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ABSTRACT 

 
Self-renewal is essential for stem cell maintenance. In the blood system, rare 

hematopoietic stem cells (HSCs) must maintain their self-renewal potential to sustain 

long-term homeostasis. HSC self-renewal is tightly regulated, as defective self-renewal 

can result in stem cell depletion and unrestricted self-renewal is a hallmark of leukemia. 

In this report, we describe two novel regulators of HSC self-renewal illustrative of the 

diverse mechanisms that sustain stable long-term blood formation. 

Absent, small, or homeotic 1-like (Ash1l) is a Trithorax group (TrG) member with 

a previously uncharacterized physiological function. The TrG is of interest in 

hematopoiesis, as Mixed-lineage leukemia 1, the prototypical TrG member, is required 

for HSC maintenance and frequently drives human leukemogenesis. Our work 

demonstrates that HSCs require Ash1l for establishing quiescence in the bone marrow, a 

fundamental process for preservation of HSC self-renewal. In the absence of Ash1l, HSCs 

become depleted in the young adult bone marrow, and HSC function is not detected in 

transplantation assays. Despite an apparent lack of functional HSCs, Ash1l-deficient mice 

do not progress to hematopoietic failure elucidating a paradoxical preservation of steady-

state hematopoiesis despite a lack of transplantable HSC function. Additionally, we 

found that Ash1l cooperates non-redundantly with Mll1 to maintain hematopoietic 

homeostasis. This is reminiscent of the functional cooperativity that defines Drosophila 

TrG members and has not been demonstrated in mammals.   
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Adrenocortical dysplasia (Acd), encodes Tpp1, a member of the telomere-

protecting shelterin protein complex. Recent work implicates shelterin in a particularly 

aggressive form of the human bone marrow failure syndrome dyskeratosis congenita, 

though roles for shelterin proteins in hematopoietic homeostasis have not been fully 

defined. Our work indicates that Acd loss causes acute hematopoietic stem and progenitor 

cell depletion and severely impaired HSC self-renewal in transplantation assays. Though 

Acd deletion results in p53 target gene activation, p53 deletion is not sufficient to rescue 

Acd-deficient HSC function. This is contrary to models of Acd deficiency in other stem 

cell systems in which p53 inactivation largely rescues function. Our data suggest that 

HSCs are exquisitely sensitive to Acd loss and that shelterin proteins have previously 

undefined context-dependent functions in stem cell biology. 
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CHAPTER 1.  HEMATOPOIETIC STEM CELL DEVELOPMENT, 
SELF-RENEWAL, AND FUNCTION 

* 

HISTORICAL BACKGROUND TO THE STUDY OF HEMATOPOIETIC STEM CELLS 

In the early 1950s, researchers observed that bone marrow transplantation could 

rescue hematopoietic failure in lethally irradiated animals [1]. This was of particular 

interest amidst growing concerns about the threat of radiation exposure following the 

Manhattan Project and the subsequent bombings of Hiroshima and Nagasaki [2]. Initially, 

hematopoietic rescue was attributed to “humoral factors” that were present in the donor 

bone marrow and could revitalize the irradiated host’s damaged marrow [3]. Prior to 

establishing an experimental understanding of the nature of this hematopoietic rescue, 

two reports demonstrated that this finding had translational potential in human medicine. 

The first described a group of physicists who were accidentally exposed to a high dose of 

radiation, but recovered faster and better than expected after an infusion of donor bone 

marrow, probably as a result of transient engraftment [4]. The second report described 

two cases of leukemia patients who were treated with lethal irradiation and then 

transplanted with bone marrow from an identical twin sibling [5]. Hematopoietic function 

was restored by the procedure. While these isolated reports highlighted the promise of 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
*	  Material in this chapter is partially covered in:  
Sandy, A. R., Jones, M., and Maillard I., Notch signaling and development of the 
hematopoietic system. In:  Notch signaling in embryology and cancer.  Jorg Reichrath 
and Sandra Reichrath (eds.). Springer. 2011.	  
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bone marrow transplantation, there was a limited understanding at this stage about the 

mechanisms of hematopoietic rescue after bone marrow infusion. 

In 1961, seminal experiments by Till and McCulloch demonstrated that the source 

of hematopoietic rescue in mouse transplantation models was cellular and not humoral 

[6]. Following irradiation and subsequent bone marrow transplantation, it was noted that 

discrete colonies could be enumerated in the spleens of murine recipients.  These colonies 

contained multiple lineages of hematopoietic cells, and were directly proportional to the 

number of nucleated bone marrow cells injected into the animal. Furthermore, the cells 

responsible for forming these colonies were rare, estimated at ~ 1 in 1,000 bone marrow 

cells. Further insight into the origin of these hematopoietic colonies was provided by the 

demonstration that each colony arose from a single cell, suggesting that the bone marrow 

housed a primitive cell type that could differentiate into multiple blood lineages [7].  

The notion that rare, transplantable, multipotent cells could be the source of 

hematopoietic recovery in transplant recipients laid the groundwork for the study of what 

became known as hematopoietic stem cells (HSCs). Soon after their initial identification, 

these rare colony-forming cells were shown to have extensive self-renewal potential [8, 

9]. Indeed, when splenic colonies were harvested, processed, and re-transplanted into a 

secondary recipient, new colonies would form. This suggested that the colony-initiating 

cells, now termed HSCs, could divide while maintaining their own identity and giving 

rise to differentiated progeny. This asymmetric mode of cell division is the hallmark of 

stem cell populations. The serial transplantation approach described in these studies 

remains similar to gold standard methods for testing HSC self-renewal to this day. 
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In the 50 years since the discovery of bone marrow HSCs, investigators have 

made significant progress toward understanding the mechanisms by which HSCs 

maintain their function. We now know that HSCs utilize many mechanisms to balance 

self-renewal and differentiation, and that this balance is critical to hematopoietic 

homeostasis. In this chapter, we will review our current understanding of HSC 

development and the multifactorial mechanisms through which self-renewal is regulated. 

HEMATOPOIETIC STEM CELL EMERGENCE AND DEVELOPMENT 

Hematopoiesis is initiated in two distinct waves. The first or “primitive” wave 

originates in the extra-embryonic yolk sac and is primarily responsible for the 

development of erythroid cells required for gas exchange during mid-gestation [10]. The 

second, or definitive, wave results in the formation of the HSC compartment that will be 

the focus of this discussion. Definitive hematopoietic stem cells are capable of 

differentiating into all cell lineages found in the hematopoietic system, including 

lymphocytes (Figure 1.1). Early work suggested that these multipotent cells emerge from 

large embryonic arteries, including the umbilical artery, the vitelline artery, and the 

omphalomesenteric artery, as well as from a region of the developing embryo known as 

the aorta-gonad-mesonephros (AGM) [11-15]. Subsequent studies revealed that the 

placenta might also be a source of definitive HSCs [16, 17]. Among these putative sites 

of definitive HSC emergence, perhaps the best characterized is the AGM. Elegant 

microscopy analyses identified that ventral wall endothelial cells of the dorsal aorta, the 

major AGM blood vessel, undergo a morphologic change that results in the generation of 

hematopoietic stem and progenitor cells that bud into the aortic lumen  (Figure 1.2) [18]. 

The initiation of HSC specification from this specialized hemogenic endothelium was 
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shown to require Notch1 and Runx1 [19-21]. Since Notch1 deficiency results in a failure 

to up-regulate Runx1, and Runx1 over-expression rescues HSC specification defects in 

Notch1-deficient embryos, it seems that Notch signaling is a critical upstream regulator 

of definitive HSC emergence [19, 22]. These newly-specified HSCs then migrate through 

the vasculature to the fetal liver, the next major site of HSC development and expansion 

[23]. 

	  

Figure 1.1. The hierarchy of normal hematopoiesis. Long-term hematopoietic stem cells (LT-HSCs) are 
multipotent and capable of self-renewal. They differentiate into short-term hematopoietic stem cells (ST-
HSCs) and then multipotent progenitors (MPPs), which maintain multipotency, but are no longer capable 
of self-renewal. MPPs differentiate towards either the lymphoid or myeloid/erythroid lineages. Lymphoid-
primed multipotent progenitors (LMPPs) differentiate into either early T-lineage progenitors (ETPs) or 
common lymphoid progenitors (CLPs), before subsequent maturation into T cells or B cells, respectively. 
Common myeloid progenitors (CMPs) can differentiate into granulocyte-monocyte progenitors (GMPs) or 
megakaryocte-erythroid progenitors (MEPs). GMPs further differentiate into macrophages and 
granulocytes, while MEPs give rise to megakaryocytes and platelets or erythrocytes. 

Between embryonic days 12.5 and 16.5 (E12.5-E16.5), murine fetal liver HSCs 

expand nearly 40-fold, marking the most prolific expansion of HSCs during 

hematopoietic ontogeny [24]. Sustaining such an expansion requires vigorous cell cycle 
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activity and presumably a propensity towards symmetric, self-renewing divisions. The 

extrinsic signals that mediate this expansion remain largely unknown, but fetal HSCs 

cell-autonomously require the master transcriptional regulator Sox17 for proper 

development and function [25, 26].  Sox17 is robustly expressed in HSCs throughout fetal 

development and is rapidly extinguished around the time of birth, before becoming 

undetectable in adult bone marrow HSCs [25]. This pattern of expression is consistent 

with a significant role for Sox17 in fetal, but not adult HSC development. Fetal liver 

HSCs fail to expand in the absence of Sox17, and Sox17 over-expression confers fetal-

like self-renewal properties and cell cycle activity to adult hematopoietic progenitors [25, 

26]. This demonstrates that Sox17 is both necessary and partially sufficient to confer fetal 

HSC attributes to hematopoietic progenitors. These studies have led to Sox17 being 

termed a master regulator of fetal HSC development. 
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Figure 1.2. Definitive hematopoietic stem cell development. Hematopoietic stem cells emerge from 
hemogenic endothelium in the dorsal aorta between E9 and E10. These HSCs migrate to the fetal liver and 
robustly expand through self-renewing divisions between E11 and E18. Soon after birth, HSCs seed the 
bone marrow, and within 5 weeks, are predominantly found in the G0 phase of the cell cycle. At this point, 
most HSCs infrequently enter the cell cycle to maintain hematopoietic homeostasis during steady-state 
conditions. 

Fate-tracing studies revealed that fetal liver HSCs migrate to the bone marrow and 

persist to maintain long-term hematopoiesis throughout life [27, 28]. This HSC migration 

to the bone marrow marks the onset of a critical developmental transition known as the 

fetal to adult transition. The predominant feature of this transition is the robust exit of 

HSCs from the cell cycle within 4 weeks after birth [29]. During fetal life, up to 95% of 

HSCs are engaged in cell cycle activity to facilitate robust HSC expansion [29]. 

Conversely, after reaching the bone marrow, between 70% and 90% of HSCs exit the cell 

cycle and enter into a state of quiescence [29, 30]. Models of hematopoietic stress 

through chemical myeloablation indicate that BM HSCs can rapidly reenter the cell 
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cycle, expand through self-renewing divisions, and differentiate in an attempt to 

reestablish hematopoietic homeostasis [30, 31]. This suggests that HSCs may sense the 

loss of downstream cell populations through an undefined mechanism. Such a mechanism 

could be triggered to replenish downstream cells lost to physiological cell turnover, or in 

stress situations such as major bleeding or infection. Interestingly, following the 

reestablishment of hematopoietic steady-state conditions, HSCs once again exit the cell 

cycle and become quiescent [30]. It is believed that this propensity towards quiescence is 

required for the ability of HSCs to self-renew throughout an organism’s lifetime, and is 

thus essential for HSC longevity. 

RESTRICTION OF HSC CELL CYCLE ENTRY: CELL-AUTONOMOUS AND NON-
AUTONOMOUS CUES 

 The finding that HSCs proliferate rapidly in the fetal liver, but then exit the cell 

cycle within a few weeks of seeding the bone marrow suggests that there may be factors 

in the bone marrow, so-called niche factors, required for the establishment and 

maintenance of quiescence. Indeed, several studies have demonstrated that specific bone 

marrow cytokines or factors may be required for efficient HSC cell cycle exit. 

 Thrombopoietin (TPO), a cytokine initially described for its role in promoting 

megakaryocye/platelet formation, is required for BM HSC quiescence and long-term self-

renewal [32, 33]. Human patients with mutations in c-mpl, the TPO receptor, initially 

present with thrombocytopenia, but eventually progress to pancytopenia [34]. This 

suggests roles for TPO beyond megakaryocyte development. Indeed, HSCs from mice 

that lack TPO expand normally in the fetal liver, but become depleted in the bone marrow 

within 1 year of birth [32]. Assessment of HSCs prior to depletion reveals that they fail to 
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enter quiescence upon reaching the bone marrow. This finding was linked to an inability 

to up-regulate expression of the cyclin-dependent kinase inhibitor (CDKI) p57 [32, 33]. 

p57 is critical to the maintenance of HSC quiescence [35, 36]. The transplantation of fetal 

liver and adult HSCs from Tpo-deficient donors revealed strikingly different outcomes 

[32]. If fetal liver HSCs from Tpo-deficient donors were transplanted into Tpo-sufficient 

recipients, they engrafted and maintained long-term hematopoiesis as well as wild-type 

donor HSCs. If HSCs from the bone marrow of young adult Tpo-deficient donors were 

transplanted, they showed significant functional defects. This suggested that the inability 

to establish quiescence had severely limited the self-renewal capacity of adult HSCs and 

that rapidly cycling fetal liver HSCs must have mechanisms to sustain enhanced self-

renewal that do not exist in adult BM HSCs. The nature of these mechanisms remains to 

be determined.  

 Angiopoietin-1 has similarly been linked to the maintenance of HSC quiescence 

and preservation of self-renewal activity [37]. Treatment of HSCs with angiopoietin-1 in 

vitro limited cell division, and resulted in preservation of self-renewal activity in 

hematopoietic transplantation assays after cell culture. Furthermore, Tie-2, the receptor of 

angiopoietin-1, was found to mark quiescent HSCs in vivo, suggesting that angiopoietin-

1/Tie-2 signaling could play a role in HSC quiescence in vivo. Direct testing of HSC cell 

cycle status or self-renewal activity in the absence of angiopoietin-1/Tie-2 signaling has 

not been reported, and is required to further examine the role that this pathway plays in 

the establishment and/or maintenance of HSC quiescence. 

 TGF-β signaling, like angiopoietin-1, limits HSC expansion in vitro and preserves 

self-renewal activity in transplantation assays [38]. The presence of TGF-β in culture 
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restricted HSCs from dividing, and this was found to facilitate stable long-term 

engraftment in transplant recipients, consistent with enhanced self-renewal. Reduced cell 

cycle activity was shown to be associated with increased expression of p57, again linking 

a cytokine to cell cycle regulation through this CDKI in the bone marrow [38, 39]. 

Further support for the role of TGF-β signaling in HSC self-renewal was provided by the 

finding that the loss of smad4, encoding a downstream transducer of TGF-β signaling, 

resulted in severe impairment of HSC function in transplantation experiments [40]. 

Together, these data supported a significant role for TGF-β in restricting HSC cell cycle 

entry and thus in preserving HSC self-renewal potential. 

 CXCL12, a chemokine expressed on perivascular stromal and endothelial cells in 

the bone marrow, is essential for HSC homing to the bone marrow, BM retention, and 

functional maintenance [41, 42]. CXCR4, the receptor for CXCL12 on HSCs, was shown 

to restrict HSC cell cycle entry and preserve quiescence [43]. CXCR4-deficient HSCs lost 

quiescence and showed increased cell cycle entry, as well as increased sensitivity to 

treatment with 5-fluoruracil treatment, an antimetabolite that kills dividing cells. 

Importantly, CXCR4-deficient HSCs also demonstrated reduced p57 gene expression.  

 The above studies indicate that CXCR4, Angiopoietin-1, TPO, and TGF-β all 

promote HSC quiescence in addition to expression of p57. Given that p57 is known to 

restrict cell cycle activity, it is attractive to postulate that p57 is a critical, cell-

autonomous factor in establishing and/or maintaining HSC quiescence. Direct evidence 

for this idea was provided in recent studies demonstrating that p57, along with the related 

CIP/KIP family member p27, cell-autonomously maintains HSC quiescence in vivo [35, 

36]. p57 played the dominant role in maintaining quiescence, though in the absence of 
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p57, p27 could partially compensate. In the absence of both p27 and p57, HSCs did not 

maintain quiescence and were eventually depleted. Transplantation assays revealed that 

this loss of quiescence significantly impaired self-renewal activity. These data reveal the 

essential role for CDKI expression in the maintenance of self-renewal, and support a link 

between niche signaling and the regulation of HSC quiescence.  

In addition to niche-mediated regulation of CDKI expression, HSCs actively 

restrict cell cycle entry in response to mitogenic signals from the phosphatidylinositol-3-

OH kinase (PI(3)K) pathway. PI(3)K signaling is critical to mediate the HSC response to 

pro-proliferative signals. Within this pathway, PTEN serves to attenuate PI(3)K 

signaling, thus limiting HSC proliferation. When PTEN was deleted, the HSC pool 

entered the cell cycle and transiently expanded before becoming profoundly depleted 

[44]. Additionally, Pten-/- HSCs had reduced self-renewal potential in bone marrow 

transplantation assays, suggesting that the increased responsiveness to proliferative 

stimuli was detrimental to self-renewal. Pten deficiency eventually resulted in the 

development of highly penetrant leukemia in mice. Prior to depletion, Pten-/- HSCs up-

regulated expression of the tumor suppressors Cdkn2a and p53, and progression to 

leukemia was associated with the loss of tumor suppressors through secondary mutations 

[45]. This suggested a model in which increased proliferative stress on HSCs was 

detrimental to self-renewal in normal hematopoiesis. At the same time, the accrual of 

secondary mutations in a cell population that had preexisting self-renewal potential 

provided a substrate for leukemogenesis.  
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REGULATION OF HSC SELF-RENEWAL 

 While extensive self-renewal is a fundamental feature of HSCs and is required for 

long-term function after transplantation, adult HSC self-renewal capacity is not 

unlimited. This phenomenon is clearly demonstrated in serial transplantation assays in 

which HSCs were successively transplanted 4-6 times, showing progressive functional 

decline [46, 47]. When genes required to promote HSC quiescence are mutated, HSCs 

often transiently expand but almost inevitably progress to functional decline [44, 48-51]. 

As indicated by the Pten-/- model, this limitation in self-renewal potential may in fact be 

adaptive to prevent leukemogenesis [25]. In this section, we discuss the diverse 

mechanisms through which HSCs promote and limit self-renewal activity. 

Telomeres and HSC self-renewal 

 Telomeres, the repetitive genomic sequences that cap linear chromosomes, have 

long been proposed to be a mitotic clock, limiting the lifespan of various proliferating 

cell populations [52]. With each round of replication, the inability to completely replicate 

the 3’ ends of DNA strands results in genomic erosion. If left unchecked, this erosion 

would eventually result in the loss of essential genetic material (the “end replication 

problem”). The telomere buffers DNA ends from such loss. Certain long-lived cell 

populations that maintain proliferative potential, including HSCs, express the 

ribonucleoprotein telomerase which can extend telomeres [53]. This activity is required 

for the maintenance of HSC self-renewal. 

 Since mice have long telomeres compared to humans, several generations of 

breeding are required before the effects of telomere shortening can be observed [54-56]. 

Initial studies reported that late generation telomerase-deficient mice had significantly 
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reduced hematopoietic output [56]. This reduced output was linked to decreased HSC 

function. When early generation telomerase-deficient HSCs were subjected to serial 

transplantation and thus forced to self-renew extensively, they exhibited severe functional 

deficits, consistent with an accelerated decline in self-renewal potential [57]. Analysis of 

telomere length in this system demonstrated that this self-renewal defect occurred 

concurrently with telomere shortening. These data suggest that in situations of severe 

hematopoietic stress, telomerase expression and the regulation of telomere length are 

absolutely required for the maintenance of HSC function. Interestingly, over-expression 

of telomerase did not by itself increase HSC longevity [58]. This suggests that while 

telomerase activity is necessary for prolonged HSC function, it is not sufficient to confer 

enhanced self-renewal capacity. 

 In addition to telomerase, telomeres require the shelterin protein complex for 

stability. This six-member protein complex physically protects telomeres from aberrant 

recognition by cellular DNA damage machinery (reviewed in detail in Chapter 4). 

Recent work indicates that individual components of the shelterin complex may be 

required for HSC maintenance [59, 60]. Due to differing functions among shelterin 

proteins in telomere protection, rigorous examination of HSC function in the absence of 

individual shelterin components must be evaluated to understand how shelterin 

contributes to HSC homeostasis. 

Epigenetic regulation of HSC self-renewal 

Many essential epigenetic regulators can be classified into one of two categories: 

regulators of DNA methylation and regulators of histone modifications. With regard to 

the former category, several genes have recently been identified that directly impact HSC 
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self-renewal. DNA methyltransferase 1 (DNMT1) was classified as a maintenance 

methyltransferase due to its function in reestablishing DNA methylation patterns 

reflecting those of a complimentary DNA strand after strand replication. Dnmt1 deletion 

resulted in defective self-renewal in adult HSCs [61]. Interestingly, Dnmt1 inactivation in 

primary mice did not cause major hematopoietic defects in primary mice. However, when 

wild-type HSCs were transplanted into unirradiated Dnmt1-/- mice, they stably engrafted 

the Dnmt1 hosts. This suggested that Dnmt1-deficient HSCs were not as stably associated 

with the niche as wild-type HSCs. Additionally, when Dnmt1-/- HSCs were transplanted 

into lethally irradiated recipients, they were functionally deficient, consistent with 

reduced self-renewal capacity. Since DNA methylation is associated with gene 

repression, it was predicted that Dnmt1 loss might lead to de-repression of multiple 

genetic targets. This was only partially true, as gene expression was both positively and 

negatively altered after Dntm1 deletion, indicating a complex function of DNMT1 in 

gene expression and self-renewal. 

DNMT3a and DNMT3b were both classified as de novo DNA methyltransferases, 

referring to the fact that they establish patterns of DNA methylation based on DNA 

sequence recognition and not on pre-existing complimentary strand methylation patterns. 

Initial studies demonstrated that HSCs deficient for both DNMT3a/b could not 

reconstitute lethally irradiated recipients, identifying a critical function for these 

methyltransferases in HSC self-renewal [62]. Deletion of Dnmt3a or Dnmt3b alone did 

not elicit a reported phenotype in these studies. However, recent studies reevaluating the 

function of DNMT3a in HSC function demonstrated that Dnmt3a-deficient HSCs 

actually had enhanced self-renewal, but impaired differentiation ability [63]. This finding 
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was reported following bone marrow transplantation experiments that showed HSC 

expansion out of proportion to their contribution to mature blood lineage reconstitution. 

In parallel, the authors observed de-repression of several genes associated with HSC 

identity and a paradoxical loss of expression of genes associated with lineage 

commitment. The mechanism by which Dnmt3a loss both positively and negatively 

affects gene expression is not clear. It is possible, however, that initial Dnmt3a deletion 

resulted in a de-repression of specific direct genetic targets, while the subsequent loss of 

lineage specification genes might have been a secondary consequence.  

Like DNA methylation, histone modification plays an essential role in the 

epigenetic regulation of gene expression. Many histone-modifying enzymes are classified 

into two diverse categories of epigenetic regulators: the Polycomb group (PcG) and the 

Trithorax group (TrG). The PcG class of epigenetic regulators is typically associated with 

gene repression. Within this group, the protein product of Bmi1, a ubiquitin ligase with 

histone 2a lysine 119 specificity, plays a critical role in adult HSC self-renewal [64]. 

Bmi1-deficient animals have normal fetal liver HSC development, but progress to 

hematopoietic failure with HSC depletion by young adulthood. Neither fetal nor adult 

HSCs are capable of long-term reconstitution in bone marrow transplantation assays, 

demonstrating a critical role for Bmi1 in HSC self-renewal. This reduced self-renewal 

potential is partially explained by cell-autonomous de-repression of Cdkn2a and Cdkn2d, 

and premature HSC senescence [64]. Additionally, cell non-autonomous effects 

attributed to Bmi1 deficiency in the BM niche play a significant role in HSC functional 

decline independent of Cdkn2a and Cdkn2d [65]. Thus, Bmi1 has complex cell-

autonomous and non-autonomous functions in the maintenance of HSC self-renewal. 
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Ezh1, a PcG member whose protein product methylates histone 3 lysine 27 

residues, has similarly been linked to HSC self-renewal [66]. As with Bmi1 loss, Ezh1 

loss prevented stable long-term reconstitution in transplantation assays. In this model, 

self-renewal defects were rescued by Cdkn2a deletion, again suggesting that premature 

senescence was linked to defective self-renewal. Thus, it seems that PcG members share 

a common role in suppressing cellular senescence in HSCs, and that this function is 

required for the long-term maintenance of HSC self-renewal potential. 

