF6 EC:DEC 0.093 [87]

KOH H2O 0.021 [80] 1:1 by wt

AgNO3 H2O 0.002 [80] LiPF6 ACN −0.018 [87]

AgClO4 H2O −0.010 [80] LiPF6 EC:EMC 0.115 [62]

Cu(NO3)2 H2O 0.018 [80] 3:7 by wt

LiCl H2O 0.017 [80] teaBF4 ACN −0.079 [82]

LiBr H2O 0.010 [80] tbaBF4 ACN −0.222 [82]

LiNO3 H2O 0.005 [80] tbaPF6 ACN −0.230 [82]

Li2SO4 H2O 0.040 [80] bmimTFSI ACN −0.188 [82]

LiCl DMA 0.178 [85] teaBF4 DMF −0.044 [82]

LiBr DMA 0.169 [85] tbaBF4 DMF −0.167 [82]

LiI DMA 0.163 [85] tbaPF6 DMF −0.188 [82]

LiClO4 DMA 0.163 [85] bmimTFSI DMF −0.139 [82]

Table 2.3: Excluded-volume number α for various binary electrolytic solutions at
ambient temperature, assuming a 1 M electrolyte concentration. For mixed solvents,
α was computed by treating the mixture as a single solvent, with molar mass and
molar density determined by mean stoichiometric proportion.
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butylammonium hexafluorophosphate (tbaPF6), and 1-butyl-3-methyl imidazolium

bis(trifluoromethyl sulfonyl)imide (bmimTFSI), have partial molar volumes much

larger than typical solvents, leading α to be negative. In aqueous solutions, the

partial molar volumes of solvent and solute are both relatively small, leading α to be

of order 0.01 or smaller. In non-aqueous solutions, however, α is typically of order 0.1.

Although the densities of solvents like dimethylacetamide (DMA), ethylene carbonate

(EC), ethyl-methyl carbonate (EMC), propylene carbonate (PC), acetonitrile (ACN),

and dimethylformamide (DMF) are comparable to the density of water, their molar

masses are much greater, leading them to have much higher partial molar volumes.

One reason the Nernst-Planck dilute-solution theory works so well for typical aque-

ous electrolytes is that such solutions afford relatively small α, minimizing excluded-

volume effects. Owing to its relatively large excluded-volume number, a given mo-

larity in a non-aqueous solvent is effectively ‘more concentrated’ than an identical

aqueous molarity, and the excluded-volume effect at that molarity is correspondingly

much more significant.

Faradaic convection can also impact transport. For symmetric one-dimensional

deposition/stripping cells, definition 2.45 combines with equations 2.17 and 2.37,

equation 2.22 (with Q = 0), the Guggenheim condition, and the charge balance on

half-reaction 2.33 to show that

β = ⟨c⟩ (V e +
z+ν+s0V 0

z+s+ − ze−ne−t0+
) . (2.54)

Thus, in cells where solvent does not react (s0 = 0), β equals the electrolyte volume

fraction, and can be computed without any information about transport properties.

Table 2.4 provides Faradaic-convection numbers for cation plating/stripping cells,

under the assumption that cations deposit from or dissolve into solution, but that

solvent and anions do not react. Values of the Faradaic-convection number β range
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solute solvent β ref. solute solvent β ref.

AgNO3 H2O 0.034 [80] LiI DMA 0.023 [85]

AgClO4 H2O 0.046 [80] LiClO4 DMA 0.024 [85]

Cu(NO3)2 H2O 0.037 [80] LiBF4 DMA 0.022 [85]

LiCl H2O 0.019 [80] LiPF6 PC 0.063 [86]

LiBr H2O 0.027 [80] LiPF6 EC:DEC 0.083 [87]

LiNO3 H2O 0.031 [80] 1:1 by wt

Li2SO4 H2O 0.014 [80] LiPF6 ACN 0.122 [87]

LiCl DMA 0.008 [85] LiPF6 EC:EMC 0.059 [62]

LiBr DMA 0.017 [85] 3:7 by wt

Table 2.4: Faradaic-convection number β for various binary electrolytic solutions
undergoing symmetric cation plating/stripping reactions in a one-dimensional cell
at ambient temperature, assuming 1 M concentration. For mixed solvents, β was
computed by treating the mixture as a single solvent, with molar mass and molar
density determined by mean stoichiometric proportion.
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between 0.01 and 0.1 for typical aqueous and non-aqueous solutions, and are greater

than 0.05 for several lithium-ion-battery electrolytes.

If a Faradaic process reduces solvent (s0 < 0), β can be negative if z+ν+s0V 0/[(z+s+−

ze−ne−t0+)V e] < −1. Water is reduced at the cathode in a typical alkaline battery (s0 =

−1/2, s+ = 0, ne− = 1), leading to a β for 1 M aqueous KOH of −0.019 (V 0 = 18 cm3mol−1

and V e = 15 cm3mol−1 [80]; t0+ = 0.2633 [88]). In lithium batteries, electrochemical

reactions with solvent can sometimes occur; in these cases, reasonable estimates of

the cation transference number suggest that β will still be positive.

2.3.4 Statement as a standard convective-diffusion problem

Equation 2.48 does not appear to be amenable to an analytical solution. By

introduction of the transformed dependent variable

C = Y

1 + (1 − Y )α = c

⟨c⟩ , (2.55)

however, equations 2.48, 2.49, 2.52, and 2.53 can be thrown into a linear differential

balance on material involving a driving term proportional to I (τ),

∂C

∂τ
= ∂

2C

∂ξ2
− 2βI

∂C

∂ξ
, (2.56)

which is subject to a Robin boundary condition

∂C

∂ξ
∣
τ,0

= [2 (βC − 1) I]∣τ,0 , (2.57)

and a linear auxiliary mass-conservation condition

1

∫
0

C (τ, ξ)dξ = 1, (2.58)
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accompanied by a nonlinear current-potential relation

∂u+
∂ξ

= 1

1 + αC
∂ lnC

∂ξ
− I

K
. (2.59)

For galvanostatic conditions, in which I is constant, equations 2.56 through 2.58

represent a linear differential system. After obtaining C (τ, ξ), potential distributions

can be obtained by integration of (non-linear) equation 2.59.

If the applied current is fixed or mass-transfer limited, only β is needed to specify

the distribution of molar concentration because α is not involved in equations 2.56

through 2.58. Although it does not affect concentration, the excluded-volume number

α has a direct impact on the diffusion potential through equation 2.59, which arises

from the use of a particle-fraction basis when defining χ. Thus, when approximations

that justify the convective diffusion equation are applied in an electrolyte-transport

analysis, one may still need to consider excluded-volume effects to predict potential

distributions accurately.

2.4 Formulas for concentrations and overpotentials

This section focuses on solving equations 2.56 through 2.59. Analytical solutions

of the governing system can be achieved to determine concentration profiles and

current/ potential relationships for simple binary electrolytes in planar symmetric

deposition/stripping cells under a variety of experimental control modes.

The analyses will always start with the determination of concentration profiles.

Once these are available, the total diffusion potential ∆uc
+ can be calculated by dis-

carding the ohmic contribution to equation 2.49 (the term containing K),4 then inte-

4To first order, D+− ∝
√
c [28, 89]. Consequently, κ has a strong composition functionality, which

tends to vary significantly among solutions, even when they are simple binary electrolytes. Ohmic
losses will not be considered, but one could readily compute them by integrating the last term in
equation 2.59 with an appropriate K (C).
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grating both sides, showing that

∆uc
+ =

0

∫
1

[∂u+
∂ξ

+ I (τ)
K (Y (τ, ξ))]dξ = ln(Y (τ,0)

Y (τ,1))

= ln(C (τ,0)
C (τ,1)) + ln(1 + αC (τ,1)

1 + αC (τ,0)) . (2.60)

2.4.1 Steady-state galvanostatic concentration polarization

A first situation of interest is the steady-state response of the symmetric deposi-

tion/stripping cell under galvanostatic conditions. Concentration distributions with

constant current will be notated with a superscript I.

At steady state ∂CI/∂τ = 0 locally; let CI
ss (ξ) represent the galvanostatic steady-

state concentration distribution. Equations 2.56 through 2.58 are satisfied by

CI
ss (ξ) =

e2βI − 1 − 2 (1 − β)βIe2βIξ

β (e2βI − 1) . (2.61)

To calculate the dimensionless limiting current IL, let I = IL and CI
ss (1) = 0 in

equation 2.61. This yields an implicit equation for IL,

IL = 2 (βIL)2

2βIL + e−2βIL − 1
. (2.62)

Figure 2.2 shows how concentration profiles and the limiting current are affected by

the Faradaic-convection number β. In dilute electrolytic solutions, β is very small;

the concentration profiles become linear, and IL approaches 1, in line with its defini-

tion. In more concentrated solutions, Faradaic convection becomes significant. The

concentration profiles become curved due to the flow induced by Faradaic processes.

Electrolytic solutions with positive β values can bear greater currents, while those

with negative β tolerate smaller currents. Taking lithium plating from a 1 M LiPF6

solution in ACN by way of example, the limiting current is around 9% higher than
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that predicted assuming infinite dilution.

Figure 2.2(a) also demonstrates that when Faradaic convection is significant, it

impacts the concentration polarization in two ways: the concentration difference be-

tween the two ends of the cell shrinks as β rises, and the minimum concentration

deviates from the dilute-solution prediction according to the applied fraction of the

limiting current. Both of these effects are summarized by the diffusion potential ∆uc
+.

Figure 2.3(a) illustrates how the diffusion potential ∆uc
+ varies with β and applied

fraction of the limiting current when the excluded-volume effect is negligible (α = 0).

Increasing β decreases the diffusion potential at a given current.

The impacts of the excluded-volume number α and Faradaic-convection number

β on diffusion potential at I/IL = 0.5 are summarized in figure 2.3(b). Increasing

α and β both decrease overpotential. Potential loss induced by cell polarization is

suppressed in electrolytic systems with positive α and β values; the potential loss

may be larger than expected if either parameter is negative.

2.4.2 Galvanostatic transients

To elucidate the transient relaxation of an initially equilibrated deposition/stripping

system in response to an ongoing galvanostatic pulse, governing equation 2.56 can be

solved subject to boundary condition 2.57 and auxiliary condition 2.58, with initial

condition

CI (0, ξ) = 1. (2.63)

The transient concentration distribution is given by

CI (τ, ξ) = CI
ss (ξ) − 4 (1 − β) IeβIξ−β2I2τ×

∞

∑
m=1

Ame
−m2π2τ [cos (mπξ) + βI sin (mπξ)

mπ
] , (2.64)
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Figure 2.2: Effect of Faradaic convection on concentration profiles and limiting
currents. (a) Concentration profiles with β = 0.25 at three limiting-current fractions
X = I/IL. Dotted lines show profiles when β → 0; black curves show exact profiles from
equation 2.61; gray curves show first-order asymptotic profiles from equation 2.73,
which coincide almost exactly with the exact ones. (b) The black curve shows IL (β)
from equation 2.62; the gray line is the first-order approximation from equation 2.72.
The approximation is accurate within 2% in the light gray domain; dilute-solution
theory (IL = 1) is accurate within 2% in the dark gray domain.
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Figure 2.3: Impact of electrolyte volume on diffusion potential. (a) ∆uc
+ as a function

of β and applied fraction of the limiting current, I/IL, with α=0; (b) ∆uc
+ as a function

of β and α at I/IL = 0.5. The asymptotic solution from equations 2.73 and 2.80 is
accurate within 2% in the light gray domains; the dilute-solution theory (α = β = 0)
is accurate within 2% in the dark gray domains.
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in which the Fourier amplitudes Am are

Am = 1 − (−1)m e−βI

m2π2 [1 + ( βI
mπ

)2]
2 . (2.65)

Here there is a convective relaxation time involving the Péclet number 2βI, as well

as a diffusional relaxation corresponding to the square of the first eigenvalue, π2.

These two characteristic times—both longer than double-layer relaxation—may be

observed in systems where Faradaic convection is significant. Multiple time constants

that are longer than the expected double-layer relaxation time have been observed

during transference-number measurements by galvanostatic polarization [27].

At very short times (τ << 1) the solution given by equation 2.64 exhibits the Gibbs

phenomenon. To obtain a solution of equation 2.56 valid near ξ = 0 in the regime

of small Fourier number, use boundary condition 2.57 and initial condition 2.63, but

replace auxiliary condition 2.58 with a condition describing a semi-infinite geometry,

lim
ξ→∞

CI (τ, ξ) = 1. (2.66)

Near the inner electrode (ξ = 0), a concentration distribution satisfying the governing

equation and boundary conditions is given in terms of a series of repeated integrals

of the error function complement [90] as

lim
τ<<1

CI (τ, ξ) = 1 + 4eβIξ−β
2I2τ (1 − β)×

∞

∑
m=1

m
2β

(2βI
√
τ)2m−1 [i2m−1erfc ( ξ

2
√
τ
) −2βI

√
τ i2merfc ( ξ

2
√
τ
)] . (2.67)

To obtain a solution valid near the outer electrode (ξ = 1), an opposing concentration

distribution can be obtained by replacing I with −I and ξ with 1−ξ in equation 2.67.
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2.4.3 Cottrell equation

A final analytical solution comparable to a canonical result is provided by ana-

lyzing the short-time system response to a step change in potential when Nernstian

equilibrium maintains at the plane electrode surface of a semi-infinite system—the

assumptions typically used when deriving the classical Cottrell equation [83, 91]. In

this case, one again only considers the electrode near ξ = 0, and the concentration

distribution is determined by solving governing equation 2.56 subject to initial con-

dition 2.63 and boundary condition 2.66. Boundary condition 2.57 can be replaced

with a Dirichlet condition at the inner electrode,

CΦ (τ,0) = ∆C0 + 1, (2.68)

where ∆C0 is the surface excess concentration and the superscript Φ indicates that

the applied potential is fixed. A similarity transformation then shows that the con-

centration distribution evolves according to

CΦ (τ, ξ) = 1 +
∆C0erfc ( ξ

2
√
τ
− β∆C0k√

π
)

erfc (−β∆C0k√
π

)
, (2.69)

while the current varies with time as

IΦ (τ) = ∆C0k

2
√
πτ

(2.70)

These functions involve a parameter k that quantifies the deviation from the typical

result of dilute-solution theory (limβ→0 k = 1). An implicit formula for k in terms

of the surface excess concentration ∆C0 and the Faradaic-convection number β is
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obtained by inserting equations 2.69 and 2.70 into boundary condition 2.57, yielding

k =
exp [− (β∆C0k√

π
)

2
]

erfc (−β∆C0k√
π

) [1 − β (1 +∆C0)]
. (2.71)

Figure 2.4 shows how the current-evolution parameter k depends on surface excess

concentration ∆C0 and the Faradaic convection number β. Typically k rises with ∆C0

when β > 0, and decreases with ∆C0 when β < 0.

