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Abstract 

This work presents a new resonance self-shielding method for deterministic neutron 

transport calculation. The new method is a fusion of two types of conventional methods, 

direct slowing-down equation and integral table based methods. The direct slowing-down 

method is essentially accurate in terms of using continuous-energy cross section data but 

is computationally expensive for the reactor assembly or whole core calculation. The 

integral table based methods use pre-calculated tables so that these methods are much 

more efficient than directly solving the slowing-down equation. However, the derivation 

of integral table based methods introduces a couple of approximations, leading to 

limitations of these methods to treat resonance interference, spatially distributed self-

shielding, and non-uniform temperature profile within the fuel rod.   

To overcome these limitations, the new method incorporates a correction scheme. The 

conventional iteration of the embedded self-shielding method (ESSM) is still performed 

without subdivision of the fuel regions to capture the global inter-pin shielding effect. 

The resultant self-shielded cross sections are modified by correction factors incorporating 

the intra-pin effects due to radial variation of the shielded cross section, radial 

temperature distribution, and resonance interference. An efficient quasi-1D slowing-

down equation is developed to calculate these correction factors. In essence, the 

assumption that underpins this new method is that the global Dancoff effect is treated 

satisfactorily with ESSM, while the effects of radial fuel regions and resonance 

interference are local phenomena that can be solved with the quasi-1D model. The new 

method yields substantially improved results for both radially dependent and energy-

dependent reaction rates, which help to improve the within-pin physics for multi-region 

depletion and multiphysics calculations, as well as the overall eigenvalue estimation.  
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 Chapter 1

Introduction 

The main task in the field of nuclear reactor physics is to solve the Boltzmann neutron 

transport equation, which is an integro-differential equation with seven independent 

variables in respect to time, space, energy and angle. Analytic solution of the neutron 

transport equation can be found for very simple problems, but is practically infeasible for 

realistic problems in reactor core analysis. Numerical methods have been devised to solve 

the neutron transport equation, which are generally divided into two groups, deterministic 

methods and stochastic methods. Since the computational resources are limited with 

regard to the computational complexity of the equation, the efforts of deterministic 

methods are based on making approximations, physical and mathematical, to reduce the 

complexity of the high dimensional phase space and give accurate results within a 

reasonable computing time. 

The independent variables of the neutron transport equation, namely, time t, neutron 

position r, energy E and direction Ω are numerically treated by either of the two 

approaches, discretization or modal expansion [1]. The time, neutron position and energy 

variables are often approximated to be discrete, while the discretization and expansion  

approaches of treating the angular variable yields discrete ordinates (Sn) and spherical 

harmonics (Pn) methods, respectively. To emphasize, since the neutron flux is very 

dependent on the cross section by which neutron interacts with the background medium, 

energy discretization of the transport equation demands extra care to resolve the 

complicated energy dependence of cross sections, which is one of the most challenging 

problems for reactor core analysis. Figure 1.1 contains an example of the energy 

dependence of cross sections for neutron interactions with U-238. In the resonance 

energy range, say, from roughly 1eV to 100keV, the cross sections are sharply varied 
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according to the numerous resonance peaks, and thus yielding a fine structure of neutron 

flux distribution over the energy domain. 

 
Figure 1.1 Continuous-energy cross sections of U-238 [2] 

Histogram approximation is a straightforward approach for energy discretization. In 

order to resolve the resonance cross section, an ultra-fine energy mesh should be applied 

so that within each mesh, the cross section can be treated as a constant. Histogram 

approximation is computationally expensive due to the hundreds of thousands of energy 

meshes that are needed to resolve the complex energy dependence shown in Figure 1.1. 

In practice, one would like to solve the neutron transport equation by a small number of 

energy meshes, which leads us to multigroup theory. In the multigroup method, the 

continuous-energy transport equation is integrated over a set of pre-defined energy 

groups to achieve a multigroup form of the transport equation. The width of each energy 

group could be broad, covering one or more resonances of the typical reactor materials. 

To be consistent with the original continuous-energy equation, rather than arithmetically 

averaging the continuous-energy cross sections, the multigroup cross sections should be 

weighted by the neutron flux of the specific problem, which is not available until one 
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rigorously solves the continuous-energy transport equation. Therefore, approximations 

are indispensable in evaluating the flux-weighted multigroup cross sections. Once the 

multigroup cross sections are complete, multigroup transport calculation can be 

performed to determine the neutron flux distribution. Clearly, the ability of generating 

multigroup cross sections to preserve the physics of continuous energy plays a crucial 

role for the accuracy of reactor core analysis. The focus of this work is to develop a 

method by which the multigroup cross sections can be generated more consistently with a 

continuous-energy solution in energy and a radially dependent mesh in the space domain. 

1.1 Neutron Transport and Multigroup Theory 

The steady-state neutron transport equation that describes the motion of neutron and 

its iteration with matter is defined as 

,

,0 4

,0 4

( , , ) ( , ) ( , , )

( , ' , ' ) ( , ', ') ' '

( , ) ( , ') ( , ', ') ' '
4

iso t iso
iso

iso s iso
iso

iso f iso
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r E N r E r E

N r E E r E d dE

r E N r E r E d dE
k

π

π

ψ s ψ
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χ νs ψ
π

∞

∞

Ω ⋅∇ Ω + Ω

= Ω ⋅Ω → Ω Ω

+ Ω Ω

∑

∑∫ ∫

∑∫ ∫

 (1.1) 

In this equation, the neutron flux ( , , )r Eψ Ω  is allowed to vary with position r , 

direction Ω  and energy E . ,x isos  is the microscopic cross section of reaction channel x  

( t  for total, s  for scattering and f  for fission) for isotope iso . isoN is the atomic number 

density of isotope iso . ν is the average number of neutrons generated per fission, and 

( )Eχ  is the fission spectrum distribution. k is the multiplication factor of the system. To 

obtain a multigroup form of the transport equation, Equation (1.1) is integrated over the 

range of energies corresponding to Group g . We define the multigroup flux and cross 

sections as, 
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Then the multigroup transport equation is given as 

, ,
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∑ ∑∫

 (1.3) 

The knowledge of the continuous-energy angular flux is needed in advance to 

determine the multigroup constants of Equation (1.2). For most reactor applications of 

interest, it is a reasonable approximation to separate the energy and angular variables 

( , , ) ( , ) ( , )r E r E rψ φΩ ≈ Ψ Ω  (1.4) 

By substituting Equation (1.4) into (1.2), the angular dependence of flux can be 

eliminated. The multigroup cross sections approximately preserve the true reaction rate 

and are called ‘effective cross section’. In addition, the flux weighted cross section 

integral (the numerators of multigroup cross section in Equation (1.2)) is called resonance 

integral (RI). 

The methods of determining neutron flux for collapsing the effective cross section 

depend on the range of neutron energies of interest [3]. At the high energies above 

resonances, one might approximate the flux by the fission spectrum. In the thermal 

energy range, the neutron energy is comparable to the thermal motion of nuclei, and as 

well to the binding energy of the atoms in molecular or crystalline materials. These 

features complicate the determination of thermal cross sections. Fortunately, in the 
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applications of thermal reactors where the neutron energy spectrum is sufficiently well 

thermalized, rather crude models of the neutron scattering process are sufficient for the 

generation of thermal group constants. It is the intermediate energy range where 

numerous resonances occur, where the neutron spectrum can be very problem-dependent, 

making it difficult to pre-determine the multigroup cross sections. In this energy range, 

resonance self-shielding is the primary reason for problem-dependent multigroup cross 

sections. 

1.2  Phenomena of Resonance Self-shielding    

The resonance self-shielding effect can be broken into two types, energy self-shielding 

and spatial self-shielding. Energy self-shielding is caused by the strong dependence of the 

neutron spectrum on the energy-dependent cross section, while spatial self-shielding is 

primarily due to the heterogeneous configuration of the reactor. 

1.2.1 Energy Self-shielding 

A neutron with an energy near a resonance is likely to be absorbed by the resonance 

isotope, thus creating a flux dip in the vicinity of the resonance. Energy self-shielding 

results in a reduction of the effective absorption per nucleus due to the depression of the 

energy-dependent flux near the resonance as compared to a flat flux. Figure 1.2 compares 

the spectrum of a typical PWR cell for a range of densities of fuel materials. When the 

fuel density decreases, the amount of flux depression versus energy becomes less severe. 

If these fluxes are used in Equation (1.2) to evaluate the multigroup cross section, the 

case with the largest fuel density should result in the smallest effective absorption per 

nucleus.  In other words, although the total absorption rate in a resonance group is 

increased by adding more fuel material, the effective absorption per nucleus is reduced, 

thus being ‘shielded by the material itself’. 

The material temperature also affects the energy self-shielding through Doppler-

broadening of the microscopic resonance cross section. In Figure 1.3, as the temperature 

increases, the wings of resonance are broadened while its peak magnitude decreases. The 

resultant spectra closely follow the behavior of resonance in a reverse manner, leading to 

a reduction in the self-shielding and an increase in the effective microscopic absorption 
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cross section, which is a key phenomenon that provides negative reactivity feedback 

against fuel temperature increase. 

 
Figure 1.2 Neutron spectra versus uranium density at 6.67eV resonance of U-238 

  
Figure 1.3 Neutron spectra versus fuel temperature at 6.67eV resonance of U-238 
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1.2.2 Spatial Self-shielding 

The basic element of a light water reactor is a pin cell: a fuel rod is surrounded by 

moderator. Although the fission neutrons are born in the fuel, they are mostly slowed 

down by the moderator, while some of them are absorbed when they travel through the 

fuel. Near the energies of a resonance peak, neutrons coming from the moderator are 

more likely absorbed by the resonance nuclei near the fuel surface, so the fuel 

geometrically shields itself from neutron penetration, leading to a relatively lower 

neutron flux inside the fuel rod as compared to near the fuel surface. Figure 1.4 presents 

the neutron spectra of different fuel annuli of a typical PWR pin cell (six equal-volume 

annuli are divided), indicating that the effective absorption cross section differs greatly 

from one fuel ring to another. 

 

   
Figure 1.4 Neutron spectra versus fuel annuli at 6.67eV resonance of U-238 

To summarize, because of the resonance self-shielding effect in energy and space, the 

neutron scalar flux in Equation (1.4) is very dependent on the problem (material, location, 
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temperature, etc.). Therefore, the resonance calculation has to be performed for every 

specific case.  

1.3 Resonance Calculation for Deterministic Methods 

Even with the multigroup approximation, a direct transport calculation under realistic 

geometry, material composition and temperature profile of a reactor core configuration 

has only been possible since one or two decades ago. For the conventional reactor core 

analysis to save computing resources, a two-step methodology was adopted where the 

first step is generation of the homogenized few group cross sections over a subdomain 

(e.g., an assembly) with a transport method and the second step is a global nodal 

calculation with a diffusion method. Either direct transport or the two-step method begins 

with a multigroup cross section library containing resonance parameters. In a direct 

transport method, multigroup cross sections are usually prepared for all the material 

regions without homogenization, so the resonance calculation is performed for the 

explicit geometry, e.g., for each 2-D plane with detailed material region and geometrical 

mesh. The axial effect is usually neglected by assuming a reflective boundary condition 

(infinite length in z direction). In the two-step method, the first step is called lattice 

calculation, which determines the homogenized few group cross sections for each fuel 

assembly. The lattice calculation basically starts with the treatment of resonance self-

shielding to produce the problem-specific multigroup effective cross sections. Those 

cross sections are then condensed into few groups and geometrically homogenized over 

the whole assembly. In addition, a leakage calculation is required to modify the infinite 

lattice results to include the effects of leakage for a finite reactor. In principal, the 

methodologies for performing the resonance calculation in the direct transport method 

and the two-step method are similar.  

Two types of approaches for performing the resonance self-shielding calculation can 

be identified. The first is to obtain the direct solution of the ‘slowing-down equation’, an 

approximate form of the transport equation that is defined on the resonance energy range. 

Continuous energy or ultrafine-mesh cross sections are required, which restricts the 

slowing-down calculation to local geometries such as a pin cell or a single assembly. For 
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example, RMET21 [4] and the early version of CENTRM [5] are restricted to 1-D 

cylindrical pin cell geometry that has been converted from the square pin cell using the 

Wigner-Seitz approximation. The MERIT [6] code analyzes a 2-D pin cell calculation 

using the Method of Characteristics (MOC), which removes the possible error arising 

from the Wigner-Seitz approximation. Recently, this 2-D pin cell capability has been 

included in the latest version of CENTRM [7]. To account for the inter-pin heterogeneity, 

a 2-D slowing-down code for an assembly configuration was first attempted in the 

GEMINEWTRN code [8]. The effective cross sections can be accurately generated by 

GEMINEWTRN with regard to the spatial heterogeneity, but the computing time 

becomes an issue when the assembly-size problem is solved by the direct slowing-down 

method. Currently, solving the slowing-down equation for a 2-D full core problem is still 

computationally prohibitive, so the influence of neighboring assemblies or reflector 

regions on the effective cross sections is not accounted for by the direct slowing-down 

method. 

The second type of approaches for resonance self-shielding calculation utilizes pre-

computed integral tables. Despite complexity of interactions in the resonance self-

shielding, for every temperature of interest, the RI or effective cross section can be 

tabulated through a single parameter called the background cross section, which is a 

measure of dilution, the concentration of a resonance isotope relative to the background 

isotopes. The Bondarenko method [9] is a conventional approach that correlates RI or 

effective cross section with background cross section. Based on the equivalence theory 

[10], the heterogeneous self-shielding effect can be modeled by including an equivalence 

cross section into the background cross section, and variations on the Bondarenko 

method have been developed to treat heterogeneous geometry [10,11]. In the past two to 

three decades, a powerful alternative to the Bondarenko method, the subgroup method 

[12,13] has been developed and widely implemented in modern lattice codes. In the 

subgroup approach, the detailed cross section behavior of each coarse energy group is 

replaced by its probability density representation that preserves certain integrals. There 

are two methods for determining the subgroup probability tables [14]. The first is the 

physical probability table, in which the RI tables are converted into a set of subgroup 

levels and weights by preserving the RI or effective cross section over different 
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background cross sections. The second method utilizes a mathematical probability table. 

Instead of preserving the RI, it preserves the cross section moments by processing the 

point-wise cross section data. Recently another promising RI table based method, the 

iterative self-shielding method [15,16] was developed by Korea Atomic Energy Research 

Institute (KAERI) and Oak Ridge National Laboratory (ORNL). ORNL entitled it the 

Embedded Self-Shielding Method (ESSM) because compared to the conventional 

Bondarenko method in which the lattice effect (Dancoff correction) is usually evaluated 

outside the transport calculation, ESSM provides tighter coupling between neutron 

transport and self-shielding calculations, assuring that the heterogeneous self-shielding 

effects are consistent with the multigroup transport calculations of the system. Since the 

application of integral table based methods only involve multigroup calculations, these 

methods are much more efficient than directly solving the CE slowing-down equation for 

the specific configuration. Unfortunately, approximations made on the way of deriving 

the integral tables result in a few issues affecting the accuracy of the resonance 

calculation, especially for the generation of multigroup cross sections of the direct 

transport calculation. These issues will be addressed in the current work. 

1.4  Thesis Outline 

When the thesis work started three and a half years ago, the idea of ESSM was a white 

paper from ORNL. The early version of ESSM implemented by this work revealed a few 

issues which turned out to be difficult to resolve within the framework of the original 

ESSM methodology. In the meantime, it was found that some of these issues are in 

common for the integral table based methods, say, resonance interference, which was 

addressed first. Therefore, a correction-based method [17,18] was devised to resolve the 

resonance interference effect explicitly by utilizing ESSM and a 0-D slowing-down 

calculation. Unfortunately, this approach was restricted to a single-mesh fuel region. 

Motivated by the success of the correction method using the slowing-down solution, a 

comprehensive method is developed in this work to account for all three issues i.e., 

resonance interference, spatial self-shielding, and non-uniform temperature profile, by 

utilizing a quasi-1D slowing-down calculation. This work is presented as follows: 
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Chapter 2 discusses the first type of resonance self-shielding methods using a direct 

slowing-down solution. Two energy mesh discretization schemes are described, as well 

as the solution procedure using these mesh schemes. This discussion is necessary in order 

to understand the slowing-down methodology developed in the new method presented in 

Chapter 4.  

Chapter 3 discusses the second type of resonance self-shielding methods that rely on 

pre-computed integral tables. Three integral table based methods, the Bondarenko-type 

method, the ESSM and the subgroup method are described in this chapter to illustrate 

how these methods work and how the approximations made during the derivations of 

these methods lead to their being unable to account for resonance interference, distributed 

self-shielding effect or a non-uniform fuel temperature profile. The previous efforts for 

overcoming these limitations are also described, with a conclusion that these methods are 

either unable to resolve these issues properly, or can only resolve a single issue but not all 

three.  

Chapter 4 presents the new resonance self-shielding method which is able to overcome 

the three limitations simultaneously. The new method adopts ESSM for a baseline 

calculation to account for the global Dancoff effect. Starting from the collision 

probability form of the integral transport equation, an effective quasi-1D slowing-down 

equation is developed to account for the intra-pin effects that correspond to the three 

limitations. The global ESSM calculation and the local 1D slowing-down calculation are 

connected by modifying the equivalence cross section rather than using explicit boundary 

conditions. 

Chapter 5 verifies the new resonance self-shielding method through a set of 

benchmark problems that are representative of real LWR configurations. The subgroup 

method and conventional ESSM are performed for comparison. An extension of the 

methodology to treat azimuthal dependent self-shielding is also investigated. 

