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ABSTRACT

TOPICS IN OPTIMAL STOPPING AND FUNDAMENTAL THEOREM OF ASSET PRICING

by
Zhou Zhou

Co-Chairs: Hyun-Soo Ahn and Erhan Bayraktar

In this thesis, we investigate several problems in optimal stopping and fundamen-

tal theorem of asset pricing (FTAP).

In Chapter II, we study the controller-stopper problems with jumps. By a back-

ward induction, we decompose the original problem with jumps into controller-

stopper problems without jumps. Then we apply the decomposition result to in-

difference pricing of American options under multiple default risk.

In Chapters III and IV, we consider zero-sum stopping games, where each player

can adjust her own stopping strategies according to the other’s behavior. We show

that the values of the games and optimal stopping strategies can be characterized by

corresponding Dynkin games. We work in discrete time in Chapter III and continuous

time in Chapter IV.

In Chapter V, we analyze an optimal stopping problem, in which the investor

can peek ε amount of time into the future before making her stopping decision. We

characterize the solution of this problem by a path-dependent reflected backward

stochastic differential equation. We also obtain the order of the value as ε↘ 0.

vii



In Chapters VI-VIII, we investigate arbitrage and hedging under non-dominated

model uncertainty in discrete time, where stocks are traded dynamically and liquid

European-style options are traded statically. In Chapter VI we obtain the FTAP and

hedging dualities under some convex and closed portfolio constraints. In Chapter VII

we study arbitrage and super-hedging in the case when the liquid options are quoted

with bid-ask spreads. In Chapter VIII we investigate the dualities for sub and super-

hedging prices of American options. Note that for these three chapters, since we work

in the frameworks lacking dominating measures, many classical tools in probability

theory cannot be applied.

In Chapter IX, we consider arbitrage, hedging, and utility maximization in a

given model, where stocks are available for dynamic trading, and both European

and American options are available for static trading. Using a separating hyperplane

argument, we get the result of FTAP, which implies the dualities of hedging prices.

Then the hedging dualities lead to the duality for the utility maximization.

viii



CHAPTER I

Introduction

This thesis is concentrated on two topics: optimal stopping (including Chapters

II-V, VIII, and IX), and fundamental theorem of asset pricing (FTAP) and hedging

duality (including Chapters VI-IX).

Optimal stopping plays an important role in the field of financial mathematics,

such as fundamental theorem of asset pricing (FTAP), hedging, utility maximiza-

tion, and pricing derivatives when American-type options are involved. For the

general theory of optimal stopping and its applications, we refer to [54, 71, 76] and

the references therein. The most commonly used approach for solving classical opti-

mal stoping problems is to find the Snell envelopes of the underlying processes (see

e.g, [70, 76]). However, there are still lots of specific optimal stopping problems of

interest, which either require very technical verifications when using this method, or

cannot be directly solved by the Snell envelope idea. In the first topic of this thesis,

we consider several such problems of optimal stopping. Apart from Snell envelope,

we shall use various methods to address these problems.

The arbitrage and hedging have been studied extensively in the field of financial

mathematics in the classical setup, i.e, when there is a single physical measure and

only stocks are available for dynamic trading. We refer to [24, 34, 43] and the refer-

1
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ences therein. Recently, there has been a lot of work on this topic in a setup where

liquid options are also available for static trading, and/or the market is subject to

model uncertainty/independency (see e.g., [1,17,19,28,32,35–37,45,65]). Compared

to the classical framework, it is more practical to study the arbitrage and hedging

in this new setup. One reason is that nowadays the volume of options in the finan-

cial market is so large that it is not reasonable to ignore the impact of the liquid

options. Moreover, estimation of parameters (e.g., volatilities) often ends up with

confidence intervals instead of points. These intervals will lead to a set of probability

measures which represents the model uncertainty. For the second topic of this thesis,

we investigate several problems on arbitrage and hedging where stocks are traded

dynamically and options are traded statically (semi-static trading strategies). In

particular, most of our work for this topic is done in the framework of model uncer-

tainty. It is worth noting that since the set of probability measures which represents

the model uncertainty may not have a reference measure in general, many classical

tools in probability theory cannot be applied.

1.1 Outline of the thesis

In Chapter II, we consider controller-stopper problems where the controlled pro-

cesses can have jumps. We assume that there are at most n jumps. Using a backward

induction, we decompose the original problem with jumps into several controller-

stopper problems without jumps. Then we study the indifference pricing of an

American option under multiple default risk. The backward induction leads to a

system of reflected backward stochastic differential equations (RBSDEs). We show

that there exists a solution to the RBSDE system, and the solution characterize

the indifference price of the American option. This chapter is based on [15]. Parts
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of the work have been presented at the Financial/Actuarial Mathematics Seminar,

University of Michigan, December 10, 2012.

In Chapter III, we consider the zero-sum stopping games

B := inf
ρρρ∈Tii

sup
τ∈T

E[U(ρρρ(τ), τ)] and A := sup
τττ∈Ti

inf
ρ∈T

E[U(ρ,τττ(ρ))]

on a filtered probability space (Ω,F , P, (Ft)t=0,... ,T ), where T ∈ N is the time horizon

in discrete time, U(s, t) is Fs∨t-measurable, T is the set of stopping times, and

Ti and Tii are sets of mappings from T to T satisfying certain non-anticipativity

conditions. We convert the problems into a corresponding Dynkin game, and show

that B = A = V , where V is the value of the Dynkin game. We also get the optimal

ρρρ ∈ Tii and τττ ∈ Ti for B and A respectively. This chapter is based on [16]. Parts

of the work have been presented at the Financial/Actuarial Mathematics Seminar,

University of Michigan, December 10, 2014; Trading and Portfolio Theory, University

of Chicago, November 11-12, 2014.

In Chapter IV, we extend the results in Chapter III to the continuous-time case.

That is, we consider the stopping games

G := inf
ρρρ

sup
τ∈T

E[U(ρρρ(τ), τ)] and G := sup
τττ

inf
ρ∈T

E[U(ρ,τττ(ρ))]

on a filtered probability space (Ω,F , P, (Ft)0≤t≤T ), where T ∈ (0,∞) is the time

horizon in continuous time, and ρρρ,τττ : T 7→ T satisfy certain non-anticipativity

conditions. We show that G = G by converting these problems into a corresponding

Dynkin game. Compared to the discrete-time case, there are noticeable differences

in the continuous-time results regarding the types of the non-anticipativity and the

existence of optimal ρρρ and τττ . This chapter is based on [6]. Parts of the work have been

presented at the Financial/Actuarial Mathematics Seminar, University of Michigan,
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December 10, 2014; Trading and Portfolio Theory, University of Chicago, November

11-12, 2014.

In Chapter V, we consider the optimal stopping problem

v(ε) := sup
τ∈T

EB(τ−ε)+

posed by Shiryaev at the International Conference on Advanced Stochastic Optimiza-

tion Problems organized by the Steklov Institute of Mathematics in September 2012.

Here T > 0 is a fixed time horizon, (Bt)0≤t≤T is the Brownian motion, ε ∈ [0, T ] is

a constant, and T is the set of stopping times taking values in [0, T ]. As a first ob-

servation, v(ε) is characterized by a path dependent RBSDE. Furthermore, for large

enough ε we obtain an explicit expression for v(ε), and for small ε we have lower and

upper bounds. Then we get the asymptotic order of v(ε) as ε↘ 0, which is the main

result of this chapter. As a byproduct, we also obtain Lévy’s modulus of continuity

result in the L1 sense. This chapter is based on [5].

In Chapter VI, we consider the FTAP and hedging prices of options under non-

dominated model uncertainty and portfolio constrains in discrete time. First we

show that no arbitrage holds if and only if there exists some family of probability

measures such that any admissible portfolio value process is a local super-martingale

under these measures. Then we get the non-dominated optional decomposition with

constraints. From this decomposition, we get the dualities of the sub- and super-

hedging prices of European and American options. Finally, we add liquid options

into the market, and get the FTAP and duality of super-hedging prices with semi-

static trading strategies. This chapter is based on [7]. Parts of the work have

been presented at the SIAM Conference on Financial Mathematics and Engineering,

November 13-15, 2014; the Financial Mathematics Seminar, Princeton University,

September 11, 2014; Labex Louis Bachelier SIAM SMAI Conference on Financial



5

Mathematics Advanced Modeling and Numerical Methods, Paris, June 17-20, 2014;

the Financial/Actuarial Mathematics Seminar, University of Michigan, March 26,

2014.

In Chapter VII, we consider the FTAP and super-hedging using semi-static trad-

ing strategies under model uncertainty in discrete time. We assume that the stocks

are liquid and trading in them does not incur transaction costs, but that the options

are less liquid and their prices are quoted with bid-ask spreads. We work on the

notion of robust no arbitrage in the quasi-surely sense, and show that robust no ar-

bitrage holds if and only if there exists a certain class of martingale measures which

correctly price the options for static trading. Moreover, the super-hedging price is

given by the supremum of the expectation over all the measures in this class. This

chapter is based on [14].

In Chapter VIII, we consider the hedging prices of American options using semi-

static trading strategies under model uncertainty in discrete time. First, we obtain

the duality of sub-hedging prices as well as the existence of an optimal sub-hedging

strategy. We also discuss the exchangeability of the sup and inf in the dual represen-

tation. Next, we get the results of duality and the existence of an optimal strategy

for super-hedging. We also compare several alternative definitions and argue why

our choice is more reasonable. Finally, assuming that the path space is compact, we

construct a discretization of the path space and demonstrate the convergence of the

hedging prices at the optimal rate. This chapter is based on [11]. Parts of the work

have been presented at the Financial/Actuarial Mathematics Seminar, University of

Michigan, January 29, 2014.

In Chapter IX, we consider a financial model where stocks are available for dy-

namic trading, and both European and American options are available for static
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trading. We assume that the American options are infinitely divisible, and can only

be bought but not sold. We first get the FTAP with semi-static trading strategies.

Using the FTAP result, we further get the dualities for the hedging prices of Euro-

pean and American options. Based on the hedging dualities, we also get the duality

for the utility maximization involving semi-static trading strategies. This chapter is

based on [8].



CHAPTER II

On controller-stopper problems with jumps and their
applications to indifference pricing of American options

2.1 Introduction

The problem of pricing American options and the very closely related stochastic

control problem of a controller and stopper either cooperating or playing a zero-

sum game has been analyzed extensively for continuous processes. In particular,

[52] considers the super-hedging problem; [12,55–57] consider the controller-stopper

problems, and [64] resolves the indifference pricing problem using the results of [55].

We will consider the above problems in the presence of jumps in the state variables.

The stochastic control problems in the above setup can be solved by Hamilton-

Jacobi-Bellman integro-differential equations in the Markovian setup, or by Reflected

Backward Stochastic Differential Equations (RBSDEs) with jumps, generalizing the

results of [47], which we will call the global approach. We prefer to use an alternative

approach in which we convert the problem with jumps into a sequence of problems

without jumps à la [9], which uses this result for linear pricing of American options,

and [72] which uses this approach to solve indifference pricing problems for European-

style optimal control problems with jumps under a conditional density hypothesis.

One may wonder what the local approach we propose brings over the global ap-

proach in financial applications. Indeed, in the second part of the chapter, where we

7
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give an application of the decomposition results of controller-stopper games to indif-

ference pricing of American options, one may use the methods in [33, 64] to convert

the original problem into a dual problem over martingale measures which could be

represented as a solution of an RBSDE with jumps or integro-PDEs for a non-linear

free boundary problem. Compared to this global approach, what we propose has

several advantages:

(a) Our method tells us how to behave optimally between jumps. For instance,

our stopping times are not hitting times. They are hitting times of certain levels

between jumps. But these levels change as the jumps occur. This tells us how the

investor reacts to defaults and changes her stopping strategies. However, the global

method can provide little insight into the impact of jumps on the optimal strategies.

(b) Like in [50, 72], our decomposition approach allows us to formulate the op-

timal investment problems where the portfolio constraint set can be updated after

each default time, depending on the past defaults, which is financially relevant. Nev-

ertheless, in the global approach the admissible set of strategies has to be fixed in

the beginning.

(c) The decomposition result is useful in the analysis of Backward stochastic

differential equations (BSDEs) with jumps. For example, [58] uses the decomposition

result of [72] to construct a solution to BSDEs with jumps. Similar decomposition

results were used earlier by [30] in understanding the structure of control problems

in a piece-wise deterministic setting. Also, see [10] for example for the application

of the decomposition idea to the solution of a quickest change detection problem.

Following the setup in [50, 72] we also assume that there are at most n jumps.

Assuming the number of jumps is finite is not restrictive for financial modeling pur-

poses. We think of jumps representing default events. The jumps in our framework



9

have both predictable and totally inaccessible parts. That is, we are in the hybrid

default modeling framework considered by [41,51,72] and following these papers we

make the assumption that the joint distribution of jump times and marks has a

conditional density. For a more precise formulation see the standing assumption in

Section 2.3.

In this jump-diffusion model, we give a decomposition of the controller-stopper

problem into controller-stopper problems with respect to the Brownian filtration,

which are determined by a backward induction. We apply this decomposition method

to indifference pricing of American options under multiple jump risk, extending the

results of [72]. The solution of this problem leads to a system of reflected backward

stochastic differential equations (RBSDEs). We show that there exists a solution

to this RBSDE system and the solution provides a characterization of the value

function, which can be thought of as an extension of [46].

Our first result, see Theorem 2.2.1 and Proposition 2.2.3, is a decomposition result

for stopping times of the global filtration (the filtration generated by the Brownian

motion and jump times and marks). Next, in Section 2.3, we show that the expec-

tation of an optional process with jumps can be computed by a backward induction,

where each step is an expectation with respect to the Brownian filtration. In Sec-

tion 2.4, we consider the controller-stopper problems with jumps and decompose

the original problem into controller-stopper problems with respect to the Brown-

ian filtration. Finally, we apply our decomposition result to obtain the indifference

buying/selling price of American options with jump/default risk in Section 2.5 and

characterize the optimal trading strategies and the optimal stopping times in The-

orem 2.5.4 and Theorem 2.5.8, which resolves a saddle point problem, which is an

important and difficult problem in the controller-stopper games.
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Since we work with optional processes (because our optimization problem contains

a state variable with unpredictable jumps), we cannot directly rely on the decompo-

sition result of [49, Lemma 4.4 and Remark 4.5] or the corresponding result in [48]

(which is for predictable processes and the filtrations involved are right-continuous)

from the classical theory of enlargement of filtrations. (See also [73, Chapter 6] for an

exposition of this theory in English.) It is well known in the theory of enlargement

of filtrations that for a right-continuous enlargement, a decomposition for optional

process is not true in general; the remark on page 318 of [3] gives a counter example.

See also the introduction of the recent paper by [79]. This is because in the case

of optional processes the monotone class argument used in the proof of [49, Lemma

4.4] does not work for the right-continuously enlarged filtration. The phenomenon

described here is in fact a classical example demonstrating the well-known exchange-

ability problem between intersection and the supremum of σ-algebras. In our prob-

lem we work in an enlarged filtration which is not right-continuous. This allows to

get optional decomposition results with respect to the enlarged filtration. On the

other hand, since the enlargement is not right-continuous, no classical stochastic

calculus tools can be used to solve the problem anymore. Therefore, our approach

gives an important contribution to the stochastic optimization literature. Also, as

opposed to [49] we consider a progressive enlargement with several jumps and jump

marks. On the other hand, our decomposition of the controller-stopper problems

into control-stopper problems in the smaller filtration can be viewed as a non-linear

extension of the classical decomposition formulas due to Jeulin [49].

In the rest of this section we will introduce the probabilistic setup and notation

that we will use in the rest of the chapter.
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2.1.1 Probabilistic setup

As in [72], we start with (Ω,F,P) corresponding to the jump-free probability space,

where F = (Ft)∞t=0 is the filtration generated by the Brownian motion, satisfying the

usual conditions. We assume that there are at most n jumps. Define ∆0 = ∅ and

∆k = {(θ1, . . . , θk) : 0 ≤ θ1 . . . ≤ θk} , k = 1, . . . , n,

which represents the space of first k jump times. For k = 1, . . . , n, let ek be the k-th

jump mark taking values in some Borel subset E of Rd̂. For k = 0, . . . , n, let Dk be

the filtration generated by the first k jump times and marks, i.e.,

Dkt = ∨ki=1

(
σ(1{ζi≤s}, s ≤ t) ∨ σ(`i1{ζi≤s}, s ≤ t)

)
.

Let

Gk = F ∨ Dk, k = 0, . . . , n.

Denote by Gk = (Gkt )∞t=0 for k = 0, . . . , n, and G = Gn. (One should note that these

filtrations are not necessarily right continuous. When we look at the supremum of two

σ algebras, the resulting σ algebra does not have to be right continuous. This is due

to the famous exchangeability problem between the intersection and the supremum

of two σ algebras.) Then (Ω,Gk,P) is the probability space including at most the first

k jumps, k = 0, . . . , n. Let (Ω,G,P) = (Ω,Gn,P) which we refer to as the global

probability space. Note that for k = 0, . . . , n, we may characterize each element

in Ω as (ω1, θ1, . . . , θk, e1, . . . , ek), when the random variable we consider is Gk∞-

measurable, where ω1 is viewed as the Brownian motion argument and Gk∞ = ∪∞t=0Gkt ,

see [22, page 76].

Next we will introduce some notation that will be used in the rest of the chapter.
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2.1.2 Notation

• For any (θ1, . . . , θk) ∈ ∆k, (`1, . . . , `k) ∈ Ek, we denote by

θθθk = (θ1, . . . , θk), `̀̀k = (`1, . . . , `k), k = 1, . . . , n.

We also denote by ζζζk = (ζ1, . . . , ζk), and `̀̀k = (`1, . . . , `k). From now on, for

k = 1, . . . , n, we use θk, θθθk, ek, eeek to represent given fixed numbers or vectors,

and ζk, ζζζk, `k, `̀̀k to represent random jump times or marks.

• PF is the σ-algebra of F-predictable measurable subsets on R+ × Ω, i.e., the

σ-algebra generated by the left-continuous F-adapted processes.

• PF(∆k, E
k) is the set of indexed F-predictable processes Zk(·), i.e., the map

(t, ω,θθθk, `̀̀k)→ Zk
t (ω,θθθk, `̀̀k) is PF⊗B(∆k)⊗B(Ek)-measurable, for k = 1, . . . , n.

We also denote PF as PF(∆0, E
0).

• OF(resp.OG) is the σ-algebra of F(resp.G)-optional measurable subsets on R+×

Ω, i.e., the σ-algebra generated by the right-continuous F(resp.G)-adapted pro-

cesses.

• OF(∆k, E
k) is the set of indexed F-adapted processes Zk(·), i.e., the map (t, ω,θθθk,

`̀̀k) → Zk
t (ω,θθθk, `̀̀k) is OF ⊗ B(∆k) ⊗ B(Ek)-measurable, for k = 1, . . . , n. We

also denote OF as OF(∆0, E
0).

• For any Gk∞-measurable random variable X, we sometimes denote it as X =

X(ω1, ζζζk, `̀̀k) = X(ζζζk, `̀̀k). Given ζζζk = θθθk, `̀̀k = eeek, we denote X as X =

X(ω1, θθθk, `̀̀k) = X(θθθk, `̀̀k). Similar notations apply for any Gk-adapted process

(Zt)t≥0 and its stopped version Zτ , where τ is a Gk-stopping time.

• For T ∈ [0,∞], ∆k(T ) := ∆k ∩ [0, T ]k.

• S∞c [t, T ] :=

{
Y : F-adapted continuous, ||Y ||S∞c [t,T ] := ess sup

(s,ω)∈[t,T ]×Ω

|Ys(ω)| <∞

}
.
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• S∞c (∆k(T ), Ek) :=
{
Y k ∈ OF(∆k, E

k) : Y k is continuous, and ||Y k||S∞c (∆k(T ),Ek)

:= sup
(θθθk,eeek)∈∆k(T )×Ek

||Y k(θθθk, eeek)||S∞c [θk,T ] <∞
}
, k = 0, . . . , n.

• L2
W [t, T ] :=

{
Z : F-predictable, E

[∫ T
t
|Zs|2ds

]
<∞

}
.

• L2
W (∆k(T ), Ek) :=

{
Zk ∈ PF(∆k, E

k) : E
[∫ T

θk
|Zk

t (θθθk, eeek)|2dt
]
<∞, ∀(θθθk, eeek) ∈

∆k(T )× Ek
}
, k = 0, . . . , n.

• A[t, T ] :=
{
K : F-adapted continuous increasing, Kt = 0, EK2

T <∞
}
.

• A(∆k(T ), Ek) :=
{
Kk : ∀(θθθk, eeek) ∈ ∆k(T ) × Ek, Kk(θθθk, eeek) ∈ A[θk, T ]

}
,

k = 0, . . . , n.

• We use eq(H, f)s≤t≤T to represent the RBSDE

Yt = HT −
∫ T

t

f(r, Yr, Zr)dr +

∫ T

t

ZrdWr + (KT −Kt), s ≤ t ≤ T,

Yt ≥ Ht, s ≤ t ≤ T,∫ T

s

(Yt −Ht)dKt = 0,

and EQ(H, f)s≤t≤T to represent the RBSDE

Yt = HT +

∫ T

t

f(r,Yr,Zr)dr −
∫ T

t

ZrdWr + (KT −Kt), s ≤ t ≤ T,

Yt ≥ Ht, s ≤ t ≤ T,∫ T

s

(Yt −Ht)dKt = 0.

2.2 Decomposition of G-stopping times

Theorem 2.2.1 and Proposition 2.2.3, on the decomposition G-stopping times, are

the main results of this section.

Theorem 2.2.1. τ is a G-stopping time if and only if it has the decomposition:

τ = τ 01{τ0<ζ1} +
n−1∑
k=1

τ k(ζζζk, `̀̀k)1{τ0≥ζ1}∩...∩{τk−1≥ζk}∩{τk<ζk+1}(2.2.1)

+τn(ζζζn, `̀̀n)1{τ0≥ζ1}...∩{τn−1≥ζn},
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for some (τ 0, . . . , τn), where τ 0 is an F-stopping time, and τ k(ζζζk, `̀̀k) is a Gk-stopping

time satisfying

(2.2.2) τ k(ζζζk, `̀̀k) ≥ ζk, k = 1, . . . , n.

Proof. If τ has the decomposition (2.2.1), then

{τ ≤ t} =
n−1⋃
k=1

(
{τ 0 ≥ ζ1} ∩ . . . ∩ {τ k−1 ≥ ζk} ∩ {τ k < ζk+1} ∩ {τ k ≤ t}

)
∪
(
{τ 0 < ζ1} ∩ {τ 0 ≤ t}

)
∪
(
{τ 0 ≥ ζ1} ∩ . . . {τn−1 ≥ ζn} ∩ {τn ≤ t}

)
.

For k = 1, . . . , n, since {τ k < ζk+1} ∈ Gτk , and

{τ i−1 ≥ ζi} ∈ Gζi ⊂ Gζk ⊂ Gτk , i = 1, . . . , k,

we have

{τ 0 ≥ ζ1} ∩ . . . ∩ {τ k−1 ≥ ζk} ∩ {τ k < ζk+1} ∩ {τ k ≤ t} ∈ Gt.

Similarly we can show {τ 0 < ζ1} ∩ {τ 0 ≤ t} ∈ Gt and

{τ 0 ≥ ζ1} ∩ . . . {τn−1 ≥ ζn} ∩ {τn ≤ t} ∈ Gt.

If τ is a G-stopping time, we will proceed in 3 steps to show that it has the decom-

position (2.2.1).

Step 1: We will show that for any discretely valued G-stopping time

τ =
∑

1≤i≤∞

ai1Ai ,

where 0 ≤ a1 < a2 < . . . < a∞ = ∞ and (Ai ∈ Gai)1≤i≤∞ is a partition of Ω, there

exists a Gk-stopping time τ k = τ k(ζζζk, `̀̀k), such that

(2.2.3) τ1{τ<ζk+1} = τ k1{τ<ζk+1} and {τ < ζk+1} = {τ k < ζk+1},
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for k = 0, . . . , n− 1. First, we have

{τ < ζk+1} =
⋃

1≤i≤∞

(
{τ < ζk+1} ∩ {Ai}

)
=

⋃
1≤i≤∞

(
{ai < ζk+1} ∩ {Ai}

)
.

To complete Step 1, we need the following lemma:

Lemma 2.2.2. For i = 1, . . . ,∞, and Ai ∈ Gai, there exists Ãi ∈ Gkai, such that

(2.2.4) {ai < ζk+1} ∩ Ãi = {ai < ζk+1} ∩ Ai.

Moreover, (Ãi)1≤i≤∞ can be chosen to be mutually disjoint.

Proof of Lemma 2.2.2. Since for j ≥ k + 1,

(
σ(1{ζj≤s}, s ≤ ai) ∨ σ(`j1{ζj≤s}, s ≤ ai)

)
∩ {ai < ζk+1}

= σ
(
{ζj ≤ s},

(
{` ∈ C} ∩ {ζj ≤ t}

)
∪ {ζj > t}, s, t ≤ ai, C ∈ B(E)

)
∩ {ai < ζk+1}

= σ

(
{ζj ≤ s} ∩ {ai < ζk+1},

((
{` ∈ C} ∩ {ζj ≤ t}

)
∪ {ζj > t}

)
∩ {ai < ζk+1},

s, t ≤ ai, C ∈ B(E)

)
=
{
∅, {ai < ζk+1}

}
,

we have that

Gai ∩ {ai < ζk+1}

=

(
Fai ∨

(
∨nj=1

(
σ(1{ζj≤s}, s ≤ ai) ∨ σ(`j1{ζj≤s}, s ≤ ai)

)))
∩ {ai < ζk+1}

=

((
Fai ∩ {ai < ζk+1}

)
∨
(
∨nj=1

(
σ(1{ζj≤s}, s ≤ ai) ∨ σ(`j1{ζj≤s}, s ≤ ai)

)
∩ {ai < ζk+1}

))
=

((
Fai ∩ {ai < ζk+1}

)
∨
(
∨kj=1

(
σ(1{ζj≤s}, s ≤ ai) ∨ σ(`j1{ζj≤s}, s ≤ ai)

)
∩ {ai < ζk+1}

))
=

(
Fai ∨

(
∨kj=1

(
σ(1{ζj≤s}, s ≤ ai) ∨ σ(`j1{ζj≤s}, s ≤ ai)

)))
∩ {ai < ζk+1}

= Gkai ∩ {ai < ζk+1},
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which proves the existence result in Lemma 2.2.2. Now suppose (Āi ∈ Gkai)1≤i≤∞ are

the sets such that (2.2.4) holds. Define Ã1 = Ā1, Ã∞ = ∅, and

Ãm+1 = Ām+1 \
m⋃
j=1

Āj, m = 1, 2, . . .

Since for i 6= j,
(
Āi∩{ai < ζk+1}

)
∩
(
Āj∩{aj < ζk+1}

)
= ∅, we have for m = 1, 2, . . . ,

Ām+1 ∩ {am+1 < ζk+1} ⊃ Ãm+1 ∩ {am+1 < ζk+1}

=
(
Ām+1 ∩ {am+1 < ζk+1}

)
\

m⋃
j=1

(
Āj ∩ {am+1 < ζk+1}

)
⊃

(
Ām+1 ∩ {am+1 < ζk+1}

)
\

m⋃
j=1

(
Āj ∩ {aj < ζk+1}

)
=

(
Ām+1 ∩ {am+1 < ζk+1}

)
.

Therefore, Ãm+1∩{am+1 < ζk+1} = Ām+1∩{am+1 < ζk+1}, and thus (Ãi ∈ Gkai)1≤i≤∞

are the disjoint sets such that (2.2.4) holds. This completes the proof of Lemma 2.2.2.

Now let us continue with the proof of Theorem 2.2.1. From Lemma 2.2.2, we have

{τ < ζk+1} =
⋃

1≤i≤∞

(
{ai < ζk+1} ∩ Ãi

)
,

where (Ãi ∈ Gkai)1≤i≤∞ are disjoint sets such that (2.2.4) holds. Define Gk-stopping

time

τ k =
∑

1≤i≤∞

ai1Ãi .

Since

Ãi∩{τ < ζk+1} = Ãi∩
⋃

1≤j≤∞

(
{aj < ζk+1}∩Ãj

)
= {ai < ζk+1}∩Ãi = {τ < ζk+1}∩Ai,

we have

τ k1{τ<ζk+1} =
∑

1≤i≤∞

ai1Ãi∩{τ<ζk+1} =
∑

1≤i≤∞

ai1Ai∩{τ<ζk+1} = τ1{τ<ζk+1}.
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Also,

{τ < ζk+1} =
⋃

1≤i≤∞

(
{ai < ζk+1} ∩ Ai

)
=

⋃
1≤i≤∞

(
{ai < ζk+1} ∩ Ãi

)
= {τ k < ζk+1}.

Step 2: We will show that for any G-stopping time τ , there exists a Gk-stopping

time τ k, such that (2.2.3) holds. Define the G-stopping times

τm :=
∞∑
j=0

j + 1

2m
· 1{ j

2m
≤τ< j+1

2m
} +∞ · 1{τ=∞}, m = 1, 2, . . .

By Step 1, there exists a Gk-stopping time τ km, such that

(2.2.5) τ km1{τm<ζk+1} = τm1{τm<ζk+1} and {τm < ζk+1} = {τ km < ζk+1}.

Define τ k := lim supm→∞ τ
k
m. Since τm ↘ τ , by taking “lim sup” on both side of

(2.2.5), we have (2.2.3).

Step 3: From Step 2, we know that for any G-stopping time τ , there exists

τ 0, τ 1, . . . , τn−1 being F, G1, . . . , Gn−1-stopping times respectively, such that (2.2.3)

holds, for k = 0, . . . , n− 1. Let τn := τ , then we have

τ = τ1{τ<ζ1} +
n−1∑
k=1

τ1{ζk≤τ<ζk+1} + τ1{ζn≤τ}

= τ 01{τ<ζ1} +
n−1∑
k=1

τ k1{ζk≤τ<ζk+1} + τn1{ζn≤τ}

= τ 01{τ<ζ1} +
n−1∑
k=1

τ k1{τ≥ζ1}∩...∩{τ≥ζk}∩{τ<ζk+1} + τn1{τ≥ζ1}∩...∩{τ≥ζn}

= τ 01{τ0<ζ1} +
n−1∑
k=1

τ k1{τ0≥ζ1}∩...∩{τk−1≥ζk}∩{τk<ζk+1} + τn1{τ0≥ζ1}∩...∩{τn−1≥ζn}.

We will modify the decomposition so that it satisfies (2.2.2). For k = 1, . . . , n, define

Gk-stopping time

τ̃ k =

 τ k, τ k ≥ ζk,

ζk, τ k < ζk.
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and let τ̃ 0 := τ 0. Then for k = 1, . . . , n, τ̃ k ≥ ζk, and

{τ̃ k < ζk+1} = {τ k < ζk+1} = {τ < ζk+1}, k = 0, . . . , n− 1.

For k = 1, . . . , n− 1, since {ζk ≤ τ < ζk+1} ⊂ {τ = τ k}, we have

{τ 0 ≥ ζ1} ∩ . . . ∩ {τ k−1 ≥ ζk} ∩ {τ k < ζk+1}

= {ζk ≤ τ < ζk+1} = {ζk ≤ τ < ζk+1} ∩ {τ = τ k} ⊂ {τ k ≥ ζk}.

Also {τ ≥ ζn} ⊂ {τ = τn} implies

{τ 0 ≥ ζ1} ∩ . . . ∩ {τn−1 ≥ ζn} = {τ ≥ ζn} = {τ ≥ ζn} ∩ {τ = τn} ⊂ {τn ≥ ζn}.

Therefore, we have

τ = τ 01{τ0<ζ1} +
n−1∑
k=1

τ k1{τ0≥ζ1}∩...∩{τk−1≥ζk}∩{τk<ζk+1} + τn1{τ0≥ζ1}∩...∩{τn−1≥ζn}

= τ̃ 01{τ0<ζ1} +
n−1∑
k=1

τ̃ k1{τ0≥ζ1}∩...∩{τk−1≥ζk}∩{τk<ζk+1} + τ̃n1{τ0≥ζ1}∩...∩{τn−1≥ζn}

= τ̃ 01{τ̃0<ζ1} +
n−1∑
k=1

τ̃ k1{τ̃0≥ζ1}∩...∩{τ̃k−1≥ζk}∩{τ̃k<ζk+1} + τ̃n1{τ̃0≥ζ1}∩...∩{τ̃n−1≥ζn}.

This ends the proof of Theorem 2.2.1.

In the rest of the chapter, we will use the notation τ ∼ (τ 0, . . . , τn) for the G-

stopping time τ if it has the decomposition from (2.2.1). The next result shows that

the decomposition of τ in (2.2.1) is unique, in the sense that the terms in the sum of

τ ’s representation are the same even for different (τ 0, . . . , τn)’s in the representation.

(Note that one can modify the stopping times τ i after the jump times ζi+1.)

Proposition 2.2.3. Let τ ∼ (τ 0, . . . , τn) be a G-stopping time. Then {τ 0 < ζ1} =

{τ < ζ1}, {τ 0 ≥ ζ1} ∩ . . . ∩ {τ k−1 ≥ ζk} ∩ {τ k < ζk+1} = {ζk ≤ τ < ζk+1} for

k = 1, . . . , n− 1, and {τ 0 ≥ ζ1} ∩ . . . ∩ {τn−1 ≥ ζn} = {ζn ≤ τ}. Therefore,

τ = τ 01{τ<ζ1} +
n−1∑
k=1

τ k1{ζk≤τ<ζk+1} + τn1{ζn≤τ}.
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Proof. Let A0 := {τ 0 < ζ1}, An := {τ 0 ≥ ζ1} ∩ . . . ∩ {τn−1 ≥ ζn}, and

Ak := {τ 0 ≥ ζ1} ∩ . . . ∩ {τ k−1 ≥ ζk} ∩ {τ k < ζk+1}, k = 1, . . . , n− 1.

Let B0 := {τ < ζ1}, Bn := {ζn ≤ τ}, and Bk := {ζk ≤ τ < ζk+1}, k = 1, . . . , n− 1.

In the set Ai, we have τ = τ i, which implies ζi ≤ τ < ζi+1, and thus Ai ⊂ Bi, for

i = 1, . . . , n − 1. Similarly, A0 ⊂ B0 and An ⊂ Bn. Since (Ai)
n
i=0 and (Bi)

n
i=0 are

mutually disjoint respectively, and Ω =
⋃n
i=0Ai =

⋃n
i=0Bi, we have Ai = Bi, i =

0, . . . , n.

The last proposition generalizes the decomposition result given in [30, Theorem

(A2.3), page 261] (also see [20, Theorem T33, page 308]) from the stopping times of

piecewise deterministic Markov processes to the stopping times of jump diffusions.

Proposition 2.2.4. Let T > 0 be a constant. τ is an G-stopping time satisfying

τ ≤ T if and only if τ has the decomposition (2.2.1), with τ 0 ≤ T and {ζk ≤ T} =

{τ k ≤ T}, k = 1, . . . , n.

Proof. If τ has the decomposition, then on the set {τ 0 ≥ ζ1} ∩ . . .∩ {τ k−1 ≥ ζk}, we

have

T ≥ τ 0 ≥ ζ1 ⇒ T ≥ τ 1 ⇒ T ≥ ζ2 ⇒ . . .⇒ T ≥ τ k−1 ⇒ T ≥ ζk ⇒ T ≥ τ k,

For k = 1, . . . , n. Thus τ ≤ T .

Conversely, let τ ∼ (τ 0, . . . , τn) be a G-stopping time satisfying τ ≤ T . Let

τ̃ 0 := τ 0, and

τ̃ k :=

 τ k ∧ T, ζk ≤ T,

τ k, ζk > T.

for k = 0, . . . , n. It can be shown that τ̃ k is a Gk-stopping time. Then for k =

1, . . . , n− 1,

ζk ≤ τ < ζk+1 ⇒ τ k = τ ≤ T ⇒ τ̃ k = τ k.
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Similarly, ζn ≤ τ ⇒ τ̃n = τn. Therefore,

τ = τ̃ 01{τ<ζ1} +
n−1∑
k=1

τ̃ k1{ζk≤τ<ζk+1} + τ̃n1{ζn≤τ}.

Easy to see τ̃ k ≥ ζk and {ζk ≤ T} = {τ̃ k ≤ T}, k = 1, . . . , n. It remains to show

Ai = Bi, i = 0, . . . , n, where A0 := {τ 0 < ζ1}, An := {τ 0 ≥ ζ1} ∩ . . . ∩ {τn−1 ≥ ζn},

Ak := {τ 0 ≥ ζ1} ∩ . . . ∩ {τ k−1 ≥ ζk} ∩ {τ k < ζk+1}, k = 0, . . . , n− 1,

and B0 := {τ̃ 0 < ζ1}, Bn := {τ̃ 0 ≥ ζ1} ∩ . . . ∩ {τ̃n−1 ≥ ζn},

Bk := {τ̃ 0 ≥ ζ1} ∩ . . . ∩ {τ̃ k−1 ≥ ζk} ∩ {τ̃ k < ζk+1}, k = 0, . . . , n− 1.

Easy to see A0 = B0 and An ⊃ Bn. Now for k = 1, . . . , n− 1,

{τ 0 ≥ ζ1} ∩ . . . ∩ {τ k−1 ≥ ζk} ∩ {τ̃ k < ζk+1}

⊂ {τ 0 ≥ ζ1} ∩ . . . ∩ {τ k−1 ≥ ζk} ∩
(
{τ k < ζk+1} ∪ {T < ζk+1}

)
.

Since

{τ 0 ≥ ζ1} ∩ . . . ∩ {τ k−1 ≥ ζk} ∩ {T < ζk+1} ∩ {τ k ≥ ζk+1} = ∅,

we have

{τ 0 ≥ ζ1}∩. . .∩{τ k−1 ≥ ζk}∩{T < ζk+1} ⊂ {τ 0 ≥ ζ1}∩. . .∩{τ k−1 ≥ ζk}∩{τ k < ζk+1}.

Hence, for k = 1, . . . , n− 1,

Bk ⊂ {τ 0 ≥ ζ1} ∩ . . . ∩ {τ k−1 ≥ ζk} ∩ {τ̃ k < ζk+1}

= {τ 0 ≥ ζ1} ∩ . . . ∩ {τ k−1 ≥ ζk} ∩ {τ k < ζk+1} = Ak

Since
⋃n
k=0Ak =

⋃n
k=0Bk = Ω, and (Ak)

n
k=0 and (Bk)

n
k=0 are mutually disjoint

respectively, we have Ak = Bk, k = 0, . . . , n.
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2.3 Decomposition of expectations of G-optional processes

The main result in this section is Theorem 2.3.3, which shows that the expectation

of a stopped G-optional process can be calculated using a backward induction, where

each step is an expectation with respect to the Brownian filtration.

Standing Assumption: For the rest of the chapter, we assume there exists a

conditional probability density function α ∈ OF(∆n, E
n), such that

(2.3.1) P
[
(ζ1, . . . , ζn, `1, . . . , `n) ∈ dθ1 . . . dθnde1 . . . den|Ft]

= αt(θ1, . . . , θn, e1, . . . , en)dθ1 . . . dθnη(de1) . . . η(den), a.s.,

where dθk is the Lebesgue measure, and η(dek) is some probability measure which

may depend on (θθθk−1, eeek−1) (e.g., transition kernel), for k = 1, . . . , n. We also assume

that the map t→ αt is right continuous and

(2.3.2) E
[∫

En

∫
∆n

sup
t≥0

αt(θθθn, eeen)dθ1 . . . dθnη(de1) . . . η(den)

]
<∞.

Following [72], let us set αnt (θθθn, eeen) = αt(θθθn, eeen), and

(2.3.3) αkt (θθθk, eeek) =

∫
E

∫ ∞
t

αk+1
t (θθθk, θk+1, eeek, ek+1) dθk+1η(dek+1), k = 0, . . . , n−1.

Note that α = 0 when θ1, . . . , θn are not in an ascending order. As a result, for

k = 0, . . . , n− 1,

αkt (θθθk, eeek) =

∫
Ek

∫ ∞
t

∫ ∞
θk+1

. . .

∫ ∞
θn−1

αt(θθθn, eeen) dθn . . . dθk+1η(den) . . . η(dek+1).

Hence P[ζ1 > t|Ft] = α0
t , and for k = 1, . . . , n− 1,

P[ζk+1 > t|Ft] =

∫
Ek

∫
∆k

αkt (θ1, . . . , θk, e1, . . . , ek) dθ1 . . . dθkη(de1) . . . η(dek).

Therefore, αk can be interpreted as the survival density of ζk+1.

Let us recall the following lemma from [72].
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Lemma 2.3.1. Any process Z = (Zt)t≥0 is G-optional if and only if it has the

decomposition:

(2.3.4) Zt = Z0
t 1{t<ζ1} +

n−1∑
k=1

Zk
t (ζζζk, `̀̀k)1{ζk≤t<ζk+1} + Zn

t (ζζζn, `̀̀n)1{ζn≤t},

for some Zk ∈ OF(∆k, E
k), for k = 0, . . . , n. A similar decomposition result holds

for any G-predictable process.

We will use the notation Z ∼ (Z0, . . . , Zn) for the G-optional (resp. predictable)

process Z from the decomposition (2.3.4). Let Z ∼ (Z0, . . . , Zn) be a G-optional

process, and τ ∼ (τ 0, . . . , , τn) be a G-stopping time. Then from Lemma 2.3.1 and

Proposition 2.2.3, Zτ has the decomposition:

(2.3.5) Zτ = Z0
τ01{τ<ζ1} +

n−1∑
k=1

Zk
τk1{ζk≤τ<ζk+1} + Zn

τn1{ζn≤τ}.

The following lemma will be used for the rest of the chapter:

Lemma 2.3.2. τ k(ζζζk, `̀̀k) is a Gk-stopping time satisfying τ k ≥ ζk if and only if for

any fixed (θθθk, eeek) ∈ ∆k×Ek, τ k(θθθk, eeek) is an F-stopping time satisfying τ k(θθθk, eeek) ≥ θk

and τ k(θθθk, eeek) is measurable with respect to (θθθk, eeek).

Proof. If τ k(θθθk, eeek) is an F-stopping time satisfying τ k(θθθk, eeek) ≥ θk and is measurable

with respect to (θθθk, eeek), then 1{τk(θθθk,eeek)≤t} · 1{θk≤t} ∈ OF(∆k, E
k). By Lemma 2.3.1

(here n = k), 1{τk(ζζζk ,̀`̀k)≤t} = 1{τk(ζζζk ,̀`̀k)≤t} · 1{ζk≤t} is a Gk-optional process. Then

{τ k(ζζζk, `̀̀k) ≤ t} =
{

1{τk(ζζζk ,̀`̀k)≤t} = 1
}
∈ Gkt . Hence, τ k(ζζζk, `̀̀k) is a Gk-stopping

time. Conversely, if τ k(ζζζk, `̀̀k) is a Gk-stopping time, then the Gk-optional pro-

cess 1{τk(ζζζk ,̀`̀k)≤t} has the representation from Lemma 2.3.1. Thus, for fixed (θθθk, eeek),

1{τk(θθθk,eeek)≤t} is F-optional, which implies that τ k(θθθk, eeek) is an F-stopping time.