Whereas PcG members are associated with target gene repression, TrG members 

are required for the activation or maintenance of gene expression. The role of the TrG in 

mammalian hematopoiesis is reviewed extensively in Chapter 2. Briefly, Mll1 is a 

histone 3 lysine 4-specific methyltransferase required for target gene expression. Loss of 

Mll1 results in aberrant HSC cell cycle entry and defective self-renewal in bone marrow 

transplantation assays [67, 68]. Unlike Ezh1 or Bmi1 deficiency, which caused self-

renewal defects due to premature senescence, self-renewal defects due to Mll1 deletion 

correlated with excessive cell cycle entry. This phenomenon is a poorly defined concept 

known as HSC exhaustion that broadly describes reduced HSC function and self-renewal 

defects that follow a period of excessive HSC cell cycle activity. The molecular 

mechanisms that contribute to exhaustion are unclear, though they are believed to relate 

to increased metabolic stress and DNA damage that occurs due to aberrant cell cycle 

entry, similar to the prevailing model to explain HSC defects in the absence of PTEN. 

Mll5 was defined as a TrG member due to homology to Mll1, though SET domain 

functionality has not been identified. Mll5 deficiency increased HSC cell cycle entry, 

though not as robustly as in Mll1-deficient HSCs [69-71]. In addition to enhanced cell 
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cycle entry, Mll5-deficient HSCs failed to support long-term hematopoietic reconstitution 

in transplantation assays, again indicating a functional role for Mll5 in HSC self-renewal 

[70, 71]. Our current understanding of the mechanisms by which Mll1 and Mll5 impact 

self-renewal is reviewed in Chapter 2. 

Taken together, these data indicate that epigenetic regulation plays an essential, 

diverse role in the maintenance of HSC self-renewal. Though effects on self-renewal 

have been identified with respect to Dnmt1, Dnmt3a, Bmi1, Ezh1, Mll1, and Mll5, the 

molecular mechanisms by which each of these genes contributes to self-renewal remain 

poorly defined. Furthermore, the potential interactions between different epigenetic 

regulators in controlling HSC function have not been explored. Such studies will provide 

insight into the complex means through which epigenetic modifiers affect HSC self-

renewal. 

ROS, Metabolism, and HSC Self-Renewal 

Reactive oxygen species (ROS), a byproduct of oxidative metabolism, critically 

limit HSC function (reviewed in [72]). It is thought that to control exposure to oxygen 

toxicity, quiescent HSCs localize to a hypoxic niche [73]. Within this niche, HSCs further 

suppress ROS accumulation through increased expression of FoxO family members and 

the DNA damage response protein ATM (encoded by Ataxia telangectasia mutated) [74, 

75]. Reduced ROS suppression due to the loss of either of these key factors results in 

compromised HSC self-renewal. Similarly, an inability to mount a Hif-1α-dependent 

oxidative stress response results in HSC depletion, aberrant cell cycle entry, and reduced 

self-renewal potential [76]. These data support the concept that HSCs must efficiently 

limit ROS exposure to maintain self-renewal and normal functionality.  
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Consistent with a preference for hypoxic conditions, HSCs require efficient 

gycolysis for long-term maintenance [77]. HSCs in which Pyruvate dehydrogenase 

kinase 1 and 2 were deleted to inhibit glycolysis aberrantly entered the cell cycle, became 

depleted, and lost self-renewal capacity in transplantation assays. Despite the HSC 

preference for low oxygen conditions and glycolysis, recent studies have sought to 

evaluate the role of mitochondria and oxidative metabolism in HSC self-renewal. 

PTPMT1 is a mitochondrial phosphatase with an unclear physiological function, but that 

is required for oxidative metabolism. Supporting the notion that HSCs are more sensitive 

to disruption in glycolysis than mitochondrial aerobic respiration, inhibiting 

mitochondrial function through PTPMT1 deletion did not limit HSC self-renewal [78]. 

Interestingly, PTMPT1-deficient HSCs failed to differentiate into mature lineages. This is 

hypothesized to be because lineage-committed progenitors require aerobic metabolism, 

which was perturbed by PTPMT1 loss. Thus, whereas HSCs are able to survive and self-

renew in the absence of PTPMT1, downstream progenitors dependent on efficient aerobic 

metabolism are sensitive to this loss.  

 While work with PTMPT1 suggested that HSC self-renewal was independent of 

oxidative metabolism, studies focused on Lkb1 revealed that mitochondrial function 

might still be essential for HSC maintenance. Lkb1 was initially identified as a positive 

regulator of AMPK involved in reducing cellular energy expenditure by limiting 

macromolecule synthesis. While the significance of Lkb1 regulation of AMPK in HSCs 

is unclear, a critical role in HSC mitochondrial function has been elucidated [79-81]. 

Following Lkb1 deletion, HSCs lost quiescence and transiently expanded before being 

rapidly depleted [79, 81]. Lkb1-/- HSCs demonstrated profound self-renewal limitations in 
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bone marrow transplantation [79-81]. Analysis of the defective Lkb1-/- HSCs revealed 

reduced mitochondrial mass, mitochondrial membrane potential, and ATP synthesis, 

suggesting that perturbed mitochondrial function contributed to the observed HSC 

defects. These data suggest that HSCs require a low, basal level of oxidative metabolism. 

According to this hypothesis, PTMPT1 loss, while promoting reduced respiration, did not 

reduce metabolic output below this level. Lkb1 loss, on the other hand, limited 

mitochondrial function so that metabolic output was below even this low threshold, 

resulting in HSC defects. Although clarification is needed, these findings illustrate the 

need to further explore the metabolic regulation of HSC function. 

Inflammation and HSC self-renewal 

Recent studies demonstrate that HSCs can enter the cell cycle and robustly 

expand in response to bacterial infection [82]. This is hypothesized to facilitate the 

expansion of downstream cell populations that are required to combat infection. While 

this transient HSC expansion is adaptive, several lines of evidence suggest that chronic 

infection has detrimental effects on HSCs. 

Interferons are cytokines that play critical roles in the immune response to various 

forms of infection. Acute exposure to interferon-α (IFNα), a type I interferon, resulted in 

increased HSC proliferation, but did not impair HSC function [83]. When HSCs were 

subjected to chronic IFNα exposure, however, self-renewal activity was severely 

impaired in transplantation assays, suggestive of HSC exhaustion. Similarly, when HSCs 

were chronically exposed to interferon-γ (IFNγ), a type II interferon, during chronic 

infection with Mycobacterium avium, increased cell cycle entry was observed followed 
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by impaired self-renewal in transplantation assays [84]. Collectively, these data 

demonstrate that while an adaptive expansion of HSCs might occur during infection, 

chronic infection and associated HSC proliferation impair long-term self-renewal. 

Additional studies demonstrate that HSCs have evolved intrinsic mechanisms that 

limit their response to infection. Deletion of the negative regulator of interferon signaling 

Irf2 resulted in an IFNα-dependent HSC depletion [85]. Loss of this negative regulator 

exacerbated HSC exhaustion following chronic IFNα exposure. Similarly, loss of Igrm1, 

another negative regulator of interferon signaling, resulted in defective HSC self-renewal 

in an interferon-dependent fashion [86]. These mechanisms dampen HSC responsiveness 

to infections and are required to preserve HSC self-renewal in pathological conditions.   

SUMMARY 

 In this report we describe two novel regulators of HSC maintenance and self-

renewal. Chapter 3 describes Absent, small, or homeotic 1-like (Ash1l), a member of the 

TrG, as being an essential regulator of HSC function. We discovered that Ash1l plays a 

critical role in the establishment of HSC quiescence in the bone marrow, at least in part 

through regulation of CDKI expression. Loss of quiescence in this model results in the 

absence of detectable long-term self-renewal activity in transplantation assays. We 

further demonstrate that Ash1l functionally cooperates with Mll1 to maintain 

hematopoietic homeostasis, thus representing the first identification of in vivo 

cooperativity between TrG members in mammalian developmental biology. Surprisingly, 

despite a severely compromised HSC compartment, Ash1l-deficient mice do not succumb 

to hematopoietic failure. We observe increased cell cycle activity in downstream 
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progenitors, suggesting that they may have sufficient self-renewal activity to maintain 

hematopoiesis in the absence of HSCs.  

Chapter 5 describes that Tpp1 (encoded by Acd), a member of the shelterin 

complex of telomere-protecting proteins, is also critical for HSC self-renewal. Acd loss 

results in acute HSC depletion and an inability for HSCs to self-renew in transplantation 

assays. This functional decline is preceded by p53 activation and cell cycle arrest, though 

unlike in other stem cell compartments, genetic p53 ablation does not rescue HSC 

function. Acd deficiency thus provides a novel model of acute telomere deprotection in 

stem cells and implicates Tpp1 as an essential factor in the preservation of HSC self-

renewal potential. These findings contrast previous studies that described a gradual 

progression to hematopoietic failure following shelterin loss. Our data suggest that acute 

stem and progenitor dysfunction may underlie hematopoietic failure and thus should be 

rigorously evaluated in other models of acute telomere deprotection. 
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CHAPTER 2.  THE TRITHORAX GROUP: A CONSERVED 
CLASS OF EPIGENETIC REGULATORS WITH ESSENTIAL 

FUNCTIONS IN HEMATOPOIESIS 

INTRODUCTION  

The function of the trithorax group (TrG) of epigenetic regulators has been of 

particular interest since the discovery that Mixed-lineage leukemia-1 (Mll1) is a frequent 

fusion partner in a subset of pediatric and adult leukemias [87-89]. This gene is the 

mammalian homolog of Drosophila trithorax, a TrG member with a well-characterized 

role in Drosophila body patterning. Understanding the conserved mechanisms through 

which TrG members regulate developmental body patterning has provided important 

insight into how TrG members regulate normal and malignant hematopoiesis.   

THE TRITHORAX GROUP (TRG) IN DROSOPHILA BODY PATTERNING 

 Drosophila anterior-posterior body segmentation requires precise, ordered gene 

expression at loci encoded within the antennapedia and bithorax complexes (reviewed in 

[90]). Together, these clusters encode 8 homeobox (hox) genes that are expressed along 

the anterior-posterior body axis in the order in which they are encoded within the cluster. 

Transcription is initiated from these loci based on a gradient of maternally encoded 

transcription factors. After this initiation, Polycomb group (PcG) and Trithorax group 

(TrG) proteins are required for the maintenance of hox expression patterns, and thus for 

proper body segmentation as the fly embryo expands. TrG and PcG members achieve this 

activity through positive and negative regulation of hox targets, respectively. 
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Inappropriate hox gene expression during development is sufficient to transform one 

body segment into another reflective of the altered hox expression (“homeotic 

transformation”). 

 In flies, members of the TrG were defined by three main characteristics: 1. 

Mutations in TrG members result in homeotic transformations consistent with hox loss-

of-function; 2. Combined heterozygous mutations of different group members reveal that 

they serve as dominant enhancers of one another, increasing the penetrance of homeotic 

phenotypes; 3. Mutations in TrG members suppressed PcG loss-of-function phenotypes 

(which reflected hox gain-of-function mutations) [91]. trithorax, the archetypal TrG 

member, was originally described in flies with homeotic transformations consistent with 

loss of bithorax cluster expression [92, 93]. This identification came from body 

patterning screens in which mutations were identified that did not map to a known hox 

locus. Furthermore, mutant phenotypes were consistent with reduced expression of 

several hox loci within the bithorax cluster, suggestive of the loss of an upstream 

regulator. Later work revealed that in addition to causing reduced bithorax expression, 

trithorax loss-of-function mutations decreased antennapedia complex expression and 

suppressed the effects of polycomb mutations [94]. At the time, it was clear that 

polycomb acted as a negative regulator of the bithorax cluster, and together, these data 

demonstrated that trithorax was a positive regulator of Drosophila hox genes.   

 Two additional members of the TrG were identified in studies pursuing a 

Drosophila mutant phenotype characterized by prominent imaginal disc defects [95]. 

Imaginal discs are the precursors of Drosophila appendages and, as for body 

segmentation, require defined hox expression patterns for proper specification. Each set 
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of appendages (i.e. the antennae, wings, legs, eyes) develops from a pair of imaginal disc 

precursors. A series of imaginal disc mutants in which the discs were either absent, small, 

or homeotically transformed into a different disc (i.e. antenna disc to leg disc resulting in 

leg growth where an antenna should be) were initially described in 1971 [95]. Over a 

decade later, two genes, termed absent, small, or homeotic 1 and 2 (ash1 and ash2) were 

shown to be the causal loci accounting for these mutant phenotypes [96]. 

 The identification of ash1, ash2, and trithorax resulted in the description of the 

Trithorax group (TrG) [97]. Each member of this group promotes expression of hox 

cluster genes. The combined heterozygosity for loss-of-function mutations in any pair of 

these genes results in enhancement of homeotic phenotypes. Phenotypes associated with 

polycomb loss-of-function mutations (consistent with hox gain-of-function) are 

suppressed by mutation in any of these TrG members. Together, this report identified the 

TrG as a group of functionally related proteins that promoted gene expression, and acted 

in opposition to PcG members to preserve proper body patterning.  

 A subsequent screen for suppressors of polycomb phenotypes revealed that 

brahma also met the criteria for inclusion in the TrG [98]. As was true for other TrG 

members, brahma loss-of-function resulted in phenotypes consistent with loss of 

antennapedia and bithorax complex expression. Additionally, brahma mutations 

enhanced phenotypes associated with trithorax and ash1 mutations, demonstrating a 

functional interaction between brahma and trithorax and therein fulfilling the criteria for 

TrG inclusion [98, 99]. 

 While TrG members are functionally related in promoting hox gene transcription, 

the mechanisms through which they do so are diverse. ash1 and trithorax both encode 
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large proteins that contain a SET domain [100, 101]. This domain, named for its presence 

in the su(var)3-9, e(z), and trithorax proteins, confers histone methyltransferase activity 

to ash1 and trithorax (reviewed in [102]). ash2 does not encode a SET domain, though it 

may enhance histone methyltransferase activity of other SET domain-containing TrG 

members [103]. brahma is a homolog of a component of the yeast SWI/SNF complex 

[98]. This complex hydrolyzes ATP to physically move histones, and thus influences 

transcription through alterations in chromatin structure [104, 105]. These proteins are 

representative of the diverse mechanisms through which TrG members, of which 13 have 

been identified in total, promote gene expression from target loci (for additional TrG 

members, see [106]). While diverse biochemical functions have been identified for TrG 

members, the role that these functions may play in cooperativity between TrG members 

has not been identified. 

THE TRG IN MAMMALIAN BODY PATTERNING 

 As in Drosophila, mammalian body patterning requires proper Hox gene 

expression. Whereas there are 8 hox genes in Drosophila, 39 Hox loci have been 

identified in mammals (reviewed in [107] and [108]). Mutations in multiple Hox loci 

cause homeotic transformations of vertebral segments [109-111]. This demonstrates that 

Hox gene expression is required for anterior-posterior segmentation in mammals, and 

suggests that similar regulatory mechanisms may exist between mammals and 

Drosophila. However, while significant work has been done in describing the roles of 

Drosophila TrG members as upstream regulators of body patterning, relatively little work 

has been done in the mammalian system. Here, we review our current understanding of 

how mammalian TrG members regulate the establishment of the body plan. 
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Mll1 

 The mammalian homolog of trithorax, Mixed-lineage leukemia 1 (Mll1), was 

originally identified for its oncogenic role in pediatric leukemias (discussed below). Mll1 

bares significant amino acid sequence homology to Set1 family histone 

methyltransferases, a class of lysine modifying enzymes that promote gene expression 

through histone 3 lysine 4 methylation [112-114]. Comparison of protein structural 

domains between Mll1 and Setd1a, a classical Set1 family member, demonstrates that 

both proteins possess a C-terminal SET domain followed by a post-SET domain (Figure 

2.1). This C-terminal SET domain is characteristic of SET1-like proteins. Mll1 histone 

methyltransferase activity requires interactions with the cofactors WDR5, Ash2l, and 

RbBP5 for catalysis and with menin for binding to relevant loci [115-119]. Additional 

specificity in Mll1 targeting is provided by its interaction with the PAF transcriptional 

elongation complex. This interaction is required for Mll1 targeting to a subset of Hox 

loci, and suggests an additional role for Mll1 in regulating transcriptional elongation at 

individual target genes [120, 121]. In addition to cofactor-mediated targeting, Mll1 itself 

contains several domains that promote interactions with DNA and chromatin. The N-

terminus contains 3 closely-spaced AT hooks, which are known to facilitate binding with 

the minor groove of DNA [122]. These AT hooks are followed by a series of 3 PHD 

fingers and a bromodomain, which bind methylated and acetylated lysine residues, 

respectively [123, 124]. Mll1 therefore uses a combination of protein-protein, protein-

DNA, and protein-chromatin interactions for specific targeting to gene loci.  
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Figure 2.1. Structural organization of selected murine SET domain-containing proteins. Setd1a and 
Mll1 show conserved C-terminal SET domain localization characteristic of SET1 family histone 
methyltransferases. Setd2 and Ash1l show internal SET domains characteristic of SET2 family histone 
methyltransferases. Mll5 does not clearly fit a SET1 or SET2 family classification due to its N-terminal 
SET domain. All images are drawn to scale and conserved domains were identified using UniProt. 

Initial characterization of mice heterozygous for an Mll1 null allele described 

prominent homeotic transformations along the vertebral column consistent with reduced 

Hox gene expression [125]. Further analysis revealed that Hox boundaries were shifted in 

heterozygous animals, while animals with a complete loss of Mll1 expression eventually 

lost Hox expression and died in utero. These data established that Mll1, like its homolog, 

is required for proper Hox expression and subsequent body segmentation in mammals. 

 Developmental Hox gene defects and consequent homeotic transformations have 

been linked to the catalytic activity of the Mll1 SET domain [126]. Ablation of the SET 

domain recapitulated many of the axial skeletal phenotypes and Hox expression 

abnormalities reported in Mll1 loss-of-function studies. This work established that Mll1 

histone methyltransferase activity is required for normal Hox gene expression. Of note, 

SET domain deletion did not cause embryonic lethality, as was reported with the Mll1 

null allele, suggesting that Mll1 may have additional functions in development beyond 
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SET domain-mediated catalysis [125, 126].  While SET-independent functions remain to 

be explored, the catalytically inactive Mll1 revealed that SET domain activity was 

specific to methylation at histone 3 lysine 4 (H3K4) residues [126]. Subsequent analyses 

showed that Mll1 is predominantly responsible for H3K4 di- and trimethylation, a histone 

mark associated with positive regulation of gene expression [115, 127]. Together, these 

data indicate that Mll1 directly regulates transcriptional output from target genes, 

including those of the Hox cluster. 

 Further studies demonstrated that Mll1 is required for the maintenance of Hox 

gene expression in developing mouse embryos [128]. While Mll1-deficient fetuses 

normally expressed Hox genes at early developmental time points, Hox expression was 

eventually lost, suggesting that Mll1 is not required for initiating Hox gene expression, 

but rather for maintaining expression as tissues expand. This reflects a conserved 

functional paradigm between Drosophila and mammals in which Mll1 is required to 

preserve cellular memory of Hox expression patterns during body segmentation. 

 In addition to positively regulating Hox gene expression, Mll1 antagonizes the 

function of the PcG member Bmi1 [129]. Combined deficiencies in Mll1 and Bmi1 

suppressed homeotic transformations of the axial skeleton. Studies of gene expression 

differences in MEFs derived from Mll1- and Bmi1-deficient embryos identified 

complementary patterns of Hox gene expression where genes that appeared to be de-

repressed in the absence of Bmi1 failed to be expressed when Mll1 levels were reduced. 

This suggests the existence of a highly conserved crosstalk between mammalian TrG and 

PcG proteins in developmental body patterning and Hox gene expression. 
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Ash1l  

Beyond studies of Mll1 in body patterning, little work has been done 

characterizing the role that other TrG homologs might play in development. Recent 

evidence suggests that Ash1-like (Ash1l), the homolog of fly ash1, has a significant role 

in axial skeletal development (Camper et al., personal communication). Mice 

homozygous for a “gene trap” loss-of-function allele that results in profound 

hypomorphism for Ash1l (described in Chapter 3) display prominent rib patterning 

defects, predominantly in the form of extra thoracic ribs with abnormal sternal 

attachments. This finding was reminiscent of phenotypes ascribed to Hox loss-of-function 

and suggests that Ash1l plays a conserved function in mammalian body patterning, 

though additional studies will be required to identify the precise molecular targets 

involved in axial skeletal development. 

By analogy to Mll1, it is tempting to speculate that Ash1l functions in positive 

regulation of Hox expression through SET domain catalysis. Several independent groups 

have associated Ash1l SET domain activity with H3K4, H3K9, H3K36, and H4K20 

methylation [130-133]. Recent studies using rigorous biochemistry and crystallography 

indicated that H3K36 dimethylation is the most likely specificity for the Ash1l SET 

domain [134, 135]. Supporting this finding, amino acid sequence analysis reveals 

significant homology to Set2 proteins, a family of histone 3 lysine 36-specific 

methyltransferases [133, 136]. Histone 3 lysine 36 methylation is a cotranscriptional 

histone modification that facilitates effective transcription through promoting efficient 

mRNA splicing and limiting aberrant initiation from cryptic promoters [137-139]. As is 

characteristic of Set2 family members, the Ash1l SET domain is internal to the protein, as 

opposed to being at the C-terminus like Mll1 (Figure 2.1). Amino acid sequence analysis 
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reveals an associated-with SET (AWS) domain upstream of the Ash1l SET domain; this 

feature is shared among Set2 family members. Ash1l also includes 3 AT hooks, a 

bromodomain, and a PHD finger, thus promoting DNA, acetylated lysine, and methylated 

lysine binding, respectively. Additional cofactors required for Ash1l targeting to gene 

loci have not yet been identified. Moreover, direct catalytic function of Ash1l at target 

loci has not been described in vivo. Thus, while it seems that Ash1l directly binds several 

Hox loci in cultured cells, the physiological significance of this binding is unknown 

[130]. 

THE TRG AND HEMATOPOIESIS 

 As implied by the name, Mll1 (in humans MLL1) was originally identified in the 

context of hematopoiesis, and specifically in leukemia. Work from several groups 

demonstrated that the MLL1 locus was involved in chromosomal translocations at the 

11q23 locus in pediatric and adult leukemia patients with an increased incidence in 

infants and patients with secondary leukemias after exposure to topoisomerase II 

inhibitors [87-89]. Understanding the mechanistic implications of this translocation is 

significant, as patients with MLL1 fusions have a particularly poor prognosis. We now 

know that there are more than 60 gene fusions involving MLL1 [140].  While these 

fusions are diverse and often result in the loss of the MLL1 C-terminal SET domain, they 

uniformly cause increased Hox gene expression [141, 142]. These findings suggest a 

significant role for both Hox genes and MLL1 in hematopoiesis.  

 Initial studies focused on identifying a potential role for Mll1 in hematopoiesis 

demonstrated critical functions in fetal hematopoietic stem cell development. The 

assessment of fetal liver hematopoiesis in Mll1-deficient mice revealed reduced 
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cellularity, though mutlilineage differentiation appeared intact [143]. This was initially 

attributed to proper HSC specification, but subsequent failure in HSC fetal liver 

expansion. Later studies identified that Mll1-deficient HSCs were already significantly 

reduced in the AGM region, suggesting a role for Mll1 in the emergence of definitive 

hematopoiesis [144]. 

 Studies using embryoid bodies derived from Mll1-deficient embryonic stem cells 

revealed the role for Mll1 regulation of Hox genes in hematopoietic development [145]. 

Analysis of Hox gene expression over the course of hematopoietic specification from 

embryoid bodies revealed that several genes, including Hoxa7, Hoxa9, and Hoxa10 were 

significantly upregulated during this process. Importantly, these genes have also been 

identified as targets of MLL1 leukemogenic fusions [141, 142, 146]. Mll1-deficient 

embryoid bodies failed to upregulate expression of these Hox genes, and hematopoietic 

progenitors derived from these embryoid bodies failed to expand [145]. This provided the 

first evidence that a Mll1-dependent Hox program may be required for hematopoietic 

development, though this evidence is indirect, as a failure to specify normal 

hematopoietic progenitors for other reasons could result in reduced Hox expression. 

 Mll1-deficient embryos had significant developmental defects outside of 

hematopoiesis, thus complicating the in vivo understanding of Mll1 function. Though the 

embryoid body studies strongly suggested that Mll1 drives Hox expression, additional 

genetic tools were required to test the cell-autonomous function of Mll1 in HSC 

development and function. Such tools were provided when two groups independently 

developed Mll1 conditional alleles [67, 68]. Conditional inactivation of Mll1 revealed 

that Mll1 was required for the maintenance of HSC self-renewal [67, 68]. Transplantation 
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assays demonstrated that Mll1 deficiency was incompatible with long-term reconstitution, 

the gold standard for testing HSC self-renewal. Furthermore, Mll1 deficiency resulted in 

the loss of HSC quiescence prior to depletion, suggesting that Mll1-deficient HSCs 

aberrantly entered the cell cycle [67]. Mll1-deficient hematopoietic progenitors lost 

expression of Hoxa7, Hoxa9, and Hoxa10 prior to the observed self-renewal defects. 