2.4.4 Asymptotic formulas with solute-volume effects

Since both α and β tend to be of order 0.1, it is worthwhile to perform asymptotic

expansions of the non-linear equations from the previous section for use in the limit

∣β∣ << 1 and ∣α∣ << 1. The light-gray-shaded regions in figures 2.2 through 2.4 indicate

the domains of parameters wherein first-order expansions match the exact solutions

within 2%. Agreement between the first-order and exact solutions is quite good within

practical ranges of α and β.

The galvanostatic systems are imagined to be operated under a specified applied

fraction of the limiting current, X = I/IL. Either by formal Maclaurin expansion of

the exact solution or by a regular perturbation analysis, the limiting current up to

first order in β is found to be

IL ≈ I(0)L + I(1)L β +O (β2) = 1 + 2
3β +O (β2) , (2.72)

while the steady-state concentration distribution is

CI
ss (ξ) ≈ C

I(0)
ss + βCI(1)

ss +O (β2) , where

C
I(0)
ss = 1 +X (1 − 2ξ) and C

I(1)
ss = −X {1

3 (1 − 2ξ) +X [1
3 − 2ξ (1 − ξ)]} . (2.73)
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Figure 2.4: Contour plot of the current-evolution parameter k as a function of
electrolyte surface excess concentration ∆C0 and Faradaic-convection number β. The
asymptotic equation 2.79 is accurate within 2% in the light gray domain, and the
dilute-solution-theory value (k = 1) is accurate within 2% in the dark gray domain.
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The expressions for I
(0)
L and C

I(0)
ss are familiar results from dilute-solution theory [92].

The galvanostatic transient concentration as β → 0 also matches the literature [92],

CI(0) (τ, ξ) = CI(0)
ss +CI(0)

t , where

C
I(0)
t = −2X

∞

∑
m=1

e−4(m−
1
2 )

2π2τ cos [2 (m − 1
2
)πξ]

(m − 1
2
)2
π2

. (2.74)

The transient concentration is corrected to first order as

CI (τ, ξ) ≈ CI(0) + βCI(1) +O (β2) , where

CI(1) = CI(1)
ss − [1

3 + 1
2X (1 − 2ξ)]CI(0)

t −X2
∞

∑
m=1

e−4(m−
1
2 )

2π2τ sin [2 (m − 1
2
)πξ]

(m − 1
2
)3
π3

−X2
∞

∑
m=1

e−4m2π2τ cos (2mπξ)
m2π2

. (2.75)

The short-time transient solution valid near ξ = 0 asymptotically satisfies

lim
τ<<1

CI (τ, ξ) = lim
τ<<1

[CI(0) + βCI(1) +O (β2)] , where

lim
τ<<1

CI(0) = 1 + 4X
√
τ ierfc ( ξ

2
√
τ
) and

lim
τ<<1

CI(1) = (3
2Xξ − 1

3) (lim
τ<<1

CI(0) − 1) − 2X2τerfc ( ξ
2
√
τ
) . (2.76)

Here the zero-order solution, limτ<<1CI(0), agrees with the formula from dilute-solution

theory that underpins the theory of galvanostatic polarization measurements [21, 25].

Finally, a Cottrell equation corrected to first order for Faradaic convection can be

determined. First, the concentration distribution is given up to order β by

lim
τ<<1

CΦ (τ, ξ) = lim
τ<<1

[CΦ(0) + βCΦ(1) +O (β2)] ,

where lim
τ<<1

CΦ(0) = 1 +∆C0erfc( ξ

2
√
τ
) and

lim
τ<<1

CΦ(1) = 2
π∆C2

0 [exp (− ξ24τ ) − erfc ( ξ
2
√
τ
)] . (2.77)
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It follows that the current distribution satisfies

lim
τ<<1

IΦ (τ) = ∆C0

2
√
πτ

{1 + β [1 + (1 − 2
π
)∆C0] +O (β2)} . (2.78)

The zero-order term matches the classical Cottrell equation exactly; in the limit β → 0,

k → 1 and I → ∆C0/
√

4πτ . A comparison between equation 2.70 and 2.78 also gives

an asymptotic equation for calculating the current-evolution parameter,

k = k(0) + βk(1) +O (β2) = 1 + β [1 + (1 − 2
π
)∆C0] +O (β2) . (2.79)

To evaluate the impact of the excluded-volume number α, one can perform an

asymptotic expansion of the MacInnes equation. Up to second order in both solute-

volume numbers, the diffusion potential is

∆uc
+ = ∆u

c(0)
+ + α [C(0) (τ,1) −C(0) (τ,0)]

+ β [C
(1) (τ,0)

C(0) (τ,0) −
C(1) (τ,1)
C(0) (τ,1)] +O(α2) +O(αβ) +O(β2) ,

where ∆u
c(0)
+ = ln(C

(0) (τ,0)
C(0) (τ,1)) (2.80)

The zero-order term is the standard Nernstian overpotential. A correction of order

α involves the zero-order concentration polarization, C(0) (τ,1)−C(0) (τ,0); the first-

order concentration distributions are involved in a correction of order β.

2.5 Conclusion

Two solute-volume effects intrinsic to transport in electrolytes have been consid-

ered: the excluded-volume effect, associated with a dimensionless number α, and

Faradaic convection, associated with a number β. The excluded-volume effect is im-

portant in solutions where significant differences exist among species partial molar
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volumes, and where partial molar volumes are relatively large. Faradaic convection

is significant when electrode reactions induce substantial solution-volume changes—

typically when heterogeneously reacting components occupy a large volume fraction

of the solution phase. The impacts of both effects increase with electrolyte concen-

tration, but may also be important at more moderate concentrations in non-aqueous

electrolytes. A comprehensive analysis has been conducted to study quantitatively

the influences of solute-volume effects on planar, symmetric deposition/stripping cells

subjected to galvanostatic polarization or step changes in potential. Faradaic con-

vection usually reduces concentration polarization and raises the apparent limiting

current; depending on the relative sizes of electrolyte and solvent molecules, the

excluded-volume effect may either reduce or increase diffusion potentials.

Fitting of experimental current/voltage data is involved in most of the standard

transport-property measurement techniques. But data are usually fit using equations

that neglect solute-volume effects altogether. This chapter demonstrates that the

experimental current/voltage data for, say, a typical lithium-ion-battery electrolyte

in a symmetric plating/stripping cell (expected to have significant values of α and β,

cf. tables 2.3 and 2.4) will exhibit features arising from solute-volume effects. When

fit by a model that neglects such effects, systematic errors may be induced that cause

parameters derived from data fitting to be either inaccurate or inconsistent with other

experimental observations.

By way of example, consider a non-aqueous Li-ion electrolyte at moderate molar-

ity (which experimental data summarized in this paper suggest will have a β value

around 0.05, or even as large as 0.15 if its concentration is above 1 M). If a restricted-

diffusion measurement is performed with a symmetric plating/stripping cell to mea-

sure the electrolyte diffusivity, that measurement will yield a diffusivity that under-

predicts the experimentally observed limiting current by a factor of approximately

1 − 2
3β when inserted into the usual formula for plane geometries. Alternatively, if a
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linear-sweep voltammetry experiment on the same cell is used to measure a limiting

current, and the standard formula is used to extract the diffusivity from that datum,

the diffusivity so determined will be artificially high by a factor of approximately

1 + 2
3β, because the standard equation neglects Faradaic convection. The ramifi-

cations for parameters gathered from galvanostatic-polarization experiments, which

involve a constant-current pulse (in which Faradaic convection will be significant in

determining the end-of-pulse concentration profile) followed by an open-circuit hold

wherein diffusion-potential relaxation is recorded (during which time the excluded-

volume effect is significant), are much harder to parse; they will be addressed in future

work.
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CHAPTER III

Electrolyte Property Measurements

3.1 Introduction

The complete description of mass transfer in an electrolytic system composed of

n species requires n (n − 1) /2 transport properties [32, 33]. For a binary electrolytic

solution comprising three species (cations, anions, and solvent), these fundamental

transport properties are ionic conductivity, κ, cation transference number, t0+, and

thermodynamic electrolyte diffusivity, D . In addition, three thermodynamic prop-

erties are needed to describe a concentrated binary electrolyte: a volumetric state

equation incorportates partial molar volumes for the dissolved electrolyte and the

solvent, V e and V 0, respectively; nonideal solution energetics are accounted for by

a thermodynamic factor, χ. Thermodynamic factors are particularly important be-

cause they can be strongly composition dependent [62]; the time scales over which

concentration nonuniformities relax are determined by the Fickian diffusivity D = Dχ,

rather than the thermodynamic diffusivity [30].

Ionic conductivity is directly measurable, and is typically quantified using DC

conductometry [93, 94] or impedance spectroscopy [95, 96]. Partial molar volumes

are not directly measurable, but their composition dependences can be quantified

independently of the other properties via densitometry [82, 97]. The remaining three

solution properties are not directly measurable, and cannot be measured in isolation;
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values of D , t0+, and χ must be deconvoluted from the results of three independent

experiments. When the three experiments are potentiometric, deconvolution of D ,

t0+, and χ involves the use of theoretical expressions for the dependence of measured

cell voltage on composition.

Ma et al. developed a standard battery of three independent potentiometric ex-

periments to establish D , t0+, and χ [21]. A ‘concentration cell’ is fabricated, in which

two electrolytic solutions with different concentrations are put in chemical contact

using a porous membrane that prevents significant mixing during the experimental

period; the open-circuit voltage of such a cell after quasi-equilibrium is reached re-

lates to χ and t0+ [27, 62]. A planar electrolytic cell with parallel electrodes that

reversibly produce or consume species from the solution phase (and produce no new

liquid-phase species) is used for the other two measurements. In a ‘restricted diffu-

sion’ experiment, a non-uniform concentration distribution is induced in the cell; the

relaxation of concentration polarization at long times depends on D and χ [30, 98],

and can be tracked by recording the transient open-circuit voltage [22, 30]. In a

‘galvanostatic polarization’ experiment, a short current pulse is applied to produce

diffusion boundary layers near the electrode surfaces; the open-circuit voltage relax-

ation at times before the boundary layers come into contact depends on D , t0+, and

χ [21, 99]. Restricted-diffusion and galvanostatic-polarization experiments can both

be implemented with the same cell, since a current pulse can be used to establish

the non-uniform concentration distribution for restricted diffusion. In practice, the

two experiments need to be run separately, to achieve good signal-to-noise ratios for

voltages in the short-time and long-time relaxation regimes.

Theoretical expressions were provided by Ma et al. [21] to cast the voltage tran-

sients observed during potentiometric restricted-diffusion and galvanostatic-polari-

zation experiments in terms of D , t0+, and χ. A number of restrictions apply to

their analysis. In particular, the theory requires that concentration differences are
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relatively small, despite the fact that large concentration differences may need to be

imposed to get an adequate signal during chronopotentiometry. Also, the theory re-

quires that electrolyte convection associated with current pulses is negligible – but

this effect can be significant for moderately concentrated non-aqueous electrolytes

[100].

Although Ma et al. obtain sensible property data [21], some implementations of

their characterization protocol by others have led to surprising results for lithium-

battery electrolytes. These include unexpectedly high diffusivities [27] and low – or

even negative – transference numbers [24]. In light of these observations, this chapter

aims to serve three primary purposes. First, the theory underpinning measurement

of D , t0+, and χ in planar electrolytic cells is extended, to relax the assumptions

of low concentration polarization and negligible Faradaic convection. Second, sev-

eral relationships are provided to help guide experimentalists in the future design

of galvanostatic-polarization experiments. Third, this extended theory is used to

rationalize the counterintuitive observations made by prior researchers, whose exper-

imental protocols may have violated the theoretical assumptions stated by Ma et

al.

3.2 Analysis and discussion

3.2.1 Electrolyte composition bases

Solute molalities mk are the most typical composition basis used to express the

composition dependences of solution properties, primarily because they are very pre-

cisely quantifiable: to make a solution of a given molality does not require a volume

measurement, and, since they are referred to solvent mass, molalities are independent

of temperature and pressure. Although solvent molality is conveniently constant

(equaling the inverse of its molar mass M0), the molalities of solutes become very
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large when little solvent is present, and diverge when there is no solvent. Thus mo-

lality is a difficult composition basis to apply to very concentrated solutions. The

need to specially identify a particular species as a ‘solvent’ also forces some degree of

arbitrariness when describing mixed-solvent systems on a molal basis.

Molar species concentrations ck are bounded throughout the entire domain of

miscibility and treat all species on equal footing, avoiding the problems associated

with molality in very concentrated or multiple-solvent systems. The molar basis places

strict limits on experimental precision, however, because solution preparation involves

a volume measurement. Since solution densities depend on temperature T , pressure

p, and local composition, the use of a molar basis can easily lead to systematic errors

in property measurements. The T and p dependences of molarity also make it vague

as a basis for solution properties in coupled transport scenarios.

Species particle fractions yk have the advantage of molality, because they are

independent of T and p, and also of molarity, because they apply equally to all the

species in a system and have finite bounds. They are convenient from a theoretical

standpoint because they are dimensionless and bounded between 0 and 1. As a basis

for activity they are also useful, because chemical-potential constitutive laws in which

species activities are based on particle fractions satisfy the Gibbs-Duhem equation

naturally in the ideal-solution limit.