The following theorem is the main result of this section.
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Theorem 2.3.3. Let Z ∼ (Z0, , . . . , Zn) be a nonnegative (or bounded), right contin-

uous G-optional process, and τ ∼ (τ 0, . . . , τn) be a finite G-stopping time satisfying

τ ≤ T , where T ∈ [0,∞] is a constant. The expectation E
[
Zτ
]

can be computed by a

backward induction as

E
[
Zτ
]

= J0,

where J0, . . . , Jn are given by

Jn(θθθn, eeen) = E
[
Zn
τnα

n
τn(θθθn, eeen)

∣∣Fθn], (θθθn, eeen) ∈ ∆n(T )× En,(2.3.6)

Jk(θθθk, eeek) = E
[
Zk
τkα

k
τk(θθθk, eeek)(2.3.7)

+

∫ τk(θθθk,eeek)∧T

θk

∫
E

Jk+1(θθθk, θk+1, eeek, ek+1)η(dek+1)dθk+1

∣∣∣Fθk],
(θθθk, eeek) ∈ ∆k(T )× Ek, for k = 0, . . . , n− 1.

Proof. For the sake of simplicity, let us assume n = 2. Using (2.3.6) and (2.3.7),

plugging J2 into J1, and then J1 into J0, we obtain

J0 = E
[
Z0
τ0α

0
τ0

]
+ E

[ ∫ τ0∧T

0

∫
E

E
[
Z1
τ1(θ1,e1) · α1

τ1(θ1,e1)

∣∣Fθ1]η(de1)dθ1

]
+E

[∫ τ0∧T

0

∫
E

E
[ ∫ τ1(θ1,e1)∧T

0

∫
E

E
[
Z2
τ2(θ1,θ2,e1,e2) · α2

τ2

∣∣Fθ2]η(de2)dθ2

∣∣∣Fθ1]η(de1)dθ1

]
.

On the right side of the equation above, let us denote the fist term by I, the second

term by II, and the third term by III. We can show that

I = E
[ ∫

E2

∫
∆2

Z0
τ0 · 1{θ1>τ0} · ατ0(θ1, θ2, e1, e2) dθ1dθ2η(de1)η(de2)

]
,

II = E
[ ∫

E2

∫
∆2

Z1
τ1(θ1,e1) · 1{θ1≤T} · 1{τ0≥θ1}∩{τ1(θ1,e1)<θ2} · ατ1 dθ1dθ2η(de1)η(de2)

]
,

III = E
[ ∫

E2

∫
∆2

Z2
τ2(θ1,θ2,e1,e2) · 1{θ1,θ2≤T} · 1{τ0≥θ1}∩{τ1(θ1,e1)≥θ2} · ατ2 dθ1dθ2η(de1)η(de2)

]
.

For fixed (θ1, θ2, e1, e2) ∈ ∆2×E2, from Proposition 2.2.3, we have {τ 0 ≥ θ1}∩{τ 1 <

θ2} = {θ1 ≤ τ < θ2} ⊂ {θ1 ≤ T}, and {τ 0 ≥ θ1} ∩ {τ 1 ≥ θ2} = {θ2 ≤ τ} ⊂ {θ1, θ2 ≤
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T}. Hence,

Zτ (θ1, θ2, e1, e2) = Z0
τ0 · 1{τ0<θ1} + Z1

τ1 · 1{τ0≥θ1} · 1{τ1<θ2} + Z2
τ2 · 1{τ0≥θ1} · 1{τ1≥θ2}

= Z0
τ0 · 1{τ0<θ1} + Z1

τ1 · 1{θ1≤T} · 1{τ0≥θ1}∩{τ1<θ2} + Z2
τ2 · 1{θ1,θ2≤T} · 1{τ0≥θ1}∩{τ1≥θ2}.

Therefore, we have

J0 = I + II + III = E
[ ∫

E2

∫
∆2

Zτ (θ1, θ2, e1, e2) · ατ (θ1, θ2, e1, e2) dθ1dθ2η(de1)η(de2)

]
.

We will show in two steps that J0 = E[Zτ ].

Step 1: If τ =
∞∑
k=0

ak1Ak , where 0 ≤ a0 < a1 . . . <∞, and Ak ∈ Gak , k = 0, 1, . . . ,

then

E[Zτ ] =
∞∑
k=0

E
[
Zak1Ak

]
=
∞∑
k=0

E
[∫

E2

∫
∆2

Zak(θ1, θ2, e1, e2)1Ak(θ1, θ2, e1, e2)αak(θ1, θ2, e1, e2)dθ1dθ2η(de1)η(de2)

]

= E

[∫
E2

∫
∆2

(
∞∑
k=0

Zak(θ1, θ2, e1, e2)1Ak(θ1, θ2, e1, e2)αak(θ1, θ2, e1, e2)

)
dθ1dθ2η(de1)η(de2)

]

= E
[ ∫

E2

∫
∆2

Zτ (θ1, θ2, e1, e2) · ατ (θ1, θ2, e1, e2) dθ1dθ2η(de1)η(de2)

]
,

where the second equality above follows from [72, Proposition 2.1].

Step 2: In general, let τ be any finite G-stopping time. Define

τm :=
∞∑
j=0

j + 1

2m
· 1{ j

2m
≤τ< j+1

2m
}, m = 1, 2, . . .

For fixed N ∈ (0,∞), Step 1 implies that

E
[
Zτm∧N

]
= E

[ ∫
E2

∫
∆2

(
Zτm

(
θ1, θ2, e1, e2)∧N

)
·ατm(θ1, θ2, e1, e2) dθ1dθ2η(de1)η(de2)

]
.

Thanks to (2.3.2) and the right continuity of Zt and αt, by sending m→∞, we get

E
[
Zτ ∧N

]
= E

[ ∫
E2

∫
∆2

(
Zτ
(
θ1, θ2, e1, e2)∧N

)
·ατ (θ1, θ2, e1, e2) dθ1dθ2η(de1)η(de2)

]
.

Then letting N →∞, the result follows.
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Remark 2.3.4. When the Brownian motion and the jumps are independent, (2.3.2)

and the right continuity of αt in the Standing Assumption trivially holds. In this case,

Theorem 2.3.3 still holds if the assumption of the right continuity of Zt is removed. In

fact, it follows directly from the expectation under the product probability measure

that

J0 = E
[ ∫

E2

∫
∆2

Zτ (θ1, θ2, e1, e2) · α(θ1, θ2, e1, e2) dθ1dθ2η(de1)η(de2)

]
= E[Zτ ].

The same applies for Theorem 2.4.2 and Proposition 2.4.4.

2.4 Decomposition of G-controller-stopper problems

Theorem 2.4.2 and Proposition 2.4.4 are the main results for this section, which de-

compose the global G-controller-stopper problems into a backward induction, where

each step is a controller-stopper problem with respect to the Brownian filtration.

A control is a G-predictable process π ∼ (π0, . . . , πn), where πk ∈ PF(∆k, E
k)

is valued in a set Ak in some Euclidian space, for k = 0, . . . , n. We denote by

PF(∆k, E
k;Ak) the set of elements in PF(∆k, E

k) valued in Ak, k = 0, . . . , n. We

require that all the G-stopping times we consider here are valued in [0, T ], where

T ∈ (0,∞] is a given constant. A trading strategy is a pair of a control and a G-

stopping time. We will use the notation (π, τ) ∼ (πk, τ k)nk=0 for the trading strategy

if π ∼ (π0, . . . , πn) and τ ∼ (τ 0, . . . , τn). A trading strategy (π, τ) ∼ (πk, τ k)nk=0

is admissible, if for k = 0, . . . , n, (πk, τ k) ∈ Ak × T k, where Ak is some seperable

metric space of P(∆k, E
k;Ak), and T k is some set of finite Gk-stopping times. By

Proposition 2.2.4, we let T k be such that for any τ k ∈ T k, τ k(θθθk, eeek) ≤ T whenever

θk ≤ T . Note that Ak and T k may depend on each other in general. We denote the

set of admissible trading strategies by AG × TG.

The following lemma will be used for the measurable selection issue later on.
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Lemma 2.4.1. For k = 0, . . . , n, define the metric on T k in the following way:

ρ(τ k1 , τ
k
2 ) := E

[ ∫ ∞
0

e−t
∣∣1{τk1≤t} − 1{τk2≤t}

∣∣dt], τ k1 , τ
k
2 ∈ T k.

Then T k is a separable metric space.

Proof. Since for any Gk-stopping time τ k, e−t1{τk≤t} is a Gk-adapted process in

L1([0,∞)× Ω), the conclusion follows from the separability of L1, see [78].

Following [72], we describe the formulation of a stopped controlled state process

as follows:

• Controlled state process between jumps:

(x, πk) ∈ Rd ×Ak 7−→ Xk,x,πk ∈ OF(∆k, E
k), k = 0, . . . , n,

such that

X0,x,π0

0 = x, Xk,β,πk

θk
(θθθk, eeek) = β, ∀β Fθk-measurable.

• Jumps of controlled state process: we have a collection of maps Γk on R+×Ω×

Rd × Ak−1 × E, for k = 1, . . . , n, such that

(t, ω, x, a, e) 7→ Γk(ω, x, a, e) is PF ⊗ B(Rd)⊗ B(Ak−1)⊗ B(E)-measurable

• Global controlled state process:

(
x, π ∼ (π0, . . . , πn)

)
∈ Rd ×AG 7−→ Xx,π ∈ OG,

where

(2.4.1) Xx,π
t = X̄0

t 1{t<ζ1} +
n−1∑
k=1

X̄k
t (ζζζk, `̀̀k)1{ζk≤t<ζk+1} + X̄n

t (ζζζn, `̀̀n)1{ζn≤t},

with (X̄0, . . . , X̄n) ∈ OF(∆0, E
0)× . . .×OF(∆n, E

n) with initial data

X̄0 = X0,x,π0

,

X̄k(θθθk, eeek) = X
k,Γkθk

(X̄k−1
θk

,πk−1
θk

,ek),πk
(θθθk, eeek), k = 1, . . . , n.
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• Stopped global controlled state process: given a trading strategy (π, τ) ∼

(πk, τ k)nk=0 in AG × TG, let Xx,π be the process from (2.4.1), then the stopped

controlled state process is:

(2.4.2) Xx,π
τ = X̄0

τ01{τ<ζ1} +
n−1∑
k=1

X̄k
τk(ζζζk, `̀̀k)1{ζk≤τ<ζk+1} + X̄n

τn(ζζζn, `̀̀n)1{ζn≤τ}.

Assume U ∼ (U0, . . . , Un) is bounded (nonnegative, nonpositive), OG ⊗ B(Rd)-

measurable which gives the terminal payoff Ut at time t . Consider the two types of

the controller-stopper problems:

(2.4.3) V 0(x) = sup
τ∈TG

sup
π∈AG

E
[
Uτ (X

x,π
τ )
]
, x ∈ Rd,

(2.4.4) V0(x) = sup
π∈AG

inf
τ∈TG

E
[
Uτ (X

x,π
τ )
]
, x ∈ Rd.

We require that for any x ∈ Rd and admissible control π, the map t → Ut(X
x,π
t ) is

right continuous.

The following theorem provides a decomposition for calculating V 0 in (2.4.3). Its

proof is similar to the proof of [72, Theorem 4.1].

Theorem 2.4.2. Define value functions (V̄ k)nk=0 as

V̄ n(x,θθθn, eeen) = ess sup
τn∈T n

ess sup
πn∈An

E
[
Un
τn(Xn,x,πn

τn , θθθn, eeen) · αnτn(θθθn, eeen)
∣∣Fθn],

(θθθn, eeen) ∈ ∆n(T )× En, and

(2.4.5) V̄ k(x,θθθk, eeek) = ess sup
τk∈T k

ess sup
πk∈Ak

E
[
Uk
τk(X

k,x,πk

τk
, θθθk, eeek) · αkτk(θθθk, eeek)

+

∫ τk

θk

∫
E

V̄ k+1
(

Γk+1
θk

(Xk,x,πk

θk+1
, πkθk+1

, ek+1), θθθk, θk+1, eeek, ek+1

)
η(dek+1)dθk+1

∣∣Fθk],
(θθθk, eeek) ∈ ∆k(T )× Ek, for k = 0, . . . , n− 1. Then V 0(x) = V̄ 0(x).
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Remark 2.4.3. In Equation (2.4.5), the first term Uk
τk

(Xk,x,πk

τk
, θθθk, eeek) ·αkτk(θθθk, eeek) can

be interpreted as the gain when there are no jumps between θk and τ k, which is

measured by the survival density αk
τk

. The second term∫ τk

θk

∫
E

V̄ k+1
(

Γk+1
θk

(Xk,x,πk

θk+1
, πkθk+1

, ek+1), θθθk, θk+1, eeek, ek+1

)
η(dek+1)dθk+1

can be understood as the gain when there is a jump at time θk+1 between θk and τ k.

Proof of Theorem 2.4.2. For x ∈ Rd, (π, τ) ∼ (πk, τ k)nk=0 in AG × TG, define

In(x,θθθn, eeen, π, τ) = E
[
Un
τn(Xn,x,πn

τn , θθθn, eeen) · αnτn(θθθn, eeen)
∣∣Fθn], (θθθn, eeen) ∈ ∆n(T )× En,

Ik(x,θθθk, eeek, π, τ) = E
[
Uk
τk(X

k,x,πk

τk
, θθθk, eeek) · αkτk(θθθk, eeek)

+

∫ τk

θk

∫
E

Ik+1
(

Γk+1
θk+1

(Xk,x,πk

θk+1
, πkθk+1

, ek+1), θθθk, θk+1, eeek, ek+1, π, τ
)
η(dek+1)dθk+1

∣∣Fθk],
(θθθk, eeek) ∈ ∆k(T )×Ek, for k = 0, . . . , n−1. Set Īk(θθθk, eeek) = Ik(X̄k

θk
, θθθk, eeek, π, τ), k =

0, . . . , n. From the decomposition (2.4.2), we know that (Īk)nk=0 satisfy the backward

induction formula:

Īn(θθθn, eeen) = E
[
Un
τn(X̄n

τn , θθθn, eeen) · αnτn(θθθn, eeen)
∣∣Fθn],

Īk(θθθk, eeek) = E
[
Uk
τk

(X̄k
τk , θθθk, eeek) · α

k
τk(θθθk, eeek)

+

∫ τk

θk

∫
E

Īk+1(θθθk, θk+1, eeek, ek+1) η(dek+1)dθk+1

∣∣Fθk].
From Theorem 2.3.3 we have that

(2.4.6) Ī0 = I0 = E
[
Uτ (X

x,π
τ )
]
.

Define the value function processes

(2.4.7) V k(x,θθθk, eeek) := ess sup
τ∈AG

ess sup
π∈TG

Ik(x,θθθk, eeek, π, τ),
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for k = 0, . . . , n, x ∈ Rd, (θθθk, eeek) ∈ ∆k(T )×Ek. Observe that V 0 defined in (2.4.7)

is consistent with its definition in (2.4.3) from (2.4.6). Then it remains to show

that V̄ k = V k for k = 0, . . . , n. For k = n, since In(x,θθθn, eeen, π, τ) in fact only

depends on (πn, τn), we immediately have V̄ n = V n. Now assume V̄ k+1 = V k+1, for

0 ≤ k ≤ n− 1. Then for any (π, τ) ∼ (πk, τ k)nk=0 in AG × TG,

Ik(x,θθθk, eeek, π, τ)

≤ E
[
Uk
τk(X

k,x,πk

τk
, θθθk, eeek) · αkτk(θθθk, eeek)

+

∫ τk

θk

∫
E

V k+1
(

Γk+1
θk+1

(Xk,x,πk

θk+1
, πkθk+1

, ek+1), θθθk, θk+1, eeek, ek+1

)
η(dek+1)dθk+1

∣∣∣Fθk]
≤ V̄ k(x,θθθk, eeek),

which implies that V k ≤ V̄ k.

Conversely, given x ∈ Rd and (θθθk, eeek) ∈ ∆k(T ) × Ek, let us prove V k(x,θθθk.eeek) ≥

V̄ k(x,θθθk, eeek). Fix (πk, τ k) ∈ Ak × T k and the associated controlled process Xk,x,πk ,

from the definition of V k+1, we have that for any ω ∈ Ω and ε > 0, there ex-

ists (πω,ε, τω,ε) ∈ AG × TG, such that it is an εe−θk+1-optimal trading strategy for

V k+1(·, θθθk, eeek) at
(
ω,Γk+1

θk+1
(Xk,x,πk

θk+1
, πkθk+1

, ek+1)
)
. By the separability of the set of

admissible trading strategies from Lemma 2.4.1, one can use a measurable selec-

tion argument (e.g., see [81]) to find (πε, τ ε) ∼ (πε,k, τ ε,k)nk=0 in AG × TG, such that

πεt(ω) = πω,εt (ω), dt⊗ dP-a.e. and τ ε(ω) = τω,ε(ω), a.s., and thus

V k+1
(
Γk+1
θk+1

(Xk,x,π
θk+1

, πkθk+1
, ek+1), θθθk, θk+1, eeek, ek+1

)
− εe−θk+1

≤ Ik+1
(
Γk+1
θk+1

(Xk,x,π
θk+1

, πkθk+1
, ek+1), θθθk, θk+1, eeek, ek+1, π

ε, τ ε
)
, a.s.

Consider the admissible trading strategy (π̃ε, τ̃ ε) with the decomposition

π̃ε ∼ (πε,0, . . . , πε,k−1, πk, πε,k+1, . . . , πε,n),

τ̃ ε ∼ (τ ε,0, . . . , τ ε,k−1, τ k, τ ε,k+1, . . . , τ ε,n).
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Since Ik+1(x,θθθk+1, eeek+1, π, τ) depends on (π, τ) ∼ (πj, τ j)nj=0 only through their last

components (πj, τ j)nj=k+1, we have

V k(x,θθθk, eeek)

≥ Ik(x,θθθk, eeek, π̃
ε, τ̃ ε)

= E
[
Uk
τk(X

k,x,πk

τk
, θθθk, eeek) · αkτk(θθθk, eeek)

+

∫ τk

θk

∫
E

Ik+1
(

Γk+1
θk+1

(Xk,x,πk

θk+1
, πkθk+1

, ek+1), θθθk+1, eeek+1, π̃
ε, τ̃ ε

)
η(dek+1)dθk+1

∣∣Fθk]
≥ E

[
Uk
τk(X

k,x,πk

τk
, θθθk, eeek) · αkτk(θθθk, eeek)

+

∫ τk

θk

∫
E

V̄ k+1
(

Γk+1
θk+1

(Xk,x,πk

θk+1
, πkθk+1

, ek+1), θθθk+1, eeek+1

)
η(dek+1)dθk+1

∣∣Fθk]− ε.
Therefore, V k ≥ V̄ k, from which the claim of the theorem follows.

Now let us consider the value function V0 in (2.4.4). We have the following result:

Proposition 2.4.4. Define value functions (V̄k)nk=0 as

V̄n(x,θθθn, eeen) = ess sup
πn∈An

ess inf
τn∈T n

E
[
Un
τn(Xn,x,πn

τn , θθθn, eeen) · αnτn(θθθn, eeen)
∣∣Fθn],

(θθθn, eeen) ∈ ∆n(T )× En, and

V̄k(x,θθθk, eeek) = ess sup
πk∈Ak

ess inf
τk∈T k

E
[
Uk
τk(X

k,x,πk

τk
, θθθk, eeek) · αkτk(θθθk, eeek)

+

∫ τk

θk

∫
E

V̄k+1
(

Γk+1
θk

(Xk,x,πk

θk+1
, πkθk+1

, ek+1), θθθk, θk+1, eeek, ek+1

)
η(dek+1)dθk+1

∣∣Fθk],
(θθθk, eeek) ∈ ∆k(T )× Ek, for k = 0, . . . , n− 1. Then V0(x) = V̄0(x).

Proof. Given π ∼ (π0, . . . , πn) in AG, define

Ṽn(x,θθθn, eeen, π) = ess inf
τn∈T n

E
[
Un
τn(Xn,x,πn

τn , θθθn, eeen) · αnτn(θθθn, eeen)
∣∣Fθn],

(θθθn, eeen) ∈ ∆n(T )× En, and

Ṽk(x,θθθk, eeek, π) = ess inf
τk∈T k

E
[
Uk
τk(X

k,x,πk

τk
, θθθk, eeek) · αkτk(θθθk, eeek)
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+

∫ τk

θk

∫
E

Ṽk+1
(

Γk+1
θk

(Xk,x,πk

θk+1
, πkθk+1

, ek+1), θθθk, θk+1, eeek, ek+1, π
)
η(dek+1)dθk+1

∣∣Fθk],
(θθθk, eeek) ∈ ∆k(T )× Ek, for k = 0, . . . , n− 1. From Theorem 2.4.2, we have

Ṽ0(x, π) = inf
τ∈TG

E Uτ (X
x,π
τ ).

Define

Vk(x,θθθk, eeek) := ess sup
π∈AG

Ṽk(x,θθθk, eeek, π), (θθθk, eeek) ∈ ∆k(T )× Ek, k = 0, . . . , n.

Then the definition for V0 above is consistent with (2.4.4). Following the proof of

Theorem 2.4.2 we can show Vk = V̄k, k = 0, . . . , n.

2.5 Application to indifference pricing of American options

In this section, we apply our decomposition method to indifference pricing of

American options under multiple default risk. The main results are Theorem 2.5.4

and Theorem 2.5.8, which provide the RBSDE characterization of the indifference

prices.

2.5.1 Market model

The model we will use here is similar to that in [50]. Let T ∈ (0,∞) be the finite

time horizon. We assume in the market, there exists at most n default events. Let

ζ1, . . . , ζn and `1, . . . , `n represent the random default times and marks respectively,

with α defined in (2.3.1) as the probability density. For any time t, if ζk ≤ t <

ζk+1, k = 1, . . . , n− 1 (t < ζ1 for k = 0 and t ≥ ζn for k = n), we say the underlying

processes are in the k-default scenario.

We consider a portfolio of d-asset with a value process defined by a d-dimensional

G-optional process S ∼ (S0, . . . , Sn) from (2.3.5), where Sk(θθθk, eeek) ∈ OF(∆k, E
k) is

valued in Rd
+, representing the asset value in the k-default scenario, given the past
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default times ζζζk = θθθk and the associated marks `̀̀k = eeek, for k = 0, . . . n. Suppose

the dynamics of the indexed process Sk is given by

(2.5.1) dSkt (θθθk, eeek) = Skt (θθθk, eeek) ∗
(
bkt (θθθk, eeek)dt+ σkt (θθθk, eeek)dWt

)
, t ≥ θk,

where W is an m-dimensional (P,F)-Brownian motion, m ≥ d, bk and σk are in-

dexed processes in PF(∆k, E
k), valued respectively in Rd and Rd×m. Here, for

x = (x1, . . . , xd)
′ ∈ Rd, and y = (y1, . . . , yd)

′ ∈ Rd×q, the expression x ∗ y denotes

the vector (x1y1, . . . , xdyd)
′ ∈ Rd×q. Equation (2.5.1) can be viewed as an asset

model with change of regimes after default events, with coefficient bk, σk depending

on the past default information. We make the usual no-arbitrage assumption that

there exists an indexed risk premium process λk ∈ PF(∆k, E
k), such that for all

(θθθk, eeek) ∈ ∆k × Ek,

(2.5.2) σkt (θθθk, eeek)λ
k
t (θθθk, eeek) = bkt (θθθk, eeek), t ≥ 0.

Moreover, each default time θk may induce a jump in the asset portfolio, which will be

formalized by considering a family of indexed processes γk ∈ P(∆k, E
k, E), valued in

[−1,∞), for k = 0, . . . , n−1. For (θθθk, eeek) ∈ ∆k×Ek and ek+1 ∈ E, γkθk+1
(θθθk, eeek, ek+1)

represents the relative vector jump size on the d assets at time t = θk+1 ≥ θk with a

mark ek+1, given the past default events (ζζζk, `̀̀k) = (θθθk, eeek). In other words, we have:

(2.5.3) Sk+1
θk+1

(θθθk+1, eeek+1) = Sk
θ−k+1

(θθθk, eeek) ∗
(
1d + γkθk+1

(θθθk, eeek, ek+1)
)
,

where 1d is the vector in Rd with all components equal to 1.

Remark 2.5.1. It is possible that after default times, some assets may not be traded

any more. Now suppose that after k defaults, there are d̄ assets still tradable,

where 0 ≤ d̄ ≤ d. Then without loss of generality, we may assume bk(θθθk, eeek) =(
b̄(θθθk, eeek) 0

)
, σk(θθθk, eeek) =

(
σ̄k(θθθk, eeek) 0

)
, γk(θθθk, eeek, e) =

(
γ̄k(θθθk, eeek, e) 0

)
, where
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b̄(θθθk, eeek), σ̄
k(θθθk, eeek), γ̄

k(θθθk, eeek, e) are F-predictable processes valued respectively in

Rd̄,Rd̄k×m,Rd̄. In this case, we shall also assume that the volatility matrix σ̄k(θθθk, eeek)

is of full rank. we can then define the risk premium

λk(θθθk, eeek) = σ̄k(θθθk, eeek)
′ (σ̄k(θθθk, eeek)σ̄k(θθθk, eeek)′)−1

b̄k(θθθk, eeek),

which satisfies (2.5.2).

An American option of maturity T is modeled by a G-optional process R ∼

(R0, . . . , Rn) from (2.3.4), where Rk
t (θθθk, eeek) is continuous with respect to t, and

represents the payoff if the option is exercised at time t ∈ [θk, T ] in the k-default

scenario, given the past default events (ζζζk, `̀̀k) = (θθθk, eeek), for k = 0, . . . , n.

A control in the d-asset portfolio is a G-predictable process π ∼ (π0, . . . , πn),

where πk(θθθk, eeek) ∈ PF(∆k, E
k) is valued in a closed set Ak of Rd containing the zero

element, and represents the amount invested continuously in the d assets in the k-

default scenario, given the past default information (ζζζk, `̀̀k) = (θθθk, eeek). An exercise

time is a G-stopping time τ ∼ (τ 0, . . . , τn) satisfying τ ≤ T , with the decomposition

from Proposition 2.2.4. A trading strategy is a pair of a control and an exercise time.

For a trading strategy (π, τ) ∼ (πk, τ k)nk=0, we have the corresponding wealth

process X ∼ (X0, . . . ,Xn), where Xk(θθθk, eeek) ∈ OF(∆k, E
k), representing the wealth

controlled by πk(θθθk, eeek) in the price process Sk(θθθk, eeek), given the past default events

(ζζζk, `̀̀k) = (θθθk, eeek). From (2.5.1) we have

dXk
t (θθθk, eeek) = πkt (θθθk, eeek)

′ (bkt (θθθk, eeek)dt+ σk(θθθk, eeek)dWt

)
, t ≥ θk.

Moreover, each default time induces a jump in the asset price process, and then also

on the wealth process. From (2.5.3), we have

(2.5.4) Xk+1
θk+1

(θθθk+1, eeek+1) = Xk
θ−k+1

(θθθk, eeek) + πkθk+1
(θθθk, eeek)

′γkθk+1
(θθθk, eeek, ek+1).
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2.5.2 Indifference price

Let U be an exponential utility with risk aversion coefficient p > 0:

U(x) = − exp(−px), x ∈ R,

which describes an investor’s preference. We will consider two cases. The first case

is that the investor can trade the d-assets portfolio following control π, associated

to a wealth process X = Xx,π with initial capital X0− = x. Besides, she holds an

American option and can choose to exercise it at any time τ , τ ≤ T , to get payoff

Rτ . So the maximum utility she can get (or as close as she want, if not attainable)

is:

(2.5.5) V 0(x) = sup
τ

sup
π

E [U(Xx,π
τ +Rτ )] .

We call c̄ the indifference buying price of the American option, if

U(x) = V 0(x− c̄).

The second case is that the investor trades the d-asset portfolio following control

π, while shorting an American option. So she has to deliver the payoff Rτ at some

exercise time τ , which is chosen by the holder of the option. By considering the

worst scenario, the maximum utility she can get (or as close as she want) is:

(2.5.6) V0(x) = sup
π

inf
τ
E [U(Xx,π

τ −Rτ )] .

In this case, we call c the indifference selling price of the American option, if

U(x) = V0(x+ c).

2.5.3 Indifference buying price

In this sub-section, we will focus on the problem (2.5.5). Theorem 2.5.4 is the

main result for this sub-section.
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Definition 2.5.2. (Admissible trading strategy) A trading strategy (π, τ) ∼ (πk, τ k)nk=0

is admissible, if for any (θθθk, eeek) ∈ ∆k(T )× Ek, under the control πk,

(a)

∫ τk

θk

|πkt (θθθk, eeek)
′bkt (θθθk, eeek)|dt +

∫ τk

θk

|πkt (θθθk, eeek)
′σkt (θθθk, eeek)|2dt < ∞, a.s., k =

0, . . . , n,

(b) the family
{
U(Xk

τ∧τk(θθθk, eeek)) : τ is any F− stopping time valued in [θk, T ]
}

is

uniformly integrable, i.e., U(Xk
·∧τk(θθθk, eeek)) is of class (D), for k = 0, . . . , n,

(c) E

[∫ τk

θk

∫
E

(−U)
(
Xk
s(θθθk, eeek) + πks (θθθk, eeek)

′γks (θθθk, eeek, e)
)
η(de)ds

]
< ∞, for k =

0, . . . , n− 1.

The notation AG, TG, Ak and T k from Section 2.4 are now specified by the above

definition. From Theorem 2.4.2, V 0 in (2.5.5) can be calculated by the following

backward induction:

(2.5.7) V n(x,θθθn, eeen) = ess sup
τn∈T n

ess sup
πn∈An

E
[
U(Xn,x

τn +Hn
τn)|Fθn

]
,

(θθθn, eeen) ∈ ∆n(T )× En, and

V k(x,θθθk, eeek) = ess sup
τk∈T k

ess sup
πk∈Ak

E
[
U(Xk,x

τk
+Hk

τk)(2.5.8)

+

∫ τk

θk

∫
E

V k+1(Xk,x
θk+1

+ πkθk+1
· γkθk+1

(ek+1), θθθk+1, eeek+1)η(dek+1)dθk+1|Fθk
]
,

(θθθk, eeek) ∈ ∆k(T )× Ek, for k = 0, . . . , n− 1, where

Hk := Rk − 1

p
lnαk,

in which αk is given by (2.3.3).

Backward recursive system of RBSDEs

Following [46], we expect the value function to be of the following form:

(2.5.9) V k(x,θθθk, eeek) = U
(
x+ Y k

θk
(θθθk, eeek)

)
,
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where Y k(θθθk, eeek) is an F-adapted process, satisfying the RBSDE eq(Hk(θθθk, eeek), f
k)θk≤t≤T ,

with fk defined as

fk(t, y, z, θθθk, eeek) = inf
π∈Ak

gk(π, t, y, z, θθθk, eeek),(2.5.10)

where

gk(π, t, y, z, θθθk, eeek) =
p

2

∣∣z − σkt (θθθk, eeek)
′π
∣∣2 − bkt (θθθk, eeek)′π

+
1

p
U(−y)

∫
E

U
(
π · γkt (θθθk, eeek, e) + Y k+1

t (θθθk, t, eeek, e)
)
η(de)

= −λkt (θθθk, eeek) · z −
1

2p
|λkt (θθθk, eeek)|2 +

p

2

∣∣∣∣z +
1

p
λkt (θθθk, eeek)− σkt (θθθk, eeek)

′π

∣∣∣∣2
+

1

p
U(−y)

∫
E

U
(
π · γkt (θθθk, eeek, e) + Y k+1

t (θθθk, t, eeek, e)
)
η(de),

for k = 0, . . . , n− 1, and

gn(π, t, y, z, θθθn, eeen) =
p

2
|z − σnt (θθθn, eeen)′π|2 − bnt (θθθn, eeen)′π

= −λnt (θθθn, eeen) · z − 1

2p
|λnt (θθθn, eeen)|2 +

p

2

∣∣∣∣z +
1

p
λnt (θθθn, eeen)− σnt (θθθn, eeen)′π

∣∣∣∣2 .
In the next two subsections, we will show that: (a) The backward recursive system

of RBSDEs admits a solution; (b) The solution characterizes the values of (V k), i.e.,

(2.5.9) holds.

Existence to the recursive system of RBSDEs

We make the following boundedness assumptions (HB):

(i) The risk premium is bounded uniformly with respect to its indices: there exists

a constant C > 0, such that for any k = 0, . . . , n, (θθθk, eeek) ∈ ∆k(T ) × Ek,

t ∈ [θk, T ],

|λkt (θθθk, eeek)| ≤ C, a.s.
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(ii) The indexed random variables (Hk
t )k are bounded uniformly in time and their

indices: there exists a constant C > 0 such that for any k = 0, . . . , n, (θθθk, eeek) ∈

∆k(T )× Ek, t ∈ [θk, T ],

|Hk
t (θθθk, eeek)| ≤ C, a.s.

Theorem 2.5.3. Under (HB), there exists a solution (Y k, Zk, Kk)nk=0 ∈
∏n

k=0 S∞c

(∆k(T ), Ek) × L2
W (∆k(T ), Ek) × A(∆k(T ), Ek) to the recursive system of indexed

RBSDEs eq(Hk(θθθk, eeek), f
k)θk≤t≤T , k = 0, . . . , n.

Proof. We prove the result by a backward induction on k = 0, . . . , n. The positive

constant C may vary from line to line, but is always independent of (t, ω,θθθk, eeek). We

will often omit the dependence of (t, ω, y, z, θθθk, eeek) in related functions.

(a) For k = n. Under (HB), |fn| ≤ C(|z|2 + 1). By [59, Theorem 1], there exists a

solution
(
Y n(θθθn, eeen), Zn(θθθn, eeen), Kn (θθθn, eeen)

)
∈ S∞c [θn, T ]× L2

W [θn, T ]×A[θn, T ] for

eq(Hn, fn)θn≤t≤T , satisfying |Y n| ≤ C. Moreover, the measurability of (Y n, Zn) with

respect to (θθθn, eeen) follows from the measurability of Hn and fn (see [58, Appendix

C] and use the fact that the solution to the RBSDE can be eventually approxi-

mated by the solutions to BSDEs). Therefore, (Y n, Zn, Kn) ∈ S∞c (∆n(T ), En) ×

L2
W (∆n(T ), En)×A(∆n(T ), En).

(b) For k ∈ {0, 1, . . . , n−1}. Assume there exists (Y k+1, Zk+1, Kk+1) ∈ S∞c (∆k+1(T ),

Ek+1) × L2
W (∆k+1(T ), Ek+1) × A(∆k+1(T ), Ek+1) satisfying eq(Hk+1, fk+1). Since

Y k+1 ∈ PF(∆k+1, E
k+1), the generator in (2.5.10) is well defined. In order to over-

come the technical difficulties coming from the exponencial term in U(−y), we first

consider the truncated generator

fk,N(t, y, z, θθθk, eeek) = inf
π∈Ak

gk(π, t,N ∧ y, z, θθθk, eeek).
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Then there exists a positive constant CN independent of (θθθk, eeek), such that |fk,N | ≤

CN(1 + z2). Applying [59, Theorem 1], there exists a solution (Y k,N , Zk,N , Kk,N) ∈

S∞c (∆k(T ), Ek)× L2
W (∆k(T ), Ek)×A(∆k(T ), Ek) to eq(Hk, fk,N).

Now we will show that Y k,N has a uniform upper bound. Consider the generator

f̄k(t, y, z, θθθk, eeek) := −λkt (θθθk, eeek) · z −
1

2p
|λkt (θθθk, eeek)|2,

which satisfies the Lipschitz condition in (y, z), uniformly in (t, ω). Then by [40,

Theorem 5.2], there exists a unique solution
(
Ȳ k(θθθk, eeek), Z̄

k(θθθk, eeek), K̄
k(θθθk, eeek)

)
∈

S∞c [θk, T ] × L2
W [θk, T ] × A[θk, T ] satisfying |Ȳ k| ≤ C (see [59, Theorem 1] for the

boundedness). Applying in [59, Lemma 2.1(comparison)], we get Y k,N ≤ Ȳ k. Hence,

Y k,N has a uniform upper bound independent of N and (θθθk, eeek). Therefore, for N

large enough, we can remove “N” in the truncated generator fk,N , i.e., (Y k,N , Zk,N ,

Kk,N) solves eq(Hk, fk) for large enough N .

RBSDE characterization by verification theorem

Theorem 2.5.4. The value functions (V k)nk=0, defined in (2.5.7) and (2.5.8), are

given by

(2.5.11) V k(x,θθθk, eeek) = U
(
x+ Y k

θk
(θθθk, eeek)

)
,

for ∀x ∈ R, (θθθk, eeek) ∈ ∆k(T ) × Ek, where (Y k, Zk, Kk)nk=0 ∈
n∏
k=0

S∞c (∆k(T ), Ek) ×

L2
W (∆k(T ), Ek)×A(∆k(T ), Ek) is a solution of the RBSDE system eq(Hk, fk), k =

0, . . . , n. Moreover, there exists an optimal trading strategy (π, τ) ∼ (π̂k, τ̂ k)nk=0

described by:

π̂kt (θθθk, eeek) ∈ arg min
π∈Ak

gk
(
π, t, Y k

t (θθθk, eeek), Z
k
t (θθθk, eeek), θθθk, eeek

)
,

for t ∈ [θk, T ], and

(2.5.12) τ̂ k(θθθk, eeek) := inf
{
t ≥ θk : Y k

t (θθθk, eeek) = Hk
t (θθθk, eeek)

}
,
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for (θθθk, eeek) ∈ ∆k(T )× Ek, a.s., k = 0, . . . , n.

Proof. Step 1: We will show

(2.5.13) U(x+ Y k
θk

(θθθk, eeek)) ≥ V k(x,θθθk, eeek), k = 0, . . . , n.

Let (Y k, Zk, Kk) ∈ S∞c (∆k(T ), Ek)× L2
W (∆k(T ), Ek)×A(∆k(T ), Ek) be a solution

of the RBSDE system. For (νk, τ k) ∈ Ak × T k, x ∈ R, (θθθk, eeek) ∈ ∆k(T ) × Ek and

t ≥ θk, and define

ξkt (x,θθθk, eeek, ν
k) := U(Xk,x

t + Y k
t (θθθk, eeek)) +

∫ t

θk

∫
E

U
(
Xk,x
r + νkr · γkr (θθθk, ek, e)

+Y k+1
r (θθθk, r, eeek, e)

)
η(de)dr, k = 0, . . . , n− 1,

ξnt (x,θθθn, eeen, ν
n) := U(Xn,x

t + Y n
t (θθθn, eeen)).

Applying Itô’s formula, we get for k = 0, . . . , n,

ξkt (x,θθθk, eeek, ν
k) = pU

(
Xk,x
t + Y k

t (θθθk, eeek)
) [(
− fk(t, Y k

t , Z
k
t , θθθk, eeek)

+gk(νkt , t, Y
k
t , Z

k
t , θθθk, eeek)

)
dt+ dKk

t (θθθk, eeek) + (Zk
t − σkt (θθθk, eeek)

′νkt ) · dWt

]
.

fk(·) = inf
π∈Ak

gk(π, ·) implies
{
ξks (x,θθθk, eeek, ν

k)
}
θk≤t≤T

is a local super-martingale, for

k = 0, . . . , n. Since Y k and Y k+1 are essentially bounded, and ξk
t∧τk∧ρm(x,θθθk, eeek, ν

k)

is uniformly integrable, by considering a localizing sequence of stopping times, we

can show
{
ξk
t∧τk(x,θθθk, eeek, ν

k)
}
θk≤t≤T

is a super-martingale. Consider when k = n.

Since Y n ≥ Hn, we have

(2.5.14) U
(
x+ Y n

θn(θθθn, eeen)
)
≥ E [U (Xn,x

τn +Hn
τn(θθθn, eeen)) |Fθn ] .

Therefore, (2.5.13) holds for k = n. Similarly, it holds for k = 0, . . . , n− 1.

Step 2:
∫ ·
θk
Zk
s (θθθk, eeek) · dWs is a BMO-martingale. Apply Itô’s formula to
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exp(−qY k
t (θθθk, eeek)) with q > p and any F-stopping time τ valued in [θk, T ],

1

2
q(q − p)E

[∫ T

τ

exp
(
−qY k

t (θθθk, eeek)
)
|Zk

t (θθθk, eeek)|2dt
∣∣∣Fτ]

= qE
[∫ T

τ

exp
(
−qY k

t (θθθk, eeek)
) (
fk(t, Y k

t , Z
k
t , θθθk, eeek)−

p

2
|Zk

t |2
)
dt
∣∣∣Fτ]

+E
[
exp

(
−qY k

T (θθθk, eeek)
)
− exp

(
−qY k

τ (θθθk, eeek)
) ∣∣∣Fτ]

−qE
[∫ T

τ

exp
(
−qY k

t (θθθk, eeek)
)
dKk

t (θθθk, eeek)
∣∣∣Fτ] .

Since |fk(t, y, z, θθθk, eeek)| ≤
p

2
|z|2 − CU(−y), dKk ≥ 0 and Y k is bounded, we have

1

2
q(q − p)E

[∫ T

τ

exp
(
−qY k

t (θθθk, eeek)
)
|Zk

t (θθθk, eeek)|2dt
∣∣∣Fτ]

≤ qCE
[∫ T

τ

exp
(
−qY k

t (θθθk, eeek)
)
dt
∣∣∣Fτ]+ C.

By choosing q large enough, we have

E
[∫ T

τ

∣∣Zk
s (θθθk, eeek)

∣∣2 ds∣∣∣Fτ] ≤ C,

which implies
∫ ·
θk
Zk
s (θθθk, eeek) · dWs is a BMO-martingale.

Step 3: Adimissibility of (π̂k, τ̂ k). For k = 0, . . . , n, define function ĝk by

ĝk(π, t, ω,θθθk, eeek) = gk
(
π, t, Y k

t (θθθk, eeek), Z
k
t (θθθk, eeek), θθθk, eeek

)
.

We can show that the map (π, t, ω,θθθk, eeek)→ ĝk(π, t, ω,θθθk, eeek) is B(Rd)⊗PF⊗B(∆k)⊗

B(Ek)-measurable. Now for k = 0, . . . , n, (θθθk, eeek) ∈ ∆k(T )×Ek, if either σk(θθθk, eeek) =

0 or γk(θθθk, eeek, e) = 0, then the continuous function π → ĝk(π, t, ω,θθθk, eeek) attains

trivially its infimum of ĝk when π = 0. Otherwise, σk(θθθk, eeek) and γk(θθθk, eeek, e) are

in the form σk(θθθk, eeek) = (σ̄k(θθθk, eeek), 0), γk(θθθk, eeek) = (γ̄(θθθk, eeek), 0) for some full rank

matrix σ̄k(θθθk, eeek). In this case, we let (π̄, 0) = (σk)′ · π, then we get

ḡk(π̄, t, ω,θθθk, eeek) := ĝk(π, t, ω,θθθk, eeek) =
p

2

∣∣∣∣Zk
t (θθθk, eeek) +

1

p
λkt (θθθk, eeek)− π̄

∣∣∣∣2
+

1

p
U(−Y k

t )

∫
E

U
(
((σ̄k)′)−1 · π̄ · γ̄kt (e) + Y k+1

t (θθθk, t, eeek, e)
)
η(de),
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for k = 0, . . . , n− 1, and

ḡn(π̄, t, ω,θθθn, eeen) := ĝn(π, t, ω,θθθn, eeen) =
p

2

∣∣∣∣Zn
t (θθθn, eeen) +

1

p
λnt (θθθn, eeen)− π̄

∣∣∣∣2 .
Since

ḡk(0, t, ω,θθθk, eeek) < lim inf
|π̄|→∞

ḡk(π̄, t, ω,θθθk, eeek),

the continuous function π̄ → ḡk(π̄, t, ω,θθθk, eeek) attains its infimum over the closed

set (σkt )′Ak, and thus the function π → ĝk(π, t, ω,θθθk, eeek) attains its infimum over

Ak(θθθk, eeek). For k = 0, . . . , n, using a measurable selection argument (see [81]), one

can show that there exists π̂k ∈ PF(∆k, E
k), such that

π̂kt (θθθk, eeek) ∈ arg min
π∈Ak(θθθk,eeek)

ĝk(π, t, θθθk, eeek), θk ≤ t ≤ T, a.s.