Chapter 6 presents the summary, conclusions and recommendations for future work.  



12 
 

   Chapter 2

Direct Method: Solving the Slowing-down Equation 

Generation of multigroup cross sections requires a neutron spectrum with a fine 

energy resolution. Although it is not possible to obtain the exact flux solution before the 

transport equation is rigorously solved, an ‘essentially exact’ solution can be obtained by 

solving a simplified form of the transport equation in the resonance energy range, i.e., the 

neutron slowing-down equation. The assumptions needed to obtain the slowing-down 

equation from the transport equation are discussed in this chapter, followed by a 

description of a few methods for the energy discretization.  

2.1 Assumptions for the Neutron Slowing-down Equation 

As mentioned previously, it is customary to divide the energy range of interest into 

three regions, each of which features typical neutron reactions, as shown in Figure 2.1. Of 

interest to us is the intermediate energy region, where three major assumptions regarding 

the source terms are applied to obtain the slowing-down equation: 

(1) Direct fission source is neglected; 

(2) Asymptotic scattering kernel is assumed so that upscattering is neglected; 

(3) The scattering source is treated by only considering isotropic s-wave elastic 

reactions. 

For the fission spectrum of U-235, which is the primary isotope sustaining fission chain 

reaction for light water reactors, more than 99% of the direct fission neutrons are born in 

the fast energy region (>105eV). The neutron source in the slowing-down region is 

primarily provided by the scattered neutrons from higher energies, so (1) is a good 

approximation. Assumption (2) is generally used in conventional slowing-down codes, 

but recent works [19,20] have shown that the explicit treatment of resonance up-
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scattering for heavy nuclides in the epithermal energy range can increase the LWR 

Doppler coefficients by 10% relative to the asymptotic scattering kernel. In the current 

work, the asymptotic scattering kernel is still used for the slowing-down calculation as 

resonance upscattering is well outside the scope of this work. Assumption (3) requires a 

bit more discussion. Anisotropic effects of neutron transport theory usually fall into two 

classes: those related to the scattering cross section and those related to the anisotropy of 

neutron streaming due to the inhomogeneous reactor configurations. Thus if either the 

cross section or the flux are approximately isotropic, this would be sufficient to make 

Assumption (3) valid. A physical explanation supporting Assumption (3) was presented 

in Ref. [21] and is repeated here. As the energy ranges away from resonances, the neutron 

flux is almost isotropic for all material regions (fuel, cladding, moderator, etc.). However, 

near the resonance peaks where the absorption is large, the neutron flux is anisotropic, 

tending toward the fuel region from the moderator region. At such energies, the angular 

distribution of the scattering cross section in the lab system is nearly isotropic for heavy 

nuclides such as U-238, O-16 or Zr, and anisotropic for H-1. Therefore, in the fuel and 

cladding regions, the scattering source is isotropic in spite of the anisotropic flux. In the 

moderator, the neutron flux and scattering cross section of H-1 are both anisotropic near 

the resonance peaks. However, the neutron could lose all of its energy through a single 

collision with H-1, indicating that neutrons slowing down to an energy value near the 

resonance are coming from a far higher energy range where an isotropic flux is a 

reasonable assumption. Thus, an isotropic scattering source is also a good approximation 

in the moderator. Some numerical results are included in Ref. [21,22] showing that the 

effect of including anisotropic scattering in the slowing-down calculation is minimal. 

Applying the three assumptions into Equation (1.1), the slowing-down equation is 

given as 

,

'
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1 ( , ') ( , ') '
4 1iso

t iso
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(2.1) 
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where φ  is the scalar flux per unit lethargy, ( )21
1

iso

iso

A
iso Aα −

+=  and ( )1ln
isoiso αε =  are the 

maximum fraction of energy loss and maximum lethargy gain per neutron scattered off 

isotope iso , respectively. The energy E has been transformed to lethargy u, as is 

conventionally done for the slowing-down equation. For each lethargy point u, if the 

scattering source term is determined, the remaining work is to solve a fixed source 

transport problem by a discretization method such as MOC or Sn. Since very fine energy 

meshes have to be applied to model the resonances, the energy mesh scheme plays an 

important role in efficiently solving the slowing-down equation. 

 

 
Figure 2.1 Typical neutron reactions of different energy ranges (adapted from [3]) 

2.2 Energy Discretization Schemes 

One approach is to discretize the energy range of interest into a large number of equal-

lethargy groups, where the group width is pre-determined and not dependent on the 

problem. A fundamental approximation of this ultrafine group scheme is that the fluxes 

and cross sections are constants within each group, so that the group width should be very 

narrow. Another approach adopts a flexible mesh scheme that assigns more meshes to the 

energy range where greater fluctuation of the total cross sections occurs, so the mesh size 
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is non-uniform and problem-dependent. These two mesh schemes are discussed in the 

following subsections. 

2.2.1 Equal Lethargy Mesh 

The complicated part of solving the slowing-down equation is the evaluation of the 

scattering source term. The contribution to the scattering source from each isotope iso is 

given as 

'

,( , ) ( , ') ( , ') '
1iso

u uu

iso s isou
iso

eQ r u r u r u du
e

φ
α

−

−
= Σ

−∫
 

(2.2) 

To evaluate the integral, the constant group width gu∆ should be narrow compared with 

the maximum lethargy gain per scattering of the heaviest isotope. Integrating Equation 

(2.2) over lethargy boundaries of group g yields the scattering source for group g 
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To proceed, the inner (incident lethargy) integration range is split into two parts, i.e., 

[ , ]gu u  and [ , ]iso gu uε−  
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(2.4) 

The within-group scattering term (first term) can be evaluated by taking the constant 

, , ,( , ') ( , ') ( ) ( )s iso s iso g g gr u r u r r uΣ φ Σ φ ∆=  out of the integral, thus 

( ), ,
, 0, , ,

( ) ( )
( ) 1 ( ) ( )

(1 )
gus iso g g

iso g g g iso s iso g g
g iso

r r
Q r u e P r r

u
∆Σ φ

∆ Σ φ
∆ α

−
→ = + − =

−  
(2.5) 

where ( )0, 1 (1 )gu
iso g g isoP u e u∆∆ ∆ α−  = + − −   is defined as the probability that a neutron 

stays in the group after a collision with isotope iso . To evaluate the second term in 
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Equation (2.4), an approximation is made on the limits of the inner integral, as illustrated 

in Figure 2.2. 

 
Figure 2.2 Integration intervals for equal-lethargy group scheme 

We define isoN as the integer part of /iso guε ∆ . Since u varies from gu to g gu u∆+ , the 

corresponding limits of inner integral are within two extreme conditions, i.e., 'g
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∆ ε+ −∫ . An intermediate lower limit g iso gu N u∆−  is chosen such that the 

overestimated source from group g-Niso to some large lethargy values u in ( gu , g gu u∆+ ) 

is partially compensated by underestimating the source from group g-(Niso+1) to some 

small lethargy values u in ( gu , g gu u∆+ ). Then the second term of Equation (2.4) becomes 
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(2.6) 

The inner integral is summed over groups from g-1 to g-Niso, and within each group the 

constant flux and scattering cross section can be taken out to obtain 
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Evaluating the double integrals gives 

g 
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 is the probability that a neutron traverses ‘j’ energy 

groups after a collision with the isotope iso. Direct evaluation of the summation in 

Equation (2.8) repeatedly for every group would be time-consuming, since the number of 

groups that a neutron can traverses easily reach up to several thousands. Thus a 

cumulative approach is applied to make use of the source of the previous group [23], 
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Equations (2.5) and (2.9) complete the determination of the scattering source due to 

isotope iso. The total scattering source are summed up over all isotopes, and the slowing-

down equation turns out to be  

, ,

, ,

( , ) ( ) ( , )

1 ( ) ( )
4

g t iso g g
iso

iso g g iso other g
iso

r r r

Q r Q r

ψ ψ

π → →

Ω ⋅∇ Ω + Σ Ω

 = + 

∑

∑
 

(2.10) 

Starting from a threshold energy group above all the resonances, one is able to solve the 

slowing-down equation as an increasing order of groups (descending order of energy). As 

the slowing-down spectra are used for cross section weighting, the amplitude of flux is 

not important so one can assume a 1/E flux shape above the threshold energy to initialize 

the calculation. Since the energy mesh does not depend on the composition of the 

material, a fresh fuel pin or a depleted fuel with 100+ isotopes may use the same energy 
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mesh which is always predetermined in a specific resonance energy range. However, the 

equal-lethargy mesh is time-consuming, especially for heterogeneous slowing-down 

calculations, because the fixed source problem has to be solved for hundreds of thousands 

of groups. 

2.2.2 Problem Dependent Energy Mesh 

Compared to the fixed energy points of an equal-lethargy mesh, the problem-

dependent mesh has a more flexible mesh size which is primarily dependent on the 

energy dependence of the material macroscopic total cross section. To obtain an 

optimized problem-dependent mesh, the first step is to construct a union energy mesh 

from the original energy meshes for the isotopes for each material. The macroscopic total 

cross sections are computed on the union mesh and used to thin the union mesh in such a 

manner that the macroscopic total cross section of the material can be linearly 

interpolated according to a specific tolerance. After unionizing and thinning, the energy 

meshes of all materials are combined together to form the final mesh for the slowing-

down calculation. This procedure is used in CENTRM [5]. The determination of the 

scattering source is discussed next. 

Starting from Equation (2.1), the exponential quantity is written in terms of energy to 

avoid the exponential calculation 
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Equation (2.11) is satisfied at each energy (lethargy) point on the problem-dependent 

mesh, thus 
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Define m as the number of lethargy points that a neutron scattering from nuclide iso will 

traverse from lethargy n isou ε− to nu  ( nu  not included), so that the integral in Equation 

(2.12) can be split into m sub-integrals plus an extra term integrated from n isou ε− to n mu −  
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Except the extra term, these integrals are evaluated with trapezoidal rule, 
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Even for heavy nuclides such as uranium and plutonium, the number m can be a few 

hundred. To avoid the time-consuming summation over j repeatedly for every energy 

point n, a cumulative term for each isotope iso is defined to facilitate the summation [5] 
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Thus, the summation term over j on the right-hand side of Equation (2.14) can be 

replaced by subtraction of two cumulative terms: 
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The extra term , , ( )iso n mS r∆ can be interpolated from , , 1( ) ( )iso n m iso n mC r C r− − −− by the 

lethargy difference. To sum up, three independent terms need to be evaluated for each 

lethargy point n, i.e., ,s nnΣ , , 's n nΣ  and , , , , 1 1
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. Note the 

third value is done for each isotope independently and is accumulated into , ( )iso nC r . 

Similar to the equal-lethargy mesh scheme, one is able to solve the slowing-down 

equation as a descending order of energy from a threshold. Once the pointwise neutron 

spectrum is obtained, integration for multigroup effective cross sections for the problem-

dependent mesh scheme needs extra consideration. As the mesh thinning is based on a 

specified tolerance for linear interpolation of the macroscopic total cross section for the 

whole material, there will be some cross section variations with energy for the original 

cross section, which is missing in the thinned energy mesh for the slowing-down 

calculation. To retrieve the cross section dependence of each isotope, the original mesh of 

the isotope and the thinned slowing-down mesh are unionized as the final mesh for the 

integration of effective cross section. The flux interpolation from the slowing-down mesh 

to the final mesh is performed by linearly interpolating the total reaction rate ( t tφΣ ) and 

total cross section tΣ  respectively, then dividing t tφΣ  by tΣ . The reason of doing so is 

that the energy dependence of reaction rates is weaker than the energy dependence of 

spectrum, yielding smaller interpolation errors. 
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 Chapter 3

Integral Table Based Methods 

The neutron spectrum for collapsing effective cross sections can be accurately 

predicted by solving the slowing-down equation, but its prohibitive computing needs 

restrict its application to pin cell calculations. One would like to model the energy and 

spatial self-shielding effects with some simple parameters, by which the effective cross 

section of a specific problem can be obtained through table interpolation rather than a 

rigorous slowing-down calculation. From the view point of reactor physics, factors 

influencing the resonance self-shielding can be summarized as follows: 

(1) Fuel composition (fuel type, enrichment, poison, burnup, etc.) 

(2) Relative ratio of fuel to coolant (size of fuel rod, fuel and coolant densities) 

(3) Arrangements of fuel pins (zoned fuel, water gap/hole, control rod, etc.) 

(4) Subdivision of the fuel region (distributed self-shielding effect) 

(5) Temperature 

There have been a number of efforts to define and extract simple parameters to create 

a table of effective cross section that will account for these factors. To explain this 

approach, the Bondarenko method is chosen at the first place to understand the resonance 

self-shielding model in a homogeneous material as well as its generalization to the 

heterogeneous case by equivalence theory. The embedded self-shielding method and 

subgroup method are discussed afterward, with their limitations discussed in the last 

section of this chapter. 

3.1 Bondarenko Method and Equivalence Theory 

It would be impractical to generate the effective cross section table directly through 

the above physical factors. For a conventional lattice calculation, it is well-known that the 
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self-shielding effect can be approximately modeled by two parameters, the background 

cross section and temperature. The methods based on using background cross sections are 

often called Bondarenko-type methods. The Bondarenko method is derived for 

homogeneous material first, and then generalized to consider heterogeneous geometry by 

introducing equivalence theory and the Dancoff factor. 

3.1.1 Homogeneous Material 

For a homogeneous material, only Factors (1) and (5) are involved in the self-

shielding calculation. Even with this simplification, the fuel composition could be so 

complicated that one could not determine an effective cross section table by explicitly 

considering the weight percentages of isotopes. To obtain the weighting spectrum, 

Bondarenko originated an effective idea that unionizes all the isotopes other than the one 

in question as a single parameter bσ [9], the ‘background’ cross section, which leads to 

the following expression for the weighting spectrum 

,

1( )
( )t res b

u
u

φ
s s

∝
+  

(3.1) 

In this equation, , ( )t res us  is the energy dependent microscopic total cross section of 

the resonance isotope in question. ,b iso t iso res
iso res

N Ns s
≠

= ∑ is the summation of the total 

cross sections of all other isotopes divided by the number density of the resonance 

isotope. The flux is assumed to be inversely proportional to the total cross section of the 

material and the resonances of different isotopes are assumed to be separated from each 

other, so that the total cross section of other isotopes are approximated to be energy 

independent near the resonance of the isotope in question. Consider that the flux is used 

to collapse effective cross section. When bσ  dominates the denominator (for the large 

, ( )t res us  in the vicinity of a resonance, this usually happens when res iso
iso res

N N
≠
∑ ), the 

flux is prone to be flat. The resonance isotope is infinitely diluted and its effective cross 

section is unshielded, reaching the largest value at the energy group of the resonance. On 

the other hand, if the resonance isotope is dominant, i.e., , ( )b t res us s , the resonance 
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isotope is fully shielded by itself, leading to the smallest effective cross section. 

Therefore, the effective cross section can be tabulated through a range of background 

cross sections.  

Alternatively, some cross section libraries tabulate RI instead of effective cross section 

1
, , ,

1 ( ) ( )g

g

u

g x res x resu
g

RI u u du
u

s φ
−

=
∆ ∫

 
(3.2) 

where x is the reaction channel. Substituting ( )uφ  in Equation (3.2) by Equation (3.1) 

gives 

1
, , ,

,

1 ( )
( )

g

g

u

g x res x resu
g t res b

CRI u du
u u

s
s s−

=
∆ +∫

 
(3.3) 

where C is an arbitrary constant that will cancel out when collapsing the effective cross 

section. To facilitate a simple correlation between RI and effective cross section, C is set 

to bσ , then  

1
, , ,

,

1 ( )
( )

g

g

u
b

g x res x resu
g t res b

RI u du
u u

ss
s s−

=
∆ +∫

 
(3.4) 

Using the same form to compute the group flux per lethargy 

1 1

1

,

, ,,

,

1 1( )
( )

( )11 1
( )

g g

g g

g

g

u u
b

g u u
g g t res b

u g t rest res b

u
b g t res b b

u du du
u u u

RIu
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u u

sφ φ
s s

s s
s s s s

− −

−

= =
∆ ∆ +

= − = −
∆ +

∫ ∫

∫
 

(3.5) 

So the effective cross section is given as 

, , , ,
, ,

, ,1
g x res g x res

g x res
g g t res b

RI RI
RI

s
φ s

= =
−

 (3.6) 

Using Equation (3.6), RI and effective cross section can be converted back and forth, so 

the tabulation of RI or effective cross section is equivalent. In addition to the background 

cross section, the table should be generated through a few temperatures of interest as well. 
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Similar flux forms to Equation (3.1) can be derived from the slowing-down equation 

by introducing resonance approximations. The slowing-down equation for a 

homogeneous medium is given as 

'

, ,( ) ( ) ( ') ( ') '
1iso

u uu

t iso s isou
iso iso iso

eu u u u du
e

φ φ
α

−

−
Σ = Σ

−∑ ∑∫
 

(3.7) 

One way to approximate the scattering source is to consider the resonance width 

narrow with respect to the energy loss of a neutron scattered off a nucleus, indicating that 

the neutrons appearing near the resonance peak come from far outside the peak and the 

scattering source originating inside the resonance is negligible. With this Narrow 

Resonance (NR) approximation, ( ')uφ  in the scattering source term is assumed to be 

constant (normalized to unity above resonance) and the scattering cross section is 

approximated to be potential scattering ,p isoΣ  above resonance. Therefore, Equation (3.7) 

simplifies to 

, , ,

, , ,

( )
( ) ( )

p iso p res p iso
iso iso res

t iso t res p iso
iso iso res

u
u u

φ ≠

≠

Σ Σ + Σ
= =

Σ Σ + Σ

∑ ∑
∑ ∑

 

(3.8) 

On the right hand side of this equation, the total cross sections of the other isotopes are 

treated as potential scattering only, indicating that the resonance interference is neglected 

in this equation. By defining the background cross section
,p iso

iso res

resb Ns ≠

Σ∑
= , the flux can be 

written in the conventional form for the NR approximation: 

,

,

( )
( )

p res b

t res b

u
u

s s
φ

s s
+

=
+  

(3.9) 

Contrary to the NR approximation, the resonance width can be considered wide with 

respect to the energy loss of a neutron scattered off the resonance isotope. Assuming the 

mass of the resonance isotope is infinite, no energy loss is expected in the elastic 

scattering reaction, so the integral of Equation (3.7) for the resonance isotope simplifies 

to 
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' '
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(3.10) 

Then the flux can be written as 

,

, , ,

( )
( ) ( )

p iso
biso res

a res p iso a res b
iso res

u
u u

sφ
s s

≠

≠

Σ
= =
Σ + Σ +

∑
∑

 

(3.11) 

where 
,p iso

iso res

resb Ns ≠

Σ∑
= . Since the NR approximation is still applied to the non-resonant 

isotopes, the equation above is usually called Narrow Resonance Infinite Mass (NRIM) 

approximation.  