When electrolytic solutions are in thermodynamic equilibrium, or when they are

observed on length scales relevant to macroscpic transport phenomena, their ion con-

tents satisfy a local electroneutrality relationship. Thus one does not need to distin-

guish the cation particle fraction y+ and the anion particle fraction y−. Letting ν+

and ν− represent the ion stoichiometries in a formula unit of salt, a single composition

variable

y = y+
ν+

= y−
ν−

(3.1)

can be used. The quantity y represents the number of salt formula units, scaled by
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the total number of ion and solvent particles (i.e., the numbers of all three species)

in solution. The particle-fraction basis relates to salt molarity m and salt molarity c

through

y (m) = mM0

1 + νmM0

and y (c) = cV 0

1 + c (νV 0 − V e)
, (3.2)

in which ν = ν+ + ν− stands for the total number of ions in a formula unit of salt.

3.2.2 Basic thermodynamics

Consider a general electrolytic cell containing a simple binary electrolyte, which is

diagrammed using the standard schematic representation [32, 83] in Figure 3.1. The

half-reactions at each of the electrodes (α and α′) can be expressed in the form

species in electrode & other phases + s+Mz+ + s−Xz− + s0N⇌ ne−e−. (3.3)

The cell in Figure 3.1 is taken to be ‘symmetric’, in the sense that the reaction sto-

ichiometric coefficients sk are the same in both electrode reactions; the number of

electrons transferred, ne− , should also be the same.1 Fabrication of a symmetric elec-

trolytic cell does not require that both half reactions are identical: the components in

other phases (if present) and their involvement in the electrode reactions can generally

differ.2

When no current is allowed to pass through the cell in Figure 3.1, the change

in open-circuit potential (∆U , abbreviated as OCP) arising from the composition

1Note that sk is positive for a product and negative for a reactant when half-reaction 3.3 is
written as a reduction. If the species in the electrodes and other phases are uncharged, conservation
of charge requires that ∑k skzk = ne−ze− , where ze− = −1 is the equivalent charge of electrons.

2For instance, a standard alkaline battery can be considered to be a symmetric electrolytic cell:
both cell half-reactions involve the same number of electrons, and both electrodes react with solvent
(water) and anions (hydroxide) in the same proportions.
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Figure 3.1: Schematic drawing of a general electrolytic cell containing a simple binary
electrolyte. M, X, and N are the chemical symbols of cations, anions, and solvent,
respectively, and z+ and z− are the ionic equivalent charges.
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change across the transition region is given by the path integral

F

δ′

∫
δ

dU = s+
ne−

δ′

∫
δ

dµ+ +
s−
ne−

δ′

∫
δ

dµ− +
s0

ne−

δ′

∫
δ

dµ0. (3.4)

Here µk represents the electrochemical potential of species k and F is Faraday’s

constant. Equation 3.4 for the OCP difference holds true so long as there is an

unbroken path of chemical contact that can be traversed from δ to δ′. The ‘transition

region’ in Figure 3.1 is meant to represent any means by which this continuous contact

is supported: it can be a fabricated liquid junction (e.g., a glass frit or a porous

membrane in a concentration-cell experiment), or simply a nonuniform distribution

of composition in the intermediating liquid between two electrodes.

Equation 3.4 can be simplified to an expression dependent only on y using thermo-

dynamic principles and standard constitutive laws. The salt dissociation equilibrium

µe = ν+µ+ + ν−µ− can be used to eliminate µ−; the isothermal, isobaric, electroneutral

Gibbs-Duhem equation, in the form ydµe + y0dµ0 = 0, then allows elimination of the

chemical potential of the salt. Changes in the chemical potential of the solvent relate

to changes in the electrolyte composition through a constitutive law that defines χ

[100],

dµ0 = −
νRTχ

y0

dy, (3.5)

so terms involving the solvent chemical potential can be replaced with terms involving

y. Incorporation of the MacInnes equation under a condition of zero current [100]

allows dµ+ to be eliminated in favor of dy as well. Finally, under isothermal, isobaric

conditions, thermodynamic consistency requires that U (y) only. Thus one can write

δ′

∫
δ

{ dU

d ln y
− νRTχ

F
[ s+
ne−ν+

− ze−t0+
z+ν+

− s0y

ne− (1 − νy)
]}d ln y = 0. (3.6)

53



Finally, since this relationship must hold along any portion of the path between δ

and δ′, the integrand must vanish uniformly. Therefore

dU

d ln y
= νRTχ

F
[ s+
ne−ν+

− ze−t0+
z+ν+

− s0y

ne− (1 − νy)
] . (3.7)

Many electrolytes can be treated as ‘simple binary electrolytic solutions’ [100], for

which the six fundamental properties needed to describe isothermal, isobaric mass

and charge transport are relatively constant with composition. In this case equation

3.7 can be integrated directly, yielding

∆U = U δ′ −U δ = RTχ
F

[ ν
ν+

( s+
ne−

− ze−t0+
z+

) ln
yδ

′

yδ
+ s0

ne−
ln

1 − νyδ′

1 − νyδ ] . (3.8)

Equation 3.8 is the sole expression needed to relate changes in the OCP to solution

composition, and serves as the theoretical foundation of the subsequent analysis. It

differs from the expression used by Ma et al. [21] because χ is determined by the

variation in the mean molar salt activity coefficient on a particle-fraction basis, rather

than being based on molar concentration.

3.2.3 Concentration cell

During concentration-cell measurements, the cell voltage is recorded while no ap-

preciable mass diffusion is allowed across the transition region in Figure 3.1. Exper-

imental implementations typically involve using a membrane or frit to separate two

compartments containing well-stirred electrolytic solutions, in which reference elec-

trodes are immersed. On one side of the cell, solution composition is fixed at yδ
′ = yref ;

on the other side, a test composition yδ = ytest is varied in the close vicinity of yref.

The potential difference between the two electrodes is determined by ytest and yref,

giving a function ∆U (ytest, yref). Plotting this potential difference as a function of

the logarithm of the concentration ratio ytest/yref yields a curve, whose slope can be
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extrapolated to find the value of dU/d ln y at yref, denoted formally as (dU/d ln y)∣yref
[21]. Given the tranference number at yref, the thermodynamic factor at yref can be

calculated from (dU/d ln y)∣yref through equation 3.7, or vice versa.

3.2.4 Polarization cell

Restricted diffusion and galvanostatic polarization both involve tracking the re-

laxation of an initially nonuniform concentration distribution in a cell at open circuit

[21, 25, 30]. Both measurements can be implemented with a single chronopotentio-

metric experiment. An isothermal, isobaric cell is polarized with a constant current

at time t = 0 for an appropriate period of time tpulse to create a nonuniform concen-

tration profile in the solution. After tpulse, an open-circuit condition is enforced by a

galvanostat, which also records the relaxation of the OCP as the concentration profile

relaxes.

For a moderately concentrated simple binary electrolyte in a one-dimensional cell

of length L in the x direction, the composition distribution during polarization and

relaxation is governed by [100]

∂y

∂τ
+ 2βI

∂y

∂ξ
= ∂

2y

∂ξ2
+ 2α

⟨y⟩ + (⟨y⟩ − y)α(∂y
∂ξ

)
2

, (3.9)

where ⟨y⟩ is the equilibrium composition. The dimensionless time τ , position ξ, and

current density I are

τ = Dχt

L
, ξ = x

L
, and I = i

i∞L
, (3.10)

in which the limiting current at infinite dilution, i∞L , is

i∞L = 2Fz+ν+Dχ ⟨c⟩
( s+z+
ze−ne−

− t0+)L
, (3.11)

(The equilibrium molar concentration of salt, ⟨c⟩, relates to ⟨y⟩ through equation
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3.2.) For binary electrolytes, D and t0+ are defined in terms of the Stefan-Maxwell

coefficients describing ion-solvent interactions as

D = (z+ − z−)D0+D0−

z+D0+ − z−D0−

and t0+ =
z+D0+

z+D0+ − z−D0−

. (3.12)

Solute-volume effects, which were assumed to be negligible by Ma et al. [21] and

Hafezi and Newman [25], are described by the parameters

α = ⟨c⟩ (νV 0 − V e) and β = z+ν+ ⟨c⟩∆V
sol

rxn

z+s+ − ze−ne−t0+
, (3.13)

in which ∆V
sol

rxn = ∑j sjV j represents the solution-phase volume change per mole of

limiting reactant as reaction 3.3 goes to completion. Observe that the calculation of

β may require knowledge of partial molar volumes for individual ions. Newman and

Chapman [30] showed for binary electrolytic solutions that it is natural to assume

that ionic partial molar volumes satisfy

V̄+ =
(1 − t0+) V̄e

ν+
and V̄− =

t0+V̄e

ν−
(3.14)

relationships which are generally needed to calculate ∆V
sol

rxn.

Because of the interfacial half-reaction, governing equation 3.9 is subject to a

boundary condition

∂y

∂ξ
∣
τ,0

= − 2 ⟨y⟩
1 + α × {[1 + (1 − y

⟨y⟩)α −
y

⟨y⟩β] [1 + (1 − y

⟨y⟩)α] I}∣
τ,0

, (3.15)

which relates the composition gradient at one of the electrodes to the dimensionless

current I. To describe the pulse process, current is described by a driving function

I (τ) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ipulse, τ ≤ τpulse

0, τ > τpulse

. (3.16)
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In addition, an auxiliary condition,

1

∫
0

y

⟨y⟩ + (⟨y⟩ − y)αdξ = 1, (3.17)

guarantees mass conservation in the solution phase, which is maintained instanta-

neously as a consequence of the symmetry in the cell half-reactions.

The solution of equation 3.9 subject to the conditions in equations 3.15 through

3.17 describes how a galvanostatic pulse induces concentration polarization. Such a

pulse can be used to initiate either restricted diffusion or galvanostatic polarization

experiments: short-time chronopotentiometry data during the open-circuit relaxation

period relates to the diffusivity and transference number, while long-time relaxation

data depends on diffusivity alone.

Even in a system where transient diffusional relaxations occur, equation 3.8 de-

termines the instantaneous relationship between OCP and composition. To describe

restricted diffusion and galvanostatic polarization, yδ and yδ
′

are taken to be the

transient solution compositions in domains immediately adjacent to the the electrode

surfaces (i.e., yδ
′ = y (τ,0) and yδ = y (τ,1)), determined by the pulse current and

pulse duration.

Galvanostatic-polarization measurements track OCP relaxations associated with

diffusion in boundary layers close to the electrodes. The underlying theory relies

on data collected before the diffusion boundary layers induced by the current pulse

meet – a time domain in which both migration and diffusion control the develop-

ing concentration profile. In this regime, the interelectrode distance is unimportant

and the solutions near the electrodes can be approximated as semi-infinite domains.

Restricted-diffusion measurements track OCP relaxations long after a concentration

polarization – a time domain when migration is unimportant and detailed information

about the initial distribution of composition is lost. In this situation the timescale
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for relaxation depends strongly on the interelectrode distance.

3.2.5 Linearization of potential

Potentiometric restricted-diffusion and galvanostatic-polarization measurements

both use OCP as a proxy for the composition difference across the cell. If the mag-

nitude of concentration polarization is sufficiently small, the open-circuit voltage can

be linearized about the equilibrium composition within the cell, yielding

∆U ≈ dU

dy
∣
⟨y⟩

∆y, or ∆U ≈ dU

d ln y
∣
⟨y⟩

∆y

⟨y⟩ (3.18)

where ∆y = yδ′ − yδ. This proportionality between ∆U and ∆y has been adopted

instead of equation 3.8 in the analyses of many electrolyte-characterization experi-

ments [21, 24, 25, 27, 62, 99, 101, 102]; several groups have employed equation 3.18

when implementing diffusivity and transference-number measurements in particular

[24, 62, 101, 102]. The restriction to small ∆y can easily be violated in practice,

however, because relatively large concentration differences may be needed to achieve

a significant voltage signal during a relaxation. In cases where ∆y is too large, the

measured ∆U actually corresponds to a lower ∆y than equation 3.18 predicts. When

equation 3.18 is used, potentiometric experiments must be designed to minimize the

error induced by the linearization.

3.2.6 Restricted diffusion

To implement a restricted-diffusion measurement, an initially nonuniform con-

centration distribution is set up and the logarithm of the concentration difference

between ends of the cell (or the difference in some other local solution characteristic

that is proportional to concentration) is tracked as a function of time. Data gathered

at long times are fit with a line, whose slope is proportional to the Fickian diffusivity
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D = Dχ.

Although OCP is a logical solution characteristic to track, restricted-diffusion mea-

surements can be performed in a number of ways that do not involve potentiometry.

For example, the classic Harned technique for measuring D relies on local DC conduc-

tometry to establish the salt concentrations at either end of a restricted-diffusion cell

[98]; Newman and colleagues have used both UV/visible spectrophotometry [87] and

interferometry [30] in a similar capacity. It has been observed that non-potentiometric

techniques yield lower diffusivities than potentiometric ones [87, 103]. This observa-

tion is natural in light of the inaccuracy that the approximation in equation 3.18 can

induce in data processing. As concentration polarization decreases during the relax-

ation period, the difference between the real experimental ∆y (denoted as ∆yreal)

and ∆y obtained from ∆U through equation 3.18 (denoted as ∆yappr, which is gen-

erally higher than ∆yreal) gets smaller. The magnitude of the slope of ln(∆yappr) vs.

time is higher than that of ln(∆yreal) vs. time, leading to higher apparent electrolyte

diffusivity. Nevertheless, the inaccuracy brought by applying equation 3.18 is usu-

ally minimal, since the approximation that composition differences are small is often

reasonable during relaxations after long times.

3.2.7 Galvanostatic polarization

Data processing for galvanostatic polarization requires precise knowledge of the

OCP immediately after the current pulse. When performing galvanostatic-polarization

experiments, some capacitive relaxation associated with double-layer relaxation – ne-

glected by the theory – occurs at very short times after the pulse. Thus, researchers

have almost exclusively used an extrapolation method [21, 25], in which the OCP

during relaxation is recorded as a function of a transformed time variable τ̃ , defined

as

τ̃ =
√
τpulse√

τ +√
τ − τpulse

. (3.19)
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This time variable is conveniently restricted between 0 and 1, where 0 corresponds

to time infinity and 1 to the initial instant of relaxation after τpulse = Dtpulse/L2.