Consider τ̂ k defined in (2.5.12). For k = 0, . . . , n, define τ̃ k(ζζζk, `̀̀k) as

τ̃ k :=
(

inf{t ≥ ζk : Y k(ζζζk, `̀̀k) = Hk(ζζζk, `̀̀k)} ∧ T
)
· 1{ζk≤T} + ζk · 1{ζk>T}.

We can show that τ̃ k(ζζζk, `̀̀k) is a Gk stopping time satisfying τ̃ k(ζζζk, `̀̀k) ≥ ζk and

{τ̃ k(ζζζk, `̀̀k) ≤ T} = {ζk ≤ T}. And given (ζζζk, `̀̀k) = (θθθk, eeek) ∈ ∆k(T ) × Ek,

τ̃ k(θθθk, eeek) = τ̂ k(θθθk, eeek). Now we will show that (π̂k, τ̂ k)nk=0 is admissible in the sense

of Definition 2.5.2.

(a) Since ĝk(π̂kt , t, θθθk, eeek) ≤ ĝk(0, t, θθθk, eeek), there exists a constant C > 0, such that

|σkt (θθθk, eeek)
′π̂kt (θθθk, eeek)| ≤ C(1 + |Zk

t (θθθk, eeek)|), θk ≤ t ≤ T, a.s.,

for all (θθθk, eeek) ∈ ∆k(T )× Ek, k = 0, . . . , n. Since Zk ∈ L2
W (∆k, E

k) and because of

(HB)(i), (π̂k, τ̂ k)nk=0 satisfies condition (a) in Definition 2.5.2.

(b) Denote by X̂k.x the wealth process controlled by π̂k, starting from x at time θk.

We have

fk(t, Y k
t , Z

k
t , θθθk, eeek) = gk(π̂kt , t, Y

k
t , Z

k
t , θθθk, eeek),
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for k = 0, . . . , n. Then for θk ≤ t ≤ T ,

U(X̂k,x
t + Y k

t ) = U(x+ Y k
θk

) Ekt
(
p(Zk − (σk)′π̂k)

)
Rk
t ,

where

Ekt
(
p(Zk − (σk)′π̂k)

)
= exp

(
p

∫ t

θk

(Zk
s − (σks )′π̂ks ) · dWs −

p2

2

∫ t

θk

|Zk
s − (σks )′π̂ks |2ds

)
,

for k = 0, . . . , n, and

Rk
t = exp

(
pKk

t −
∫ t

θk

U(−Y k
s )

∫
E

U
(
π̂kt · γkt (θθθk, eeek) + Y k+1

t (θθθk, t, eeek, e)
)
η(de)ds

)
,

for k = 0, . . . , n − 1 and Rn
t = exp(pKn

t ). From Step 2,
∫ ·
θk
p(Zk − (σk)π̂k) · dW

is a BMO-martingale and hence Ek·∧τ̂k
(
p(Zk − (σk)′π̂k)

)
is of class (D). Moreover,

since U is nonpositive and Kk
t = 0 when t ≤ τ̂ k, we have |R·∧τ̂k | ≤ 1, and thus

U(X̂k,x
t∧τ̂k + Y k

t∧τ̂k) is of class (D). So is U(X̂k,x
·∧τ̂k) since Y k is essentially bounded.

(c) Because dKk
t = 0 when t ≤ τ̂ k, the process ξk·∧τ̂k(x,θθθk, eeek, e) defined in Step 1

under control π̂k is a local martingale. By considering a localizing F-stopping time

sequence (ρm)m valued in [θk, T ], we obtain:

E

[∫ τ̂k∧ρm

θk

∫
E

(−U)
(
X̂k,x
t + π̂kt · γkt (θθθk, eeek, e) + Y k+1

t (θθθk, t, eeek, e)
)
η(de)dt

]
= E

[
U(X̂k,x

τ̂k∧ρm + Y k
τ̂k∧ρm)− U(x+ Y k

θk
)
]
≤ E

[
−U(x+ Y k

θk
)
]
,

By Fatou’s lemma, we get Condition (c) in Definition 2.5.2 holds.

Step 4: We will show (2.5.11) holds and (π̂k, τ̂ k)nk=0 is an optimal trading

strategy. Consider when k = n. By the admissibility of (π̂n, τ̂n), the local martin-

gale ξt∧τ̂n under the control π̂n is a martingale. Thus,

U(x+ Y n
θn) = E

[
U(X̂n,x

τ̂n +Hn
τ̂n)
∣∣∣Fθn] .
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Along with (2.5.14) this results in

V n(x,θθθn, eeen) = ess sup
τn∈T n

ess sup
πn∈An

E
[
U(Xn,x

τn +Hn
τn(θθθn, eeen)

∣∣Fθn] ≤ U(x+ Y n
θn(θθθn, eeen))

= E
[
U(X̂n,x

τ̂n +Hn
τ̂n(θθθn, eeen))

∣∣Fθn] ≤ V n(x,θθθn, eeen),

which implies (2.5.11) for k = n and the optimality of (π̂n, τ̂n). We can show (2.5.11)

and the optimality of (π̂k, τ̂ k) for k = 0, . . . , n− 1, similarly using (2.5.8).

2.5.4 Indifference selling price

In this sub-section, we consider the problem (2.5.6), and Theorem 2.5.8 is the

main result.

Definition 2.5.5. (Admissible trading strategy) A trading strategy (π, τ) ∼ (πk, τ k)nk=0

is admissible, if for any (θθθk, eeek) ∈ ∆k(T )× Ek, under the control πk,

(a)

∫ T

θk

|πkt (θθθk, eeek)
′bkt (θθθk, eeek)|dt +

∫ T

θk

|πkt (θθθk, eeek)
′σkt (θθθk, eeek)|2dt < ∞, a.s., k =

0, . . . , n,

(b) the family
{
U(Xk

τ (θθθk, eeek)) : τ is any F − stopping time valued in [θk, T ]
}

is

uniformly integrable, i.e., U(Xk(θθθk, eeek)) is of class (D), for k = 0, . . . , n,

(c) E
[∫ T

θk

∫
E

(−U)
(
Xk
s(θθθk, eeek) + πks (θθθk, eeek)

′γks (θθθk, eeek, e)
)
η(de)ds

]
< ∞, for k = 0,

. . . , n− 1.

Remark 2.5.6. Unlike in Definition 2.5.2, the admissible trading strategy here is in

fact independent of stopping times. This is because the investor cannot choose when

to stop.

Backward recursive system of RBSDEs

We decompose V0 in (2.5.6) into a backward induction as before:

(2.5.15) Vn(x,θθθn, eeen) = ess sup
πn∈An

ess inf
τn∈T n

E
[
U(Xn,x

τn −Hn
τn)|Fθn

]
,
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(θθθn, eeen) ∈ ∆n(T )× En, and

Vk(x,θθθk, eeek) = ess sup
πk∈Ak

ess inf
τn∈T k

E
[
U(Xk,x

τk
−Hk

τk)(2.5.16)

+

∫ τk

θk

∫
E

Vk+1
(
Xk,x
θk+1

+ πkθk+1
· γkθk+1

(ek+1), θθθk+1, eeek+1

)
η(dek+1)dθk+1|Fθk

]
,

(θθθk, eeek) ∈ ∆k(T )× Ek, for k = 0, . . . , n− 1, where

Hk = Rk +
1

p
lnαk, k = 0, . . . , n.

Consider

Vk(x,θθθk, eeek) = U
(
x− Ykθk(θθθk, eeek)

)
, k = 0, . . . , n,

where {Ykt (θθθk, eeek)}nk=0 satisfies the RBSDE EQ(Hk(θθθk, eeek), f
k)θk≤t≤T , with fk defined

as

fk(t, y, z, θθθk, eeek) = inf
π∈Ak

gk(π, t, y, z, θθθk, eeek),

where

gk(π, t, y, z, θθθk, eeek) =
p

2

∣∣z − σkt (θθθk, eeek)
′π
∣∣2 − bkt (θθθk, eeek)′π

+
1

p
U(y)

∫
E

U
(
π · γkt (θθθk, eeek, e)− Yk+1

t (θθθk, t, eeek, e)
)
η(de)

for k = 0, . . . , n− 1, and

gn(π, t, y, z, θθθn, eeen) =
p

2
|z − σnt (θθθn, eeen)′π|2 − bnt (θθθn, eeen)′π.

Existence to the recursive system of RBSDEs

We will make the same boundedness assumption as (HB) in Section 2.5.3 except

that we will replace Hk with Hk. Let us denote this assumption by (HB’).

Theorem 2.5.7. Under (HB’), there exists a solution (Yk,Zk,Kk)nk=0 ∈
n∏
k=0

S∞c

(∆k(T ), Ek) × L2
W (∆k(T ), Ek) × A(∆k(T ), Ek) to the recursive system of indexed

RBSDEs EQ(Hk, fk), k = 0, . . . , n.
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Proof. We prove the result by a backward induction on k = 0, . . . , n

For k = n. Using the same argument as in the proof of Theorem 2.5.3, we can

show that there exists a solution (Yn,Zn,Kn) ∈ S∞c (∆n(T ), En)×L2
W (∆n(T ), En)×

A(∆n(T ), En) to EQ(Hn, fn).

For k ∈ {0, 1, . . . , n−1}. Assume there exists (Yk+1,Zk+1,Kk+1) ∈ S∞c (∆k+1(T ),

Ek+1) × L2
W (∆k+1(T ), Ek+1) ×A(∆k+1(T ), Ek+1) satisfying EQ(Hk+1, fk+1). Con-

sider the truncated generator

fk,N(t, y, z, θθθk, eeek) = inf
π∈Ak

gk(π, t,−N ∨ y, z, θθθk, eeek).

Then there exists some constant CN > 0, independent of (θθθk, eeek), such that |fk,N | ≤

CN(1 + z2). Hence, there exists a solution (Yk,N ,Zk,N ,Kk,N) ∈ S∞c (∆k(T ), Ek) ×

L2
W (∆k(T ), Ek) × A(∆k(T ), Ek) to EQ(Hk, fk,N). By Assumption (HB’), Yk,N ≥

Hk ≥ −C, where C > 0 is a constant independent of N and (θθθk, eeek). Therefore, for

N large enough, (Yk,N ,Zk,N ,Kk,N) also solves EQ(Hk, fk).

RBSDE characterization by verification theorem

Theorem 2.5.8. The value functions (Vk)nk=0 defined in (2.5.15) and (2.5.16), are

given by

(2.5.17) Vk(x,θθθk, eeek) = U(x− Ykt (θθθk, eeek)),

for ∀x ∈ R, (θθθk, eeek) ∈ ∆k × Ek, where (Yk,Zk,Kk)nk=0 ∈
n∏
k=0

S∞c (∆k(T ), Ek) ×

L2
W (∆k(T ), Ek)×A(∆k(T ), Ek) is a solution of the system of RBSDEs EQ(Hk, fk),

k = 0, . . . , n. Moreover, there exists a saddle point (π, τ) ∼ (π̂k, τ̂ k)nk=0 described by:

π̂kt (θθθk, eeek) ∈ arg min
π∈Ak

gk
(
π, t,Ykt (θθθk, eeek),Zkt (θθθk, eeek), θθθk, eeek

)
,

for t ∈ [θk, T ], and

(2.5.18) τ̂ k(θθθk, eeek) := inf
{
t ≥ θk : Ykt (θθθk, eeek) = Hk

t (θθθk, eeek)
}
,
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for (θθθk, eeek) ∈ ∆k(T ) × Ek, a.s., k = 0, . . . , n. More specifically, for any admissible

trading strategy (π, τ) ∼ (πk, τ k)nk=0,

E
[
U(Xn,x

τ̂n −H
n
τ̂n)
∣∣Fθn] ≤ E

[
U(X̂n,x

τ̂n −H
n
τ̂n)
∣∣Fθn] ≤ E

[
U(X̂n,x

τn −Hn
τn)
∣∣Fθn] ,

and similar inequalities hold for k = 0, . . . , n − 1, where X̂k,x is the wealth process

under control π̂k, k = 0, . . . , n.

Proof. We follow the steps in the proof of Theorem 2.5.4.

Step 1: We will show for (θθθk, eeek) ∈ ∆k(T )× Ek,

(2.5.19) U(x− Ykθk(θθθk, eeek, ν
k)) ≥ Vk(x,θθθk, eeek), k = 0, . . . , n.

Let (Yk,Zk,Kk) ∈ S∞c (∆k(T ), Ek)× L2
W (∆k(T ), Ek)×A(∆k(T ), Ek) be a solution

of the RBSDE system. For νk ∈ Ak, ∀x ∈ R, (θθθk, eeek) ∈ ∆k(T )×Ek, define (ξk)nk=0

as:

(2.5.20) ξkt (x,θθθk, eeek, ν
k) := U

(
Xk,x
t − Ykt (θθθk, eeek)

)
+

∫ t

θk

∫
E

U
(
Xk,x
r + νkr · γkr (θθθk, ek, e)− Yk+1

r (eeek, r, eeek, e)
)
η(de)dr,

for k = 0, . . . , n− 1, and

(2.5.21) ξnt (x,θθθn, eeen, ν
n) := U

(
Xn,x
t − Ynt (θθθn, eeen)

)
.

Applying Itô’s formula, we obtain, for k = 0, . . . , n,

dξkt (x,θθθk, eeek, ν
n) = pU(Xk,x

t − Ykt (θθθk, eeek))
[(
− fk(t,Ykt ,Zkt , θθθk, eeek)

+gk(νkt , t,Ykt ,Zkt , θθθk, eeek)
)
dt− dKkt (θθθk, eeek) + (Zkt − σkt (θθθk, eeek)

′νkt ) · dWt

]
,

Define τ̂ k as in (2.5.18), then dKk
t∧τ̂k = 0, θk ≤ t ≤ T . Therefore, (ξk

t∧τ̂k)θk≤t≤T

is a local super-martingale. By introducing a localizing sequence of stopping times

(ρm)m, and then letting m→∞, we can show for k = 0, . . . , n,

ξkt∧τ̃k ≥ E
[
ξks∧τ̃k

∣∣∣Ft] , θk ≤ t ≤ s ≤ T.
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In particular,

(2.5.22) U
(
x− Ynθn(θθθn, eeen)

)
= ξnθn ≥ E

[
ξnτ̃n

∣∣∣Fθn] = E
[
U(Xn,x

τ̃n −Hn
τ̃n)
∣∣∣Fθn].

Hence,

U
(
x− Ynθk(θθθn, eeen)

)
≥ ess inf

τn∈T n
E[U(Xn,x

τn −Hn
τn)|Fθk ].

for any νn ∈ An. So (2.5.19) follows for k = n. Similarly, it holds for k = 0, . . . , n−1.

Steps 2&3: Similar to the proof of Theorem 2.5.4.

Step 4: We will show (2.5.17) holds and (π, τ) ∼ (π̂k, τ̂ k)nk=0 is a saddle

point. Under the admissible control π̂k, the dynamics of (ξk)k defined in (2.5.20)

and (2.5.21) are given by

dξkt (x,θθθ,eee, π̂
k) = pU(Xk,x

t − Ykt )
[
− dKkt (θθθk, eeek) + (Zkt − σkt (θθθk, eeek)

′νkt ) · dWt

]
,

for k = 0, . . . , n. By the uniform integrality of ξkt , we know ξkt is a sub-martingale.

Consider when k = n. For any F-stopping time τn valued in [θn, T ],

(2.5.23) U(x− Ynθn) ≤ E[U(X̂n,x
τn − Ynτn)|Fθn ] ≤ E[U(X̂n,x

τn −Hn
τn)|Fθn ],

Therefore, we have

U(x− Ynθn) ≤ ess inf
τn∈T n

E
[
U(X̂n,x

τn −Hn
τn)
∣∣Fθn] ≤ ess sup

πn∈An
ess inf
τn∈T n

E
[
U(Xn,x

τn −Hn
τn)
∣∣Fθn].

Now, the last equation along with (2.5.19) implies that (2.5.17) holds for k = n.

By the definition and admissibility of π̂n, we can show that under control π̂n,

ξnt∧τ̂n is a martingale. Thus from (2.5.23) we have

E
[
U(X̂n,x

τ̂n −H
n
τ̂n)
∣∣Fθn] = E

[
U(X̂n,x

τ̂n − Y
n
τ̂n)
∣∣Fθn] = U(x− Ynθn)

≤ E
[
U(X̂n,x

τn − Ynτn)
∣∣Fθn] ≤ E

[
U(X̂n,x

τn −Hn
τn)
∣∣Fθn] .
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And from (2.5.22) we have

E
[
U(X̂n,x

τ̂n −H
n
τ̂n)
∣∣Fθn] = E

[
U(X̂n,x

τ̂n − Y
n
τ̂n)
∣∣Fθn] = U(x− Ynθn)

≥ E
[
U(Xn,x

τ̂n − Y
n
τ̂n)
∣∣Fθn] = E

[
U(Xn,x

τ̂n −H
n
τ̂n)
∣∣Fθn]

Thus, (π̂n, τ̂n) is a saddle point. Similarly, it can be shown that the corresponding

conclusions hold for k = 0, . . . , n− 1 using (2.5.16).



CHAPTER III

On zero-sum optimal stopping games in discrete time

3.1 Introduction

On a filtered probability space (Ω,F , P,F = (Ft)t=0,... ,T ), let us consider

(3.1.1) C := inf
ρ

sup
τ

EU(ρ, τ) and C := sup
τ

inf
ρ
EU(ρ, τ),

where U(s, t) is Fs∨t-measurable and ρ, τ are F-stopping times taking values in

{0, . . . , T}. When U(s, t) = fs1{s<t} + gt1{s≥t} in which ft and gt are bounded

F-adapted processes, the problem above is said to be a Dynkin game (see, e.g., [66,

Chapter VI-6]). It is well-known that if f ≥ g then C = C.

However, it may fail that C = C in general even for some other natural choices

of U . Consider U(s, t) = |fs − ft|. This means in the game (3.1.1), Player “inf”

tries to match Player “sup”. Let ft = t, t = 0, . . . , T and the problem becomes

deterministic. It is easy to see that C = dT/2e > 0 = C. So the game is not fair.

On the other hand, when playing game (3.1.1), Players “inf” and “sup” can adjust

their stopping strategies according to each other’s stopping behavior. Therefore, it

is more reasonable to incorporate a stopping strategy that can be adjusted according

to the other’s behavior. That is, we consider the stopper-stopper problem

inf
ρρρ

sup
τ

E[U(ρρρ(τ), τ)] and sup
τττ

inf
ρ
E[U(ρ,τττ(ρ))],

49
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where ρ, τ ∈ T , and ρρρ(·), τττ(·) : T 7→ T satisfy certain non-anticipativity conditions,

where T is the set of stopping times.

One possible definition of non-anticipative stopping strategies (we denote the col-

lection of them as Ti) would be that, ρρρ ∈ Ti, if ρρρ : T 7→ T satisfies

either ρρρ(σ1) = ρρρ(σ2) ≤ σ1 ∧ σ2 or ρρρ(σ1) ∧ ρρρ(σ2) > σ1 ∧ σ2, ∀σ1, σ2 ∈ T .

That is, ρρρ = ρρρ(τ) can be adjusted according to the previous (but not current)

behavior of τ . However, using this definition, it may be the case that

A := inf
ρρρ∈Ti

sup
τ∈T

E[U(ρρρ(τ), τ)] 6= A := sup
τττ∈Ti

inf
ρ∈T

E[U(ρ,τττ(ρ))].

Below is an example.

Example 3.1.1. Let T = 1 and U(s, t) = |fs − ft| = 1{s 6=t} with ft = t, t = 0, 1.

Then there are only two elements, ρρρ0 and ρρρ1, in Ti, with ρρρ0(0) = ρρρ0(1) = 0 and

ρρρ1(0) = ρρρ1(1) = 1. It can be shown that A = 1 and A = 0.

Another possible definition of non-anticipative stopping strategies (we denote the

collection as Tii) would be that, ρρρ ∈ Tii, if ρρρ : T 7→ T satisfies

either ρρρ(σ1) = ρρρ(σ2) < σ1 ∧ σ2 or ρρρ(σ1) ∧ ρρρ(σ2) ≥ σ1 ∧ σ2, ∀σ1, σ2 ∈ T .

That is, ρρρ = ρρρ(τ) can be adjusted according to both the previous and the current

behavior of τ . However, under this definition, it may be the case that

B := inf
ρρρ∈Tii

sup
τ∈T

E[U(ρρρ(τ), τ)] 6= B := sup
τττ∈Tii

inf
ρ∈T

E[U(ρ,τττ(ρ))].

We still use Example 3.1.1 as an example.

Example 3.1.2. Let T = 1 and U(s, t) = |fs − ft| = 1{s 6=t} with ft = t, t = 0, 1.

Then in this case Tii is the set of all the maps from T to T . By letting ρρρ(0) = 0

and ρρρ(1) = 1, we have that B = 0. By Letting τττ(0) = 1 and τττ(1) = 0, we have that

B = 1.
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Observe that A = B and A = B in Examples 3.1.1 and 3.1.2. In fact it is by no

means a coincidence as we will see later in this chapter. That is, we always have

B = inf
ρρρ∈Tii

sup
τ∈T

E[U(ρρρ(τ), τ)] = sup
τττ∈Ti

inf
ρ∈T

E[U(ρ,τττ(ρ))] = A.

An intuitive reason for using both Tii for ρρρ and Ti for τττ above is that, in order to let

the game be fair, at each time period we designate the same player (here we choose

“sup”) to act first. (Note that both “to stop” and “not to stop” are actions.) So this

player (“sup”) can only take advantage of the other’s (“inf’s”) previous behavior (as

opposed to “inf” taking advantage of “sup’s” current behavior in addition).

In this chapter, we analyze the problems associated to B and A. We show that

these problems can be converted into a corresponding Dynkin game, and that B =

A = V , where V is the value of the Dynkin game. We also provide the optimal

ρρρ(·) ∈ Tii and τττ(·) ∈ Ti for B and A respectively.

The rest of the chapter is organized as follows. In the next section, we introduce

the setup and the main result. We provide two examples in Section 3.3. In Section

3.4, we give the proof of the main result. Finally we give some insight for the

corresponding problems in continuous time in Section 3.5.

3.2 The setup and the main result

Let (Ω,F , P ) be a probability space, and F = (Ft)t=0,... ,T be the filtration enlarged

by P -null sets, where T ∈ N is the time horizon in discrete time. Let U : {0, . . . , T}×

{0, . . . , T}×Ω 7→ R, such that U(s, t, ·) ∈ Fs∨t. For simplicity, we assume that U is

bounded. Denote Et[·] for E[·|Ft]. We shall often omit “a.s.” when a property holds

outside a P -null set. Let Tt be the set of F-stopping times taking values in {t . . . , T},

and T := T0. We define the stopping strategies of Type I and Type II as follows:
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Definition 3.2.1. ρρρ is a stopping strategy of Type I (resp. II), if ρρρ : T 7→ T satisfies

the “non-anticipativity” condition of Type I (resp. II), i.e., for any σ1, σ2 ∈ T ,

(3.2.1)

either ρρρ(σ1) = ρρρ(σ2) ≤ (resp. <) σ1 ∧ σ2 or ρρρ(σ1) ∧ ρρρ(σ2) > (resp. ≥) σ1 ∧ σ2.

Denote Ti (resp. Tii) as the set of stopping strategies of Type I (resp. II).

Remark 3.2.2. We can treat T as a subset of Ti and Tii (i.e., each τ ∈ T can be

treated as the map with only one value τ). Hence we have T ⊂ Ti ⊂ Tii.

Consider the problem

(3.2.2) B := inf
ρρρ∈Tii

sup
τ∈T

E[U(ρρρ(τ), τ)] and A := sup
τττ∈Ti

inf
ρ∈T

E[U(ρ,τττ(ρ))].

We shall convert this problem into a Dynkin game. In order to do so, let us introduce

the following two processes that will represent the payoffs in the Dynkin game.

(3.2.3) V 1
t := ess inf

ρ∈Tt
Et[U(ρ, t)], t = 0, . . . , T,

and

(3.2.4) V 2
t := max

{
ess sup
τ∈Tt+1

Et[U(t, τ)], V 1
t

}
, t = 0, . . . , T − 1,

and V 2
T = U(T, T ). Observe that

(3.2.5) V 1
t ≤ V 2

t , t = 0, . . . , T.

By the classic optimal stopping theory, there exist an optimizer ρu(t) ∈ Tt for V 1
t ,

and an optimizer τu(t) ∈ Tt+1 for ess supτ∈Tt+1
Et[U(t, τ)], t = 0, . . . , T − 1. We let

ρu(T ) = τu(T ) = T for convenience.

Define the corresponding Dynkin game as follows:

V := inf
ρ∈T

sup
τ∈T

E
[
V 1
τ 1{τ≤ρ} + V 2

ρ 1{τ>ρ}
]

= sup
τ∈T

inf
ρ∈T

E
[
V 1
τ 1{τ≤ρ} + V 2

ρ 1{τ>ρ}
]
,
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where the second equality above follows from (3.2.5). Moreover, there exists a saddle

point (ρd, τd) described by

(3.2.6) ρd := inf{s ≥ 0 : Vs = V 2
s } and τd := inf{s ≥ 0 : Vs = V 1

s },

where

Vt := ess inf
ρ∈Tt

ess sup
τ∈Tt

Et
[
V 1
τ 1{τ≤ρ} + V 2

ρ 1{τ>ρ}
]

= ess sup
τ∈Tt

ess inf
ρ∈Tt

Et
[
V 1
τ 1{τ≤ρ} + V 2

ρ 1{τ>ρ}
]
.

That is,

V = sup
τ∈T

E
[
V 1
τ 1{τ≤ρd} + V 2

ρd
1{τ>ρd}

]
= inf

ρ∈T
E
[
V 1
τd

1{τd≤ρ} + V 2
ρ 1{τd>ρ}

]
.

Below is the main result of this chapter.

Theorem 3.2.3. We have that

B = A = V.

Besides, there exists ρρρ∗ ∈ Tii and τ ∗ : Tii 7→ T described by

(3.2.7) ρρρ∗(τ) = ρd1{τ>ρd} + ρu(τ)1{τ≤ρd}, τ ∈ T ,

and

(3.2.8) τ ∗ = τ ∗(ρρρ) := τd1{τd≤ρρρ(τd)} + τu(ρρρ(τd))1{τd>ρρρ(τd)}, ρρρ ∈ Tii,

such that

B = sup
τ∈T

E[U(ρρρ∗(τ), τ)] = inf
ρρρ∈Tii

E[U(ρρρ(τ ∗), τ ∗)].

Similarly, there exists τττ ∗∗ ∈ Ti and ρ∗∗ : Ti 7→ T described by

(3.2.9) τττ ∗∗(ρ) = τd1{ρ≥τd} + τu(ρ)1{ρ<τd}, ρ ∈ T ,

and

ρ∗∗ = ρ∗∗(τττ) := ρd1{ρd<τττ(ρd)} + ρu(τττ(ρd))1{ρd≥τττ(ρd)}, τττ ∈ Ti,
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such that

A = inf
ρ∈T

E[U(ρ,τττ ∗∗(ρ))] = sup
τττ∈Ti

E[U(ρ∗∗, τττ(ρ∗∗))].

Remark 3.2.4. In the definition (3.2.8) τ ∗(·) is a map of ρρρ instead of a stopping time.

But once the outside ρρρ is given, τ ∗(ρρρ) would become a stopping time, and thus this

shall cause no problem in our definition of τ ∗. (To convince oneself, one may think

of infx supy f(x, y) = infx f(x, y∗(x)).) We shall often simply write τ ∗ and omit its

dependence of ρρρ.

Corollary 3.2.5.

B = E[U(ρρρ∗(τ ∗), τ ∗)].

(Here τ ∗ = τ ∗(ρρρ∗) as we indicated in Remark 3.2.4.) Moreover,

(3.2.10)

ρρρ∗(τ ∗) = ρd1{τd>ρd} + ρu(τd)1{τd≤ρd} and τ ∗(ρρρ∗) = τd1{τd≤ρd} + τu(ρd)1{τd>ρd}.

Similar results hold for A.

Proof. By (3.2.7),

ρρρ∗(τd) = ρd1{τd>ρd} + ρu(τd)1{τd≤ρd}.

If τd > ρd, then ρρρ∗(τd) = ρd < τd, which implies that {τd > ρd} ⊂ {τd > ρρρ∗(τd)}. If

τd ≤ ρd, then ρρρ∗(τd) = ρu(τd) ≥ τd, which implies that {τd ≤ ρd} ⊂ {τd ≤ ρρρ∗(τd)}.

Therefore, {τd > ρd} = {τd > ρρρ∗(τd)} and {τd ≤ ρd} = {τd ≤ ρρρ∗(τd)}. Hence we have

that

τ ∗(ρρρ∗) = τd1{τd≤ρd} + τu(ρρρ
∗(τd))1{τd>ρd} = τd1{τd≤ρd} + τu(ρd)1{τd>ρd},

where the second equality follows from that ρρρ∗(τd) = ρd on {τd > ρd}.

Now if τd ≤ ρd, then τ ∗ = τd ≤ ρd, and thus {τd ≤ ρd} ⊂ {τ ∗ ≤ ρd}. If τd > ρd,

then τ ∗ = τu(ρd) > ρd since τu(t) ≥ t + 1 if t < T , and thus {τd > ρd} ⊂ {τ ∗ > ρd}.
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Therefore, {τd ≤ ρd} = {τ ∗ ≤ ρd} and {τd > ρd} = {τ ∗ > ρd}. Hence we have that

ρρρ∗(τ ∗) = ρd1{τd>ρd} + ρu(τ
∗)1{τd≤ρd} = ρd1{τd>ρd} + ρu(τd)1{τd≤ρd},

where the second equality follows from that τ ∗ = τd on {τd ≤ ρd}.

3.3 Examples

In this section we provide two examples within the setup of Section 3.2. The

first example shows that in the classical Dynkin game one does not need to use

non-anticipative stopping strategies. The second example is a relevant problem from

mathematical finance in which our results can be applied. This problem is on deter-

mining the optimal exercise strategy when one trades two different American options

in different directions.

3.3.1 Dynkin game using non-anticipative stopping strategies

Let

U(s, t) = fs1{s<t} + gt1{s≥t},

where (ft)t and (gt)t are F-adapted, satisfying f ≥ g. Then we have that

V 1
t = gt, t = 0, . . . , T, and V 2

t = ft, t = 0, . . . , T − 1.

Then by Theorem 3.2.3 we have that

inf
ρρρ∈Tii

sup
τ∈T

E
[
fρρρ(τ)1{ρρρ(τ)<τ} + gτ1{ρρρ(τ)≥τ}

]
= sup

τττ∈Ti
inf
ρ∈T

E
[
fρ1{ρ<τττ(ρ)} + gτττ(ρ)1{ρ≥τττ(ρ)}

]
= sup

τ∈T
inf
ρ∈T

E
[
fρ1{ρ<τ} + gτ1{ρ≥τ}

]
= inf

ρ∈T
sup
τ∈T

E
[
fρ1{ρ<τ} + gτ1{ρ≥τ}

]
.

Besides, by the property of U , the ρρρ∗ and τττ ∗∗ defined in (3.2.7) and (3.2.9) can w.l.o.g.

be written as

ρρρ = ρd and τττ = τd.
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Therefore, in the Dynkin game, using non-anticipative stopping strategies is the same

as using a usual stopping time.

Remark 3.3.1. In this example we let ρρρ ∈ Tii and τττ ∈ Ti. The same conclusion holds

if we let ρρρ ∈ Ti and τττ ∈ Tii instead.

3.3.2 A robust utility maximization problem

Let

U(t, s) = U(ft − gs),

where U : R 7→ R is a utility function, and f and g are adapted to F. Consider

V := sup
ρρρ∈Tii

inf
τ∈T

E[U(ρρρ(τ), τ)].

This problem can be interpreted as the one in which an investor longs an American

option f and shorts an American option g, and the goal is to choose an optimal

stopping strategy to maximize the utility according to the stopping behavior of the

holder of g. Here we assume that the maturities of f and g are the same (i.e., T ).

This is without loss of generality. Indeed for instance, if the maturity of f is t̂ < T ,

then we can define f(t) = f(t̂) for t = t̂+ 1, . . . , T .

3.4 Proof of Theorem 3.2.3

We will only prove the results for B, since the proofs for A are similar.

Lemma 3.4.1. For any σ ∈ T , ρu(σ) ∈ T and τu(σ) ∈ T .

Proof. Take σ ∈ T . Then for t ∈ {0, . . . , T}

{ρu(σ) ≤ t} = ∪ti=0({σ = i} ∩ {ρu(i) ≤ t}) ∈ Ft.
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Lemma 3.4.2. ρρρ∗ defined in (3.2.7) is in Tii and τ ∗ defined in (3.2.8) is a map from

Tii to T .

Proof. Take τ ∈ T . We have that

{ρρρ∗(τ) ≤ t} = ({τ > ρd} ∩ {ρd ≤ t}) ∪ ({τ ≤ ρd} ∩ {ρu(τ) ≤ t})

= ({τ > ρd} ∩ {ρd ≤ t}) ∪ ({τ ≤ ρd} ∩ {τ ≤ t} ∩ {ρu(τ) ≤ t}) ∈ Ft.

Hence ρρρ∗(τ) ∈ T . Similarly we can show that τ ∗(ρρρ) ∈ T for any ρρρ ∈ Tii.

It remains to show that ρρρ∗ satisfies the non-anticipative condition of Type II

in (3.2.1). Take τ1, τ2 ∈ T . If ρρρ∗(τ1) < τ1 ∧ τ2 ≤ τ1, then τ1 > ρd and thus

ρρρ∗(τ1) = ρd < τ1 ∧ τ2 ≤ τ2, which implies ρρρ∗(τ2) = ρd = ρρρ∗(τ1) < τ1 ∧ τ2. If

ρρρ∗(τ1) ≥ τ1∧ τ2, then if ρρρ∗(τ2) < τ1∧ τ2 we can use the previous argument to get that

ρρρ∗(τ1) = ρρρ∗(τ2) < τ1 ∧ τ2 which is a contradiction, and thus ρρρ∗(τ2) ≥ τ1 ∧ τ2.

Lemma 3.4.3.

B ≤ sup
τ∈T

E[U(ρρρ∗(τ), τ)] ≤ V.

Proof. Recall ρρρ∗ defined in (3.2.7) and ρd defined in (3.2.6). We have that

B ≤ sup
τ∈T

E[U(ρρρ∗(τ), τ)]

= sup
τ∈T

E
[
U(ρd, τ)1{ρd<τ} + U(ρu(τ), τ)1{ρd≥τ}

]
= sup

τ∈T
E
[
1{ρd<τ}Eρd [U(ρd, τ)] + 1{ρd≥τ}Eτ [U(ρu(τ), τ)

]
≤ sup

τ∈T
E
[
1{ρd<τ}V

2
ρd

+ 1{ρd≥τ}V
1
τ

]
= V.

Lemma 3.4.4.

B ≥ inf
ρρρ∈Tii

E[U(ρρρ(τ ∗), τ ∗)] ≥ V.
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Proof. Take ρρρ ∈ Tii. Recall τ ∗ defined in (3.2.8). By the non-anticipativity condition

of Type II in (3.2.1),

either ρρρ(τ ∗) = ρρρ(τd) < τd ∧ τ ∗ or ρρρ(τ ∗), ρρρ(τd) ≥ τd ∧ τ ∗.

Therefore,

if ρρρ(τd) ≥ τd, then ρρρ(τ ∗) ≥ τd ∧ τ ∗ = τd = τ ∗,

and

if ρρρ(τd) < τd, then τ ∗ = τu(ρρρ(τd)) > ρρρ(τd) =⇒ ρρρ(τd) < τ ∗ ∧ τd(3.4.1)

=⇒ ρρρ(τd) = ρρρ(τ ∗),

where in (3.4.1) we used the fact that τu(t) ≥ t+ 1 if t < T (in the first conclusion).

Besides, if τd > ρρρ(τd), then

V 1
ρρρ(τd) < Vρρρ(τd) ≤ V 2

ρρρ(τd),

which implies that

V 2
ρρρ(τd) = ess sup

τ∈Tt+1

Eρρρ(τd)[U(ρρρ(τd), τ)] = Eρρρ(τd)[U(ρρρ(τd), τu(ρρρ(τd)))].

Now we have that

sup
τ∈T

E[U(ρρρ(τ), τ))]

≥ E[U(ρρρ(τ ∗), τ ∗)]

= E
[
U(ρρρ(τ ∗), τ ∗)1{τd≤ρρρ(τd)} + U(ρρρ(τ ∗), τ ∗)1{τd>ρρρ(τd)}

]
= E

[
U(ρρρ(τ ∗), τd)1{τd≤ρρρ(τd)} + U(ρρρ(τd), τu(ρρρ(τd)))1{τd>ρρρ(τd)}

]
= E

[
1{τd≤ρρρ(τd)}Eτd [U(ρρρ(τ ∗), τd)] + 1{τd>ρρρ(τd)}Eρρρ(τd)[U(ρρρ(τd), τu(ρρρ(τd)))]

]
≥ E

[
1{τd≤ρρρ(τd)}V

1
τd

+ 1{τd>ρρρ(τd)}V
2
ρρρ(τd)

]
≥ inf

ρ∈T
E
[
1{τd≤ρ}V

1
τd

+ 1{τd>ρ}V
2
ρ

]
= V,
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where the fifth inequality follows from the definition of V 1 in (3.2.3) and the fact

that ρρρ(τ ∗) ≥ τd on {ρρρ(τd) ≥ τd}. As this holds for arbitrary ρρρ ∈ Tii, the conclusion

follows.

Proof of Theorem 3.2.3. This follows from Lemmas 3.4.1-3.4.4.

3.5 Some insight into the continuous-time version

We can also consider the continuous time version of the stopper-stopper problem.

If we want to follow the argument in Section 3.4, there are mainly two technical parts

we might need to handle as opposed to the discrete-time case, which are as follows.

• We may need to show that V 1 and V 2 defined in (3.2.3) and (3.2.4) have RCLL

modifications.

• On an intuitive level, the optimizers (or choose to be ε-optimizers in continuous

time) ρu(·) and τu(·) are maps from T to T . Yet this may not be easy to prove

in continuous time, as opposed to the argument in Lemma 3.4.2.

In order to address the two points above, we may have to assume some continuity

of U in (s, t) (maybe also in ω). On the other hand, with such continuity, there will

essentially be no difference between using stopping strategies of Type I and using

stopping strategies of Type II, as opposed to the discrete-time case (see Examples

3.1.1 and 3.1.2).

In the next chapter, we will extent our results to continuous time case. We shall

use the theory of optimal stopping in a general framework, which can help us avoid

the two technical difficulties listed above.



CHAPTER IV

On a stopping game in continuous time

4.1 Introduction

On a filtered probability space (Ω,F , P,F = (Ft)0≤t≤T ), we consider the zero-sum

optimal stopping games

G := inf
ρρρ

sup
τ∈T

E[U(ρρρ(τ), τ)] and G := sup
τττ

inf
ρ∈T

E[U(ρρρ(τ), τ)]

in continuous time, where U(s, t) is Fs∨t-measurable, T is the set of stopping times,

and ρρρ,τττ : T 7→ T satisfy certain non-anticipativity conditions. In order to avoid

the technical difficulties stemming from the verification of path regularity of some

related processes (whether they are right continuous and have left limits), we work

within the general framework of optimal stopping developed in [60–62]. We convert

the problems into a corresponding Dynkin game, and show that G = G = V , where

V is the value of the Dynkin game. This result extends the one in Chapter III to

the continuous-time case and can be viewed as an application of the results in [61],

which weakens the usual path regularity assumptions on the reward processes.

It is worth noting that in Chapter III two different types of non-anticipativity

conditions are imposed for G and G respectively, for otherwise it can be the case

that G 6= G. Now in the continuous-time case, we still have this inequality in general

(see Remark 2.1). But by assuming U is right continuous along stopping times in

60
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the sense of expectation as in [62], we are able to show that there is no essential

difference between the two types of non-anticipativity conditions.

The rest of the chapter is organized as follows. In the next section, we introduce

the setup and the main result. In Section 4.3, we give the proof of the main result.

In Section 4.4, we briefly discuss about the existence of optimal stopping strategies.

4.2 The setup and the main result

Let (Ω,F ,F, P ) be a filtrated probability space, where F = (Ft)0≤t≤T is the filtra-

tion satisfying the usual conditions with T ∈ (0,∞) the time horizon in continuous

time. Let Tt and Tt+ be the set of F-stopping times taking values in [t, T ] and (t, T ]

respectively, t ∈ [0, T ). Denote TT := TT+ := {T} and T := T0. We shall often omit

“a.s.” when a property holds outside a P -null set. Recall the definition of admissible

families of random variables, e.g., in [62].

Definition 4.2.1. A family {X(σ), σ ∈ T } is admissible if for all σ ∈ T , X(σ) is a

bounded Fσ-measurable random variable, and for all σ1, σ2 ∈ T , X(σ1) = X(σ2) on

{σ1 = σ2}.

Definition 4.2.2. A family {Y (ρ, τ), ρ, τ ∈ T } is biadmissible if for all ρ, τ ∈ T ,

Y (ρ, τ) is an Fρ∨τ -measurable bounded random variable, and for all ρ1, ρ2, τ1, τ2 ∈ T ,

Y (ρ1, τ1) = Y (ρ2, τ2) on {ρ1 = ρ2} ∩ {τ1 = τ2}.

Let us also recall the two types of stopping strategies defined in Chapter III.

Definition 4.2.3. ρρρ is a stopping strategy of Type I (resp. II), if ρρρ : T 7→ T satisfies

the “non-anticipativity” condition of Type I (resp. II), i.e., for any σ1, σ2 ∈ T ,

(4.2.1)

either ρρρ(σ1) = ρρρ(σ2) ≤ (resp. <) σ1 ∧ σ2 or ρρρ(σ1) ∧ ρρρ(σ2) > (resp. ≥) σ1 ∧ σ2.
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Denote by Ti (resp. Tii) the set of stopping strategies of Type I (resp. II).

Below is an interesting property for the non-anticipative stopping strategies of

Type I (but not Type II).

Proposition 4.2.4. For any ρρρ ∈ Ti,

ρρρ(ρρρ(T )) = ρρρ(T ).

Proof. Since

ρρρ(ρρρ(T )) ∧ ρρρ(T ) ≤ ρρρ(T ) = ρρρ(T ) ∧ T,

by (4.2.1) we have that

ρρρ(ρρρ(T )) = ρρρ(T ) ≤ ρρρ(T ) ∧ T.