These data expanded our understanding of the function of Mll1 in hematopoiesis and 

identified that Mll1 function was critical for HSC maintenance and self-renewal. 

 Intriguingly, the two studies identifying profound HSC defects in the absence of 

Mll1 reported different phenotypic severities, though both reports described comparable 

self-renewal defects upon transplantation. Jude and colleagues described a rapid 

progression to HSC depletion and bone marrow failure shortly after induction of Mll1 

excision [67]. This latter finding was linked to additional roles of Mll1 in myeloid and 

lymphoid progenitor function. McMahon and colleagues reported that they could stably 

excise Mll1 in fetuses and that this did not cause a defect in postnatal hematopoiesis in 

the absence of transplantation [68]. This study did identify reduced myeloid progenitor 

function in methylcellulose cultures, indicative of a role for Mll1 downstream of HSCs. 

Thus, the predominant difference between these two studies was the extent of HSC 

depletion in primary mice and progression to bone marrow failure. The reason for this 

difference is unknown, though perhaps alternative means of conditional allele generation 

or different Cre induction strategies between the groups could account for these findings. 

 The tumor suppressor menin was demonstrated to be required for both 

endogenous Mll1 and Mll1 fusion protein targeting to Hox loci [118, 147-149]. This 

function is dependent on the link that menin provides between Mll1 and LEDGF as an 
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adaptor protein during Mll1 recruitment to target loci [117]. Thus, loss of Men1 

(encoding menin) is predicted to reflect Mll1 loss-of-function in hematopoietic tissues. 

Analysis of Men1 deficiency revealed that, as Mll1, menin is required for HSC self-

renewal [150]. Similar to the phenotype reported by McMahon and colleagues, 

Men1deficiency resulted in HSC functional defects in transplantation assays, but not in 

primary mice. Hematopoietic progenitors had reduced expression of Hoxa9 and Hoxa10, 

reminiscent of gene expression changes observed in Mll1 deficiency. These data further 

support a critical role for Mll1 in HSC self-renewal, and thus in HSC function.  

 The finding that Mll1-driven leukemogenesis correlates with increased Hox 

expression and that HSC self-renewal defects in the absence of Mll1 were characterized 

by loss of Hox expression suggested that Hox genes might play critical roles in self-

renewal. Indeed, Hoxa9 deficiency results in impaired hematopoietic recovery following 

irradiation, which could reflect underlying HSC self-renewal defects [151]. Defective 

self-renewal was confirmed in transplantation assays, identifying Hoxa9 as a key 

regulator of HSC self-renewal. However, this phenotype is not as severe as that which is 

observed when Mll1 is lost, consistent with the idea that Mll1 is an upstream regulator of 

Hoxa9 and additional targets. Further supporting a role for Hoxa9 in self-renewal, Hoxa9 

over-expression was capable of imparting increased self-renewal properties on 

hematopoietic progenitors, though generation of transplantable leukemias required co-

expression of the Hox co-factor Meis1 [146, 152, 153].  

 The TrG member Mll5 is a SET domain-containing protein with limited 

homology to Mll1 that includes a N-terminal SET domain lacking an identified function 

(Figure 2.1).  Mll5 has also been implicated in regulating HSC function [69-71]. 
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Hematopoietic progenitors lacking Mll5 entered the cell cycle at an increased rate, 

suggestive of a loss of quiescence [69, 71]. Hematopoietic stress induced by sublethal 

irradiation or 5-fluorouracil injection resulted in the progression to bone marrow failure 

in Mll5-deficient mice [70, 71]. While increased cell cycle activity can contribute to 

heightened sensitivity to either of these treatments, reduced self-renewal can also limit 

the expansion of the stem cell pool that is required for recovery. Subsequent testing of 

self-renewal in transplantation demonstrated severe HSC functional impairment in Mll5 

knockout animals [70, 71]. Further analysis of hematopoietic progenitors revealed that 

Mll5 deficiency resulted in reduced expression of Hoxa7 and Hoxa9 [71]. Mll5, like 

Mll1, is therefore required for HSC self-renewal. 

 Beyond this body of work identifying roles for Mll1 and Mll5 in HSC self-

renewal and hematopoietic homeostasis, little is known about the function of additional 

TrG members in mammalian hematopoiesis. Furthermore, while Mll1 and Mll5 seem to 

regulate partially overlapping genetic targets, cooperativity between these and any other 

TrG members in hematopoiesis has not been evaluated. Thus, while focus has been 

placed on Mll1 because of its role in human malignancy, much work remains in 

understanding the role that TrG proteins may have in HSC function and hematopoietic 

homeostasis. 
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CHAPTER 3.  THE TRITHORAX GROUP MEMBER ASH1L 
FUNCTIONALLY COOPERATES WITH MLL1 TO REGULATE 

HEMATOPOIETIC STEM CELL QUIESCENCE AND SELF-
RENEWAL 

* 

ABSTRACT 

	   Hematopoietic homeostasis requires that rare hematopoietic stem cells (HSCs) 

balance the processes of differentiation and self-renewal to sustain long-term 

hematopoietic output. To preserve long-term function, HSCs largely remain outside of 

the cell cycle in a quiescent state that limits their exposure to replicative stress. In this 

study, we identify the Trithorax group (TrG) member Absent, small, or homeotic 1-like 

(Ash1l) as being required for the induction and maintenance of this quiescent state during 

the neonatal period. In the absence of Ash1l, HSCs actively cycle and eventually become 

profoundly depleted by young adulthood. This inability to achieve quiescence correlates 

with reduced expression of p27 and p57, two cyclin-dependent kinase inhibitors required 

for the maintenance of quiescence. Intriguingly, bone marrow transplantation assays fail 

to identify HSC function in the fetal or adult Ash1-deficient bone marrow. Despite this 

finding, Ash1l-deficient mice do not progress to hematopoietic failure, suggesting that 

few remaining LT-HSCs or downstream progenitors are sufficient to maintain survival 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
* Material in this chapter is modified from: 
Jones, M., Brinkmeier, M. L., Weinberg, D. N., Schira, J., Friedman, A., Camper, S. A., 
and Maillard, I., The Trithorax group member Ash1l functionally cooperates with Mll1 to 
regulate hematopoietic stem cell quiescence and self-renewal. Manuscript in preparation.   
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for more than 6 months in this model. Additionally, we demonstrate that this HSC 

functional deficit results in niche availability such that Ash1l-deficient mice can be 

engrafted with wild-type HSCs in the absence of irradiation. Ash1l functionally 

cooperates with the TrG member Mll1 to promote hematopoietic stem cell function and 

homeostasis, identifying conserved cooperativity between TrG members for the first time 

in mammals. These data demonstrate that Ash1l plays an essential role in the maintenance 

and function of HSCs.   

INTRODUCTION 

Sustained hematopoiesis requires that long-term hematopoietic stem cells (LT-

HSCs) balance the processes of self-renewal and differentiation. To maintain self-

renewal, LT-HSCs must primarily remain outside of the cell cycle, or in a quiescent state. 

Establishment of quiescence occurs within 4 weeks of homing to the bone marrow, 

marking a transition from robust cell cycle activity in the fetal liver to quiescence in the 

adult bone marrow [29]. The failure to establish or maintain quiescence is often linked to 

LT-HSC depletion, increased sensitivity to myelosuppression, and reduced engraftment 

in bone marrow transplantation assays [29, 32, 36, 154]. Thus, understanding the 

mechanisms through which LT-HSCs establish and maintain quiescence is critical to 

understanding self-renewal and long-term hematopoietic output from these rare cells. 

The Trithorax group (TrG) is a diverse class of epigenetic regulators that was 

originally identified as being required for Drosophila body patterning (reviewed in 

[106]). Collectively, TrG proteins maintain proper expression of the antennapedia and 

bithorax complexes to affect proper segmentation during embryogenesis (reviewed in 

[90]). In Drosophila, individual TrG members function non-redundantly to promote gene 
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expression from these homeobox (hox) loci such that combined heterozygous mutations 

of TrG members function as dominant enhancers of one another [97, 99]. TrG members 

have a conserved function in developmental body segmentation in mammals. Mice 

deficient for Mixed-lineage leukemia 1 (Mll1), the mammalian homolog of trithorax, 

have disrupted body segmentation due to a failure of the maintenance of Hox gene 

expression [125]. Additionally, mice deficient for the TrG member Absent, small, or 

homeotic 1-like (Ash1l), the mammalian homolog of Drosophila ash1, have disrupted 

body patterning as evidenced by axial skeleton abnormalities attributable to defective 

Hox gene expression (Brinkmeier and Camper, personal communication). While these 

data suggest that TrG members may share a conserved, non-redundant role in mammalian 

development, this concept has not yet been evaluated. 

Past work demonstrated a critical role for Mll1 in both normal and malignant 

hematopoiesis. Mll1 was originally identified as a frequent partner in genetic fusions 

driving human leukemias in both infants and adults [87-89]. These leukemias 

demonstrate a characteristic aberrant upregulation of Hox gene expression [141, 142]. 

Additional work demonstrated that Mll1 was required for the maintenance of normal 

hematopoietic stem cells (HSCs) through a critical function in the preservation of HSC 

self-renewal [67, 68]. Mll1-deficient mice had reduced Hox gene expression in HSCs, 

and this was believed to contribute to reduced HSC function. Since Hoxa9, a critical 

target of MLL1 in both leukemia and normal hematopoiesis, only contributes modestly to 

HSC self-renewal, additional, unidentified genetic targets must be dysregulated in Mll1-

deficient HSCs to account for the profound functional defects [151].  These factors 
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remain to be elucidated. Furthermore, the role of additional TrG members in normal and 

malignant hematopoiesis has not been thoroughly evaluated. 

The TrG member ash1 was originally identified in Drosophila genetic screens 

seeking regulators of imaginal disc development [95]. It was later determined that ash1 

encodes a large protein containing a SET domain with putative histone methyltransferase 

activity [101]. Mammalian Ash1l encodes a similar SET domain-containing protein, and 

has been demonstrated to associate with actively transcribed gene loci, including at 

several Hox genes [130]. Recently, the Ash1l SET domain has been reported to have 

histone 3 lysine 36 dimethylase ability using in vitro biochemical assays, though the 

significance of this function in vivo has not been evaluated [133-135]. Interestingly, a 

recent report suggested that Ash1l functions in cultured hematopoietic cells and may 

cooperate with Mll1 to drive Hox gene expression [155]. Neither the function of Ash1l 

nor the idea of cooperativity with Mll1 has been evaluated rigorously with in vivo genetic 

models. 

In this report, we describe an essential role for the TrG member Ash1l in the 

maintenance of adult, but not fetal HSCs. Our data demonstrate that Ash1l is required for 

HSC self-renewal in the bone marrow and for the establishment of quiescence at the fetal 

to adult transition. Despite a 5-10-fold reduction in phenotypic BM HSCs and an inability 

to detect functional HSCs in transplantation assays, Ash1l-deficient mice do not progress 

to hematopoietic failure. This might be attributable to increased proliferation in 

progenitors downstream of HSCs that maintain hematopoiesis. Additionally, we 

demonstrate that Ash1l cooperates with Mll1 to maintain hematopoiesis at the level of 
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HSCs and progenitor cells. This report represents the first genetic demonstration of in 

vivo cooperativity between TrG members in mammals. 

RESULTS 

Ash1lGT/GT fetal HSCs develop and expand normally 

To examine the function of Ash1l in hematopoiesis, we utilized a gene trap 

insertion allele in which a potent splice acceptor cassette was placed in the first intron of 

the Ash1l locus (Figure 3.1A). This strategy resulted in a >90% reduction in full-length 

Ash1l transcripts in Lineage-Sca-1+cKit+ (LSK) hematopoietic progenitors both within 

fetal liver and bone marrow. E14.5 Ash1lGT/GT fetal livers had normal cellularity and 

mature myeloid, erythroid, and B lymphocyte population frequencies compared to wild-

type littermates (Figure 3.1B, C). To assess LT-HSC content, we utilized the SLAM 

(CD150+CD48-LSK) definition of LT-HSCs, as this strategy has been shown to robustly 

identify both fetal liver and adult bone marrow LT-HSCs [156, 157]. Phenotypic Ash1l-

deficient LT-HSCs were present at a normal frequency in the fetal liver (Figure 3.1D). 

This demonstrated that Ash1lGT/GT fetal LT-HSCs developed and expanded normally, and 

that they were capable of supporting hematopoiesis. 
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Figure 3.1. E14.5 Ash1lGT/GT fetal LT-HSCs expand normally and support hematopoiesis. (A) The 
Ash1lGT allele was generated by the insertion of a strong splice-acceptor gene trap cassette into the first 
intron of Ash1l. Homozygosity for this allele resulted in a >90% reduction in wild-type transcripts in fetal 
and adult LSK progenitors as indicated by qRT-PCR analysis with exon 1-2 spanning primers; (B) E14.5 
fetal liver cellularity is comparable between WT (+) and Ash1lGT/GT (GT) fetuses (N≥4 mice/genotype from 
2 independent experiments; mean +/- SEM); (C) Flow cytometric determination of myeloid (CD11b+Gr1+), 
erythroid (Ter119+), and B lymphocyte (CD19+B220+) frequencies in + and GT E14.5 livers showing no 
differences (N≥4 mice/genotype from 2 independent experiments; mean+/- SEM); (D) Flow cytometric 
analysis of E14.5 fetal livers showing normal frequencies of CD150+CD48–Lineage–Sca-1+cKit+ (SLAM) 
LT-HSCs in + and GT mice (data are representative of ≥ 4 mice/genotype; mean +/- SEM). Representative 
flow cytometry plots are shown. Numbers indicate the percentage of cells in each gate. 

Ash1lGT/GT LT-HSCs are profoundly depleted in the young adult bone marrow 

6-12 week old Ash1lGT/GT mice had normal bone marrow cellularity and normal 

frequencies of myeloid, erythroid, and B lymphocyte populations in the bone marrow 

(Figure 3.2A, C). Despite seemingly normal hematopoietic output, flow cytometric 

analysis revealed a 5-10-fold reduction in SLAM LT-HSCs compared to wild-type mice 
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(Figure 3.2D). To rule out that an altered surface phenotype was the cause for this 

reduction we demonstrated a similar 5-10-fold reduction in LT-HSCs using the 

alternative CD34-Flt3- definition (Figure 3.2E) [158]. This depletion did not impact 

myeloid progenitor output in CFU-GM assays, suggesting preserved myeloid progenitor 

function (Figure 3.2B). Surprisingly, despite the profound reduction in phenotypic LT-

HSCs, Ash1lGT/GT mice did not progress to bone marrow failure by 6 months of age and 

did not display further reductions in LT-HSC frequency (Figure 3.2F, G). These data 

indicated that Ash1lGT/GT LT-HSCs developed normally in fetuses, but became depleted in 

the young adult bone marrow. Despite this depletion, bone marrow output was preserved 

for at least 6 months without phenotypic worsening. 
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Figure 3.2. Ash1lGT/GT LT-HSCs are profoundly depleted in the BM by 6-12 weeks. (A) Young adult 
(6-12 week) BM cellularity is preserved between + and GT mice (N≥6 mice/genotype from at least 2 
independent experiments; means +/- SEM); (B) GT BM has normal ability to form myeloid colonies in 
CFU-GM assays (mean of technical triplicates representative of 2 independent experiments); (C) Flow 
cytometric determination of myeloid (CD11b+Gr1+), erythroid (Ter119+), and B lymphocyte (CD19+B220+) 
frequencies in + and GT young adult BM showing no differences (N≥2 mice/genotype; means +/- SEM); 
(D) Flow cytometric analysis of young adult mice (6-12 wk) showing GT mice had a >5 fold reduction in 
SLAM LT-HSCs (data are representative of ≥ 6 mice / genotype; means are shown +/- SEM); (E) Flow 
cytometric analysis demonstrating reduced LT-HSCs (CD34–FLT3–LSK), but not ST-HSCs (CD34+FLT3–

LSK) or MPPs (CD34+FLT3+LSK) in young adult + or GT mice (N≥4 mice/genotype from 2 independent 
experiments; means +/- SEM); (F) Analysis of mice aged at least 24 weeks demonstrates preserved bone 
marrow cellularity (N=6 mice/genotype from 3 independent experiments; means +/- SEM); (G) Flow 
cytometric analysis reveals a >5 fold reduction in 24 week old GT CD150+CD48–LSK LT-HSCs, as was 
true in young adult mice (N=6 mice/genotype from 3 independent experiments; means +/- SEM). 
Representative flow cytometry plots are shown. Numbers indicate the percentage of cells in each gate. 
*p<0.05, ***p<0.001. 

Neither fetal nor adult Ash1lGT/GT LT-HSCs are capable of sustaining long-term 
hematopoietic reconstitution 

Since Ash1lGT/GT mice were able to survive for at least 6 months with very few 

phenotypic HSCs, it was possible that a phenotypically abnormal but functional HSC 

compartment existed in the Ash1lGT/GT bone marrow. To test HSC function independent 

of phenotypic characteristics, we used whole fetal liver or bone marrow in competitive 

transplantation assays (Figure 3.3A). We chose the fetal liver as our initial source of LT-

HSCs since Ash1lGT/GT fetal livers did not have reduced phenotypic LT-HSCs. We found 
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that despite normal phenotypic LT-HSCs, Ash1lGT/GT fetal livers were incapable of 

sustaining myeloid, T cell, or B cell reconstitution in the peripheral blood (Figure 3.3B). 

Since a tri-lineage defect is suggestive of underlying LT-HSC dysfunction, we examined 

LT-HSC engraftment after 25 weeks. This revealed the absence of Ash1lGT/GT LT-HSCs 

in the bone marrow of transplant recipients, demonstrating that fetal Ash1lGT/GT LT-HSCs 

were already dysfunctional and incapable of supporting durable bone marrow 

hematopoiesis (Figure 3.3C) 

To determine if the young adult Ash1lGT/GT BM contained a phenotypically 

abnormal LT-HSC compartment capable of long-term reconstitution, we transplanted 

donor mice with Ash1lGT/GT or Ash1l+/+ BM mixed with an equal amount of competitor 

BM. We found that as was true with Ash1lGT/GT fetal liver LT-HSCs, Ash1lGT/GT BM LT-

HSCs did not support long-term tri-lineage output or durable LT-HSC BM engraftment 

(Figure 3.3D, E). Since there are examples of LT-HSCs performing poorly in 

competitive BM transplants but stably engrafting the BM in the absence of competition, 

we examined Ash1lGT/GT LT-HSC function in the absence of competition (Figure 3.3F) 

[48]. We found that 70% of Ash1lGT/GT BM recipients died within 10-150 days after 

transplantation, consistent with transient radioprotection but LT-HSC dysfunction 

(Figure 3.3G). Analysis of the surviving Ash1lGT/GT BM recipients revealed that these 

mice survived with host (CD45.1+) reconstitution and not Ash1lGT/GT LT-HSC 

engraftment (Figure 3.3H). Together, these data demonstrated that Ash1lGT/GT fetal liver 

and BM LT-HSCs were devoid of functional HSCs capable of stably engrafting the BM 

and sustaining long-term hematopoiesis.     
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Figure 3.3. Neither Ash1lGT/GT fetal liver nor young adult BM has a functional LT-HSC compartment 
in transplantation assays. (A) Experimental strategy: either Ash1l+/+or Ash1lGT/GT B6-CD45.2 bone 
marrow was mixed with WT B6-CD45.1 competitor bone marrow (1:1 ratio; 2.5X105 for fetal liver or 
5X105 of each for BM) and injected into lethally irradiated (9Gy) WT B6-CD45.1 recipient mice; (B) Flow 
cytometric analysis of the peripheral blood 4-25 weeks after fetal liver transplantation demonstrates a 
profound reduction of the Ash1lGT/GT bone marrow contribution to myeloid (CD11b+Gr1+), B cell 
(CD19+B220+), and T cell (CD3+) reconstitution (data are representative of ≥ 3mice/genotype); (C) 
Analysis of CD45.2/CD45.1 chimerism in the CD150+CD48–LSK LT-HSC compartment 25 weeks after 
transplantation demonstrates an absence of Ash1lGT/GT LT-HSCs (data are representative of ≥ 
3mice/genotype); (D) Flow cytometric analysis of peripheral blood 2-16 weeks after 6 wk-old BM 
transplantation shows a profound reduction of the Ash1lGT/GT BM contribution to myeloid (CD11b+Gr1+), B 
cell (CD19+B220+), and T cell (CD3+) reconstitution (data are representative of ≥ 4 mice/genotype); (E) 
Analysis of CD45.2/CD45.1 chimerism in the CD150+CD48–LSK LT-HSC compartment 16 weeks after 
transplantation demonstrates an absence of Ash1lGT/GT LT-HSCs (data are representative of ≥ 4 
mice/genotype); (F) Experimental Strategy: either Ash1l+/+or Ash1lGT/GT B6-CD45.2 bone marrow cells (106 

cells of each) were injected into lethally irradiated (9Gy) WT B6-CD45.1 recipient mice. (G) Mice were 
monitored for survival for the indicated period of time; (H) Flow cytometric analysis of surviving mice 
showing that Ash1lGT/GT recipients had only CD45.1 (Host)-derived LSK progenitors, while Ash1l+/+ 
recipients were reconstituted with CD45.2 (Donor) progenitors (data representative of at least 3 
mice/genotype). Representative plots are shown. Numbers indicate the percentage of cells in each gate. 
***p<0.001. 
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AshlGT/GT HSCs home to the bone marrow but do not properly establish or maintain a 
quiescent HSC pool  

Both bone marrow transplantation and the establishment of a BM HSC pool 

require homing of HSCs to the BM niche: transplantation requires that HSCs home from 

the site of injection to the bone marrow, while physiologic homing requires that HSCs 

migrate from the fetal liver to the bone marrow. Since Ash1lGT/GT mice lacked a stable 

HSC pool in both experimental models, it was possible that Ash1lGT/GT HSCs exhibited 

homing defects. To test this possibility, we analyzed the BM LT-HSC compartment in 

P10 mice by flow cytometry. These experiments revealed that Ash1lGT/GT neonatal mice 

had comparable frequencies of LT-HSCs in their BM, inconsistent with a homing defect 

(Figure 3.4A). We further found that normal Ash1lGT/GT LT-HSC frequency was 

preserved for at least 3 weeks after birth (data not shown). 

Assessment of neonatal BM LT-HSCs demonstrated that Ash1lGT/GT LT-HSCs 

had increased expression of cell surface CD34 as compared to wild-type mice (Figure 

3.4B). CD34 expression has been reported to mark fetal, but not adult mouse LT-HSCs 

[159, 160]. In addition, CD34 expression is upregulated on the surface of HSCs that are 

actively engaged in cell cycle activity [30, 159]. To test if Ash1lGT/GT BM LT-HSCs 

maintained a fetal-like transcription program, we crossed our mice with Sox17-GFP 

reporter mice [26]. Sox17 is a master regulator of the fetal HSC program and is expressed 

only in fetal HSCs and not in adult BM HSCs. We found that Ash1lGT/GT LT-HSCs 

properly expressed Sox17-GFP in the fetal liver and appropriately extinguished Sox17-

GFP by 2 weeks after birth (Figure 3.4C). Thus, Ash1l deficiency did not result in the 

maintenance of a fetal-like LT-HSC state.  
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To test if Ash1lGT/GT HSCs had an abnormal cell cycle status, we used both BrdU 

and Ki67-based staining strategies. P19 Ash1lGT/GT LT-HSCs showed a trend for 

increased BrdU incorporation suggesting aberrant cell cycle entry (Figure 3.4D). Ki67 

staining revealed that Ash1lGT/GT HSCs had a significantly reduced G0 fraction, increased 

entry into G1, and a trend for more HSCs in the later S-G2-M phases of the cell cycle 

(Figure 3.4E). Since HSCs exit the cell cycle in the BM between P14 and P21, this 

suggested that Ash1l-deficient HSCs failed to establish a normal quiescent stem cell pool 

[29]. 