As the two resonance approximations are developed by comparing the resonance 

width with the scattering energy loss, the NRIM approximation is more suitable for the 

broad resonances in the epithermal low energy range while the NR approximation is 

more suitable for the resonances in the high resonance energy range. Ref. [24] presents 

some verification results for the U-238 capture cross section using the two 

approximations, as compared to the rigorous slowing-down solution. 

The NR and IM approximations are two limiting conditions. The actual resonances are 

better represented as an interpolation of these limiting conditions, which is the motivation 

for the Intermediate Resonance (IR) approximation [25]. The portion due to the narrow 

resonance effect is denoted by the IR factor (0 1)isoλ λ≤ ≤  for isotope iso, so Equation 

(3.7) is written as 

, , ,( ) ( ) (1 ) ( ) ( )t iso iso p iso iso s iso
iso iso iso

u u u uφ λ λ φΣ = Σ + − Σ∑ ∑ ∑
 

(3.12) 

Rearranging the flux gives a similar form to Equations (3.9) and (3.11) 

,

, ,

( )
( ) ( )

res p res b

a res res s res b

u
u u
λ s s

φ
s λ s s

+
=

+ +  
(3.13) 
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where 
,iso p iso

iso res

resb N

λ

s ≠

Σ∑
= . By properly determining the IR factor, the scattering source can be 

calculated with good accuracy. Discussion of the numerical generation of the IR factor 

can be found in Reference [24,26]. 

The neutron spectrum obtained from the resonance approximations can be directly 

used to determine the collapsed effective cross section. Alternatively, the slowing-down 

solution is solved to obtain a more accurate neutron spectrum. By varying the background 

cross section and temperature, an effective cross section or RI table is established for 

every resonance isotope. For a specific homogeneous problem, once the background 

cross section is determined, the effective cross section can be estimated by table 

interpolation. 

3.1.2 Heterogeneous Isolated System and Equivalence Theory 

Let us consider an isolated heterogeneous model consisting of a single fuel rod 

surrounded by an infinite moderator. In this case Factor (2) is involved (see beginning of 

this chapter). The goal is to develop a flux expression similar to that for the homogeneous 

media with an extra term accounting for the heterogeneous effect. The extra term is then 

absorbed into the background cross section so that the homogeneous RI table can be 

directly used for heterogeneous problems. The derivation of the flux starts from the 

neutron slowing-down equation in collision probability form 

, ( ) ( ) ( ) ( ) ( ) ( )F t F F F F F F J J F J
J M

V u u V P u Q u V P u Q uφ → →
∈

Σ = + ∑
 

(3.14) 

In this equation, F is denoted as fuel material and M denotes materials other than fuel 

(cladding, coolant, etc.). XV is the volume of region X. We assume a flat flux Xφ  for each 

fuel region that has a single mesh without subdivision. ( )F FP u→ and ( )J FP u→  are the first 

flight collision probabilities from fuel to fuel and from material J to fuel. The source term 

( )XQ u can be explicitly written as 

'

, ,( ) ( ') ( ') '
1iso

u uu

X s X iso Xu
iso iso

eQ u u u du
e

φ
α

−

−
= Σ

−∑∫
 

(3.15) 
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where isoε and isoα are the maximum lethargy gain and the fractional energy loss as 

previously defined. In order to achieve an equivalence relation, the IR approximation is 

applied to the fuel region, while the NR approximation is applied to other regions. The 

latter rests on the fact that nuclides of non-fuel regions are light or intermediate, so the 

resonances can be assumed to be narrow resonances. Utilizing these approximations, the 

scattering source terms simplify to 

, , , , , ,( ) (1 ) ( ) ( ) (1 ) ( ) ( )F iso p F iso iso s F iso F F p F F s F F
iso iso

Q u u u u uλ λ φ λ λ φ= Σ + − Σ = Σ + − Σ∑ ∑
 

( ),( )J p JQ u J M= Σ ∈  
(3.16) 

Note that the notation for fuel region drops isotope index for brevity. Substitution of 

Equation (3.16) into Equation (3.14) for ( )FQ u and ( )JQ u yields 

, , , ,( ) ( ) ( ) (1 ) ( ) ( ) ( )F t F F F F F F p F F s F F J J F p J
J M

V u u V P u u u V P uφ λ λ φ→ →
∈

 Σ = Σ + − Σ + Σ  ∑
 

(3.17) 

Assuming , ,( )t J p JuΣ = Σ for the non-fuel materials and using the reciprocity relation, 

, ,( ) ( ) ( ) ( )X X Y t X Y Y X t YV P u u V P u u→ →Σ = Σ , Equation (3.17) can be transformed into  

( ), , , ,( ) ( ) 1 ( ) (1 ) ( ) ( ) ( ) ( )t F F esc F p F F s F F t F escu u P u u u u P uφ λ λ φ Σ = − Σ + − Σ + Σ   (3.18) 

where the escape probability is defined as ( ) ( )esc F J
J M

P u P u→
∈

= ∑ . Physically, the escape 

probability is the first flight collision probability from the fuel region to the non-fuel 

regions. Various approximations have been developed for evaluating the escape 

probability [27,28,29,30,31] and the basic idea is to obtain an expression for the flux that 

gives an analytic form equivalent to the flux for a homogeneous system. Rational 

approximations have been proven effective to form this equivalence by introducing an 

equivalence cross section 

1
e l

Σ =       where l =  mean chord length of the fuel region (3.19) 

Table 3-1 shows some examples of rational approximations widely used in lattice codes.  
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Table 3-1 Rational approximations of escape probability for cylindrical geometry 

Item Formula 

Wigner’s rational approx. 
,

( )
( )

e
esc

t F e

P u
u
Σ

=
Σ + Σ  

Bell Factor 
,

( )
( )

B e
esc

t F B e

aP u
u a
Σ

=
Σ + Σ

    ( 1.1 ~ 1.4Ba = ) 

Carlvik’s two term 
, ,

2 3( ) 2
( ) 2 ( ) 3

e e
esc

t F e t F e

P u
u u
Σ Σ

= −
Σ + Σ Σ + Σ

 

General N-term rational 
approx. 

1 1,

( ) 1
( )

N N
n e

esc n n
n nt F n e

aP u b b
u a= =

Σ  = = Σ + Σ  
∑ ∑  

 
For the general case, the N-term rational approximation is substituted into Equation 

(3.18) to yield the flux of the fuel region,  

,

1 ,

, ,

1 ,

( )
( ) ( ) (1 ) ( )

( )

N
F p F n e

n
n t F n e

F N
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n
n t F n e

a
b

u a
u u u a

b
u a

λ

φ λ
=

=

Σ + Σ
Σ + Σ

=
Σ − − Σ + Σ

Σ + Σ

∑

∑
 

(3.20) 

However, an equivalent form to the homogeneous media can be achieved only for two 

cases. One is applying NR to the fuel material as well ( 1Fλ = ) and then the flux becomes 

,

1 ,

( )
( )

N
p F n e

F n
n t F n e

a
u b

u a
φ

=

Σ + Σ
=

Σ + Σ∑
 

(3.21) 

The second is to use the single-term rational approximation, which yields an equivalent 

form of flux 

,

, ,

( )
( ) ( )

F p F e
F

a F F s F e

u
u u
λ

φ
λ
Σ + Σ

=
Σ + Σ + Σ  

(3.22) 

We choose Equation (3.22) to formulate the equivalence relation. As before, the 

resonance interference is neglected, so 
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,
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λ s s

φ
s λ s s

+
=
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(3.23) 

where 
,iso p iso e

iso res

resb N

λ

s ≠

Σ +Σ∑
= . Equation (3.23) has an identical form with Equation (3.13) 

except the additional term eΣ  defined in bσ . Therefore, the effective cross section of a 

heterogeneous case can be obtained from a homogeneous RI table as long as the 

equivalence cross section is properly determined. This is the equivalence relation that 

unifies the two effects of resonance self-shielding, e.g., the leakage effect and the volume 

effect, thus significantly simplifying the self-shielding calculation for heterogeneous 

cases. Sometimes, the ,res p resλ s term is absorbed into bσ , 

, ,

( )
( ) ( )

b
F

a res res RS res b

u
u u

sφ
s λ s s

=
+ +  

(3.24) 

where 
,iso p iso e

iso

resb N

λ

s
Σ +Σ∑

=  and , , ,( ) ( ) ( )RS res s res p resu u us s s= − . Both Equations (3.23) and 

(3.24) are valid to formulate the RI table, as long as the determination of background 

cross section is consistent in generating and using the table. 

3.1.3 Heterogeneous Lattice System and Dancoff Correction 

So far, the heterogeneous consideration is limited to an isolated fuel rod surrounded by 

infinite moderator. In reality for a fuel lattice system, a neutron that leaves a fuel rod 

could have its first collision in another fuel rod rather than the moderator. In order words, 

the fuel escape probability should be reduced due to the shadowing effect of neighboring 

fuel rods. This effect is modeled by introducing the Dancoff factor to the rational-type 

fuel escape probability. Compared to an isolated pin cell, the fuel escape probability for a 

fuel lattice system should be multiplied by ( )MP u , the probability that a neutron leaving 

isotropically from a fuel rod will have its next collision in the materials other than fuel,  

, ,( ) ( ) ( )esc F esc f MP u P u P u= ⋅  (3.25) 
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where , ( )esc fP u  is the fuel escape probability for an isolated pin cell with infinite 

moderator and , ( )esc FP u  is the fuel escape probability for the fuel lattice.  

Conventionally, the Dancoff factor D  is defined by its complementary value 

1C D= − , where C  is the probability that a neutron leaving isotropically from a fuel rod 

will enter another fuel rod without any collision in the non-fuel materials. When the fuel 

is black (absorption macroscopic cross section is considered infinite), the Dancoff factor 

is simply the MP , which equals to the first flight blackness of the non-fuel materials. 

Here we also assume that the cross sections of non-fuel materials are energy independent, 

so Dancoff factor is energy independent as well. The assumption of black fuel is quite 

general for the evaluation of Dancoff factor. Analytic expressions for the Dancoff factor 

have been found for certain geometries [32], while numerical procedures are generally 

used to determine the Dancoff factor of a complex reactor system [33,34]. To apply the 

Dancoff factor of black fuel to the realistic fuels that are usually ‘grey’ materials (finite 

absorption macroscopic cross section), we consider a regular lattice in which the fuel 

escape probability of a target fuel pin is given as an infinite sum, 

( )

( ) ( )

, , ,

2 ,2
,

( ) ( ) ( )(1 ) 1 ( )
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( )(1 ) 1 ( )

1 (1 ) 1 ( )
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esc f B
esc f B f B

B f

P u P u D P u D u D

P u D
P u D u D

D u

γ

γ
γ

= + − −

+ − − + =
− − −



 

(3.26) 

where BD is the Dancoff factor and ( )f uγ is the first flight blackness of the realistic fuels. 

Equation (3.26) holds only if the fuel pins are similar, otherwise the series cannot end up 

with a uniform ( )f uγ . Furthermore, reciprocity yields the following relation 

, ,( ) ( ) ( )f esc f t f fu P u u lγ = Σ  (3.27) 

where , ( )t f uΣ  is the total cross section and fl  is the mean chord length of the fuel. 

Substitution of Equation (3.27) into Equation (3.26) gives 

( )
,

,
, ,

( )
( )

1 (1 ) 1 ( ) ( )
esc f B

esc F
B esc f t f f

P u D
P u

D P u u l
=

− − − Σ
 

(3.28) 
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By writing , ( )esc fP u with the Wigner rational approximation, 

,
,

,
,

,

1
( ) 1
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( )11 (1 ) 1 ( )

( ) 1
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t f f B e
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u D
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Σ + Σ
= =

Σ + Σ 
− − − Σ  Σ +   

(3.29) 

As before, eΣ  is defined as 1 fl . Using Equations (3.29) and (3.18), the flux for the fuel 

lattice can be written as  

, ,

( )
( ) ( )

b
F

a res res RS res b

u
u u

sφ
s λ s s

=
+ +  

(3.30) 

where  


, ,i p i B e i p i e
i i

res res

D

b N N

λ λ

s
Σ + Σ Σ +Σ∑ ∑

= =  and e B eDΣ = Σ is the Dancoff corrected equivalence 

cross section. The limiting conditions for the Dancoff factor correspond to the 

homogeneous media ( 0BD = ) and isolated fuel rod with infinite moderator ( 1BD = ), so 

the self-shielding effect of the fuel lattice is an interpolation between these two 

conditions.  

To summarize, the Bondarenko-type method derives a simplified flux expression by 

which the effective cross section can be tabulated only through the background cross 

section and temperature. Equivalence theory links a basic heterogeneous case (isolated 

fuel rod) with the homogeneous case, leading to the union of self-shielding effects of 

volume and leakage. Furthermore, the realistic fuel lattice effect is retrieved by 

introducing the Dancoff factor as interpolation of the homogeneous media and isolated 

fuel cases. Compared to the direct slowing-down method, the Bondarenko method is 

subject to the following approximations: 

(1) Resonance approximations are utilized to simplify the scattering source. Although 

the IR approximation improves the flux accuracy in the epithermal energy range, 

the determination of the IR factor still requires certain approximations. 

(2) The resonance interference effect is neglected. 

(3) Rational approximations have been used to determine the escape probability.  

(4) The Dancoff correction assumes a regular lattice with similar fuel pins. 
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(5) The fuel rod is treated as a single region with a flat flux, so the distributed self-

shielding effect within the fuel rod is not accounted for. 

(6) A temperature distribution within the fuel region is also not accounted for, 

consistent with (5). 

3.2 Embedded Self-shielding Method 

ESSM is an extension of the Bondarenko method to account for the Dancoff effect but 

in the actual problem. Compared to the conventional Bondarenko method where the 

Dancoff factor is usually evaluated by an auxiliary calculation with black fuel regions 

separate from the transport calculation, ESSM resolves the heterogeneous effect within 

the same configuration as the target transport calculation. The Dancoff effect is not 

calculated explicitly, but embedded in the equivalence cross section which is iteratively 

determined between interpolating effective cross section and solving a fixed-source 

transport problem for the geometry and composition of interest, typically a 2-D plane of 

the core and reflector. In our context, a fixed source transport problem (FSP) for each 

energy group is defined by only considering the scattering source with a resonance 

approximation. The iteration concept and formulation of ESSM are discussed in the 

following two subsections, respectively. 

3.2.1 How to Iterate 

Assuming the RI table has been generated, ESSM iteratively determines the Dancoff 

corrected equivalence cross section for a heterogeneous system. Convergence of ESSM 

iteration is based on two facts. The real physics is that the effective absorption cross 

section increases as the equivalence cross section increases because the weighting flux 

under the resonance becomes flatter. This is the correlation already built into the RI table. 

The effective physics that sets up the multigroup effective cross section for the fixed 

source calculation behaves in a reverse manner. If an overestimated effective absorption 

is used in the fixed source problem, the resultant equivalence cross section will be 

smaller than the one with correct effective absorption, thus leading to a converged 

effective cross section. To verify this statement, the fuel escape probability of an isolated 

pin cell is rigorously calculated using the Carlvik method (see Appendix A) for a range of 
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fuel total cross sections. The resultant fuel escape probability is converted to equivalence 

cross section by using single-term rational approximation: 

,

e
esc

t F e

P Σ
=
Σ + Σ

 (3.31) 

Figure 3.1 shows that the equivalence cross section computed in this way is a 

monotonically decreasing function of the fuel total cross section. As indicated in 

Equation (3.29), inclusion of the Dancoff effect for a realistic fuel lattice does not change 

the monotonic relationship of the equivalence cross section (Dancoff corrected) with the 

fuel total cross section. This completes the verification for the above statement that the 

interactions between real and effective physics result in a converged effective cross 

section. 
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Figure 3.1 Equivalence cross section vs fuel total cross section 

Although the equivalence cross section is treated as a constant for the single-term 

rational approximation, Figure 3.1 indicates a moderate dependence of the equivalence 

cross section on total cross section (or lethargy). Since the range of equivalence cross 

section is relatively small and the single-term rational approximation causes the equation 

for the flux in the fuel lattice to strongly resemble the flux for the homogeneous case, the 

single-term rational approximation was widely used in the early lattice codes. 
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The overall concept of ESSM iteration is depicted in Figure 3.2. The iteration target is 

the true background cross section ,b realσ  and the associated effective cross sections ,a realσ  

of every resonant material region of the system. An arbitrary ,0bσ , e.g., with  0eΣ =  may 

initialize the iteration. Using the RI table, an initial set of effective absorption cross 

section ,0aσ  is obtained. Next, these ,0aσ ’s are used in the FSP to determine a new set of 

background cross section ,1bσ . Since ,0 ,a a realσσ < , the computed equivalence cross 

section is larger than the real one, then ,1 ,b b realσσ > . Interpolation of the effective cross 

section using ,1bσ  gives ,1aσ , which should be bigger than ,a realσ , hence the 

overestimated ,1aσ yields an underestimated ,2bσ . The table interpolation and FSP 

solutions repeat until convergence of bσ  and aσ  is achieved. A detailed definition of the 

FSP and the determination of bσ  from the FSP will be discussed in the next subsection. 