Let {U(ρ, τ), ρ, τ ∈ T } be an biadmissible family. Consider the optimal stopping

games

A := inf
ρρρ∈Ti

sup
τ∈T

E[U(ρρρ(τ), τ)] and A := sup
τττ∈Ti

inf
ρ∈T

E[U(ρ,τττ(ρ))].

and

B := inf
ρρρ∈Tii

sup
τ∈T

E[U(ρρρ(τ), τ)] and B := sup
τττ∈Tii

inf
ρ∈T

E[U(ρ,τττ(ρ))].

We shall convert the problems into a corresponding Dynkin game. In order to do so,

let us introduce two families of random variables that will represent the payoffs in

the Dynkin game.

(4.2.2) V 1(τ) := ess inf
ρ∈Tτ

Eτ [U(ρ, τ)], τ ∈ T

and

(4.2.3) V 2(ρ) := ess sup
τ∈Tρ

Eρ[U(ρ, τ)], ρ ∈ T ,
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where Et[·] = E[·|Ft]. Observe that

V 1(σ) ≤ U(σ, σ) ≤ V 2(σ), σ ∈ T .

Define the corresponding Dynkin game as follows:

V := inf
ρ∈T

sup
τ∈T

E
[
V 1(τ)1{τ≤ρ} + V 2(ρ)1{τ>ρ}

]
,(4.2.4)

V := sup
τ∈T

inf
ρ∈T

E
[
V 1(τ)1{τ≤ρ} + V 2(ρ)1{τ>ρ}

]
.(4.2.5)

Recall the (uniform) right continuity in expectation along stopping times defined

in, e.g., [62].

Definition 4.2.5. An admissible family {X(σ), σ ∈ T } is said to be right continuous

along stopping times in expectation (RCE) if for any σ ∈ T and any (σn)n ⊂ T with

σn ↘ σ, one has

E[X(σ)] = lim
n→∞

E[X(σn)].

Definition 4.2.6. A biadmissible family {Y (ρ, τ), ρ, τ ∈ T } is said to be uniformly

right continuous along stopping times in expectation (URCE) if for any ρ, τ ∈ T and

any (ρn)n, (τn)n ⊂ T with ρn ↘ ρ and τn ↘ τ , one has

lim
n→∞

sup
ρ∈T

E|Y (ρ, τ)− Y (ρ, τn)| = 0 and lim
n→∞

sup
τ∈T

E|Y (ρ, τ)− Y (ρn, τ)| = 0

Below is the main result of this chapter.

Theorem 4.2.7. Assume the biadmissible family {U(ρ, τ), ρ, τ ∈ T } is URCE. We

have that

A = A = B = B = V = V .

Remark 4.2.8. Without the right continuity assumption of U , it may fail that A = A

or B = B, even for some natural choices of U . For example. let U(s, t) = |f(s)−f(t)|,
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where

f(t) =

 0 , 0 ≤ t ≤ T/2,

1 , T/2 < t ≤ T.

Then the problems related to A,A,B,B become deterministic.

Let us first show that A = 1. Take ρρρ ∈ Ti. If ρρρ(T ) ≤ T/2, then by taking τ = T

we have that A = 1. Otherwise ρρρ(T ) > T/2, and we take τ = T/2; Then by the

non-anticipativity condition (4.2.1), we have that ρρρ(T/2)∧ρρρ(T ) > (T/2)∧T = T/2,

which implies A = 1. Next, consider A. For any τττ ∈ Ti, by Proposition 4.2.4

τττ(τττ(T )) = τττ(T ). Then letting ρ = τττ(T ) we have that A = 0. Therefore, A 6= A.

Now by taking ρρρ(τ) = τ we have that B = 0. Let us consider B. Let τττ ∈ Tii

defined as

τττ(ρ) =

 T , 0 ≤ ρ ≤ T/2,

T/2 , T/2 < ρ ≤ T.

Then for any ρ ∈ T , U(ρ,τττ(ρ)) = 1 and thus B = 1. Therefore, B 6= B.

4.2.1 A sufficient condition for U to be URCE

Let W : [0, T ] × [0, T ] × R × R 7→ R be B([0, T ]) ⊗ B([0, T ]) ⊗ B(R) ⊗ B(R)-

measurable. Assume that W satisfies the Lipschitz condition, i.e., there exists some

L ∈ (0,∞) such that

|W (s1, t1, x1, y1)−W (s2, t2, x2, y2)| ≤ L(|s1 − s2|+ |t1 − t2|+ |x1 − x2|+ |y1 − y2|).

Let f = (ft)0≤t≤T and g = (gt)0≤t≤T be two bounded and right continuous F-

progressively measurable processes.

Proposition 4.2.9. The family {U(ρ, τ) := W (ρ, τ, fρ, gτ ), ρ, τ ∈ T } is biadmissible

and URCE.
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Proof. The biadmissibility is easy to check. Let us check U satisfies URCE: For any

ρ, τ ∈ T and any (τn)n ⊂ T with τn ↘ τ , we have that

lim
n→∞

sup
ρ∈T

E|U(ρ, τ)− U(ρ, τn)| ≤ L lim
n→∞

E [|τ − τn|+ |fτ − fτn|] = 0.

4.2.2 An application

Let U(t, s) = U(ft − gs), where U : R 7→ R is a utility function, and f and g are

two right continuous progressively measurable process. Consider

B := sup
ρρρ∈Tii

inf
τ∈T

E[U(ρρρ(τ), τ)].

This problem can be interpreted as the one in which an investor longs an American

option f and shorts an American option g, and the goal is to choose an optimal

stopping strategy to maximize the utility according to the stopping behavior of the

holder of g. Here we assume that the maturities of f and g are the same (i.e., T ).

This is without loss of generality. Indeed for instance, if the maturity of f is t̂ < T ,

then we can define f(t) = f(t̂) for t ∈ (t̂, T ].

4.3 Proof of Theorem 4.2.7

We will only prove that A = V = V , and the proof we provide in this section also

works for A,B and B. Throughout this section, we assume that the biadmissible

family {U(ρ, τ), ρ, τ ∈ T } is URCE.

Lemma 4.3.1. V = V .

Proof. The argument below (2.2) in [62] shows that {V 1(τ), τ ∈ T } and {V 2(ρ), ρ ∈

T } are admissible. By [62, Theorem 2.2], V 1 and V 2 are RCE because U is assumed

to be URCE. Then by [61, Theorem 3.6] we have that V = V .
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Remark 4.3.2. It follows from the construction in [61] that when U is URCE then,

the common value of V and V does not change if we replace {τ ≤ ρ} and {τ > ρ} in

(4.2.4) and (4.2.5) with {τ < ρ} and {τ ≥ ρ} respectively. In the rest of the chapter

we will also use this replaced version when necessary without pointing this out.

Lemma 4.3.3. For any ε > 0 and τ ∈ T , there exists ρτ ∈ Tτ+, such that

E|Eτ [U(ρτ , τ)]− V 1(τ)| < ε.

A similar result holds for V 2.

Proof. First let us show that

V 1(τ) = ess inf
ρ∈Tτ+

Eτ [U(ρ, τ)].

Obviously V 1(τ) ≤ ess infρ∈Tτ+ Eτ [U(ρ, τ)]. To show the reverse inequality, let us

first fix τ ∈ T . For any ρ0 ∈ Tτ , take ρn = (ρ0 + (T − ρ0)/n)∧T ∈ Tτ+, n = 1, 2, . . . .

Then ρn ↘ ρ0. By the URCE assumption of U , E|U(ρn, τ) − U(ρ, τ)| → 0. Hence,

there exists a subsequence (nk)k such that U(ρnk , τ)→ U(ρ0, τ) a.s.. Therefore,

ess inf
ρ∈Tτ+

Eτ [U(ρ, τ)] ≤ lim
k→∞

Eτ [U(ρnk , τ)] = Eτ [U(ρ0, τ)]

By the arbitrariness of ρ0, we have that V 1(τ) ≥ ess infρ∈Tτ+ Eτ [U(ρ, τ)].

Next, fix τ ∈ T . Since the family {Eτ [U(ρ, τ)] : ρ ∈ Tτ+} is closed under pairwise

minimization, by, e.g., [54, Theorem A.3], there exists (ρn) ∈ Tτ+ such that

lim
n→∞

Eτ [U(ρn, τ)] = ess inf
ρ∈Tτ+

Eτ [U(ρ, τ)] = V 1(τ).

Since U and V 1(τ) are bounded, we have that

lim
n→∞

E|Eτ [U(ρn, τ)]− V 1(τ)| = 0,

which implies the result.
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Lemma 4.3.4. A ≤ V .

Proof. Take ε > 0. Let ρε ∈ T be an ε-optimizer of V , i.e.,

sup
τ∈T

E
[
1{ρε≤τ}V

2(ρε) + 1{ρε>τ}V
1(τ)

]
< V + ε.

For any τ ∈ T , by Lemma 4.3.3 there exists ρ1
ε(τ) ∈ Tτ+ such that

E|Eτ [U(ρ1
ε(τ), τ)− V 1(τ)| < ε.

Define ρρρε as

(4.3.1) ρρρε(τ) := ρε1{τ≥ρε} + ρ1
ε(τ)1{τ<ρε}, τ ∈ T .

Let us show that ρρρε is in Ti. First, for any τ ∈ T , ρρρε(τ) ∈ T since for any

t ∈ [0, T ],

{ρρρε(τ) ≤ t} = ({τ ≥ ρε} ∩ {ρε ≤ t}) ∪
(
{τ < ρε} ∩ {ρ1

ε(τ) ≤ t}
)

= ({τ ≥ ρε} ∩ {ρε ≤ t}) ∪
(
{τ < ρε} ∩ {τ ≤ t} ∩ {ρ1

ε(τ) ≤ t}
)
∈ Ft.

Then let us show that ρρρε satisfies the non-anticipativity condition of Type I in (4.2.1).

Take τ1, τ2 ∈ T . Assume that ρρρε(τ1) ≤ τ1 ∧ τ2 ≤ τ1. If τ1 < ρε ≤ T , then ρρρε(τ1) =

ρ1
ε(τ1) > τ1, contradiction. Hence τ1 ≥ ρε, and thus ρρρε(τ1) = ρε ≤ τ1 ∧ τ2 ≤ τ2, which

implies ρρρε(τ2) = ρε = ρρρε(τ1) ≤ τ1∧τ2. Assume that ρρρε(τ1) > τ1∧τ2. If ρρρε(τ2) ≤ τ1∧τ2

then we can use the previous argument to get that ρρρε(τ1) = ρρρε(τ2) ≤ τ1 ∧ τ2 which is

a contradiction, and thus ρρρε(τ2) > τ1 ∧ τ2.
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We have that

A ≤ sup
τ∈T

E[U(ρρρε(τ), τ)]

= sup
τ∈T

E
[
U(ρε, τ)1{ρε≤τ} + U(ρ1

ε(τ), τ)1{ρε>τ}
]

= sup
τ∈T

E
[
1{ρε≤τ}Eρε [U(ρε, τ)] + 1{ρε>τ}Eτ [U(ρ1

ε(τ), τ)
]

≤ sup
τ∈T

E
[
1{ρε≤τ}V

2(ρε) + 1{ρε>τ}V
1(τ)

]
+ ε

≤ V + 2ε.

Remark 4.3.5. Once we show Theorem 4.2.7, we can see that ρρρε ∈ Ti ⊂ Tii defined

in (4.3.1) is a 2ε-optimizer for A and B.

Lemma 4.3.6. A ≥ V .

Proof. Fix ε > 0. Let τε ∈ T be an ε-optimizer for V . For any ρ ∈ T , by Lemma 4.3.3

there exists τ 2
ε (ρ) ∈ Tρ+ such that

E|Eτ [U(ρ, τ 2
ε (ρ))− V 2(ρ)| < ε

For any ρρρ ∈ Ti, define τρρρ as

τρρρ := τε1{τε≤ρρρ(τε)} + τ 2
ε (ρρρ(τε))1{τε>ρρρ(τε)}.

Using a similar argument as in the proof of Lemma 4.3.4, we can show that τρρρ is a

stopping time.

Since Ti ⊂ Tii, and also in order to let our proof also fit for B, we shall only

use the non-anticipativity condition of Type II for ρρρ in (4.2.1), although ρρρ ∈ Ti. By

(4.2.1) w.r.t. Type II,

either ρρρ(τρρρ) = ρρρ(τε) < τε ∧ τρρρ or ρρρ(τρρρ) ∧ ρρρ(τε) ≥ τε ∧ τρρρ.
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Therefore,

if τε ≤ ρρρ(τε), then ρρρ(τρρρ) ≥ τε ∧ τρρρ = τε = τρρρ,

and

if τε > ρρρ(τε), then τρρρ = τ 2
ε (ρρρ(τε)) > ρρρ(τε) =⇒ ρρρ(τε) < τρρρ∧τε =⇒ ρρρ(τε) = ρρρ(τρρρ).

Now we have that

sup
τ∈T

E[U(ρρρ(τ), τ))]

≥ E[U(ρρρ(τρρρ), τρρρ)]

= E
[
U(ρρρ(τρρρ), τρρρ)1{τε≤ρρρ(τε)} + U(ρρρ(τρρρ), τρρρ)1{τε>ρρρ(τε)}

]
= E

[
U(ρρρ(τρρρ), τε)1{τε≤ρρρ(τε)} + U(ρρρ(τε), τ

2
ε (ρρρ(τε)))1{τε>ρρρ(τε)}

]
= E

[
1{τε≤ρρρ(τε)}Eτε [U(ρρρ(τρρρ), τε)] + 1{τε>ρρρ(τε)}Eρρρ(τε)[U(ρρρ(τε), τ

2
ε (ρρρ(τε)))]

]
≥ E

[
1{τε≤ρρρ(τε)}V

1(τε) + 1{τε>ρρρ(τε)}V
2(ρρρ(τε))

]
− ε

≥ inf
ρ∈T

E
[
1{τε≤ρ}V

1(τε) + 1{τε>ρ}V
2(ρ)

]
− ε

≥ V − 2ε,

where the fifth inequality follows from the definition of V 1 in (4.2.2) and the fact

that ρρρ(τρρρ) ≥ τε on {τε ≤ ρρρ(τε)}. By the arbitrariness of ρρρ ∈ Ti and ε, the conclusion

follows.

Proof of Theorem 4.2.7. This follows from Lemmas 4.3.1, 4.3.4 and 4.3.6.

4.4 Existence of optimal stopping strategies

If we impose a strong left continuity assumptions on U in addition (see e.g. [60–

62]), we would get the existence of the optimal stopping strategies for B and B. For

example let us consider B. Indeed, the left and right continuity of U would imply

the required left and right continuity of V 1 and V 2, as well as the existence of an
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optimal stopping time ρ1
0(τ) ∈ Tτ for V 1(τ). The continuity of V 1 and V 2 would

further imply the existence of an optimal stopping time ρ0 for V (see [61]). Then

define

ρρρ0(τ) := ρ01{τ≥ρ0} + ρ1
0(τ)1{τ<ρ0}, τ ∈ T .

Following the proof of Lemma 4.3.4, one can show that ρρρ0 ∈ Tii is optimal for B.

One should note that in this case ρρρ0 may not be in Ti as opposed to ρρρε define in

(4.3.1), this is because here it is possible that ρ0(τ) = τ on {τ < T}.

On the other hand, the existence of optimal stopping strategies for A and A may

fail in general even if U is quite regular. For example, let U(s, t) = |s− t|. By taking

ρρρ(τ) = τ we have that B = 0 which is equal to A by Theorem 4.2.7. Now assume

there exists some optimal ρ̂ρρ ∈ Ti for A. That is,

sup
τ
|ρ̂ρρ(τ)− τ | = A = 0.

Then we have that ρρρ(τ) = τ for any τ ∈ [0, T ], which contradicts with the non-

anticipativity condition of Type I by letting σ1 6= σ2 in (4.2.1).



CHAPTER V

On an optimal stopping problem of an insider

5.1 Introduction

In this chapter we consider Shiryaev’s optimal stopping problem:

(5.1.1) v(ε) = sup
τ∈T0,T

EB(τ−ε)+ ,

where T > 0 is a fixed time horizon, (Bt)0≤t≤T is the Brownian motion, ε ∈ [0, T ] is

a constant, and Tε,T is the set of stopping times taking values in [ε, T ]. This can be

thought of a problem of an insider in which she is allowed to peek ε into the future

for the payoff before making her stopping decision.

We show that v(ε) is the solution of a corresponding path dependent reflected

backward stochastic differential equation (RBSDEs). This is essentially an existence

result, and it shows that an optimal stopping time exists. But the main advantage of

using an RBSDE representation is that we can easily get the continuity of v(ε) with

respect to ε from the stability of the RBSDEs. However, we want to compute the

function as explicitly as possible, and the RBSDE representation of the problem does

not help. This is because the problem is path dependent (one of the state variables

would have be an entire path of length ε), and there is no numerical result available

so far that can cover our case.

In fact, we will observe that v(ε) =
√

2(T−ε)
π

if ε ∈ [T/2, T ], while as far as we know
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there is no explicit solution for v(ε) if ε ∈ (0, T/2). But for smaller ε, there are only

lower and upper bounds available. As the main result of this chapter, we provide

the asymptotic behavior of v(ε) as ε ↘ 0 (see Theorem 5.3.1). As a byproduct,

we also get Lévy’s modulus of continuity theorem in the L1 sense as opposed to

the almost-surely sense (compare Corollary 5.3.4 and, e.g., [53, Theorem 9.25, page

114]).

5.2 First observations

Let T > 0 and let {Bt, t ∈ [0, T ]} be a Brownian motion defined on a probability

space (Ω,F ,P) and let F = {Ft, t ∈ [0, T ]} be the natural filtration augmented by

the P-null sets of F . We aim at the problem (5.1.1). But for the sake of generality,

let us first look at the more general optimal stopping problem of an insider:

(5.2.1) w = sup
τ∈Tε,T

E

[
n∑
i=1

φi(τ−εi)+

]
,

where (φit)0≤t≤T is continuous and progressively measurable, εi ∈ [0, T ], i = 1, . . . , n,

are given constants, and Tε,T is the set of stopping times that lie between a constant

ε ∈ [0, T ] and T . Observe that τ − εi is not a stopping time with respect to F for

εi > 0. The solution to (5.2.1) is described by the following result:

Proposition 5.2.1. Assume E
[

sup0≤t≤T (ξ+
t )2
]
<∞, where ξt =

∑n
i=1 φ

i
(t−εi)+, 0 ≤

t ≤ T . Then the value defined in (5.2.1) can be calculated using a reflected backward

stochastic differential equation (RBSDE). More precisely, w = EYε, for any ε ∈

[0, T ], where (Yt)0≤t≤T satisfies the RBSDE

ξt ≤ Yt = ξT −
∫ T

t

ZsdWs + (KT −Kt), 0 ≤ t ≤ T,∫ T

0

(Yt − ξt)dKt = 0,

(5.2.2)
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Moreover, there exists an optimal stopping time τ̂ described by

τ̂ = inf{t ∈ [ε, T ] : Yt = ξt}.

Remark 5.2.2. One should note that the optimal stopping problem we are considering

is path dependent (i.e. not of Markovian type) and therefore one would not be able

to write down a classical free boundary problem corresponding to (5.1.1).

We prefer to use an RBSDE representation of the value function instead of directly

using the representation directly from the classical optimal stopping theory because

we want to use the stability result, which we will state in Corollary 5.2.3, associated

with the former.

Proof of Proposition 5.2.1. For any τ ∈ Tε,T ,

Eξτ = E[E[ξτ |Fε]] ≤ E
[

ess sup
σ∈Tε,T

E[ξσ|Fε]
]
.

Therefore,

(5.2.3) w = sup
τ∈Tε,T

Eξτ ≤ E
[

ess sup
τ∈Tε,T

E[ξτ |Fε]
]
.

By [40, Theorem 5.2] there exists a unique solution (Y, Z,K) to the RBSDE in (5.2.2).

Then by Proposition 2.3 (and its proof) in [40] we have

sup
τ∈Tε,T

Eξτ ≥ Eξτ̂ = EYτ̂ = EYε = E
[

ess sup
τ∈Tε,T

E[ξτ |Fε]
]
.

Along with (5.2.3) the last inequality completes the proof.

Now let us get back to Shiryaev’s problem (5.1.1). As a corollary of Proposi-

tion 5.2.1, we have the following result for v(ε), ε ∈ [0, T ].

Corollary 5.2.3. The value defined in (5.1.1) can be calculated using an RBSDE.

More precisely, vε = Y0 almost surely, where (Yt)0≤t≤T satisfies the RBSDE (5.2.2)
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with ξ defined as ξt = B(t−ε)+ , 0 ≤ t ≤ T . Moreover, there exists an optimal stopping

time τ̃ described by

(5.2.4) τ̃ = inf{t ≥ 0 : Yt = B(t−ε)+} ≥ ε1{ε<T}, a.s..

Furthermore, the function ε→ v(ε), ε ∈ [0, T ], is a continuous function.

Proof. By Proposition 5.2.1 v(ε) = Y0 a.s., and τ̃ defined in (5.2.4) is optimal. Besides,

the continuity of ε → v(ε), ε ∈ [0, T ] is a direct consequence of the stability of

RBSDEs indicated by [40, Proposition 3.6]. Observe that for ε ∈ (0, T ) and t ∈ [0, ε],

Yt ≥ E[Yε|Ft] > 0 = B(t−ε)+ a.s.. Hence we have that τ̃ ≥ ε1{ε<T} a.s..

Remark 5.2.4. In the above result, since for any δ ∈ [0, ε]

v(ε) = sup
τ∈T0,T

EB(τ−ε)+ = sup
τ∈Tδ,T

EB(τ−ε)+ ,

we can conclude from Proposition 5.2.1 that v(ε) = EYδ, which implies that (Yt)t∈[0,ε]

is a martingale.

Next, we will make some observations about the magnitude of the function ε →

v(ε):

Remark 5.2.5. Observe that for ε ∈ (0, T ), insider’s value defined in (5.1.1) is strictly

greater than 0 (and hence does strictly better than a stopper which does not posses

the insider information):

v(ε) ≥ E
[

max
0≤t≤ε∧(T−ε)

Bt

]
=

√
2

π
(ε ∧ (T − ε)) > v(0) = 0,

which shows that there is an incentive for waiting. We also have an upper bound

v(ε) ≤ E
[

max
0≤t≤T

Bt

]
=

√
2T

π
.

In fact when ε ∈ [T/2, T ], v(ε) can be explicitly determined as

v(ε) = E
[

max
0≤t≤T−ε

Bt

]
=

√
2 (T − ε)

π
, ε ∈ [T/2, T ].
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and we have a strict lower bound for ε ∈ [0, T/2)

v(ε) > E
[

max
0≤t≤ε

Bt

]
=

√
2ε

π
, ε ∈ [0, T/2).

5.3 Asymptotic behavior of v(ε) as ε↘ 0

The following theorem states that the order of v(ε) defined in (5.1.1) is
√

2ε ln(1/ε)

as ε↘ 0, which is the same as Levy’s modulus for Brownian motion. Notice that

v(ε) = sup
τ∈Tε,T

E[Bτ−ε −Bτ ].

Theorem 5.3.1.

(5.3.1) lim
ε↘0

v(ε)√
2ε ln(1/ε)

= 1.

In order to prepare the proof of the theorem, we will need two lemmas.

Lemma 5.3.2.

lim inf
ε↘0

v(ε)√
2ε ln(1/ε)

≥ 1.

Proof. Let d ∈ (0, 1) be a constant, and define τ ∗ ∈ Tε,T

τ ∗ := inf{nε : B(n−1)ε −Bnε ≥ d
√

2ε ln(1/ε), n = 1, . . . , [T/ε]− 1} ∧ T.

Then

sup
τ∈Tε,T

E[Bτ−ε −Bτ ]

≥ E[Bτ∗−ε −Bτ∗ ]

= E
[
(Bτ∗−ε −Bτ∗) 1{τ∗≤ε[T/ε]−ε}

]
+ E

[
(Bτ∗−ε −Bτ∗) 1{τ∗>ε[T/ε]−ε}

]
≥ d
√

2ε ln(1/ε)P (τ ∗ ≤ ε[T/ε]− ε) + E
[
(BT−ε −BT ) 1{τ∗>ε[T/ε]−ε}

]
= d
√

2ε ln(1/ε)P (τ ∗ ≤ ε[T/ε]− ε).
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We have that

P (τ ∗ ≤ ε[T/ε]− ε) = 1− P
(
B(n−1)ε −Bnε < d

√
2ε ln(1/ε), n = 1, . . . , [T/ε]− 1

)
= 1−

[
P
(
Bε −B0 < d

√
2ε ln(1/ε)

)][T/ε]−1

= 1−

[
1−

∫ ∞
d
√

2ε ln(1/ε)

1√
2πε

e−
x2

2ε dx

][T/ε]−1

= 1− (1− α)
1
α

([T/ε]−1)α,

(5.3.2)

where

α :=

∫ ∞
d
√

2ε ln(1/ε)

1√
2πε

e−
x2

2ε dx =
1

2d
√
π ln(1/ε)

εd
2

(1 + o(1))→ 0,

by, e.g., [53, (9.20), page 112]. Since d ∈ (0, 1), ([T/ε]− 1)α→∞, and thus

P (τ ∗ ≤ ε[T/ε]− ε)→ 1, ε↘ 0.

Therefore,

lim inf
ε↘0

v(ε)√
2ε ln(1/ε)

≥ lim inf
ε↘0

[dP (τ ∗ ≤ ε[T/ε]− ε)] = d.

Then (5.3.1) follows by letting d↗ 1.

Lemma 5.3.3. The family{
supε≤t≤T |Bt−ε −Bt|√

2ε ln(1/ε)
: ε ∈

(
0,
T ∧ 1

2

]}

is uniformly integrable.

Proof. Since

supε≤t≤T |Bt−ε −Bt|√
2ε ln(1/ε)

≤
2 max1≤n≤[T/ε]+1 sup(n−1)ε≤t,t′≤nε |Bt −Bt′|√

2ε ln(1/ε)

≤
4 max1≤n≤[T/ε]+1 sup(n−1)ε≤t≤nε |Bt −B(n−1)ε|√

2ε ln(1/ε)
,
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it suffices to show that the family{
Mε :=

max1≤n≤[T/ε]+1 sup(n−1)ε≤t≤nε |Bt −B(n−1)ε|√
ε ln(1/ε)

: ε ∈
(

0,
T ∧ 1

2

]}
is uniformly integrable. For a ≥ 0,

P (Mε ≤ a) =

[
P

(
sup

0≤t≤ε
|Bt| ≤ a

√
ε ln(1/ε)

)][T/ε]+1

.

Hence the density of Mε, fε, satisfies that for a ≥ 0,

fε(a) ≤ ([T/ε] + 1)

[
P

(
sup

0≤t≤ε
|Bt| ≤ a

√
ε ln(1/ε)

)][T/ε]
√

8

π

√
ln(1/ε)e−

ln(1/ε)
2

a2

≤
4T
√

ln(1/ε)

ε
e−

ln(1/ε)
2

a2 ,

where for the first inequality we use, e.g., [53, (8.3), page 96], and the fact that the

density of sup0≤t≤ε |Bt| is no greater than twice the density of sup0≤t≤εBt. Then we

have that for N > 0,

E
[
Mε1{Mε>N}

]
=

∫ ∞
N

xfε(x)dx ≤
4T
√

ln(1/ε)

ε

∫ ∞
N

xe−
ln(1/ε)

2
x2dx

=
4Tε

N2

2
−1√

ln(1/ε)
≤ T

2
N2

2
−3
√

ln 2
,

i.e.,

lim
N→∞

sup
ε∈(0,T∧1

2
]

E
[
Mε1{Mε>N}

]
= 0.

Now let us turn to the proof of Theorem 5.3.1.

Proof of Theorem 5.3.1.

lim sup
ε↘0

supτ∈Tε,T E[Bτ−ε −Bτ ]√
2ε ln(1/ε)

≤ lim sup
ε↘0

E

[
supε≤t≤T |Bt−ε −Bt|√

2ε ln(1/ε)

]

≤ E

[
lim sup
ε↘0

supε≤t≤T |Bt−ε −Bt|√
2ε ln(1/ε)

]
≤ 1,
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where we apply Lemma 5.3.3 for the second inequality, and use Levy’s modulus of

continuity for Brownian motion (see, e.g., [53, Theorem 9.25, page 114]) for the third

inequality. Together with (5.3.1), the conclusion follows.

Using the above proof, we can actually show the following result, which is Lévy’s

modulus of continuity result in the L1 sense, as opposed to the almost-surely sense

(see, e.g., [53, Theorem 9.25, page 114]).

Corollary 5.3.4.

lim
ε↘0

supτ∈Tε,T E[Bτ−ε −Bτ ]√
2ε ln(1/ε)

= lim
ε↘0

E

[
supε≤t≤T (Bt−ε −Bt)√

2ε ln(1/ε)

]

= lim
ε↘0

E

[
supε≤t≤T |Bt−ε −Bt|√

2ε ln(1/ε)

]
= 1.



CHAPTER VI

On arbitrage and duality under model uncertainty and
portfolio constraints

6.1 Introduction

We consider the fundamental theorem of asset pricing (FTAP) and hedging prices

of European and American options under the non-dominated model certainty frame-

work of [19] with convex closed portfolio constraints in discrete time. We first show

that no arbitrage in the quasi-sure sense is equivalent to the existence of a set of

probability measures; under each of these measures any admissible portfolio value

process is a local super-martingale. Then we get the non-dominated version of op-

tional decomposition under portfolio constraints. From this optional decomposition,

we get the duality of super- and sub-hedging prices of European and American op-

tions. We also show that the optimal super-hedging strategies exist. Finally, we

add options to the market and get the FTAP and duality of super-hedging prices of

European options by using semi-static trading strategies (i.e., strategies dynamically

trading in stocks and statically trading in options).

Our results generalize the ones in [43, Section 9] to a non-dominated model-

uncertainty set-up, and extend the results in [19] to the case where portfolio con-

straints are involved. These conclusions are general enough to cover many interesting

models with the so-called delta constraints ; for example, when shorting stocks is not

79
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allowed, or some stocks enter or leave the market at certain periods.

Compared to [43, Section 9], the main difficulty in our setting is due to the fact

that the set of probability measures does not admit a dominating measure. We use

the measurable selection mechanism developed in [19] to overcome this difficulty, i.e.,

first get the FTAP and super-hedging result in one period, and then “measurably”

glue each period together to get multiple-period versions. It is therefore of crucial

importance to get the one-period results. In [19], Lemma 3.3 serves as a fundamental

tool to show the FTAP and super-hedging result in one-period model, whose proof

relies on an induction on the number of stocks and a separating hyperplane argument.

While in our set-up, both the induction and separating argument do not work due

to the presence of constraints. In this chapter, we instead use a finite covering

argument to overcome the difficulty stemming from constraints. Another major

difference from [19] is the proof for the existence of optimal super-hedging strategy

in multiple period, which is a direct consequence of Theorem 2.2 there. A key step

in the proof of Theorem 2.2 is modifying the trading strategy to the one with fewer

“rank” yet still giving the same portfolio value. However, this approach fails to

work in our set-up, since the modification may not be admissible anymore due to

the portfolio constrains. In our chapter, we first find the optimal static trading

strategy of options, and then find the optimal dynamical trading strategy of stocks

by optional decomposition with constraints. Optional decomposition also helps us

obtain the duality results for the American options.

We work within the no-arbitrage framework of [19], in which there is said to be an

arbitrage when there exists a trading strategy whose gain is quasi surely non-negative

and strictly positive with positive probability under an admissible measure. In this

framework we are given a model and the non-dominated set of probability measures
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comes from estimating the parameters of the model. Since estimating results in confi-

dence intervals for the parameters we end up with a set of non-dominated probability

measures.

There is another no-arbitrage framework which was introduced by Acciaio et

al. [1]. In that framework, there is said to be an arbitrage if the gain from trading is

strictly positive for all scenarios. Under the framework of [1], the model uncertainty

is in fact part of the model itself and the user of that model does not have confidence

in her ability to estimate the parameters. The choice between the framework of [1]

and the framework of [19] is a modeling issue.

Our assumptions mainly contain two parts: (1) the closedness and convexity of

the related control sets (see Assumptions 6.2.1, 6.3.1, 6.4.1 and 6.5.1), and (2) some

measurability assumptions (see the set-up of Section 6.3.1 and Assumptions 6.3.1

and 6.5.1). The first part is almost necessary (see Example 6.2.5), and can be eas-

ily verified in many interesting cases (see e.g., Example 6.2.1). The second part is

the analyticity of some relevant sets, which we make in order to apply measurable

selection results and perform dynamic programming principle type arguments. An-

alyticity (which is a measurability concept more general than Borel measurability,

so in particular every Borel set is analytic) is a minimal assumption one can have in

order to have a dynamic programming principle and this goes well back to Blackwell.

These concepts are covered by standard textbooks on measure theory, see e.g. [23].

See also [18] for applications in stochastic control theory and the references therein.

In Section 6.3.3, we provide some general and easily verifiable sufficient conditions

for Assumptions 6.3.1(iii) and 6.5.1(ii), as well as Examples 6.3.7 and 6.3.8.

The rest of the chapter is organized as follows: We show the FTAP in one period

and in multiple periods in Sections 6.2 and 6.3 respectively. In Section 6.4, we get
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the super-hedging result in one period. In Section ??, we provide the non-dominated

optional decomposition with constraints in multiple periods. Then starting from the

optional decomposition, we analyze the sub- and super-hedging prices of European

and American options in multiple periods in Section 6.6. In Section 6.7, we add

options to the market, and study the FTAP and super-hedging using semi-static

trading strategies in multiple periods. Finally in the appendix, we provide the proofs

of Lemmas 6.3.2, 6.3.3, 6.5.4 and 6.5.6; these proofs are with a lot of technicalities

and can be safely skipped in the first reading.

We devote the rest of this section to frequently used notation and concepts in the

chapter.

6.1.1 Frequently used notation and concepts

• P(Ω) denotes set of all the probability measures on (Ω,B(Ω)), where Ω is some

polish space, and B(Ω) denotes its Borel σ-algebra. P(Ω) is endowed with the

topology of weak convergence.

• ∆St(ω, ·) = St+1(ω, ·) − St(ω), ω ∈ Ωt := Ωt (t-fold Cartesian product of Ω).

We may simply write ∆S when there is only one period (i.e., t = 0).

• Let P ⊂ P(Ωt). A property holds P − q.s. if and only if it holds P -a.s. for any

P ∈ P . A set A ∈ Ωt is P-polar if supP∈P P (A) = 0.

• Let P ⊂ P(Ω). suppP(∆S) is defined as the smallest closed subset A ⊂ Rd such

that ∆S ∈ A P − q.s.. Define N(P) := {H ∈ Rd : H∆S = 0, P − q.s.} and

N⊥(P) := span(suppP(∆S)) ⊂ Rd. Then N⊥(P) = (N(P))⊥ by [68, Lemma

2.6]. Denote N(P ) = N({P}) and N⊥(P ) = N⊥({P}).

• For H ⊂ Rd, H(P) := {H : H ∈ projN⊥(P)(H)}. Denote H(P ) = H({P}).

• For H ⊂ Rd, CH(P) := {cH : H ∈ H(P), c ≥ 0}. Denote CH(P ) = CH({P}).



83

• CH := {cH ∈ Rd : H ∈ H, c ≥ 0}, where H ⊂ Rd.

• (H · S)t =
∑t−1

i=0 Hi(Si+1 − Si).

• R∗ := [−∞,∞].

• || · || represents the Euclidean norm.

• EP |X| := EP |X+| − EP |X−|, and by convention ∞−∞ = −∞. Similarly the

conditional expectation is also defined in this extended sense.

• L0
+(P) is the space of random variables X on the corresponding topological

space satisfying X ≥ 0 P − q.s., and L1(P) is the space of random variables

X satisfying supP∈P EP |X| < ∞. Denote L0
+(P ) = L0

+({P}), and L1(P ) =

L1({P}). Similar definitions holds for L0, L1
+ and L∞. We shall sometimes

omit P or P in L0
+, L

1, etc., when there is no ambiguity.

• We say NA(P) holds, if for any H ∈ H satisfying (H · S)T ≥ 0, P − q.s.,

then (H · S)T = 0, P − q.s., where H is some admissible control set of trading

strategies for stocks. Denote NA(P ) for NA({P}).

• We write Q≪ P , if there exists some P ∈ P such that Q� P .

• Let (X,G) be a measurable space and Y be a topological space. A mapping

Φ from X to the power set of Y is denoted by Φ : X � Y . We say Φ is

measurable (resp. Borel measurable), if

(6.1.1)

{x ∈ X : Φ(x) ∩ A 6= ∅} ∈ G, ∀ closed (resp. Borel measurable) A ⊂ Y.

Φ is closed (resp. compact) valued if Φ(x) ⊂ Y is closed (resp. compact) for all

x ∈ X. We refer to [2, Chapter 18] for these concepts.

• A set of random variables A is P − q.s. closed, if (an)n ⊂ A convergent to some

a P − q.s. implies a ∈ A.
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• For Φ : X � Y , Gr(Φ) := {(x, y) ∈ X × Y : y ∈ Φ(x)}.

• Let X be a Polish space. A set A ⊂ X is analytic if it is the image of a Borel

subset of another Polish space under a Borel measurable mapping. A function

f : X 7→ R∗ is upper (resp. lower) semianalytic if the set {f > c} (resp.

{f < c}) is analytic. “u.s.a.” (resp. “l.s.a.”) is short for upper (resp. lower)

semianalytic.

• Let X be a polish space. The σ-algebra ∩P∈P(X)B(X)P is called the universal

completion of B(X), where B(X)P is the P -completion of B(X). A set A ⊂ X

is universally measurable if A ∈ ∩P∈P(X)B(X)P . A function f is universally

measurable if f ∈ ∩P∈P(X)B(X)P . “u.m.” is short for universally measurable.

• Let X and Y be some Borel spaces and U : X � Y . Then u is a u.m. selector

of U , if u : X 7→ Y is u.m. and u(·) ∈ U(·) on {U 6= ∅}.

6.2 The FTAP in one period

We derive the FTAP for one-period model in this section. Theorem 6.2.2 is the

main result of this section.

6.2.1 The set-up and the main result

Let P be a set of probability measures on a Polish space Ω, which is assumed to

be convex. Let S0 ∈ Rd be the initial stock price, and Borel measurable S1 : Ω 7→ Rd

be the stock price at time t = 1. Denote ∆S = S1 − S0. Let H ⊂ Rd be the set of

admissible trading strategies. We assume H satisfies the following conditions:

Assumption 6.2.1. CH(P) is (i) convex, and (ii) closed.

Example 6.2.1. Let H :=
∏d

i=1[ai, ai] for some ai, ai ∈ R with ai ≤ ai, i = 1 . . . , d.

Then H satisfies Assumption 6.2.1 for any P ⊂ P(Ω). Indeed, H ⊂ Rd is a bounded,
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closed, convex set with finitely many vertices, and so is H(P). Hence the generated

cone CH(P) is convex and closed.

Define

Q := {Q ∈ P(Ω) : Q≪ P , EQ|∆S| <∞ and EQ[H∆S] ≤ 0, ∀H ∈ H}.

The following is the main result of this section:

Theorem 6.2.2. Let Assumption 6.2.1 hold. Then NA(P) holds if and only if for

any P ∈ P, there exists Q ∈ Q dominating P .

6.2.2 Proof for Theorem 6.2.2

Let us first prove the following lemma, which is the simplified version of Theo-

rem 6.2.2 when P consists of a single probability measure.

Lemma 6.2.3. Let P ∈ P(Ω) and Assumption 6.2.1 w.r.t. CH(P ) hold. Then

NA(P ) holds if and only if there exists Q ∼ P , such that EQ|∆S| < ∞ and

EQ[H∆S] ≤ 0, for any H ∈ H.

Proof. Sufficiency is obvious. We shall prove the necessity in two steps. W.l.o.g. we

assume that EP |∆S| <∞ (see e.g., [19, Lemma 3.2]).

Step 1: In this step, we will show that K − L0
+ is closed in L0, where

K := {H∆S : H ∈ CH(P )}.

Let Xn = Hn∆S − Yn
P→ X, where Hn ∈ CH(P ) and Yn ≥ 0. Without loss of

generality, assume Xn → X, P -a.s.. If (Hn)n is not bounded, then let 0 < ||Hnk || →

∞ and we have that

Hnk

||Hnk ||
∆S =

Xnk

||Hnk ||
+

Ynk
||Hnk ||

≥ Xnk

||Hnk ||
.
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Taking limit on both sides along a further sub-sequence, we obtain that H∆S ≥ 0 P -

a.s. for some H ∈ Rd with ||H|| = 1. Since CH(P ) is closed, H∆S ∈ CH(P ). By

NA(P ), H∆S = 0 P -a.s., which implies H ∈ N(P )∩N⊥(P ) = {0}. This contradicts

||H|| = 1. Therefore, (Hn)n is bounded, and thus there exists a subsequence (Hnj)j

convergent to some H ′ ∈ CH(P ). Then

0 ≤ Ynj = Hnj∆S −Xnj → H ′∆S −X =: Y, P -a.s..

Then X = H ′∆S − Y ∈ K − L0
+.

Step 2: From Step 1, we know that K ′ := (K−L0
+)∩L1 is a closed, convex cone in

L1, and contains −L∞+ . Also by NA(P ), K ′ ∩ L1
+ = {0}. Then Kreps-Yan theorem

(see e.g., [43, Theorem 1.61]) implies the existence of Q ∼ P with dQ/dP ∈ L∞+ (P ),

such that EQ[H∆S] ≤ 0 for any H ∈ H.

Remark 6.2.4. The FTAP under a single probability measure with constraints is

analyzed in [43, Chapter 9]. However, although the idea is quite insightful, the result

there is not correct: what we need is the closedness of the generated cone CH(P )

instead of the closedness of H(P ). (In this sense, our result is different from [29];

in [29] it is the closedness of the corresponding projection that matters.) Below is a

counter-example to [43, Theorem 9.9].

Example 6.2.5. Consider the one-period model: there are two stocks S1 and S2 with

the path space {(1, 1)} × {(s, 0) : s ∈ [1, 2]}; let

H := {(h1, h2) : h2
1 + (h2 − 1)2 ≤ 1}.

be the set of admissible trading strategies; let P be a probability measure on this

path space such that S1
1 is uniformly distributed on [1, 2]. It is easy to see that

NA(P ) holds, and H satisfies the assumptions (a), (b) and (c) on [43, page 350]. Let



87

H = (h1, h2) such that H∆S = 0, P -a.s. Then h1(S1
1−1) = h2, P -a.s., which implies

h1 = h2 = 0. By [43, Remark 9.1], H also satisfies assumption (d) on [43, page 350].

Now suppose [43, Theorem 9.9] holds, then there exists Q ∼ P , such that

(6.2.1) EQ[H∆S] ≤ 0, ∀H ∈ H.

Since Q ∼ P, EQ(S1
1 − 1) > 0. Take (h1, h2) ∈ H with h1, h2 > 0 and h2/h1 <

EQ(S1
1 − 1). Then

h1EQ(S1
1 − 1)− h2 > 0,

which contradicts (6.2.1).

In fact, it is not hard to see that in this example,

CH(P ) = {(h1, h2) : h2 > 0 or h1 = h2 = 0}

is not closed.