Recent work has demonstrated that HSC BM quiescence is dependent on the 

expression of p27(Cdkn1b) and p57(Cdkn1c) [35, 36]. Gene expression analysis in LSK 

progenitors showed that P10 Ash1lGT/GT hematopoietic progenitors had markedly reduced 

expression of these two critical regulators of quiescence, though expression of 

p21(Cdkn1a), a CIP/KIP family member not implicated in the establishment of normal 

HSC quiescence, was not altered (Figure 3.4F). Collectively, these data suggested that 

Ash1lGT/GT HSCs failed to establish normal quiescence in the BM due to reduced p27 and 

p57 expression. 
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Figure 3.4. Ash1lGT/GT LT-HSCs home to the bone marrow but fail to establish quiescence. (A) Flow 
cytometric analysis of P10 BM demonstrated comparable frequencies of SLAM LT-HSCs between 
Ash1lGT/GT  and Ash1l+/+ littermates (data are representative of ≥ 9 mice / genotype; means +/- SEM); (B) 
P10 GT SLAM LT -HSCs had increased cell surface CD34 expression (data are representative of 4 
mice/genotype; means +/- SEM); (C) Flow cytometric analysis of Sox17-GFP expression in E15.5 fetal 
liver and P14 BM SLAM LT-HSCs shows that Sox17-GFP is present in fetal liver LT-HSCs and is 
appropriately extinguished in the P14 BM (N≥3 mice/genotype from 4 independent experiments; data 
points represent individual mice with bar at mean); (D) Representative flow cytometry plots showing P19 
Ash1lGT/GT SLAM LT-HSCs had increased cell cycle entry as indicated by increased BrdU incorporation 
(data are representative of ≥ 4 mice / genotype; means are shown + SEM); (E) Representative flow 
cytometry plots showing P19 Ash1lGT/GT SLAM LT-HSCs had a reduced G0 (quiescent fraction) and 
increased distribution into G1 and S-G2-M phases by Ki67 (data are representative of 5 mice/genotype; 
means are shown +/- SEM); (F) Reduced p27 and p57 gene expression in P10 Ash1lGT/GT LSK progenitors 
by qRT-PCR (3 individual sorted samples +/- SEM per genotype; expression relative to Hprt1). 
Representative plots are shown. Numbers indicate the percentage of cells in each gate. *p<0.05, **p<0.01, 
***p<0.001. 
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AshlGT/GT LT-HSCs and progenitors maintain increased cell cycle activity  

The cell cycle analyses described above provide a snapshot of cell cycle activity 

in LT-HSCs, but cannot provide detailed insight into cell cycle status over time. Since 

LT-HSCs were described as a slow-cycling cell population compared to differentiated 

cells in long-term pulse-chase experiments, detailed analysis of cell cycle history can 

identify putative HSCs with the least cell cycle entry [161]. To examine whether 

Ash1lGT/GT BM harbored cells with such very slow-cycling behavior, we bred Ash1lGT/GT 

mice to mice in which an H2B-GFP transgenic allele was inducible by tetracycline 

through the M2rtTa tetracycline activator [161]. This strategy allowed us to perform 

pulse-chase experiments and examine the long-term cell cycle activity of hematopoietic 

stem and progenitor cells (Figure 3.5A). We found that Ash1lGT/GT LT-HSCs had 

increased cell cycle activity sustained throughout the 6 week chase period as indicated by 

enhanced GFP dilution (Figure 3.5B). This increased cell cycle activity may reflect 

efforts of the few remaining phenotypic LT-HSCs to maintain hematopoietic 

homeostasis.  Interestingly, the Ash1lGT/GT LSK compartment as a whole had an even 

more robust increase in cell cycle activity than the LT-HSC compartment (Figure 3.5B). 

This suggested that increased proliferation in progenitors downstream of LT-HSCs might 

be the source of sustained hematopoietic output despite reduced LT-HSCs in Ash1lGT/GT 

mice. This finding could underlie the long-term survival and maintained hematopoietic 

output in Ash1lGT/GT mice. 

To further assess Ash1lGT/GT LT-HSC cell cycle activity, we challenged Ash1lGT/GT 

and control mice with the antimetabolite 5-fluorouracil (5-FU) (Figure 3.5C). 5-FU 

treatment is toxic to actively dividing cells, but spares quiescent cells including LT-

HSCs. Following a single dose of 5-FU, LT-HSCs robustly enter the cell cycle and 
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proliferate to restore hematopoietic homeostasis [31]. We found that a single treatment 

with 5-FU resulted in a nearly 2 log reduction in Ash1lGT/GT LT-HSCs compared to 

controls, thus amplifying the baseline LT-HSC reduction by 10-20-fold (Figure 3.5D). 

This further demonstrated that Ash1lGT/GT BM lacks a quiescent stem cell pool, and that 

remaining LT-HSCs were persistently engaged in cell cycle activity.  

 

	  

Figure 3.5. Ash1lGT/GT LT-HSCs and LSK progenitors sustain increased cell cycle activity. (A) 
Experimental strategy: Ash1l+/+or GT/GT with M2rtTA and H2B-GFP were maintained on doxycycline 
drinking water for 6 weeks to label hematopoietic cells with GFP. GFP dilution was monitored by flow 
cytometry after a 6 week chase period; (B) Flow cytometric analysis after the 6 week chase showing 
significantly increased GFP dilution in Ash1lGT/GT SLAM LT-HSCs and LSK progenitors compared to 
controls, demonstrating increased cell cycle activity (data are representative of ≥ 6 mice/genotype; means 
are shown +/- SEM); (C) Experimental Strategy: mice of indicated genotypes were injected with 150mg/kg 
5-fluorouracil (5-FU) and sacrificed 8 days later; (D) Flow cytometric analysis of SLAM LT-HSCs 
showing 2-log reduction in frequency and 2.5-log reduction in LT-HSC numbers in Ash1lGT/GT as compared 
to control mice after 5-FU exposure (N≥4 mice/genotype; graphs show means +/- SEM). Representative 
plots are shown. Numbers indicate the percentage of cells in each gate. *p<0.05, **p<0.01, ***p<0.001. 
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The Ash1lGT/GT niche supports donor LT-HSC engraftment in the absence of 
conditioning 

Few reports describe HSC genetic defects that permit donor HSC engraftment in 

the absence of conditioning [61, 162]. We reasoned that since Ash1lGT/GT BM had 

profoundly reduced LT-HSCs, and remaining phenotypic LT-HSCs were non-functional 

in transplantation assays, there might be available BM niche space and/or defective HSCs 

that could be out-competed by wild-type donor BM. Either scenario could permit 

engraftment of donor BM without conditioning. To examine this possibility, we 

transplanted wild-type (CD45.2+) or Ash1lGT/GT (CD45.2+) mice with wild-type 

(CD45.1+) bone marrow (Figure 3.6A). We found that in 4/5 Ash1lGT/GT recipients, stable 

tri-lineage hematopoietic output from donor BM could be detected in the peripheral blood 

for at least 12 weeks (Figure 3.6B). We further determined that this output resulted from 

wild-type LT-HSCs stably engrafting the Ash1lGT/GT BM (Figure 3.6C). As expected, 

minimal to no donor engraftment was detected in wild-type recipients. These data further 

support a model in which Ash1l is cell-autonomously required for the maintenance of LT-

HSCs in the BM niche. The combination of vacant niches and profound LT-HSC 

dysfunction in Ash1lGT/GT BM was suitable for engraftment by donor cells without any 

conditioning. Importantly, these data demonstrated that the Ash1lGT/GT niche was not 

itself defective, as it was able to support stable engraftment by wild-type donor LT-

HSCs.  
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Figure 3.6. Ash1l deficiency allows LT-HSC engraftment in the absence of conditioning. (A) 
Experimental strategy: Ash1lGT/GT or +/+  (CD45.2+) mice were transplanted with 2 doses of 2 X 107 BM 
(CD45.1+) separated by 1 week without irradiation; (B) Flow cytometric analysis of peripheral blood of 
transplant recipients demonstrates significant output from donor BM in myeloid (CD11b+Gr1+), B cell 
(CD19+B220+), and T cell (CD3+) lineages in 4/5 Ash1lGT/GT recipients, but in 0/6 WT recipients. 
Reconstitution was sustained for at least 12 weeks (data are representative of ≥ 5 mice/genotype); (C) Flow 
cytometric analysis of LT-HSC compartment demonstrates stable donor (CD45.1+) LT-HSC engraftment in 
4/5 Ash1lGT/GT recipients, but in 0/6 WT recipients. Representative plots are shown. Numbers indicate the 
percentage of cells in each gate. *p<0.05. 

Ash1l cooperates with Mll1 to maintain hematopoiesis 

Studies in Drosophila revealed that members of the TrG can functionally 

cooperate with one another to maintain homeobox gene expression [97]. This 

phenomenon has not been assessed in mammals in vivo. We reasoned that if mammalian 

TrG members cooperated with one another, they might share a subset of target genes and 

functional effects. Mll1, the mammalian homolog of Drosophila trithorax, was shown to 
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regulate a number of Homeobox genes including Meis1, Hoxa9, and Hoxa10, all of which 

are known to be essential for HSC self-renewal. We found that P10 Ash1lGT/GT LSK 

progenitors had reduced expression of Hoxa5, Hoxa9, Hoxa10, and Meis1, with Hoxa9 

and Meis1 being the most profoundly affected (Figure 3.6). Importantly, Mll1 levels 

were not changed in these progenitors, demonstrating that effects of Ash1l deficiency on 

Hox gene expression were not secondary to reduced Mll1 levels. This suggested that 

Ash1l and Mll1 shared a subset of genetic targets known to be essential for LT-HSC 

function, and thus that they may cooperatively function to maintain hematopoietic 

homeostasis. 

 

	  

Figure 3.7. Ash1lGT/GT neonatal LSKs have reduced Hox gene expression independent of Mll1. 
Reduced Hox gene expression in P10 Ash1lGT/GT LSK progenitors by qRT-PCR (3 individual sorted samples 
+/- SEM per genotype; expressed relative to Hprt1). *p<0.05, **p<0.01. 

To examine if Ash1l and Mll1 cooperate to maintain hematopoietic homeostasis, 

we intercrossed Mll1fl/fl Mx1-cre+mice with Ash1lGT [68]. This system allowed us to 

delete Mll1 via poly(I:C) injection (Figure 3.8A). Using this model, we found that 

combined deficiency for Mll1 and Ash1lGT/GT resulted in an acute reduction in bone 

marrow cellularity, suggesting that these mice developed bone marrow failure (Figure 

3.8B). To determine if loss of hematopoietic progenitor cells underlied bone marrow 

failure, we analyzed the LT-HSC and downstream progenitor compartments by flow 

cytometry. Flow cytometric analysis of LT-HSCs and hematopoietic progenitors 
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demonstrated that Ash1lGT/GTMll1fl/flMx1-cre+ mice had profound reductions in LT-HSCs 

and LSK progenitors (Figure 3.8C, D, E). In addition, Ash1lGT/+Mll1fl/+Mx1-cre+ mice 

had fewer LT-HSCs than Ash1lGT/+ or Mll1fl/+Mx1-cre+mice, suggesting that LT-HSCs 

had a unique sensitivity to the observed functional interaction between Mll1 and Ash1l. 

Flow cytometric analyses further revealed that CD34-SLAM LT-HSCs, one of the most 

quiescent HSC subsets that can be identified with surface markers, were profoundly 

reduced in Ash1lGT/GTMll1fl/flMx1-cre+mice as well as in Ash1lGT/+Mll1fl/+Mx1-cre+ mice 

(Figure 3.8F). This suggested that Ash1l and Mll1 cooperate to maintain quiescent 

HSCs. Together, these findings identified cooperativity between Mll1 and Ash1l in 

maintaining hematopoietic stem and progenitor cells. This is the first in vivo 

demonstration of a functional interaction between TrG members in mammals. 
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Figure 3.8. Combined Ash1l and Mll1 deficiency results in acute LT-HSC and LSK depletion. (A) 
Experimental strategy: mice of indicated genotypes were injected 5X with 20ug of poly(I:C); (B) Reduced 
bone marrow cellularity in Ash1lGT/GTMll1fl/flMx1-cre+mice (data are representative of ≥ 2 mice/genotype; 
mean +/- SEM); (C) Flow cytometric analysis showing severe reductions in CD34- SLAM LT-HSCs, 
SLAM LT-HSCs, and LSK progenitors in Ash1lGT/GTMll1fl/flMx1-cre+mice and reduced CD34- SLAM LT-
HSC frequency Ash1lGT/+Mll1fl/+Mx1-cre+mice; (D, E) LT-HSC and LSK absolute cell numbers reflecting 
profound defect in Ash1lGT/GTMll1fl/flMx1-cre+mice and reduced LT-HSC numbers in Ash1lGT/+Mll1fl/+Mx1-
cre+mice (data are representative of ≥ 2 mice/genotype; mean +/- SEM); (F) Frequencies of CD34- SLAM 
LT-HSCs emphasizing reduction in Ash1lGT/+Mll1fl/+Mx1-cre+ BM. Representative plots are shown. 
Numbers indicate the percentage of cells in each gate.  

Previous studies indicated that the cofactor menin is required for Mll1 targeting to 

at least a subset of gene loci [117, 118, 147, 148]. Combining the Ash1lGT allele with 

Men1fl/fl Mx1-cre+ mice thus provided a means to independently verify the described 
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functional interaction between Ash1l and Mll1 in hematopoiesis [163]. Men1 excision 

was achieved by poly(I:C) injection, and this allowed us to ablate menin-dependent Mll1 

function in the hematopoietic system (Figure 3.9A). Analysis of the bone marrow 

compartment 3 weeks after the initiation of poly(I:C) revealed a significant reduction in 

BM cellularity in Ash1lGT/GTMen1fl/flMx1-cre+mice (Figure 3.9B). This suggested that 

mice progressed to bone marrow failure in the absence of Ash1l and menin/Mll1, 

consistent with the development of profound neutropenia and thrombocytopenia (Figure 

3.9C, D). Additionally, the combination of a single Ash1lGT allele with Men1 inactivation 

(Ash1lGT/+Men1fl/flMx1-cre+) resulted in reduced platelets as compared to either Ash1lGT/+ 

or Men1fl/flMx1-cre+ peripheral blood. This suggested that Men1 loss sensitized the bone 

marrow to Ash1l haploinsufficiency, further indicating cooperativity between menin/Mll1 

and Ash1l. 	  

 

Figure 3.9. Combined deficiency of Ash1l and Men1 results in rapid progression to frank 
hematopoietic failure. (A) Experimental strategy: mice of indicated genotypes were injected 5 X with 
20ug of poly(I:C); (B) Reduced bone marrow cellularity in Ash1lGT/GTMen1fl/flMx1-cre+mice compared to 
wild-type (data are representative of ≥ 5 mice/genotype; mean +/- SEM); (C) Complete blood count 
analysis of peripheral blood platelets showing thrombocytopenia in AshlGT/GTMen1fl/flMx1-cre+ mice within 
3 weeks of poly(I:C) injection (N≥3 mice/genotype from 3 independent experiments; means +/- SEM); (D) 
Complete blood count analysis of peripheral blood neutrophils demonstrating profound neutropenia in 
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AshlGT/GTMen1fl/flMx-1-cre+ mice within 3 weeks of poly(I:C) injection (N≥3 mice/genotype from 3 
independent experiments; mean +/- SEM). *p<0.05, ***p<0.001 compared to wild-type. For comparisons 
between AshlGT/+Men1fl/flMx-1-cre+and AshlGT/+ or Men1fl/flMx1-cre+: ## p<0.01 compared to Ash1lGT/+; + 
p<0.05 compared to Men1fl/flMx1-Cre+. 

To determine if bone marrow failure occurred concurrently with hematopoietic 

stem and progenitor cell depletion, as observed above, we analyzed these populations by 

flow cytometry following Men1 excision. We found that Ash1lGT/GTMen1fl/flMx1-cre+ LT-

HSCs were severely decreased, and that this occurred concurrently with a profoundly 

depleted LSK progenitor compartment (Figure 3.10A, B). Ash1lGT/+Men1fl/flMx1-cre+ 

resulted in reduced LT-HSCs compared to either Ash1lGT/+ or Men1fl/flMx1-cre+ LT-HSC 

compartments, demonstrating that menin/Mll1 loss sensitized LT-HSCs to reduced Ash1l 

levels. Despite the LT-HSC depletion, however, the pool of downstream progenitors was 

not profoundly depleted unless both alleles of Men1 and Ash1l were mutated. Together, 

these findings demonstrated that combined Men1 and Ash1l deficiency reproduced the 

bone marrow failure phenotype observed in the setting of combined Mll1 and Ash1l 

deficiency. These findings further indicated a robust functional cooperativity between 

menin/Mll1 and Ash1l in hematopoietic stem and progenitors, and thus a critical role in 

maintaining hematopoietic homeostasis.  
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Figure 3.10. Profound LT-HSC and LSK progenitor depletion underlies hematopoietic failure in 
mice with combined Ash1l and Men1 deficiency. (A) Flow cytometric analysis showing severely reduced 
LT-HSC and LSK progenitor compartments in Ash1lGT/GTMen1fl/flMx1-cre+mice and reduced LT-HSC 
frequency Ash1lGT/+Men1fl/flMx1-cre+mice; (B) LT-HSC and LSK frequencies and absolute cell numbers 
reflecting profound defect in Ash1lGT/GTMen1fl/flMx1-cre+mice and reduced LT-HSC frequency and absolute 
numbers in Ash1lGT/+Men1fl/flMx1-cre+mice (data are representative of ≥ 5 mice/genotype; mean +/- SEM). 
Representative plots are shown. Numbers indicate the percentage of cells in each gate. *p<0.05, **p<0.01, 
***p<0.001 compared to wild-type. For comparisons between AshlGT/+Men1fl/flMx-1-cre+and AshlGT/+ or 
Men1fl/flMx1-cre+: ## p<0.01 compared to Ash1lGT/+; ++ p<0.01 compared to Men1fl/flMx1-Cre+. 

DISCUSSION 

Our findings identify that LT-HSC self-renewal is dependent on Ash1l. When 

Ash1l levels were profoundly reduced due to homozygosity for our gene trap allele, LT-

HSCs had an impaired ability to establish and maintain quiescence. Ash1l-deficient HSCs 

developed and expanded normally in the fetal liver and initially seeded the bone marrow. 

Once in the bone marrow, these LT-HSCs failed to upregulate the CDKIs p27 and p57, 
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leading to markedly reduced numbers of quiescent adult HSCs. Since fetal HSCs are 

known to actively transit through the cell cycle, it was tempting to speculate that these 

findings were the result of an inability of HSCs to extinguish the fetal program upon 

reaching the bone marrow [29, 164]. However, expression of Sox17, the master regulator 

of the fetal HSC transcriptional program, was properly repressed in the bone marrow. 

This finding indicated that the reduced ability for Ash1lGT/GT LT-HSCs to establish 

quiescence was independent of the transcriptional transition from the fetal state to the 

adult state. This suggests that Ash1l may be a novel key regulator of the cell cycle 

changes associated with the fetal to adult HSC transition. 

Ash1lGT/GT bone marrow had profoundly reduced LT-HSC numbers, but 

maintained normal mature hematopoietic cell output. This paradox could have been 

explained by phenotypically abnormal, but functional HSCs residing in the Ash1lGT/GT 

bone marrow. However, this was disproven as young adult Ash1lGT/GT bone marrow could 

engraft lethally irradiated recipients in neither competitive nor non-competitive 

transplantation assays. Based on this gold standard approach, we could not detect LT-

HSC function in the Ash1lGT/GT bone marrow. We thought that this inability to detect LT-

HSC function could have been because of the rarity of Ash1lGT/GT LT-HSCs; perhaps we 

transplanted too few bone marrow cells to include adequate LT-HSC numbers. To rule 

out this hypothesis, we transplanted Ash1lGT/GT fetal liver cells. This allowed us to 

normalize LT-HSC frequency, as both Ash1lGT/GT and Ash1l+/+ had comparable LT-HSC 

compartments. Strikingly, we could not detect functional LT-HSCs in this transplantation 

setting either. This demonstrated that Ash1lGT/GT LT-HSCs could not stably engraft the 

bone marrow niche. This could be because Ash1lGT/GT LT-HSCs cannot respond to niche 
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factors required for stable engraftment and quiescence. Among these, thrombopoietin and 

TGF-β have been linked to promoting quiescence through CDKI regulation, and 

thrombopoietin has additionally been linked to promoting Hox gene expression [32, 33, 

38]. It is thus possible that Ash1l may be necessary for signaling downstream of essential 

niche factors required for bone marrow HSC quiescence and long-term function. 

Interestingly, Ash1l-deficient mice did not progress to frank hematopoietic failure 

despite a severely depleted phenotypic LT-HSC compartment and a lack of detectable 

HSC function in transplantation assays. Increased H2B-GFP dilution exhibited by 

Ash1lGT/GT LT-HSCs may suggest that this severely reduced LT-HSC compartment 

elevated its proliferative output to maintain hematopoietic homeostasis. Indeed, actively 

proliferating HSCs have reduced engraftment potential in transplantation assays, and this 

could explain the observed difference between steady-state hematopoiesis and 

transplantation models in our system [29, 154]. Alternatively, the lack of detectable HSC 

function in transplantation assays could suggest that Ash1lGT/GT LT-HSCs are in fact non-

functional and do not contribute to steady-state hematopoiesis. In this scenario, the robust 

dilution of H2B-GFP in LSK progenitors could indicate that progenitors downstream of 

LT-HSCs are responsible for maintained hematopoietic homeostasis. The fact that these 

progenitors actively proliferated but did not become depleted could suggest that they 

possess significant self-renewal activity. Such would be the case because if these cells 

strictly underwent differentiating divisions, they would be predicted to become depleted 

over time. This self-renewal activity would not be detectable in transplantation assays 

because quiescence is required for engraftment, as described above. This is an intriguing 

possibility in light of recent work in thymocytes indicating that in the absence of fresh 
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progenitors seeding the thymus, downstream progenitors could self-renew to maintain T 

cell output [165, 166]. This was striking because thymic progenitors were not previously 

shown to have self-renewal potential, and this was only revealed in the absence of 

continuous progenitor input. Perhaps the absence of functional LT-HSCs in our model 

revealed intrinsic self-renewal potential in downstream progenitors, similar to what was 

observed in the thymus. 

Genetic models of HSC dysfunction that support non-ablative transplantation are 

rare findings in hematopoietic biology [61, 162]. In the Ash1lGT/GT system, successful 

engraftment in non-ablative transplantation experiments provided critical proof that the 

Ash1l-deficient BM niche was not grossly defective, as it could efficiently support the 

maintenance of wild-type LT-HSCs. Stable wild-type LT-HSC engraftment into the 

Ash1l-deficient niche suggests that niche spaces were available due to LT-HSC depletion 

and/or that remaining Ash1lGT/GT LT-HSCs were dysfunctional to an extent that they 

could be out-competed or displaced by wild-type LT-HSCs. Either scenario is consistent 

with extreme LT-HSC dysfunction when Ash1l levels are reduced.  

The functional interaction between Mll1 and Ash1l in LT-HSC and progenitor 

maintenance was a novel demonstration of the evolutionarily conserved cooperativity 

between members of the TrG. This notion has been explored in Drosophila, but had not 

been previously described in mammals. Perhaps the most striking demonstration of this 

was the finding that a single Ash1lGT allele amplified LT-HSC depletion in Men1-

deficient and Mll1 heterozygous mice. This dominant phenotypic enhancement is 

reminiscent of criteria used to initially identify TrG members in Drosophila [97].  Given 

that both Mll1 and Ash1l are required for Hox gene expression, it is possible that both 
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proteins act non-redundantly to promote transcription. Indeed, both Ash1lGT/GT and Men1-

deficient hematopoietic progenitors displayed a reduced, but not absent expression of 

Hoxa9, suggesting multifactorial regulation of this locus [150]. Additional studies 

assessing whether this cooperativity is due to SET domain catalysis or perhaps through 

promoting the formation of larger, transcription-promoting protein complexes are 

required. Such studies will provide insight into the complex regulation of hematopoietic 

development and HSC function.  
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CHAPTER 4.  SHELTERIN PROTEINS: FUNCTIONS IN 
TELOMERE PROTECTION AND HEMATOPOIESIS 

INTRODUCTION 

Telomere biology has historically been studied in the context of the end replication 

problem. This problem arises because the DNA replication machinery requires an initial 

RNA primer to provide a 3’ hydroxyl group to begin DNA strand synthesis. This primer 

is removed, and as a consequence, the 3’ end of the template strand is not efficiently 

replicated. Consequently, this process could result in the loss of essential genetic material 

if such material was encoded at the very 3’ end of chromosomes. Telomeres provide a 

molecular buffer to such erosion, and thus protect essential genetic material during 

replicative stress. In long-lived proliferative stem cell populations, the ribonucleoprotein 

telomerase maintains telomere length [55-57, 167-170]. In recent years, we have learned 

that telomeres alone are not sufficient to protect the chromosome ends, as exposed DNA 

of any form triggers recognition by DNA damage machinery (the “end protection 

problem”). Six proteins, known as the shelterin complex, bind telomeric ends and prevent 

this aberrant DNA damage recognition. These proteins, Trf1, Trf2, Rap1, Tin2, Pot1 and 

Tpp1, not only protect telomeres, but also recruit telomerase and regulate telomere length 

[171]. In this chapter, we review the functions of individual shelterin proteins and discuss 

our current understanding of how they contribute to hematopoietic homeostasis. 
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TELOMERES AND THE DDR 

Telomeres consist of a single-stranded, G-rich overhang preceded by a double-

stranded region. Shelterin proteins bind to both the double- and single-stranded 

components (Figure 4.1). Without shelterin binding and end protection, telomeres are 

recognized as chromosomal aberrations and detected by a robust DDR. Exposure of the 

single-stranded G overhang elicits a robust ataxia telangectasia and Rad3-related (ATR)-

mediated DDR [172, 173]. This is because, when uncovered, the single-stranded 

overhang is indistinguishable from single-stranded DNA that arises from replication fork 

stalling. Such single-stranded DNA is recognized and bound by replication protein A 

(RPA) [174]. RPA/ssDNA complexes are bound by ATR-interacting protein (ATRIP), 

which in turn recruits ATR.  Additionally, RPA/ssDNA is bound by the Rad9-Rad1-Hus1 

(9-1-1) complex through an interaction with Rad17 [175]. This complex recruits TopBP1, 

which activates ATR through a poorly defined mechanism [176-178]. Activated ATR 

phosphorylates Chk1 and can trigger cell cycle arrest through direct regulation of cyclin-

dependent kinases or p53 activation (reviewed in [179-181]). This arrest is believed to 

allow cells the opportunity to repair DNA aberrations. 