 

 
Figure 3.2 Iteration scheme of ESSM 
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3.2.2 Formulation of ESSM  

For the ESSM calculation, one could generate the RI table by a series of homogeneous 

problems using either a resonance approximation or a slowing-down calculation. 

However, a more consistent way is to use a set of heterogeneous pin cell configurations 

in the realistic reactor geometry by varying the fuel and moderator densities or fuel to 

moderator ratios to achieve a range of background cross sections. The transition from 

homogeneous to 1D cylindrical geometry was first attempted when performing 

verification calculations in Ref. [35] and later this approach was adopted for the 

generation of subgroup weights in the HELIOS code [36]. Other efforts employing the 

heterogeneous RI table rather than the homogeneous RI table can be found in Ref. 

[37,38]. ESSM employs a search for the equivalence cross section by iterating between 

the pre-computed RI tables and the fixed source problem, and this consistency between 

generating and using the tables is essential for the accuracy of the method.  

The multigroup form of Equation (3.30) can be obtained by first rearranging the 

denominator to the left hand side, and then integrating over the group boundaries, 

,
,

, , , , ,

b g g
F g

a res g res RS res g b g

us
φ

s λ s s
∆

=
+ +  

(3.32) 

As discussed, eΣ is slightly energy dependent, so the ,e gΣ term in ,b gσ  is determined by 

forcing the equality of Equation (3.32). Alternatively, ,b gσ can be solved in terms of the 

multigroup flux 

( ), , , , ,
,

,

a res g res RS res g F g
b g

g F gu
s λ s φ

s
φ

+
=

∆ −  
(3.33) 

Equation (3.33) indicates that if the effective cross section of a resonance isotope for a 

heterogeneous problem is obtained, one may estimate the background cross section by 

solving a FSP for the same heterogeneous case. The advantage of estimating the 

background cross section from the FSP is that the Dancoff corrected equivalence cross 

section is already embedded into the background cross section, so a separate routine to 

compute Dancoff factor is not required to determine the lattice shielding effect. 
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To vary the background cross section, a series of 2-D pin cell problems are defined in 

Table 3-2. Case 3 is the base case which is a typical PWR pin cell. The other cases, by 

varying the cell pitch, moderator density or fuel density, give a range of effective cross 

sections against background cross sections. 

Table 3-2 Variations of 2-D pin cell for RI table generation 

Case # 1 2 3 4 5 6 7 8 9 10 
Ratio of pitch 1.0 1.0 1.0 1.13 1.35 1.35 1.35 1.35 1.35 1.35 

Ratio of Mod. density 0.3 0.7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
Ratio of fuel density 1.0 1.0 1.0 1.0 1.0 0.7 0.5 0.25 0.1 0.025 

 

Specifically, for each configuration the multigroup effective cross sections are 

computed from the exact 2-D slowing-down calculation. To obtain the corresponding 

background cross section, the unknown flux in Equation (3.33) is solved from a fixed 

source problem of the same 2-D pin cell configuration formulated by IR approximation 

( ) ( ), ,
1( , ) ( ) ( , ) 1 ( ) ( ) ( ) ( )

4g t g g RS g p g p gr r r r r r r uϕ ψ λ φ λ
p
 ∇ ⋅Ω Ω + S Ω = − S + S + S ∆   (3.34) 

Note that the multigroup effective cross sections in this equation are computed from the 

2-D slowing-down calculation. To summarize, the procedure of generating heterogeneous 

RI table for ESSM consists of three steps: (a) Solve the exact slowing-down equation for 

every pin cell configuration to obtain the multigroup effective cross sections; (b) Solve 

Equation (3.34) to obtain the scalar flux for the fixed source problem for every pin cell 

configuration; (c) Obtain the background cross section by Equation (3.33) so that the 

effective cross section and background cross section are linked. This procedure is 

performed for every resonance isotope independently at several temperatures of interest. 

When performing the resonance calculation for a specific problem, ESSM directly 

uses these RI tables for cross section interpolation. An initial set of self-shielded cross 

sections can be obtained by assuming  0eΣ =  so that ,b F p F resNs λ= Σ . With the 

coefficients of these multigroup shielded cross sections, Equation (3.34) is solved for 

every 2-D plane and the resulting flux is used in Equation (3.33) to update the 

background cross sections. Then a new set of self-shielded cross sections can be obtained 
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by RI table interpolation. The procedure iterates until the equivalence cross sections eΣ of 

all resonant regions of the 2-D plane converge. 

To be consistent with RI table generation, the ESSM iteration should be performed for 

each resonance isotope independently, where other resonance isotopes are treated as 

background isotopes with only potential scattering. However, in order to save computing 

time, a simplification was introduced into the original description of ESSM that the 

ESSM iteration is performed only once with all the resonance isotopes combined as a 

whole absorber [16]. The resonance interference can be considered later with separate 

interference models without affecting the ESSM iteration loop. This assumption might be 

good for the fresh fuel, but could bias the results for complicated material compositions, 

say MOX fuel or depleted fuel. The conventional interference models will be discussed in 

the last section of this chapter. 

Also, it has been verified that ,RS gλσ can be eliminated in Equations (3.33) and (3.34) 

without sacrificing accuracy, as long as they are consistently eliminated when generating 

and using RI tables [36,38]. This can be explained as ,RS gλσ only imposes a shift of RI 

versus background cross sections. By eliminating ,RS gλσ , Equations (3.33) and (3.34) 

simplify to  

, , ,
,

,

a res g F g
b g

g F gu
s φ

s
φ

=
∆ −  

(3.35) 

( ), ,
1( , ) ( ) ( , ) ( ) ( ) ( ) ( )

4g t g g s g p g p gr r r r r r r uϕ ψ λ φ λ
p
 ∇ ⋅Ω Ω + Σ Ω = Σ − Σ + Σ ∆   (3.36) 

These two equations are actually used in the ESSM calculation.  

The ESSM differs from the Bondarenko method, because the equivalence cross 

section is evaluated by iteration rather than using the rational approximation and the 

Dancoff correction. Other approximations such as the need for a resonance 

approximation (e.g., IR), neglect of resonance interference and the need for a single fuel 

region without distributed self-shielding effects are still inherited from the Bondarenko 

method. Although one can extend the method to solve a multiple fuel-region problem by 
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calculating the multi-region fluxes from Equation (3.36) and evaluate the background 

cross sections of different annuli using different fluxes, the same RI table pre-computed 

from a single fuel region is used for all subregions, which prematurely assumes the 

correlations between shielded cross section and background cross section for different 

annuli are identical to the single fuel region. This assumption leads to significant errors in 

the shielded cross sections. A further investigation of this issue can be found in the last 

section of this chapter. 

3.3 Subgroup Method 

The original idea of the subgroup method (also named the multiband method) is 

substantially different from the multigroup concept. As is seen in solving the slowing-

down equation, a sufficient number of energy groups is needed to assure that the 

variation of cross section within a group is small. Rather than dividing the energy range 

into more and more groups which is computationally expensive, the subgroup method 

proceeds by dividing the cross section magnitude within a broad Group g into a number 

of cross section bands (subgroups) as shown in Figure 3.3. The cross section belonging to 

a subgroup is in general discontinuous with regard to energy. In spite of many resonances 

within a broad group, a small number of subgroups are able to cover the range of the 

resonance cross section. Each subgroup is associated with a weight that relates to the 

probability that the energy dependent cross section falls into this subgroup. Evaluating a 

RI by the subgroup method is mathematically equivalent to performing the Lebesque 

integration instead of Riemann integration.   

In practice, the detailed cross section behavior of each coarse energy group is replaced 

by its subgroup probability density representation that preserves certain integrals. There 

are two methods for determining the subgroup probability tables. The first is the physical 

probability table, in which the RI tables are converted into a set of subgroup levels and 

weights by preserving either the RI or effective cross section over a range of background 

cross sections [36]. The second method utilizes the mathematical probability table. 

Instead of preserving the RI, it preserves the cross section moments by processing the 
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point-wise cross section data [39]. The lth moment of the cross section of reaction channel 

x at group g is defined as 

1
, ,

1 ( ) ( )g

g

u l
x g l x tu

g

M u u du
u

σσ
−

=
∆ ∫  (3.37) 

where l is a set of integers that can be positive or negative. For example, , ,x g lM  is the 

infinite diluted RI when 0l = and is the fully shielded RI when 1l = − . Since all self-

shielding conditions appear between this two limiting conditions, the moment based 

method was then generalized to preserve a few non-integer moments ranging from -1 to 0 

[40]. 

 
Figure 3.3 Subgroup levels and weights [38] 

Since the physical probability table is more widely used, the following content will 

concentrate on this approach. Transformation of integration variable from neutron energy 

to cross section for the resonance integral gives 



40 
 

max,

1 min,

max,

1 min,

,

( ) ( ) ( ) ( )

( ) ( )

g g

g g

g g

g g

u

x xu
x g u

u

duu u du d
d

duu du d
d

σ

σ

σ

σ

σ φ σσ  φ σσ
σσ

φ φ σσ
σ

−

−

= =
∫ ∫
∫ ∫

 (3.38) 

The integrals of Equation (3.38) can be cast into a quadrature form represented by the 

subgroup levels , ,x g nσ  and weights , ,x g nw  

, , , , ,
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w

σ φ
σ

φ
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∑
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(3.39) 

where ,g nφ is the level dependent flux. Assuming the subgroup parameters have been 

determined, the application of the subgroup method involves obtaining the level 

dependent flux from a fixed source transport problem. Similar to ESSM, a fixed source 

problem for the subgroup method is defined by considering the scattering source with a 

resonance approximation. A typical fixed source problem for subgroup level n with the 

IR approximation is given as 

( )
, , , , ,

, ,

( , ) ( ) ( ) ( , )

1 ( ) ( ) ( ) ( )
4

g n a g n s g g n

s g p g n p g

r r r r

r r r r u

ψ ψ

λ φ λ
p

 ∇ ⋅Ω Ω + Σ + Σ Ω 

 = Σ − Σ + Σ ∆ 
 (3.40) 

where , ( )g n rφ and , ( , )g n rψ Ω are the level dependent scalar flux and angular flux. In 

practice, instead of directly using the level dependent flux, it is customary to rewrite the 

flux using the IR approximation 

, ,
,

, , , ,

g b g n
g n

a g n b g n

u σ
φ

σσ
∆

=
+  

(3.41) 

where , , , ,b g n p e g nσ λσσ = + is the level dependent background cross section. No resonance 

interference among isotopes is assumed within the energy group g. As a practical matter, 

Equation (3.41) is used to replace the flux in Equation (3.39) for evaluation of the 

effective cross sections 
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(3.42) 

This alternative is chosen because the dependence of , ,b g nσ  on , ,a g nσ  is much weaker 

than the dependence of ,g nφ  on , ,a g nσ . The number of , ,b g nσ  capable of describing this 

dependence is therefore smaller than the number of subgroup levels used in the 

quadrature for computing the effective cross section. Thus fewer fixed source 

calculations are needed. The level dependent fluxes solved from the fixed source problem 

are converted to background cross section by reversing Equation (3.41), so a table of 

, ( )b g aσσ   or , ( )e g aσσ  is established. By interpolation, one could obtain , ,e g nσ for all levels 

of the subgroup quadrature and finally compute the effective cross section by Equation 

(3.42).  

Since the flux can be solved for any region from the fixed source problem, the 

subgroup method is not limited to a single mesh in the fuel region, which is the basic 

assumption of the conventional Bondarenko method. Although Equation (3.41) utilizes 

the equivalence relation, a subtlety is that in the subgroup method the equivalence cross 

section embedded in the background cross section is no longer a constant, but depends on 

the subgroup level. Therefore, compared to the Bondarenko-type method, the subgroup 

method can resolve the distributed self-shielding effect within a fuel rod to a certain 

extent. 

Another approximation for the subgroup method to save computation time is to group 

the resonance isotopes into several categories. Each category contains a subset of 

resonance isotopes having overlapping, but not equally strong resonances. The fixed 

source problem is solved per category rather than per resonance isotope. A detailed 

description of this simplification can be found in Ref. [36].  

The subgroup parameters (levels and weights) are determined by searching for the 

desired fit from a set of pre-computed RI tables parameterized by background cross 

sections. Here the RI table is the same as discussed in the previous sections. For example, 

one could determine the subgroup weights by solving a least squares problem 
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(3.43) 

where N  is the number of subgroup levels and K is the number of background cross 

section in the RI table (K>N). The subgroup levels ,g nσ  are usually chosen to be the 

same for different temperatures. A procedure of trial and error is needed for 

determination of ,g nσ  to minimize the error of Equation (3.43) for all temperatures. Since 

the subgroup method is mathematically a quadrature approximation of the RIs over a 

range of background cross sections, it is characterized as an integral table based method. 

In spite of the advantages, the resonance interference effect is still neglected in the 

above description and is difficult to be accounted for within the framework of the 

subgroup method. Furthermore, the subgroup method has an issue with treating a non-

uniform temperature profile within the fuel region. These issues will be discussed in the 

next section. 

3.4 Limitations of Integral Table Based Methods 

Since the application of integral table based methods only involves multigroup 

calculations, these methods are much more efficient than directly solving the CE 

slowing-down equation for the specific configuration. However, the derivation of integral 

table based methods introduces a number of approximations as discussed in previous 

sections. This section is dedicated to three of the most important issues, resonance 

interference, distributed self-shielding (multiple fuel regions) and non-uniform 

temperature profile within the fuel rod. 

3.4.1 Resonance Interference 

The resonance interference effect is a long-standing problem that arises from the 

overlapping in energy of cross sections from different resonance isotopes. To illustrate, 

the energy dependent absorption cross sections of U-235 and U-238 are plotted for two 

selected energy ranges in Figure 3.4. In Condition A, the task is to evaluate the 

multigroup effective cross section of U-235 around the 6.67eV resonance of U-238. Due 
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to the presence of U-238, the flux is depressed around the resonance, so the effective 

cross section of U-235 is increased because the relatively larger cross section is given 

more weight than the smaller cross section. However, if the same problem is investigated 

at a different energy range in Condition B where resonances of two isotopes overlap, the 

effective cross section of U-235 is reduced since less weight is given to the relatively 

larger cross section. Therefore, the resonance interference effect on effective cross 

sections could be arbitrary, depending on the specific situation of cross section 

overlapping.  

 

   
Figure 3.4 Resonance interference effect between U-238 and U-235 

As presented, the integral tables (or subgroup parameters) are generally determined for 

each resonance isotope independently, so resonance interference is neglected at this step. 

One prescription to address this problem is to perform the Bondarenko iteration at the 

multigroup level [11], which was first introduced by the WIMS code and then widely 

used in other lattice codes. According to Equation (3.30), the IR flux considering 

absorption of other resonance isotopes is written as 

, , ,
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(3.44) 

where  , ,
1( ) ( )a other a iso

iso resres

u u
N

s s
≠

= ∑  (summation is over all other resonance isotopes). 

Instead of using the continuous-energy cross section which is unattainable during the 
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conventional multigroup calculation, the multigroup absorption cross section is used to 

model the flux depression due to absorption of the other resonance isotopes, 

, , , ,
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( ) ( )

b
F

a res res RS res a other g b

u
u u

sφ
s λ s s s

=
+ + +  

(3.45) 

where , , , ,
1
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s s
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= ∑ . When evaluating the effective cross section, the 

contribution of other resonance isotopes can be absorbed into the background cross 
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(3.46) 

where  , ,b a other g bσσσ  = + . Equation (3.46) indicates that the original effective cross 

section table can be used for the case that incorporates resonance interference. The 

background cross section is increased by the absorption of other resonance isotopes. The 

same treatment is applicable to the subgroup method as well, so the subgroup level 

dependent flux is redefined as 

, ,
,

, , , , , ,

g b g n
g n

a g n a other g b g n

u σ
φ

σσσ 
∆

=
+ +  

(3.47) 

Since determination of , ,a other gσ requires resonance calculation of other isotopes, iteration 

is involved. 

As only the multigroup cross section is needed, implementation of Bondarenko 

iteration into a typical lattice code requires trivial work. However, Bondarenko iteration 

always ends up with an increased background cross section bσ , resulting in a greater 
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effective cross section than the one without interference. This contradicts the fact that the 

interference effect on effective cross section may be negative or positive. Therefore, 

Bondarenko iteration could result in a systematic error by overestimating the effective 

cross section. 