Lemma 6.2.6. Let Assumption 6.2.1(ii) hold. Then there exists P ′′ ∈ P, such that

N⊥(P ′′) = N⊥(P) and NA(P ′′) holds.

Proof. Denote H := {H ∈ CH(P) : ||H|| = 1}. For any H ∈ H ⊂ N⊥(P), by NA(P),

there exists PH ∈ P , such that PH(H∆S < 0) > 0. It can be further shown that

there exists εH > 0, such that for any H ′ ∈ B(H, εH),

(6.2.2) PH(H ′∆S < 0) > 0,

where B(H, εH) := {H ′′ ∈ Rd : ||H ′′ − H|| < εH}. Indeed, there exists some

δ > 0 such that PH(H∆S < −δ) > 0. Then there exists some M > 0, such that

PH(H∆S < −δ, ||∆S|| < M) > 0. Taking εH := δ/M , we have that for any

H ′ ∈ B(H, εH), PH(H ′∆S < 0, ||∆S|| < M) > 0, which implies (6.2.2).

Because H ⊂ ∪H∈HB(H, εH) and H is compact from Assumption 6.2.1, there

exists a finite cover of H, i.e., H ⊂ ∪ni=1B(Hi, εHi). Let P ′ =
∑n

i=1 aiPHi , with
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∑n
i=1 ai = 1 and ai > 0, i = 1, . . . , n. Then P ′ ∈ P , and P ′(H∆S < 0) > 0 for any

H ∈ H.

Obviously, N⊥(P ′) ⊂ N⊥(P). If N⊥(P ′) = N⊥(P), then let P ′′ = P ′. Otherwise,

take H ∈ N⊥(P) ∩N(P ′). Then there exists R1 ∈ P , such that R1(H∆S 6= 0) > 0.

Let R′1 = (P ′ + R1)/2. Then P ′ � R′1 ∈ P , and thus N⊥(R′1) ⊃ N⊥(P ′). Since

H ∈ N(P ′)\N(R′1), we have that N⊥(R′1) % N⊥(P ′). If N⊥(R′1) $ N⊥(P), then we

can similarly construct R′2 ∈ P , such that R′2 � R′1 and N⊥(R′2) % N⊥(R′1). Since

N⊥(P) is a finite dimensional vector space, after finite such steps, we can find such

P ′′ ∈ P dominating P ′ with N⊥(P ′′) = N⊥(P). For any H ∈ H, P ′′(H∆S < 0) > 0

since P ′′ � P ′. This implies that NA(P ′′) holds.

Proof of Theorem 6.2.2. Sufficiency. If not, there exists H ∈ H and P ∈ P ,

such that H∆S ≥ 0, P − a.s. and P (H∆S > 0) > 0. Take Q ∈ Q with Q � P .

Then EQ[H∆S] ≤ 0, which contradicts H∆S ≥ 0 Q− a.s. and Q(H∆S > 0) > 0.

Necessity. Take P ∈ P . By Lemma 6.2.6 there exists P ′′ ∈ P such that N⊥(P ′′) =

N⊥(P) and NA(P ′′) holds. Let R := (P + P ′′)/2 ∈ P . Then N⊥(R) = N⊥(P ′′) =

N⊥(P), and thus CH(R) = CH(P) which is convex and closed by Assumption 6.2.1.

Besides, NA(P ′′) implies that for any H ∈ CH(R) \ {0} = CH(P ′′) \ {0}, P ′′(H∆S <

0) > 0, and thus R(H∆S < 0) > 0 since R � P ′′. This shows that NA(R)

holds. From Lemma 6.2.3, there exists Q ∼ R � P , such that EQ|∆S| < ∞ and

EQ[H∆S] ≤ 0 for any H ∈ H.

6.3 The FTAP in multiple periods

We derive the FTAP in multiple periods in this section, and Theorem 6.3.1 is our

main result. We will reduce it to a one-step problem and apply Theorem 6.2.2.



89

6.3.1 The set-up and the main result

We use the set-up in [19]. Let T ∈ N be the time Horizon and let Ω be a Polish

space. For t ∈ {0, 1, . . . , T}, let Ωt := Ωt be the t-fold Cartesian product, with the

convention that Ω0 is a singleton. We denote by Ft the universal completion of B(Ωt),

and we shall often treat Ωt as a subspace of ΩT . For each t ∈ {0, . . . , T − 1} and

ω ∈ Ωt, we are given a nonempty convex set Pt(ω) ⊂ P(Ω) of probability measures.

Here Pt represents the possible models for the t-th period, given state ω at time t. We

assume that for each t, the graph of Pt is analytic, which ensures by the Jankov-von

Neumann Theorem (see, e.g., [18, Proposition 7.49]) that Pt admits a u.m. selector,

i.e., a u.m. kernel Pt : Ωt → P(Ω) such that Pt(ω) ∈ Pt(ω) for all ω ∈ Ωt. Let

P := {P0 ⊗ . . .⊗ PT−1 : Pt(·) ∈ Pt(·), t = 0, . . . , T − 1},

where each Pt is a u.m. selector of Pt, and for A ∈ ΩT

P0 ⊗ . . .⊗ PT−1(A) =

∫
Ω

. . .

∫
Ω

1A(ω1, . . . , ωT )PT−1(ω1, . . . , ωT−1; dωT ) . . . P0(dω1).

Let St = (S1
t , . . . , S

d
t ) : Ωt → Rd be Borel measurable, which represents the price

at time t of a stock S that can be traded dynamically in the market.

For each t ∈ {0, . . . , T − 1} and ω ∈ Ωt, we are given a set Ht(ω) ⊂ Rd, which

is thought as the set of admissible controls for the t-th period, given state ω at time

t. We assume for each t, graph(Ht) is analytic, and thus admits a u.m. selector;

that is, an Ft-measurable function Ht(·) : Ωt 7→ Rd, such that Ht(ω) ∈ Ht(ω). We

introduce the set of admissible portfolio controls H:

H :=
{

(Ht)
T−1
t=0 : Ht is a u.m. selector of Ht, t = 0, . . . , T − 1

}
.

0In order not to burden the reader with further notation we prefer use the same notation P for the set of probability
measures in one-period models and multi-period models. We will do the same for other sets of probability measures
that appear later in the chapter and also for the set of admissible strategies.
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Then for any H ∈ H, H is an adapted process. We make the following assumptions

on H.

Assumption 6.3.1.

(i) 0 ∈ Ht(ω), for ω ∈ Ωt, t = 0, . . . , T − 1.

(ii) CHt(ω)(Pt(ω)) is closed and convex, for ω ∈ Ωt, t = 0, . . . , T − 1.

(iii) The set

ΨHt := {(ω,Q) ∈ Ωt ×P(Ω) : EQ|∆St(ω, ·)| <∞,

and EQ[y∆St(ω, ·)] ≤ 0, ∀y ∈ Ht(ω)}

is analytic, for t = 0, . . . , T − 1.

Define

(6.3.1) Q := {Q ∈ P(ΩT ) : Q≪ P , EQ[|∆St| |Ft] <∞ Q-a.s. for

t = 0, . . . , T − 1, H · S is a Q-local-supermartingale ∀H ∈ H}.

Below is the main theorem of this section:

Theorem 6.3.1. Under Assumption 6.3.1, NA(P) holds if and only if for each

P ∈ P, there exists Q ∈ Q dominating P .

6.3.2 Proof of Theorem 6.3.1

We will first provide some auxiliary results. The following lemma essentially says

that if there is no arbitrage in T periods, then there is no arbitrage in any period. It

is parallel to [19, Lemma 4.6]. Our proof shall mainly focuses on the difference due

to the presence of constraints and we put the proof in the appendix.

Lemma 6.3.2. Let t ∈ {0, . . . , T − 1}. Then the set

(6.3.2) Nt := {ω ∈ Ωt : NA(Pt(ω)) fails }
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is u.m., and if Assumption 6.3.1(i) and NA(P) hold, then Nt is P-polar.

The lemma below is a measurable version of Theorem 6.2.2. It is parallel to [19,

Lemma 4.8]. We provide its proof in the appendix.

Lemma 6.3.3. Let t ∈ {0, . . . , T − 1}, let P (·) : Ωt 7→ P(Ω) be Borel, and let

Qt : Ωt � P(Ω),

Qt(ω) := {Q ∈ P(Ω) : Q≪ Pt(ω), EQ|∆St(ω, ·)| <∞,

EQ[y∆St(ω, ·)] ≤ 0, ∀y ∈ Ht(ω)}.

If Assumption 6.3.1(ii)(iii) holds, then Qt has an analytic graph and there exist u.m.

mappings Q(·), P̂ (·) : Ωt → P(Ω) such that

P (ω)� Q(ω)� P̂ (ω) for all ω ∈ Ωt,

P̂ (ω) ∈ Pt(ω) if P (ω) ∈ Pt(ω),

Q(ω) ∈ Qt(ω) if NA(Pt(ω)) holds and P (ω) ∈ Pt(ω).

Proof of Theorem 6.3.1. Using Lemmas 6.3.2 and 6.3.3, we can perform the

same glueing argument Bouchard and Nutz use in the proof of [19, Theorem 4.5],

and thus we omit it here.

6.3.3 Sufficient conditions for Assumption 6.3.1(iii)

By [18, Proposition 7.47], the map (ω,Q) 7→ supy∈Ht(ω) EQ[y∆St(ω, ·)] is u.s.a.,

which does not necessarily imply the analyticity of ΨHt as the complement of an

analytic set may fail to be analytic. Therefore we provide some sufficient conditions

for Assumption 6.3.1(iii) below.

Definition 6.3.4. We call Ht : Ωt � Rd a stretch of Ht, if for any ω ∈ Ωt,

CHt(ω) = CHt(ω).
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It is easy to see that for any stretch Ht of Ht,

ΨHt = ΨHt = {(ω,Q) ∈ Ωt×P(Ω) : EQ|∆St(ω, ·)| <∞, sup
y∈Ht(ω)

yEQ[∆St(ω, ·)] ≤ 0}.

Therefore, in order to show ΨHt is analytic, it suffices to show that there exists a

stretch Ht of Ht, such that the map ϕHt : Ωt ×P(Ω) 7→ R∗

(6.3.3) ϕHt(ω,Q) = sup
y∈Ht(ω)

yEQ[∆St(ω, ·)]

is l.s.a. on J := {(ω,Q) ∈ Ωt ×P(Ω) : EQ|∆St(ω, ·)| <∞}.

Proposition 6.3.5. If there exists a measurable (w.r.t. B(Rd)) stretch Ht of Ht

with nonempty compact values, then ϕHt is Borel measurable, and thus ΨHt is Borel

measurable.

Proof. The conclusion follows directly from [2, Theorem 18.19].

Proposition 6.3.6. If there exists a stretch Ht of Ht satisfying

(i) graph(Ht) is Borel measurable,

(ii) there exists a countable set (yn)n ⊂ Rd, such that for any ω ∈ Ωt and y ∈ Ht(ω),

there exist (ynk)k ⊂ (yn)n ∩ Ht converging to y,

then ϕHt is Borel measurable, and thus ΨHt is Borel measurable.

Proof. Define function φ : Rd × J 7→ R∗,

φ(y, ω,Q) =

 yEQ[∆St(ω, ·)] if y ∈ Ht(ω),

−∞ otherwise.

It can be shown by a monotone class argument that φ is Borel measurable. So the

function ϕ : J 7→ R

ϕ(ω,Q) = sup
n
φ(yn, ω,Q)
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is Borel measurable. It remains to show that ϕ = ϕHt . It is easy to see that ϕ ≥ ϕHt .

Conversely, take (ω,Q) ∈ J . Then φ(yn, ω,Q) = ynEQ[∆S(ω, ·)] ≤ ϕHt(ω,Q) if

yn ∈ Ht(ω), and φ(yn, ω,Q) = −∞ < ϕHt(ω,Q) if yn /∈ Ht(ω); i.e., ϕ(ω,Q) =

supn φ(yn, ω,Q) ≤ ϕHt(ω,Q).

Example 6.3.7. Let ait, a
i
t : Ωt 7→ R be Borel measurable, with ait < ait, i = 1, . . . , d.

Let

Ht(ω) =
d∏
i=1

[ait(ω), ait(ω)], ω ∈ Ωt.

Then both Propositions 6.3.5 and 6.3.6 hold with Ht = Ht and (yn)n = Qd.

Example 6.3.8. Let d = 1 and Ht be such that for any ω ∈ Ωt, Ht(ω) ⊂ (0,∞). We

assume that graph(Ht) is analytic, but not Borel. Then Ht itself does not satisfy the

assumptions in Proposition 6.3.5 or 6.3.6. Now let Ht(ω) = [1, 2], ω ∈ Ωt. Then Ht

is a stretch of Ht, and Ht satisfies the assumptions in Propositions 6.3.5 and 6.3.6

with (yn)n = Q.

6.4 Super-hedging in one period

6.4.1 The set-up and the main result

We use the set-up in Section 6.2. Let f be a u.m. function. Define the super-

hedging price

πP(f) := inf{x : ∃H ∈ H, s.t. x+H · S ≥ f, P − q.s.}.

We also denote πP (f) = π{P}(f). We further assume:

Assumption 6.4.1. H(P) is convex and closed.

Remark 6.4.1. It is easy to see that if H(P) is convex, then CH(P) is convex.

Define

Q := {Q ∈ P(Ω) : Q≪ P , EQ|∆S| <∞, AQ := sup
H∈H

EQ[H∆S] <∞}.
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Below is the main result of this section.

Theorem 6.4.2. Let Assumptions 6.2.1(ii) & 6.4.1 and NA(P) hold. Then

(6.4.1) πP(f) = sup
Q∈Q

(EQ[f ]− AQ).

Besides, πP(f) > −∞ and there exists H ∈ H such that πP(f)+H∆S ≥ f P− q.s..

6.4.2 Proof of Theorem 6.4.2

We first provide two lemmas.

Lemma 6.4.3. Let NA(P) hold. If H(P) and CH(P) are closed, then

πP(f) = sup
P∈P

πP (f).

Proof. It is easy to see that πP(f) ≥ supP∈P π
P (f). We shall prove the reverse

inequality. If πP(f) > supP∈P π
P (f), then there exists ε > 0 such that

(6.4.2) α := πP(f) ∧ 1

ε
− ε > sup

P∈P
πP (f).

By Lemma 6.2.6 there exists P ′′ ∈ P , such that N⊥(P ′′) = N⊥(P) and NA(P ′′)

holds.

Moreover, we have that the set

Aα := {H ∈ H(P) : α +H∆S ≥ f, P ′′ − a.s.}

is compact. In order to prove this claim take (Hn)n ⊂ Aα. If (Hn)n is not bounded,

w.l.o.g. we assume 0 < ||Hn|| → ∞; then

(6.4.3)
α

||Hn||
+

Hn

||Hn||
∆S ≥ f

||Hn||
.

Since CH(P) is closed, there exist some H ∈ CH(P) = CH(P ′′) with ||H|| = 1 such

that Hnk/||Hnk || → H. Taking the limit along (nk)k, we have H∆S ≥ 0 P ′′-a.s.
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NA(P ′′) implies H∆S = 0 P ′′-a.s. So H ∈ CH(P ′′)∩N(P ′′) = {0}, which contradicts

||H|| = 1. Thus (Hn)n is bounded, and there exists H ′′ ∈ Rd, such that (Hnj)j → H ′′.

Since H(P) is closed, H ′′ ∈ H(P), which further implies H ′′ ∈ Aα.

For any H ∈ Aα, since α < πP(f) by (6.4.2), there exist PH ∈ P such that

PH(α +H∆S < f) > 0.

It can be further shown that there exists δH > 0, such that for any H ′ ∈ B(H, δH),

PH(α +H ′∆S < f) > 0.

Since Aα ⊂ ∪H∈AαB(H, δH) and Aα is compact, there exists (Hi)
n
i=1 ⊂ Aα, such that

Aα ⊂ ∪ni=1B(Hi, δHi). Let

P ′ :=
n∑
i=1

aiPHi + a0P
′′ ∈ P ,

where
∑n

i=0 ai = 1 and ai > 0, i = 0, . . . , n. Then it is easy to see that for any

H ∈ H(P) = H(P ′′) = H(P ′),

P ′(α +H∆S < f) > 0,

which implies that

α ≤ πP
′
(f) ≤ sup

P∈P
πP (f),

which contradicts (6.4.2).

Lemma 6.4.4. Let NA(P) hold. If H(P) and CH(P) are closed, then the set

(6.4.4) K(P) := {H∆S −X : H ∈ H, X ∈ L0
+(P)}

is P − q.s. closed.
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Proof. Let W n = Hn∆S−Xn ∈ K(P)→ W P−q.s., where w.l.o.g. Hn ∈ H(P) and

Xn ∈ L0
+(P), n = 1, 2, . . . If (Hn)n is not bounded, then without loss of generality,

0 < ||Hn|| → ∞. Consider

(6.4.5)
W n

||Hn||
=

Hn

||Hn||
∆S − Xn

||Hn||
.

As (Hn/||Hn||)n is bounded, there exists some subsequence (Hnk/||Hnk ||)k converg-

ing to some H ∈ Rd with ||H|| = 1. Taking the limit in (6.4.5) along (nk)k, we

get that H∆S ≥ 0 P − q.s.. Because (Hnk/||Hnk ||)k ∈ CH(P) and CH(P) is closed,

H ∈ CH(P). Hence H∆S = 0 P − q.s. by NA(P). Then H ∈ CH(P) ∩N(P) = {0},

which contradicts ||H|| = 1.

Therefore, (Hn)n is bounded and there exists some subsequence (Hnj)j converging

to some H ′ ∈ Rd. Since H(P) is closed, H ′ ∈ H(P). Let X := H ′∆S−W ∈ L0
+(P),

then W = H ′∆S −X ∈ K(P).

Proof of Theorem 6.4.2. We first show that πP(f) > −∞ and the optimal super-

hedging strategy exists. If πP(f) = ∞ then we are done. If πP(f) = −∞, then for

any n ∈ N, there exists Hn ∈ H such that

Hn∆S ≥ f + n ≥ (f + n) ∧ 1, P − q.s.

By Lemma 6.4.4, there exists some H ∈ H such that H∆S ≥ 1 P − q.s., which

contradicts NA(P). If πP(f) ∈ (−∞,∞), then for any n ∈ N, there exists some

H̃n ∈ H, such that πP(f) + 1/n+ H̃n∆S ≥ f . Lemma 6.4.4 implies that there exists

some H̃ ∈ H, such that πP(f) + H̃∆S ≥ f .
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By Lemma 6.4.3,

(6.4.6)

πP(f) = sup
P∈P

πP (f) = sup
Q∈Q

πQ(f) = sup
Q∈Q

sup
Q′∈Q,
Q′∼Q

(EQ′ [f ]− AQ′) ≤ sup
Q∈Q

(EQ[f ]− AQ]),

where we apply Theorem 6.2.2 for the second equality, and [43, Proposition 9.23]

for the third equality. Conversely, if πP(f) = ∞, then we are done. Otherwise let

x > πP(f), and there exist H ∈ H, such that x+H∆S ≥ f P − q.s.. Then for any

Q ∈ Q,

x ≥ EQ[f ]− EQ[H∆S] ≥ EQ[f ]− AQ.

By the arbitrariness of x and Q, we have that

πP(f) ≥ sup
Q∈Q

(EQ[f ]− AQ),

which together with (6.4.6) implies (6.4.1).

6.5 Optional decomposition in multiple periods

6.5.1 The set-up and the main result

We use the set-up in Section 6.3. In addition, let f : ΩT 7→ R be u.s.a. We

further assume:

Assumption 6.5.1.

(i) For t ∈ {0, . . . , T − 1} and ω ∈ Ωt, (Ht(ω))(Pt(ω)) is convex and closed;

(ii) the map At(ω,Q) : Ωt ×P(Ω) 7→ R∗,

At(ω,Q) = sup
y∈Ht(ω)

yEQ[∆St(ω, ·)]

is l.s.a. on the set {(ω,Q) : EQ|∆St(ω, ·)| <∞}.

Remark 6.5.1. Observe that ΨHt defined in Assumption 6.3.1 satisfies

(6.5.1) ΨHt = {(ω,Q) ∈ Ωt ×P(Ω) : EQ|∆St(ω, ·)| <∞, At(ω,Q) ≤ 0}.
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Therefore, Assumption 6.5.1(ii) implies Assumption 6.3.1(iii).

Remark 6.5.2. If Proposition 6.3.5 or 6.3.6 hold with Ht = Ht, then since At = ϕHt

(ϕHt is defined in (6.3.3)), Assumption 6.5.1(ii) holds. See Example 6.3.7 for a case

when this holds.

For any Q ∈ P(ΩT ), there are Borel kernels Qt : Ωt 7→ P(Ω) such that Q =

Q0 ⊗ . . . ⊗ QT−1. For EQ[|∆St| |Ft] < ∞ Q-a.s., define AQt (·) := At(·, Qt(·)) for

t = 0, . . . , T − 1, and

BQ
t :=

t−1∑
i=0

AQi , t = 1, . . . , T

and set BQ
0 = 0. Let

Q := {Q ∈ P(ΩT ) : Q≪ P , EQ[|∆St| |Ft] <∞Q-a.s. for all t, and BQ
T <∞Q-a.s.}.

Then it is not difficult to see that Q ⊂ Q, where Q is defined in (6.3.1).1 Also if for

each t ∈ {0, . . . , T − 1} and ω ∈ Ωt, Ht(ω) is a convex cone, then Q = Q. Below is

the main result of this section.

Theorem 6.5.3. Let Assumptions 6.3.1 & 6.5.1 and NA(P) hold. Let V be an

adapted process such that Vt is u.s.a. for t = 1, . . . , T . Then the following are

equivalent:

(i) V −BQ is a Q-local-supermartingale for each Q ∈ Q.

(ii) There exists H ∈ H and an adapted increasing process C with C0 = 0 such that

Vt = V0 + (H · S)t − Ct, P − q.s.
1A rigorous argument is as follows. Let Q = Q0 ⊗ . . . ⊗QT−1 ∈ Q, where Qt is a Borel kernels, 0 ≤ t ≤ T − 1.

It can be shown by a monotone class argument that the map (ω, y,Q′) 7→ yEQ′ [∆S(ω, ·)] is Borel measurable for

(ω, y,Q′) ∈ Ωt × Rd × P(Ω). Hence the map (ω, y) 7→ yEQt(ω)[∆S(ω, ·)] is Borel measurable for (ω, y) ∈ Ωt × Rd.
Since Graph(Ht) is analytic, by [18, Proposition 7.50] there exists a u.m. selector Hn

t (·) ∈ Ht(·), such that

AQt (ω) ∧ n− 1/n ≤ Hn
t (ω)EQt(ω)[∆St(ω, ·)] ≤ 0, for Q-a.s. ω ∈ Ωt,

where the second inequality follows from the local-supermartingale property of Hn · S with Hn =

(0, . . . , 0, Hn
t , 0 . . . , 0) ∈ H. Sending n→∞ we get that AQt ≤ 0 Q-a.s. for t = 0, . . . , T − 1, and thus Q ∈ Q.
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6.5.2 Proof of Theorem 6.5.3

We first provide three lemmas for the proof of Theorem 6.5.3. We shall prove

Lemmas 6.5.4 & 6.5.6 in the appendix.

Lemma 6.5.4. Let Assumption 6.5.1(ii) hold, and define Qt : Ωt � P(Ω) by

(6.5.2) Qt(ω) := {Q ∈ P(Ω) : Q≪ Pt(ω), EQ|∆St(ω, ·)| <∞, At(ω,Q) <∞}.

Then Qt has an analytic graph.

The following lemma, which is a measurable version of Theorem 6.4.2, is parallel

to [19, Lemma 4.10]. Given Theorem 6.4.2, the proof of this lemma follows exactly

the argument of [19, Lemma 4.10], and thus we omit it here.

Lemma 6.5.5. Let NA(P) and Assumption 6.5.1 hold, and let t ∈ {0, . . . , T − 1}

and f̂ : Ωt × Ω 7→ R∗ be u.s.a.. Then

Et(f̂) : Ωt 7→ R∗, Et(f̂)(ω) := sup
Q∈Qt(ω)

(EQ[f̂(ω, ·)]− At(ω,Q))

is u.s.a.. Besides, there exists a u.m. function y(·) : Ωt 7→ Rd with y(·) ∈ Ht(·),

such that

Et(f̂)(ω) + y(ω)∆St(ω, ·) ≥ f̂(ω, ·) Pt(ω)− q.s.

for all ω ∈ Ωt such that NA(Pt(ω)) holds and f̂(ω, ·) > −∞ Pt(ω)− q.s..

Lemma 6.5.6. Let Assumptions 6.3.1 & 6.5.1 and NA(P) hold. Recall Qt defined

in (6.5.2). We have that

Q =
{
Q0 ⊗ . . .⊗QT−1 : Qt(·) is a u.m. selector of Qt, t = 0, . . . , T − 1

}
.

Proof of Theorem 6.5.3. (ii) =⇒ (i): For any Q ∈ Q,

Vt+1 = Vt +Ht∆St − (CQ
t+1 − C

Q
t ) ≤ Vt +Ht∆St, Q-a.s..
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Hence,

EQ[Vt+1|Ft] ≤ Vt +HtEQ[∆St|Ft] ≤ Vt + AQt = Vt +BQ
t+1 −B

Q
t ,

i.e.,

EQ[Vt+1 −BQ
t+1|Ft] ≤ Vt −BQ

t .

(i) =⇒ (ii): We shall first show that

(6.5.3) Et(Vt+1) ≤ Vt, P − q.s.

Let Q = Q1⊗. . .⊗QT−1 ∈ Q and ε > 0. The map (ω,Q)→ EQ[Vt+1(ω, ·)]−At(ω,Q)

is u.s.a., and graph(Qt) is analytic. As a result, by [18, Proposition 7.50] there exists

a u.m. selector Qε
t : Ωt 7→ P(Ω), such that Qε

t(·) ∈ Qt(·) on {Qt 6= ∅} (whose

complement is a Q-null set), and

EQεt (·)[Vt+1]− At(·, Qε
t(·)) ≥ Et(Vt+1) ∧ 1

ε
− ε, Q-a.s.

Define

Q′ = Q1 ⊗ . . .⊗Qt−1 ⊗Qε
t ⊗Qt+1 ⊗QT−1.

Then Q′ ∈ Q by Lemma 6.5.6. Therefore,

EQ′ [Vt+1 −BQ′

t+1|Ft] ≤ Vt −BQ′

t , Q′-a.s.

Noticing that Q = Q′ on Ωt, we have

Vt ≥ EQ′ [Vt+1|Ft]− AQ
′

t = EQεt (·)[Vt+1]− At(·, Qε
t(·)) ≥ Et(Vt+1) ∧ 1

ε
− ε, Q-a.s..

By the arbitrariness of ε and Q, we have (6.5.3) holds.

By Lemma 6.5.5, there exists a u.m. function Ht : Ωt 7→ Rd such that

Et(Vt+1)(ω) +Ht(ω)∆St+1(ω, ·) ≥ Vt+1(ω, ·) Pt(ω)− q.s.
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for ω ∈ Ωt \Nt. Fubini’s theorem and (6.5.3) imply that

Vt +Ht∆St ≥ Vt+1 P − q.s..

Finally, by defining Ct := V0 + (H · S)t − Vt, the conclusion follows.

6.6 Hedging European and American options in multiple periods

6.6.1 Hedging European options

Let f : ΩT 7→ R be a u.s.a. function, which represents the payoff of a European

option. Define the super-hedging price

π(f) := inf{x : ∃H ∈ H, s.t. x+ (H · S)T ≥ f, P − q.s.}.

Theorem 6.6.1. Let Assumptions 6.3.1 & 6.5.1 and NA(P) hold. Then the super-

hedging price is given by

(6.6.1) π(f) = sup
Q∈Q

(
EQ[f ]− EQ[BQ

T ]
)
.

Moreover, π(f) > −∞ and there exists H ∈ H, such that π(f)+(H ·S)T ≥ f P−q.s..

Proof. It is easy to see that π(f) ≥ supQ∈Q(EQ[f ] − EQ[BQ
T ]). We shall show the

reverse inequality. Define VT = f and

Vt = Et(Vt+1), t = 0, . . . , T − 1.

Then Vt is u.s.a. by Lemma 6.5.5 for t = 1, . . . , T . It is easy to see that (Vt − BQ
t )t

is a Q-local-supermartingale for each Q ∈ Q. Then by Theorem 6.5.3, there exists

H ∈ H, such that

V0 + (H · S)T ≥ VT = f, P − q.s.

Hence V0 ≥ π(f). It remains to show that

(6.6.2) V0 ≤ sup
Q∈Q

(
EQ[f ]− EQ[BQ

T ]
)
.
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First assume that f is bounded from above. Then by [18, Proposition 7.50],

Lemma 6.5.4 and Lemma 6.5.5, we can choose a u.m. ε optimizer Qε
t for Et in each

time period. Define Qε := Qε
0 ⊗ . . .⊗Qε

T−1 ∈ Q,

V0 = E0 ◦ . . . ◦ ET−1(f) ≤ EQε [f −BQε

T ] + Tε ≤ sup
Q∈Q

EQ[f −BQ
T ] + Tε,

which implies (6.6.2).

In general let f be any u.s.a. function. Then we have

E0 ◦ . . . ◦ ET−1(f ∧ n) ≤ sup
Q∈Q

(
EQ[f ∧ n]− EQ[BQ

T ]
)
.

Obviously the limit of the right hand side above is supQ∈Q

(
EQ[f ]− EQ[BQ

T ]
)

. To

conclude that the limit of the left hand side is E0 ◦ . . . ◦ ET−1(f), it suffices to show

that for any t ∈ {0, . . . , T − 1}, and Ft+1-measurable functions vn ↗ v,

γ := sup
n
Et(vn) = Et(v), P − q.s..

Indeed, for ω ∈ Ωt \ Nt, by Theorem 6.4.2 vn(ω) − γ(ω) ∈ K(P(ω)), where Nt

and K(·) are defined in (6.3.2) and (6.4.4) respectively. Since K(P(ω)) is closed

by Lemma 6.4.4, v(ω) − γ(ω) ∈ K(P(ω)), which implies γ(ω) ≥ Et(v)(ω) by Theo-

rem 6.4.2.

Finally, using a backward induction we can show that Vt > −∞ P − q.s., t =

0, . . . , T−1 by Lemma 6.3.2 and Theorem 6.4.2. In particular, π(f) = V0 > −∞.

Corollary 6.6.2. Let Assumption 6.5.1 and NA(P) hold. Assume that for any

t ∈ {0, . . . , T − 1} and ω ∈ Ωt, Ht(ω) is a convex cone containing the origin. Then

π(f) = sup
Q∈Q

EQ[f ].

Proof. This follows from (6.5.1) and that Q = Q and BQ
T = 0 for any Q ∈ Q.
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6.6.2 Hedging American options

We consider the sub- and super-hedging prices of an American option in this

subsection. The same problems are analyzed in Chapter VIII but without portfolio

constraints. The analysis here is essentially the same, so we only provide the results

and the main ideas for their proofs. For more details and discussion see Chapter

VIII.

For t ∈ {0, . . . , T − 1} and ω ∈ Ωt, define

Qt(ω) := {Qt(ω)⊗ . . .⊗QT−1(ω, ·) : Qi is a u.m. selector of Qi, i = t, . . . , T − 1}.

In particular Q0 = Q. Assume graph(Qt) is analytic. Let T be the set of stopping

times with respect to the raw filtration (B(Ωt))t, and let Tt ⊂ T be the set of stopping

times that are no less than t.

Let f = (ft)t be the payoff of the American option. Assume that ft ∈ B(Ωt), t =

1, . . . , T , and fτ ∈ L1(Q) for any τ ∈ T and Q ∈ Q. Define the sub-hedging price:

π(f) := sup{x : ∃(H, τ) ∈ H × T , s.t. fτ + (H · S)τ ≥ x, P − q.s.},

and the super-hedging price:

π(f) := inf{x : ∃H ∈ H, s.t. x+ (H · S)τ ≥ fτ , P − q.s., ∀τ ∈ T }.

Theorem 6.6.3. (i) The sub-hedging price is given by

(6.6.3) π(f) = sup
τ∈T

inf
Q∈Q

EQ[fτ +BQ
T ].

(ii) For t ∈ {1, . . . , T − 1}, assume that the map

φt : Ωt ×P(ΩT−t) 7→ R∗, φt(ω,Q) = sup
τ∈Tt

EQ

[
fτ (ω, ·)−

τ−1∑
i=t

AQi (ω, ·)

]
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is u.s.a. Then

(6.6.4) π(f) = sup
τ∈T

sup
Q∈Q

EQ[fτ −BQ
τ ],

and there exists H ∈ H, such that π(f) + (H · S)τ ≥ fτ ,P − q.s., ∀τ ∈ T .

Proof. (i) We first show that

π(f) = sup{x : ∃(H, τ) ∈ H × T , s.t. fτ + (H · S)T ≥ x, P − q.s.} =: β.

For any x < π(f), there exists (H, τ) ∈ H×T , such that fτ + (H · S)τ ≥ x P − q.s..

Define H ′ := (Ht1{t<τ})t. For t = 0, . . . , T − 1, since {t < τ} ∈ B(Ωt), H
′
t(·) is u.m.;

besides, H ′t(·) is equal to either Ht(·) ∈ Ht(·) or 0 ∈ Ht(·). Hence H ′ ∈ H. Then

fτ + (H ′ · S)T = fτ + (H · S)τ ≥ x P − q.s, which implies x ≤ β, and thus π(f) ≤ β.

Conversely, for x < β, there exists (H, τ) ∈ H × T , such that fτ + (H · S)T ≥

x P − q.s. Then we also have that fτ + (H · S)τ ≥ x P − q.s.. To see this, let us

define D := {fτ + (H · S)τ < x} and H ′ := (Ht1{t≥τ}∩D)t ∈ H. We get that

(H ′ · S)T = [(H · S)T − (H · S)τ ]1D ≥ 0 P − q.s., and (H ′ · S)T > 0 P − q.s. on D.

NA(P) implies D is P-polar. Therefore x ≤ π(f), and thus β ≤ π(f).

It can be shown that

π(f) = β = sup
τ∈T

sup{x : ∃H ∈ H : fτ +(H ·S)T ≥ x, P−q.s.} = sup
τ∈T

inf
Q∈Q

EQ[fτ +BQ
T ],

where we apply Theorem 6.6.1 for the last equality above.

(ii) Define

Vt : Ωt 7→ R∗, Vt = sup
Q∈Qt

sup
τ∈Tt

EQ

[
fτ (ω, ·)−

τ−1∑
i=t

AQi (ω, ·)

]
.

It can be shown that Vt is u.s.a. for t = 1, . . . , T and (Vt−BQ
t )t is aQ-supermartingale

for each Q ∈ Q. By Theorem 6.5.3, there exists H ∈ H such that

V0 + (H · S)τ ≥ fτ ,P − q.s., ∀τ ∈ T .
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Therefore, supτ∈T supQ∈QEQ[fτ −BQ
τ ] = V0 ≤ π(f). The reverse inequality is easy to

see.

Remark 6.6.4. In (6.6.3) and (6.6.4), the penalization terms are BQ
T and BQ

τ respec-

tively. In fact, similar to the argument in (i) above, one can show that

π̂(f) := inf{x : ∀τ ∈ T , ∃H ∈ H, s.t. x+ (H · S)τ ≥ fτ , P − q.s.}

= sup
τ∈T

inf{x : ∃H ∈ H, s.t. x+ (H · S)τ ≥ fτ , P − q.s.}

= sup
τ∈T

inf{x : ∃H ∈ H, s.t. x+ (H · S)T ≥ fτ , P − q.s.}(6.6.5)

= sup
τ∈T

sup
Q∈Q

EQ[fτ −BQ
T ]

Even though the definition of π̂(f) is less useful for super-hedging since the stopping

time should not be known in advance, it suggests that BQ
T comes from knowing τ

in advance (compare π(f) and π̂(f)). It is also both mathematically and financially

meaningful that π̂(f) ≤ π(f). However, it is interesting that when BQ vanishes (e.g.,

when Ht(·) is a cone), then π̂(f) = π(f).

6.7 FTAP and super-hedging in multiple periods with options

Let us use the set-up in Section 6.3. In addition, let g = (g1, . . . , ge) : ΩT 7→ Re be

Borel measurable, and each gi is seen as an option which can and only can be traded

at time t = 0 without constraints. Without loss of generality we assume the price of

each option is 0. In this section, we say NA(P)g holds if for any (H, h) ∈ H × Re,

(H · S)T + hg ≥ 0 P − q.s. =⇒ (H · S)T + hg = 0 P − q.s..

Obviously NA(P)g implies NA(P).

Definition 6.7.1. f : ΩT 7→ R is replicable (by stocks and options), if there exists

some x ∈ R, h ∈ Re and H ∈ H, such that

x+ (H · S)T + hg = f or x+ (H · S)T + hg = −f.
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Let

Qg := {Q ∈ Q : EQ[g] = 0}.

Below is the main result of this section:

Theorem 6.7.2. Let assumptions in Corollary 6.6.2 hold. Also assume that gi is

not replicable by stocks and other options, and gi ∈ L1(Q), i = 1, . . . , e. Then we

have the following.

(i) NA(P)g holds if and only if for each P ∈ P, there exists Q ∈ Qg dominating P .

(ii) Let NA(P)g holds. Let f : ΩT 7→ R be Borel measurable such that f ∈ L1(Q).

Then

(6.7.1)

π(f) := inf{x ∈ R : ∃(H, h) ∈ H×Re s.t. x+(H·S)T+hg ≥ f, P−q.s.} = sup
Q∈Qg

EQ[f ].

Moreover, there exists (H, h) ∈ H×Re, such that π(f) + (H ·S)T +hg ≥ f P − q.s..

(iii) Assume in addition H = −H. Let NA(P)g hold and f : ΩT 7→ R be Borel

measurable satisfying f ∈ L1(Qg). Then the following are equivalent:

(a) f is replicable;

(b) The mapping Q 7→ EQ[f ] is a constant on Qg;

(c) For all P ∈ P there exists Q ∈ Qg such that P � Q and EQ[f ] = π(f).

Moreover, the market is complete2if and only if Qg is a singleton.

Proof. We first show the existence of an optimal super-hedging strategy in (ii). It

can be shown that

π(f) = inf
h∈Re

inf{x ∈ R : ∃H ∈ H s.t. x+ (H · S)T ≥ f − hg, P − q.s.}

= inf
h∈Re

sup
Q∈Q

EQ[f − hg],

2That is, for any Borel measurable function f : ΩT 7→ R satisfying f ∈ L1
g(Q), f is replicable.
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where we apply Corollary 6.6.1 for the second equality above.

We claim that 0 is a relative interior point of the convex set

I := {EQ[g] : Q ∈ Q}.

If not, then there exists some h ∈ Re with h 6= 0, such that EQ[hg] ≤ 0 for any

Q ∈ Q. Then the super-hedging price of hg using S, π0(hg), satisfies π0(hg) ≤ 0 by

Corollary 6.6.2. Hence by Theorem 6.6.1 there exists H ∈ H, such that (H · S)T ≥

hg P − q.s.. As the price of hg is 0, NA(P)g implies that

(H · S)T − hg = 0 P − q.s.,

which contradicts the assumption that each gi cannot be replicated by S and the

other options, as h 6= 0. Hence we have shown that 0 is a relative interior point of I.

Define φ : Re 7→ R,

φ(h) = sup
Q∈Q

EQ[f − hg],

and observe that

π(f) = inf
h∈Re

φ(h) = inf
h∈span(I)

φ(h).

We will now show that there exists a compact set K ⊂ span(I), such that

(6.7.2) π(f) = inf
h∈K

φ(h).

In order to do this, we will show that for any h outside a particular ball will satisfy

φ(h) ≥ φ(0), which establishes the claim.

Now, since 0 is a relative interior point of I, there exists γ > 0, such that

Bγ := {v ∈ span(I) : ||v|| ≤ γ} ⊂ I.

Consider the ball K := {h ∈ span(I) : ||h|| ≤ 2 supQ∈QEQ|f |/γ}. Then for any

h ∈ span(I) \ K, there exists Q ∈ Q such that −hEQ[g] > 2 supQ∈QEQ|f | (pick Q
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s.t. EQ[g] is in the same direction as −h and lies on the circumference of Bγ). This

implies that

φ(h) ≥ sup
Q∈Q

EQ[−hg]− sup
Q∈Q

EQ|f | > sup
Q∈Q

EQ|f | = φ(0).

Since such h are suboptimal, it follows that

π(f) = inf
h∈K

φ(h).

On the other hand, observe that

|φ(h)−φ(h′)| ≤ sup
Q∈Q
|EQ[f−hg]−EQ[f−h′g]| ≤ sup

Q∈Q
E|(h−h′)g| ≤ ||h−h′|| sup

Q∈Q
EQ[||g||],

i.e. φ is continuous (in fact Lipschitz). Hence there exists some h∗ ∈ K ⊂ Re, such

that

π(f) = inf
h∈Re

sup
Q∈Q

EQ[f − hg]

= sup
Q∈Q

EQ[f − h∗g]

= inf{x ∈ R : ∃H ∈ H s.t. x+H · S ≥ f − h∗g, P − q.s.}.

Then by Theorem 6.6.1 there exists H∗ ∈ H, such that π(f) + (H∗ · S)T ≥ f −

h∗g P − q.s..

Next let us prove (i) and (6.7.1) in (ii) simultaneously by induction. For e = 0,

(i) and (6.7.1) hold by Theorem 6.2.2 and Corollary 6.6.2. Assume for e = k (i)

and (6.7.1) hold and we consider e = k + 1. We first consider (i). Let πk(gk+1) be

the super-hedging price of gk+1 using stocks S and options g′ := (g1, . . . , gk). By

induction hypothesis, we have

πk(gk+1) = sup
Q∈Qg′

EQ[gk+1].
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Recall that the price of gk+1 is 0. Then NA(P)g implies πk(gk+1) ≥ 0. If πk(gk+1) = 0,

then there exists (H, h) ∈ H × Rk, such that (H · S)T + hg′ − gk+1 ≥ 0 P − q.s..

Then by NA(P)g,

(H · S)T + hg′ − gk+1 = 0, P − q.s.,

which contradicts the assumption that gk+1 cannot be replicated by S and g′. There-

fore, πk(gk+1) > 0. Similarly πk(−gk+1) > 0. Thus we have

inf
Q∈Qg′

EQ[gk+1] < 0 < sup
Q∈Qg′

EQ[gk+1].

Then there exists Q−, Q+ ∈ Qg′ satisfying

(6.7.3) EQ− [gk+1] < 0 < EQ+ [gk+1].

Then for any P ∈ P , let Q ∈ Qg′ dominating P . Let

Q′ := λ−Q− + λQ+ λ+Q+.

By choosing some appropriate λ−, λ, λ+ > 0 with λ− + λ + λ+ = 1, we have P �

Q′ ∈ Qg, where g = (g1, . . . , gk+1).

Next consider (6.7.1) in (ii). Denote the super-hedging price πk(·) when using

S and g′, and π(·) when using S and g, which is consistent with the definition in

(6.7.1). It is easy to see that

(6.7.4) π(f) ≥ sup
Q∈Qg

EQ[f ],

and we focus on the reverse inequality. It suffices to show that

(6.7.5) ∃Qn ∈ Qg′ , s.t. EQn [gk+1]→ 0 and EQn [f ]→ π(f).