Exposure of the double-stranded portion of the telomere results in aberrant 

recognition of the telomere as a double-stranded break. Double-stranded breaks are 

sensed and bound by the Mre11-Rad50-Nbs1 (MRN complex) [182]. MRN recruitment 

triggers ataxia telangectasia mutated (ATM) kinase binding and enhances ATM 

interaction with Chk2 and p53 [182-184]. Activated Chk2 can then enforce cell cycle 

arrest both directly and through p53 activation (reviewed in [179]). A growing body of 

work additionally supports that ATM may activate ATR, suggesting that as the DDR 
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evolves in response to double-stranded breaks, both kinases may be activated to promote 

more robust cell cycle slowing and repair processes [185]. 

DDR activation at the telomere primarily proceeds to activation of non-

homologous end joining (NHEJ) and homologous recombination (HR), although complex 

genetic models indicate that additional repair pathways may be activated [186]. A 

growing body of literature, described in detail below, indicates that exposure of the 

double-stranded portion of the telomere activates NHEJ repair, while exposure of the 

single-stranded portion activates HR [172, 173, 187]. As NHEJ attempts to repair DNA 

damage through re-joining perceived DNA breaks, this results in the fusion of unrelated 

chromosomes in the context of telomere instability. Since telomeric HR attempts to repair 

lesions through the use of homologous sister chromatid templates, attempts at HR are 

reflected by the exchange of material between sister chromatids, or sister chromatid 

fusions. DNA abnormalities consistent with NHEJ and HR are identifiable in metaphase 

chromosome preparations depending on the model of telomere deprotection. 

THE FUNCTION OF INDIVIDUAL SHELTERIN PROTEINS IN TELOMERE PROTECTION 

DDR components, including ATR and ATM, are recruited to telomeres during 

cellular proliferation to promote efficient telomere replication [188]. These proteins are 

required to alleviate replication fork stalling triggered by the repetitive telomeric DNA 

sequence and to promote secondary structure formation required for telomere stability. 

Studies using murine embryonic fibroblasts (MEFs) showed that individual shelterin 

proteins have specific functions in suppression of the DNA damage response and 

telomere regulation (Figure 4.1). This complex has three general classes of proteins: 

those that bind the double-stranded portion of telomeric DNA, those that bind the single-
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stranded portion of telomeric DNA, and those that do not bind DNA but instead interact 

with other shelterin proteins.  

 

	  

Figure 4.1. The function of individual shelterin proteins in telomere protection. Pot1 (in mice Pot1a) 
prevents recognition of the single stranded telomeric overhang from an ATR-Chk1 mediated DDR. 
Recognition by this pathway results in attempts at DNA repair through homologous recombination (HR). 
Trf2 prevents recognition of the double-stranded portion of the telomere from an ATM-Chk2 mediated 
DDR. ATM activation results in attempts at telomere repair through nonhomologous end-joining (NHEJ). 
Pot1 is linked to the shelterin complex through a Tpp1/Tin2 tether. Rap1, a Trf2 interacting protein, plays a 
poorly defined role in preventing aberrant telomeric HR. 

Trf1 

Trf1 and Trf2 directly bind doubled-stranded telomeric DNA but play unique 

roles in telomere protection [189-192]. Over-expression of Trf1 in a human telomerase 

positive cell line resulted in telomere shortening, while a dominant negative Trf1 elicited 

a telomere lengthening phenotype [193]. These data suggest that Trf1 is a negative 

regulator of telomere length. Additional work led to the proposal that Trf1, along with 

Trf2, is not involved in the direct regulation of telomerase expression or activity, but 

rather is linked to the formation of higher ordered structures that prevent telomerase 

access to telomeres [194]. This telomerase inaccessible, or closed state, was predicted to 
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be dependent on the number of Trf1/2 proteins bound to the telomeric end. Thus, limiting 

Trf1/2 abundance or shortening the telomere to a point that restricted the number of 

bound Trf1/2 proteins should result in telomerase recognition and subsequent telomere 

lengthening.  

Studies in MEFs demonstrated that when Trf1 was conditionally inactivated, the 

DNA replication machinery stalled at the telomere, and abundant gaps, known as fragile 

sites, could be observed in metaphase chromosomes [195, 196]. Such chromosomal 

aberrations have been linked to chromosomal instability and cancer. This work suggested 

an interesting role in Trf1-mediate regulation of efficient telomere replication. Trf1-

deleted MEFs rapidly progressed to cellular senescence in a p53 and retinoblastoma-

dependent fashion [195, 196]. Conflicting data exist regarding the upstream components 

of DNA damage signaling following Trf1 deletion. One report documented the presence 

of chromosomal fusions and a robust DDR consisting of both ataxia telangectasia 

mutated (ATM) kinase and ataxia telangectasia and Rad3-related (ATR) kinase activation 

[196]. The second report did not document chromosomal fusions and demonstrated an S-

phase specific ATR response [195]. The nature of the discrepancy between these reports 

is unclear, though it may be attributable to different Cre-mediated Trf1 deletion strategies 

and slightly different experimental timelines. It is also possible that ATM/ATR activation 

was not directly due to Trf1 deletion, but was instead secondary to replication fork 

collapse and accumulating genetic lesions following Trf1 deletion.  

Mouse models of Trf1 loss have demonstrated critical roles for Trf1 in 

developmental and cancer biology. Constitutive deletion of Trf1 results in embryonic 

lethality before E6.5 [197]. This lethality did not appear to occur concurrently with 
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telomere instability, as fragile site formation or chromosomal fusions were not observed. 

Furthermore, p53 deletion, which rescued MEF phenotypes, only modestly extended 

embryo survival and did not rescue embryonic lethality. This suggested a critical role for 

Trf1 in early development. Deletion of Trf1 in the bone marrow resulted in a progression 

to bone marrow failure within 3 weeks (discussed in detail below) [59]. This failure was 

linked to p53/p21 activation, telomeric DDR activation, telomeric shortening, and 

eventual cellular senescence. The significance of p53 activation in these processes was 

not directly tested. Deletion of Trf1 in the skin resulted in severe epidermal 

developmental defects and mortality due to the loss of skin barrier function [196]. 

Interestingly, p53 deletion in the skin was sufficient to rescue developmental defects. 

However, this rescue strategy resulted in squamous cell carcinoma development, 

demonstrating that underlying genetic instability due to Trf1 loss was tumorigenic. These 

data are intriguing in that they suggest that different developmental processes or cell 

types may differentially activate DDR signaling in response to shelterin defects. 

Furthermore, they suggest that limiting the DDR through p53 ablation, though capable of 

rescuing some developmental processes, can result in sustained chromosomal instability 

sufficient to initiate tumorigenesis. 

Trf2 

Trf2 directly protects telomere from an ATM-dependent DDR [172, 173, 198, 

199]. Loss of Trf2 triggers telomeric fusions as a result of ATM-mediated activation of 

non-homologous end-joining (NHEJ) [187, 199, 200]. Interestingly, Trf2 loss was found 

to activate a DNA damage response in all phases of the cell cycle, though NHEJ activity 

was restricted to G1 [199, 201]. These data support the idea that Trf2 loss induces 
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telomeric DDR activation at all times, rather than eliciting a DNA damage response 

secondary to replication fork stalling during strand replication (unlike Trf1 loss).  

Trf2, like Trf1, also seems to play a role in telomere length homeostasis. 

Overexpression of Trf2 in telomerase positive human cells resulted in progressive 

telomere shortening, and telomere elongation was observed when Trf2 levels decreased 

[194]. This finding was not related to regulation of telomerase expression or activity, and 

may have been due to decreased telomerase access to telomeres in the presence of 

increased Trf2, as discussed above. 

As seen for Trf1, Trf2 knockouts are embryonic lethal, suggesting broad roles in 

early development [198]. Genetic p53 deficiency did not rescue this embryonic 

phenotype. Interestingly, overexpression of Trf2 in the skin resulted in hyperpigmentation 

and predisposed mice to squamous cell carcinomas [202]. Consistent with the previously 

described human cell line data, epithelial studies from mice with Trf2 overexpression 

revealed prominent telomere shortening. This shortening was not the result of telomerase 

dysfunction. If telomerase deficiency was coupled with Trf2 overexpression, 

tumorigenesis was significantly accelerated [203]. This occurred as the result of enhanced 

telomere dysfunction and fusion events in the setting of increased Trf2 and telomerase 

deficiency. These data suggest that while initial telomere shortening due to increased 

Trf2 is not due to telomerase dysfunction, the addition of telomerase dysfunction further 

destabilizes the genome to increase tumorigenesis. 

Rap1 

Rap1 does not bind telomeric DNA, but instead is localized to the telomere by an 

interaction with Trf2 [204, 205]. Rap1 was originally identified as suppressing NHEJ at 



	   68	  

the telomere [206-208]. Subsequent work failed to identify a function for Rap1 in 

suppressing NHEJ or in preventing ATM activation [204, 209, 210]. Instead, Rap1-

deficient MEFs had increased telomeric homologous recombination (HR) events without 

evidence of DDR activation [209, 210]. These data indicated that Rap1 is not involved in 

the suppression of a telomeric DNA damage response, although it seems to be involved 

in regulation of HR at telomeres. 

Rap1 deficiency does not result in embryonic death in mice suggesting that 

vigorous DDR activation in embryonic development is the key determinant of the 

embryonic lethality observed in Trf1- and Trf2-deficient mice. [210]. Interestingly, 

despite seemingly normal development, Rap1 deletion in the skin results in 

hyperpigmentation, telomere shortening, and increased DDR activation in adulthood. 

Together, these findings suggest that Rap1 does indeed play an important role in 

physiological telomere homeostasis. Furthermore, studies with Rap1 demonstrate the 

need to consider the physiological function of individual shelterin components in a 

developmental context rather than solely in cell line-based studies. 

Pot1 

Pot1 is an evolutionarily conserved protein that directly binds to the single-

stranded G overhang of telomeres [211-213]. This binding is dependent on 

heterodimerization with Tpp1 (discussed below) [172, 214-217]. At telomeres, Pot1 plays 

two critical roles in homeostasis. The first is to suppress an ATR-mediated DNA damage 

response that would result in aberrant HR [218]. Work using chicken Pot1 demonstrated 

that ATR activation causes growth arrest as cells transition into the G2 phase of the cell 

cycle [219]. The second critical Pot1 function is the regulation of G strand overhang 
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length [218]. Following telomere replication, exonucleolytic processing of the 5’ C strand 

is required to generate the 3’ G strand overhang. Initial work suggested that Pot1 

regulates the extent of 5’ resection and that the absence of Pot1 results in excessive 5’ 

resection and extended 3’ overhangs. Subsequent studies in mice, discussed below, 

revealed a different mechanism by which Pot1 prevents this resection [220].  

In mice, the Pot1 gene has undergone a duplication event resulting in two Pot1 

genes: Pot1a and Pot1b [221]. This duplication established a separation of the two main 

POT1 functions between murine Pot1a and Pot1b. Biochemical analysis of the murine 

proteins demonstrated that the N-terminus of Pot1a is the critical element for ATR 

inhibition, while the C-terminus of Pot1b prevents excessive 5’ resection [221, 222]. 

Pot1b may play a minor role in end protection, as the combined loss of Pot1a and Pot1b 

elicits a more robust telomeric DDR than Pot1a loss alone [221]. Furthermore, only 

combined Pot1a/b loss resulted in a significant increase in telomeric instability and 

homologous recombination [218, 221]. Additionally, Pot1a/b loss caused increased 

endoreduplication (replication of DNA without cellular division) in MEFs [221]. As a 

result of this phenomenon, MEFs with >4N DNA content accumulate in culture. 

The DDR induced by Pot1a loss resulted in a p53-mediated induction of 

senescence [222]. This increased senescence was demonstrated in the context of growth 

slowing in Pot1a-/- MEF cultures and increased p21 and phospho-p53 levels. 

Furthermore, this senescence could be by p53 inactivation in Pot1a-/- MEFs. 

Though Pot1b loss did not initiate robust DDR activity, it did result in significant 

telomeric shortening after many cell culture passages [223, 224]. While Pot1b loss did 

not cause chromosomal instability alone, the combination of Pot1b loss with telomerase 
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deficiency resulted in extensive chromosomal fusions [223]. Furthermore, when Pot1b-/- 

MEFs lost a single copy of the gene encoding the telomerase RNA, rendering cells 

haploinsufficient for telomerase activity, telomere shortening was exacerbated [223, 224]. 

These MEFs also had a significant increase in chromosomal fusions [223, 224]. Pot1 loss 

combined with telomerase haploinsufficiency induced ATR activation, though it is not 

clear if this was due to acute deprotection or resulted from increased genomic instability 

due to excessive telomere shortening [224]. 

Elegant studies recently revealed the mechanism by which Pot1b prevents 

excessive 5’ C-strand resection [220]. Two nucleases, Apollo and Exo1, act to modify 

telomere length following telomere elongation. Apollo initiates resection, while Exo1 

extends 5’ resection. Pot1b limits Apollo-mediated resection. Furthermore, Pot1b is 

involved in the recruitment of the CST complex to the telomeric end. This complex is a 

DNA polymerase α cofactor that facilitates strand fill-in of the 5’ C strand. Briefly, the 

CST complex aids in the initiation of lagging strand synthesis at the 5’ telomeric end 

after resection (reviewed in [225]). This fill-in thus limits the relative length of the 3’ 

overhang. Pot1b therefore plays two roles in regulating 3’ overhang length by limiting 5’ 

resection and facilitating 5’ strand fill-in. It remains to be determined if this mechanism is 

conserved in humans. 

In mice, Pot1a deletion results in early embryonic lethality, while Pot1b-deficient 

mice are born in mendelian ratios with normal fertility [221, 222, 224]. This suggested a 

critical role for Pot1a but not Pot1b in early development. Despite initial fertility, Pot1b-

deficient male mice eventually become infertile with reduced sperm production [223, 

224]. Additionally these mice develop skin hyperpigmentation, increased intestinal 
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apoptosis, and pancytopenia. This phenotype is reminiscent of the human progeroid 

syndrome dyskeratosis congenita (reviewed in [226]). Combination of Pot1b deficiency 

and telomerase haploinsufficiency, as described for MEFs above, resulted in a significant 

worsening of all aspects of the Pot1b-deficient phenotype and in eventual death of these 

mice due to bone marrow failure. The role of shelterin proteins in models of bone marrow 

failure will be discussed in detail below. Complete loss of telomerase activity in the 

setting of Pot1b deficiency resulted in embryonic lethality, perhaps due to excessive 

chromosomal shortening during early development. 

Tpp1 

Pot1 binding requires Tpp1, the protein product of the Acd gene [172, 214-217]. 

Studies in Acd-/- MEFs have indeed revealed that many elements of the Acd-deficient 

phenotype reproduced those observed when Pot1a/b were deleted, predominantly 

identifying suppression of ATR signaling and HR through Pot1a/b as the principle 

function of Tpp1 [215]. Additional studies, however, have implicated Tpp1 in a more 

complex role in end protection. Two groups have identified NHEJ-type chromosomal 

fusions and not just homologous recombination events in the setting of Acd deficiency, 

suggesting protective functions for Tpp1 beyond Pot1a/b recruitment [172, 227]. This is 

perhaps due to the triggering of an alternative NHEJ pathway that has been described to 

be activated at telomeres when Pot1a/b are lost [187]. Using a knockdown approach (as 

opposed to the null allele approach used in [215]), it was demonstrated that Tpp1 loss 

resulted in an ATM-dependent DNA damage response, compared to an ATR dependent 

DNA damage response following Pot1a/b knockdown [172]. An additional report 

demonstrated that Tpp1 loss in MEFs through a conditional inactivation strategy resulted 
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in activation of both ATM- and an ATR-mediated DNA damage responses [228]. The 

reason for the differences in the specific nature of the DDR identified between these 

studies is unclear, though the use of different models of Acd inactivation (genetic deletion 

vs. knockdown vs. deletion of the Pot1a/b interacting domain), differences in allelic 

targeting strategies in Acd knockout generation, or variations in DDR detection strategies 

could be responsible for these differences. Regardless, these studies demonstrated that 

Tpp1 played a critical role in telomeric end protection. 

Acd deletion ultimately resulted in p53-mediated growth arrest in MEFs [172, 

228]. In these studies, p53 inactivation significantly improved Acd-deficient MEF cell 

cycle activity. Additional work demonstrated that there might also be p53-independent 

factors contributing to Acd-deficient MEF growth arrest [215]. In this work, MEFs that 

had been immortalized through SV40 large T antigen, which inactivates both p53 and the 

tumor suppressor retinoblastoma (Rb), still showed signs of growth arrest. Together, 

these data demonstrated that p53-depenedent and independent factors contributed to 

growth arrest and eventual senescence when Acd was inactivated. 

In addition to being essential for protection from the DDR, Tpp1 plays a 

multidimensional role in regulating telomerase activity at the telomeric end. Initial work 

in a human cell lines demonstrated that TPP1 was required for the recruitment of 

telomerase to the telomeric end [229]. This telomerase recruitment activity was attributed 

to the oligonucleotide/oligosaccharide binding (OB) fold domain of TPP1. Recent studies 

identified that a small region in the TPP1 OB fold, termed the TEL patch, was both 

necessary and sufficient for this telomerase recruitment [230, 231]. This suggests that 

TPP1 may be required not just for DDR suppression, but also for telomere elongation in 
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telomerase-expressing cell types, including embryonic and somatic stem cells and cancer 

cells. 

In addition to telomerase recruitment, TPP1 promotes telomerase processivity 

[232]. In vitro biochemical analysis demonstrated that the presence of TPP1 increases the 

efficiency with which telomerase extends telomeres. Recent work identified that this 

activity is tractable to the TEL patch of the OB fold. Thus, the OB fold was linked to both 

telomerase recruitment and the efficiency of telomerase activity in extending telomeres. 

A recent study has identified that TPP1 interacts with the CST complex to limit 

excessive telomere elongation [233]. This study proposed a model in which the CST 

complex is in competition with TPP1/POT1 during telomere elongation. At early steps of 

telomere replication, TPP1 recruits telomerase and promotes telomere extension, as 

described above. As replication progresses, CST binds the elongating 3’ G-strand, 

preventing further association between telomerase and the G-strand. Additionally, the 

presence of CST inhibits the ability of TPP1 to enhance telomerase processivity. The 

authors of this study suggested that CST present at the telomere could promote 5’ strand 

fill-in (discussed above), but did not directly test this phenomenon. This study 

demonstrated the complex role that TPP1 plays in telomere length homeostasis. 

Given the complex role that Tpp1 plays in telomere length homeostasis and DDR 

repression, it was not surprising that complete Acd inactivation results in embryonic 

lethality [215]. Studies using a spontaneously occurring Acd splice variant that results in 

a hypomorphic acd allele demonstrated several essential development functions for Acd 

[234]. Depending on the mouse strain to which the allele was bred, mice homozygous for 

acd displayed adrenocortical dysplasia, caudal truncation, genitourinary abnormalities, 
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skin hyperpigmentation, and significant strain-dependent embryonic or perinatal lethality. 

Interestingly, a subsequent study reported that conditional inactivation of Acd in the skin 

resulted in profound hyperpigmentation and eventual mortality due to the loss of skin 

barrier function [228]. In both skin-specific Acd deletion and acd homozygous mice, the 

majority of the phenotypic abnormalities could be rescued by p53 inactivation [228, 235, 

236]. Interestingly, p53 inactivation failed to rescue strain-specific embryonic mortality 

in acd homozygotes [235]. Together, these data suggested that Tpp1 plays critical roles in 

mammalian development, and that, as was true in MEF studies, these processes are 

mediated by p53-dependent and independent mechanisms. 

Tin2 

Tin2 is an adaptor protein that plays critical roles in stabilizing the shelterin 

complex. Within the shelterin complex, Tin2 binds both Trf1 and Trf2 and stabilizes 

Trf1/Trf2 binding to telomeres [237]. Tin2 also binds Tpp1 and is required for 

Tpp1/Pot1a/b recruitment to the shelterin complex [238]. Loss of Tin2 results in ATR 

activation, due to the loss of Tpp1/Pot1a, excessive 3’ overhang generation, due to loss of 

Tpp1/Pot1b, and ATM activation, due to Trf2 destabilization. These data highlight the 

critical function of Tin2 in organizing the shelterin complex. 

TIN2 has additional roles outside of telomere homeostasis. TIN2 was detected in 

the mitochondria in a human cancer cell line, and TIN2 knockdown resulted in the 

adoption of abnormal mitochondrial morphology [239]. TIN2 loss promoted increased 

oxidative metabolism and reduced glycolysis in these human cancer cells. These data 

demonstrate that TIN2 has telomeric and extratelomeric functions, and suggest the 

possibility that other shelterin components may function away from the telomere. 
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Tin2 loss causes embryonic lethality in mice [240]. Conditional inactivation of 

Tin2 has not been characterized in vivo. However, TIN2 mutations were identified in a 

cohort of human patients with dyskeratosis congenita [241-244]. These findings are 

discussed below, but indicated that TIN2 indeed plays a critical role in telomere 

homeostasis in vivo. 

THE SHELTERIN COMPLEX AND BONE MARROW FAILURE  

Perhaps the best demonstration of the significance of the shelterin complex in 

bone marrow failure has come from studies of dyskeratosis congenital (DKC). DKC is a 

human telomere shortening syndrome that has been linked to mutations in TERC 

(telomerase RNA), TERT (telomerase protein), DKC1 (encoding dyskerin, an accessory 

protein required for TERC stability and function), and recently in TIN2 (reviewed in 

[245]). Patients classically present with the triad of oral leukoplakia, abnormal skin 

pigmentation, and nail abnormalities. Up to 85% of these patients develop bone marrow 

failure with a variable timeline, thus establishing the need to consider DKC in the context 

of hematopoiesis [226]. It is estimated that up to 60% of DKC cases do not have a known 

underlying genetic defect [246].  This suggests that our knowledge of the genetic causes 

of DKC remains limited, and additional contributing genes must be considered. 

Mutations in TIN2 identify a unique class of DKC patients. Genetic analysis 

identified a mutation near the region of TIN2 that interacts with TRF1 [247]. Based on 

studies described above, such a mutation could greatly destabilize the shelterin complex 

and elicit a robust DDR. These patients had a particularly severe form of DKC 

characterized by early symptom onset with broad organ involvement, and an increased 

incidence of bone marrow failure [243]. At least two reports documented that these 
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findings are associated with more severe telomere shortening than other DKC forms 

[242, 244]. Since TIN2 disruption could result in TPP1/POT1loss and TRF1/TRF2 

destabilization, this may induce a robust DDR activation and consequent telomere 

attrition due to deprotection. DKC arising from TERC or TERT dysfunction, on the other 

hand, would result in progressive telomere erosion as highly replicative tissues turn over. 

The differences between these models would predict that TIN2 mutations would result in 

a more acute and perhaps widespread form of DKC, while TERC/TERT mutations would 

result in a more progressive and perhaps localized form of DKC. The possibility that 

other shelterin components could similarly contribute to human DKC has yet to be 

evaluated. 

HSCs from human DKC patients with TERC mutations showed that defective 

self-renewal could significantly contribute to bone marrow failure in DKC [248]. HSC 

recovery from DKC patients was significantly reduced, but differentiation ability was not 

impaired in short-term culture. Strikingly, HSC self-renewal assessment in long-term 

cultures showed severe self-renewal defects and advanced telomere shortening. Together, 

these data demonstrated that bone marrow failure in DKC patients is not due to defective 

differentiation, but is instead a direct result of impaired HSC self-renewal. The link 

between HSC dysfunction and bone marrow failure in other forms of DKC has not been 

evaluated. 