In addition, efforts were made to incorporate the interference effect by extending the 

dimension of the RI table or subgroup parameters using the density ratio of two 

resonance isotopes [26,41]. The difficulty for these methods occurs when the number of 

resonance isotopes becomes large, e.g. for MOX fuel or depleted fuel. This is due to the 

fact that the increased size of the RI table depends on the number and significance of the 

resonance isotopes in the specific problem, and this can be difficult to and inefficient to 

carry out. As suggested in Ref. [42], it is necessary to utilize continuous energy cross 

section data in order to fundamentally solve this problem. The new method proposed in 

the current work utilizes continuous energy cross sections to address this issue. 

3.4.2 Distributed Self-shielding Effect 

High-fidelity reactor simulations of today require a resonance self-shielding model 

which is able to resolve the spatial effects within the fuel rod for multi-region depletion 

and power density calculation [43]. The Bondarenko method and ESSM primarily rely on 

equivalence theory, which was originally developed for a single fuel region without 

subdivision. For distributed self-shielding with multiple fuel regions, the asymptotic 

behavior of the region-wise fuel escape probability can be studied to show it is not valid 

to compute ( )escP u using the rational approximation [44]. According to the multi-term 

rational approximation, which includes the single-term rational approximation as a 

special case,  

1 1,

( ) 1
( )

N N
n e

esc n n
n nt F n e

aP u b b
u a= =

Σ  = = Σ + Σ  
∑ ∑

 
(3.48) 

( )escP u behaves like 
,

1

t FlΣ
when ,t FΣ →∞ , where 

1

1 /
N

n

n n e

bl const
a=

= =
Σ∑ . If the rational 

approximation is also a good approximation for computing region-wise , ( )esc iP u , the 
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multiplication of fuel escape probability and total cross section , ,esc i t FP Σ  for every fuel 

ring should approach a non-zero constant 1
l

as ,t FΣ →∞ . Verification of this 

consequence is performed using the Carlvik method to compute the collision probability 

(see Appendix A). The fuel rod is subdivided into six equal-volume rings. Figure 3.5 

shows , ,esc i t FP Σ  for different ,t FΣ  at different fuel rings. It turns out that only the results 

for the whole fuel region and the outermost ring approach a constant as ,t FΣ →∞ , but 

these two constants are different, indicating that a rational approximation suitable for the 

whole fuel region might not work for the outermost ring. Moreover, , ,esc i t FP Σ for the inner 

rings tend to zero because of the exponential behavior of , ( )esc iP u due to neutron 

attenuation from the outer rings. In conclusion, the conventional rational approximation 

is not applicable to the distributed self-shielding case. If the equivalence form is still 

desired, an energy dependent equivalence cross section should be allowed. Since the 

subgroup method computes the subgroup level dependent equivalence cross section, this 

occurs to a limited extent and leads to a better representation of the distributed self-

shielding effect. 
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There have been a few efforts to develop spatially-dependent self-shielding models 

[44,45,46] within the framework of the Bondarenko method. The multiple fuel region 

escape probability is calculated by either extending the rational type approximation or 

rigorous computation from the point-wise cross section data. The shielded cross sections 

are still represented in terms of RIs, with extra coefficients accounting for the spatial 

effects. An important limitation of these models is however, the inability to account for 

the non-uniform temperature distribution within the fuel rod.  

3.4.3 Non-uniform Temperature Effect 

In a conventional lattice calculation, a so-called ‘effective temperature’ (single value) 

is chosen to replace the realistic temperature distribution in the fuel rod. Various 

approaches to obtain the effective temperature are discussed in Ref. [47]. The concept 

behind these approaches is to preserve the neutron capture within the fuel rod in the 

resonance range for a uniform effective temperature with the neutron capture 

corresponding to a specific temperature profile. However, the effective temperature 

model cannot be used for a non-uniform temperature profile if one wants to obtain 

accurate self-shielded cross sections in every subregion of the fuel, such as needed for an 

accurate intra-pin transport calculation with depletion. Although the subgroup method 

reduces the dependence on equivalence theory, which leads to a better representation of 

distributed self-shielding, the lack of a firm theoretical foundation in treating non-

uniform temperature restricts its applicability, particularly to direct whole core problems 

with thermal feedback.  

The issue is as follows. In the subgroup method, subgroup levels are given to be 

temperature independent, and subgroup weights are generated to be temperature 

dependent to account for the Doppler broadening of cross sections. When performing the 

self-shielding calculation for a non-uniform temperature profile of a fuel rod, for each 

subgroup of a resonance isotope, the subgroup levels in different fuel annuli are the same 

in spite of the different temperatures. This imposes an inconsistency between the cross 

sections used for the subgroup fixed source calculation and the Doppler broadened cross 

sections at the true temperature. Consequently, the equivalence cross sections may be 

biased. A prescription to address this deficiency is to adjust the cross section of each 



48 
 

region to be temperature dependent, so that the correct self-shielding effect regarding 

non-uniform temperature can be retrieved. Two approaches were developed according to 

this concept [48,49].  

The first one is subgroup level adjustment by subgroup weights 

, ,
, , , ,

, ,

( )
( )

( )
a g n k

a g n k a g n
a g n ave

w T
T

w T
σσ =

 
(3.49) 

In this equation, the temperature independent absorption level , ,a g nσ  at group g for level 

n is adjusted by the ratio of subgroup weights at kT  in region k and at aveT , the average 

temperature of the fuel in the subgroup solving domain. This adjustment preserves the 

infinite diluted RI if the weights of average temperature are used for all regions, 

, , , , , , , , ,( ) ( ) ( ) ( )a g k a g n k a g n ave a g n a g n k
n n

RI T T w T w Tσσ = =∑ ∑
 

(3.50) 

The adjusted subgroup levels , , ( )a g n kTσ  are then used to solve the subgroup FSP to 

determine the equivalence cross section. Finally, the adjusted subgroup levels , , ( )a g n kTσ  

and subgroup weights at average temperature , , ( )a g n avew T are used to compute the 

effective cross section, 
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(3.51) 

In this equation, , ,a other gσ  is the interference term accounting for the flux depression 

due to other resonance isotopes. For the effective cross section of fission and scattering, 

original subgroup levels and weights can be used with temperature dependent flux term 

identical to the absorption. If the subgroup weights are physical, which means that the 

weights are the probability that the energy dependent cross section falls into the given 

subgroup cross section band, this approach could work properly. However, the subgroup 

weights are in fact generated by solving a least squares fit problem and thus not physical 
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and negative and small weights may occur. Therefore, some of the adjusted subgroup 

levels might be negative or extremely large, which is not desired. 

The second approach adjusts the subgroup level directly by the effective absorption at 

the target and average temperatures,  
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(3.52) 

The ratio of effective cross section is approximately determined as 
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Since we do not have an equivalence cross section before solving the subgroup FSP, bσ is 

approximated as b pσ λσ≅ . Note the adjustment factor is the ratio of two absorption 

cross sections at a specified bσ  and thus has no subgroup level dependence. The adjusted 

subgroup levels are used to solve the equivalence cross section only, so the effective 

absorption is written as 
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This equation also preserves the effective cross section for the infinite dilution case.   

As reported in Ref. [48,49], both approaches improved the accuracy of the fuel 

temperature coefficient by more than 10%. However, no detailed comparisons of the 

spatially dependent reaction rates with regard to the non-uniform temperature profiles 

were provided. The numerical results in Chapter 5 will show that even with the extension 

[48], the subgroup method cannot account for the spatial temperature profile if accurate 

intra-pin effective cross sections are needed. 
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3.4.4 Summary 

Three limitations of the integral table based methods are discussed in this section. The 

existing methods to treat those issues either yield biased results, such as the interference 

treatment using Bondarenko iteration, or restrict the prescription to an individual issue, 

such as the distributed self-shielding models without considering the non-uniform 

temperature profile or resonance interference. In next chapter, a comprehensive 

resonance self-shielding method is developed to account for all three issues, i.e., 

resonance interference, distributed self-shielding, and non-uniform temperature profile.  
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 Chapter 4

Extended ESSM with Quasi-1D Slowing-down Correction 

4.1 Motivation of New Method 

The extended ESSM with quasi-1D slowing-down correction method is a fusion of the 

two types of methods presented in Chapter 2 and Chapter 3. The assumption that 

underpins this new method is that the global Dancoff effect is treated satisfactorily with 

ESSM, while the effects of radial fuel regions and resonance interference are local 

phenomena that can be treated with a continuous energy slowing-down equation for the 

local geometry. Thus conventional ESSM is still performed for every 2-D plane of the 

problem as a baseline calculation to capture the global resonance (Dancoff) effects. In the 

meantime, the new method introduces a 1-D model to explicitly account for the intra-pin 

(local) effects. To connect the local 1-D fuel pin calculation with the global ESSM 

calculation, a quasi-1D form of the slowing-down equation is developed that incorporates 

the equivalence cross section that accounts for the boundary conditions implicitly, rather 

than using explicit boundary conditions, hence ‘quasi-1D’. In addition, effort has been 

made to improve the efficiency of the quasi-1D slowing-down solver. Finally, a 

correction procedure is designed to modify the effective cross section obtained from 

ESSM by using correction factors calculated from the quasi-1D model to account for 

radial shielding, non-uniform temperature effect, and resonance interference.  

The proposed method is able to address these three issues arising from the use of 

conventional integral table based methods. Although the distributed self-shielding within 

the fuel rod is not a requirement for conventional lattice calculations, it plays an 

important role in direct whole core transport calculation. First, multi-physics analysis 

requires high-fidelity resonance self-shielding model. On one hand, by properly 
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determining the radially dependent shielded cross sections, one can improve the 

distribution of heat generation which will benefit the T/H calculation. On the other hand, 

the temperature distribution obtained from T/H feedback requires the resonance model 

account for the non-uniform temperature effect. In addition, the radially shielded cross 

sections affect the determination of the radial burnup distribution in the fuel. In particular, 

the plutonium build-up at the fuel surface requires careful attention. The so-called 

plutonium ‘rim effect' occurs at high burnup of UO2 LWR fuel on a thin layer near the 

fuel surface (on the order of 100 microns). The thermal conductivity of the fuel can be 

significantly reduced in the rim zone and the power density is raised due to the 

abundance of Pu-239. This phenomenon could be correctly modeled only if the 

plutonium build-up at the rim zone is accurately estimated, which in turn depends on the 

estimation of U-238 absorption rate near the fuel surface, and this is a sensitive function 

of the self-shielding. In addition to the distributed self-shielding, the explicit model of 

resonance interference will help improve the energy dependent reaction rates of 

resonance isotopes, such as Pu-239 in the outer rim of the fuel or for a complex fuel 

composition such as MOX, Gd bearing fuel or depleted fuel, in order to better estimate 

the eigenvalue and power distribution. 

4.2 Derivation of the Quasi-1D Slowing-down Equation 

Consider a fuel rod which is divided into multiple annuli, where different annuli may 

have different temperatures and material compositions. The neutron flux in region i of the 

fuel rod is given by the collision probability form of the transport equation with the 

source term only including scattering (same assumptions for resonance energy range as in 

Chapter 2) 

, ( ) ( ) ( ) ( ) ( ) ( )i t i i j j i j k k i k
j F k M

V u u V P u Q u V P u Q uφ → →
∈ ∈

Σ = +∑ ∑
 

(4.1) 

where iV , , ( )t i uΣ and ( )i uφ  are the volume, total cross section and scalar flux of region i. 

( )j iP u→ is the first flight collision probability from region j to i and ( )jQ u is the scattering 
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source of region j. Applying the NR approximation for the scattering source of the non-

fuel regions yields 

, ,( ) ( ) ( ) ( ) ( )i t i i j j i j k k i p k
j F k M

V u u V P u Q u V P uφ → →
∈ ∈

Σ = + Σ∑ ∑
 

(4.2) 

By utilizing the reciprocity relation , ,( ) ( ) ( ) ( )X X Y t X Y Y X t YV P u u V P u u→ →Σ = Σ , 

,

( )
( ) ( ) ( )

( )
i j

i j i k
j F k Mt j

P u
u Q u P u

u
φ →

→
∈ ∈

= +
Σ∑ ∑

 
(4.3) 

Earlier distributed self-shielding methods also simplified the source term of the fuel 

regions using the NR approximation. This approximation is problematic because it gives 

the same scattering source ( )jQ u  for different fuel regions. Although the scattering cross 

section at lethargy u could be same for different fuel regions at uniform temperature and 

fuel composition, the flux is strongly shielded in the fuel center in comparison to the fuel 

surface near large absorption resonances, resulting in different scattering sources along 

the fuel radius. Another approximation of the conventional treatment is assuming the 

total cross section to be spatially independent, i.e., , ,( ) ( )t j t Fu uΣ = Σ  for all j. This 

assumption is poor for at least two cases: depleted fuel and a non-uniform temperature 

profile. In the following derivation, both of these approximations are removed. The 

region-to-region collision probability ( )i jP u→  is evaluated, but an approximation is 

introduced to save computing time.   

Instead of directly calculating ( )i jP u→ , we calculate 

 

(4.4) 

As shown in Figure 4.1, , ( )i iT C
i jP u→ is the first flight collision probability from region i to j 

assuming a uniform temperature iT and material composition iC  throughout the whole 

fuel. In a media of uniform temperature and material composition, i jP→ can be easily 
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tabulated by the total cross section levels. Thus, in the resonance calculation , ( )i iT C
i jP u→  can 

be interpolated from the table rather than rigorous computation. It is straightforward to 

show that 

 
(4.5) 

Therefore, the escape probability , ( )esc iP u of the realistic temperature profile and material 

composition is still conserved through the approximation. In addition, by summing the 

right hand side of Equation (4.2) over all subregion i of the fuel, it can be shown that the 

set of  also conserves the total reaction rate R  of the whole fuel rod 

,

,

( ) ( ) ( )

( ) ( ) ( )

j j j i k k i p k
j F i F i F k M

j j j i k k i p k
j F i F i F k M

R V Q u P u V P u

V Q u P u V P u R

→ →
∈ ∈ ∈ ∈

→ →
∈ ∈ ∈ ∈

= + Σ =

+ Σ =

∑ ∑ ∑∑

∑ ∑ ∑∑ 

 

(4.6) 

 
Figure 4.1 Configuration of computing ( )i jP u→  and , ( )i iT C

i jP u→  
Left: realistic temperature distribution and material composition for evaluating ( )i jP u→

Right: uniform temperature and material composition (temperature and material of 
subregion i are filled into the whole fuel) for evaluating , ( )i iT C

i jP u→  

Before proceeding, the validity of Equation (4.4) is further verified in a statistical 

manner. Obviously, Equation (4.4) is exact for the case of uniform temperature and 

material composition within the fuel rod. A non-uniform material composition comes into 

play when the fuel is depleted. The fact is that the fuel total cross section is dominated by 

U-238 so the radial variation of total cross section for a depleted fuel is usually smaller 

  
   

   i j i j 
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than that with non-uniform temperature where the microscopic cross section differs 

dramatically. Therefore, it should be sufficient to verify the collision probability 

approximation through a case of non-uniform fuel temperature. Specifically, given any 

subregion i, if the ratio  ,( ) ( )i iT C
i j i jP u P u→ →  for different j is almost a constant that equals to 

the ratio ( ) ( ),
, ,1 ( ) 1 ( )i iT C

esc i esc iP u P u− − , Equation (4.4) would be a good approximation of 

the true ( )i jP u→ . To show this, the fuel rod is subdivided into ten equal-volume rings and 

,( ) ( )i iT C
i j i jP u P u→ →  is plotted for all destination rings j with regard to a specified 

originating ring i in a range of total cross sections. These total cross sections are 

randomly chosen from a PWR pin cell case with a parabolic fuel temperature distribution 

(Average: 900K). Figure 4.2, Figure 4.3 and Figure 4.4 show the comparisons of 

( ) ( ),
, ,1 ( ) 1 ( )i iT C

esc i esc iP u P u− −  with ,( ) ( )i iT C
i j i jP u P u→ →  for i = 1, 6 and 10, respectively. Note 

that Ring 1 locates in the fuel center while Ring 10 is near fuel surface. 