According to the solution of the transient diffusion equation with β = 0, and assuming

the validity of equation 3.18, ∆U should be a linear function of τ̃ , the extrapolation

of which gives ∆U ∣τ̃=1, the OCP immediately after the current pulse. In principle, a

plot of ∆U ∣τ̃=1 vs. i
√
t should also be linear; its slope M satisfies the formula [21]

M = 4 (1 − t0+)
z+ν+F ⟨c⟩

√
πDχ

( dU

d ln c
)∣
⟨c⟩

, (3.20)

where

1

⟨c⟩ ( dU

d ln c
)∣
⟨c⟩

=
[V 0 − (νV 0 − V e) ⟨y⟩]

2

V 0⟨y⟩
( dU

d ln y
)∣
⟨y⟩

. (3.21)

Insertion of expressions 3.7 and 3.21 into equation 3.20 gives a relation among the

transference number, diffusivity, and thermodynamic factor.

The application of the linearization in equation 3.18 has a great impact on mea-

surements by galvanostatic polarization, which involve setting up steep concentration

gradients in boundary layers. Many groups have observed curvature in the ∆U vs.

τ̃ data as τ̃ approaches 1 [25, 27]. The curvature observed in experiments is often

observed over much longer time scales than double-layer capacitances can justify [27].

Replacement of the approximation from equation 3.18 with equation 3.8 rationalizes

the prior observations of non-capacitive curvature in ∆U vs. τ̃ curves.

Figure 3.2 shows a series of simulated relaxation curves after galvanostatic polar-

ization of 0.85 M lithium hexafluorophosphate (LiPF6) in propylene carbonate (PC),

in a planar, symmetric plating/stripping cell of 1 cm length with lithium-metal elec-

trodes. (Both electrode half-reactions are Li+ + e− ⇌ Li.) Properties of this solution

have been reported by Nishida et al. [104] and Stewart et al. [86, 105], and are listed

in Table 3.1. To implement simulations, a number of pulse currents were used, while

pulse time was held constant at tpulse = 500 s. The curves in Figure 3.2(a) show results

60



12

8

4

0
0.90.60.30

O
C

P,
 

u
=

F
U

RT

0.90.60.30
 transformed time variable,



pulse current
increases

(b)(a)

Ipulse = 10

9

8

1
2
3
4
5
6
7

9

8

1
2
3
4
5

6

7

Figure 3.2: Simulated OCP vs. τ̃ curves for 0.85 M LiPF6 in PC subjected to a
500 s current pulse. Curves correspond to pulse currents ranging from Ipulse = 1 to
Ipulse = 10. (a) Response in the absence of solute-volume effects (α = 0, β = 0); (b)
Response with α = 0.099 and β = 0.054. Dashed lines illustrate the correspondence
between curves with the same pulse currents. The thick black curve in (b) has no
corresponding curve in (a) because when solute-volume effects are neglected, Sand’s
time exceeds 500 s when Ipulse = 10.
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prop. value ref. prop. value

κ 0.65 S m−1 [86] D+− 3.9 × 10−11 m2 s−1

D 4.0 × 10−10 m2 s−1 [104] D0+ 1.0 × 10−10 m2 s−1

t0+ 0.38 [105] D0− 1.7 × 10−10 m2 s−1

V 0 89.6 cm3 mol−1 [86] V 0 89.6 cm3 mol−1

V e 62.8 cm3 mol−1 [86] V + 38.9 cm3 mol−1

V − 23.9 cm3 mol−1

∆U (0.85 M,1.75 M) −0.064 V [105] χ 3.1

Table 3.1: Properties of 0.85 M LiPF6 in PC. The properties in the left column are
reported in the stated references; the properties on the right were calculated from the
properties on the left, and were used for simulations. Values of κ and D+− were not
needed for simulations, but are provided for completeness.
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in the limit that α = 0 and β = 0, where solute-volume effects are unimportant; Figure

3.2(b) includes the solute-volume effects (discussed in more detail in the next section).

At low pulse currents, concentration polarization is relatively low and the relaxation

curves are more or less linear, as expected based on the prior theory using equation

3.18. Even when neglecting solute-volume effects, the curves become increasingly

nonlinear as pulse current rises, because the concentration polarization is larger at

tpulse and equation 3.18 is no longer accurate. Polarizing the solution too much and

mistakenly fitting the part of the data near τ̃ = 1 may result in an artificially high M ,

which, when inserted in equation 3.20 along with correct values of D and dU/d ln c,

would produce low transference numbers. This could explain the negative values of

t0+ observed by Doeff et al. [24].

3.2.8 Solute-volume effects

Solute-volume effects, intrinsic in electrolyte transport processes, can be significant

in (even moderately) concentrated electrolytes, especially non-aqueous ones [100].

The ‘excluded-volume effect’ arises from volume redistribution in a polarized cell, and

is quantified by α (cf. equation 3.13); ‘Faradaic convection’ occurs when interfacial

electrochemical reactions induce bulk flow, and is measured by β (cf. equation 3.13).

These effects are comparable in importance to the Fickian diffusion process if the

associated parameters are near 1. For simple binary electrolytes, Faradaic convection

alters the maximum steady-state current tolerance of an electrolytic cell (i.e., its

limiting current), and the excluded-volume effect impacts the relationship between

concentration polarization and the OCP. Substantial measurement errors can arise

when experimental pulse/relaxation data are analyzed with a theory that ignores

solute-volume effects.

Currents higher than the limiting current are often desirable for galvanostatic

polarization because they induce high concentration polarization over short distances.
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In a cell polarized exactly at its limiting current, the concentration of the active species

is driven to zero at one of the electrodes only when the cell achieves steady state (after

an infinite amount of time). When a higher current is applied, complete consumption

of the active species at the electrode surface takes a finite amount of time, known

as ‘Sand’s time’ [106–108]. In a solution where solute-volume effects are negligible,

Sand’s time tsand (or dimensionlessly, τsand) can be shown to relate to the current

through

τ∞sand =
Dt∞sand

L2
= π

16I2
. (3.22)

This equation is derived by the method reported in Bard and Faulkner’s book [83]

with α = 0 and β = 0; the relationship here is somewhat extended, however, because

Bard and Faulkner neglect migration, assuming a well-supported electrolyte for which

t0+ = 0. The derivation of equation 3.22 assumes a semi-infinite diffusion domain, and

its validity is therefore restricted to times before the diffusion boundary layers come

into contact.

Equation 3.22 shows that given the same polarization current, a system with a

longer Sand’s time has a longer pulse tolerance; given the same Sand’s time, a system

with a larger limiting current can tolerate a higher-current pulse of a given duration.

Although there are a few notable exceptions, Faradaic convection usually increases

the current tolerance of electrolytic solutions [100]. For example, Faradaic convection

participates in the simulated transport process that gives the OCP vs. τ̃ curves in

Figure 3.2(b), but does not in 3.2(a). The highest pulse current adopted in generating

Figure 3.2(b) is Ipulse = 10 (the thick black curve); in the limit α,β → 0, an applied

current of this magnitude cannot be sustained, because the specified pulse duration

is greater than Sand’s time. Generally, solutions with Faradaic convection will have

longer Sand’s times when β > 0.

In diffusivity and transference-number measurements, establishing a composition

distribution that can be tracked and predicted by equations 3.9 through 3.17 is essen-
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tial. The polarization process should be strictly controlled to prevent the complete

consumption of a limiting reactant at either electrode – a process that can be guided

by Figure 3.3. The black curves in the figure show Sand’s time as computed numeri-

cally using equations 3.9 through 3.17. Sand’s time is presented as a function of the

polarization current for solutions with different Faradaic-convection numbers. Un-

like equation 3.22, this calculation makes no semi-infinite assumption and accounts

for the Faradaic-convection effect. The apparent Sand’s time increases when the

polarization is close to Ipulse = 1, because the boundary layers reach the opposing

ends of the cell before the pulse is over; apparent Sand’s time also increases with

the Faradaic-convection number. Experimental polarization processes for galvanos-

tatic polarization should be implemented to the left of the black curves to ensure

well-characterized electrolyte redistribution.

In galvanostatic polarization experiments, only data collected before the concen-

tration boundary layers meet are useful for analysis. As long as there is a concentra-

tion gradient, the two boundary layers will propagate towards each other, no matter

whether there is an applied current or not. The time it takes for the boundary lay-

ers to meet does not depend on the polarization current or time, but solely on the

transport characteristics of the solution.

For a pulse/relaxation experiment, designate the time that the concentration

boundary layers propagating from the two electrodes meet as τBL. (This should

be counted from the first instant at which current is applied, and therefore includes

both the pulse and relaxation times). A conservative practical estimate for this time

was chosen to be τBL = 1
16 , which corresponds to a certain transformed time variable

τ̃ through equation 3.19. The shaded contours in Figure 3.3 give the values of τ̃

at the instant the two boundary layers touch in a certain galvanostatic polarization

experiment. Only data between the τ̃ values indicated by the contours and 1 on an

OCP vs. τ̃ curve should be used for galvanostatic-polarization data analysis.
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Figure 3.3: A plot to provide guidance for implementing restricted diffusion and
galvanostatic polarization experiments using current pulses above the limiting cur-
rent. The black curves give the longest polarization time (Sand’s time) for a given
applied pulse current to prevent the active species from depleting at the electrodes.
The shaded contours on the plot indicate the value of τ̃ (the transformed time vari-
able in galvanostatic polarization experiments) for a given experimental setup (i.e.,
polarization current and time), at which the boundary layers come into contact.
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In addition to changing the apparent current tolerance of a solution, solute-volume

effects also influence the diffusion potential. The OCP during transient relaxation is

lower when solute-volume effects are involved than when they are not, as shown by the

horizontal tie lines connecting curves at the same current in Figures 3.2(a) and 3.2(b).

In most electrolytic systems of practical interest, solute-volume effects suppress diffu-

sion potential, resulting in lower-than-expected OCP in diffusivity and transference-

number measurements. Solute-volume effects are intrinsic in transport processes, and

are significant in moderately concentrated non-aqueous solutions. When relying on

equation 3.20 to obtain properties, inaccuracies are introduced into the measurement

by fitting the OCP vs. τ̃ data with a model that does not account for solute-volume

effects.

3.2.9 Data fitting

Governing equations 3.9 through 3.17 were solved numerically to fit the relaxation

OCP vs. τ̃ data gathered by Valøen and Reimers for a 2.24 M LiPF6 solution in a

mixed PC/EC/DMC solvent [27], which are reproduced in Figure 3.4. The relaxation

data show curvature at the beginning of relaxation (τ̃ close to 1), when the concentra-

tion gradient across the cell is the largest and the assumed proportionality between

∆U and ∆y in equation 3.18 is the least accurate. Valøen and Reimers performed

an independent concentration-cell measurement to show dU/d ln c = 0.11 at 2.24 M,

assumed a cation transference number of 0.38, and then used galvanostatic polariza-

tion to get the diffusivity with equation 3.20. By fitting the data between τ̃ = 0.5

and τ̃ = 0.8, they concluded that the electrolyte diffusivity was about 1.8 × 10−6 cm2

s−1. Our simulation based on equations 3.9 through 3.17 fits the entire range of the

experimental data well, including the curved part. Since our model accounts for the

intrinsic and important existence of the solute-volume effects in such a concentrated

non-aqueous solution, the diffusion potential is suppressed. Adopting the transfer-
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Figure 3.4: Experimental OCP vs. τ̃ relaxation curve (gray dots) and model outputs
from equations 3.9 through 3.17. The black solid curve is generated with D = 1.55 ×
10−6 cm2 s−1 and t0+ = 0.38, the black dashed curve with D = 1.8 × 10−6 cm2 s−1 and
t0+ = 0.38.
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ence number (t0+ = 0.38) and the diffusivity (D = 1.8 × 10−6 cm2 s−1) used by Valøen

and Reimers, our simulation yields a curve that systematically underpredicts their

voltages. The data can be matched well if a somewhat lower diffusivity, 1.55 × 10−6

cm2 s−1, is used for the simulation. (A complete set of properties used for fitting the

experimental data is listed in Table 3.2.) Fitting the correct part of the relaxation

curves with models that neglect the effects discussed above can be misleading, and

result in a low M . When incorporated into equation 3.20, this will result in higher

measured diffusivities or transference numbers than expected.

3.3 Conclusion

A detailed analysis of potentiometric restricted-diffusion and galvanostatic-polari-

zation experiments has been performed to address issues in measurements that may

lead to inaccurate property determination. The methods for measuring electrolyte

thermodynamic factor, diffusivity and transference number in simple binary elec-

trolytic solutions are developed on the basis of a single equation that relates open-

circuit potential to solution composition. Using a particle-fraction basis brings math-

ematical convenience, and helps avoid systematic errors in experiments that may be

induced by temperature or pressure fluctuation.

The assumption of a proportionality between the polarization-induced open-circuit

potential drop ∆U and the extent of concentration polarization ∆y is only accurate

when ∆y is small. When ∆y gets too large, a measured value of ∆U will correspond

to an actual ∆y lower than the one predicted by the linear approximation. The

curvature observed by many research groups in OCP vs. τ̃ curves from galvanostatic-

polarization experiments is caused primarily by inappropriate use of the linear relation

between ∆U and ∆y, which may result in low – or even negative – transference

numbers.