MOUSE MODELS OF DKC 

   Mouse models of Trf1, Pot1b, Acd, and Rap1 deficiency, along with Trf2 

overexpression all resulted in skin hyperpigmentation [196, 202, 210, 223, 224, 228, 234, 

236]. This was reminiscent of classical skin pigmentation abnormalities described in 
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DKC patients. This similarity prompted the further assessment of the extent to which 

models of shelterin deficiency recapitulate pathologies associated with human DKC. Of 

significant interest was whether or not these models reproduce the primary cause of DKC 

mortality: bone marrow failure. 

The first mouse models of DKC developed from observations of aforementioned 

mice in which Pot1b deficiency was combined with Terc haploinsufficiency [223, 224]. 

In addition to skin hyperpigmentation, these mice displayed progressive testicular 

atrophy, increased apoptosis in intestinal crypts, and reduced lifespan in the context of 

telomere shortening. Reduced life expectancy was attributed to the development of severe 

pancytopenia and bone marrow failure. This was significant for being the first 

demonstration of a progressive bone marrow failure in the setting of shelterin disruption, 

and thus the first evidence that studies in shelterin could provide models to understand 

DKC pathophysiology. 

It remained to be determined if bone marrow failure in the Pot1b-/-Terc+/- model 

could be linked to HSC failure. It was possible that progressive telomere shortening 

resulted in defective differentiation of HSCs to mature cell types, or that shortened 

telomeres triggered apoptosis in differentiating progenitors as opposed to HSCs. Recent 

work revealed that significant HSC self-renewal defects were the main cause of bone 

marrow failure [60]. Pot1b-/-Terc+/- HSCs were reduced in number and failed to compete 

in bone marrow transplantation assays. Hematopoietic progenitor cells had increased p53 

activation with a bias towards an apoptotic response rather than cell cycle arrest. Of 

particular significance, p53 inactivation significantly rescued HSC function, 

demonstrating that p53 played a critical role in reduced Pot1b-/-Terc+/- HSC function. 
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A recent model of Trf1 deficiency further demonstrated the significance of 

shelterin in models of DKC [59]. Trf1 deletion resulted in a progression to bone marrow 

failure within 3 weeks of deletion. Trf1-/- HSCs had impaired self-renewal activity in 

transplantation assays. Bone marrow failure did not occur in conjunction with increased 

apoptosis, but significant p21 up-regulation suggested a role for p53 activation in this 

model. The role of p53 activation in limiting HSC self-renewal was not tested. Of 

significance in this study, bone marrow failure was described as occurring in the context 

of telomere shortening and increased senescence during long-term studies. The authors of 

this study did not address if remaining hematopoietic progenitors at these late time points 

were in fact Trf1-/- or if they represented cells that had escaped Cre-mediated deletion. If 

relatively few cells escaped and reconstituted hematopoiesis, these HSCs would be 

exceptionally stressed and could display telomere shortening and increased senescence as 

a result. This is an important point to resolve experimentally. 

Thus, shelterin-based studies revealed two complementary, but significantly 

different models of DKC and bone marrow failure. Pot1b-/-Terc+/- resulted in a 

progressive bone marrow failure that demonstrated cooperativity between shelterin and 

telomerase in regulating HSC self-renewal. Trf1 loss resulted in bone marrow failure that 

was caused by acute HSC dysfunction. Since this study did not require additional 

telomerase dysfunction, it suggested that certain shelterin components are uniquely 

capable of destabilizing telomere homeostasis in a timeline not consistent with telomere 

erosion. This is not a concept that has been rigorously tested in vivo, though the data 

indicate that it ought to be, as human patients with TIN2 mutations progress to bone 

marrow failure in a more acute timeline than is observed with other known DKC 
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mutations. Therefore, similar to studies in MEFs and cell lines, individual shelterin 

proteins must be evaluated for their roles in the maintenance of HSC function as it relates 

to bone marrow failure. 
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CHAPTER 5.  MURINE HEMATOPOIETIC STEM CELLS ARE 
ACUTELY SENSITIVE TO INACTIVATION OF THE SHELTERIN 

GENE ACD 

* 

ABSTRACT 

The shelterin complex plays dual functions in telomere homeostasis by recruiting 

telomerase and preventing activation of a DNA damage response. Somatic stem cells 

require telomerase activity, as evidenced by progressive stem cell loss in hereditary 

dyskeratosis congenita. Recent work demonstrates that dyskeratosis congenita can also 

arise from mutations in specific shelterin genes, although little is known about shelterin 

functions in somatic stem cells. Here, we report that hematopoietic stem cells (HSCs) are 

acutely sensitive to inactivation of the shelterin gene Acd, encoding Tpp1. Homozygosity 

for a hypomorphic Acd allele led to profoundly defective fetal HSCs. Upon complete Acd 

inactivation, HSCs expressed p53 target genes, underwent cell cycle arrest and were 

severely depleted within days, leading to hematopoietic failure. Tpp1 loss induced 

increased telomeric fusion events. However, unlike in epidermal stem cells, p53 

inactivation did not rescue Tpp1-deficient HSCs, indicating that shelterin dysfunction has 

unique effects in different stem cell populations. Because consequences of telomere 
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shortening are progressive and unsynchronized, acute loss of shelterin function represents 

an attractive alternative to study telomere crisis in hematopoietic progenitors. 

INTRODUCTION 

Linear chromosomes are capped with telomeres to protect their ends from the loss of 

genetic material during strand replication. Disruptions in the stability of this molecular 

buffer have been linked to organ failure, aging and cancer. Privileged compartments, 

including the germline and somatic stem cells, express the ribonucleoprotein telomerase 

to maintain telomere length during replicative stress [53, 167]. When this activity is 

impaired, stem cell populations become depleted, leading to loss of tissue homeostasis 

[56]. In addition, telomeres must be protected from the DNA damage response that would 

perceive telomeres as sites of DNA breaks, a function achieved by the shelterin complex. 

Together, the six shelterin proteins Trf1, Trf2, Rap1, Tin2, Pot1 and Tpp1 not only 

protect telomeres, but also recruit and regulate telomerase activity [171]. Understanding 

the biological functions of these proteins is therefore critical to understanding telomere 

homeostasis and human diseases related to dysfunctional telomeres. 

Studies using murine embryonic fibroblasts showed that individual shelterin proteins 

have specific functions in suppression of the DNA damage response and telomere 

regulation. Pot1 binds the single-stranded telomeric overhang and prevents ataxia 

telangectasia and Rad3-related (ATR) kinase activation [172, 173]. Pot1 binding requires 

Tpp1, the protein product of the Acd gene [172, 214, 215]. In addition to being essential 

for Pot1 recruitment, Tpp1 recruits telomerase to the telomeric end and is required for 

telomere extension [229, 232]. Trf1 and Trf2 bind the double-stranded portion of the 

telomere [189-191]. Trf2 prevents ataxia telangectasia mutated (ATM) kinase from 
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mistaking telomeric ends for sites of DNA breaks [173, 249]. Tin2 stabilizes Trf1 and 

Trf2 at the telomere and binds to Tpp1, linking the single-stranded and double-stranded 

binding portions of shelterin [237, 238]. Rap1 interacts with Trf2 and prevents aberrant 

non-homologous end joining from occurring at the telomere [206-208]. In mice, studies 

of the shelterin complex are complicated by the duplication of the Pot1 gene into Pot1a 

and Pot1b [221]. Pot1a prevents ATR activation and Pot1b prevents excessive 5’ 

resection at the telomere and consequent generation of excessive 3’ overhangs [221]. In 

humans, a single POT1 protein accomplishes both of these functions [218]. To obtain 

complete loss of Pot1 function in mice, either Pot1a/b double deficient mice must be 

used, or Acd must be inactivated. In embryonic fibroblasts, both Acd inactivation and 

Pot1a/b deletion caused rare telomeric fusion events and proliferative arrest, a phenotype 

that required p53-driven expression of the cyclin-dependent kinase inhibitor p21 [172, 

214, 215, 221]. 

Although embryonic fibroblasts have been a useful tool in understanding the 

molecular functions of the shelterin complex in cell culture systems, the physiological 

role of shelterin components in vivo remains poorly understood, especially in tissues 

maintained by somatic stem cells. Recent studies demonstrated that when combined with 

telomerase haploinsufficiency, Pot1b deficiency resulted in a gradual decline in tissue 

homeostasis similar to that observed in late generation telomerase-deficient mice [224]. 

These mice displayed skin hyperpigmentation and bone marrow failure reminiscent of 

human patients with the telomere shortening syndrome dyskeratosis congenita (DKC). 

DKC has been linked to mutations in the telomerase components genes TERC and TERT, 

or in DKC1, encoding the telomerase accessory protein dyskerin [250]. Recently, 
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mutations affecting the shelterin gene TIN2 have been identified in patients with a 

particularly aggressive form of the disease [241-244]. As HSC loss leading to bone 

marrow failure is the most frequent cause of lethality in DKC, understanding the 

importance of telomerase and shelterin genes in hematopoiesis is relevant to human 

disease. Mice deficient for Acd due to homozygosity for a spontaneously arising 

hypomorphic acd allele demonstrate a pleiotrophic phenotype that includes 

adrenocortical dysplasia, caudal truncation, genitourinary abnormalities, skin 

hyperpigmentation, and significant strain-dependent embryonic or perinatal lethality 

[234]. These data indicate tissue-specific functions of Tpp1. Furthermore, the skin 

hyperpigmentation phenotype observed in Acd-deficient mice bares a striking similarity 

to that observed in DKC patients and in the Pot1b-deficient mouse model. Subsequent 

studies using complete loss of Acd in a skin-specific knockout model indicated that the 

hyperpigmentation phenotype resulted from functional defects in epidermal stem cells, 

suggesting a role for shelterin components in stem cell maintenance in this compartment 

[228]. In both the complete knockout and hypomorphic Acd models, defects were linked 

to telomere dysfunction as well as p53-mediated apoptosis and proliferative arrest [228, 

235, 236]. 

To gain detailed insight into functions of the shelterin complex in hematopoiesis, we 

studied the impact of Acd deficiency on hematopoietic stem cells (HSCs). By targeting 

Acd, we focused on a central component of the shelterin complex that is essential for 

Pot1a/b function and plays a role in telomerase recruitment. Our approach was designed 

to capture both acute and long-lasting effects of Acd deficiency on hematopoietic stem 

and progenitor cells. We found that stem cell function was profoundly dependent on 
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Tpp1 in both fetal and adult hematopoiesis. In mice homozygous for a hypomorphic Acd 

allele, hematopoietic stem and progenitors were generated and maintained during fetal 

life, but they acquired phenotypic abnormalities, evidence of G2/M arrest and a complete 

inability to reconstitute irradiated recipients after transplantation, indicating defective 

function. In the complete absence of Acd, HSCs were rapidly depleted and animals 

progressed to frank hematopoietic failure. This phenotype was cell-autonomous and 

surprisingly acute, as a complete depletion of the hematopoietic stem and progenitor 

compartment was observed within 5 days after Acd inactivation. Tpp1 loss led to rapid 

induction of p53 target gene expression. However, p53 inactivation failed to rescue HSC 

depletion and function. These findings differed markedly from past observations on 

hematopoiesis in Pot1b-deficient mice as well as organ development in Acd hypomorphic 

mice and skin stem cell function in the absence of Acd, as all these phenotypes were 

largely rescued by p53 deficiency. Thus, our data identify an essential acute requirement 

for Acd in hematopoietic stem and progenitor cells that differs from its effects in other 

tissues and stem cell compartments. 

RESULTS 

Acd deficiency results in cell cycle arrest and impaired function of fetal liver 
hematopoietic stem cells.  

To assess the role of Acd in hematopoiesis, we first used mice that were 

homozygous for a spontaneously occurring hypomorphic allele [234]. This hypomorphic 

Acd variant is caused by a G to A transition within the third intron of the gene (Figure 

5.1A), resulting in aberrant splicing and either a 7bp insertion after exon 3 or the 

inclusion of the entire third intron in the mRNA [227, 234]. Both outcomes cause 
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premature termination of translation and a truncated protein lacking all functional 

domains. Homozygosity for this allele (henceforth acd) decreases expression of wild-type 

transcripts to ~2% of normal, consistent with a profoundly hypomorphic phenotype 

[227]. Analysis of the fetal livers from E13.5 acd mice revealed an overall mild decrease 

in fetal liver cellularity compared to control littermates (Figure 5.1B). Of note, acd 

fetuses also had a reduction in body weight (data not shown). When cell numbers were 

normalized in colony forming assays measuring hematopoietic progenitor activity, no 

defect in the ability of acd fetal liver cells to form myeloid colonies was observed 

(Figure 5.1C). Flow cytometric analysis revealed that acd fetuses had a normal 

frequency of Lineage– fetal liver cells and an increased frequency of Lineage–Sca-

1+cKithi (LSK) cells, containing hematopoietic progenitors (Figure 5.1D). Furthermore, 

acd hypomorphism did not cause a significant defect in the overall frequency of 

CD150+CD48- LSK cells, the most rigorous phenotypic definition of long-term 

hematopoietic stem cells (HSCs) [156, 157] (Figure 5.1D). Thus, HSC frequencies and 

myeloid progenitor activity were not compromised in acd animals. However, close 

analysis of the LSK progenitor compartment (containing HSCs) revealed that acd LSKs 

were larger, more granular, and expressed higher levels of the surface protein Sca-1, 

suggesting an activated phenotype (Figure 5.1E). Cell cycle analysis demonstrated an 

accumulation of acd progenitors at the G2/M phases of the cell cycle (Figure 5.1F). This 

phenotype was reminiscent of the G2/M arrest reported in Acd-deficient embryonic 

fibroblasts and epidermal progenitor cells [215, 228]. 
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Figure 5.1. Reduced Acd expression results in phenotypic abnormalities and G2/M arrest in fetal 
hematopoietic progenitors. (A) Structure of the hypomorphic acd allele, a mutant Acd allele arising from 
an intron 3 G→A transition and leading to aberrant splicing. acd homozygosity decreased the abundance of 
normal transcripts to ~2% of wild-type (WT) (33); (B) Fetal liver cellularity in E13.5 mice homozygous for 
the acd hypomorphic allele; (C) CFU-GM analysis demonstrating preserved granulocyte-macrophage 
(GM) progenitor activity in E13.5 acd fetal liver (representative of 3 experiments with triplicate colony 
formation assays, mean +/-SEM); (D) Preserved overall frequency of phenotypically defined long term 
hematopoietic stem cells (LT-HSCs), defined as CD150+CD48– Lin–Scahic-Kithi (LSK) cells (n>9 
mice/group from 5 independent experiments, mean +/- SEM); (E) Increased Sca-1 expression in acd LSK 
progenitors. acd LSK cells were also larger and more granular by forward (FSC-A) and side scatter (SSC-
A) characteristics, respectively (n>9 mice/group from 5 independent experiments). Gray shading shows 
data from control littermates, white shading represents acd progenitors. MFI: mean fluorescence intensity; 
(F) Cell cycle analysis with BrdU incorporation (12 hour pulse) and intracellular DAPI staining for 
(icDAPI, DNA content) in E13.5 acd Lin–c-Kithi hematopoietic progenitors, showing accumulation in 
G2/M phases of the cell cycle (n=3 mice/group from 3 independent experiments, mean +/- SD). 
Representative flow cytometry plots are shown. Numbers indicate the percentage of cells in each gate. 
*p<0.05, **p<0.01, ***p<0.001. 

Although colony formation assays measure the output of a heterogeneous 

progenitor pool, they do not evaluate HSC self-renewal. To study the function of acd 

fetal HSCs, we performed competitive transplantation assays in lethally irradiated 
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recipients and followed transplanted animals to monitor long-term reconstitution (Figure 

5.2A). We observed profound defects in trilineage reconstitution from acd fetal 

progenitors as early as 4 weeks post-transplant that persisted for the duration of the 

experiment (Figure 5.2B). When the LSK compartment of primitive hematopoietic 

progenitors was examined at the termination of the experiment, no contribution of acd 

cells could be detected (Figure 5.2C). These findings demonstrate that, despite preserved 

hematopoietic progenitor frequencies and myeloid progenitor activity, acd HSCs had 

severe functional impairment. 

	  

Figure 5.2. acd hematopoietic stem cells do not support long-term hematopoietic reconstitution. (A) 
Experimental design: lethally irradiated B6-CD45.1 mice were transplanted with 1:1 mixtures of E13.5 
wild-type (WT) fetal liver (CD45.2+) or E13.5 acd hypomorphic fetal liver (CD45.2+) and B6-CD45.1 
competitor bone marrow cells (5x105 cells each); (B) Flow cytometric analysis of peripheral blood 4-16 
weeks after transplantation showing robust contribution of the wild-type but not acd CD45.2+ fetal liver 
graft to myeloid (CD11b+Gr1+), T cell (CD3+) and B cell compartments (CD19+B220+) (n=3-5/group, mean 
+/– SD); (C) CD45.1/CD45.2 chimerism in Lin–Scahic-Kithi (LSK) bone marrow progenitors 16 weeks after 
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transplantation. No residual CD45.2+ acd progenitors could be detected. Representative flow cytometry 
plots are shown. Numbers indicate the percentage of cells in each gate. Graphs show mean +/ – SEM. 
*p<0.05, **p<0.01, ***p<0.001. 

Acd inactivation leads to acute depletion of adult hematopoietic stem and progenitor 

cells.  

Analysis of the acd phenotype revealed profound HSC functional defects, but 

non-hematopoietic developmental abnormalities in acd fetuses could have contributed to 

these defects through non-cell-autonomous mechanisms. Furthermore, analysis of a 

hypomorphic phenotype may underestimate the full impact of Acd given the presence of 

residual wild-type transcripts at low levels. To bypass these limitations, we studied the 

effects of complete Acd inactivation in adult hematopoietic tissues using a conditional 

Acd allele that we previously described [215] (Figure 5.3A). This strategy facilitated 

robust, temporally controlled Acd excision in hematopoietic cells, and thus allowed us to 

study the acute effects of Tpp1 loss in hematopoietic tissues. We induced Acd 

inactivation using poly(I:C) injections to activate the interferon-responsive Mx-Cre 

transgene [251] (Figure 5.3A, B). Within 48 hours of a single poly(I:C) injection, we 

achieved at least 80% excision of the floxed Acd allele (Figure 5.3C). Within 5 days, we 

found that the hematopoietic progenitor compartment in Acdfl/– animals became severely 

depleted (Figure 5.3D), and we could already detect a reduction in total bone marrow 

cellularity (Figure 5.3E). These data indicate that hematopoietic tissues are acutely 

sensitive to Acd inactivation, and that this sensitivity can be traced back to a rapidly 

failing hematopoietic progenitor compartment. 
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Figure 5.3. Acute depletion of adult hematopoietic progenitors after Acd inactivation. (A) Structure of 
the floxed Acd allele with loxP sites flanking exons 3-8 (Acdfl). Mx-Cre expression was achieved via 
poly(I:C) injections, leading to Acd inactivation into an excised null allele (Acd–). Arrows indicate p2 and 
p7 primer pairs used to quantify excision efficiency; (B) Experimental timeline to capture the acute effects 
of Acd inactivation; (C) Quantitative PCR for Acd exon 7 (p7) relative to exon2 (p2) DNA in Lin–Scahic-
Kithi (LSK) progenitors, demonstrating ~80% excision of the floxed region after only a single poly(I:C) 
injection (qPCR; data are shown as mean ± SEM and are representative of 3 individual mice per group); 
(D) Flow cytometric analysis of hematopoietic progenitors at day 5 after poly(I:C), showing profound 
depletion of LSK progenitors and decreased bone marrow (BM) cellularity (Acd+/– n=5; Acdfl/– n=4). 
Representative flow cytometry plots are shown. Numbers indicate the percentage of cells in each gate. 
**p<0.01. 

The type I interferon response resulting from poly(I:C) administration was 

previously shown to drive quiescent HSCs into the cell cycle, which could enhance the 

impact of Tpp1 loss in hematopoietic progenitors [83]. To avoid this problem, we bred 

CreERT2 x Acdfl/– mice and inactivated Acd with tamoxifen [252] (Figure 5.4A). We 

observed decreased c-Kit expression at day 3 and near disappearance of LSK 

hematopoietic progenitors at day 5 after starting tamoxifen administration in CreERT2 x 

Acdfl/– mice (Figure 5.4B, C).  These findings indicate that primitive hematopoietic 
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progenitors are acutely sensitive to Tpp1 loss even in the absence of an interferon 

response. 

 

	  

Figure 5.4. Acd inactivation with tamoxifen-inducible Cre recombinase results in rapid depletion of 
hematopoietic stem and progenitor cells. (A) Experimental design: tamoxifen was administered to 
control Cre-ERT2+ x Acd+/– or Cre-ERT2+ x Acdfl/– mice (1 mg i.p. daily day 1-3). The Cre-ERT2 
lentitransgene encodes the ubiquitously expressed Tamoxifen-inducible Cre-ERT2 recombinase; (B-C) 
Flow cytometric analysis of bone marrow at day 3 (B) or day 5 (C) after initiation of tamoxifen. In Cre-
ERT2+ x Acdfl/– mice, the Lineage–Sca-1+cKithi (LSK) compartment (containing hematopoietic stem and 
progenitors cells) became abnormal within 3 days of tamoxifen administration and was severely depleted 
within 5 days. Representative flow cytometry plots are shown. Numbers indicate the percentage of cells in 
each gate. 

Cell-autonomous mechanisms underlie the requirement for Acd in hematopoiesis.  

Although Mx-Cre is primarily expressed in the bone marrow, activity can also be 

detected in other organs such as liver, kidney and skin. Thus, non-cell autonomous 

mechanisms could still contribute to hematopoietic defects in Mx-Cre+ x Acdfl/– mice. To 
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exclude this possibility, we generated bone marrow chimeras and studied Acd/Tpp1-

deficient hematopoiesis in a wild-type environment. Lethally irradiated B6-CD45.1 mice 

were transplanted with Mx-Cre+ x Acdfl/– or control Mx-Cre+ x Acd+/– bone marrow, 

allowing 6 weeks for full hematopoietic reconstitution before poly(I:C) injection (Figure 

5.5A). To examine the effects of Acd inactivation on overall hematopoiesis, we 

monitored peripheral blood counts of transplant recipients for 20 weeks following 

poly(I:C) administration (Figure 5.5B). Tpp1 loss led to significant pancytopenia 

between weeks 1 and 4 after starting poly(I:C). Subsequent analysis showed recovery of 

peripheral blood counts by ~6 weeks. At week 20, bone marrow cellularity and LT-HSC 

numbers in Mx-Cre+ x Acdfl/– recipients had recovered to numbers similar as those in 

control bone marrow chimeras (Figure 5.5C). To identify the source of this 

reconstitution, bone marrow was plated in methylcellulose cultures and individual 

colonies were harvested for clonal evaluation of Acd inactivation. All colonies analyzed 

maintained the floxed allele, demonstrating that reconstitution in Mx-Cre+ x Acdfl/– 

recipients had occurred exclusively from cells that escaped Cre-mediated gene deletion 

(Figure 5.5D). 
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Figure 5.5. Hematopoietic inactivation of Acd in a wild-type environment results in pancytopenia 
followed by strong selection for reconstitution by unexcised progenitors. (A) Experimental design: 
lethally irradiated B6-CD45.1 mice were transplanted with Mx-Cre+Acd+/– or Mx-Cre+Acdfl/– bone marrow 
(BM) cells (5x105). Six weeks later, poly(I:C) was administered to induce Acd/Tpp1 inactivation only in 
donor-derived hematopoietic cells; (B) Complete blood counts at baseline and 1-20 weeks after poly(I:C) 
injection, showing a transient reduction in platelet, lymphocyte and neutrophil counts (mean +/- SD); (C) 
Flow cytometric analysis of Lin–Scahic-Kithi (LSK) progenitors and long-term hematopoietic stem cells 
(LT-HSCs) at 20 weeks after poly(I:C) injection, revealing no difference in HSC frequency and BM 
cellularity of Mx-Cre+Acd+/– and Mx-Cre+Acdfl/– recipients (Acd+/– n=5; Acdfl/– n=3, mean +/- SEM). 
Representative flow cytometry plots are shown. Numbers indicate the percentage of cells in each gate; (D) 
Clonal analysis of hematopoietic progenitors by CFU-GM and single colony PCR at week 20. In Mx-
Cre+Acdfl/– recipients, all colonies analyzed (28/28) retained the Acdfl allele and had thus escaped Mx-Cre-
mediated Acd inactivation. Representative PCR results are shown. 