 

Figure 4.2 Comparison of  1 1,
1 1( ) ( )T C

j jP u P u→ →  with ( ) ( )1 1,
,1 ,11 ( ) 1 ( )T C

esc escP u P u− − .  
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The ring numbers in the legend are the destination ring j. The target ratio is calculated by 
. The probability of  or  less than 2% is 

neglected in this plot since the low probabilities contribute little to the scattering source. 
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Figure 4.3 Comparison of  6 6,
6 6( ) ( )T C

j jP u P u→ →  with ( ) ( )6 6,
,6 ,61 ( ) 1 ( )T C

esc escP u P u− −  

 

Figure 4.4 Comparison of  10 10,
10 10( ) ( )T C

j jP u P u→ →  with ( ) ( )10 10,
,10 ,101 ( ) 1 ( )T C

esc escP u P u− −  
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Ideally, ,( ) ( )i iT C
i j i jP u P u→ →  of different j are expected to be overlapped with the target 

ratio ( ) ( ),
, ,1 ( ) 1 ( )i iT C

esc i esc iP u P u− −  at every total cross section value. Of our interest, 

( )i jP u→  in Equation (4.3) are used as weights of ,( ) ( )j t jQ u uΣ to evaluate the flux. These 

weights are only important when the variation of ,( ) ( )j t jQ u uΣ along the fuel radius is 

large. Otherwise, Equation (4.5) guarantees the accuracy of the flux evaluation for a 

nearly flat ,( ) ( )j t jQ u uΣ . It is reasonable to assume that large spatial variations of 

,( ) ( )j t jQ u uΣ only happen near the resonance, either due to the variation of temperature 

dependent , ( )t j uΣ , or due to the spatially shielded ( )jQ u . Moreover, it is within the 

resonances that the accuracy of the energy dependent flux is more important. In Figure 

4.2-Figure 4.4, ,( ) ( )i iT C
i j i jP u P u→ →  are more consistent with ( ) ( ),

, ,1 ( ) 1 ( )i iT C
esc i esc iP u P u− −  

when , ( )t j uΣ  is large. Therefore, the approximation in Equation (4.4) favors more 

accurate results in the energy range of resonances. The neutron spectra of the same PWR 

fuel pin of parabolic fuel temperature distribution with infinite coolant are computed 

using ( )i jP u→
  and the exact ( )i jP u→ . Figure 4.5 compares the neutron spectra of four 

typical energy ranges with U-238 resonances. The results calculated by approximate 

( )i jP u→
  and exact ( )i jP u→  agree well with each other. 
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Figure 4.5 Spectra of exact and approximate ( )i jP u→  for a non-uniform fuel temperature 

case 

Based on the previous discussion, we are ready to replace ( )i jP u→  in Equation (4.3) 

with , which leads to the following expression for the flux 

,
,

,
, ,

( )1 ( )
( ) ( ) ( )

1 ( ) ( )

i i

i i

T C
i jesc i

i j i kT C
j F k Mesc i t j

P uP u
u Q u P u

P u u
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→
∈ ∈

−
≈ +

− Σ∑ ∑
 

(4.7) 

By defining 
,

,
,
, ,

( )( )
( ) ( )

1 ( ) ( )

i i

i i

T C
i jt i

i jT C
j Fesc i t j

P uu
Q u Q u

P u u
→

∈

Σ
=

− Σ∑  and replacing ( )i k
k M

P u→
∈
∑  with 

, ( )esc iP u , 

, ,
,

( )( ) 1 ( ) ( )
( )

i
i esc i esc i

t i

Q uu P u P u
u

φ = − +  Σ  
(4.8) 



59 
 

Using the rational form of ,
,

, ,

( )
( )

( ) ( )
e i

esc i
t i e i

u
P u

u u
Σ

=
Σ + Σ

 where , ( )e i uΣ  should be energy 

dependent, the equation can be transformed into a form similar to the conventional 

equivalence theory 

,

, ,

( ) ( )
( )

( ) ( )
i e i

i
t i e i

Q u u
u

u u
φ

+ Σ
=
Σ + Σ  

(4.9) 

Therefore, the quasi-1D slowing-down equation is defined as 

, , ,( ) ( ) ( ) ( ) ( )t i e i i i e iu u u Q u uφ Σ + Σ = + Σ   (4.10) 

This equation is actually in a 0-D form but 1-D information is embedded in ( )iQ u  and

, ( )e i uΣ . Determination of ( )iQ u includes two quantities, ( )jQ u  and , ( )i iT C
i jP u→ . Evaluation 

of ( )jQ u is similar to the conventional slowing-down calculation. A detailed description 

for an efficient evaluation method for ( )jQ u  has been described in Chapter 2. A practical 

energy mesh scheme based on the problem-dependent mesh is described in Appendix B. 

The first flight collision probability is evaluated using the Carlvik method (see Appendix 

A) for the 1-D cylindrical geometry. A table of i jP→ versus total cross section is 

established before the resonance calculation for , ( )i iT C
i jP u→  interpolation. Usually, 1000-

2000 cross section points are sufficient to generate an accurate i jP→ table so the 

additional computing time is negligible.  

In addition to ( )iQ u , , ( )e i uΣ is determined by rigorously evaluating , ( )esc iP u  using the 

realistic fuel temperature profile and material compositions in the 1-D cylindrical 

geometry (see Appendix A). To incorporate the inter-pin shielding effect into , ( )e i uΣ , a 

straightforward approach could be to evaluate the equivalence cross section with a 1-D 

cylindrical pin in an infinite coolant and then modify it using the realistic Dancoff effect 

from an ESSM calculation. Specifically, the CE equivalence cross section for an infinite 

coolant is modified as 
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, ,inf
, , 1inf

, ,

( ) ( ) ( )
ESSM
e F g

e i e i g g
e F g

u u u u u−

S
S ≈ S < <

S
 (4.11) 

In this equation, inf
, ( )e i uΣ is the equivalence cross section of subregion i evaluated using 

Carlvik method in 1-D cylindrical geometry with infinite coolant. , ,
ESSM
e F gS is the realistic 

equivalence cross section of the single fuel region obtained from ESSM. inf
, ,e F gΣ is the 

equivalence cross section of the single fuel region in 1-D cylindrical geometry with 

infinite coolant, calculated by the group-wise total cross section. To compute inf
, ,e F gΣ , a 

few iterations are required between calculation of Carlvik equivalence cross section and 

interpolation from the RI tables. An alternative approach of using Equation (4.11) could 

be to compute the ratio of the fuel escape probability in the realistic lattice to the one in 

the infinite coolant, i.e., 

( )
( )

, , , , , ,, ,
, inf inf inf inf

, , , , , , , ,

ESSM ESSM ESSMESSM
e F g t F g e F ge F g

F g
e F g e F g t F g e F g

P
R

P
SS  + S

= =
SS  + S

 (4.12) 

This ratio is in turn used to modify inf
, ( )esc iP u  to obtain , ( )esc iP u  and thus , ( )e i uΣ . Both 

approaches assume that the Dancoff effect is not dependent on energy so that the group-

averaged factors are used for every point within each energy group. Although the second 

approach is conventionally used in Ref. [44,45], numerical experiments give slightly 

better results when the equivalence cross section is directly modified as in Equation 

(4.11). Therefore, the first approach is chosen for the quasi-1D model.  

4.3 Description of the Method 

The basic idea of the correction based self-shielding method for annular fuel regions is 

to compute the shielded cross sections by ESSM iteration with single mesh fuel region, 

and correct for the multi-region effects by using factors obtained from the quasi-1D 

slowing-down calculation.. The resonance interference and non-uniform temperature 

effects are also modeled in a similar way. The method is summarized as follows: 
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Step 1. Perform ESSM using a volume-averaged fuel temperature T and volume-

averaged material composition C  for a single fuel region neglecting resonance 

interference. This step generates a set of shielded cross sections intf
, , , ( , )non

iso x g F T Cs − for 

isotope iso, energy group g and reaction channel x. These baseline cross sections 

incorporate the inter-pin shielding effect (Dancoff effect) but not intra-pin effects or 

resonance interference. 

Step 2. Resolve the intra-pin and resonance interference effects by solving the quasi-1D 

slowing-down equation, Equation (4.10) for two sets of problems: 

a. For the fuel mixture for each subregion i of the fuel and realistic temperature 

distribution iT and material composition iC , compute shielded cross sections 

intf
, , , ( , )iso x g i i iT Cs ; 

b. For each isolated isotope with single fuel region using uniform temperature T and 

material composition C  (conditions similar to Step 1), compute shielded cross 

sections intf
, , , ( , )non

iso x g F T Cs −
 . 

In Step 2, substep a accounts for the intra-pin effects and resonance interference, while 

substep b performs a baseline calculation. The global Dancoff effect has been 

incorporated into these quasi-1D slowing-down calculations via the approximation of 

Equation (4.11). To minimize the approximation error, instead of using the effective 

cross sections from substep a as the final results, correction factors are computed by 

comparing the effective cross sections of substeps a and b, and are used to correct the 

baseline results from Step 1. Therefore, the resultant shielded cross section is given as 

intf
, , ,intf

, , , , , , intf
, , ,

( , )
( , ) ( , )

( , )
iso x g i i ifinal non

iso x g i i i iso x g F non
iso x g F

T C
T C T C

T C
s

s s
s

−
−=





 (4.13) 

Applying Equation (4.13) to the 1-D cross section such as absorption, fission, total 

scattering etc., is straightforward. Since the 2-D multigroup scattering cross sections are 

processed with an infinitely dilute flux spectrum, those data also require shielding 

calculation. Assuming that the original secondary energy distribution of scattering is 
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preserved in spite of the self-shielding effect, the scattering matrices can be normalized 

by the shielded 1-D scattering cross section, 

, ,0,
, , , ' , , , '

, ,0,

shielded
iso s gshielded unshielded

iso s l g g iso s l g gunshielded
iso s g

s
s s

s−> −>=  (4.14) 

where  , , , 'iso s l g gs −> is the lth-order Legendre moment of scattering cross section from 

group g to g’ and , ,0,iso s gs is the zero-order scattering cross section of group g. We note 

that the matrix elements for the higher order ( 1P≥ ) moments are multiplied by the same 

factors as the zero-order terms, so that changes to the angular distribution due to self-

shielding are treated approximately. 

The additional computation cost of the correction method compared to the 

conventional ESSM is due to solving the quasi-1D slowing-down equation. Substep a in 

Step 2 requires a single slowing-down sweep for all the subregions of the fuel, while 

substep b requires independent slowing-down sweeps for every resonance isotope of the 

fuel to exclude the interference effect. The computing condition of substep b is similar to 

Step 1, except that the quasi-1D slowing-down model is used rather than the ESSM 

model. Therefore, by analogy with the heterogeneous RI tables for ESSM, a second set of 

heterogeneous RI tables is pre-computed using the quasi-1D slowing-down model and 

also parameterized by the background cross section. With the second set of RI tables, the 

slowing-down calculation of substep b in Step 2 can be substituted by table interpolation.  

Surprisingly, another benefit is automatically gained when the second set of 

heterogeneous RI tables is used in the calculation of substep b. As discussed earlier, the 

ESSM calculation in Step 1 introduces a bias on , ,
ESSM
e F gS and hence a bias on the shielded 

cross section intf
, , , ( , )non

iso x g F T Cs −  because of combining all the resonance isotopes as a whole 

absorber. However, since the biased , ,
ESSM
e F gS is also used in substep b for interpolation of 

intf
, , , ( , )non

iso x g F T Cs −
 , the error introduced by this simplification is cancelled out to some extent 

because intf
, , , ( , )non

iso x g F T Cs −  and intf
, , , ( , )non

iso x g F T Cs −
  are both monotonically increasing functions 

of the background cross section.  
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 Chapter 5

Numerical Verifications 

In order to test the proposed resonance method, a set of benchmarking problems is 

created. The verification code and cross section data are briefly discussed. The results of 

several resonance self-shielding methods are compared against Monte Carlo reference 

solutions. Azimuthal dependent self-shielding is also investigated based on a 

straightforward extension of these resonance methods.    

5.1 Benchmarking Problem Set for Resonance Self-shielding 

This benchmarking problem set consists of three groups of problems. The first group 

includes ten 2-D uniform infinite lattice problems of pin cell configurations, which are 

chosen to test the capability of the resonance method for treating distributed self-

shielding, resonance interference and non-uniform temperature effect. The second group 

of problems has five 2-D non-uniform lattice problems with 5 by 5 pin cell configurations. 

The pin cells are chosen to be non-uniform in order to test the heterogeneous effect on 

resonance calculation. UO2 with mixed abundances, MOX, control rod, water hole and 

gadolinium bearing fuels are introduced into this group of problems. In the third group, 

two assembly problems are performed to confirm the accuracy of the new method for 

realistic reactor core applications. Table 5-1 summarizes the basic information of the 

problem set. 

Table 5-1 Information of the benchmarking problem set 

Group 1 Uniform lattice of pin cell 
# Case ID Description 
1 UO2_600K 5% UO2 pin cell with uniform fuel Temp. of 600K 
2 UO2_900K 5% UO2 pin cell with uniform fuel Temp. of 900K 
3 UO2_1200K 5% UO2 pin cell with uniform fuel Temp. of 1200K 
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4 UO2_para900K 5% UO2 pin cell with parabolic fuel Temp. of Ave. 900K 
5 UO2_para1200K 5% UO2 pin cell with parabolic fuel Temp. of Ave. 1200K 
6 UO2_3% 3% UO2 pin cell 
7 UO2_4% 4% UO2 pin cell 
8 UO2_Gd Gadolinium integrated UO2 fuel 
9 MOX_16% MOX fuel with 16% Plutonium 
10 UO2_Burn Deplete UO2 to 30GWd/tU 

Group 2  Non-uniform lattice problems (5×5 pin cells) 
# Case ID Description 
11 UO2_water UO2 pin cells with water hole in center 
12 UO2_AIC UO2 pin cells with AgInCd control rod in center 
13 UO2_UO2+Gd UO2 pin cells with center pin of Gadolinium integrated 
14 UO2_3%+5% Mixed pin cells of 3% and 5% UO2 
15 UO2_MOX Mixed pin cells of UO2 and MOX (16%) fuels 

Group 3   Fuel assembly problems 
# Case ID Description 
16 UO2_Assembly Typical 17×17 type UO2 assembly with water gap 
17 MOX_Assembly 17×17 zoned MOX assembly (4.5%/3.0%/2.5%) with water gap 

 

The geometry parameters of the fuel pin are identical for different fuel types, which 

are adapted from the CASL AMA benchmark problem [50]. Basic geometry information 

is summarized in Table 5-2. The material compositions are given in Table 5-3. If not 

specified, all the temperatures of materials are 600K. 

Table 5-2 Geometry description 

Fuel Pin 
Pellet Radius 0.4096 cm 
Inner Clad Radius 0.418 cm 
Outer Clad Radius 0.475 cm 
Pitch 1.26 cm 
Control Rod 
Poison Radius 0.382 cm 
Inner Clad Radius 0.386 cm 
Outer Clad Radius 0.484 cm 
Assembly water gap 0.04cm 
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Table 5-3 Material compositions 

Material Isotope Atomic number 
density (/barn/cm) 

UO2 (5%) 
92235 1.23756E-03 
92238 2.32172E-02 
8016 4.89096E-02 

UO2 (4%) 
92235 0.97819E-03 
92238 2.34765E-02 
8016 4.89096E-02 

UO2 (3%) 
92235 0.73364E-03 
92238 2.37211E-02 
 8016 4.89096E-02 

Gap  8016 2.68714E-05 

Cladding 

40090 2.18865E-02 
40091 4.77292E-03 
40092 7.29551E-03 
40094 7.39335E-03 
40096 1.19110E-03 

Moderator (600K)  8016 2.20729E-02 
 1001 4.41459E-02 

Gadolinia UO2 fuel 
(5% Gd) 

92234 3.18096E-06 
92235 3.90500E-04 
92236 1.79300E-06 
92238 2.10299E-02 
64152 3.35960E-06 
64154 3.66190E-05 
64155 2.48606E-04 
64156 3.43849E-04 
64157 2.62884E-04 
64158 4.17255E-04 
64160 3.67198E-04 
  8016 4.53705E-02 

MOX (16% Pu) 

92235 3.88790E-05 
92238 1.91591E-02 
 8016 4.63302E-02 
94238 8.39859E-05 
94239 2.17061E-03 
94240 9.91540E-04 
94241 3.67320E-04 
94242 2.51738E-04 
95241 1.06640E-04 

AIC control rod 47107 2.36159E-02 
47109 2.19403E-02 
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48110 3.41250E-04 
48111 3.49720E-04 
48112 6.59276E-04 
48113 3.33873E-04 
48114 7.84957E-04 
49113 3.44262E-04 
49115 7.68050E-03 

Cladding of control 
rod 

 6000 3.20895E-04 
14028 1.58197E-03 
14029 8.03653E-05 
14030 5.30394E-05 
15031 6.99938E-05 
24050 7.64915E-04 
24052 1.47506E-02 
24053 1.67260E-03 
24054 4.16346E-04 
25055 1.75387E-03 
26054 3.44776E-03 
26056 5.41225E-02 
26057 1.24992E-03 
26058 1.66342E-04 
28058 5.30854E-03 
28060 2.04484E-03 
28061 8.88879E-05 
28062 2.83413E-04 
28064 7.21770E-05 

MOX (2.5%) 

92235 4.58000E-05 
92238 2.25591E-02 
94238 1.22581E-05 
94239 3.16760E-04 
94240 1.44698E-04 
94241 5.35982E-05 
94242 3.67355E-05 
95241 1.55637E-05 
 8016 4.63690E-02 

MOX (3.0%) 

92235 4.55651E-05 
92238 2.24434E-02 
94238 1.47097E-05 
94239 3.80112E-04 
94240 1.73637E-04 
94241 6.43178E-05 
94242 4.40826E-05 
95241 1.86765E-05 
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 8016 4.63690E-02 

MOX (4.5%) 

92235 4.48605E-05 
92238 2.20964E-02 
94238 2.20646E-05 
94239 5.70168E-04 
94240 2.60456E-04 
94241 9.64768E-05 
94242 6.61238E-05 
95241 2.80147E-05 
 8016 4.63690E-02 

 

The fuel rod is subdivided into 10 equal-volume rings for all the cases. The pin cell 

problems in Group 1 are computed with reflective boundaries to form an infinite uniform 

lattice. The geometrical configurations of problems in Group 2 are shown in Figure 5.1 

and Figure 5.2. For Cases 11-13, the center pin materials are varied. Cases 14 and 15 are 

checkerboard layouts with mixed fuel types. In Group 3, two assembly problems are 

tested as shown in Figure 5.3: (1) a typical Westinghouse 17×17 type fuel assembly with 

fresh 5% UO2 and (2) the same assembly with zoned MOX fuel. 