Solute-volume effects lead to other issues in measurements, changing the current
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prop. value ref. prop. value

κ 1.0 S m−1 [27] D+− 2.1 × 10−11 m2 s−1

D 1.55 × 10−10 m2 s−1 ♢ D0+ 1.8 × 10−10 m2 s−1

t0+ 0.38 [27] D0− 3.0 × 10−10 m2 s−1

V 0 78.1 cm3 mol−1 ♢ V 0 78.1 cm3 mol−1

V e 55.5 cm3 mol−1 ♢ V + 34.4 cm3 mol−1

V − 21.1 cm3 mol−1

dU/d ln c 0.017 V [27] χ 0.68

Table 3.2: Properties of 2.24 M LiPF6 in the mixed PC/EC/DMC solution studied
by Valøen and Reimers. Properties in the right column were used for simulations,
and were calculated from the properties on the left. Diamonds indicate properties
reported for the first time here.
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tolerance of electrolytic solutions and also impacting their diffusion potentials. Sand’s

time was recalculated for electrolytic solutions with different Faradaic-convection

numbers, showing the impacts of finite interelectrode distance and reaction-induced

convection during the polarization. The galvanostatic polarization experiments should

be designed and implemented so that the polarization process lasts no longer than

Sand’s time, and so that enough data can be collected before diffusion boundary lay-

ers come into contact. Neglecting solute-volume effects when analyzing experimental

data leads to inaccurate measurement of transport properties; the data may seem

characteristic of an electrolyte with elevated diffusivity or transference number.
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CHAPTER IV

Capacity-Limiting Factors in Li/O2 Batteries

4.1 Introduction

The extremely high theoretical energy density obtained by reacting metallic lithium

with gaseous oxygen suggests that rechargeable Li/O2 batteries could compete with

combustion-based propulsion systems [109], an observation that has bolstered signifi-

cant research interest as the demand for electric and hybrid-electric vehicles continues

to grow [110–124]. A reversible non-aqueous (aprotic) rechargeable Li/O2 battery was

first proposed by Abraham and Zhang [3], who demonstrated that a cell based on the

half-reactions

Li+ + e− ⇌ Li (4.1)

at the negative electrode and

2Li+ +O2 + e− ⇌ Li2O2 (4.2)

at the positive electrode could be realized. The associated cell reaction provides an

equilibrium open-circuit potential U⊖ around 3 V [3, 6, 125], usually implemented

in a planar device comprising a metallic lithium negative electrode, a separator per-

meated by a non-aqueous lithium-conductive electrolyte, and a porous, electronically

conductive, electrolyte-saturated positive electrode that is exposed to ambient oxygen
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gas. The desired basic chemistry of the aprotic Li/O2 cell is now well accepted, and

many recent studies have provided insight into the details of the positive-electrode

reaction mechanism and its reversibility [50, 125–138].

A number of barriers must be overcome before Li/O2 technology can be put to

practical use [6, 139–142]. One problem is the ‘sudden death’ of the cell voltage

during the discharge process, which occurs far below the theoretical maximum energy

capacity and has been observed by many research groups [3, 143–150].

Numerous research efforts have been dedicated to elucidating the sudden-death

phenomenon. Scholars divide primarily into two camps: one group suggests that the

insulating nature of the lithium peroxide (Li2O2) layer that deposits during discharge

causes a barrier to electron transport after its dimensions reach certain thresholds,

limiting capacity by constraining the discharge-product layer thickness [118–120, 132,

151–153]; the other group contends that the low permeability of dissolved oxygen

in porous and tortuous positive electrodes causes it to be depleted within the cell,

limiting capacity by reducing utilization of the positive electrode’s available pore

volume [50, 126, 154–157].

A main challenge confronted in Li/O2 cell modeling is that deposition of insol-

uble discharge products on pore walls causes microstructural changes in the porous

cathode as discharge progresses. In principle, discharge-product growth may shrink

(or even block) pores in the electrode, displace liquid electrolyte, and alter the sur-

face area available for charge transfer; the discharge-product layer itself may incur

resistances to charge exchange (either by conducting or tunneling mechanisms) or

material transport.

Neidhardt et al. extended the porous-electrode theory, providing a macroho-

mogeneous approach that allows the simulation of spatial domains comprising more

than two phases [158]. They provided a general method by which possible morphol-

ogy changes in porous electrodes can be associated with the formation of insoluble
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discharge products. The present chapter implements Neidhardt et al.’s formalism

in the description of the porous positive electrode of an Li/O2 cell, accounting for

three distinct phases within it, and allowing possible charge-exchange processes at

discharge-product/electrolyte interfaces or electrolyte/solid interfaces. The proposed

model is designed with the aim of providing sufficient flexibility to account for many

of the discharge-product growth mechanisms hypothesized in the literature.

Simulation results are presented to illustrate the effects that three hypothetical

positive-electrode-reaction mechanisms and discharge-product morphologies have on

the voltage response during Li/O2 cell discharge. In one case, heterogeneous kinet-

ics is assumed to occur at the substrate/electrolyte interface, so that the growth

of the product is controlled by material diffusion through the porous discharge-

product layer. In two other cases, heterogeneous kinetics is assumed to occur at

the discharge-product/electrolyte interface, so that the electronic resistance of the

discharge-product phase limits its growth. Both compact and porous discharge-

product-phase morphologies are considered in the latter two cases where electronic

resistance restricts product growth.

Experiments in the superficial current-density range of 0.1 to 1.0 mA cm−2 agree

with simulations that assume oxygen transport to be rate limiting, in the sense that

when the model is parameterized with properties known from literature, it predicts

discharge-voltage curves that agree qualitatively with experiments and also quantita-

tively match the experimentally measured dependence of cell capacity on discharge

rate. For simulations to match the experimental discharge curves, the electrical resis-

tivity of the discharge-product phase must be several orders of magnitude lower than

the resistivity of a bulk insulator. When a compact discharge-product layer through

which electron tunneling occurs was modeled, cell capacities were found to be signif-

icantly lower than the capacities measured in cells with porous positive electrodes.
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4.2 Model development

4.2.1 Cell geometry and ambient conditions

Table 4.1 presents the full set of model equations used to describe discharge of a

one-dimensional planar cell under isothermal, isobaric conditions. The distributions

of materials and potential are resolved throughout the liquid-saturated-separator and

porous-positive-electrode domains, which are taken to have finite thicknesses of Lsep

and L+, respectively. Since the negative-electrode reaction occurs at a plane surface

normal to the position coordinate x, it is described in the model through a boundary

condition at x = 0. Transport processes in the gas phase are not considered explicitly:

the liquid surface at the electrode-gas interface (x = Lsep +L+) is taken to be in equi-

librium with the adjacent O2 gas, which is assumed to be stagnant and at constant

pressure p. This pressure does not appear directly in the model, but presumably

affects the saturated oxygen concentration of the liquid, csat
O2

. (The experiments mod-

eled here used pure O2 gas at a gauge pressure of 1 bar.) The absolute temperature

T is also assumed to be constant and uniform throughout the cell.

4.2.2 Liquid and solid phases

The physical description of the liquid phase—both within the separator and in

the electrolyte that occupies free volume in the porous electrode—is presented in a

general form that allows for an arbitrary number n of ionic or molecular constituents

to be included if necessary. Multicomponent transport in the liquid is taken to follow

Onsager-Stefan-Maxwell constitutive laws, which establish how the electrochemical-

potential gradient of species k, dµk/dx, relates to the differences between its molar

flux, Nk, and the fluxes of all other species j through drag coefficients involving

the Stefan-Maxwell diffusivities Dkj, the local composition yk, and the universal gas

constant R. Molecular diffusion and charge migration are distinguished by incor-
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Table 4.1: General structure of the one-dimensional Li/O2 cell model, listing the
governing equations that hold at interior points and the boundary conditions associ-
ated with each differential equation. The positive electrode contains pore-filling liquid
(yellow background), solid (black background), and discharge-product (purple back-
ground) phases. The counts of the equations and dependent variables are provided
to illustrate model closure: 3n + 12 equations and unknowns are needed if there are
n liquid-phase constituents.
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porating constitutive equations that cast µk in terms of species mole fractions yk

(whose gradients drive diffusion) and a liquid-phase quasi-electrostatic potential Φliq

(whose gradient drives migration of charged species). Although thermodynamic fac-

tors λk were included to allow for solution nonideality if needed, nonideality was

found to have a minimal impact on results when reasonable values of activity co-

efficients [62] were used. For simplicity, results presented here are computed under

the ideal-electrolyte assumption that λk = 1 for every species. Previous efforts to

simulate Li/O2 batteries [50, 154, 158] have mostly adopted the transport equations

developed by Doyle, Fuller, and Newman, based on the concentrated-solution theory

for binary electrolytes [35, 36], and appended a separate flux law for oxygen. The

basis in Onsager-Stefan-Maxwell transport theory distinguishes the present model.

Simulations were performed for comparison with the experiments of Griffith et

al. [159], which employed a four-species electrolyte (n = 4), comprising a single sol-

vent (dimethoxyethane, or DME), dissolved Li+, bis-(trifluoromethanesulfonyl)imide

(TFSI−) anions and O2. The Onsager-Stefan-Maxwell framework allows for the pos-

sibility of ion/oxygen diffusional interactions, which could lead to electro-osmosis of

oxygen, as well as salt flux induced by oxygen gradients, although these phenom-

ena are neglected for now. Three (i.e., n − 1) independent flux laws are written to

describe solvent, dissolved O2, and Li+; a fourth law, governing the electrochemical

potential of TFSI−, is omitted from the model presented in Table 4.1 because it can

be shown to depend on the others through the Gibbs-Duhem equation and kinematic

considerations.

Faraday ’s law is adopted to express the liquid-phase ionic current iliq in terms of

the molar fluxes and the species equivalent charges zk. As is typical when simulating

volume elements that are large in comparison to the Debye length, an assumption of

local electroneutrality is adopted throughout the liquid phase.

Another unique aspect of the model in Table 4.1 is that it accounts rigorously
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for the changes in liquid volume that accompany concentration polarization during

the discharge process. To ensure a proper balance of volume, a variable was intro-

duced to quantify the volume-average solution velocity v◻ induced by species fluxes,

and the standard thermodynamic constitutive laws from concentrated-solution theory

[10, 28–32] were augmented with a local volume-explicit equation of state. The state

equation locally enforces the known dependence of total molar solution concentration

cT on composition through species partial molar volumes V k. Note that these con-

siderations provide rigor, but also restrict the model to one-dimensional simulations;

for simulations of higher-dimensional cell geometries a momentum balance must be

appended to the equation system to ensure closure [100].

Standard material balances describe the liquid electrolyte in the separator domain.

As contemporary air-battery research efforts typically employ separators comprising

an inert porous matrix such as Celgard [156, 160–164] or glass fiber [133, 165–167]

permeated by liquid electrolyte, these balances also include the free volume available

for liquid, which generally differs between the separator (εsep) and the positive elec-

trode (ε). (Glass-fiber separators were used to gather the experimental data modeled

here.) Diffusivities corrected according to the Bruggeman correlation [32, 168]

Deff
kj = ε1.5Dkj (4.3)

are also adopted, to account for dispersion induced by the porosity and tortuosity of

porous structures.

To describe electron transport in the porous solid, a charge-continuity equation

is included, as in the porous-electrode theory developed by Newman and colleagues

[10, 32, 35, 36]. Charge flux in the solid is described by Ohm’s law, which relates

the electronic current density isol to the spatial variation of solid-phase potential Φsol.

The charge balance contains a generation term proportional to the reaction-current

78



density in, which is associated with local production or consumption of electrons

by half-reaction 4.2 at reactive surfaces within the porous electrode. By Newman’s

convention, anodic reaction currents are defined to be positive. Since in parameterizes

a heterogeneous process, it is naturally expressed per unit of surface area available

for electron exchange; in balance equations, multiplication by a surface-to-volume

ratio aV thus converts in to a rate of anodic charge transfer per unit porous-electrode

volume. An equation is also included to define a variable that measures the local

volumetric extent of discharge q, whose rate of change with respect to time is −inaV .

When describing the electrode-permeating part of the liquid phase, complemen-

tary generation terms are incorporated into the species balances to account for con-

sumption or production of liquid constituents by electrochemical half-reactions in

the solid positive electrode. Again following typical practice from porous-electrode

theory, these terms are taken to be proportional to the local value of inaV through

stoichiometric coefficients snk and the number of electrons involved in the positive-

electrode half-reaction, nne− , as well as Faraday’s constant F . Note that this general

structure provides some flexibility in the treatment of reaction mechanisms involving

multiple species (or intermediates). For the present analysis, reactions 4.1 and 4.2

were used, and assumed to be elementary.

In addition to the use of the Onsager-Stefan-Maxwell transport model and the

incorporation of a local volumetric equation of state for the liquid, it should be noted

that two other features suggested by Neidhardt et al. [158] differentiate the present

model from most multiphysics air-battery models. First, the free porosity in the

positive electrode, ε, is allowed to vary as a function of position (or local values

of state variables) within it. Second, the surface-to-volume ratio aV available for

charge exchange between the liquid and discharge-product phase may similarly vary.

Different hypotheses about discharge-product morphology and the discharge pathway

for half-reaction 4.2 can be expressed by choosing different dependences of ε and aV
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on q.

4.2.3 Boundary and initial conditions

The simulations performed here describe galvanostatic discharge at total current

density iT. At the negative electrode/separator interface (position x = 0), this total

current is carried by charged species in the electrolyte. Also, all the material fluxes

at this interface are proportional to the total current through the stoichiometry of

interfacial half-reaction 4.1. At the opposing current collector (x = Lsep +L+), all the

current enters through the porous-solid phase. The molar concentration of O2 in the

liquid is also taken to be saturated at the liquid/gas boundary.

In addition to diffusion and migration, there is also convection of electrolyte in

the cell. This convection comes from two sources: the occlusion of pores by dis-

charge product [124] and liquid-phase flow arising from concentration polarization

or reaction-induced convection [100]. Efflux of liquid constituents due to discharge-

product displacement and solute-volume effects in the liquid is associated with the

volume-average velocity at the electrode/gas interface.

4.2.4 Cell potential

During the discharge process, a Li/O2 cell expends free energy on a number of

internal processes. If one considers a thermodynamic path from the negative-electrode

interface (x = 0), through the liquid phase to the interface with the current collector

(x = Lsep +L+), across the discharge-product phase at that location, and through the

discharge-product/solid surface, then one recognizes four distinct sources of potential

loss: kinetic overpotential associated with half-reaction 4.1 at the negative electrode,

η−s ; loss due to liquid-phase transport, ∆Vliq; kinetic overpotential associated with

half-reaction 4.2 at the positive electrode, η+s ; and possibly an ohmic potential drop

associated with the areal resistance (denoted as R̃dp) of the discharge-product layer,
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inR̃dp. The total cell potential, V , is thus expressed as

V = U⊖ − η−s ∣0 −∆Vliq + η+s ∣Lsep+L+
+ (inR̃dp)∣Lsep+L+

, (4.4)

where U⊖ is the open-circuit potential of the cell at its equilibrium composition and

charge state. Here the kinetic surface overpotential η+s is written as a reduction

potential, so that in is a cathodic current. In a discharge process, the last two terms

on the right-hand side of the above equation are both negative in value, contributing

to the total potential loss in the battery system. Assuming that the potential is

measured by a reference electrode reversible only to lithium cations, the liquid-phase

transport loss, which includes both the ohmic drop and diffusion potential, is related

to the difference in cation electrochemical potential across the liquid phase:

∆Vliq = F (µLi+ ∣0 − µLi+ ∣Lsep+L+
) . (4.5)

Note that equation 4.4 can also be used to calculate the cell potential in a recharge

process; in that case the potential losses naturally ‘flip sign’, becoming gains above

U⊖.