Indeed, if (6.7.5) holds, then we define

Q′n := λn−Q− + λnQn + λn+Q+, s.t. EQ′n [gk+1] = 0, i.e., Q′n ∈ Qg,
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where Q+, Q− are from (6.7.3) and λn−, λ
n, λn+ ∈ [0, 1] such that λn− + λn + λn+ = 1.

Since EQn [gk+1] → 0, we can choose λn± → 0. Then EQ′n [f ] → π(f), which implies

π(f) ≤ supQ∈Qg EQ[f ].

So let us concentrate on proving (6.7.5). By a translation, we may w.l.o.g. assume

π(f) = 0. Thus if (6.7.5) fails, we have

0 /∈ {EQ[(gk+1, f)] : Q ∈ Qg′} ⊂ R2.

Then there exists a separating vector (y, z) ∈ R2 with ||(y, z)|| = 1 such that

(6.7.6) sup
Q∈Qg′

EQ[ygk+1 + zf ] < 0.

By the induction hypothesis, we have that

0 > sup
Q∈Qg′

EQ[ygk+1 + zf ] = πk(ygk+1 + zf) ≥ π(ygk+1 + zf) = π(zf).

Obviously from the above z 6= 0. If z > 0, then by positive homogeneity π(f) < 0,

contradicting the assumption π(f) = 0. Hence z < 0. Take Q′′ ∈ Qg ⊂ Qg′ . Then

by (6.7.6) 0 > EQ′′ [yg
k+1 + zf ] = EQ′′ [zf ], and thus EQ′′ [f ] > 0 = π(f), which

contradicts (6.7.4).

Finally, let us prove (iii). It is easy to see that (a) =⇒ (b) =⇒ (c). Now let (c)

hold. Let (H, h) ∈ H×Re such that π(f) + (H ·S)T +hg ≥ f P − q.s. If there exists

P ∈ P satisfying

P {π(f) + (H · S)T + hg > f} > 0,

then by choosing a Q ∈ Qg that dominates P , we would have that π(f) > EQ[f ] =

π(f), contradiction. Hence π(f) +H · S + hg = f P − q.s., i.e., f is replicable.

If the market is complete, then by letting f = 1A, we know that Q 7→ Q(A) is

constant on Q for every A ∈ B(Ω) by (b). As any probability measure is uniquely

determined by its value on B(Ω), we know that Q is a singleton. Conversely, if Q is

a singleton, then (b) holds, and thus the market is complete by (a).
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VI.A Proofs of Some Technical Results

VI.A.1 Proof of Lemma 6.3.2

Proof. Fix t ∈ {0, . . . , T − 1} and let

(VI.A.1) Λ◦(ω) := {y ∈ Rd : yv ≥ 0, for all v ∈ suppP(ω)(∆St(ω, ·))}, ω ∈ Ωt.

It could be easily shown that

N c
t = {ω ∈ Ωt : Λ◦H(ω) ⊂ −Λ◦(ω)},

where Λ◦H = Λ◦ ∩ Ht. For any P ∈ P(Ωt), by [19, (4.5)], there exists a Borel-

measurable mapping Λ◦P : Ωt � Rd with non-empty closed values such that Λ◦P = Λ◦

P -a.s.. This implies that the graph(Λ◦P ) is Borel (see [2, Theorem 18.6]). Then it can

be shown directly from the definition (6.1.1) that Λ◦H,P := Λ◦P ∩ Ht is u.m. Thanks

to the closedness of −Λ◦, the set

N c
t,P = {ω : Λ◦H,P (ω) ⊂ −Λ◦(ω)} = ∩y∈Qd{ω : dist(y,Λ◦H,P (ω)) ≥ dist(y,−Λ◦(ω))}

is u.m. Therefore, there exists a Borel measurable set Ñ c
t,P , such that Ñ c

t,P = N c
t,P =

N c
t P -a.s. Thus N c

t is u.m. by [18, Lemma 7.26].

It remains to show that Nt is P-polar. If not, then there exists P∗ ∈ P such that

P∗(Nt) > 0. Similar to the argument above, there exists a map Λ◦∗ : Ωt � Rd with

a Borel measurable graph(Λ◦∗), such that

(VI.A.2) Λ◦∗ = Λ◦ P∗-a.s..

Let

Φ(ω) := {(y, P ) ∈ (Λ◦∗ ∩Ht)(ω)× Pt(ω) : EP [y∆St(ω, ·)] > 0}, ω ∈ Ωt.
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Then Nt = {Φ 6= ∅} P∗-a.s. by (6.3.2), (VI.A.1) and (VI.A.2). It is easy to see that

(with a slight abuse of notation)

graph(Φ) = [graph(Pt)× Rd] ∩ [P(Ω)× graph(Λ◦∗)]

∩{EP [y∆St(ω, ·)] > 0} ∩ [P(Ω)× graph(Ht)]

is analytic. Therefore, by the Jankov-von Neumann Theorem [18, Proposition 7.49],

there exists a u.m. selector (y, P ) such that (y(·), P (·)) ∈ Φ(·) on {Φ 6= ∅}. As

Nt = {Φ 6= ∅} P∗ − a.s., y is P∗-a.s. an arbitrage on Nt. Redefine y = 0 on

{y /∈ Λ◦ ∩Ht}, and P to be any u.m. selector of Pt on {Φ = ∅}. (Here we redefine y

on {y /∈ Λ◦ ∩Ht} instead of {Φ 6= ∅} in order to make sure that y(·) ∈ Λ◦(·) so that

y∆St ≥ 0 P − q.s..) So we have that y(·) ∈ Ht(·), P (·) ∈ Pt(·), y∆St ≥ 0 P − q.s.,

and

(VI.A.3) P (ω){y(ω)∆St(ω, ·) > 0} > 0 for P∗-a.s. ω ∈ Nt.

Now define H = (H0, . . . , HT−1) ∈ H satisfying

Ht = y, and Hs = 0, s 6= t.

Also define

P ∗ = P∗|Ωt ⊗ P ⊗ Pt+1 ⊗ . . .⊗ PT−1 ∈ P ,

where Ps is any u.m. selector of Ps, s = t+1, . . . , T −1. Then (H ·S)T ≥ 0 P−q.s.,

and P ∗{(H · S)T > 0} > 0 by (VI.A.3), which contradicts NA(P).

VI.A.2 Proof of Lemma 6.3.3

Proof. Let

Φ(ω) := {(R, R̂) ∈ P(Ω)×P(Ω) : P (ω)� R� R̂}, ω ∈ Ωt,
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which has an analytic graph as shown in the proof of [19, Lemma 4.8]. Consider

Ξ : Ωt � P(Ω)×P(Ω),

Ξ(ω) :={(Q, P̂ ) ∈ P(Ω)×P(Ω) : EQ|∆St(ω, ·)| <∞,

EQ[y∆St(ω, ·)] ≤ 0, ∀y ∈ Ht(ω), P (ω)� Q� P̂ ∈ Pt(ω)}.

Recall the analytic set ΨHt defined Assumption 6.3.1(iii). We have that

graph(Ξ) = [ΨHt ×P(Ω)] ∩ [P(Ω)× graph(Pt)] ∩ graph(Φ)

is analytic. As a result, we can apply the Jankov-von Neumann Theorem [18, Propo-

sition 7.49] to find u.m. selectors Q(·), P̂ (·) such that (Q(·), P̂ (·)) ∈ Ξ(·) on {Ξ 6= ∅}.

We set Q(·) := P̂ (·) := P (·) on {Ξ = ∅}. By Theorem 6.2.2, if Assumption 6.3.1(ii)

and NA(Pt(ω)) hold, and P (ω) ∈ Pt(ω), then Ξ(ω) 6= ∅. So our construction satisfies

the conditions stated in the lemma.

It remains to show that graph(Qt) is analytic. Using the same argument for Ξ,

but omitting the lower bound P (·), we see that the map Ξ̃ : Ωt � P(Ω)×P(Ω),

Ξ̃(ω) :={(Q, P̂ ) ∈ P(Ω)×P(Ω) : EQ|∆St(ω, ·)| <∞,

EQ[y∆St(ω, ·)] ≤ 0, ∀y ∈ Ht(ω), Q� P̂ ∈ Pt(ω)}

has an analytic graph. Since graph(Qt) is the image of graph(Ξ̃) under the canonical

projection Ωt ×P(Ω)×P(Ω)→ Ωt ×P(Ω), it is also analytic.

VI.A.3 Proof of Lemma 6.5.4

Proof. Similar to the argument in [19, Lemma 4.8], we can show that the set

J := {(P,Q) ∈ P(Ω)×P(Ω) : Q� P}

is Borel measurable. Thus, for Ξ : Ωt � P(Ω)

Ξ(ω) = {Q ∈ P(Ω) : Q≪ Pt(ω)},
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graph(Ξ) is analytic since it is the projection of the analytic set

[Ωt × J ] ∩ [graph(Pt)×P(Ω)]

onto Ωt ×P(Ω). By Assumption 6.5.1(ii), the function Â : Ωt ×P(Ω) 7→ R∗,

Â(ω,Q) = A(ω,Q)1{EQ|∆St(ω,·)|<∞} +∞1{EQ|∆St(ω,·)|=∞}

is l.s.a. As a result,

graph(Qt) = graph(Ξ) ∩ {Â <∞}

is analytic.

VI.A.4 Proof of Lemma 6.5.6

Proof. Denote the right side above by R. Let R = Q0 ⊗ . . . ⊗ QT−1 ∈ R. Without

loss of generality, we can assume that Qt : Ωt 7→ P(Ω) is Borel measurable and

Qt(·) ∈ Qt(·) on {Qt 6= ∅} Qt−1 := Q0 ⊗ . . . ⊗ Qt−1-a.s., t = 1, . . . , T − 1. For

ω ∈ Ωt, t = 0, . . . , T − 1, let

Φt(ω) := {(Q,P ) ∈ P(Ω)×P(Ω) : Qt(ω) = Q� P ∈ Pt(ω)}.

Similar to the argument in the proof of [19, Lemma 4.8], it can be shown that

graph(Φ) is analytic, and thus there exists u.m. selectors Q̂t(·), P̂t(·), such that

(Q̂t(·), P̂t(·)) ∈ Φ(·) on {Φt 6= ∅}. We shall show by an induction that for t =

0, . . . , T − 1,

Φt 6= ∅ for t = 0, and {Φt = ∅} is a Qt−1-null set for t = 1, . . . T − 1,

and there exists a universally selector of Pt which we denote by Pt(·) : Ωt 7→ P(Ω)

such that

Qt = Q̂0 ⊗ . . .⊗ Q̂t � P0 ⊗ . . .⊗ Pt.
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Then by setting t = T − 1, we know R = QT−1 ∈ Q. It is easy to see that the

above holds for t = 0. Assume it holds for t = k < T − 1. Then {Φk+1 = ∅} ⊂

{Qk+1(·) /∈ Qk+1(·)} is a Qk-null set by Lemma 6.3.2 and the induction hypothesis.

As a result, Q̂k+1 = Qk+1 Q
k-a.s., which implies that Qk+1 = Q̂0⊗. . .⊗Q̂k+1. Setting

Pk+1 = P̂k+11{Φ6=∅}+ P̃k+11{Φ=∅}, where P̃k+1(·) is any u.m. selector of Pk+1, we have

that P0⊗ . . .⊗Pk+1 ∈ Pk+1. Since Qk+1(ω)� Pk+1(ω) for Qk-a.s. ω ∈ Ωk, together

with the induction hypothesis, we have that Qk+1 � P0⊗ . . .⊗Pk+1. Thus we finish

the proof for the induction.

Conversely, for any R ∈ Q, we may write R = Q0 ⊗ . . . ⊗ QT−1, where Qt :

Ωt 7→ P(Ω) is some Borel kernel, t = 0, . . . , T −1. Then Qt(ω) ∈ Qt(ω) for Qt−1-a.s.

ω ∈ Ωt−1. Thanks to the analyticity of graph(Qt), we can modify Qt(·) on a Qt−1-null

set, such that the modification Q̂t(·) is u.m. and Q̂t(·) ∈ Qt(·) on {Qt 6= ∅}. Using a

forward induction of this modification, we have that R = Q̂0 ⊗ . . .⊗ Q̂T−1 ∈ R.



CHAPTER VII

Fundamental theorem of asset pricing under model
uncertainty and transaction costs in hedging options

7.1 Introduction

We consider a discrete time financial market in which stocks are traded dynami-

cally and options are available for static hedging. We assume that the dynamically

traded asset is liquid and trading in them does not incur transaction costs, but that

the options are less liquid and their prices are quoted with a bid-ask spread. (The

more difficult problem with transaction costs on a dynamically traded asset is ana-

lyzed in [4,37].) As in [19] we do not assume that there is a single model describing

the asset price behavior but rather a collection of models described by the convex

collection P of probability measures, which does not necessarily admit a dominating

measure. One should think of P as being obtained from calibration to the market

data. We have a collection rather than a single model because generally we do not

have point estimates but a confidence intervals for the parameters of our models.

Our first goal is to obtain a criteria for deciding whether the collection of models

represented by P is viable or not. Given that P is viable we would like to obtain

the range of prices for other options written on the dynamically traded assets. The

dual elements in these result are martingale measures that price the hedging op-

tions correctly (i.e. consistent with the quoted prices). As in classical transaction
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costs literature, we need to replace the no arbitrage condition by the stronger robust

no arbitrage condition, as we shall see in Section 7.2. In Section 7.3 we will make

the additional assumption that the hedging options with non-zero spread are non-

redundant (see Definition 7.3.1). We will see that under this assumption no arbitrage

and robust no arbitrage are equivalent. Our main results are Theorems 7.2.4 and

7.3.4.

7.2 Fundamental theorem with robust no arbitrage

Let St = (S1
t , . . . , S

d
t ) be the prices of d traded stocks at time t ∈ {0, 1, . . . , T}

and H be the set of all predictable Rd-valued processes, which will serve as our

trading strategies. Let g = (g1, . . . , ge) be the payoff of e options that can be traded

only at time zero with bid price g and ask price g, with g ≥ g (the inequality

holds component-wise). We assume St and g are Borel measurable, and there are no

transaction costs in the trading of stocks.

Definition 7.2.1 (No arbitrage and robust no arbitrage). We say that condition

NA(P) holds if for all (H, h) ∈ H × Re,

H · ST + h+(g − g)− h−(g − g) ≥ 0 P − quasi-surely (-q.s.)1

implies

H · ST + h+(g − g)− h−(g − g) = 0 P-q.s.,

where h± are defined component-wise and are the usual positive/negative part of h.2

We say that condition RNA(P) holds if there exists g′, g′ such that [g′, g′] ⊆ ri[g, g]

and NA(P) holds if g has bid-ask prices g′, g′.3

1A set is P-polar if it is P -null for all P ∈ P. A property is said to hold P-q.s. if it holds outside a P-polar set.
2When we multiply two vectors, we mean their inner product.
3“ri” stands for relative interior. [g′, g′] ⊆ ri[g, g] means component-wise inclusion.
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Definition 7.2.2 (Super-hedging price). For a given a random variable f , its super-

hedging price is defined as

π(f) := inf{x ∈ R : ∃ (H, h) ∈ H×Re, s.t. x+H·ST+h+(g−g)−h−(g−g) ≥ f P-q.s.}.

Any pair (H, h) ∈ H × Re in the above definition is called a semi-static hedging

strategy.

Remark 7.2.3. (1) Let π̂(gi) and π̂(−gi) be the super-hedging prices of gi and −gi,

where the hedging is done using stocks and options excluding gi. RNA(P) implies

either

−π̂(−gi) ≤ gi = gi ≤ π̂(gi)

or

(7.2.1) − π̂(−gi) ≤ (g′)i < gi and gi < (g′)i ≤ π̂(gi)

where g′, g′ are the more favorable bid-ask prices in the definition of robust no ar-

bitrage. The reason for working with robust no arbitrage is to be able to have the

strictly inequalities in (7.2.1) for options with non-zero spread, which turns out to be

crucial in the proof of the closedness of the set of hedgeable claims in (7.2.3) (hence

the existence of an optimal hedging strategy), as well as in the construction of a dual

element (see (7.2.6)).

(2) Clearly RNA(P) implies NA(P), but the converse is not true. For example,

assume in the market there is no stock, and there are only two options: g1(ω) =

g2(ω) = ω, ω ∈ Ω := [0, 1]. Let P be the set of probability measures on Ω, g
1

=

g1 = 1/2, g
2

= 1/4 and g2 = 1/2. Then NA(P) holds while RNA(P) fails.

For b, a ∈ Re, let

Q[b,a] := {Q≪ P : Q is a martingale measure and EQ[g] ∈ [b, a]}
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where Q≪ P means ∃P ∈ P such that Q � P .4 Let Q[b,a]
ϕ := {Q ∈ Q : EQ[ϕ] <

∞}. When [b, a] = [g, g], we drop the superscript and simply write Q,Qϕ. Also

define

Qs := {Q≪ P : Q is a martingale measure and EQ[g] ∈ ri[g, g]}

and Qsϕ := {Q ∈ Qs : EQ[ϕ] <∞}.

Theorem 7.2.4. Let ϕ ≥ 1 be a random variable such that |gi| ≤ ϕ ∀i = 1, . . . , e.

The following statements hold:

(a) (Fundamental Theorem of Asset Pricing): The following statements are equiv-

alent

(i) RNA(P) holds.

(ii) There exists [g′, g′] ⊆ ri[g, g] such that ∀P ∈ P, ∃Q ∈ Q[g′,g′]
ϕ such that

P � Q.

(b) (Super-hedging) Suppose RNA(P) holds. Let f : Ω → R be Borel measurable

such that |f | ≤ ϕ. The super-hedging price is given by

(7.2.2) π(f) = sup
Q∈Qsϕ

EQ[f ] = sup
Q∈Qϕ

EQ[f ] ∈ (−∞,∞],

and there exists (H, h) ∈ H × Re such that

π(f) +H · ST + h+(g − g)− h−(g − g) ≥ f P-q.s..

Proof. It is easy to show (ii) in (a) implies that NA(P) holds for the market with

bid-ask prices g′, g′, Hence RNA(P) holds for the original market. The rest of our

proof consists two parts as follows.

4EQ[g] ∈ [b, a] means EQ[gi] ∈ [bi, ai] for all i = 1, . . . , e.
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Part 1: π(f) > −∞ and the existence of an optimal hedging strategy in

(b). Once we show that the set

(7.2.3) Cg := {H · ST + h+(g − g)− h−(g − g) : (H, h) ∈ H × Re} − L0
+

is P − q.s. closed (i.e., if (W n)∞n=1 ⊂ Cg and W n → W P − q.s., then W ∈ Cg), the

argument used in the proof of [19, Theorem 2.3] would conclude the results in part

1. We will demonstrate the closedness of Cg in the rest of this part.

Write g = (u, v), where u = (g1, . . . , gr) consists of the hedging options without

bid-ask spread, i.e, gi = gi for i = 1, . . . , r, and v = (gr+1, . . . , ge) consists of those

with spread, i.e., gi < gi for i = r + 1, . . . , e, for some r ∈ {0, . . . , e}. Denote

u := (g1, . . . , gr) and similarly for v and v. Define

C := {H · ST + α(u− u) : (H,α) ∈ H × Rr} − L0
+.

Then C is P − q.s. closed by [19, Theorem 2.2].

Let W n → W P − q.s. with

(7.2.4) W n = Hn · ST + αn(u− u) + (βn)+(v − v)− (βn)−(v − v)− Un ∈ Cg,

where (Hn, αn, βn) ∈ H × Rr × Re−r and Un ∈ L0
+. If (βn)n is not bounded, then

by passing to subsequence if necessary, we may assume that 0 < ||βn|| → ∞ and

rewrite (7.2.4) as

Hn

βn
· ST +

αn

||βn||
(u− u) ≥ W n

||βn||
−
(

βn

||βn||

)+

(v − v) +

(
βn

||βn||

)−
(v − v) ∈ C,

where || · || represents the sup-norm. Since C is P − q.s. closed, the limit of the right

hand side above is also in C, i.e., there exists some (H,α) ∈ H × Rr, such that

H · ST + α(u− u) ≥ −β+(v − v) + β−(v − v), P − a.s.,
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where β is the limit of (βn)n along some subsequence with ||β|| = 1. NA(P) implies

that

(7.2.5) H · ST + α(u− u) + β+(v − v)− β−(v − v) = 0, P − a.s..

As β =: (βr+1, . . . , βe) 6= 0, we assume without loss of generality (w.l.o.g.) that

βe 6= 0. If βe < 0, then we have from (7.2.5) that

ge +
H

β−e
· ST +

α

β−e
(u− u) +

e−1∑
i=r+1

[
β+
i

β−e
(gi − gi)− β−i

β−e
(gi − gi)

]
= ge, P − a.s..

Therefore π̂(ge) ≤ g
e
, which contradicts the robust no arbitrage property (see (7.2.1))

of ge. Here π̂(ge) is the super-hedging price of ge using S and g excluding ge. Similarly

we get a contradiction if βe > 0.

Thus (βn)n is bounded, and has a limit β ∈ Re−r along some subsequence (nk)k.

Since by (7.2.4)

Hn · ST + αn(u− u) ≥ W n − (βn)+(v − v) + (βn)−(v − v) ∈ C,

the limit of the right hand side above along (nk)k, W − β+(v − v) + β−(v − v), is

also in C by its closedness, which implies W ∈ Cg.

Part 2: (i)⇒ (ii) in part (a) and (7.3.3) in part (b). We will prove the results by

an induction on the number of hedging options, as in [19, Theorem 5.1]. Suppose the

results hold for the market with options g1, . . . , ge. We now introduce an additional

option f ≡ ge+1 with |f | ≤ ϕ, available at bid-ask prices f < f at time zero. (When

the bid and ask prices are the same for f , then the proof is identical to [19].)

(i) =⇒ (ii) in (a): Let π(f) be the super-hedging price when stocks and g1, . . . , ge

are available for trading. By RNA(P) and (7.3.3) in part (b) of the induction hy-

pothesis, we have

(7.2.6) f > f
′ ≥ −π(−f) = inf

Q∈Qsϕ
EQ[f ] and f < f ′ ≤ π(f) = sup

Q∈Qsϕ
EQ[f ]
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where [f ′, f
′
] ⊆ (f, f) comes from the definition of robust no arbitrage. This implies

that there exists Q+, Q− ∈ Qsϕ such that EQ+ [f ] > f ′′ and EQ− [f ] < f
′′

where f ′′ =

1
2
(f + f ′), f

′′
= 1

2
(f + f

′
). By (a) of induction hypothesis, there exists [b, a] ⊆ ri[g, g]

such that for any P ∈ P , we can find Q0 ∈ Q[b,a]
ϕ satisfying P � Q0 ≪ P . Define

g′ = min(b, EQ+ [g], EQ− [g]), and g′ = max(a,EQ+ [g], EQ− [g])

where the minimum and maximum are taken component-wise. We have [b, a] ⊆

[g′, g′] ⊆ ri[g, g] and Q+, Q− ∈ Q
[g′,g′]
ϕ .

Now, let P ∈ P . (a) of induction hypothesis implies the existence of a Q0 ∈

Q[b,a]
ϕ ⊆ Q[g′,g′]

ϕ satisfying P � Q0 ≪ P . Define

Q := λ−Q− + λ0Q0 + λ+Q+.

Then Q ∈ Q[g′,g′]
ϕ and P � Q. By choosing suitable weights λ−, λ0, λ+ ∈ (0, 1), λ−+

λ0 + λ+ = 1, we can make EQ[f ] ∈ [f ′′, f
′′
] ⊆ ri[f, f ].

(7.3.3) in (b): Let ξ be a Borel measurable function such that |ξ| ≤ ϕ. Write

π′(ξ) for its super-hedging price when stocks and g1, . . . , ge, f ≡ ge+1 are traded,

Q′ϕ := {Q ∈ Qϕ : EQ[f ] ∈ [f, f ]} and Q′sϕ := {Q ∈ Qsϕ : EQ[f ] ∈ (f, f)}. We want

to show

(7.2.7) π′(ξ) = sup
Q∈Q′sϕ

EQ[ξ] = sup
Q∈Q′ϕ

EQ[ξ].

It is easy to see that

(7.2.8) π′(ξ) ≥ sup
Q∈Q′ϕ

EQ[ξ] ≥ sup
Q∈Q′sϕ

EQ[ξ]

and we shall focus on the reverse inequalities. Let us assume first that ξ is bounded

from above, and thus π′(ξ) <∞. By a translation we may assume π′(ξ) = 0.
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First, we show π′(ξ) ≤ supQ∈Q′ϕ EQ[ξ]. It suffices to show the existence of a

sequence {Qn} ⊆ Qϕ such that limnEQn [f ] ∈ [f, f ] and limnEQn [ξ] = π′(ξ) = 0.

(See page 30 of [19] for why this is sufficient.) In other words, we want to show that

{EQ[(f, ξ)] : Q ∈ Qϕ} ∩
(
[f, f ]× {0}

)
6= ∅.

Suppose the above intersection is empty. Then there exists a vector (y, z) ∈ R2 with

|(y, z)| = 1 that strictly separates the two closed, convex sets, i.e. there exists b ∈ R

s.t.

(7.2.9) sup
Q∈Qϕ

EQ[yf + zξ] < b and inf
a∈[f,f ]

ya > b.

It follows that

(7.2.10)

y+f−y−f+π′(zξ) ≤ π′(yf+zξ) ≤ π(yf+zξ) = sup
Q∈Qϕ

EQ[yf+zξ] < b < y+f−y−f,

where the first inequality is because one can super-replicate zξ = (yf + zξ) + (−yf)

from initial capital π′(yf + zξ)− y+f + y−f , the second inequality is due to the fact

that having more options to hedge reduces hedging cost, and the middle equality is

by (b) of induction hypothesis. The last two inequalities are due to (7.2.9).

It follows from (7.2.10) that π′(zξ) < 0. Therefore, we must have that z < 0,

otherwise π′(zξ) = zπ′(ξ) = 0 (since the super-hedging price is positively homoge-

nous). Recall that we have proved in part (a) that Q′ϕ 6= ∅. Let Q′ ∈ Q′ϕ ⊆ Qϕ. The

part of (7.2.10) after the equality implies that yEQ′ [f ] + zEQ′ [ξ] < y+f − y−f . Since

EQ′ [f ] ∈ [f, f ], we get zEQ′ [ξ] < y+(f − EQ′ [f ])− y−(f − EQ′ [f ]) ≤ 0. Since z < 0,

EQ′ [ξ] > 0. But by (7.2.8), EQ′ [ξ] ≤ π′(ξ) = 0, which is a contradiction.

Next, we show supQ∈Q′ϕ EQ[ξ] ≤ supQ∈Q′sϕ EQ[ξ]. It suffices to show for any ε > 0

and every Q ∈ Q′ϕ, we can find Qs ∈ Q′sϕ such that EQs [ξ] > EQ[ξ]− ε. To this end,
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let Q′ ∈ Q′sϕ which is nonempty by part (a). Define

Qs := (1− λ)Q+ λQ′.

We have Qs≪ P by the convexity of P , and Qs ∈ Q′sϕ if λ ∈ (0, 1]. Moreover,

EQs [ξ] = (1− λ)EQ[ξ] + λEQ′ [ξ]→ EQ[ξ] as λ→ 0.

So for λ > 0 sufficiently close to zero, the Qs constructed above satisfies EQs [ξ] >

EQ[ξ]−ε. Hence we have shown that the supremum over Q′ϕ and Q′sϕ are equal. This

finishes the proof for upper bounded ξ.

Finally when ξ is not bounded from above, we can apply the previous result to

ξ ∧ n, and then let n → ∞ and use the closedness of Cg in (7.2.3) to show that

(7.3.3) holds. The argument would be the same as the last paragraph in the proof

of [19, Thoerem 3.4] and we omit it here.

7.3 A sharper fundamental theorem with the non-redundancy assump-
tion

We now introduce the concept of non-redundancy. With this additional assump-

tion we will sharpen our result.

Definition 7.3.1 (Non-redundancy). A hedging option gi is said to be non-redundant

if it is not perfectly replicable by stocks and other hedging options, i.e. there does

not exist x ∈ R and a semi-static hedging strategy (H, h) ∈ H × Re such that

x+H · ST +
∑
j 6=i

hjgj = gi P-q.s..

Remark 7.3.2. RNA(P) does not imply non-redundancy. For Instance, having only

two identical options in the market whose payoffs are in [c, d], with identical bid-ask

prices b and a satisfying b < c and a > d, would give a trivial counter example where

RNA(P) holds yet we have redundancy.
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Lemma 7.3.3. Suppose all hedging options with non-zero spread are non-redundant.

Then NA(P) implies RNA(P).

Proof. Let g = (g1, . . . , gr+s), where u := (g1, . . . , gr) consists of the hedging options

without bid-ask spread, i.e, gi = gi for i = 1, . . . , r, and (gr+1, . . . , gr+s) consists of

those with bid-ask spread, i.e., gi < gi for i = r + 1, . . . , r + s. We shall prove

the result by induction on s. Obviously the result holds when s = 0. Suppose

the result holds for s = k ≥ 0. Then for s = k + 1, denote v := (gr+1 . . . , gr+k),

v := (gr+1, . . . , gr+k) and v := (gr+1, . . . , gr+k). Denote f := gr+k+1.

By the induction hypothesis, there exists [v′, v′] ⊂ (v, v) be such that NA(P) holds

in the market with stocks, options u and options v with any bid-ask prices b and a

satisfying [v′, v′] ⊂ [b, a] ⊂ (v, v). Let vn ∈ (v, v′), vn ∈ (v′, v), f
n
> f and f

n
< f ,

such that vn ↘ v, vn ↗ v, f
n
↘ f and fn ↗ f . We shall show that for some n,

NA(P) holds with stocks, options u, options v with bid-ask prices vn and vn, option

f with bid-ask prices f
n

and fn. We will show it by contradiction.

If not, then for each n, there exists (Hn, hnu, h
n
v , h

n
f ) ∈ H×Rr ×Rk ×R such that

(7.3.1) Hn · ST + hnu(u− u) + (hnv )+(v − vn)− (hnv )−(v − vn)

+(hnf )+(f − fn)− (hnf )−(f − f
n
) ≥ 0, P − q.s.,

and the strict inequality for the above holds with positive probability under some

Pn ∈ P . Hence hnf 6= 0. By a normalization, we can assume that |hnf | = 1. By

extracting a subsequence, we can w.l.o.g. assume that hnf = −1 (the argument when

assuming hnf = 1 is similar). If (hnu, h
n
v )n is not bounded, then w.l.o.g. we assume

that 0 < cn := ||(hnu, hnv )|| → ∞. By (7.3.1) we have that

Hn

cn
· ST +

hnu
cn

(u− u) +
(hnv )+

cn
(v − vn)− (hnv )−

cn
(v − vn)− 1

cn
(f − f

n
) ≥ 0, P − q.s..
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By [19, Theorem 2.2], there exists H ∈ H, such that

H · ST + hu(u− u) + h+
v (v − v)− h−v (v − v) ≥ 0, P − q.s.,

where (hu, hv) is the limit of (hnu/c
n, hnu/c

n) along some subsequence with ||(hu, hv)|| =

1. NA(P) implies that

(7.3.2) H · ST + hu(u− u) + h+
v (v − v)− h−v (v − v) = 0, P − q.s..

Since (hu, hv) 6= 0, (7.3.2) contradicts the non-redundancy assumption of (u, v).

Therefore, (hnu, h
n
v )n is bounded, and w.l.o.g. assume it has the limit (ĥu, ĥv).

Then applying [19, Theorem 2.2] in (7.3.1), there exists Ĥ ∈ H such that

Ĥ · ST + ĥu(u− u) + ĥ+
v (v − v)− ĥ−v (v − v)− (f − f) ≥ 0, P − q.s..

NA(P) implies that

Ĥ · ST + ĥu(u− u) + ĥ+
v (v − v)− ĥ−v (v − v)− (f − f) = 0, P − q.s.,

which contradicts the non-redundancy assumption of f .

We have the following FTAP and super-hedging result in terms of NA(P) instead

of RNA(P), when we additionally assume the non-redundancy of g.

Theorem 7.3.4. Suppose all hedging options with non-zero spread are non-redundant.

Let ϕ ≥ 1 be a random variable such that |gi| ≤ ϕ ∀i = 1, . . . , e. The following state-

ments hold:

(a’) (Fundamental Theorem of Asset Pricing): The following statements are equiv-

alent

(i) NA(P) holds.

(ii) ∀P ∈ P, ∃Q ∈ Qϕ such that P � Q.
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(b’) (Super-hedging) Suppose NA(P) holds. Let f : Ω→ R be Borel measurable such

that |f | ≤ ϕ. The super-hedging price is given by

(7.3.3) π(f) = sup
Q∈Qϕ

EQ[f ] ∈ (−∞,∞],

and there exists (H, h) ∈ H × Re such that

π(f) +H · ST + h+(g − g)− h−(g − g) ≥ f P-q.s..

Proof. (a’)(ii) =⇒ (a’)(i) is trivial. Now if (a’)(i) holds, then by Lemma 7.3.3, (a)(i)

in Theorem 7.2.4 holds, which implies (a)(ii) holds, and thus (a’)(ii) holds. Finally,

(b’) is implied by Lemma 7.3.3 and Theorem 7.2.4(b).

Remark 7.3.5. Theorem 7.3.4 generalizes the results of [19] to the case when the

option prices are quoted with bid-ask spreads. When P is the set of all probabil-

ity measures and the given options are all call options written on the dynamically

traded assets, a result with option bid-ask spreads similar to Theorem 7.3.4-(a) had

been obtained by [26]; see Proposition 4.1 therein, although the non-redundancy

condition did not actually appear. (The objective of [26] was to obtain relationships

between the option prices which are necessary and sufficient to rule out semi-static

arbitrage and the proof relies on determining the correct set of relationships and then

identifying a martingale measure.)

However, the no arbitrage concept used in [26] is different: the author there

assumes that there is no weak arbitrage in the sense of [32]; see also [1,31].5 (Recall

that a market is said to have weak arbitrage if for any given model (probability

measure) there is an arbitrage strategy which is an arbitrage in the classical sense.)

The arbitrage concept used here and in [19] is weaker, in that we say that a non-

negative wealth (P-q.s.) is an arbitrage even if there is a single P under which the
5The no arbitrage assumption in [1] is the model independent arbitrage of [32]. However that paper rules out the

model dependent arbitrage by assuming that a superlinearly growing option can be bought for static hedging.



128

wealth process is a classical arbitrage. Hence our no arbitrage condition is stronger

than the one used in [26]. But what we get out from a stronger assumption is the

existence of a martingale measure Q ∈ Qϕ for each P ∈ P . Whereas [26] only

guarantees the existence of only one martingale measure which prices the hedging

options correctly.



CHAPTER VIII

On hedging American options under model uncertainty

8.1 Introduction

We consider the problem of pricing and semi-static hedging of American options

in the model uncertainty set-up of [19]. In semi-static hedging stocks are traded

dynamically and options are traded statically. This formulation is frequently used in

the literature since options are less liquid than stocks (see e.g. [32]). In this setting,

so far only the super-hedging prices of (path dependent) European options under

(non-dominated) model uncertainty were considered: see e.g. [1,17,19]. [36] obtained

these results for a continuous time financial market. Some results are available on

the pricing of American options in the model independent framework without the

static hedging in options. See for example [35] for duality results in discrete time

set-up, and [13,39,67] for similar duality results and in particular the analysis of the

related optimal stopping problem.

In this chaper, we consider the problems of sub- and super-hedging of American

options using semi-static trading strategies in the model independent set-up of [19].

We first obtain the duality results for both the sub- and super-hedging prices, as well

as the existence of the optimal hedging strategies. Then for compact state spaces we

show how to discretize it in order to obtain the optimal rate of convergence.

129
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In the first part of this chaper, we focus on the sub-and super-hedging dualities.

For the sub-hedging prices we discuss whether the sup and inf in the dual representa-

tion can be exchanged. We show that the exchangeability may fail in general unless

there is no hedging option. For the super-hedging prices we discuss several alterna-

tive definitions. The correct definition involves “non-anticipative” strategies, which

is quite different from the one in the classical case when there is no hedging option.

As for the existence for the optimal hedging strategies, we first develop a new proof

to obtain the existence of an optimal static hedge. Then we use the non-dominated

optimal stopping to obtain the optimal trading strategy in the stock for sub-hedging

problem, and the optional decomposition for super-hedging.

In the second part of this chaper, we concentrate on how to use hedging prices

in the discretized market to approximate the ones in the original market. This

approximation is useful for numerical computations since in the discretized market

the state space is finite, and thus there exists a dominating measure on it. Our

approximation result is a generalization of [35], but in our case the construction

of the approximation becomes much more complicated due to the presence of the

hedging options. In particular, in contrast to [35], it is not a priori clear that the

discretized market is free of arbitrage. We also show how to pick the prices of the

hedging options in the discretized market in order to obtain the optimal convergence

rate. One should note that, although in [35] the no-arbitrage notions of [?] and [19]

coincide (see Appendix VIII.D), in our case they are different since there are hedging

options available. We choose to work in the framework of [19].

The rest of the chaper is organized as follows: We obtain the duality results

for the sub- and super-hedging prices of American options in Sections 8.2 and 8.3,

respectively. In Section 8.4, we discretize the path space and show that hedging
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prices in the discretized market converge to the original ones. The appendix is

devoted to verify some of the statements we make in Sections 8.1, 8.2 and 8.3. Of

particular interest in that section is the analysis of the adverse optimal stopping

problems for nonlinear expectations in discrete time, which resolves the optimal

stopping problems in [35] for more general state spaces (see Appendix VIII.B). This

result is useful particularly in showing the existence of the optimal sub-hedging

strategy. The existence of the optimal super hedging strategy is a consequence of the

non-dominated optional decomposition theorem [19] and the analysis in Appendix

VIII.C.

The remainder of this section is devoted to setting up the notation used in the

rest of the chaper.

8.1.1 Notation

We use the set-up in [19]. Let T ∈ N be the time Horizon and let Ω1 be a Polish

space. For t ∈ {0, 1, . . . , T}, let Ωt := Ωt
1 be the t-fold Cartesian product, with the

convention that Ω0 is a singleton. We denote by Ft the universal completion of B(Ωt)

and write (Ω,F) for (ΩT ,FT ). For each t ∈ {0, . . . , T − 1} and ω ∈ Ωt, we are given

a nonempty convex set Pt(ω) ⊂ P(Ω1) of probability measures. Here Pt represents

the possible models for the t-th period, given state ω at time t. We assume that

for each t, the graph of Pt is analytic, which ensures that Pt admits a universally

measurable selector, i.e., a universally measurable kernel Pt : Ωt → P(Ωt) such that

Pt(ω) ∈ Pt(ω) for all ω ∈ Ωt. Let

(8.1.1) P := {P0 ⊗ . . .⊗ PT−1 : Pt(·) ∈ Pt(·), t = 0, . . . , T − 1},

where each Pt is a universally measurable selector of Pt, and for A ∈ Ω,

P0 ⊗ . . .⊗ PT−1(A) =

∫
Ω1

. . .

∫
Ω1

1A(ω1, . . . , ωT )PT−1(ω1, . . . , ωT−1; dωT ) . . . P0(dω1).
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Let St : Ωt → R be Borel measure, which represents the price at time t of a stock

S that can be traded dynamically in the market. Let g = (g1, . . . , ge) : Ω → Re be

Borel measurable, representing the options that can only be traded at the beginning

at price 0. Assume NA(P) holds, i.e, for all (H, h) ∈ H × Re,

(H · S)T + hg ≥ 0 P − q.s. implies (H · S)T + hg = 0 P − q.s.,

where H is the set of predictable processes representing trading strategies, (H ·S)T =∑T−1
t=0 Ht(St+1 − St), and hg denotes the inner product of h and g. Then from [19,

FTAP], for all P ∈ P , there exists Q ∈ Q such that P � Q, where

Q := {Q martingale measure1 : EQ[gi] = 0, i = 1, . . . , e, and ∃P ′ ∈ P s.t. Q� P ′}.

In the next section we will consider an American option with pay-off stream Φ. We

will assume that Φ : {0, . . . , T} × Ω→ R is adapted2. Let T be the set of stopping

times with respect to the raw filtration (B(Ωt))
T
t=0, and Tt ⊂ T the set of stopping

times that are no less than t. For t = 0, . . . , T and ω ∈ Ωt, define

Qt(ω) := {Q ∈ P(Ω1) : Q� P, for some P ∈ Pt(ω), and EQ[∆St+1(ω, ·)] = 0}.

By [19, Lemma 4.8], there exists a universally measurable selector Qt such that

Qt(·) ∈ Qt(·) on {Qt 6= ∅}. Using these selectors we define for t ∈ {0, . . . , T − 1}

and ω ∈ Ωt,

Mt(ω) := {Qt ⊗ . . .⊗QT−1 : Qi(ω, ·) ∈ Qi(ω, ·) on {Qi(ω, ·) 6= ∅}, i = t, . . . , T − 1} ,

which is similar to (8.1.1) but starting from time t instead of time 0. In particular

M0 =M, where

(8.1.2) M := {Q martingale measure : ∃P ∈ P , s.t. Q� P}.
1That is, Q satisfies EQ[|St+1| |Ft] <∞ and EQ[St+1|Ft] = St, Q-a.s. for t = 0, . . . , T − 1.
2Unless otherwise specified the measurability and related concepts (adaptedness, etc) are with respect to the

filtration (Ft)Tt=0.
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We will assume in the rest of the chapter that the graph of Mt is analytic, t =

0, . . . , T − 1. Below we provide a general sufficient condition for the analyticity of

graph(Mt) and leave its proof to Appendix VIII.A.

Proposition 8.1.1. For t = 0, . . . , T − 1 and ω ∈ Ωt, define

Pt(ω) := {Pt ⊗ . . .⊗ PT−1 : Pi(ω, ·) ∈ Pi(ω, ·), i = t, . . . , T − 1},

where each Pi is a universally measurable selector of Pi. If graph(Pt) is analytic,

then graph(Mt) is also analytic.

For any measurable function f and probability measure P , we define the P -

expectation of f as EP [f ] = EP [f+] − EP [f−] with convention ∞−∞ = −∞. We

use | · | to denote the sup norm in various cases. For ω ∈ Ω and t ∈ {0, . . . , T}, we

will use the notation ωt ∈ Ωt to denote the path up to time t. For a given function

f defined on Ω, let us denote

Eτ (f)(ω) := inf
Q∈Mτ(ω)(ω

τ(ω))
EQ[f(ωτ(ω), ·)], ω ∈ Ω,

and

Eτ (f)(ω) := sup
Q∈Mτ(ω)(ω

τ(ω))

EQ[f(ωτ(ω), ·)], ω ∈ Ω.

We use the abbreviations u.s.a. for upper-semianalytic, l.s.c. for lower-semicontinuous,

and u.s.c. for upper-semicontinuous.

8.2 Sub-hedging Duality

We define the sub-hedging price of the American option as

(8.2.1)

π(Φ) := sup {x ∈ R : ∃(H, τ, h) ∈ H × T × Re, s.t. Φτ + (H · S)T + hg ≥ x, P − q.s.} .
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Remark 8.2.1. In the above definition, we require the trading in the stock S to be

up to time T instead of τ . This is because it is possible that the maturities of some

options in g are later than τ . When there is no hedging options involved, for sub-

hedging (and in fact also super-hedging) trading S up to time T is equivalent to up

to time τ (e.g. see the beginning of the proof of Theorem 6.6.3).