 

                  

Figure 5.1 Pin layout of Case 11, 12 and 13 

 

1/8 lattice 

Blue:  UO2 (5%) for Case 11-13 
 

Red: 
Case 11:   Empty tube (water hole)  
Case 12:   AIC control rod 
Case 13:   Gd integrated UO2 fuel 
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Figure 5.2 Pin layout of Case 14 and 15 

 

            

Figure 5.3 Configurations of UO2 and MOX Assembly (1/8 assembly) 

5.2 Computing Codes and Cross Section Libraries 

The proposed resonance self-shielding method has been implemented and tested in the 

direct whole core neutron transport code DeCART [51]. In comparison to the 

conventional 2-step (transport/diffusion) methodology where the first step is the 

generation of homogenized few group cross sections with a transport method and the 

second step is a global calculation with a diffusion method, DeCART performs a direct 

transport calculation (2-D planar transport plus 1-D axial diffusion) using the realistic 

geometry, material composition and temperature profile of the reactor configuration and 

the number of energy groups may be as large as the number used for the lattice 

Case 14 
Blue:        UO2 (5%) 
Yellow:    UO2 (3%) 
 
Case 15 
Blue:        MOX (16% Pu) 
Yellow:    UO2 (5%) 
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calculation in the 2-step transport/diffusion method. The resonance self-shielding 

calculations are performed for every 2-D plane and the multigroup self-shielded cross 

sections are directly used in the whole core transport calculation without homogenization. 

Both the whole core transport calculation and the fixed source resonance calculations are 

performed with MOC.  

In the original version, DeCART utilized the subgroup method for resonance 

calculation. In order to incorporate the new self-shielding method, two modules are added 

to the DeCART code system, i.e., ESSM and the correction factor generator. The ESSM 

is implemented in addition to the subgroup method to resolve the inter-pin shielding 

effect (Step 1 in Section 4.3). The correction factor generator incorporates the quasi-1D 

slowing-down solver to produce the correction factors accounting for the intra-pin self-

shielding details and resonance interference (Step 2 in Section 4.3). The collision 

probability kernel is embedded in the slowing-down solver to provide the CE dependent 

equivalence cross sections. Once the ESSM iteration is converged, the module passes the 

group-wise equivalence cross sections to the correction factor generator for Dancoff 

adjustment. The correction factors are then fed to the ESSM module to correct the self-

shielded cross sections. In addition, the ESSM module is able to work in standalone mode 

identical to conventional ESSM.  

Figure 5.4 depicts the data flow of the verification code system. The CE library is 

taken from SCALE 6.0 package [52] and the multigroup library is provided by Oak 

Ridge National Laboratory for use in the CASL project. They are both processed by 

AMPX [53] from the raw nuclear data of ENDF/B-VII.0 [54]. The CE data are employed 

when solving the slowing-down equations for the calculation of correction factors. The 

multigroup library structure consists of a total of 56 energy groups, in which 25 groups 

are defined as resonance groups (0.6eV-25keV). It has been mentioned that two sets of 

heterogeneous RI tables are generated. RI table Set 1 is processed by SCALE-CENTRM 

and AMPX-IRFfactor modules by performing the 2-D heterogeneous slowing-down 

calculation for the resonance isotopes. This RI table set is loaded into the multigroup 

library for ESSM iteration. RI table Set 2 is generated by performing the quasi-1D 

slowing-down calculation and is used for efficient interpolation of the shielded cross 

section in Step 2-b of Section 4.3. The subgroup parameters are also provided in the 56-
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group library, which are generated by the physical probability table approach and are 

consistent with RI table Set 1.  

 
Figure 5.4 Data flow of the resonance self-shielding model 

The MCNP5 code [55] is used to generate reference shielded cross sections for 

comparison with the new method. In order to produce CE libraries for MCNP use, a 

series of NJOY [56] modules are run to generate the ACE format data for every specific 

temperature appearing in the test problems. All the ACE data are prepared from 

ENDF/B-VII.0, which is the same source as the verification code system.  

5.3 Results and Discussions 

The benchmarking problems presented in Section 5.1 are run by the subgroup method, 

ESSM and ESSM-X of DeCART. Here the term ‘ESSM’ refers to the conventional 

embedded self-shielding method and ESSM-X refers to the proposed new method. The 

same spatial discretization and MOC ray options (4 polar angles, 24 azimuthal angles in 

90o and .01cm ray spacing) are applied to all the test problems. The ESSM and the 

subgroup method use Bondarenko iteration (see Section 3.4.1) for treatment of resonance 



71 
 

interference. The weight adjustment for non-uniform temperature distribution has also 

been implemented in the subgroup method (see Section 3.4.3). The MCNP reference 

solution is calculated with 600 active cycles and 50,000 histories/(cycle⋅pin cell) to make 

a total of 30 million neutron histories per pin cell. As a result, the standard deviation of 

reaction rates for every reaction channel and every resonance energy group is below 1%, 

and the standard deviations of reaction rates over the resonance energy range (0.625eV-

25keV) for important resonance isotopes (U-235, U-238, Pu-239 and Pu-240) are on the 

order of 0.02%. The results of the three groups of benchmarking problems are discussed 

in the following subsections, respectively. 

5.3.1 Uniform Infinite Lattice 

Of the ten pin cell problems (see Section 5.1), the first nine are steady state eigenvalue 

problems developed to verify the accuracy of the resonance self-shielding method for 

infinite fuel lattice. Case 10 investigates a depletion case to demonstrate how the 

distributed self-shielding model could affect the radially dependent isotopic 

concentrations during fuel burnup. First we verify the effective cross section, which is the 

direct product from the resonance calculation. Table 5-4 compares the radially dependent 

shielded cross sections for U-238 in Group 34 (6.5eV-6.88eV) for the three methods with 

MCNP. Since this is the major resonance of U-238, strong spatial self-shielding is seen 

from the reference solution, e.g., the shielded cross section for the outermost ring is 

almost three times that for the innermost ring for Case 1. It is important to note that the 

shielded cross section of Group 34 is not monotonically increasing from the fuel center to 

the surface for the uniform temperature cases. The values become a bit larger towards the 

center for the innermost four or five rings. This can be explained by comparing the CE 

fluxes of every fuel ring, in which the fluxes of the inner rings are relatively flatter about 

energy than those of the middle rings due to the strong spatial shielding. The relative 

errors show that ESSM is unable to correctly produce the spatially shielded cross sections. 

For all the five cases, it underestimates the cross sections of the surface ring and 

overestimates those of the inner rings. Compared to ESSM, the subgroup method 

performs better for the surface ring, but still, has large discrepancies for the inner rings. 

The shielded cross sections generated by ESSM-X compare favorably with MCNP results, 
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showing an order of magnitude smaller relative error compared to the ESSM and 

subgroup method. The agreement of non-uniform temperature cases is on the same order 

as the agreement with the uniform temperature cases, indicating the effectiveness of the 

collision probability approximation in Equation (4.4). The agreement of other resonance 

groups is similar to Group 34 and thus the results are not repeated. 

Table 5-4 Comparison of spatially shielded U-238 absorption cross sections for Group 34 
(6.5eV-6.88eV) with MCNP showing effect of radial fuel regions 

Case  Ring number 
1 2 3 4 5 6 7 8 9 10 

1 
 (UO2_600K) 

Ref. XS  415.1 407.3 390.2 380.5 376.0 374.0 386.0 423.0 541.3 1206.9 
Subgroup 28.4 30.2 34.9 37.0 36.9 35.1 27.9 14.9 -4.5 -16.4 

ESSM 46.7 50.9 57.7 61.7 64.8 69.8 67.7 57.3 29.2 -34.0 
ESSM-X -2.9 -4.1 -2.6 -2.2 -2.0 -0.9 -0.4 -0.2 0.2 -1.9 

2 
 (UO2_900K) 

Ref. XS 688.9 662.8 634.0 606.2 578.1 565.9 566.8 610.9 769.4 1453.5 
Subgroup 22.6 27.0 32.0 36.6 40.7 39.7 34.2 20.2 -0.4 -10.2 

ESSM 30.2 35.6 42.3 49.5 56.5 60.7 64.8 56.4 27.8 -25.0 
ESSM-X -3.0 -3.8 -4.0 -3.9 -2.8 -2.6 -1.4 -0.9 -0.1 -1.7 

3 
 (UO2_1200K) 

Ref. XS 1011.1 980.3 933.2 877.8 827.9 785.9 770.0 808.1 986.4 1616.6 
Subgroup 15.3 18.7 24.2 30.7 35.8 38.2 34.2 21.6 1.9 -6.0 

ESSM 15.4 19.0 25.2 33.5 41.6 49.0 53.9 49.9 25.1 -17.9 
ESSM-X -3.3 -4.5 -4.8 -4.3 -3.9 -3.0 -2.1 -0.9 0.2 -1.4 

4 
(UO2_para900K) 

Ref. XS 892.2 791.8 712.2 632.5 577.6 538.0 513.8 519.9 612.4 1250.8 
Subgroup -19.3 -5.9 9.2 28.2 43.0 49.0 48.7 37.1 13.9 -10.6 

ESSM 27.4 36.3 44.3 54.1 61.0 64.9 62.6 53.1 27.0 -34.3 
ESSM-X -2.9 -2.3 -2.9 -1.5 -1.6 -1.3 0.0 0.7 0.7 -2.5 

5 
(UO2_para1200K) 

Ref. XS 1200.9 1092.8 987.6 882.8 804.6 740.4 701.6 706.8 833.5 1481.8 
Subgroup -8.4 2.1 14.0 27.7 38.5 46.4 46.7 37.3 17.3 -4.8 

ESSM 5.1 13.5 23.7 36.4 46.8 54.4 58.2 52.3 26.5 -24.9 
ESSM-X -5.9 -4.9 -4.3 -3.0 -3.0 -2.5 -1.8 -0.8 -0.1 -2.1 

6 
 (UO2_3%) 

Ref. XS 421.5 401.9 391.7 381.4 375.7 376.1 386.1 421.7 538.0 1202.5 
Subgroup 26.3 31.7 34.2 36.5 36.8 34.2 27.7 15.0 -4.6 -16.6 

ESSM 42.2 50.4 56.8 61.2 64.3 67.4 67.0 57.3 29.3 -34.0 
ESSM-X -3.9 -2.5 -2.7 -2.3 -1.9 -1.6 -0.9 -0.6 -0.2 -2.0 

7 
 (UO2_4%) 

Ref. XS 415.0 405.2 391.5 382.9 377.8 373.2 386.7 423.3 538.5 1209.0 
Subgroup 28.4 30.8 34.4 36.1 36.1 35.3 27.6 14.7 -4.4 -16.9 

ESSM 45.5 50.4 57.3 60.6 63.6 69.4 67.0 56.9 29.5 -34.2 
ESSM-X -2.7 -3.4 -2.8 -2.7 -2.5 -0.7 -0.8 -0.6 0.2 -2.3 

8 
 (UO2_Gd) 

Ref. XS 402.5 389.5 379.7 371.4 375.6 375.4 393.4 434.8 567.3 1237.1 
Subgroup 31.2 34.8 37.2 38.7 35.3 32.9 24.3 11.7 -6.6 -16.4 

ESSM 52.9 57.9 62.1 66.6 67.3 70.9 67.4 55.0 24.5 -34.8 
ESSM-X -3.6 -2.9 -2.4 -1.5 -2.7 -1.0 -1.0 -0.2 0.0 -2.3 

9 
 (MOX_16%) 

Ref. XS 389.5 388.8 377.9 375.1 375.1 379.9 403.5 450.8 600.1 1272.3 
Subgroup 37.6 37.0 39.7 39.1 37.1 32.9 23.0 10.1 -8.1 -16.2 

ESSM 62.4 63.6 69.7 71.2 72.7 74.2 65.4 51.7 20.0 -35.1 
ESSM-X -3.5 -5.3 -3.9 -3.6 -2.8 -1.5 -1.5 -0.3 -0.4 -2.4 

The MCNP reference cross sections are shown in barns and the entries for the other methods are the 
relative errors in %. 

Table 5-5 shows the spatially dependent absorption cross sections of U-235 for Group 

22 (116.0eV-117.5eV) where the resonance interference due to U-238 is significant. 
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Because the spectra are dominated by U-238 absorption resonances, the usual shielding 

behavior where the effective cross section tends to the peak at the fuel surface is not seen 

in this group for U-235. ESSM and the subgroup method using Bondarenko iteration fail 

to model the resonance interference, so large discrepancies are observed across all the 

rings of the fuel rod. It is clear from Table 5-5 that errors of shielded cross sections are 

reduced to less than 1% for most subregions with ESSM-X, indicating the success of 

employing CE cross sections explicitly for interference correction. 

Table 5-5 Comparison of spatially dependent U-235 absorption cross sections for Group 
22 (116.0eV-117.5eV) with MCNP showing effect of resonance interference 

Case  Ring number 
1 2 3 4 5 6 7 8 9 10 

1 
 (UO2_600K) 

Ref. XS 42.3 42.0 41.6 41.2 40.7 40.0 39.2 37.9 36.1 32.6 
Subgroup -49.3 -49.0 -48.5 -48.0 -47.3 -46.5 -45.3 -43.5 -40.6 -34.0 

ESSM -49.3 -49.0 -48.5 -48.0 -47.3 -46.4 -45.3 -43.4 -40.5 -34.2 
ESSM-X -0.1 -0.2 -0.1 0.0 0.0 0.0 -0.2 -0.3 -0.9 -2.1 

2 
 (UO2_900K) 

Ref. XS 41.5 41.3 40.9 40.4 39.8 39.2 38.2 36.7 34.5 30.9 
Subgroup -46.8 -46.5 -46.0 -45.4 -44.7 -43.9 -42.4 -40.0 -36.3 -28.5 

ESSM -46.9 -46.6 -46.1 -45.4 -44.7 -43.8 -42.2 -39.9 -36.1 -28.6 
ESSM-X -0.5 -0.5 -0.3 -0.1 -0.1 -0.4 -0.4 -0.5 -0.7 -1.5 

3 
 (UO2_1200K) 

Ref. XS 38.5 38.4 38.3 37.9 37.4 36.7 35.8 34.3 32.3 29.1 
Subgroup -41.1 -41.1 -41.0 -40.4 -39.6 -38.6 -37.0 -34.4 -30.2 -22.4 

ESSM -41.3 -41.2 -41.1 -40.5 -39.6 -38.5 -36.8 -34.1 -29.9 -22.3 
ESSM-X 0.5 0.3 -0.1 0.1 0.2 0.0 0.0 0.0 -0.1 -0.7 

4 
(UO2_para900K) 

Ref. XS 39.4 39.5 39.6 39.6 39.4 39.0 38.1 36.9 35.0 31.4 
Subgroup -42.6 -43.1 -43.5 -43.9 -43.9 -43.6 -42.7 -41.1 -38.1 -31.1 

ESSM -42.8 -43.2 -43.6 -43.9 -43.8 -43.5 -42.5 -41.0 -38.1 -31.4 
ESSM-X 0.5 0.5 0.4 0.2 0.2 0.1 0.3 0.2 0.1 -0.4 

5 
(UO2_para1200K) 

Ref. XS 36.8 37.1 37.2 37.3 37.1 36.9 36.2 35.1 33.1 29.7 
Subgroup -36.9 -37.8 -38.5 -39.0 -39.0 -39.0 -38.2 -36.5 -33.0 -25.4 

ESSM -37.3 -38.1 -38.6 -39.1 -39.0 -38.8 -38.0 -36.3 -32.9 -25.6 
ESSM-X 0.8 0.6 0.7 0.5 0.8 0.5 0.4 0.4 0.5 0.0 

6 
 (UO2_3%) 

Ref. XS 42.5 42.1 41.8 41.5 41.0 40.4 39.6 38.3 36.4 32.8 
Subgroup -49.6 -49.2 -48.8 -48.4 -47.8 -46.9 -45.9 -44.1 -41.0 -34.3 

ESSM -49.5 -49.0 -48.7 -48.3 -47.7 -46.8 -45.7 -44.0 -41.0 -34.5 
ESSM-X -0.1 0.1 0.0 -0.2 -0.3 -0.3 -0.6 -0.8 -1.2 -1.9 

7 
 (UO2_4%) 

Ref. XS 42.6 42.2 41.9 41.5 41.0 40.4 39.5 38.2 36.3 32.7 
Subgroup -49.6 -49.2 -48.9 -48.4 -47.8 -46.9 -45.8 -43.9 -40.8 -34.1 

ESSM -49.6 -49.1 -48.8 -48.3 -47.7 -46.8 -45.6 -43.8 -40.8 -34.3 
ESSM-X -0.5 -0.3 -0.4 -0.4 -0.5 -0.6 -0.7 -0.7 -1.1 -2.0 

8 
 (UO2_Gd) 

Ref. XS 41.7 41.6 41.2 40.9 40.3 39.7 38.8 37.6 35.7 32.4 
Subgroup -48.7 -48.6 -48.1 -47.6 -46.9 -46.0 -44.7 -42.9 -39.8 -33.6 

ESSM -48.5 -48.4 -47.8 -47.4 -46.7 -45.8 -44.6 -42.8 -39.8 -33.7 
ESSM-X 0.1 -0.5 -0.3 -0.4 -0.4 -0.5 -0.6 -0.9 -1.1 -2.2 

9 
 (MOX_16%) 

Ref. XS 41.1 40.7 40.3 39.9 39.3 38.6 37.6 36.4 34.5 31.3 
Subgroup -48.4 -48.0 -47.4 -46.9 -46.2 -45.2 -43.9 -42.1 -39.2 -33.3 

ESSM -47.6 -47.1 -46.5 -46.0 -45.2 -44.2 -42.7 -40.8 -37.6 -31.3 
ESSM-X -0.4 -0.4 -0.1 -0.3 -0.2 -0.3 -0.3 -0.6 -1.0 -1.9 

The MCNP reference cross sections are shown in barns and the entries for the other methods are the 
relative errors in %. 
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Multiplying the effective cross sections by group-wise fluxes gives the reaction rate 

per atom in different rings of the fuel. In order to rule out the flux discrepancies between 

MCNP and DeCART due to the sources other than resonance calculation, instead of 

directly using the MCNP reaction rates as reference solution, the effective cross sections 

tallied from MCNP are fed to DeCART to calculate the reference reaction rates. To 

discuss the distributed self-shielding and resonance interference effect separately, two 

types of figures are created. The first type of figure depicts the radially dependent 

reaction rates for a specific energy group or integrated over the entire resonance energy 

range (e.g., 0.625eV to 25keV). This type of figure is best for the dominant isotopes such 

as U-238. The other type plots the energy dependent reaction rates that are spatially 

integrated over all fuel annuli. This type of figure best illustrates the resonance 

interference effect among resonance isotopes, especially for the non-dominant resonance 

isotopes whose spectra are strongly disturbed by the dominant isotopes.  