In view of the strong selection pressure favoring cells that preserved an undeleted 

Acd allele, we generated competitive bone marrow chimeras in which CD45.2+ Mx-Cre+ 

x Acdfl/– bone marrow could be studied in the presence of CD45.1+ wild-type competitors 

(Figure 5.6A). This strategy decreased the selection pressure favoring rare Mx-Cre+ x 

Acdfl/– progenitors escaping Acd inactivation, as hematopoiesis was maintained by 
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CD45.1+ competitor cells throughout the experiment. Bone marrow chimeras were given 

6 weeks to facilitate recovery of baseline hematopoiesis prior to Acd deletion. Within 4 

weeks of poly(I:C) administration, no contribution from the Acd-deficient CD45.2+ graft 

could be detected among blood myeloid cells, a population characterized by its rapid 

turnover (Figure 5.6B). Peripheral blood B and T cells arising from the Acd-deficient 

graft also became progressively depleted (Figure 5.6C). This trilineage defect suggested 

failure of multipotent stem and progenitor cells. Indeed, no residual Acd-deficient HSCs 

could be detected in the bone marrow at the termination of the experiment (Figure 5.6D). 

Altogether, these data demonstrate that Acd is cell-autonomously required by HSCs, with 

strong selective pressure for rare progenitors that maintain a functional Acd gene to 

support hematopoietic recovery. 
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Figure 5.6. Acd-deficient HSCs do not support hematopoiesis after competitive bone marrow 
transplantation. (A) Experimental design: lethally irradiated B6-CD45.1 mice were transplanted with 1:1 
mixtures of Mx-Cre+Acd+/– or Mx-Cre+Acdfl/– and competitor B6-CD45.1 bone marrow (BM) cells (5x105 
each). After 6 weeks to allow hematopoietic reconstitution, baseline chimerism was assessed, followed by 
poly(I:C) administration; (B) Flow cytometric analysis of CD45.2/CD45.1 chimerism among CD11b+Gr1+ 

blood myeloid cells at baseline (Wk0) and 4 weeks after poly(I:C) (Wk4). Representative flow cytometry 
plots are shown (n=5 mice per group, 2 independent experiments); (C) Flow cytometric analysis of 
peripheral blood 0-16 weeks after poly(I:C), showing a rapid drop in contribution of the CD45.2+ Acdfl/– 
graft to the myeloid (CD11b+Gr1+), T cell (CD3+), and B cell (CD19+B220+) compartments (mean +/- 
SEM, 2 independent experiments); (D) CD45.2/CD45.1 chimerism in the long-term hematopoietic stem 
cell (LT-HSC) compartment 16 weeks after poly(I:C) administration, revealing no residual CD45.2+ Acdfl/– 
HSCs. Representative flow cytometry plots are shown (n=5 mice/group). Numbers indicate the percentage 
of cells in each gate. 

Deletion of Acd in fetal liver hematopoietic stem and progenitor cells results in 
hematopoietic failure and death.  

Fetal and adult HSCs have numerous differences with respect to gene expression 

programs, cytokine responsiveness and cell cycle activity. Thus, it was possible that adult 

and fetal HSCs had different sensitivities to complete Acd inactivation. To address this 

question, we bred Acdfl/fl mice with Vav-Cre transgenic mice (Figure 5.7A). Previous 
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studies have demonstrated that Vav-Cre is expressed specifically in fetal hematopoietic 

cells starting at ~E10.5, leading to near complete excision of target loci by day E14.5 [21, 

253]. No Vav-Cre+ x Acdfl/fl mice were born, while other genotypes were present at the 

expected mendelian frequency (Fig. 5.7B). At E14.5, live Vav-cre+ x Acdfl/fl fetuses were 

present, but these mice had pale fetal livers and vasculature, suggesting defective 

hematopoiesis (Fig. 5.7C, D). Flow cytometric analysis revealed that fetuses with 

hematopoietic-specific Acd inactivation had few if any residual hematopoietic LSK 

progenitors in the liver at E14.5 (Figure 5.7E). These data demonstrate that maintenance 

of both fetal and adult HSCs is acutely dependent on Acd. 

 

	  

Figure 5.7. Complete Acd inactivation in fetal hematopoietic cells is incompatible with survival. (A) 
Experimental design: Acd inactivation restricted to fetal hematopoiesis was achieved using a Vav-Cre+ 
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transgene. Breedings were established using Vav-Cre+Acdfl/+ parents; (B) Genotyping results demonstrating 
that no Vav-cre+Acdfl/fl were born, while all other genotypes were represented. Genotyping results varied 
significantly from Mendelian predictions by Chi Squared analysis (p=1.60x10-5); (C-D) At E14.5, live Vav-
cre+Acdfl/fl fetuses could be identified, however these mice were pale compared to all other genotypes.  No 
difference was detected between observed genotypes and those predicted by Mendelian ratios (p=0.19); (E) 
Flow cytometric analysis of E14.5 fetal livers, demonstrating that Vav-cre+Acdfl/fl fetuses had profoundly 
depleted Lineage–Sca-1+cKithi (LSK) hematopoietic progenitors. Representative flow cytometry plots are 
shown. Numbers indicate the percentage of cells in each gate.  

Acd deficiency results in acute p53 activation, but p53-independent cell cycle arrest in 
hematopoietic progenitors.  

Based on work in other cell types such as embryonic fibroblasts and epidermal 

stem cells, Acd inactivation is predicted to activate a DNA damage response due to the 

loss of Pot1 localization at telomeric ends, with many downstream effects driven by p53 

activation. To determine if p53 activation occurred in hematopoietic progenitors 

following Acd inactivation, we assessed expression of the p53 target genes Puma, Noxa 

and p21 within days after induction of Cre recombinase expression, but before 

hematopoietic progenitors were lost (Figure 5.8A). Acd deletion resulted in the 

upregulation of Noxa and p21 (Fig. 5.8B) but not Puma (data not shown) within 48 hours 

of poly(I:C) treatment. This effect was p53-dependent, as LSK progenitors from mice 

deficient for both Acd and p53 did not demonstrate upregulated expression of p21 and 

Noxa. Next, we assessed the cell cycle status of LSK progenitors shortly after Acd 

inactivation, in the presence or absence of p53 (Fig. 5.8C, D). Upon Tpp1 loss, we 

observed accumulation of hematopoietic progenitors in the G2/M phases of the cell cycle, 

consistent with the presence of G2/M arrest. Interestingly, this cell cycle arrest was 

observed even in the absence of p53. These data indicate that while p53 activation occurs 

acutely following Acd deletion, it is not required for G2/M arrest. 
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Figure 5.8. Acd inactivation results in acute cell cycle arrest and induction of p53 target genes.(A) 
Experimental design: Mx-Cre+Acd+/–, Mx-Cre+Acd+/–p53–/–, Mx-Cre+Acdfl/– and Mx-Cre+Acdfl/–p53–/– mice 
were injected with a single dose of poly(I:C) followed by BrdU, and sacrificed as indicated; (B) Relative 
abundance of p21 and Noxa transcripts in purified Lin–Scahic-Kithi (LSK) progenitors, demonstrating that 
Acd deletion induced a p53-dependent increase in p21 and Noxa mRNA (qRT-PCR; data are shown as 
mean ± SEM representative of at least 2 independently sorted samples per group); (C) Flow cytometric 
analysis of progenitors for BrdU incorporation and intracellular DAPI (icDAPI), showing accumulation of 
Mx-Cre+Acdfl/- and Mx-Cre+Acdfl/-p53-/- cells in G2/M phases of the cell cycle. Representative flow 
cytometry plots are shown from 4 independent experiments; (D) Quantification of data shown in (C) (n=3 
mice/group). *p<0.05, **p<0.01, ***p<0.001. 

Acd deficiency results in chromosomal fusions at telomeres in the absence of detectable 
telomere shortening.  

Acd-deficient embryonic fibroblasts display an increased rate of rare 

chromosomal fusion events involving telomeres. To evaluate if this occurred in 

hematopoietic tissues, we prepared metaphase spreads from control or Mx-Cre+ x Acdfl/– 

bone marrow cells within 48 hours after poly(I:C) administration (Figure 5.9A). This 

strategy ensured that dividing hematopoietic progenitors could be examined acutely after 
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Acd inactivation, while their numbers were still preserved. Efficient Cre-mediated 

excision was detected at the time of analysis (Figure 5.9B). Quantitative PCR showed 

that the amount of telomere signal was preserved at this stage in Mx-Cre+ x Acdfl/– bone 

marrow, consistent with the absence of telomere shortening within days of Tpp1 loss 

(Figure 5.9C). In contrast, FISH analysis revealed an increased frequency of metaphases 

in which chromosomal fusions were detected with a shared telomeric signal (Figure 

5.9D, E). These findings are consistent with Tpp1 loss driving the fusion of deprotected 

telomeric ends in dividing hematopoietic progenitors. 

	  

Figure 5.9. Acd-deficient hematopoietic progenitors demonstrate acute chromosomal instability in 
the absence of telomere shortening. (A) Experimental design: bone marrow was harvested from Mx-
Cre+Acd+/– or Mx-Cre+Acdfl/– mice 48 hours after a single dose of poly(I:C) and cultured overnight with IL-
3/IL-6/SCF. Metaphases were prepared after a 3 hour Colcemid treatment; (B) Relative abundance of exon 
7 DNA signal normalized to exon 2, showing rapid Cre-mediated excision in total bone marrow. 
***p<0.001; (C) qPCR assessment of telomere length in cultured bone marrow cells, showing preserved 
abundance of telomeric sequences acutely after Acd inactivation; (D) Representative pictures of metaphases 
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stained with DAPI and a FITC-labeled telomeric probe. Insert shows a chromosomal fusion event centered 
on a telomeric signal; (E) Blind scoring of metaphases, showing an increase in chromosome fusions 
containing a telomere signal among Mx-Cre+Acd fl/- metaphases. 

p53 inactivation does not rescue the function and maintenance of Acd-deficient 
hematopoietic stem cells. 

 Previous studies demonstrated that p53 inactivation rescued many features of 

abnormal development in acd hypomorphic mice [235, 236]. Furthermore, p53 

deficiency restored epidermal stem cell function following Acd inactivation [228]. To 

investigate if p53 inactivation could rescue HSC function and maintenance in the bone 

marrow following Acd deletion, we generated hematopoietic chimeras with wild-type 

CD45.1+ bone marrow and bone marrow from control CD45.2+ Mx-Cre+ x Acd+/– or Mx-

Cre+ x Acdfl/– mice, in the presence or absence of p53 (Figure 5.10A). After 

hematopoietic reconstitution, poly(I:C) was administered to induce Mx-Cre expression 

and Acd/Tpp1 inactivation specifically in the cohort of CD45.2+ hematopoietic cells. 

Mice transplanted with either Mx-Cre+Acdfl/– p53+/+ or Acdfl/- Mx-Cre+p53-/- progenitors 

lost all myeloid cells originating from the CD45.2+ graft within 2 weeks of Acd/Tpp1 

inactivation, and at all subsequent time points (Figure 5.10B). Additionally, CD45.2+ 

Acd-deficient T and B cells were progressively lost, irrespective of the presence of p53. 

At 16 weeks after poly(I:C) administration, flow cytometric analysis of the long-term 

HSC compartment demonstrated that Acd-deficient HSCs were completely depleted even 

in the presence of p53 inactivation (Figure 5.10C). In fact, analysis of the bone marrow 

revealed that numbers of Acd-deficient HSCs were already profoundly reduced within 1 

week of Acd inactivation, regardless of p53 status (Fig. 5.11). Altogether, p53 activation 

occurred acutely after loss of Tpp1 in hematopoietic progenitors. However, unlike in 
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epidermal stem cells and other cellular compartments, the maintenance and function of 

Acd/Tpp1-deficient HSCs could not be rescued by p53 inactivation. 

	  

Figure 5.10. p53 inactivation does not rescue the survival and function of Acd-deficient hematopoietic 
stem cells. (A) Experimental design: lethally irradiated B6-CD45.1 mice were transplanted with bone 
marrow (BM) from Mx-Cre+Acd+/–p53+/+, Mx-Cre+Acd+/–p53–/–, Mx-Cre+Acdfl/–p53+/+ or Mx-Cre+Acdfl/–

p53–/– B6-CD45.2+ and wild-type (WT) B6-CD45.1 competitor mice (5x105 cells each, 1:1 ratio). After 6 
weeks to allow hematopoietic reconstitution, poly(I:C) was administered; (B) Flow cytometric analysis of 
peripheral blood 2-16 weeks after poly(I:C), showing a rapid drop in contribution of the CD45.2+ Mx-
Cre+Acdfl/–p53+/+ and Mx-Cre+Acdfl/–p53–/– grafts to the myeloid (CD11b+Gr1+), T cell (CD3+) and B cell 
(CD19+B220+) compartments. Baseline chimerism was normalized to 100% in each mouse. The percentage 
of Mx-Cre+Acdfl/–p53+/+ and Mx-Cre+Acdfl/–p53–/–graft output differed significantly from Mx-Cre+Acd+/–

p53+/+and Mx-Cre+Acd+/–p53–/– output in the myeloid compartment by week 2 (p<0.001), in the T cell 
compartment by week 12 (p<0.01), and in the B cell compartment by week 8 (p<0.01). Data represent 
mean +/– SD (n≥4/group); (C) CD45.2/CD45.1 chimerism among long-term hematopoietic stem cells (LT-
HSC) 16 weeks after poly(I:C) administration, showing no residual CD45.2+ Mx-Cre+Acdfl/–p53+/+ or Mx-
Cre+Acdfl/–p53–/– HSCs. Representative flow cytometry plots are shown. Numbers indicate the percentage 
of cells in each gate. 
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Figure 5.11. p53 inactivation does not rescue Acd-deficient hematopoietic stem and progenitor cells 
from acute depletion. (A) Experimental design: lethally irradiated B6-CD45.1 mice were transplanted 
with bone marrow from Mx-Cre+Acd+/–p53+/+, Mx-Cre+Acd+/–p53–/–, Mx-Cre+Acdfl/–p53+/+ or Mx-
Cre+Acdfl/–p53–/– B6-CD45.2 and wild-type (WT) B6-CD45.1 competitor mice (106 cells each). After 6 
weeks to allow hematopoietic reconstitution, poly(I:C) was administered; (B) Flow cytometric analysis of 
bone marrow 5 days after starting poly(I:C) injection, demonstrating an acute depletion of Lineage–Sca-
1+cKithi (LSK) hematopoietic progenitors in both Mx-Cre+Acdfl/–p53+/+ and Mx-Cre+Acdfl/–p53–/– recipients 
(right panels). Representative flow cytometry plots are shown. Numbers indicate the percentage of cells in 
each gate. 

DISCUSSION 

Our findings demonstrate that hematopoietic stem cells are highly sensitive to 

shelterin deprotection initiated by Acd inactivation. Complete loss of the Acd gene 

product induced a surprisingly acute depletion of the fetal or adult blood-forming stem 

cell compartments, leading to rapid hematopoietic failure before telomere shortening 

could be detected. Although Tpp1 and the shelterin complex play dual functions in 

recruiting telomerase and in shielding telomeric ends from an uncontrolled DNA damage 
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response, our observations indicate that the overall effects of shelterin dysfunction in 

hematopoietic progenitors are dominated by acute telomere deprotection. Tpp1-deficient 

hematopoietic stem cells rapidly upregulated p53 target gene transcription and had 

evidence of cell cycle arrest and chromosomal instability. However, the maintenance of 

Tpp1-deficient stem cells was not rescued by p53 inactivation. These findings contrast to 

the major effects of Tpp1 loss on epidermal stem cell homeostasis and fetal 

musculoskeletal development, which are rescued in the absence of p53. Even without 

complete loss of Tpp1, as modeled by homozygosity for the hypomorphic acd allele, 

hematopoietic stem cell function was severely impaired. This demonstrates that blood-

forming stem cells are very sensitive to defects in telomere protection as compared to 

other tissues. 

Telomere deprotection has been shown to trigger a p53/p21-dependent cell cycle 

arrest [254]. Similarly, p53 activation has been shown to contribute to cellular senescence 

in response to critical telomere shortening [255-257]. These findings, combined with data 

demonstrating that p53 inactivation rescued epidermal stem cell defects owed to Acd 

inactivation led us to investigate the role of p53 in bone marrow failure in the setting of 

Acd deficiency [228]. We found that while Acd inactivation resulted in the increased 

transcription of p53 targets, indicating p53 activation, p53 deficiency did not rescue any 

component of the hematopoietic stem and progenitor defects that we tested. This included 

a failure to rescue acute cell cycle arrest, acute stem and progenitor depletion, and short 

and long-term functional deficiencies. These data indicate that p53 activation is not the 

predominant underlying cause of HSC functional defects or bone marrow failure 
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following Acd deletion, and suggests that different stem cell compartment may react with 

varying DNA damage responses in the setting of a telomere crisis. 

Telomere dysfunction has been hypothesized to play a role in multiple contexts 

including organ failure, aging and cancer. However, dyskeratosis congenita (DKC) is the 

prototypical human disorder most directly associated with defects in telomere 

homeostasis. DKC is a hereditary syndrome characterized by progressive telomere 

shortening. Although bone marrow failure is the most significant organ dysfunction and 

the leading cause of death in DKC, affected patients can also develop abnormalities in the 

skin, mucosal tissues, biliary tract and lungs, suggesting that multiple somatic stem cell 

compartments are affected. Mouse models of DKC have typically described gradual 

homeostatic dysfunction in rapidly proliferating tissues, and an eventual lethality due to 

the loss hematopoietic stem cells and bone marrow aplasia [60]. Upon reduced 

expression of Terc or Tert genes, progression to telomere crisis and stem cell loss 

typically occurs only after telomere attrition accumulates through several successive 

mouse generations [56]. With respect to shelterin components, a mouse syndrome 

reminiscent of DKC was first reported using combined Pot1b deficiency and Terc 

haploinsufficiency [223, 224]. In this model, a relatively mild DNA damage response and 

gradual telomere shortening have been identified as the drivers of hematopoietic failure. 

However, the significance of this model for human disease is limited because Pot1b is a 

mouse-specific shelterin component [218, 221]. Humans have a single POT1 protein that, 

if deleted, would yield a vigorous DNA damage response resulting not primarily in 

telomere erosion, but instead in acute telomere deprotection and a robust DNA damage 

response. Interestingly, human DKC patients with mutations in TIN2, the only shelterin 
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component thus far causally linked to DKC, have a particularly severe form of DKC with 

exceptionally short telomeres and a very early onset [241, 244, 247]. The acute nature of 

this form of DKC might be due to the fact that TIN2 mutations, like our Acd inactivation 

model, result in rapid telomere deprotection and destabilization, rather than the erosion 

observed in the Pot1b mouse model and in DKC patients in whom TERC or TERT are 

mutated. In fact, data in mouse embryonic fibroblasts indicate that the critical function of 

Tin2 is to stabilize the Tpp1-Pot1a/b complex at telomeres [238]. Progression towards 

stem cell loss may thus be significantly accelerated in the presence of shelterin mutations. 

It is estimated that up to 60% of DKC cases do not have a known underlying genetic 

defect [246]. Thus, it is interesting to speculate whether new shelterin genes mutations 

might be discovered in human DKC. Based on our results, we would predict that 

complete loss of shelterin function would not be compatible with life, as evidenced for 

example by in utero death upon complete loss of Acd in fetal hematopoiesis. However, it 

is possible that relevant mutations may decrease rather than abolish Acd expression. In 

mice, the hypomorphic acd splice variant was identified as a spontaneous mutation 

compatible with survival, but leading to a developmental syndrome with features 

reminiscent of DKC, including profound HSC dysfunction. These observations suggest 

that mutations in gene regulatory regions or in introns resulting in impaired gene 

expression ought to be considered when probing uncharacterized cases of DKC. 

Furthermore, recent studies have identified a specific protein-protein interface mediating 

a direct interaction between TERT and TPP1 that is critical for telomerase localization 

and processivity [230, 258]. It is possible that specific mutations affecting this interaction 

could affect the ability of TPP1 to recruit telomerase without disrupting its function in 
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preventing an uncontrolled DNA damage response, leading to a DKC-like phenotype. 

Finally, shelterin mutations may have to be considered in a broader range of human 

syndromes including in patients with early onset organ failure (as seen for TIN2 

mutations) and with developmental disorders not previously associated with shelterin 

dysfunction. 

A recent report has linked inactivation of the Trf1 shelterin gene to an acute form of 

bone marrow failure in mice [59]. These findings may be relevant to human disease, as 

TIN2 mutations in early onset DKC cluster in a region encoding a TRF1-binding site. 

Interestingly, Trf1 inactivation led to the rapid loss of hematopoietic progenitors and 

severe bone marrow failure, initially without detectable telomere shortening. When 

residual bone marrow cells were studied within 1-3 weeks after induction of Cre 

recombinase, increased compensatory proliferation was apparent, leading eventually to 

telomere shortening and p21 activation. These findings were proposed to underlie the 

pathogenic effects of shelterin mutations in human DKC through telomere deprotection, 

leading to rapid HSC loss. Our observations in Acd-deficient mice share key features with 

this report, including the profound HSC depletion independent of telomere shortening. 

However, near-complete HSC depletion was apparent in our study already within 5 days 

after Acd inactivation, with a detectable DNA damage response and cell cycle arrest 

evident within 48 hours. To capture the direct cellular and molecular consequences of 

shelterin deprotection, we focused on very early time points before affected HSCs are 

depleted, as evidenced for example by our detection of increased telomeric fusion events 

2-3 days after Tpp1 loss. Delaying analysis or decreasing the efficiency of target gene 

inactivation to preserve enough progenitors for study may lead a strong selection for cells 
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that escape Cre-mediated excision. In this situation, findings would focus on rare HSCs 

escaping inactivation and with functional shelterin that undergo major replicative stress, 

rather than on the direct effects of shelterin deprotection. It is possible that these 

considerations may account for differences in our observations on Acd deficiency and 

those reported on the effects of Trf1 inactivation. 

While it remains to be determined if Acd mutations contribute to human bone marrow 

failure and DKC, mouse models of telomere deprotection through Acd mutation or 

deletion suggest this possibility. Furthermore, the hyperacute nature of hematopoietic 

defects following Tpp1 loss provides a practical approach that could shed light on the 

consequences of telomere crisis in other models of bone marrow failure. Indeed, it is 

widely assumed that shortened telomeres induce a cellular crisis when their length 

becomes inadequate to recruit an efficient shelterin buffer, unleashing a DNA damage 

response that can cause cell cycle arrest, apoptosis or genetic instability. However, it is 

virtually impossible to study this pathogenic process directly in somatic stem cells of 

mice and patients, as telomere shortening occurs progressively and asynchronously in 

different stem cells over years in human patients and over several generations in classical 

mouse DKC models. Furthermore, relevant stem cell populations are by definition 

profoundly depleted by the time of diagnosis in patients with bone marrow failure. In 

contrast, our study provides a well-defined acute window of observation on a cohort of 

hematopoietic progenitors that simultaneously and acutely undergoes telomere 

deprotection. Thus, our study presents the first insight into very early hematopoietic 

defects that may predate bone marrow failure in DKC patients with shelterin mutations 
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and could be beneficial in developing a more complete understanding of the natural 

progression of human bone marrow failure syndromes. 
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CHAPTER 6.  CONCLUSIONS AND PERSPECTIVES 

Since Till and McCulloch’s initial discovery of hematopoietic stem cells, many 

researchers have tried to understand how these rare cells maintain hematopoiesis over a 

lifetime. It is clear that self-renewal plays a fundamental role in this long-term function, 

and as such significant research has sought to understand this property. In Chapter 1, we 

reviewed our current understanding of the extensive, diverse factors that contribute to 

HSC self-renewal, and as a result of the original work described in this dissertation, we 

have added our own novel insights into the regulation of this fundamental stem cell 

property. 

 Our work with Ash1l has demonstrated that this understudied TrG member plays 

an essential function in regulating bone marrow HSC self-renewal (Chapter 3). We 

identified that the paradigm of TrG member cooperation in developmental processes is 

conserved between flies and mammals. To date, the biochemical nature of this 

cooperativity has not been studied in any model. Given that both Mll1 and Ash1l are 

described as having catalytically active SET domains, it is tempting to speculate that 

cooperative SET domain activity promotes gene expression (Figure 6.1A). In this model, 

Mll1 H3K4 trimethylation activity could cooperate with Ash1l H3K36 dimethylation 

activity to promote robust target gene expression. Since Ash1l has not been detected in 

complex with Mll1, it is possible that both proteins are recruited to targets independently. 

Alternatively, the SET domain of Ash1l may be irrelevant for in vivo function. In this 



	   109	  

case, Ash1l may be required for the recruitment of additional transcription factor(s) or 

epigenetic regulators and such factors may cooperate to promote gene expression 

independent of Ash1l SET domain activity (Figure 6.1 B). Since we currently lack good 

quality antibodies to detect Ash1l, it is possible that we lack sensitivity to detect 

complexes including Ash1l and Mll1. If this is true, it is possible that Ash1l is required 

for Mll1 recruitment or vise versa (Figure 6.1C). Our data suggest that this is unlikely as 

combined deficiency for Mll1 and Ash1l resulted in phenotypic worsening beyond the 

loss of either gene alone. If the products of these genes were required for the recruitment 

of one another, one would predict that such phenotypic amplification would not occur. 