4.2.5 Electron-transfer kinetics

The mechanisms of half-reactions 4.1 and 4.2 are taken to be elementary, following

Butler-Volmer kinetics. For reaction 4.2, the species activities ai are involved in

prefactors of the anodic and cathodic terms:

in
i∗

= (aLi+

aref
Li+

)
−sLi+

(aO2

aref
O2

)
−sO2

exp [(1 − β)ne−Fη+s
RT

] − (aLi2O2

aref
Li2O2

)
sLi2O2

exp(−βne−Fη+s
RT

) .

(4.6)

Here i∗ is the exchange-current density, β the symmetry factor, sLi+ = −2, sO2 = −1

and sLi2O2 = 1 the stoichiometric coefficients in reaction 4.2 (for a general half-reaction
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expressed as a reduction, sj is positive for products and negative for reactants); aref
j

represents the reference activity of species j (i.e., the activity at the composition

where i∗ and U⊖ are experimentally measured). Note that since the Li2O2 forms a

separate solid, its activity was taken to be 1 at all times. The term was left in equation

4.6 because particle structure or surface energy may contribute to differences in the

activity of the solid phase that forms—a consideration that may be useful for future

modeling efforts.

4.2.6 Material properties

Table 4.2 lists all the property values used for simulations, alongside their sources

[5, 62, 152, 154, 169–171]. Mechanical characteristics of the cell, such as the separator

and electrode thicknesses and porosities, are chosen to match the experimental setup

of Griffith et al. [159]. A wetting measurement implemented by Griffith gives an

accessible positive-electrode porosity of about 0.7, although the manufacturer reports

a porosity of 0.8.

Stefan-Maxwell diffusion coefficients were calculated from literature values using

the conversion formulas provided by Newman and Thomas-Alyea [32]. In the calcu-

lations, dissolved O2 was taken to interact only with solvent, i.e., 1/D+O2 = 1/D−O2 =

0 s m−2, and to occupy no partial molar volume. These assumptions are likely rea-

sonable since the saturated oxygen concentration is so low; neglect of ion/solvent

interactions is consistent with other multiphysics discharge models [50, 124, 172, 173].

Exchange-current densities at both the negative and positive electrodes are es-

timates, but their orders of magnitude are comparable to values reported in other

studies [114, 152]. For simplicity, the symmetry factors for both half-reactions were

taken to be 0.5.
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prop. value ref. prop. value ref.

electrolyte discharge-product layer

D0+ 4.96 × 10−10 m2 s−1 [116] i∗ 100 nA m−2 [152]

D0− 6.57 × 10−10 m2 s−1 [116] β 0.5

D0O2 1.80 × 10−9 m2 s−1 [154] V Li2O2 19.9 cm3 mol−1 [5]

D+− 2.89 × 10−11 m2 s−1 [62] separator & solid backbone

D+O2 ∞ L+ 235 µm ♢

D−O2 ∞ aV 0 4.7 µm−1 ♢

csat
O2

3.5 mM [154] ε0 0.7 ♢

V 0 104.3 cm3 mol−1 [5] σC 1 S mm−1 [171]

V e 21.0 cm3 mol−1 [170] Lsep 650 µm ♢

V O2 0 cm3 mol−1 εsep 0.5 ♢

Table 4.2: Material properties used in the simulation. Diamonds in the reference
column indicate values provided by suppliers.
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4.3 Reaction mechanisms

Three distinct reaction mechanisms are studied here, which are depicted schemati-

cally in Figure 4.1. Although Li2O2-formation reaction 4.2 was taken to be elementary

in all cases, the mechanisms account for different discharge-product morphologies and

various sites for electron exchange.

4.3.1 Mechanism I

Discharge-product growth is controlled by electron exchange at the product/solid

interface. The Li2O2 layer is not compact, i.e., it may be permeated by liquid elec-

trolyte (εdp ≠ 0). Current exchanged between the liquid phase and the solid backbone

is carried by ion transport through the layer, and the electron exchange described by

half-reaction 4.2 occurs at the solid surface. Ion transfer is taken to be fast on the

basis that the discharge-product layer is thin, so that concentration gradients across

the layer are minimal.

Since the electron-transfer site is on the solid surface, the area associated with

electron exchange does not change as discharge progresses,

aV (q) = aV 0, (4.7)

where aV 0 indicates the original surface-to-volume ratio of the pristine porous elec-

trode. No electron transfer through the product layer occurs, so the overpotential

driving half-reaction 4.2 is

η+s = Φsol −Φliq −U⊖, (4.8)

with no term for Ohmic loss.

4.3.2 Mechanism II

Discharge-product growth is controlled by electron exchange at the liquid/discharge-
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Figure 4.1: Three reaction mechanisms. The figures show a volume element in the
positive electrode, containing three phases: liquid electrolyte (yellow); solid backbone
(black) and the discharge-product layer (bounded by purple dashed lines). Discharge-
product morphologies, charge carriers, and electron-transfer sites differ among the
three mechanisms.
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product interface. The discharge-product layer is not compact (εdp ≠ 0), but electron

propagation through the discharge-product layer (either through bulk conduction,

across surfaces, or via defects) supports electrochemical Li2O2 formation away from

the native porous-electrode surface.

As the free volume in the electrode changes, the surface area available for material

exchange with free liquid may change as well. Assuming relatively regular pore geom-

etry, one can establish relationships between aV and ε by assuming simple geometries

for the native pore structure and the structure of the discharge-product layer covering

the pore walls. Here, the free volume is taken to exist within cylindrical pores, and

the product is assumed to grow inward from the solid surface. Thus the surface area

of the free-volume/discharge-product interface shrinks through

aV (q) = aV 0

√
ε (q)
ε0

. (4.9)

Note that other substrate geometries, such as aggregates of spherical balls [174] or

connected spherical cavities [154], have been discussed as representative pore struc-

tures. Depending on the geometric assumptions, aV can increase or decrease with a

number of different dependences on ε (or q) as discharge progresses. Simulations were

performed using several geometries, but the computed discharge curves and total ca-

pacities did not differ significantly, suggesting that the effects of substrate geometry

are of second order.

The overpotential that drives product formation in this case is

η+s = Φsol −Φliq −U⊖ − inR̃dp. (4.10)

The calculation of the areal resistance R̃dp also depends on the assumed pore geome-

try. Assuming charge transport in the radial direction through a cylindrical annulus,
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the areal resistance is

R̃dp =
ρdp

aV 0

√
ε0ε ln(ε0

ε
) , (4.11)

where ρdp represents the effective discharge-product-layer resistivity.

4.3.3 Mechanism III

Discharge-product growth is controlled by tunneling of electrons through a compact

discharge-product film. In this mechanism, the Li2O2 layer grows with no porosity

(εdp = 0), as suggested by Viswanathan and colleagues, but the discharge-product

grows electrochemically [120], occuring via electron tunneling through the dense film.

Similar to mechanism II, the electrode reaction occurs at the liquid/discharge-product

interface, whose area varies according to equation 4.9, and surface overpotential must

include an ohmic potential drop across the discharge-product layer, described by

equations 4.10 and 4.11.

Viswanathan et al. investigated charge transport through dense Li2O2 with a

metal-insulator-metal (MIM) model, and reported the resistivity of the layer as a

function of its thickness. The resistivity rises exponentially with the thickness; an

empirical expression

ρdp

1 Ω m
= 4 × 10−8 sinh( 6.5d

1 nm
) (4.12)

fits the data given by Viswanathan well, and is incorporated into equation 4.11 for

simulations.

4.3.4 Maximum capacity

For all three mechanisms, there is a maximum amount of discharge product, cmax
Li2O2

,

that a given region of the electrode can hold due to the volume restriction. In mech-

anisms I and II, this maximum amount is determined by total local pore volume and

discharge-product compactness; when the discharge-product layer fills pores, the in-
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terfacial reaction can no longer occur due to thermodynamic restrictions. As discharge

progresses, the electrode porosity decreases. If a Li/O2 cell is designed well enough

to completely utilize the electrode, then the maximum amount of a non-compact

discharge product is

cmax
Li2O2

= ε0 (1 − εdp)
sLi2O2V Li2O2

. (4.13)

In mechanism III, cmax
Li2O2

is restricted by the maximum thickness of the discharge-

product layer, dmax, through which electrons can propagate,

cmax
Li2O2

= 1 − (dmaxaV 0/2ε0)2

sLi2O2V Li2O2

. (4.14)

Equation 4.14 assumes that the pores are cylindrical annulus; other geometries give

slightly different expressions. The electrode reaction will cease in regions where elec-

trons are isolated from the dissolved active species by the discharge-product layer.

This condition can be understood formally as a state where the ohmic drop across

the discharge-product film for a given rate of current exchange exceeds the kinetic

overpotential needed to achieve the same current.

4.4 Results and discussion

4.4.1 Mechanism validation

The model was validated by comparison to the experimental first-discharge curves

produced by Griffith et al., which were gathered at a variety of rates ranging from

0.1 to 1.0 mA cm−2 [159]. Figure 4.2 illustrates simulation results using mechanism I,

alongside the experimental discharge curves. The simulations successfully reproduce

the initial relaxation of voltage, as well as the typical voltage-plateau-followed-by-

sudden-death behavior seen in experiments [3, 143–150]. In addition to the quali-

tative agreement with the shapes of typical discharge curves, the simulations quan-
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Figure 4.2: Experimental capacity vs. rate data are consistent with discharge mecha-
nism I. Comparison of experimental (blue) and theoretical discharge curves produced
using mechanism I (red) at different rates. The vertical solid lines indicate the ex-
perimental mean cell capacity; vertical dotted lines indicate ±1 standard deviation in
the experimental capacity.
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titatively match the cell capacities at various discharge rates fairly well, supporting

possible validity of the mechanism.

Discharge curves produced at four different discharge rates from all three mech-

anisms are compared in Figure 4.3. The parameters used to produce Figure 4.2 are

used as the baseline parameter set in Figure 4.3. For mechanism II, two resistivities

of the discharge-product layer are examined. A resistivity of 108 Ω cm (at the border

of the insulator regime and semiconductor regime) or lower yields discharge curves

similar to those produced by mechanism I, matching the cell capacity and reproducing

the sudden-death feature. When a higher resistivity is adopted, the qualitative ap-

pearances of the simulated discharge curves differ significantly from the experimental

results. Ohmic potential loss across the discharge-product layer rises rapidly as the

product layer thickens, eliminating the voltage plateau, suppressing the sudden-death

behavior, and lowering the total cell capacity. These results show that mechanism

II could be consistent, but only if the effective electronic resistance of the discharge-

product layer is several orders of magnitude lower than what would be expected for

bulk Li2O2.

With mechanism III, the discharge curves retain the voltage plateau and sudden-

death features, but the cell capacities are far lower than those observed in the experi-

ments. Electrons tunneling through the Li2O2 layer manifest a very low resistivity of

the layer when it is thin (less than about 6 nm according to Viswanathan et al. [120]),

but the exponential growth of resistivity with the layer thickness prevents discharge

after the layer gets thicker than the threshold. Since the kinetic parameters for the

‘tunneling mechanism’ have been confirmed by both theory and experiment [120],

the inability to match experimental cell capacities suggests that tunneling does not

control capacity in the system studied by Griffith et al. [159].

Putting all three mechanisms together, one may safely conclude that resistivity of

the discharge-product layer does not limit the cell capacity of Li/O2 cells. In fact, this
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Figure 4.3: Discharge curves generated with all three mechanisms at discharge rates
of 0.1, 0.2, 0.5 and 1.0 mA cm−2. The end-of-discharge cell capacities decrease with
rising rates for all mechanisms. Two Li2O2 resistivities are used in simulations with
mechanism II—an insulator resistivity (1011 Ω cm) gives much higher overpotential
than expected, while a semiconductor resistivity (108 Ω cm) reproduces the sudden-
death feature.
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layer must not contribute significantly to the total overpotential if discharge curves

exhibit voltage-plateau and sudden-death features, since tunneling cannot account

for cell capacities that match experimental observations.

4.4.2 Overpotential

To understand the sources of sudden death, overpotential breakdowns are shown

in Figure 4.4, in which potential losses are expressed as fractions of the total over-

potential as discharge progresses. As explained in section ‘cell potential’, there are

four sources of potential loss in a Li/O2 battery. For all three reaction mechanisms,

potential losses due to negative-electrode kinetics and liquid-phase transport con-

tribute about 2% to the total overpotential, and they decrease as discharge progresses.

Positive-electrode kinetic overpotential is one main source of potential loss, and ohmic

drop across the Li2O2 layer is another if the resistivity of the layer is (or becomes)

high.

In situations where ohmic potential drop takes up to 60% of the total loss, this

potential loss dramatically brings down the cell potential (Figure 4.3), preventing the

discharge curve from having a plateau, or causing cell sudden death at a much earlier

stage of discharge. This observation further suggests that electron transport through

the discharge-product layer is not likely to be a capacity-limiting factor in Li/O2

batteries that exhibit a voltage plateau on discharge. It could be that electrons can

conveniently propagate on the surface of the Li2O2 particles in the deposition layer

and cause insignificant ohmic potential drop across the layer, as suggested by Radin et

al. [175], in which case mechanism II is valid. It is also possible that cathode reaction

always occurs at the discharge-product/solid-backbone interface, and electrons do not

need to transport through the layer at all, in which case mechanism I predicts what

happens.

Higher exchange current density i∗ and larger surface area available for reaction
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aV lead to faster electrode kinetics and thus lower kinetic overpotential. Simulation

results show that increasing i∗ or aV can reduce the kinetic overpotential, but changes

in i∗ or aV do not affect cell capacity at all. That is to say, catalysts that accelerate

the electrode reaction can raise the energy efficiency of a Li/O2 cell, but will not

improve the energy capacity.