We have the following duality theorem for sub-hedging prices.

Theorem 8.2.2. Assume that Φt is l.s.a. for t = 1, . . . , T . Then

(8.2.2) π(Φ) = sup
τ∈T

inf
Q∈Q

EQ[Φτ ].

Moreover, if supQ∈MEQ[|g|] < ∞, supQ∈MEQ[max0≤t≤T |Φt|] < ∞, and for any

h ∈ Re and t ∈ {0, . . . , T − 1}, the maps Φt + E t(hg) and φ : Ω 7→ Re defined by

φ = E t
(

inf
τ∈Tt+1

E t+1 (Φτ + Eτ (hg))

) (
or φ = E t

(
sup

Q∈Mt+1

inf
τ∈Tt+1

EQ (Φτ + Eτ (hg))

))
are Borel measurable, then there exists (H∗, τ ∗, h∗) ∈ H × T × Re, such that

(8.2.3) Φτ∗ + (H∗ · S)T + h∗g ≥ π(Φ), P − q.s.

Proof. For any τ ∈ T , define

π(Φτ ) := sup {x ∈ R : ∃(H, h) ∈ H × Re, s.t. Φτ + (H · S)T + hg ≥ x, P − q.s.} .

Since Φt is u.s.a. and τ is a stopping time with respect to the raw filtration, it follows

that Φτ is u.s.a. Then applying [19, Theorem 5.1 (b)], we get

π(Φτ ) = inf
Q∈Q

EQ[Φτ ] =⇒ sup
τ∈T

π(Φτ ) = sup
τ∈T

inf
Q∈Q

EQ[Φτ ].

Since π(Φ) ≥ π(Φτ ), ∀τ ∈ T , it follows that π(Φ) ≥ supτ∈T π(Φτ ). Therefore,

it remains to show that π(Φ) ≤ supτ∈T π(Φτ ). For any ε > 0, there exists x ∈

(π(Φ) ∧ (1/ε)− ε, π(Φ) ∧ (1/ε)] and (Hε, τ ε, hε) ∈ H × T × Re satisfying

Φτε + (Hε · S)T + hεg ≥ x, P − q.s.
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As a result,

π(Φ) ∧ 1

ε
− ε < x ≤ π(Φτε) ≤ sup

τ∈T
π(Φτ ),

from which (8.2.2) follows since ε is arbitrary.

Let us turn to the proof of the existence of the optimal sub-hedging strategies.

Similar to the proof above, we can show that

π(Φ) = sup
h∈Re

sup
τ∈T

sup{x : ∃H ∈ H, s.t. Φτ + (H · S)T + hg ≥ x, P − q.s.}

= sup
h∈Re

sup
τ∈T

inf
Q∈M

EQ[Φτ + hg].

We shall first show in two steps that the optimal h∗ exists for the above equations.

Step 1: We claim that 0 is in the relative interior of the convex set {EQ[g], Q ∈M}.

If not, then there exists h ∈ Re, such that EQ[hg] ≤ 0, for any Q ∈M, and moreover

there exists Q̄ ∈M, such that EQ̄[hg] < 0. By [19, Theorem 4.9], the super-hedging

price of hg (using only the stock) is supQ∈MEQ[hg] ≤ 0, and there exists H ∈ H,

such that

(H · S)T ≥ hg, P − q.s.

Then EQ̄[(H · S)T − hg] > 0, and thus, for any P ∈ P dominating Q̄, we have that

P ((H · S)T − hg > 0) > 0,

which contradicts NA(P).

Step 2: Since 0 is a relative interior point of {EQ[g], Q ∈M}, and

sup
Q∈M

EQ[ max
0≤t≤T

|Φt|] <∞,

we know that

π(Φ) = sup
h∈Re

sup
τ∈T

inf
Q∈M

EQ[Φτ + hg] = sup
h∈K

sup
τ∈T

inf
Q∈M

EQ[Φτ + hg],
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where K is a compact subset of Re. Define the map ϕ : Re 7→ R by

ϕ(h) = sup
τ∈T

inf
Q∈M

EQ[Φτ + hg].

The function ϕ is continuous since |ϕ(h)− ϕ(h′)| ≤ e|h− h′| supQ∈MEQ|g|. Hence,

there exists h∗ ∈ K ⊂ Re such that

(8.2.4) π(Φ) = sup
τ∈T

inf
Q∈M

EQ[Φτ + h∗g] = sup
τ∈T

inf
Q∈M

EQ[Φτ + Eτ (h∗g)],

where the second equality above follows from [69, Theorem 2.3]. Using the measura-

bility assumptions in the statement of this theorem, we can apply Theorem VIII.B.1,

and obtain a τ ∗ ∈ T that is optimal for (8.2.4), i.e.,

π(Φ) = inf
Q∈M

EQ[Φτ∗ + Eτ∗(h∗g)] = sup
τ∈T

inf
Q∈M

EQ[Φτ + h∗g]

= sup{x : ∃H ∈ H, s.t. Φτ∗ + (H · S)T + h∗g ≥ x, P − q.s.}

Then by [19, Theorem 4.9], there exists a strategy H∗ ∈ H, such that (8.2.3) holds.

8.2.1 Exchangeability of the supremum and infimum in (8.2.2)

When there are no options available for static hedging (then Q = M), Q is

closed under pasting. Using this property we show in Theorem VIII.B.1 and Propo-

sition VIII.B.3 that the order of “inf” and “sup” in (8.2.2) can be exchanged under

some reasonable assumptions. These conclusions cover the specific results of [35]

which works with a compact path space. (Although, our no arbitrage assumption

seems to be different than the one in [35], we verify in Proposition VIII.D.2 that

they are the same when there are no options, i.e., e = 0.) The same holds true for

our super-hedging result in the next section.

In general, Q may not be stable under pasting due to the distribution constraints

imposed by having to price the given options correctly. Then whether the “inf” and
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“sup” in (8.2.2) can be exchanged is not clear, and in fact may not be possible as

the example below demonstrates.

Figure 8.1: A two-period example

Example 8.2.3. We consider a two-period model as described by the figure above.

The stock price process is restricted to the finite path space indicated by the figure,

where S(t) is the stock price at time t, t = 0, 1, 2. Let P be all the probability

measures on this path space. Then each martingale measure Q ∈M can be uniquely

characterized by a pair (p, q), 0 ≤ p, q ≤ 1/2, as indicated in the figure. Assume

there is one European option g = [S(2) − 3]+ − 5/6 that can be traded at price 0.

Let Φ be the payoff of a path-independent American option that needs to be hedged.

In the figure, the number in each circle right below the rectangle (node) represents

the value of Φ when the stock price is at that node.

Each Q ∈ Q ⊂M is characterized by (p, q) with the additional condition: p+q =

2/3. There are in total 5 stopping strategies: stop at node S(0) = 3, or continue

to node S(1) = k, k = 2, 4, then choose either to stop or to continue. It is easy to
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check that

sup
τ∈T

inf
Q∈Q

EQ[Φτ ]

= 0 ∨ 11

24
∨

1

8
+ inf

0≤p,q≤1/2
p+q=2/3

q

 ∨
 inf

0≤p,q≤1/2
p+q=2/3

p

2
+

1

3

 ∨
 inf

0≤p,q≤1/2
p+q=2/3

(p
2

+ q
)

=
11

24
,

and

inf
Q∈Q

sup
τ∈T

EQ[Φτ ] = inf
0≤p,q≤1/2
p+q=2/3

[
1

2

(
p ∨ 1

4
+ 2q ∨ 2

3

)
∨ 0

]
=

1

2
> sup

τ∈T
inf
Q∈Q

EQ[Φτ ].

8.3 The Super-hedging Duality

We define the super-hedging price as

(8.3.1) π(Φ) := inf
{
x ∈ R : ∃(H, h) ∈ H′ × Re,

s.t. x+ (H · S)T + hg ≥ Φτ , P − q.s., ∀τ ∈ T
}
,

where H′ is the set of processes that have the “non-anticipativity” property, i.e.,

(8.3.2) H′ := {H : T 7→ H, s.t. Ht(τ
1) = Ht(τ

2), ∀t < τ 1 ∧ τ 2}.

In other words, the seller of the American option is allowed to adjust the trading

strategy according to the stopping time τ after it is realized.

The following is our duality theorem for the super-hedging prices.

Theorem 8.3.1. Assume that for (ω, P ) ∈ ΩT ×P(ΩT−t),

(8.3.3) the map (ω, P ) 7→ sup
τ∈Tt

EP [Φτ (ω
t, ·)] is u.s.a., t = 1, . . . , T.

Then

(8.3.4) π(Φ) = inf
h∈Re

sup
τ∈T

sup
Q∈M

EQ[Φτ − hg].
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Moreover, if supQ∈MEQ[|g|] < ∞ and supQ∈MEQ[max0≤t≤T |Φt|] < ∞, then there

exists (H∗, h∗) ∈ H′ × Re, such that

(8.3.5) π(Φ) + (H∗ · S)T + h∗g ≥ Φτ , P − q.s., ∀τ ∈ T .

Proof. An argument similar to the one used in the proof of Theorem 8.2.2 implies

that π(Φ) = infh∈Re π(Φ, h), where

π(Φ, h) = inf {x ∈ R : ∃H ∈ H′, s.t. x+ (H · S)T + hg ≥ Φτ , P − q.s., ∀τ ∈ T } .

It is easy to see that π(Φ, h) ≥ supτ∈T supQ∈MEQ[Φτ − hg]. In what follows we will

demonstrate the reverse inequality. Define

(8.3.6) Vt = sup
τ∈Tt
E t(Φτ − hg).

Using assumption (8.3.3), we apply Proposition VIII.C.1 to show that Vt is u.s.a.,

Ft-measurable and a super-martingale under each Q ∈M. As a result, we can apply

the optional decomposition theorem for the nonlinear expectations [19, Theorem 6.1],

which implies that there exists H ′ ∈ H, such that for any τ ∈ T ,

(8.3.7) V0 + (H ′ · S)τ ≥ Vτ = sup
ρ∈Tτ
Eτ (Φρ − hg) ≥ Φτ + Eτ (−hg), P − q.s.

Let us also define

Wt := E t(−hg).

Thanks to Proposition VIII.C.1, we can apply [19, Theorem 6.1] again and get that

there exists H ′′ ∈ H, such that for any τ ∈ T ,

(8.3.8) Wτ + (H ′′ · S)τ,T = Eτ (−hg) + (H ′′ · S)τ,T ≥ WT = −hg, P − q.s.,

where (H ′′ · S)τ,T =
∑T−1

i=τ H
′′
i [Si+1− Si]. Combining (8.3.7) and (8.3.8), we get that

V0 + (H · S)T + hg ≥ Φτ , ∀τ ∈ T , P − q.s.,
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where Ht = H ′t1{t<τ} +H ′′t 1{t≥τ}. Note that H ′ in (8.3.7) is independent of τ , which

implies that H is indeed in H′. Hence, V0 = supτ∈T supQ∈MEQ[Φτ − hg] ≥ π(Φ, h).

As in the proof of Theorem 8.2.2, there exists h∗ ∈ Re that is optimal for (8.3.4):

π(Φ) = sup
τ∈T

sup
Q∈M

EQ[Φτ − h∗g] = π(Φ, h∗).

Also observe from the proof above that there exists H∗ ∈ H′, such that

π(Φ, h∗) + (H∗ · S)T + h∗g ≥ Φτ , P − q.s., ∀τ ∈ T ,

which implies (8.3.5).

Proposition 8.3.2 (A sufficient condition on the assumption (8.3.3) of Theorem 8.3.1).

Assume that Φt is l.s.c. and bounded from below for t = 1, . . . , T . Then for

(ω, P ) ∈ ΩT × P(ΩT−t), the map (ω, P ) 7→ supτ∈Tt EP [Φτ (ω
t, ·)] is l.s.c., and thus

u.s.a, t = 1, . . . , T .

Proof. If Φ is uniformly continuous in ω with modulus of continuity ρ, then for

(nω, P n)→ (ω, P ), we have that

sup
τ∈Tt

EPn [Φτ ((
nω)t, ·)]− sup

τ∈Tt
EP [Φτ (ω

t, ·)]

= sup
τ∈Tt

EPn [Φτ ((
nω)t, ·)]− sup

τ∈Tt
EPn [Φτ (ω

t, ·)]

+ sup
τ∈Tt

EPn [Φτ (ω
t, ·)]− sup

τ∈Tt
EP [Φτ (ω

t, ·)]

≥ −ρ(||nω − ω||) + sup
τ∈Tt

EPn [Φτ (ω
t, ·)]− sup

τ∈Tt
EP [Φτ (ω

t, ·)].(8.3.9)

Noting that the map P 7→ supτ∈Tt EP [Φτ (ω
t, ·)] is l.s.c. (see e.g., [42, Theorem 1.1]),

we know that the map (P, ω) 7→ supτ∈Tt EP [Φτ (ω
t, ·)] is l.s.c. by taking the limit in

(8.3.9). In general, if Φt be l.s.c. and bounded from below, then there exists uniformly

continuous functions (Φn
t )n, such that Φn

t ↗ Φt pointwise (see e.g., [18, Lemma 7.14]),
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t = 1, . . . , T . Therefore,

sup
τ∈Tt

EP [Φτ (ω
t, ·)] = sup

τ∈Tt
sup
n
EP [Φn

τ (ωt, ·)] = sup
n

sup
τ∈Tt

EP [Φn
τ (ωt, ·)],

which implies that the map (ω, P ) 7→ supτ∈Tt EP [Φτ (ω
t, ·)] is l.s.c.

8.3.1 Comparison of several definitions of super-hedging

In the duality result (8.3.4), one would expect that π(Φ) = supτ∈T supQ∈QEQ[Φτ ].

More precisely, if the orders in (8.3.4) could be exchanged for then we would have

π(Φ) = inf
h∈Re

sup
τ∈T

sup
Q∈M

EQ[Φτ − hg] = sup
τ∈T

sup
Q∈M

inf
h∈Re

EQ[Φτ − hg] = sup
τ∈T

sup
Q∈Q

EQ[Φτ ].

But the latter is in fact equal to

(8.3.10)

π̂(Φ) := inf{x ∈ R : ∀τ ∈ T ,∃(H, h) ∈ H×Re, s.t. x+(H ·S)T +hg ≥ Φτ , P−q.s.}.

That is,

(8.3.11) π̂(Φ) = sup
τ∈T

sup
Q∈Q

EQ[Φτ ].

Since for the definition of π̂ in (8.3.10) the seller knows the buyer’s stopping strategy τ

in advance (which is unreasonable for super-hedging), we may expect that in general

it is possible π(Φ) > π̂(Φ). We shall provide Example 8.3.3 showing π(Φ) > π̂(Φ) at

the end of this section.

An alternative way to define the super-hedging price is:

(8.3.12) π̃(Φ) := inf
{
x ∈ R : ∃(H, h) ∈ H × Re,

s.t. x+ (H · S)T + hg ≥ Φτ , P − q.s., ∀τ ∈ T
}
.

However, this definition is not as useful since any reasonable investor would adjust

her strategy after observing how the buyer of the option behaves. (In fact, H can be
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treated as a subset of H′, and each element in H is indifferent to stopping strategies

used by the buyer, and the non-anticipativity is automatically satisfied.) Due to the

fact that for π̃ the seller fails to use the information of the realization of τ , it could

very well be the case that π(Φ) < π̃(Φ). We shall see in Example 8.3.3 that it is

indeed the case.

If P is the set of all probability measures on a subset Ω′ of Ω, then under the

definition of (8.3.12), super-hedging the American option is equivalent to super-

hedging the lookback option maxt≤T Φt. To wit, suppose for x ∈ R and (H, h) ∈

H × Re, we have that

(8.3.13) x+ (H · S)T + hg ≥ Φτ , ∀s ∈ Ω′, ∀τ ∈ T ,

and

x+ (H · S)T + hg < max
t≤T

Φt, along some path s∗ = (s∗0 = 1, s∗1, . . . , s
∗
T ) ∈ Ω′.

Let t∗ = arg maxt≤T Φt(s
∗) and define τ ∗ ∈ T with the property that τ(s∗) = t∗, i.e.,

the holder of the American option will stop at time t∗ once she observes (s∗0, . . . , s
∗
t∗)

happens. Then (8.3.13) does not hold if we take τ = τ ∗ and s = s∗. So the super-

hedging price under the definition of (8.3.12) is:

π̃(Φ) = sup
Q∈Q

EQ

[
max
t≤T

Φt

]
.

Example 8.3.3 below shows that it is possible that π̂(Φ) < π(Φ) < π̃(Φ), which

indicates that the super-hedging definitions in (8.3.10) and (8.3.12) are unreasonable.

Example 8.3.3. We will use the set-up in Example 8.2.3. An easy calculation shows
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that

π(Φ) = inf
h∈R

sup
Q∈M

sup
τ∈T

EQ[Φτ − hg]

= inf
h∈R

sup
0≤p,q≤1/2

[
p

2
∨ 1

8
+ q ∨ 1

3
− h

(
p

2
+
q

2
− 1

3

)]
= inf

h∈R

[(
11

24
+
h

3

)
∨
(

5

8
+

h

12

)
∨
(

7

12
+

h

12

)
∨
(

3

4
− h

6

)]
=

2

3
,

where the infimum is attained when h = 1/2. On the other hand,

π̃(Φ) = sup
Q∈Q

EQ

[
max
t≤T

Φt

]
= sup

0≤p,q≤1/2
p+q=2/3

(
3

8
p+

2

3
q +

11

24

)
=

41

48
> π(Φ),

and

π̂(Φ) = sup
τ∈T

sup
Q∈Q

EQ[Φτ ] = sup
0≤p,q≤1/2
p+q=2/3

(
p

2
∨ 1

8
+ q ∨ 1

3

)
=

5

8
< π(Φ).

8.4 Approximating the hedging-prices by discretizing the path space

In this section, we take P to be the set of all the probability measures on Ω

and consider the hedging problems path-wise. We will make the same no-arbitrage

assumption and also assume that no hedging option is redundant (see Assump-

tion 8.4.1(ii)). We will discretize the path space to obtain a discretized market,

and show that the hedging prices in the discretized market converges to the original

ones. We also get the rate of convergence. Theorems 8.4.7 and 8.4.8 are the main

results of this section.

We will now collect some notation that will be used in the rest of this section.

The meaning of some of the parameters will become clear when they first appear in

context.
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8.4.1 Notation

• Ω = {1} × [a1, b1] × . . . × [aT , bT ], where 0 ≤ aT < . . . < a1 < 1 < b1 < . . . <

bT <∞. (This means that the wingspan of the discrete-time model is growing

as for example it does in a binomial tree market.)

• Ωn = Ω ∩ {0, 1/2n, 2/2n, . . . }T+1.

• P all the probability measures on Ω.

• Pn all the probability measures on Ωn.

• Q := {Q martingale measure on Ω : EQgi = 0, i = 1, . . . , e}.

• Qn := {Q martingale measure on Ωn : EQgi = cni , i = 1, . . . , e}.

• H is the set of trading strategies H = (Hi)
T−1
i=0 consists of functions Hi defined

on
∏i

j=1[ai, bi], i = 0, . . . , T − 1.

• Hn is the set of trading strategies H = (Hi)
T−1
i=0 consists of functions Hi defined

on
∏i

j=1[anj , b
n
j ] ∩ {0, 1/2n, 2/2n, . . . }i, i = 0, . . . , T − 1.

• T is the set of stopping times τ : Ω→ {0, 1, . . . , T}, i.e., for k = 0, 1, . . . , T, sj =

(sj0, . . . , s
j
T ) ∈ Ω, j = 1, 2,

if τ(s1) = k, and s1
i = s2

i , i = 0, . . . , k, then τ(s2) = k.

• T n is the set of stopping times τ : Ωn → {0, 1, . . . , T}.

• H′ := {H : T 7→ H, s.t. Ht(τ
1) = Ht(τ

2), ∀t < τ 1 ∧ τ 2}.

• Hn′ := {H : T n 7→ Hn, s.t. Ht(τ
1) = Ht(τ

2), ∀t < τ 1 ∧ τ 2}.

• | · | represents the sup norm in various cases.

• D = ∪n{0, 1/2n, 2/2n, . . . }.
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8.4.2 Original market

We restrict the price process, denoted by S = (S0, . . . , ST ), to take values in some

compact set Ω. In other words, we take S to be the canonical process Si(s0, . . . , sT ) =

si for any (s0, . . . , sT ) ∈ Ω, and denote by {Fi}i=1,... ,T the natural filtration generated

by S. The options (gi)
e
i=1, which can be bought at price 0, and the American option

Φ are continuous. We assume that NA(P) holds and that no hedging option is

redundant, i.e., it cannot be replicated by the stock and other options available

for static hedging. Besides, from the structure of Ω, we know that for H ∈ H, if

(H · S)T ≥ 0, ∀s ∈ Ω, then H ≡ 0. Thus, we will make the following standing

assumption.

Assumption 8.4.1. (i) g and Φ are continuous. (ii) For any (H, h) ∈ H × Re, if

h 6= 0, then there exists s ∈ Ω, such that along the path s,

(H · S)T + hg < 0.

Example 8.4.1. Consider the market with Ω = {1} × [2/3, 4/3] × [1/3, 5/3], with a

European option (S2− 1)+− 1/5 that can be traded at price 0. A simple calculation

can show that Assumption 8.4.1 is satisfied.

We consider the sub-hedging price π(Φ) and the super-hedging price π(Φ) with

respect to (Ω,P), i.e.,

π(Φ) := sup
{
x ∈ R : ∃(H, τ, h) ∈ H × T × Re,

s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ω
}
,

and

π(Φ) := inf
{
x ∈ R : ∃(H, h) ∈ H′ × Re,

s.t. x+ (H · S)T + hg ≥ Φτ , ∀s ∈ Ω, ∀τ ∈ T
}
.
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Recall that π(Φ) and π(Φ) satisfy the dualities in (8.2.2) and (8.3.4) respectively.

8.4.3 Discretized market

For simplicity, we assume that ai, bi ∈ D, i = 1, . . . , T , in the notation of Ω, and

we always start from n large enough, such that Ωn has the end points ai, bi at each

time i. Let {cn = (cn1 , . . . , c
n
e )}n be a sequence such that |cn| → 0. Now for each

n, consider the following discretized market: The stock price process takes values in

the path space Ωn, and the options (gi)
e
i=1 can be traded at the beginning at price

(cni )ei=1.

We consider the sub-hedging price πn(Φ) and the super-hedging price πn(Φ) with

respect to (Ωn,Pn), i.e.,

πn(Φ) := sup
{
x ∈ R : ∃(H, τ, h) ∈ Hn × T n × Re,

s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ωn
}
,

and

πn(Φ) := inf
{
x ∈ R : ∃(H, h) ∈ Hn′ × Re,

s.t. x+ (H · S)T + hg ≥ Φτ , ∀s ∈ Ωn, ∀τ ∈ T n
}
.

Recall that πn(Φ) and πn(Φ) satisfy the dualities in (8.2.2) and (8.3.4) respectively.

Remark 8.4.2. Assuming ai, bi ∈ D and the points in Ωn is equally spaced is without

loss of generality. In fact, as long as Ωn ∩ Ω are increasing and ∪n(Ωn ∩ Ω) = Ω, we

will have the same results with only a little adjustment in the proofs.

8.4.4 Consistency

The following theorem states that for n large enough, the discretized market is

well defined, i.e., NA(Pn) holds.

Theorem 8.4.3. For n large enough, NA(Pn) holds.
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Proof. If not, then there exists (Hn, hn) ∈ Hn × Re, such that

(8.4.1) (Hn · S)T + hn(g − cn) ≥ 0, ∀s ∈ Ωn,

and is strictly positive along some path in Ωn. Obviously, hn 6= 0, so without loss of

generality we will assume that |hn| = 1. On the other hand, since g is continuous on

a compact set it is bounded. Then there exists a constant C > 0 independent of n,

such that

(8.4.2) (Hn · S)T > −C.

We will need the following result in order to carry out the proof of the theorem.

We preferred to separate this result from the proof of the theorem since it will be

used again in the proof of the convergence result.

Lemma 8.4.4. If (Hn · S)T > −C, then there exists a constant M = M(C) > 0

independent of n, such that |Hn| ≤M .

Proof. Let α := min1≤i≤T{ai−1− ai, bi− bi−1} > 0, with a0 := b0 := 1. We will prove

this by an induction argument. Take the path (s0 = 1, s1 = a1, s2 = a1, . . . , sT = a1),

then (8.4.2) becomes

Hn
0 (a1 − 1) > −C,

which implies Hn
0 < C/α. Similarly, we can show that Hn

0 > −C/α by taking the

path (s0 = 1, s1 = b1, s2 = b1, . . . , sT = b1). Hence, Hn
0 is bounded uniformly in n.

Now assume there exists K = K(C) > 0 independent of n, such that |Hn
j | ≤ K, j ≤

i− 1 ≤ T − 1. Since Ωn is uniformly bounded and by the induction hypothesis, we

have that
T−1∑
j=i

Hn
j (s1, . . . , sj)(sj+1 − sj) > −C ′,
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where C ′ > 0 only depends on C. For any (s1, . . . , si) ∈
∏i

j=1([aj, bj] ∩ {k/2n, k ∈

N}), by taking the paths (1, s1, . . . , si, si+1 = ai+1, . . . , sT = ai+1) and (1, s1, . . . , si,

si+1 = bi+1, . . . , sT = bi+1), we can show that |Hn
i (s1, . . . , si)| ≤ C ′/α.

Proof of Theorem 8.4.3 continued. We proved in Lemma 8.4.4 that |Hn| ≤ M

for some M > 0 independent of n. By a standard selection (using a diagonaliza-

tion argument, e.g., see [74, Page 307]), we can show that there exists a subse-

quence (Hnk , hnk)
|·|→ (H, h), where H = (Hi)

T−1
i=0 consists of functions Hi defined on∏i

j=1([aj, bj] ∩ D), i = 0, . . . , T − 1, with |H| ≤ M , and h ∈ Re with |h| = 1. By

taking the limit on both sides of (8.4.1) along (nk), we have

(8.4.3) (H · S)T + hg ≥ 0, ∀s ∈ Ω ∩ DT+1.

If we can extend the domain of function H from Ω ∩ DT+1 to Ω, such that the in-

equality (8.4.3) still holds on Ω, we would obtain a contradiction to Assumption 8.4.1

since h 6= 0.

Define

Ω̃i = {1} × [a1, b1]× . . .× [ai, bi]×
(
[ai+1, bi+1] ∩ D

)
× . . .×

(
[aT , bT ] ∩ D

)
for i = 1, . . . , T − 1. We will do the extension inductively as follows (the notation

for H will not be changed during the extension):

(i) For each s1 ∈ [a1, b1]\D, using the standard selection argument, we can choose

[a1, b1] ∩ D 3 sn1 → s1, such that for any j ∈ {1, . . . , T − 1} and (s2, . . . , sj) ∈∏j
k=2

(
[ak, bk] ∩ D

)
, the limit limn→∞H(sn1 , s2, . . . , sj) exists. Define

Hj(s1, . . . , sj) := lim
n→∞

Hj(s
n
1 , s2, . . . , sj).

Then we extend the domain of H to Ω̃1. It’s easy to check that (8.4.3) still holds on

Ω̃1.
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(ii) In general, assume that we have already extended the domain of H to Ω̃i, i ≤

T − 2, such that (8.4.3) holds on it. Then for each (s1, . . . , si) ∈
∏i

j=1[aj, bj] and

si+1 ∈ [ai+1, bi+1] \ D, performing the same selection and extension as in (i) (we fix

(s1, . . . , si) while doing the selection), we can see that (8.4.3) still holds on Ω̃i+1.

Therefore, we can extend H to Ω̃T−1, such that (8.4.3) holds. Clearly, (8.4.3) also

holds on Ω.

8.4.5 Convergence

We shall prove the convergence result for sub-hedging (Theorem 8.4.7). The

super-hedging case is similar, and thus we shall only provide the corresponding result

(Theorem 8.4.8) without proof.

Lemma 8.4.5. For (Hn, τn, hn) ∈ Hn × T n × Re, if for x ∈ R

(8.4.4) Φτn + (Hn · S)T + hn(g − cn) ≥ x, ∀s ∈ Ωn,

then (Hn)n and (hn)n are bounded.

Proof. We first show that (hn)n are bounded. If not, by extracting a subsequence,

we can without loss of generality assume that 0 < β < |hn| → ∞. We consider two

cases:

(a) |Hn|/|hn| is not bounded. Then we can rewrite (8.4.4) as(
Hn

|hn|
· S
)
T

≥ − hn

|hn|
(g − cn) +

1

|hn|
Φτn +

x

|hn|
, ∀s ∈ Ωn.

Since g and Φ are continuous on a compact set, they are bounded. Hence, there

exists C > 0, such that (
Hn

|hn|
· S
)
T

≥ −C,
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which contradicts with Lemma 8.4.4.

(b) |Hn|/|hn| is bounded. Let us rewrite (8.4.4) as(
Hn

|hn|
· S
)
T

+
hn

|hn|
(g − cn) ≥ x+ Φτn

|hn|
, ∀s ∈ Ωn.

Since (x+ Φτn)/|hn| → 0, we can follow the proof of Theorem 8.4.3 to get a contra-

diction with Assumption 8.4.1.

Next we show that (Hn)n is a bounded collection. Let us rewrite (8.4.4) as

(Hn · S)T ≥ −Φτn − hn(g − cn) + x, ∀s ∈ Ωn.

Since (hn)n and (g − cn)n are bounded, then right-hand-side is bounded. Therefore,

the conclusion follows from Lemma 8.4.4.

Proposition 8.4.6. For n large enough, there exists some N > 0 independent of n,

such that

(8.4.5) πn(Φ) = sup
{
x ∈ R : ∃(H, τ, h) ∈ Hn × T n × Re, |H|, |h| ≤ N,

s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ωn
}
.

and

(8.4.6) π(Φ) = sup
{
x ∈ R : ∃(H, τ, h) ∈ H × T × Re, |H|, |h| ≤ N,

s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ω
}
.

Proof. Let x := min(t,s)∈{1,... ,T}×Ω Φ(t, s). It is easy to see that

(8.4.7) πn(Φ) = sup
{
x ≥ x : ∃(H, τ, h) ∈ Hn × T n × Re,

s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ωn
}
.
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For n large enough, the set

{(Hn, hn) ∈ Hn × Re : ∃τ ∈ T n, s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ωn}

is uniformly bounded in n, which is indicated by Lemma 8.4.5. Since this set of

strategies is the largest among the ones we need to consider for sub-hedging, thanks

to (8.4.7), there exists a constant N > 0, such that for n large enough,

πn(Φ) = sup
{
x ≥ x : ∃(H, τ, h) ∈ H × T × Re, |Hn|, |hn| ≤ N

s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ωn
}
,

which implies (8.4.5).

Similarly, we have that the set

{(H, h) ∈ H × Re : ∃τ ∈ T , s.t. Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ω}

is bounded. Otherwise, there exists (Hm, τm, hm) ∈ H × T × Re, such that

Φτm + (Hm · S)T + hmg ≥ x, ∀s ∈ Ω ∩ DT+1,

with |Hm|+ |hm| → ∞. Then we can use a similar argument to the one in the proof

of Theorem 8.4.3 to get a contradiction. Now (8.4.6) follows.

Theorem 8.4.7. Under Assumption 8.4.1, we have

(8.4.8) lim
n→∞

πn(Φ) = π(Φ).

Furthermore, if Φ and g are Lipschitz continuous, then

(8.4.9) |πn(Φ)− π(Φ)| = O(1/2n)

by taking |cn| = O(1/2n).
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Proof. For x ∈ (π(Φ)−ε, π(Φ)], there exists (H, τ, h) ∈ H×T ×Re,with |H|, |h| ≤ N ,

such that

Φτ + (H · S)T + hg ≥ x, ∀s ∈ Ω.

Hence,

Φτ + (H · S)T + h(g − cn) ≥ x− eN |cn|, ∀s ∈ Ωn.

Therefore,

π(Φ)− ε− eN |cn| ≤ x− eN |cn| ≤ πn(Φ).

By letting ε→ 0, we have

(8.4.10) πn(Φ) ≥ π(Φ)− eN |cn|.

On the other hand, for xn ∈ (πn(Φ) − ε, πn(Φ)], there exists (Hn, τn, hn) ∈ Hn ×

T n × Re,with |Hn|, |hn| ≤ N , such that

(8.4.11) Φτn + (Hn · S)T + hn(g − cn) ≥ xn, ∀s ∈ Ωn.

Consider the map φn : Ω→ Ωn given by

φn(1, s1, . . . , sT ) = (1, b2ns1c/2n, . . . , b2nsT c/2n), ∀(1, s1, . . . , sT ) ∈ Ω.

Also define (H, τ) ∈ H × T as

(8.4.12) H(s) = Hn(φn(s)) and τ(s) = τn(φn(s))

Since Φ and g are continuous on a compact set, they are uniformly continuous. Also

(Hn, qn)n are uniformly bounded, and cn → 0. Then from (8.4.11) we have that for

n large enough, the trading strategy (H, τ) defined in (8.4.12) satisfies

(8.4.13) Φτ + (H · S)T + hng ≥ xn − ε, ∀s ∈ Ω,
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by noting that φn(s)→ s uniformly and τ(s) = τ(φn(s)). Thus, π(Φ) > πn(Φ)− 2ε.

Combining with (8.4.10), we have (8.4.14).

If Φ and g are Lipschitz continuous, then we have a stronger version of (8.4.13):

Φτ + (H · S)T + hng ≥ xn − eN |cn| − C/2n, ∀s ∈ Ω,

where C > 0 is a constant only depends on N, e, T and the Lipschitz constants of Φ

and g. Hence,

πn(Φ)− ε− eN |cn| − C/2n ≤ xn − eN |cn| − C/2n ≤ π(Φ).

Letting ε → 0 and taking |cn| = O(1/2n), and combining with (8.4.10), we obtain

(8.4.15).

Similar to the proof of the sub-hedging case, we can show the following convergence

result for super-hedging.

Theorem 8.4.8. Under Assumption 8.4.1, we have

(8.4.14) lim
n→∞

πn(Φ) = π(Φ).

Furthermore, if Φ and g are Lipschitz continuous, then

(8.4.15) |πn(Φ)− π(Φ)| = O(1/2n)

by taking |cn| = O(1/2n).

8.4.6 A suitable construction for cn and Qn

In Section 8.4.4 we obtained that as long as cn → 0, then for n large enough,

NA(Pn) holds, which implies Qn 6= ∅ (see [1, Theorem 1.3] or [19, FTAP]). The

theorem below gives a more specific way to construct cn, such that Qn 6= ∅ for all

n with Ωn ⊂ Ω, when all the hedging options are vanilla. [This analysis would be
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useful for the consistency, when there are infinitely many options and the marginal

distribution of the stock price (at the maturities of the hedging European options)

under the martingale measures appearing in the duality are fixed.]

Proposition 8.4.9. Let µ0, . . . , µT be the marginal of a martingale measure on

RT+1
+ . Then there exist a collection of probability measures {µni : i = 0, . . . , T, n ∈

N} on R such that

(1) µni
w→ µi, i = 0, . . . , T ,

(2) µni (Kn) = 1, i = 0, . . . , T ,

(3) For each n ∈ N, Mn 6= ∅,

where Kn = {0, 1/2n, 2/2n, . . . } andMn is the set of martingale measures on (Kn)T+1

with marginals (µni )Ti=0.

Proof. Fix i ∈ {0, · · · , T}. For any n ∈ N, define a measure µni on {0, 1/2n, 2/2n, · · · }

by

µni ({0}) :=

∫ 1/2n

0

(1− 2nx)dµi(x),

µni ({k/2n}) :=

∫ k/2n

(k−1)/2n
(2nx+ 1− k)dµ(x) +

∫ (k+1)/2n

k/2n
(1 + k − 2nx)dµ(x), ∀k ∈ N.

By construction, we have
∑

k∈N∪{0} µ
n
i ({k/2n}) =

∫
R+
dµi(x) = 1. It follows that µni

is a probability measure on {0, 1/2n, 2/2n, · · · }.

For any function h : R 7→ R, consider the piecewise linear function hn defined

by setting hn(k/2n) := h(k/2n) for k ∈ N ∪ {0}. We define hn(x) for x ∈ R+ \

{0, 1/2n, 2/2n, · · · } using linear interpolation. That is, for any x ∈ R+,

hn(x) := (1 + b2nxc − 2nx)h

(
b2nxc

2n

)
+ (2nx− b2nxc)h

(
1 + b2nxc

2n

)
= h

(
k

2n

)
(1 + k − 2nx) + h

(
k + 1

2n

)
(2nx− k), ∀k ∈ N ∪ {0}.
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From the above identity and the definition of µni , we observe that

(8.4.16)

∫
R+

hdµni =

∫
R+

hndµi.

Now, if we take h to be an arbitrary bounded continuous function, then hn → h

pointwise and the integrals in (8.4.16) are finite. By using (8.4.16) and the dominated

convergence theorem, we have
∫
R+
hdµni →

∫
R+
hdµi. This shows that µni

w→ µi. On

the other hand, if we take h to be an arbitrary convex function, then hn by definition

is also convex. Thanks to [80, Theorem 8], the convexity of hn imply that
∫
R+
hndµi

is nondecreasing in i. We then obtain form (8.4.16) that
∫
R+
hdµni is nondecreasing

in i. Since this holds for any given convex function h, we conclude from [80, Theorem

8] that Mn 6= ∅.

Now we further assume that the finitely many options are vanilla. Take Q ∈ Q

and let µi be the distribution of Si under Q for i = 1, . . . , T . From the theorem

above (and the construction of µni ), there exists a martingale measures Qn supported

on Ωn, with marginals µni
w→ µi, for i = 1, . . . , T . Set

cni := EQn [gi]− EQ[gi], i = 1, . . . , e.

Then, we have cn → 0 by the weak convergence of the marginals, and Qn 6= ∅ for

all n with Ωn ⊂ Ω, since Qn ∈ Qn. In addition, if g is Lipschitz continuous, we have

that |cn| = O(1/2n).

VIII.A Proof of Proposition 8.1.1

Proof of Proposition 8.1.1. Following the proof of Lemma 6.5.6, it can be shown that

for t ∈ {0, . . . , T − 1} and ω ∈ ΩT−t,

Mt(ω) = {Q ∈ P(ΩT−t) : Q� P for some P ∈ Pt(ω),
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(Sk(ω, ·))k=t,... ,T is a Q-martingale}.

Hence, in order to show the analyticity of graph(Mt), it suffices to show that the

sets

I := {(ω,Q) ∈ Ωt ×P(ΩT−t) : Q� P for some P ∈ Pt(ω)}

and

J := {(ω,Q) ∈ Ωt ×P(ΩT−t) : (Sk(ω, ·))k=t,... ,T is a Q-martingale}

are analytic.

Thanks to the analyticity of graph(Pt), we can follow the argument in the proof

of [19, Lemma 4.8] to show that I is analytic. Now let us consider J . For k =

t, . . . , T − 1, there exists a countable algebra (Aki )
∞
i=1 generating Fk. Then

I =
T−1⋂
k=t

∞⋂
i=1

{(ω,Q) ∈ Ωt ×P(ΩT−t) : EQ[∆Sk(ω, ·)1Aki (ω, ·)] = 0}.

By a monotone class argument, we can show that for (ω,Q) ∈ Ωt × P(ΩT−t), the

map

(ω,Q) 7→ EQ[∆Sk(ω, ·)1Aki (ω, ·)]

is Borel measurable (e.g., see the first paragraph in the proof of [69, Theorem 2.3]).

Therefore, the set J is Borel measurable, and in particular it is analytic.

VIII.B Optimal stopping for adverse nonlinear expectations

In this section, we analyze both the adverse optimal stopping problems for non-

linear expectations. This result is used in Theorem 8.2.2 for showing the existence

of the sub hedging strategy. Note that [13, 39, 67] analyze similar problems in con-

tinuous time. Instead of referring to these papers directly, we decided to include a

short analysis here because it is much simpler to carry it out in discrete time using

backward induction.
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For each t ∈ {0, . . . , T − 1} and ω ∈ Ωt, we are given a nonempty convex set

Rt(ω) ⊂ P(Ω1) of probability measures. We assume that for each t, the graph of Rt

is analytic, and thus admits a universally measurably selector. For t = 0, . . . , T − 1

and ω ∈ Ωt, define

Rt(ω) := {Pt ⊗ . . .⊗ PT−1 : Pi(ω, ·) ∈ Ri(ω, ·), i = t, . . . , T − 1},

where each Pi is a universally measurable selector of Ri. We write R for R0 for

short. We assume the graph of Rt is analytic for t = 0, . . . , T − 1. Let ξ be a u.s.a.

function. For ω ∈ Ω, define the nonlinear conditional expectation as

Et[ξ](ω) = sup
P∈Rt(ωt)

EP [ξ(ωt, ·)].

We also write E for E0 for short. By [69, Theorem 2.3], we know that the function

Et[ξ] is u.s.a. and Ft-measurable, and the nonlinear conditional expectation satisfies

the tower property, i.e., for 0 ≤ s < t ≤ T , it holds that

(VIII.B.1) EsEt[ξ] = Es[ξ].

Moreover, by Galmarino’s test (see [69, Lemma 2.5]), it follows that if a function is

Ft-measurable, it only depends on the path up to time t. Throughout this section, we

will assume that f is an adapted process with respect to the raw filtration (B(Ωt))
T
t=0.

We consider the optimal stopping problem

(VIII.B.2) X := inf
τ∈T
E [fτ ].

and define the upper value process

(VIII.B.3) Xt := inf
τ∈Tt
Et[fτ ],

and the lower value process

(VIII.B.4) Yt(ω) := sup
P∈Rt(ωt)

inf
τ∈Tt

EP [fτ (ω
t, ·)].
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In particular X = X0. We have the following result:

Theorem VIII.B.1. Assume for t = 1, . . . , T − 1, Et[Xt+1] (or Et[Yt+1]) is B(Ωt)-

measurable. Then Xt = Yt, t = 0, . . . , T . In particular, the game defined in

(VIII.B.2) has a value, i.e.,

(VIII.B.5) inf
τ∈T
E [fτ ] = sup

P∈R
inf
τ∈T

E[fτ ].

Moreover, there exists an optimal stoping time described by

(VIII.B.6) τ ∗ = inf{t ≥ 0 : ft = Xt}.

Proof. We shall prove the result under the Borel measurability assumption for Et[Xt+1].

In fact, it could be seen from the proof later on that the Borel measurability assump-

tion on Et[Xt+1] is equivalent to that on Et[Yt+1].

Step 1: We first show that for s ∈ {0, . . . , T},

(VIII.B.7) Xs = inf
τ∈Ts
Es(fτ1{τ<t} +Xt1{τ≥t}), 0 ≤ s < t ≤ T.

We shall prove it by a backward induction. For s = T −1, since τ equals either T −1

or T , we have from (VIII.B.3) that XT−1 = fT−1 ∧ ET−1(fT ) = fT−1 ∧ ET−1(XT ),

and thus (VIII.B.7) holds. Assume for s + 1 ∈ {0, . . . , T − 1} the corresponding

conclusion holds. Let t ∈ {s + 1, . . . , T}. For any τ ∈ Ts, using the tower property

(VIII.B.1) and the definition of Xt in (VIII.B.3), we have that

Es(fτ ) = Es
(
fτ1{τ<t} + Et(fτ∨t)1{τ≥t}

)
≥ Es

(
fτ1{τ<t} +Xt1{τ≥t}

)
,

which implies the inequality “≥” in (VIII.B.7).