These data do not rule out, however, that Ash1l and Mll1 are part of the same complex 

but do not directly recruit one another (Figure 6.1D). Significant biochemical studies will 

be required to examine the nature of this observed cooperativity and to test these 

hypothetical models. 

	  

Figure 6.1. Models for Ash1l cooperativity with Mll1. (A) Mll1 and Ash1l are recruited independently to 
target loci and cooperate through their respective SET domain activities. (B) Ash1l recruits additional 
transcription factor (s) that cooperates with Mll1 independent of Ash1l SET domain function. (C) Mll1 is 
required for Ash1l recruitment of vise versa. (D) Ash1l and Mll1 are recruited to the same protein complex 
which targets SET domain activities to target genes. 
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Profound hypomorphism for Ash1l resulted in a 5-10-fold LT-HSC reduction by 

young adulthood following an inability to establish a normal quiescent HSC pool. 

Importantly, our Ash1lGT allele is not completely null, although it is profoundly 

hypomorphic. It is possible that residual Ash1l expression from the Ash1lGT allele could 

mask additional phenotypes that would be revealed by the use of a truly null allele. For 

example, if only a low level of Ash1l is required for fetal hematopoiesis, a null allele may 

reveal additional fetal hematopoietic phenotypes not observed in our model. Assessing 

hematopoietic development with an Ash1l null allele may thus reveal differential 

sensitivities of fetal and adult hematopoietic stem and progenitor cells to Ash1l levels. 

This concept remains to be tested. 

Our data suggest that bone marrow HSC function is profoundly dependent on 

Ash1l.  The 5-10% of normal Ash1l transcripts present in Ash1lGT/GT HSCs were not 

sufficient to allow long-term HSC function in transplantation. This observation suggested 

that Ash1l-deficient mice could be destined to hematopoietic failure over time. 

Surprisingly, however, this did not occur. One could argue that the few remaining HSCs 

were sufficient to maintain hematopoiesis in primary mice, but could not engraft in the 

setting of transplantation due to hematopoietic stress or rarity. This latter possibility is 

unlikely, as even when HSC content was normalized by using fetal liver as the donor 

source, we could not identify functional Ash1lGT/GT HSCs. The former possibility is 

supported by the finding that residual Ash1lGT/GT HSCs diluted GFP more than wild-type 

in pulse-chase experiments. This could suggest that these rare cells increased their 

proliferative output to sustain hematopoiesis, though it remains to be determined if this 

increased proliferation was sufficient to support hematopoietic homeostasis. An 
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additional and more intriguing possibility is that Ash1lGT/GT hematopoiesis is maintained 

predominantly from downstream progenitors that are not true LT-HSCs. Indeed, we 

could not detect long-term HSC function in transplantation, and this may reflect the 

absence of an LT-HSC compartment in the Ash1lGT/GT model. Our data may therefore 

question whether or not steady state hematopoietic homeostasis requires an LT-HSC 

population. 

 The terms long-term and short-term HSC are strictly based on function in bone 

marrow transplantation assays. Long-term HSCs were defined as cells capable of 

sustaining hematopoietic reconstitution of lethally irradiated mice in bone marrow 

transplantation assays for greater than 16 weeks [156, 259, 260]. Short-term HSCs were 

identified as providing robust, transient tri-lineage reconstitution but could not sustain 

reconstitution for 16 weeks [156, 158, 259, 260]. Due to these findings, LT-HSCs are 

viewed as the cells that possess self-renewal potential and maintain long-term 

hematopoietic homeostasis. The idea that LT-HSCs are required for steady-state 

hematopoiesis has never been addressed in the absence of transplantation, and thus 

remains a hypothesis. 

 A recent model of LT-HSC cell cycle activity indicated that long-term 

reconstituting potential was primarily maintained in HSCs that very rarely enter the cell 

cycle [161]. Phenotypic LT-HSCs that had divided only a few times had reduced long-

term reconstituting activity compared to undivided cells, and HSCs that had more 

extensively divided could not sustain long-term reconstitution. This was hypothesized to 

have occurred because dormant HSCs were the true LT-HSC population, and thus had 

more robust self-renewal activity. Mathematical models indicate that these dormant LT-
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HSCs would divide ~5 times over the lifetime of a mouse. This finding may be 

inconsistent with dormant LT-HSCs contributing to the day-to-day turnover of 

hematopoietic tissue, though additional testing and mathematical modeling are required 

to evaluate this concept. 

Transplantation assays suggest that LT-HSC function resides almost exclusively 

in dormant HSCs, and this observation may parallel their support of steady-state 

hematopoiesis However, it is also possible that current transplantation methods are not 

suitable for adequately testing long-term potential or self-renewal in downstream 

progenitor populations.  Standard transplantation protocols do not allow one to 

distinguish between an inability to engraft and reduced self-renewal; both present as 

reduced tri-lineage output in the blood and reduced donor HSC detection at transplant 

termination. Indeed, several groups have reported that cycling HSCs were not as effective 

at long-term tri-lineage reconstitution as non-cycling HSCs in transplantation assays [29, 

154]. If prospective LT-HSCs were cultured and forced into S-G2-M, they engrafted 

poorly. If the culture conditions were extended such that the HSCs had time to transit 

through the cycle and re-enter G1, they could again engraft [29]. This suggested that cells 

did not lose self-renewal potential, but instead could not engraft the bone marrow if they 

were in late cell cycle stages. It would thus seem that reduced cell cycle entry correlates 

with better engraftability, and that transplantation assays do not always provide direct 

measurements of HSC self-renewal or stemness. Since downstream progenitors are 

actively cycling compared to dormant HSCs, this may impede our ability to test their 

long-term function in transplantation due to engraftment defects. 
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 Since we have historically defined LT-HSC function in transplantation assays, 

and we now know that cycling cells fail to achieve robust engraftment in transplantation, 

it follows that we may have far underestimated the frequency of cells capable of 

maintaining long-term hematopoiesis in steady-state conditions. We have thus defined 

LT-HSC potential under stress conditions, either through myeloablation or 

transplantation, and actually do not know the requirement for LT-HSC function during 

homeostasis. 

 By analogy, recent findings in T cell development can be informative when 

thinking about the requirement for classically defined primitive progenitor pools in 

developmental biology. A significant body of work based on transplantation studies 

suggested that thymic output required that the thymus be perpetually seeded with fresh 

progenitors. Until recently, the prevailing concept in the field was that this progenitor 

pool was needed because there were no self-renewing progenitors in the thymus, and thus 

all cells needed to be frequently turned over. Recent work demonstrates that self-renewal 

potential is actually present in the thymus under certain conditions [165, 166]. In the 

absence of progenitor import, existing thymic progenitors could self-renew and sustain 

thymic output. It was determined that in this system, if fresh progenitors were available, 

they could out-compete older thymic progenitors, promoting thymic turnover. However, 

if fresh progenitors were unavailable, these older intrathymic progenitors could sustain 

thymic output. 

 When considering our Ash1lGT/GT model in the context of the data presented in 

this thesis, we suggest a similar model to the T cell development studies described above. 

We could not detect functional LT-HSCs in transplantation, yet cells defined as being 
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ST-HSCs were present at normal frequencies, and hematopoietic output was largely 

preserved. It is possible that in the absence of fresh progenitors from the LT-HSC 

compartment, the ST-HSC compartment was capable of self-renewal and thus maintained 

hematopoietic homeostasis. At least two lines of evidence suggest that this may be true in 

the setting of Ash1l deficiency. Our non-ablative transplantation experiments 

demonstrated that if a healthy pool of LT-HSCs was made available to Ash1lGT/GT mice 

via transplantation, ST-HSCs were turned-over and these fresh LT-HSCs were then the 

major contributors to hematopoietic homeostasis. This is similar to what was reported in 

T cell development, although it has not been described thus far in HSC biology. 

Additionally, pulse-chase experiments demonstrated that progenitors downstream of LT-

HSCs were extensively cycling, presumably to maintain homeostasis. Despite this 

increased proliferation, these downstream progenitors were not depleted, as would be 

expected if these cells were strictly undergoing differentiating divisions to maintain 

mature cell populations. This increased proliferative capacity could thus be reflective of 

enhanced self-renewal potential. Therefore, loss of LT-HSCs in this model may have 

enhanced an intrinsic self-renewal capacity in downstream hematopoietic progenitors that 

cannot be assessed in standard transplantation. 

 This hypothesis would support a model in which LT-HSCs are capable of 

differentiating into ST-HSCs (Figure 7.1). These fresh ST-HSCs have not experienced 

the various DNA damage and metabolic stresses that older progenitors that have been 

engaged in cell cycle activity face. As a result, new ST-HSCs are more fit than older ST-

HSCs and outcompete them, resulting in turnover of the compartment. This would 

essentially suppress any self-renewal potential that ST-HSCs possess as they would not 
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be long-lived enough to demonstrate it. In the absence of LT-HSCs and this turnover, this 

block on ST-HSC self-renewal is removed. There are now no fresh progenitors to 

outcompete the older ones, and thus the self-renewal capacity of ST-HSCs is revealed. 

This hypothesis challenges the paradigm that LT-HSCs are required for long-term 

hematopoietic homeostasis under steady-state conditions. 

	  

Figure 6.2. Model of enhanced ST-HSC self-renewal in setting of reduced LT-HSC pool. In Ash1l-
sufficient hematopoiesis, LT-HSCs give rise to ST-HSCs and downstream progenitors. Self-renewal 
potential resides primarily in the LT-HSC pool. In ash1l-deficient hematopoiesis, the depletion of LT-
HSCs unmasks self-renewal activity in ST-HSCs, and these ST-HSCs maintain hematopoiesis. 

In a field where function in transplantation is the gold standard for identifying 

self-renewal, examining this hypothesis would require overcoming engraftment defects 

that are associated with cell cycle activity. One strategy could be retrovirally transducing 

hematopoietic progenitors with p27. p27 and p57 have been shown to cooperate in 

establishing quiescence, and p57 loss can be compensated by p27 expression [35, 36]. 

Since p57 has been linked to playing diverse roles in development, it is not a viable 
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candidate for these transduction studies [261]. p27 has not been linked to such processes, 

and thus could promote quiescence without disrupting development. We are currently 

developing reagents to perform such a study. 

 Quiescence preserves LT-HSC function through limiting exposure to proliferative 

stress. Such stress manifests itself in ROS accumulation, DNA damage, and 

leukemogenesis. While quiescence limits this damage, over the course of a lifetime, even 

largely dormant LT-HSCs sustain insults. Collectively, this damage results in 

hematopoietic aging (reviewed in [262]). Age-related decline in hematopoietic stem cell 

function results in reduced lymphoid output and reduced self-renewal activity [263]. One 

would predict acceleration in this aging process within actively dividing cell populations. 

The comparatively enhanced cell cycle activity of ST-HSCs relative to LT-HSCs in the 

setting of Ash1l deficiency suggests that our Ash1lGT/GT system may offer a new model in 

which to study aging. In data not shown in this dissertation, we have identified that 

Ash1lGT/GT mice have reduced lymphoid progenitor populations and early thymic 

involution, both of which are reminiscent of an aged hematopoietic system. Additional 

work will be required to assess age-related pathologies, including DNA damage, ROS 

accumulation, and predisposition to leukemia, in the context of Ash1l deficiency to 

determine the extent to which it models physiological aging. 

TPP1 and acute HSC depletion 

The loss of Tpp1 in LT-HSCs and hematopoietic progenitors resulted in an acute 

depletion of these cell populations (Chapter 5). Transplantation assays revealed a virtual 

absence of self-renewing LT-HSCs following Acd deletion. This acute sensitivity was not 

predicted by previous hematopoietic models of shelterin deficiency or telomere 
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dysfunction [57, 60, 224]. In these models, decline in LT-HSC function was gradual and 

hematopoietic output developed progressively. This was the case because these models 

required telomere erosion secondary to proliferative stress to elucidate phenotypes. Even 

loss of the shelterin protein Trf1, while causing a more rapid decline in hematopoietic 

function than previous models, did not perturb LT-HSCs as acutely as did Tpp1 loss [59]. 

This leads one to consider that Tpp1 loss causes LT-HSC dysfunction in a manner that 

differs from previous models. 

MEF studies indicated that Tpp1 deficiency should activate an ATR-dependent 

DNA damage response [215]. However, ATR activation is unlikely to affect such an 

acute depletion of cells, especially those that are quiescent. ATR is activated by stalled 

DNA replication forks, and thus requires active DNA replication for activation. This 

typically means that ATR is activated in S phase. Since adult LT-HSCs do not uniformly 

enter the cell cycle and are only rarely in later S-G2-M phases of the cell cycle, ATR 

activation is unlikely to be the sole mode of LT-HSC depletion in the Acd-deficient 

model. 

Our initial identification of upregulation of the p53 target genes p21 and noxa 

following Acd deletion suggested that p53 mediated cell cycle arrest and apoptosis could 

have significantly contributed to LT-HSC functional decline. This was consistent with the 

p53-dependent functional decline of skin stem cells in the absence of Tpp1, as well as the 

rescue of many developmental abnormalities attributed to acd hypomorphism by p53 loss 

[228, 235, 236]. However, despite robust activation of p53 target genes following Acd 

deletion, p53 deficiency did not rescue LT-HSC function nor did it slow LT-HSC and 

progenitor depletion. Thus, p53 was not the primary cause of LT-HSC dysfunction 
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following Tpp1 loss. These findings demonstrate potential tissue-specific functions of 

shelterin proteins. 

One intriguing possibility is that Tpp1 loss results in mitochondrial dysfunction. 

Telomere shortening has been linked to mitochondrial failure and ROS accumulation, 

both of which would compromise even quiescent LT-HSCs [264]. ROS accumulation has 

been shown to trigger cell death independently of p53 through p38/MAPK activation. 

Indeed the shelterin protein Tin2 has been shown to contribute to mitochondrial function 

through an unclear mechanism. Preliminary work from our lab has identified activation 

of the intrinsic (mitochondrial) pathway of apoptosis following Acd deletion even in the 

absence of p53. We are currently developing techniques to assess mitochondrial function 

to evaluate this possibility. 

Understanding the mechanisms through which Tpp1 loss results in hematopoietic 

failure has direct implications for human disease. The recent identification of TIN2 

mutations in the human bone marrow failure syndrome dyskeratosis congenita 

necessitates such studies. TIN2 mutations result in a very aggressive form of the disease 

with an early onset. It thus does not follow a progressive model similar to other forms of 

the disease associated with telomere erosion. In the shelterin complex, one of the primary 

functions of Tin2 is tethering Tpp1/Pot1 to Trf1 and Trf2. Tin2 loss is embryonic lethal 

in mouse studies, and no conditional allele has been described. Tpp1 loss is therefore the 

most accurate reflection of what may happen when TIN2 is mutated in human patients. 

Understanding how Acd deficiency affects stem cell compartments, not just in the 

hematopoietic system but throughout development and across tissues, may direct 

therapeutic interventions in treating patients. 
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CHAPTER 7.  MATERIALS AND METHODS 

Mice used for general transplantation assays. C57BL/6 (B6, CD45.2+) mice were 

purchased from Harlan (Indianapolis, IN) and C57BL/6.Ptprca (B6-SJL, CD45.1+) were 

purchased from the National Cancer Institute (Frederick, MD).  

 

Mice used for Acd studies. acd hypomorphic mutant mice and mice carrying a floxed 

conditional Acd/Tpp1 allele (Acdfl) have been described previously [215, 234]. Acdfl/+ 

mice were crossed with mice carrying a null Acd allele (Acd–) and Mx-Cre [251], Vav-

Cre transgenic [265]or Cre-ERT2 lentitransgenic mice [252]. When indicated, mice were 

crossed onto a p53–/– background [266]. To fully inactivate Acd/Tpp1, Cre-expressing 

Acdfl/– mice were used. Mx-Cre activation was initially achieved via 5 intraperitoneal 

injections of 200 µg poly(I:C) (EMD Biosciences, Billerica, MA). To better capture acute 

changes induced by Acd/Tpp1 loss in hematopoietic stem and progenitor cells, we used a 

single 20 µg dose of highly purified poly(I:C) (GE Healthcare Biosciences, Pittsburgh, 

PA). This allowed detection of hematopoietic progenitors soon after administration with 

minimal effects on their phenotypic profile from the poly(I:C)-mediated interferon 

response. Cre-ERT2 activation was achieved by 2-3 intraperitoneal injections of 

tamoxifen in corn oil (Sigma, St. Louis, MO; 1 mg/dose). The University of Michigan 

Committee on Use and Care of Animals approved all experiments. 
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Mice used for Ash1l studies. Ash1lGT embryonic stem cells were obtained from the 

Wellcome Trust Sanger Institute (Hinxton, England). ES cells were injected into 

blastocysts, and mice were generated by The University of Michigan Transgenic Animal 

Core. To study the fetal to adult transition, Ash1lGT/+ mice were bred with Sox17GFP/+ 

mice [26]. To perform long-term pulse-chase experiments, Ash1lGT/+ mice were bred with 

transgenic animals containing both Rosa26-rtTA and TetOP-H2B-GFP as previously 

described [161, 267]. To label hematopoietic cells with GFP, animals were maintained on 

doxycycline (2mg/ml) for 6 weeks. Following this labeling period, doxycycline drinking 

water was removed and animals were maintained on normal drinking water for a 6 week 

chase period to allow GFP dilution in dividing cells. 

For experiments examining cooperativity between Ash1l and menin/Mll1, 

previously described transgenic Men1fl mice were bred to generate Ash1lGT/GTMen1fl/flMx-

Cre+ mice and additional indicated genotypes [163]. Men1 excision was achieved by 

intraperitoneal injection of 5 doses of 50ug poly (I:C) administered every other day. The 

University of Michigan Committee on Use and Care of Animals approved all 

experiments. 

 

Flow cytometry. Fetal liver and bone marrow specimens were harvested and single cell 

suspensions were prepared. Red blood cells were lysed with ACK lysis buffer (Cambrex, 

Walkersville, MD) and counted with a hemacytometer or a Nexcelom AutoT4 Cellometer 

(Nexcelom, Lawrence, MA). The following antibodies were from BioLegend (San Diego, 

CA), eBiosciences (San Diego, CA) or BD Biosciences (San Jose, CA): anti-CD3, CD4, 

CD8, CD11b, CD11c, CD19, CD48, CD150, Gr1/Ly-6G, B220, NK1.1, TCRβ, TCRγδ, 
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c-Kit and Sca-1. We used the following antibody cocktail to exclude Lineage+ cells: anti-

CD11b, Gr1, CD11c, B220, CD19, CD3, TCRβ, TCRγδ, CD8, NK1.1 and Ter119. BrdU 

analysis was performed using a BrdU labeling kit (BD Biosciences). Ki67 staining was 

achieved using the BD Ki67 Set (BD Biosciences). Annexin-V staining was performed 

using an Annexin-V labeling kit (BD Biosciences). Analysis was on FACSCanto and 

sorting on FACSAria II/III (BD Biosciences). Dead cells were excluded with 4′6-

diamidino-2-phenylindole (Sigma). Files were analyzed in FlowJo (Tree Star, San Carlos, 

CA). 

 

Bone marrow and fetal liver cell transplantation. 6-8 week old B6-SJL (CD45.1+) 

recipient mice were lethally irradiated (900 Gy, 37Cs source). Four hours after irradiation, 

mice were transplanted with the indicated donor bone marrow or fetal liver cells via tail 

vein injection. For competitive transplantation, we mixed equal numbers of competitor 

B6-SJL bone marrow and tester CD45.2+ bone marrow or fetal liver cells. For non-

ablative transplantation, 5-8 week old Ash1lGT/GT or wild-type controls were injected via 

tail vein 2 X with 2.0 X 107 B6-SJL (CD45.1+) bone marrow cells. Injections were 

separated by 1 week. 

 

Complete blood counts. Blood was obtained through retroorbital bleeding and 

transferred to EDTA-treated tubes. Complete blood counts were determined by analyzing 

the samples on the Advia 120 Hematology System (Siemens, Malvern, PA). 
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Quantitative Real-Time PCR. For gene expression analyses, at least 5000 Lin–Scahic-

Kithi (LSK) hematopoietic progenitors were sort-purified directly into Trizol (Invitrogen, 

Carlsbad, CA). After RNA extraction, cDNA was generated using the SuperScript III 

First Strand Synthesis Kit (Invitrogen) or the Nugen Ovation PicoSL WTA System 

(Nugen Technologies, San Carlos, CA). Relative gene expression was measured using 

Taqman (Applied Biosystems, Carlsbad, CA) primer and probe sets or SybrGreen 

(Fisher, Rockford, IL) for the indicated target genes. Reactions were carried out on a 

Mastercycler realplex (Eppendorf, Westbury, NY). Relative expression was calculated 

after normalization with Hprt1 expression using the ΔΔCT method. Primer information is 

listed in Table 7.1.  

For quantification of Acd excision, 10000 LSK progenitors were sort-purified into 

Direct Lysis buffer (Viagen Biotech, Los Angeles, CA) with 1 µL Proteinase K. Samples 

were incubated overnight and Proteinase K was inactivated at 85oC for 1hr. To assess 

excision, we used a primer pair specific for the floxed Acd exon 7 and an exon 2-specific 

primer pair amplifying a DNA sequence outside the floxed region. Amplification was 

performed with SybrGreen (Fisher, Rockford, IL) before quantification of exon7/exon2 

signal on Mastercycler realplex using the ΔΔCT method. For measurement of telomere 

length, DNA was extracted with Direct Lysis buffer as described above. Primers specific 

for telomeric DNA and the reference locus m36b4 were used with SybrGreen 

amplification on Mastercycler realplex, as described [268, 269]. The abundance of 

telomeric DNA normalized to m36b4 signal was calculated using the ΔΔCT method. 
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Table 7.1. qPCR Primers 
Target Primer Sequence or TaqMan Assay ID Format 
Acd Exon 2 F-TACTCCAGGACTCGGAGACT  

R-TCTGACACAAGTAACACGGC 
SybrGreen 

Acd Exon 7 F-CTAACCCTGTCCCAGCTTCT 
R-TACAAGGACCTTTCAGCACC 

SybrGreen 

Ash1l Mm01212715_m1 TaqMan 
Hoxa5 Mm00439362_m1 TaqMan 
Hoxa7 Mm00657963_m1 TaqMan 
Hoxa9 Mm00439364_m1 TaqMan 
Hoxa10 Mm00433966_m1 TaqMan 
Hprt1 Mm01545399_m1 TaqMan 
m36b4 F-ACTGGTCTAGGACCCGAGAAG 

R-TCAATGGTGCCTCTGGAGATT 
SybrGreen 

Meis1 Mm00487664_m1 TaqMan 
Noxa Mm00451763_m1  
p21 Mm00432448_m1 TaqMan 
p27 Mm00438168_m1 TaqMan 
p57 Mm00438170_m1 TaqMan 
Puma Mm00519268_m1  
Telomere F-CGGTTTGTTTGGGTTTGGGTTTGGGTTTGGGTTTGGGTT  

R-GGCTTGCCTTACCCTTACCCTTACCCTTACCCTTACCCT 
SybrGreen 

 

Metaphase preparation and analysis. Bone marrow cells were cultured for 12 hours in 

S-clone SF-O3 medium (Iwai, Foster City, CA) with IL-3 (9 ng/ml), IL-6 (5 ng/ml) and 

stem cell factor (100 ng/ml) (Peprotech, Rocky Hill, NJ) at 5%CO2 and 37oC. 

KARYOMax Colcemid (Invitrogen) was added at 0.2µg/mL for 3-4 hours at 37oC. 

Metaphase spreads were then prepared as described [270]. Samples were stained with a 

PNA-TelG-FITC probe (Biosynthesis, Lewisville, TX) and DAPI as previously 

described. Metaphases were analyzed and images acquired using a Nikon E800 

microscope equipped with an Olympus DP-71 digital camera. Images were scored in a 

blinded fashion. 

 

CFU-GM and single-colony PCR. 20000 bone marrow cells were plated per mL of 

Methocult GF M3534 (Stem Cell Technologies, Vancouver, BC). Colonies were scored 

7-10 days later. Where indicated, individual colonies were removed as a plug with 
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methylcellulose and washed in PBS before DNA extraction in 100uL lysis buffer 

(Viagen) with 1uL proteinase K. Samples were incubated overnight and Proteinase K was 

inactivated at 85oC for 1hr. Colony DNA was then genotyped as described (Kibe, 2010). 

 

Statistical analysis. Comparison of two means was performed with 2-tailed unpaired 

Student t test. Analysis of more than two means was performed with ANOVA followed 

by Bonferroni post-test analysis. Comparisons of observed genotypes to those predicted 

by Mendelian ratios were performed with Chi Squared analysis. 
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