4.4.3 Capacity-limiting factors

Lu et al. recorded the discharge curves of Li/O2 single cells at a series of rates

[116]; Adams et al. reported the overall discharge capacity as a function of current

density for Li/O2 cells, and observed a sudden drop in capacity as discharge rates

increased [176]; Griffith et al. put the capacity vs. rate data on a log-log scale, and

obtained a Peukert’s slope of about 1.6 [159]. To rationalize these observations and

summarize the data, Figure 4.5 puts all the above experimental data together on a

log-log scale. All three sets of data qualitatively show three key features: a plateau

at low rates, a transition region (shoulder), and a power-law decay at high rates.

A series of discharge simulations (Mechanism I) were also performed with Griffith

et al.’s experimental conditions to evaluate how discharge capacity depends on rate,

which are shown on Figure 4.5 with the red curve. This simulation curve agrees with

the experimental data well, and clearly shows the three features mentioned above.

Using different cell properties in the simulation moves the location of the shoulder on

the curve, but never changes the general shape of the curve. For example, decreasing

oxygen solubility or diffusivity in the liquid phase moves the shoulder to lower rate;

decreasing positive electrode thickness pushes the shoulder to higher rate and lower

capacity.

These observations suggest that two distinct mechanisms determine the cell capac-

ity at low and high rates respectively, as indicated by the two dashed lines associated

with each set of experimental data on Figure 4.5. At low rates, O2 consumption rate
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is slow enough for the active species to penetrate through the entire positive electrode,

and the electrode is completely utilized. Thus total pore volume and discharge prod-

uct morphology in the positive electrode determines the cell capacity, which remains

relatively constant at the low-rate regime. At higher rates, O2 reacts so fast within

the electrode that diffusion is not able to deliver enough O2 to locations that are

relatively far away from the O2 source at the current collector. O2 therefore is fact

consumed in the positive electrode, which limits the cell capacity. In the high-rate

regime, cell capacity decreases with rising discharge rate.

To confirm the above hypotheses, Figure 4.6 illustrates the distributions of poros-

ity, reaction rate, and O2 concentration at five depths of discharge (DODs) under

Mechanism I. At the lower discharge rate of 0.1 mA cm−2, the O2 transport rate is

fast enough that O2 is always available. Thus the ‘reaction zone’ spans the entire

electrode. Note that since the reaction distribution is skewed toward the oxygen side

of the porous electrode, discharge product forms faster there. At about 60% DOD,

the maximum occupancy of discharge product is achieved at the electrode/oxygen

interface, and the reaction zone begins to shrink. Since the discharge product is not

compact, the growing ‘full zone’ still permits oxygen diffusion into the electrode in-

terior. The discharge rate is sufficiently low that the diffusion of oxygen across the

full zone does not limit capacity. Eventually, the ‘full zone’ grows to span the entire

electrode. In this situation, the electrode is completely utilized at sudden death (at

least to the extent allowed by the porosity of the discharge product).

At a higher discharge rate of 0.5 mA cm−2, O2 transport rate is too slow to

match its consumption rate by the electrode reaction. O2 only penetrates about

three quarters of the way into the electrode even before 30% DOD, leaving a ‘dead

zone’ on the separator side where no reaction occurs. As a full zone begins to form,

the total rate of reaction throughout the reaction zone has to rise; this forces a higher

flux of oxygen, causing the reaction zone to shrink. Eventually, the reaction zone
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vanishes and the cell dies. In this situation, the electrode is only partially utilized at

sudden death.

4.4.4 Capacity vs. rate

To understand the power-law decay of capacity apparent in Figure 4.5 one can

use the fact that the maximum flux of oxygen through the full zone should match the

applied current at sudden death, and that the capacity in this state should scale as

the thickness of the full zone. This yields a scaling law that connects the cell capacity

to the discharge rate,

cell capacity ∼
F 2 ⟨Deff

0O2
⟩ csat

O2
cmax

Li2O2

iT
(4.15)

Here ⟨Deff
0O2

⟩ is an average diffusivity of oxygen through the pore-filling liquid. (Since

local porosity varies during the discharge process, this average diffusivity differs some-

what from the diffusivity used in simulations.) Equation 4.15 suggests that the cell

capacity is inversely proportional to discharge rate, and explains the slope of about

−1 at high rates on the capacity vs. rate log-log plot. The slight deviation from

−1 comes from the fact that the effective diffusion coefficient varies with regards to

position and time as discharge progresses; thus the average quantity in equation 4.15

is expected to change slightly with discharge rate.

In Figure 4.5, as the discharge rate gets higher, the predicted capacity gets system-

atically lower than the experimental values given by Griffith et al. This probably owes

to the rate dependence of the discharge-product layer morphology [111, 112, 114, 144],

which is neglected in these simulations. SEM images from the literature [116, 176, 177]

show that various sizes of Li2O2 particles form when different discharge currents are

applied; in the model these would reflect different discharge-product-layer porosities

εdp. At low rates, Li2O2 particles are disk-like, porosity εdp is relatively high; at
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high rates, the particles are needle-like, making εdp lower. Combining equation 4.13

with scaling law 4.15, one can conclude that that smaller εdp should yield higher cell

capacity, as shown by the comparison between the simulation and the experimental

data in Figure 4.5.

4.5 Conclusion

Three mechanisms are proposed and implemented with continuum-scale three-

phase models to study the first discharge process of a Li/O2 battery. Discharge-

product layer morphologies and positive-electrode reaction locations are assumed

different in the mechanisms. The simulation discharge curves are compared with

the experimental ones to validate the mechanisms. Mechanisms I and II give good

matches, while mechanism III does not. We conclude that ohmic potential drop

across the discharge-product layer should not play an important role in the cell, and

positive-electrode kinetic overpotential should be the main source of cell potential

drop. Electrode reaction can either occur at the discharge-product/backbone inter-

face, or at the discharge-product/liquid-electrolyte interface. In the former situation,

ions carry the current through the Li2O2 layer instead of electrons, thereby avoiding

an ohmic drop across the layer. In the latter, electrons carry the current through the

layer, whose electric resistivity should be equal or lower than that of a semiconductor.

Cell capacity vs. discharge rate curves on a log-log scale are composed of a plateau,

a shoulder and a straight-line decay. Using different cell properties in the simulation

moves the shoulder around on the plot without varying the general shape of the curve.

The plateau and the decay parts of the curve correspond to two distinct factors that

determine the cell capacity, and the shoulder is the transition between them. In the

plateau region (low-rate region), cell capacity is determined by the total volume of

the electrode pores, while in the decay region (high-rate region), it is limited by O2

transport. Development of distributions of O2, electrode reaction, and porosity in the
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positive electrode during discharge are also provided to confirm the capacity-limiting

factors. Finally, a dimensional analysis gives a scaling rule to explain the ‘−1’ slope

of the straight-line decay.
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CHAPTER V

Charging Mechanism of Na/O2 Batteries

5.1 Introduction

The concept of an alkali-metal/oxygen (M/O2) battery was first introduced by

Abraham and Jiang in 1996, who reported a rechargeable lithium/oxygen (Li/O2) cell

[3]. The development of electric vehicles has spurred research into these high-energy-

density battery systems [178]. The Li/O2 cell is of particular interest because of its

exceptionally high theoretical energy density of 3500 Wh kg−1, which is far greater

than that of the present lithium-ion (Li-ion) battery (550 Wh kg−1) [179]. Despite

its promise, a number of practical problems face Li/O2 system development, includ-

ing the extremely high overpotentials that accompany the discharge and recharge

processes [6, 176, 180]. High overpotentials translate into large energy losses during

cycling, which substantially lower the practically available energy density from its

theoretical maximum. Large overpotentials are also associated with poor power ef-

ficiency, which significantly affects the performance of Li/O2 cells, even at moderate

drain rates. Many research efforts have been dedicated to understanding and lower-

ing overpotentials: theoretical models have been developed and simulations have been

implemented to identify sources of voltage losses [115, 120, 121, 181], and catalysts

have been designed to improve reaction kinetics [138, 161, 182, 183].

Recently, a number of groups have proposed the idea of replacing lithium with
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sodium to build a similar sodium/oxygen (Na/O2) battery [4, 184–187]. Like the

Li/O2 cell, the Na/O2 cell comprises a pure-sodium negative electrode, a porous, air-

breathing positive electrode, and an electrolyte-soaked separator between the elec-

trodes. At the negative electrode, the interfacial half-reaction

Na+ + e− ⇌ Na (5.1)

ideally occurs. At the positive electrode, two reactions have been thought possible,

producing sodium peroxide (Na2O2) or sodium superoxide (NaO2) discharge products.

Sun et al. assembled a Na/O2 battery, which was cycled at room temperature [184].

Crystalline Na2O2 was found to form on discharge and disappear on charge, and

NaO2 was believed to be an intermediate species. On the other hand, Hartmann et

al. pointed out that sodium and lithium exhibit quite different oxygen reactivity,

although they are in the same group and adjacent to each other on the periodic table

[4]. While lithium superoxide (LiO2) is highly unstable and quickly disproportionates

to Li2O2 and O2 in the Li/O2 environment, NaO2 can be stably formed during the

discharge of a Na/O2 battery through

Na+ +O2 + e− ⇌ NaO2. (5.2)

This reaction has been confirmed to dominate by several research groups [4, 180, 186–

188]. The equilibrium open-circuit cell potential of a Na/O2 battery is measured to

be U⊖ = 2.27 V based on half-reactions 5.1 and 5.2.

There has been substantial research into the reversibility of the Na/O2 cell reac-

tion. Hartmann et al. presented a methodology for studying the positive-electrode

kinetics by measuring the pressure dynamics in the enclosed oxygen reservoir attached

to the battery cell [187]. McCloskey et al. plotted the number of electrons per number

of O2 molecules consumed and generated during discharge and charge for Li/O2 and
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Na/O2 batteries, and showed that the Na/O2 system has higher coulombic efficiency

than Li/O2 [180].

This chapter seeks to use a multiphase, multi-physics continuum model to study

the Na/O2 battery, and bring insight into the reaction reversibility and the recharging

mechanism. The model treats the insoluble discharge product, assumed to predom-

inantly comprise NaO2, as a separate phase in the positive electrode (in addition to

the liquid-electrolyte phase and the solid-backbone phase). The discharge-product

phase grows during discharge, when NaO2 is produced, and shrinks during recharge,

when it is consumed.

5.2 Model description

Although Chapter IV provides more details [181], a brief overview of the air-

battery cell model will be stated here. The cell is assumed to be planar, made up of a

solid negative electrode and a porous, electrolyte-saturated positive electrode; the two

electrodes sandwich a slab of electrolyte-saturated porous separator material. Macro-

scopic material transport in the direction perpendicular to the electrode/separator

interfaces occurs through the liquid phase, which permeates the separator and posi-

tive electrode. Material and charge transports in the liquid phase are governed by a

modified concentrated-solution model [100]. Electronic conduction through the solid

backbone is governed by Ohm’s law, which relates the local current density in the

positive electrode to the electrostatic potential drop within it [35, 36]. Interfacial

half-reactions are taken to occur at the surface of the negative electrode and on the

pore surface within the positive electrode. Oxygen sorption is assumed to be quasi-

equilibrated at the liquid/gas interface on the outside edge of the positive electrode.

The porous electrode domain is taken to comprise three phases: the pore-filling

liquid-electrolyte, the electronically conductive solid-backbone, and a discharge-pro-

duct-layer phase that occupies the pores to an increasing extent as the cell’s state
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of charge (SOC) decreases. As the discharge-product layer grows and shrinks during

discharge and charge, the positive-electrode porosity varies with local SOC, indicating

the amount of discharge product ‘stored’ within the pores at each point within the

positive electrode.

Chapter IV probed different mechanisms by which the morphology and charge-

transport capability of the discharge-product layer can vary with SOC [181]. Li/O2

first-discharge data were found to be consistent with a mechanism in which the

discharge-product layer is electronically resistant but retains a porous structure that

permits ion transport. This allows half-reaction 5.2 to proceed freely at every SOC,

because the porosity of the discharge product permits perpetual interfacial contact

between the liquid electrolyte and solid backbone during the discharge process.

The half-reactions at both electrodes are taken to be elementary, and can be

described by Butler-Volmer kinetics. Reactions in cathodic and anodic directions are

both accounted in a single Butler-Volmer equation. For positive-electrode reaction

5.2, this equation can be written as

in
i∗

= (aNa+

aref
Na+

)
−sNa+

(aO2

aref
O2

)
−sO2

exp [(1 − β)ne−Fη+s
RT

] − (aNaO2

aref
NaO2

)
sNaO2

exp(−βne−Fη+s
RT

) ,

(5.3)

where i∗ is the exchange-current density, β the symmetry factor, ne− = 1 the number

of electrons transferred in the reaction; sk represents the stoichiometric coefficient

of species k in the reaction (negative for reactants and positive for products when

a half-reaction is written as a reduction). Within a volume element of the positive

electrode, the current exchanged between the electrolyte phase and the backbone

phase per unit pore area, in, is directly proportional to the reaction rate. Surface

overpotential, η+s , measures the excess potential drop between the liquid and solid

phases in the volume element relative to the equilibrium voltage of the half-reaction;

it provides the driving force for the reaction. Butler-Volmer equation 5.3 defines
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the surface overpotential as a reduction potential and in as a cathodic current. In a

discharge process, η+s is positive, driving the reaction in the cathodic direction (toward

the right of reaction 5.2); during a charge process, η+s is negative, driving the reaction

in the anodic direction (toward the left of reaction 5.2).

The prefactors of the cathodic and anodic terms of equation 5.3 involve ratios

between species activities, ak, and the reference activities at which the equilibrium

potential is established, aref
k . Liquid-phase species activities relate to their local con-

centrations, given as functions of position x and time t by the transport equations.

Since the insoluble discharge product forms a pure, single-component, separate phase,

its activity is taken to be aNaO2 = 1 when present (when SOC > 0), and aNaO2 = 0

when not present (when SOC = 0).

Table 5.1 lists all the properties used for simulations, which were developed for

comparison with the experimental Na/O2 data reported by Hartmann et al. [4].