Let us turn to the inequality “≤” in (VIII.B.7). By the induction assumption, we

have that for k ≥ s+ 1,

(VIII.B.8) Xk = inf
τ∈Tk
Ek(fτ1{τ<k+1} +Xk+11{τ≥k+1}) = fk ∧ Ek(Xk+1).
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Define

As := {fs ≤ Es(Xs+1)} ∈ B(Ωs),

Ak :=
[
{fk ≤ Ek(Xk+1)} \ (∪k−1

i=sAi)
]

=
[
{fk = Xk} \ (∪k−1

i=sAi)
]
∈ B(Ωk),

k = s+ 1, . . . , T . Note that AT = (∪T−1
i=s Ai)

c ∈ B(ΩT−1). Denoting

(VIII.B.9) τ̄ =
T∑
k=s

k1Ak ∈ Ts.

and using the tower property repeatedly, we obtain that

Xs ≤ Es(fτ̄ )

= Es

(
T−2∑
k=s

fk1Ak + fT−11AT−1
+ ET−1(XT )1(∪T−1

i=s Ai)
c

)

= Es

(
T−2∑
k=s

fk1Ak +XT−11(∪T−2
i=s Ai)

c

)

= Es

(
T−3∑
k=s

fk1Ak + fT−21AT−2
+ ET−2(XT−1)1(∩T−2

k=s Ak)c

)
= . . .

= Es
(
fs1As +Xs+11Acs

)
= fs ∧ Es(Xs+1).(VIII.B.10)

On the other hand, for t ∈ {s+ 1, . . . , T}, by (VIII.B.8) and the tower property, we

have that

Xs ≥ inf
τ∈Ts
Es
(
fτ1{τ<t} +Xt1{τ≥t}

)
≥ inf

τ∈Ts
Es
(
fτ1{τ<t−1} +Xt−11{τ=t−1} + Et−1(Xt)1{τ≥t}

)
≥ inf

τ∈Ts
Es
(
fτ1{τ<t−1} +Xt−11{τ≥t−1}

)
≥ . . .

≥ inf
τ∈Ts
Es
(
fτ1{τ<s+1} +Xs+11{τ≥s+1}

)
= fs ∧ Es(Xs+1).(VIII.B.11)
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Hence, we have (VIII.B.7) holds for s.

Step 2: Define τ̂ =
∑T

k=0 k1Ak , same as τ̄ defined in (VIII.B.9) for s = 0. From

(VIII.B.10) & (VIII.B.11) in Step 1, we have that X = E(fτ̂ ). Noting A0 = {f0 ≤

E(X1)} = {f0 = X}, we have τ̂ = τ ∗.

Step 3: Using (VIII.B.7), we can follow the proof of [67, Lemma 4.11] mutatis

mutandis, to show by a backward induction that Xt = Yt, t = 0, . . . , T . In particular

(VIII.B.5) holds.

The next remark is concerned with the “sup sup” version of the optimal stopping

problem:

Remark VIII.B.2. For the optimal stopping problem

Z := sup
τ∈T
E [fτ ],

let us define

Zt := sup
τ∈Tt
Et[fτ ], t = 0, . . . , T.

In particular Z = Z0. Following Steps 1 and 2 in the proof of Theorem VIII.B.1, we

can show that if Et[Zt+1] is B(Ωt)-measurable for t = 1, . . . , T − 1, then

Zt = ft ∨ Et(Zt+1), t = 0, . . . , T,

and τ ∗∗ := inf{t ≥ 0 : ft = Zt} is optimal.

VIII.B.1 An example in which Et[Yt+1] is Borel measurable

Let S = (Si)
T
i=1 be the canonical process and R be the set of martingale measures

on some compact set K ⊂ ΩT . Assume R 6= ∅. Then for ω ∈ K, Rt(ω
t) is the set

of martingale measures on K from time t to T given the previous path ωt. Proposi-

tion VIII.B.3 below indicates that the assumption in Theorem VIII.B.1 is satisfied

provided f is u.s.c. in ω.
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Proposition VIII.B.3. Assume that ft is u.s.c. for t = 1, . . . , T . Then Et[Yt+1] is

u.s.c., and thus B(Ωt)-measurable, t = 1, . . . , T .

Proof. Since K is compact, it is easy to check that the set {(ω, P ) : ω ∈ K, P ∈

Rt(ω
t)} is closed. By [18, Proposition 7.33], Yt defined in (VIII.B.4) is u.s.c. Fol-

lowing the proof similar to that of Proposition 8.3.2, it could be shown that for

(ω, P ) ∈ ΩT ×P(ΩT−t), the map (ω, P ) 7→ EP [Y (ωt, ·)] is u.s.c. Then applying [18,

Proposition 7.33] again, we know that Et[Yt+1] is u.s.c.

VIII.C Upper-semianalyticity and the super-martingale property

The result in this section is used in the proof of Theorem 8.3.1. Let us use the

setting in Section VIII.B. Let φ = (φt)
T
t=0 be an adapted process, and g be u.s.a.

Define the process U = (Ut)
T
t=0 as

(VIII.C.1) Ut := sup
τ∈Tt
Et[φτ + g].

We have the following result.

Proposition VIII.C.1. Assume for (ω, P ) ∈ ΩT × P(ΩT−t), the map (ω, P ) 7→

supτ∈Tt EP [φτ (ω
t, ·)] is u.s.a., t = 1, . . . , T . Then Ut defined in (VIII.C.1) is u.s.a.

and Ft-measurable for t = 1, . . . , T , and U = (Ut)
T
t=0 is a super-martingale under

each P ∈ R.

Proof. Using the fact that the map (ω, P ) 7→ Ep[g(ωt, ·)] is u.s.a. for (ω, P ) ∈

ΩT × P(ΩT−t) (see the last paragraph on page 8 in [69]), we deduce that the map

(ω, P ) 7→ supτ∈Tt EP [φτ (ω
t, ·) + g(ωt, ·)] is u.s.a. Since Rt(ω

t) is the ω-section of

an analytic set, we can apply [18, Proposition 7.47] to conclude that Ut is u.s.a.,

t = 1, . . . , T . As Ut only depends on the path up to time t, it is Ft-measurable.
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In the rest of the proof, we shall show that

(VIII.C.2) Ut ≥ Et[Ut+1],

which will imply the super-martingale property of U under each P ∈ R. Fix (t, ω) ∈

{0, . . . , T} × ΩT and let P = Pt ⊗ . . . ⊗ PT−1 ∈ Rt(ω
t). For any ε > 0, since

the map (ω̃, P ) 7→ supτ∈Tt EP [φτ (ω
t, ω̃, ·) + g(ωt, ω̃, ·)] is u.s.a. for (ω̃, P ) ∈ Ω1 ×

P(ΩT−t−1), and Rt+1(ωt, ω̃) is the ω̃-section of an analytic set, we can apply theorem

[18, Proposition 7.50] and get that there exists a universally measurable selector

P ε(ωt, ·), such that P ε(ωt, ω̃) = P ε
t+1(ωt, ω̃)⊗ . . .⊗ P ε

T−1(ωt, ω̃, ·) ∈ Rt+1(ωt, ω̃), and(
sup

P̃∈Rt+1(ωt,ω̃)

sup
τ∈Tt+1

EP̃ [φτ (ω
t, ω̃, ·) + g(ωt, ω̃, ·)]− ε

)
1A +

1

ε
1Ac

≤ sup
τ∈Tt+1

EP ε(ωt,ω̃)[φτ (ω
t, ω̃, ·) + g(ωt, ω̃, ·)],

where

A = {ω̃ ∈ Ω1 : sup
P̃∈Rt+1(ωt,ω̃)

sup
τ∈Tt+1

EP̃ [φτ (ω
t, ω̃, ·) + g(ωt, ω̃, ·)] <∞}.

Define

P ∗ := Pt ⊗ P ε
t+1 ⊗ . . .⊗ P ε

T−1 ∈ Rt(ω
t).

Then we have that

EP

[(
Ut+1(ωt, ·)− ε

)
1A +

1

ε
1Ac

]
= EP

[(
sup

P̃∈Rt+1(ωt,ω̃)

sup
τ∈Tt+1

EP̃ [φτ (ω
t, ω̃, ·) + g(ωt, ω̃, ·)]− ε

)
1A +

1

ε
1Ac

]

≤ EP

[
sup
τ∈Tt+1

EP ε(ωt,ω̃)[φτ (ω
t, ω̃, ·) + g(ωt, ω̃, ·)]

]
= EP ∗

[
sup
τ∈Tt+1

EP ε(ωt,ω̃)[φτ (ω
t, ω̃, ·) + g(ωt, ω̃, ·)]

]
= EP ∗

[
sup
τ∈Tt+1

EP ε(ωt,ω̃)[φτ (ω
t, ω̃, ·)]

]
+ EP ∗ [g(ωt, ·)]

≤ sup
τ∈Tt

EP ∗ [φτ (ω
t, ·)] + EP ∗ [g(ωt, ·)]

≤ Ut(ω),
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where the fourth line follows from the fact that P ∗ = P from time t to t + 1, the

fifth line follows from the tower property as P ∗ = Pt⊗P ε, and the sixth line follows

from the classical optimal stopping theory under a single probability measure P ∗.

As t, ω, P and ε are arbitrary, (VIII.C.2) holds.

VIII.D No arbitrage when there are no options for static hedging

Let S = (St)t=0,... ,T be the canonical process taking values in some path space

K ⊂ {1} ×RT , which represents the stock price process. We take P to be the set of

all the probability measures on K. In this secton, we assume that there is no hedging

option available, i.e., e = 0. Let us first identify the reasonable path spaces:

Definition VIII.D.1. K ⊂ {1} × RT is called a reasonable path space, if for any

t ∈ {0, . . . , T} and (s0 = 1, s1, . . . , sT ) ∈ K,

(i) if st > 0, then there exists (s0, . . . , st, , s
i
t+1, . . . , s

i
T ) ∈ K, i = 1, 2, such that

s1
t+1 < st < s2

t+1;

(ii) if st = 0, then sk = 0, k ≥ t+ 1.

Obviously, if K is a reasonable path space, then a martingale measure on K is easy

to construct, and thus the no arbitrage in [1] is satisfied. The following proposition

states that NA(P) also holds. So the no arbitrage definitions in [1] and [19] in fact

coincide in the case when K is a reasonable path space and e = 0.

Proposition VIII.D.2. If K is a reasonable path space, then NA(P) holds.

Proof. Let H = (H0, . . . , HT−1(s1, . . . , sT−1)) be a trading strategy such that

(VIII.D.1) (H · S)T ≥ 0, ∀s ∈ K.

We need to show (H · S)T = 0,∀s ∈ K. It suffices to show that

(VIII.D.2) Hk(s1, . . . , sk) = 0, for sk > 0,
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for k = 0, . . . , T − 1. We shall show (VIII.D.2) by the induction.

Assume H0 6= 0. Then take s∗1 > s0 if H0 < 0, and take s∗1 < s0 if H0 > 0. In

general, for j = 1, . . . T − 1, take s∗j+1 ≥ s∗j if H(s∗1, . . . , s
∗
j) ≤ 0 and s∗j+1 ≤ s∗j if

H(s∗1, . . . , s
∗
j) > 0. Then (H · S)T (s0, s

∗
1, . . . , s

∗
T ) < 0, which contradicts (VIII.D.1).

Hence H0 = 0 and (VIII.D.2) holds for k = 0.

Assume (VIII.D.2) holds for k ≤ t− 1. Then for any (s0, . . . , st) with st > 0, by

assumption (ii), we have that si > 0, i = 0, . . . , t−1, and thusHi(s1, . . . , si) = 0, i =

0, . . . , t− 1 by the induction hypothesis. If Ht(s1, . . . , st) 6= 0, then we can similarly

construct (s∗t+1, . . . , s
∗
T ) as above, such that (H · S)T (s0, . . . , st, s

∗
t+1, . . . , s

∗
T ) < 0,

which contradicts (VIII.D.1). Hence Ht(s1, . . . , st) = 0 and (VIII.D.2) holds for

k = t.



CHAPTER IX

Arbitrage, hedging and utility maximization using
semi-static trading strategies with American options

9.1 Introduction

The arbitrage, hedging, and utility maximization problems have been extensively

studied in the field of financial mathematics. We refer to [24, 34] and the references

therein. Recently, there has been a lot of work on these three topics where stocks

are traded dynamically and (European-style) options are traded statically (hedging

strategies, see e.g., [32]). For example, [1, 17, 19, 32] analyze the arbitrage and/or

super-hedging in the setup of model free or model uncertainty, and [77] studies the

utility maximization within a given model. It is worth noting that most of the

literature related to semi-static strategies only consider European-style options as

to be liquid options, and there are only a few papers incorporating American-style

options for static trading. In particular, [21] studies the completeness (in some L2

sense) of the market where American put options of all the strike prices are available

for semi-static trading, and [27] studies the no arbitrage conditions on the price

function of American put options where European and American put options are

available.

In this chapter, we consider a market model in discrete time consisting of stocks,

(path-dependent) European options, and (path-dependent) American options (we

165
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also refer to these as hedging options), where the stocks are traded dynamically

and European and American options are traded statically. We assume that the

American options are infinitely divisible, and we can only buy but not sell American

options. We first obtain the fundamental theorem of asset pricing (FTAP) under

the notion of robust no arbitrage that is slightly stronger than no arbitrage in the

usual sense. Then by the FTAP result, we further get dualities of the sub-hedging

prices of European and American options. Using the duality result, we then study

the utility maximization problem and get the duality of the value function.

It is crucial to assume the infinite divisibility of the American options just like

the stocks and European options. From a financial point of view, it is often the case

that we can do strictly better when we break one unit of the American options into

pieces and exercise each piece separately. In Section 9.2, we provide a motivating

example in which without the divisibility assumption of the American option the no

arbitrage condition holds yet there is no equivalent martingale measure (EMM) that

prices the hedging options correctly. Moreover, we see in this example that the super-

hedging price of the European option is not equal to the supremum of the expectation

over all the EMMs which price the hedging options correctly. Mathematically, the

infinite divisibility leads to the convexity and closedness of some related set of random

variables, which enables us to apply the separating hyperplane argument to obtain

the the existence of an EMM that prices the options correctly, as well as the dualities

for hedging and utility maximization.

The rest of the chapter is organized as follows. In the next section, we will

provide a motivating example. In Section 9.3, we shall introduce the setup and the

main results of FTAP, sub-hedging duality and utility maximization duality. These

results are proved in Sections 9.4, 9.5 and 9.6, respectively.
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9.2 A motivating example

In this section, we shall look at an example of super-hedging of a European option

using the stock and the American option. This example will motivate us to consider

the divisibility of American options.

Figure 9.1: A motivating example

Consider a simple model given by the left graph above. The stock prices S =

(St)t=0,1,2, payoffs of the American option h = (ht)t=0,1,2, and payoffs of the European

option ψ are indicated by the numbers in the circles, squares with straight corners,

and squares with rounded corners, respectively. Let (Ω,B(Ω)) be the path space

indicated by the left graph above, and let (Ft)t=0,1,2 be the filtration generated by S.

Let P be a probability measure that is supported on Ω. Hence any EMM would be

characterized by the pair (p, q) shown in the left graph above with 0 < p, q < 1/2.

We assume that the American option h can only be bought at time t = 0 with

price h̄ = 0. Then in order to avoid arbitrage involving stock S and American option

h, we expect that the set

Q :=

{
Q is an EMM : sup

τ∈T
EQhτ ≤ 0

}
is not empty, where T represents the set of stopping times. Equivalently, to avoid
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arbitrage, the set

A :=

{
(p, q) ∈

(
0,

1

2

)
×
(

0,
1

2

)
:

(
1

2
[(3p) ∨ 1] +

1

2
[(10q − 3) ∨ (−2)]

)
∨ (−1) ≤ 0

}
should be nonempty. In the right graph in Figure 9.1 A is indicated by the shaded

area, which shows that A 6= ∅.

Now consider the super-hedging price π̄(ψ) of the European option ψ using semi-

static trading strategies. That is,

π̄(ψ) := inf{x : ∃(H, c, τ) ∈ H × R+ × T , s.t. x+H · S + chτ ≥ ψ, P− a.s.},

where H is the set of adapted processes, and H · S =
∑1

t=0Ht(St+1 − St). One may

expect that the super-hedging duality would be given by

π̄(ψ) = sup
Q∈Q

EQψ.

By calculation,

sup
Q∈Q

EQψ = sup
(p,q)∈A

(
3

4
p+ 5q − 5

4

)
=

(
3

4
p+ 5q − 5

4

) ∣∣∣∣
( 1
3
, 1
5

)

= 0.

On the other hand, it can be shown that

π̄(ψ) = inf
τ∈T

inf
c∈R+

inf{x : ∃H ∈ H, s.t. x+H · S ≥ ψ − chτ}

= inf
τ∈T

inf
c∈R+

sup
Q∈M

EQ[ψ − chτ ]

=
1

8
,

where M is the set of EMMs. Here we use the classical result of super-hedging

for the second line, and the value in the third line can be calculated by brute force

since we only have five stopping times.1 Therefore, the super hedging price is
1For example, when

τ =

{
2, S1 = 6,
1, S1 = 2,

then

inf
c∈R+

sup
Q∈M

EQ[ψ − chτ ] = inf
c≥0

sup
0<p,q< 1

2

[(
3

4
−

3

2
c

)
p+ 5q −

5

4
+ c

]
=

13

8
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strictly bigger than the sup over the EMMs Q ∈ Q, i.e.,

π̄(ψ) > sup
Q∈Q

EQψ.

As a consequence, if we add ψ into the market, and assume that we can only sell ψ

at t = 0 with price ψ = 1/16 (> 0 = supQ∈Q EQψ), then the market would admit

no arbitrage, yet there is no Q ∈ Q, such that EQ[ψ] ≥ ψ.

However, observe that ψ = 1
2
(hτ12 + h2), where

τ12 =

 1, S1 = 6,

2, S1 = 2.

This suggests that if we assume that h is infinitely divisible, i.e., we can break one

unit of h into pieces, and exercise each piece separately, then we can show that the

super-hedging price of ψ is supQ∈Q EQψ = 0. Now if we add ψ into the market with

selling price ψ < 0, then we can find Q ∈ Q, such that EQψ > ψ.

9.3 Setup and main results

In this section, we first describe the setup of our financial model. In particular, as

suggested by the example in the last section, we shall assume that the American op-

tions are divisible. Then we shall provide the main results, including Theorem 9.3.4

for FTAP, Theorem 9.3.5 for sub-hedging, and Theorem 9.3.8 for utility maximiza-

tion.

9.3.1 Setup

Let (Ω,F , (Ft)t=0,1,... ,T ,P) be a filtered probability space, where F is assumed to

be countably generated, and T ∈ N represents the time horizon in discrete time. Let

S = (St)t=0,... ,T be an adapted process taking values in Rd which represents the stock

price process. Let f i, gj : Ω 7→ R be FT -measurable, representing the payoffs of
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European options, i = 1, . . . , L and j = 1, . . . ,M . We assume that we can buy and

sell each f i at time t = 0 at price f̄ i, and we can only buy but not sell each gj at

time t = 0 with price ḡj. Let hk = (hkt )t=0,... ,T be an adapted process, representing

the payoff process of an American option, k = 1, . . . , N . We assume that we can

only buy but not sell each hk at time t = 0 with price h̄k. Denote f = (f 1, . . . , fL)

and f̄ = (f̄ 1, . . . , f̄L), and similarly for g, ḡ, h and h̄. For simplicity, we assume that

g and h are bounded.

Definition 9.3.1. An adapted process η = (ηt)t=0,... ,T is said to be a liquidating

strategy, if ηt ≥ 0 for t = 0, . . . , T , and

T∑
t=0

ηt = 1, P− a.s..

Denote T as the set of all liquidating strategies.

Remark 9.3.2. Let us also mention the related concept of a randomized stopping time,

which is a random variable γ on the enlarged probability space (Ω×[0, 1],F⊗B,P×λ),

such that {γ = t} ∈ Ft ⊗ B for t = 0, . . . , T , where B is the Borel sigma algebra

on [0, 1] and λ is the Lebesgue measure. Let T′ be the set of randomized stopping

times. For γ ∈ T′, its ω-distribution ξ = (ξt)t=0,... ,T defined by

ξt(·) = λ{v : γ(·, v) = t}, t = 0, . . . , T,

is a member in T. There is one-to-one correspondence between T and T′ (up to a

increasing rearrangement). We refer to [38] for these facts.

In spite of the one-to-one correspondence, the paths of a liquidating strategy and

a randomized stopping time are quite different. A randomized stopping time is the

strategy of flipping a coin to decide which stopping time to use (so the whole unit is

liquidated only once), while a liquidating strategy is an exercising flow (so different

parts of the whole unit are liquidated at different times).
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Because of this difference, Theorem 9.3.4 (FTAP), Theorem 9.3.5 (hedging du-

ality) and Theorem 9.3.8 (utility maximization duality) will not hold if we replace

liquidating strategies with randomized stopping times. (For randomized stopping

times, one may still consider FTAP and hedging on the enlarged probability space,

and the results would be different.) For instance, in the example from last section,

unlike liquidating strategies, we cannot merely use h to super-hedge ψ (on the en-

larged probability space) via any randomized stopping time. See Remark 9.3.9 for

more explanation for the case of utility maximization.

For each η ∈ T and American option hk, denote η(hk) as the payoff of hk by using

the liquidating strategy η. That is,

η(hk) =
T∑
t=0

hkt ηt.

For µ = (µ1, . . . , µN) ∈ TN , denote

µ(h) = (µ1(h1), . . . , µN(hN)).

Let H be the set of adapted processes which represents the dynamical trading strate-

gies for stocks. Let (H ·S)t :=
∑T−1

t=0 Ht(St+1−St), and denote H ·S for (H ·S)T for

short. For a semi-static trading strategy (H, a, b, c, µ) ∈ H × RL × RM
+ × RN

+ × TN ,

the terminal value of the portfolio starting from initial wealth 0 is given by

Φḡ,h̄(H, a, b, c, µ) := H · S + a(f − f̄) + b(g − ḡ) + c(µ(h)− h̄),

where f − f̄ := (f 1− f̄ 1, . . . , fL− f̄L), and af represents the inner product of a and

f , and similarly for the other related terms. For (H, a) ∈ H × RL we shall also use

the notation

Φ(H, a) := H · S + a(f − f̄)
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for short. From now on, when we write out the quintuple such as (H, a, b, c, µ), they

are by default in H × RL × RM
+ × RN

+ × TN unless we specifically point out, and

similarly for (H, a).

9.3.2 Fundamental theorem of asset pricing

Definition 9.3.3. We say no arbitrage (NA) holds w.r.t. ḡ and h̄, if for any

(H, a, b, c, µ),

Φḡ,h̄(H, a, b, c, µ) ≥ 0 P-a.s. =⇒ Φḡ,h̄(H, a, b, c, µ) = 0 P-a.s..

We say robust no arbitrage (RNA) holds, if there exists εg ∈ (0,∞)M and εh ∈

(0,∞)N (from now on we shall use εg, εh > 0 for short), such that NA holds w.r.t.

ḡ − εg and h̄− εh.

Define

Q := {Q is an EMM : EQf = f̄ , EQg < ḡ, sup
τ∈T

EQhτ < h̄},

where T is the set of stopping times,

sup
τ∈T

EQhτ := (sup
τ∈T

EQh
1
τ , . . . , sup

τ∈T
EQh

N
τ ),

and the expectation and equality/inequality above are understood in a component-

wise sense.

Below is the main result of FTAP.

Theorem 9.3.4 (FTAP). RNA ⇐⇒ Q 6= ∅.

9.3.3 Sub-hedging

Let ψ : Ω 7→ R be FT -measurable, which represents the payoff of a European

option. Let φ = (φt)t=0,... ,T be an adapted process, representing the payoff process
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of an American option. For simplicity, we assume that ψ and φ are bounded. Define

the sub-hedging price of ψ

πeu(ψ) := sup{x : ∃(H, a, b, c, µ), s.t. Φḡ,h̄(H, a, b, c, µ) + ψ ≥ x},

and the sub-hedging price of φ

πam(φ) := sup{x : ∃(H, a, b, c, µ) and η ∈ T, s.t. Φḡ,h̄(H, a, b, c, µ) + η(φ) ≥ x}.

Below is the main result of sub-hedging.

Theorem 9.3.5 (Sub-hedging). Let RNA hold. Then

(9.3.1) πeu(ψ) = inf
Q∈Q

EQψ,

and

(9.3.2) πam(φ) = inf
Q∈Q

sup
τ∈T

EQφτ .

Moreover, there exists (H∗, a∗, b∗, c∗, µ∗) such that

Φḡ,h̄(H
∗, a∗, b∗, c∗, µ∗) + ψ ≥ πeu(ψ),

and there exists (H∗∗, a∗∗, b∗∗, c∗∗, µ∗∗) and η∗∗ ∈ T such that

(9.3.3) Φḡ,h̄(H
∗∗, a∗∗, b∗∗, c∗∗, µ∗∗) + η∗∗(φ) ≥ πam(φ).

Remark 9.3.6. In fact, from the proof of Theorem 9.3.5 we have that

πam(φ) = sup
η∈T

inf
Q∈Q

EQ[η(φ)] = inf
Q∈Q

sup
η∈T

EQ[η(φ)] = inf
Q∈Q

sup
τ∈T

EQφτ .

However, the order of “sup” and “inf” in the duality (9.3.2) cannot be exchanged.

That is, it is possible that

inf
Q∈Q

sup
τ∈T

EQφτ > sup
τ∈T

inf
Q∈Q

EQφτ .

We refer to Example 8.2.3 for such an example.
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9.3.4 Utility maximization

Let U : (0,∞) 7→ R be a utility function, which is strictly increasing, strictly

concave, continuously differentiable, and satisfies the Inada condition

lim
x→0+

U ′(x) =∞ and lim
x→∞

U ′(x) = 0.

Consider the utility maximization problem

u(x) := sup
(H,a,b,c,µ)∈A(x)

EP[U(x+ Φḡ,h̄(H, a, b, c, µ))], x > 0,

where

A(x) := {(H, a, b, c, µ) : x+ Φḡ,h̄(H, a, b, c, µ) > 0, P-a.s.}, x > 0.

Remark 9.3.7. [44] also studies the utility maximization problem involving the liqui-

dation of a given amount of infinitely divisible American options. Unlike the problem

in [44], here we also incorporate the stocks and European options, and we need to

decide how many shares of American options we need to buy at time t = 0. Another

difference is that [44] focuses on the primary problem of the utility maximization,

while we shall mainly find the duality of the value function u.

Let us define

V (y) := sup
x>0

[U(x)− xy], y > 0,

I := −V ′ = (U ′)−1,
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and for x, y > 0,

X (x) := {X adapted : X0 = x, XT = x+ Φḡ,h̄(H, a, b, c, µ) ≥ 0

for some (H, a, b, c, µ)},

Y(y) := {Y ≥ 0 adapted : Y0 = y, ((1 + (H · S)t)Yt)t=0,... ,T

is a P-super-martingle for any H ∈ H satisfying

1 +H · S ≥ 0, EPXTYT ≤ xy for any X ∈ X (x)}

C(x) := {p ∈ L0
+ : p ≤ XT for some X ∈ X (x)},(9.3.4)

D(y) := {q ∈ L0
+ : q ≤ YT for some Y ∈ Y(y)},(9.3.5)

where L0
+ is the set of random variables that are nonnegative P-a.s.. Then we have

that

u(x) = sup
p∈C(x)

EP[U(p)], x > 0.

Let us also define

v(y) := inf
q∈D(y)

EP[V (q)], y > 0.

Below is the main result of utility maximization.

Theorem 9.3.8 (Utility maximization duality). Let RNA hold. Then we have the

following.

i) u(x) < ∞ for any x > 0, and there exists y0 > 0 such that v(y) < ∞ for any

y > y0. Moreover, u and v are conjugate:

v(y) = sup
x>0

[u(x)− xy], y > 0 and u(x) = inf
y>0

[v(y) + xy], x > 0.

Furthermore, u is continuous differentiable on (0,∞), v is strictly convex on

{v <∞}, and

lim
x→0+

u′(x) =∞ and lim
y→∞

v′(y) = 0.
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ii) If v(y) <∞, then there exists a unique q̂(y) ∈ D(y) that is optimal for v(y).

iii) If U has asymptotic elasticity strictly less than 1, i.e.,

AE(U) := lim sup
x→∞

xU ′(x)

U(x)
< 1,

Then we have the following.

a) v(y) <∞ for any y > 0, and v is continuously differentiable on (0,∞). u′

and −v′ are strictly decreasing, and satisfy

lim
x→∞

u′(x) = 0 and lim
y→0+

v′(y) = −∞.

Besides, |AE(u)| ≤ |AE(U)| < 1.

b) There exists a unique p̂(x) ∈ C(x) that is optimal for u(x). If q̂(y) ∈ D(y)

is optimal for v(y), where y = u′(x), then

p̂(x) = I(q̂(y)),

and

EP[p̂(x)q̂(y)] = xy.

c) We have that

u′(x) = EP

[
p̂(x)U ′(p̂(x))

x

]
and v′(y) = EP

[
q̂(y)V ′(q̂(y))

y

]
.

Remark 9.3.9. We cannot replace the liquidating strategies with randomized stopping

times since the two types of strategies yield to very different optimization problems:

EPU(η(φ)) = EP

[
U

(
T∑
t=0

φtηt

)]
, if η is a liquidating strategy,

EP×λU(φγ) = EP

[
T∑
t=0

U (φt) ηt

]
, if η is the ω-distribution of γ ∈ T′.
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9.4 Proof of Theorem 9.3.4

Proof of Theorem 9.3.4. “⇐=”: Let Q ∈ Q. Then there exists εg, εh > 0, such that

EQg < ḡ − εg and sup
τ∈T

EQhτ < h̄− εh.

Thanks to the one-to-one correspondence between T and T′, we have that for any

Q ∈ Q,

sup
η∈T

EQ[η(hi)] = sup
τ∈T

EQh
i
τ , i = 1, . . . , N,

see e.g., [38, Proposition 1.5]. Then it is easy to see that NA w.r.t. ḡ − εg, h̄ − εh

holds, and thus RNA holds.

“=⇒”: We shall proceed in three steps.

Step 1. Define

I := {Φ(H, a)−W : for some (H, a) and W ∈ L0
+} ∩ L∞,

where L∞ is the set of bounded random variables. We shall show that I is sequen-

tially closed under weak star topology in this step.

Let (Xn)∞n=1 ⊂ I such that

Xn = Φ(Hn, an)−W n w∗−→ X ∈ L∞,

where the notation “
w∗−→” represents the convergence under the weak star topology.

Then there exist (Y m)∞m=1 which are convex combinations of (Xn)n, such that Y m →

X a.s. (see e.g., the argument below Definition 3.1 on page 35 in [75]). Since I is

convex, (Y m)m ⊂ I. By [19, Theorem 2.2], there exists (H, a) and W ∈ L+
0 such

that

Φ(H, a)−W = X,

which implies X ∈ I.
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Step 2. By RNA, there exist εg, εh > 0, such that NA holds w.r.t. ḡ − εg and

h̄− εh. Then NA also holds w.r.t. ḡ − εg/2 and h̄− εh/2. Define

J :=
{

Φḡ− 1
2
εg ,h̄− 1

2
εh

(H, a, b, c, µ)−W : for some (H, a, b, c, µ) and W ∈ L0
+

}
∩ L∞.

We shall show that J is sequentially closed under weak star topology.

Let (Xn)∞n=1 ⊂ J such that

Xn = Φḡ− 1
2
εg ,h̄− 1

2
εh

(Hn, an, bn, cn, µn)−W n w∗−→ X ∈ L∞.

We consider the following two cases:

lim inf
n→∞

||(bn, cn)|| <∞ and lim inf
n→∞

||(bn, cn)|| =∞,

where || · || represents the sup norm.

Case (i) lim infn→∞ ||(bn, cn)|| < ∞. Without loss of generality, assume that

(bn, cn) → (b, c) ∈ RM × RN . By [38, Theorem 1.1], there exists µ ∈ TN , such that

up to a subsequence µn
w∗−→ µ (i.e., µnt

w∗−→ µt for t = 0, . . . , T ). Since h is bounded,

µn(h)
w∗−→ µ(h).

Then we have that

bn
(
g −

(
ḡ − 1

2
εg

))
+ cn

(
µn(h)−

(
h̄− 1

2
εh

))
w∗−→ b

(
g −

(
ḡ − 1

2
εg

))
+ c

(
µ(h)−

(
h̄− 1

2
εh

))
.

Hence,

Φ(Hn, an)−W n w∗−→ X − b
(
g −

(
ḡ − 1

2
εg

))
+ c

(
µ(h)−

(
h̄− 1

2
εh

))
∈ L∞.

Then by Step 1, there exists (H, a) and W ∈ L0
+ such that

Φ(H, a)−W = X − b
(
g −

(
ḡ − 1

2
εg

))
+ c

(
µ(h)−

(
h̄− 1

2
εh

))
.
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Therefore,

X = Φḡ− 1
2
εg ,h̄− 1

2
εh

(H, a, b, c, µ)−W ∈ J .

Case (ii) lim infn→∞ ||(bn, cn)|| = ∞. Without loss of generality, Assume that

dn := ||(bn, cn)|| > 0 for any n. We have that

Xn

dn
= Φḡ− 1

2
εg ,h̄− 1

2
εh

(
Hn

dn
,
an

dn
,
bn

dn
,
cn

dn
, µn
)
− W n

dn
w∗−→ 0.

Then by Case (i), there exist (H ′, a′, b′, c′, µ′) and W ′ ∈ L0
+, such that

Φḡ− 1
2
εg ,h̄− 1

2
εh

(H ′, a′, b′, c′, µ′)−W ′ = 0.

Moreover, b′, c′ ≥ 0 and at least one component of (b′, c′) equals 1. Hence

Φḡ−εg ,h̄−εh(H ′, a′, b′, c′, µ′) > 0, P-a.s.,

which contradicts NA w.r.t. ḡ − εg and h̄− εh.

Step 3. Since J is convex and sequentially closed under weak star topology, it

is weak star closed by [25, Corollary 5.12.7]. Apply the theorem below Remark 3.1

on page 34 in [75], we have that there exists an EMM Q satisfying

EQf = f̄ , EQg ≤ ḡ − εg, and sup
τ∈T

EQhτ ≤ h̄− εh.

In particular, Q 6= ∅.

9.5 Proof of Theorem 9.3.5

Proof of Theorem 9.3.5. We shall only prove the results for φ. The case for ψ is

similar, and in fact simpler. Let us first prove (9.3.2). It can be shown that

πam(φ) ≤ sup
η∈T

inf
Q∈Q

EQ[η(φ)] ≤ inf
Q∈Q

sup
η∈T

EQ[η(φ)] = inf
Q∈Q

sup
τ∈T

EQφτ .

If πam(φ) < infQ∈Q supτ∈T EQφτ , then take φ̄ ∈ R such that

(9.5.1) πam(φ) < φ̄ < inf
Q∈Q

sup
τ∈T

EQφτ .
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Now we add φ into the market, and we assume that φ can only be bought at time

t = 0 with price φ̄. Then since φ̄ > πam(φ), RNA also holds when φ is involved. As

a consequence, there exists Q ∈ Q such that supτ∈T EQφτ < φ̄ by Theorem 9.3.4,

which contradicts (9.5.1). Therefore, we have that (9.3.2) holds. Similarly we can

show that (9.3.1) holds.

Next, let us prove the existence of an optimal sub-hedging strategy for φ. It can

be shown that

πam(φ) = sup
b∈RM+ ,c∈RN+

sup
µ∈TN ,η∈T

sup{x : ∃(H, a), s.t. Φḡ,h̄(H, a, b, c, µ) + η(φ) ≥ x}

= sup
b∈RM+ ,c∈RN+

sup
µ∈TN ,η∈T

inf
Q∈Qf

EQ[b(g − ḡ) + c(µ(h)− h̄) + η(φ)],

where

Qf := {Q is an EMM : EQf = f̄},

and we apply Superheging Theorem on page 6 in [?] for the second line. We shall

proceed in three steps to show the existence of (H∗∗, a∗∗, b∗∗, c∗∗, µ∗∗) and η∗∗ for

(9.3.3).

Step 1. Consider the map F : RM
+ × RN

+ 7→ R,

F (b, c) = sup
µ∈TN ,η∈T

inf
Q∈Qf

EQ[b(g − ḡ) + c(µ(h)− h̄) + η(φ)].

Since for (b, c), (b′, c′) ∈ RM
+ × RN

+

|F (b, c)− F (b′, c′)| ≤ sup
µ∈TN ,η∈T

sup
Q∈Qf

EQ[|b− b′||g − ḡ|+ |c− c′||µ(h)− h̄|]

≤ K(M +N)||(b, c)− (b′, c′)||,

where |b − b′| := (|b1 − b′1|, . . . , |bM − b′M |) and similar for the other related terms,

and K > 0 is a constant such that

||g(·)− ḡ||, ||ht(·)− h̄||, ||φt(·)|| ≤ K, ∀(t, ω) ∈ {0, . . . , T} × Ω.
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Hence F is continuous.

Step 2. Now take Q ∈ Q ⊂ Qf . Let

ε := min
1≤i≤M

{
ḡi − EQg

i
}
∧ min

1≤i≤N

{
h̄i − sup

τ∈T
EQh

i
τ

}
> 0.

Then

sup
b∈RM+ ,c∈RN+

F (b, c) ≥ F (0, 0) ≥ −K > −2K ≥ sup
||(b,c)||> 3K

ε

F (b, c).

As a consequence,

sup
b∈RM+ ,c∈RN+

F (b, c) = sup
||(b,c)||≤ 3K

ε

F (b, c).

By the continuity of F from Step 1, there exists (b∗∗, c∗∗) ∈ RM
+ × RN

+ , such that

πam(φ) = sup
b∈RM+ ,c∈RN+

F (b, c) = F (b∗∗, c∗∗)

= sup
µ∈TN ,η∈T

inf
Q∈Qf

EQ[b∗∗(g − ḡ) + c∗∗(µ(h)− h̄) + η(φ)].

Step 3. For any Q ∈ Qf , the map

(µ, η) 7→ EQ[b∗∗(g − ḡ) + c∗∗(µ(h)− h̄) + η(φ)]

= EP

[
dQ
dP
(
b∗∗(g − ḡ) + c∗∗(µ(h)− h̄) + η(φ)

)]
is continuous under the weak star topology (or Baxter-Chacon topology, see e.g.,

[38]). Then the map

(µ, η) 7→ inf
Q∈Qf

EQ[b∗∗(g − ḡ) + c∗∗(µ(h)− h̄) + η(φ)]

is upper semi-continuous under the weak star topology. By [38, Theorem 1.1], the

set TN × T is weak star compact. Hence there exists (µ∗∗, η∗∗) ∈ TN × T, such that

πam(φ) = sup
µ∈TN ,η∈T

inf
Q∈Qf

EQ[b∗∗(g − ḡ) + c∗∗(µ(h)− h̄) + η(φ)]

= inf
Q∈Qf

EQ[b∗∗(g − ḡ) + c∗∗(µ∗∗(h)− h̄) + η∗∗(φ)]

= sup{x : ∃(H, a), s.t. Φḡ,h̄(H, a, b
∗∗, c∗∗, µ∗∗) + η∗∗(φ) ≥ x},
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where we apply the Superhedging Theorem in [19] for the third line. By the same

theorem in [19], there exists (H∗∗, a∗∗) such that

Φḡ,h̄(H
∗∗, a∗∗, b∗∗, c∗∗, µ∗∗) + η∗∗(φ) ≥ πam(φ).

9.6 Proof of Theorem 9.3.8

Proof of Theorem 9.3.8. Recall C(x) defined in (9.3.4) and D(x) defined in (9.3.5),

and denote C := C(1) and D := D(1). By Theorems 3.1 and 3.2 in [63], it suffices to

show that C and D have the following properties:

1) C(1) and cD(1) are convex, solid, and closed in the topology of convergence in

measure.

2) For p ∈ L0
+,

p ∈ C ⇐⇒ EP[pq] ≤ 1 for ∀q ∈ D.

For q ∈ L0
+,

q ∈ D ⇐⇒ EP[pq] ≤ 1 for ∀p ∈ C.

3) C is bounded in probability and contains the identity function 1.

It is easy to see that C and D are convex and solid, EP[pq] ≤ 1 for any p ∈ C and

q ∈ D, and C contains the function 1. We shall prove the rest of the properties in

three parts.

Part 1. We shall show C is bounded in probability. Take Q ∈ Q. Then dQ/dP ∈

D, and

sup
p∈C

EP

[
dQ
dP

p

]
= sup

p∈C
EQp ≤ 1.
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Therefore, we have that

sup
p∈C

P(p > C)

= sup
p∈C

P
(
dQ
dP

p >
dQ
dP

C

)
= sup

p∈C

[
P
(
dQ
dP

p >
dQ
dP

C,
dQ
dP
≤ 1√

C

)
+ P

(
dQ
dP

p >
dQ
dP

C,
dQ
dP

>
1√
C

)]
≤ P

(
dQ
dP
≤ 1√

C

)
+ sup

p∈C
P
(
dQ
dP

p >
√
C

)
≤ P

(
dQ
dP
≤ 1√

C

)
+

1√
C

→ 0, C →∞.

Part 2. We shall show that for p ∈ L0
+, if EP[pq] ≤ 1 for any q ∈ D, then p ∈ C,

and as a consequence, C is closed under the topology of convergence in measure.

Take p ∈ L0
+ satisfying EP[pq] ≤ 1 for any q ∈ D. It is easy to see that for any

Q ∈ Q, the process (dQ
dP |Ft)t=0,... ,T is in Y(1). Therefore,

sup
Q∈Q

EQp = sup
Q∈Q

EP

[
dQ
dP

p

]
≤ 1.

Thanks to Theorem 9.3.5, there exists (H, a, b, c, µ) such that

1 + Φḡ,h̄(H, a, b, c, µ) ≥ p,

which implies that p ∈ C.

Now let (pn)∞n=1 ⊂ C such that pn
P−→ p. Then without loss of generality, we

assume that pn → p a.s.. For any q ∈ D, we have that

EP[pq] ≤ lim inf
n→∞

EP[pnq] ≤ 1.

This implies p ∈ C.

Part 3. We shall show that for q ∈ L0
+, if EP[pq] ≤ 1 for any p ∈ C, then q ∈ D,

and as a consequence, D is closed under the topology of convergence in measure.
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Take q ∈ L0
+ satisfying EP[pq] ≤ 1 for any p ∈ C. Since

C ⊃ {p′ ∈ L0
+ : p′ ≤ 1 +H · S, for some H ∈ H},

by [63, Proposition 3.1] there exists a nonnegative adapted process Y ′ = (Y ′t )t=0,... ,T ,

such that q ≤ Y ′T , and for any H ∈ H with 1 + H · S ≥ 0, ((1 + (H · S)t)Y
′
t )t=0,... ,T

is a P-super-martingale. Now define

Yt =

 Y ′t , t = 0, . . . , T − 1,

q, t = T.

Then it can be shown that Y = (Yt)t=0,... ,T ∈ Y(1). Since q = YT , q ∈ D. Similar

to the argument in Part 2, we can show that D is closed under the topology of

convergence in measure.
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