Geometric characteristics of the cell (including the separator and positive-electrode

thicknesses Lsep and L+) and its constituent materials (including the initial positive-

electrode porosity and surface-to-volume ratio ε0 and aV 0) are obtained from their

paper. The separator porosity εsep is assumed to be 0.5. Ma measured the complete

set of transport properties for sodium triflate (NaSO3CF3) in poly(ethylene oxide)

(PEO, with up to 160 repeating units), chemically similar to the NaSO3CF3 salt

and the diethylene glycol dimethyl ether (DEGDME) solvent used by Hartmann;

thus electrolyte properties such as Stefan-Maxwell diffusion coefficients (Djk) and the

electrolyte partial molar volume (V e) are calculated or estimated from their mea-

surements [21]. The diffusivity (D0O2) and solubility (csat
O2

) of O2 are obtained and

estimated from similar electrolytic solutions for Li/O2 batteries [154], and diffusing O2

molecules are assumed to place minimal drag on diffusing ions (i.e., D+O2 = D−O2 =∞).

Molar volumes of the solvent (V 0) and the discharge product (V NaO2) are obtained

from the CRC handbook [5], and the conductivity of the solid backbone σC from ref-
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prop. value ref. prop. value ref.

electrolyte discharge-product layer

D0+ 1.18 × 10−10 m2 s−1 [188] i∗ 800 nA cm−2

D0− 6.67 × 10−10 m2 s−1 [188] β 0.5

D0O2 1.80 × 10−9 m2 s−1 [100] V NaO2 25.0 cm3 mol−1 [5]

D+− 8.30 × 10−11 m2 s−1 [188] separator & solid backbone

D+O2 ∞ L+ 210 µm [4]

D−O2 ∞ aV 0 0.45 µm−1 [4]

csat
O2

3.5 mM [100] ε0 0.8 [4]

V 0 143.2 cm3 mol−1 [5] σC 1 S mm−1 [171]

V e 30.6 cm3 mol−1 [188] Lsep 260 µm [4]

V O2 0 cm3 mol−1 εsep 0.5

Table 5.1: Mechanical and material properties used in the simulation.
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erence [171]. The exchange current density and the discharge-product-layer porosity

are taken to be 800 nA cm−2 and 0.82 to best fit the experimental discharge/charge

curves obtained at various rates. All simulations are implemented under the assump-

tion that temperature and pressure are constant.

5.3 Results and discussion

In the experiments of Hartmann et al., Na/O2 cells were discharged with constant

current until the cell voltage dropped to a cutoff value of 1.8 V, then held at open

circuit until the potential relaxed back to equilibrium before being recharged with

the same constant current up to a cutoff voltage of 3.0 V [4]. Simulations using the

same control parameters were implemented to produce the discharge/charge curves

reported here.

Figure 5.1 shows experimental data from Hartmann et al.[4] in blue. Several

features are displayed by the experimental curves: as discharge proceeds, there is

an initial cell-potential relaxation, followed by a steady cell-potential plateau, which

terminates in a ‘sudden death’ of voltage; the transition from discharge to charge

is accompanied by a steep increase in cell potential; as recharge proceeds, another

cell-potential relaxation occurs, followed by a fairly steady recharge-voltage plateau,

and finally, an extremely sharp rise of cell potential. The simulated curves (in red)

shown on Figure 5.1 reproduce almost all the features mentioned above except for the

potential relaxations at the beginning of the charge process, and the SOC at which

the potential shoots up at the end of charge.

At the discharge/charge rate of 120 µA cm−2, the experimental discharge/charge

curve displays overpotentials of about 70 mV and 30 mV—much lower than the

overpotentials of the Li/O2 cell also assembled and studied by Hartmann et al. [4].

Adopting the same Butler-Volmer equation 5.3 in discharge and charge, the simu-

lation gives both overpotentials between 60 and 70 mV, qualitatively matching the
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low-overpotential features claimed for the Na/O2 system. The fact that the same

Butler-Volmer kinetics give low and comparable overpotentials during discharge and

charge supports the argument that the mechanism of Na/O2-battery discharge/charge

follows a pathway in which the rate-determining electrochemical step has relatively

low activation energy, and is similar during both discharge and charge. The Li/O2

system, on the other hand, suffers from a charging overpotential about 3 to 4 times

greater than the discharging overpotential, suggesting asymmetric cell reaction path-

ways or even asymmetric chemistry.

Figure 5.2 provides a breakdown of the overpotential during cycling of the Na/O2

cell at rate 120 µA cm−2. Three dynamic processes contribute to the overpotential:

there is potential loss due to electrolyte transport (including diffusion overpotential

and ohmic potential drop), loss due to negative-electrode kinetics (reaction 5.1), and

loss due to positive-electrode kinetics (reaction 5.2). The potential losses are recorded

as percentages of the total overpotential with respect to the SOC. Upon discharge, the

electrolyte transport and the negative-electode kinetics both contribute about 5% of

the total overpotential, while positive-electrode kinetics makes about 90% of the total

overpotential, which rises to about 98% at the ‘sudden death’ of the cell. Upon charge,

electrolyte transport contributes about 10% of the overpotential; negative-electrode

kinetics accounts for around 5%. At the end of charge, cell potential shoots up steeply

due to the sharp increase of kinetic overpotential at the positive electrode,which again

accounts for almost all of the observed overpotential.

The sudden decrease in cell potential at the end of discharge and the sharp increase

at the end of charge both owe to the fact that positive-electrode reaction 5.2 is starved

of reactants in one direaction or the other. Numerous researchers have demostrated

that the sudden death of Li/O2 batteries during discharge is due to the fact that O2

becomes inaccessible in certain regions of the positive electrode [155, 157, 164, 181].

The lack of O2 pushes the positive-electrode surface overpotential to a very high value,
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which can no longer be delivered by the cell reaction. Similarly, the steep potential

rise at the end of charge occurs due to the disappearance of the discharge product

(i.e., NaO2 or Na2O2 in a Na/O2 cell).

Figure 5.3 shows the distributions of in and ε in the positive electrode during the

charge process. The local value of in corresponds to the interfacial reaction rate, and

that of ε, the amount of insoluble NaO2 ‘stored’ in the positive electrode’s pores.

At the beginning of charge, NaO2 is stored everywhere throughout the electrode,

and the electrode reaction is distributed relatively uniformly. At high discharge rate,

pores are fully utilized (completely full of discharge product) on the side of the positive

electrode adjacent to the O2 gas reservoir. They are only partially full at the interface

with the separator [181], as indicated by the distribution of porosity at 0.1% SOC.

The discharge product is therefore first completely consumed on the separator side

of the positive electrode. The limited availability of reactant severely increases the

magnitude of local surface overpotential needed to drive reaction 5.2 to the left; the

reaction zone is consequently constrained to the region where NaO2 is still available,

as shown by the 60%- and 80%-SOC distributions of in. At the end of charge, cell

potential shoots up due to the dramatic rise in positive-electrode surface overpotential,

suggesting the completion of recharge.

The sudden rise of cell potential on charge happens at a lower SOC in the ex-

periment than in the simulation. This is probably caused by the presence of some

undesired side reactions that occur towards the end of discharge, which lead the bat-

tery to yield less apparent capacity during recharge; there may also be side reactions

that occur in parallel with the recharge process [4], which are not accounted for in

the simulation.

Another feature in the experimental charge curve that is not given by the simula-

tion is the cell voltage relaxation at the beginning of charge. We postulate that this

relaxation is induced by the redistribution of O2 in the system. The electrochemical
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potential of O2 should contribute to the cell voltage, which factor, however, is not

considered in the current simulation, as the interaction between O2 and the charged

species is neglected (i.e., D+O2 = D−O2 =∞). Further research is needed to understand

how concentration overpotentials might arise from electro-osmotic drag on diffusing

oxygen.

5.4 Conclusion

The first discharge/charge cycle of a Na/O2 battery is simulated with a continuum-

scale multiphase model. The model adopts identical Butler-Volmer kinetic formulas to

simulate the discharging and the charging processes. The simulated discharge/charge

curves successfully reproduce most of the features of the experimental curves. The

fact that the same kinetic equation can describe discharge and charge suggests that

the cell reactions in the Na/O2 battery are not only chemically reversible, but also

take pathways during discharge and recharge that have the same rate-determining

electrochemical steps. An overpotential breakdown reveals that potential loss to

positive-electrode kinetics dominates the total overpotential on both discharge and

charge. Finally a detailed analysis of positive-electrode porosity and reaction distri-

butions indicates that the lack of reactant (O2 for discharge, and NaO2 for charge)

causes the sudden death and sudden cell-potential rise at the end of the discharging

and charging processes.
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APPENDIX A

Bulk-solution model closure

Closure for multidimensional simulations with Faradaic convection and the excluded-

volume effect can be achieved by the adoption of a momentum balance, with sufficient

generality being supplied by the Cauchy equation

ρ(∂v⃗
∂t

+ v⃗ ⋅ ∇⃗v⃗) = −∇⃗p − ∇⃗ ⋅ ⃗⃗τ + ρb⃗, (A.1)

where ρ is the mass density, v⃗ the mass-average velocity, p the external pressure, ⃗⃗τ

the deformation-stress tensor, and b⃗ a vector quantifying how local body acceleration

depends on position, electric field, etc. In addition to vector equation A.1, a tensor

constitutive law such as the Navier-Stokes law (for Newtonian liquids),

⃗⃗τ = −µ [∇⃗v⃗ + (∇⃗v⃗)T − 2
3
⃗⃗I∇⃗ ⋅ v⃗] , (A.2)

where ⃗⃗I is the identity tensor, is needed to relate the components of ⃗⃗τ to v⃗ and

account for viscosity µ or other mechanical properties. (An alternative to equation

A.2, which applies to porous separator media or gel electrolytes, is to set ⃗⃗τ = ⃗⃗0 and

adopt d’Arcy’s law to relate the pressure gradient to mass-average velocity.) The
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constitutive law

ρ = cT

n

∑
k=1

Mkyk (A.3)

expresses ρ in terms of total molar concentration, the composition basis, and the

particle molar masses Mk; and the vector constitutive law

ρv⃗ =
n

∑
k=1

MkN⃗k (A.4)

defines the mass-average velocity. (It is necessary to use the mass-average velocity as

a basis for momentum so that the definitions of total mass flux and local momentum

density coincide—equation A.4 defines both.) Equations A.1 through A.4 represent

a set of governing equations over d2 + 2d + 1 scalar components.

In a d-dimensional space, consideration of momentum requires that more depen-

dent variables be involved in the calculation: ⃗⃗τ (d × d = d2 scalar components), v⃗ (d

scalar components), p (1 scalar), and ρ (1 scalar). d2 + d + 2 unknowns are added to

the model listed in table 2.1. In light of the additional d2 + 2d + 1 scalar governing

equations introduced by momentum considerations, a balance of the total numbers

of equations and unknowns is achieved for systems in which d > 1.

In multidimensional simulations it is necessary that equilibrium properties such

as V k and λk be taken to depend on local pressure in thermodynamically consistent

ways; pressure gradients should also be incorporated into the Stefan-Maxwell diffusion

driving force [33]. Note that Gibbs-Duhem equation 2.14 contains additional terms

when pressure or temperature varies, so care must be taken when analyzing the

thermodynamic consistency of parameters.
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APPENDIX B

Transformation to moving frames

Sundstrøm and Bark provided a path to solve moving-boundary problems in

parallel-electrode symmetric plating/stripping cells [55], by expressing the entire prob-

lem in a frame moving uniformly at v⃗surf as follows. Introduce a new coordinate sys-

tem, (t′, x⃗′), where the time t′ and position x⃗′ are described by transformed variables

t′ = t and x⃗′ = x⃗ −
t

∫
0

v⃗surfdt. (B.1)

With the chain rule, differential operators in the two coordinate systems can be related

through

∂

∂t
= ∂

∂t′
− v⃗surf ⋅ ∇⃗′ and ∇⃗ = ∇⃗′, (B.2)

where it is understood that if both frames are orthogonal coordinate systems, then

∇⃗ = e⃗1
∂

∂x1

+ e⃗2
∂

∂x2

+ e⃗3
∂

∂x3

and ∇⃗′ = e⃗′1
∂

∂x′1
+ e⃗′2

∂

∂x′2
+ e⃗′3

∂

∂x′3
. (B.3)
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Motion of the coordinates also transforms all vectors that quantify flow. Molar fluxes,

current density, and volume-average velocity are expressed in the moving frame as

N⃗ ′
k = N⃗k − cTykv⃗surf, i⃗

′ = i⃗, and v⃗′◻ = v⃗◻ − v⃗surf. (B.4)

(Observe that due to electroneutrality, current density is the same in either a station-

ary or a moving coordinate.) Using transformations B.2 through B.4, equation 2.9

is

∂ (cTyk)
∂t′

= −∇⃗′ ⋅ N⃗ ′
k (B.5)

in the moving frame, and boundary conditions 2.34 become

(N⃗ ′
k ⋅ n⃗)∣S⃗0

= {[ykcT (v⃗conv − v⃗surf) +
sk i⃗′

Fze−ne−
] ⋅ n⃗}∣

S⃗0

. (B.6)

For a planar symmetric deposition/stripping cell without free or forced convection,

in which all species formed in other phases displace the interfacial surface, v⃗surf is

proportional to the current through equation 2.41, but does not need to be considered

explicitly when solving the transport equations because v⃗conv = v⃗surf, canceling the

convective term from equation B.6. The equation system in table 2.1 applies, with

flux vectors and differential operators residing in a coordinate frame that moves with

the system boundaries over time. Primes are suppressed in most of the equations

from section 2.4 for notational simplicity.
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J., Measurement of transference numbers for lithium ion electrolytes via four
different methods, a comparative study, Electrochimica Acta 56 (2011) 3926–
3933.

[103] A. Mehrotra, V. Srinivasan, Transport property measurements for LiPF6 in
EC:DEC (1:1), The 224th Electrochemical Society Meeting Abstract # 1152
(2013).

[104] T. Nishida, K. Nishikawa, Y. Fukunaka, Diffusivity measurement of LiPF6,
LiTFSI, LiBF4 in PC, ECS Transactions 6 (2008) 1–14.

[105] S. Stewart, J. Newman, Measuring the salt activity coefficient in lithium-battery
electrolytes, Journal of The Electrochemical Society 155 (2008) A458–A463.
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