Figure 5.5-Figure 5.8 show the radially dependent absorption rates of U-238 for a few 

representative cases, namely, Cases 2, 4, 8 and 9. In these figures, two resonance groups 

are considered, Group 34 (6.5eV-6.88eV) and Group 22 (116.0eV-117.5eV), as well as a 

single group over the entire resonance energy range (0.625eV-25keV). The reference 

reaction rates are plotted on the upper-left graph of each figure and the rest graphs show 

the relative errors (%) of the three methods with respect to the reference results for Group 

34, 22 and the single group over entire resonance energy range. For ESSM, a 15%-25% 

underestimation of the total resonance absorption rate in the outermost ring is observed 

for all four cases. As plutonium buildup tends to peak at the fuel surface, this bias could 

significantly undermine the accuracy of a multi-region depletion calculation. The errors 

in the reaction rates with the subgroup method are still significant for an individual group, 

say Group 34, but tend to be smeared out for the single group over the entire resonance 

range. It is also seen that the discrepancies of Case 4 with the non-uniform temperature 

profile are somewhat larger than Case 2 with the uniform temperature, indicative of the 

lack of a theoretical foundation for treating a non-uniform temperature profile with the 

subgroup method. Of the three methods, ESSM-X produces the best spatial distribution 

of the reaction rates, with the largest difference of the entire energy range for any of the 

cases less than 1.3%. 
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Figure 5.5 Comparison of radially dependent U-238 absorption rate for Case 2 

(UO2_900K).  

 
Figure 5.6 Comparison of radially dependent U-238 absorption rate for Case 4 

(UO2_para900K) 
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Figure 5.7 Comparison of radially dependent U-238 absorption rate for Case 8 (UO2_Gd) 

 
Figure 5.8 Comparison of radially dependent U-238 absorption rate for Case 9 

(MOX_16%) 
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Next, the resonance interference effect is investigated by comparing the energy 

dependent reaction rates of the three resonance methods with the reference solution. In 

Figure 5.9-Figure 5.13, the reaction rates of major resonance isotopes for Cases 1, 8 and 

9 are compared. On the upper side of each figure shows the reference effective cross 

section from MCNP to indicate the importance of energy groups where large reaction rate 

errors occur. On the lower side shows the relative errors of corresponding reaction rates 

using three resonance methods with respect to the reference results from DeCART 

(MCNP XS). Take Figure 5.9 for example. Both ESSM and the subgroup method treat 

resonance interference by Bondarenko iteration, which is unable to produce the correct 

reaction rates for U-235 at the energy ranges where there are large resonances of U-238 

(e.g., 6.67eV, 21eV and so on). Since the overlap of the resonances between U-235 and 

U-238 varies in different energy ranges, the errors of ESSM and the subgroup method 

can be positive or negative. For all the test cases, ESSM-X significantly improves the 

energy dependent reaction rates of major resonance isotopes. The resonances of different 

resonance isotopes interact with each other, resulting in greater relative errors on the 

isotopes with small densities. In addition to U-235, the absorption rates of Gadolinium 

isotopes in Case 8 and Plutonium isotopes in Case 9 are all improved by rigorously 

treating the resonance interference by ESSM-X.  

 

    
Figure 5.9 Comparison of energy dependent absorption rate of U-235 and U-238 for Case 

1 (UO2-600K) 
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Figure 5.10 Comparison of energy dependent absorption rate of U-235 and U-238 for 

Case 8 (UO2-Gd) 

    
Figure 5.11 Comparison of energy dependent absorption rate of Gd-155 and Gd-157 for 

Case 8 (UO2-Gd) 
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Figure 5.12 Comparison of energy dependent absorption rate of U-235 and U-238 for 

Case 9 (MOX-16%) 

   
Figure 5.13 Comparison of energy dependent absorption rate of Pu-239 and Pu-240 for 

Case 9 (MOX-16%) 

Table 5-6 compares the effective multiplication factors and the reaction rates of 

resonance isotopes over the entire resonance energy range (0.625eV-25keV). The 

reference results are still obtained by running DeCART with MCNP tallied cross sections. 

It is not surprising that for most cases ESSM and the subgroup method show larger 

discrepancies for the U-238 absorption rates, consistent with earlier results with spatial 
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shielding. Although very large differences were seen in the analysis of U-235 group-wise 

reaction rates, the total absorption and fission rates over the entire resonance energy 

range are reasonable for ESSM and subgroup method, probably a consequence of error 

cancellation. In Cases 8 and 9 where the resonance interference effect becomes 

complicated due to the increased number of resonance isotopes, ESSM-X substantially 

reduces the error of integrated reaction rates, as compared to ESSM and the subgroup 

method. Overall, ESSM-X gives good agreement of eigenvalues for all the cases. 

Table 5-6 Comparison of effective multiplication factors and reaction rates 

Case Item Reference[a] Relative Errors[b] 
Subgroup  ESSM ESSM-X 

1 

keff 1.39274 -65 -137 -19 
U-238 abs. rate 0.20074 -0.20 0.39 0.06 
U-235 abs. rate 3.17911 0.57 0.53 0.16 
U-235 fis. rate 2.11842 0.09 0.08 -0.03 

2 

keff 1.37980 -68 -147 -22 
U-238 abs. rate 0.20815 -0.14 0.44 0.07 
U-235 abs. rate 3.17343 0.55 0.49 0.18 
U-235 fis. rate 2.11370 0.09 0.06 -0.02 

3 

keff 1.36873 -69 -157 -23 
U-238 abs. rate 0.21452 -0.07 0.50 0.08 
U-235 abs. rate 3.16832 0.47 0.40 0.13 
U-235 fis. rate 2.11006 0.04 0.06 -0.05 

4 

keff 1.38067 -44 -122 -44 
U-238 abs. rate 0.20760 -0.20 0.32 0.20 
U-235 abs. rate 3.17499 0.57 0.50 0.16 
U-235 fis. rate 2.11436 0.20 0.09 -0.03 

5 

keff 1.36956 -88 -148 -54 
U-238 abs. rate 0.21400 -0.22 0.46 0.23 
U-235 abs. rate 3.16876 0.53 0.42 0.10 
U-235 fis. rate 2.10998 0.02 0.04 -0.07 

6 

keff 1.30346 -25 -98 9 
U-238 abs. rate 0.19609 -0.18 0.33 0.03 
U-235 abs. rate 3.26510 0.59 0.55 0.20 
U-235 fis. rate 2.17085 0.26 0.21 0.09 

7 

keff 1.35644 -49 -121 -9 
U-238 abs. rate 0.19918 -0.15 0.39 0.08 
U-235 abs. rate 3.23523 0.59 0.56 0.20 
U-235 fis. rate 2.15345 0.19 0.17 0.06 

8 keff 0.22695 -1637 -2303 116 



81 
 

U-238 abs. rate 0.21917 0.07 0.79 -0.05 
U-235 abs. rate 3.50205 -0.43 -0.62 0.13 
U-235 fis. rate 2.31432 -0.60 -0.81 0.13 

Gd-155 abs. rate 9.40270 1.38 1.68 0.68 
Gd-157 abs. rate 4.73023 2.18 2.29 0.43 

9 

keff 1.21058 32 -413 -36 
U-238 abs. rate 0.20710 -0.75 -0.03 -0.13 
U-235 abs. rate 2.85008 -2.11 -1.50 0.06 
U-235 fis. rate 1.83015 -1.64 -1.10 0.18 

Pu-239 abs. rate 2.40428 -0.86 -0.58 0.29 
Pu-239 fis. rate 1.46516 -1.35 -1.28 0.36 
Pu-240 abs. rate 3.48122 -0.26 1.01 0.78 

[a] Reference reaction rate is per nuclide in an arbitrary scale. 
[b] Relative error for keff is ∆𝜌 in pcm. Relative error for reaction rate is in %. 

 

In order to account for the non-uniform temperature distributions in ESSM-X, Step 1 

and Step 2-b (Section 4.3) need an average temperature over the fuel rod to compute the 

base case. The volume-averaged temperature was used for the previous results reported 

for Cases 4 and 5. As mentioned in Section 3.4.3, other approaches have been developed 

to determine the average temperature such as a chord averaged temperature. In order to 

show the adequacy of using the volume-averaged temperature in the correction model, 

Cases 4 and 5 were rerun with the volume-averaged temperature manually varied by 

±50K and ±100K. This temperature variation can be viewed as the range of possible 

effective temperatures calculated by other methods given in Ref. [47]. Table 5-7 shows 

that the eigenvalues calculated by ESSM-X have almost no change with variation of the 

average temperature. The bias introduced by the deviation of the average temperature 

from the true effective temperature that preserves the neutron capture of the fuel rod is 

canceled out during the correction of shielded cross sections in Equation (4.13). The 

volume-averaged scheme is therefore sufficient for the new resonance model. 

Table 5-7 Sensitivity of eigenvalue on the average temperature selection 

Ave. Temp. variation Case 4 (Ave. 900K) Case 5 (Ave. 1200K) 
-100K 1.37979 1.36787 
-50K 1.37982 1.36790 
+0K 1.37984 1.36792 
+50K 1.37987 1.36793 
+100K 1.37988 1.36793 
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It has been verified that the spatial distribution of absorption rates of U-238 are biased 

when calculated by conventional ESSM or the subgroup method. The underestimation of 

absorption rates near the fuel surface could result in less plutonium build-up in the rim 

zone. In Case 10, the depletion calculation is performed with a fine time step using three 

resonance methods in DeCART. The results are compared with those from an MCNP6 

burnup calculation. Figure 5.14 and Figure 5.15 compare the content of Pu-239 and Pu-

240 versus burnup in the outermost ring for different methods. At 31.2GWd/tU, the 

plutonium is underestimated by 20% with ESSM and 5% with the subgroup method. The 

results of ESSM-X agrees to within 1% with the MCNP results, showing the importance 

of obtaining correct radial reaction rates for the burnup calculation. In the meantime, we 

verify the power distribution of the fresh fuel and depleted fuel at 31.2 GWd/tU. In 

Figure 5.16, the agreements of the three resonance methods with MCNP are equally good 

for the fresh fuel. However, as shown in Figure 5.17, due to the plutonium 

underestimation near the fuel surface, ESSM gives significant errors of power density for 

the fuel depleted to 31.2 GWD/tU. The results with the subgroup method are somewhat 

better than ESSM, while ESSM-X gives the best power density agreement with the 

MCNP reference, which is consistent with the distributed self-shielding results. 
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Figure 5.14 Comparison of Pu-239 content in the rim zone for Case 10 

 
Figure 5.15 Comparison of Pu-240 content in the rim zone for Case 10 
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Figure 5.16 Comparison of power distribution for a fresh fuel 

 
Figure 5.17 Comparison of power distribution at 31.2 GWD/tU  
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5.3.2 Non-uniform Lattice 

The cases of Group 2 (see Section 5.1) verify the capability of resonance methods for 

inter-pin shielding and this inter-pin effect on the quasi-1D model. For Case 11 

(UO2_water), Figure 5.18 and Figure 5.19 show the energy dependent absorption rates of 

U-235 and U-238 for every fuel pin of the 1/8 lattice (see Figure 5.1). The typical 

effective cross sections of the resonance isotope are plotted at the upper-left corner to 

indicate the importance of energy groups where large reaction rate errors occur. The rest 

of the graphs show the relative errors of the absorption rate for the three resonance 

methods at different pin locations. Similar to the uniform lattice case, the interference 

effect is far better modeled with ESSM-X compared to the subgroup method or ESSM, in 

spite of the presence of the central water rod which increases the equivalence cross 

section of its peripheral pins. The group-wise reaction rate error with ESSM-X is well 

within 3% for U-235 and 1% for U-238, compared to that for the subgroup method and 

ESSM with a typical error of 50%~150% for U-235 and 5%~10% for U-238. In addition, 

the radially dependent absorption rates of U-238 for different pin locations are also well 

predicted by ESSM-X, as shown in Figure 5.20.  

 
Figure 5.18 Comparison of energy dependent U-235 absorption for Case 11 (UO2_water) 
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Figure 5.19 Comparison of energy dependent U-238 absorption for Case 11 (UO2_water) 

 
Figure 5.20 Comparison of radially dependent U-238 absorption for Case 11 (UO2_water) 
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A control rod and a Gd fuel pin are included in Case 12 (UO2_AIC) and Case 13 

(UO2_UO2+Gd), respectively. Figure 5.21 shows the energy dependent absorption rates 

of U-238 for Case 12. The fuel pin right below the control rod (Pin 18) has relatively 

larger errors with ESSM and ESSM-X than those away from the control rod. The energy 

groups with large errors are basically away from the major U-238 resonance peaks, and 

are mostly of negative errors. Since the absorption cross sections in these groups are not 

large enough to dominate the spectra, the contribution from control rod to the spectra of 

fuel becomes non-negligible. Noting that the resonance interference effect is modeled for 

each fuel rod independently, the interference among different pins is, in fact, 

approximately treated by computing the equivalence cross section (Dancoff correction). 

This treatment assumes a constant absorption cross section for each group, thus reduces 

the equivalence cross section of the fuel pin due to absorption of control rod, and finally 

underestimates the effective cross sections of U-238. Figure 5.22 plots the radially 

dependent absorption rates of U-238, which is another way to show this bias for Pin 18. 

The errors of radially dependent reaction rates with ESSM-X are shifted downward but 

the shape of the error is still flat. Therefore, the negative errors do not originate from the 

1-D slowing-down model, but from the methodology of ESSM which requires the lattice 

consisting of similar pins. Since the subgroup method utilizes isotope category for 

resonance calculation, U-238 cannot ‘see’ control rod materials when the FSP of U-238 

category is performed. Thus, the error of subgroup method for Pin 18 is almost the same 

as for the other pins. It is seen from Figure 5.23 and Figure 5.24 that on the other hand, 

the results of Case 13 using ESSM-X do not suffer from the underestimation issue. The 

content of gadolinium is relatively small in the fuel, which maintains the similarity of 

pins. 
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Figure 5.21 Comparison of energy dependent U-238 absorption for Case 12 (UO2_AIC) 

 
Figure 5.22 Comparison of radially dependent U-238 absorption for Case 12 (UO2_AIC) 
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Figure 5.23 Comparison of energy dependent U-238 absorption for Case 13 

(UO2_UO2+Gd) 

 
Figure 5.24 Comparison of radially dependent U-238 absorption for Case 13 

(UO2_UO2+Gd) 
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Case 14 (UO2_3%+5%) and 15 (UO2_MOX) incorporate the mixed fuel types of a 

checkerboard layout. Figure 5.25-Figure 5.28 compare the energy dependent absorption 

rates of important resonance isotopes of the two cases. Because of the difference of fuel 

pins, greater errors are expected for ESSM and ESSM-X, especially for the UO2_MOX 

case. For Case 15, Figure 5.28 shows that the absorption rate errors of U-238 for the 

subgroup method is similar to those seen in the uniform lattice (see Figure 5.9 and Figure 

5.12). These errors come from the quadrature approximation and inaccurate interference 

treatment of Bondarenko iteration. However, unlike the good agreements of the uniform 

lattice cases, ESSM-X underestimate the absorption rates of U-238 in a number of groups 

in the UO2 fuels (e.g., Pin 18), but overestimate them in the MOX fuels (e.g., Pin 17). It 

is also seen that ESSM has the same trend of errors and these errors occur in the groups 

with a relatively small U-238 absorption. The reason of the systematical errors for ESSM 

and ESSM-X is the same as Case 12, i.e., the approximate treatment of inter-pin 

resonance interference. To make it clear, we look at Group 25 (67.5eV~101.2eV) where 

significant errors (~10%) occur in Figure 5.28. We compare the effective absorption and 

equivalence cross sections of Group 25 for U-238 between the uniform lattice and mixed 

fuel lattice in Table 5-8. The first column shows the reference effective cross section 

computed from MCNP. The slight differences of effective cross sections in the UO2 fuel 

between the uniform lattice and mixed lattice, and in the MOX fuel between the uniform 

lattice and mixed lattice are caused by the inter-pin interaction. ESSM and ESSM-X 

model this effect correctly for the uniform lattices, but yields biased results for the mixed 

lattice. As the equivalence cross section is evaluated by solving FSP with group-wise 

absorption, in Group 25, the UO2 pin sees stronger absorption from neighboring pins in 

the mixed lattice compared to the uniform lattice, and thus results in a smaller 

equivalence cross section. In the meantime, the MOX pin sees weaker absorption from 

neighboring pins in the mixed lattice compared to the uniform lattice, and thus results in a 

larger equivalence cross section. Unfortunately, this is not valid if the realistic physics is 

taken into account, as indicated in the reference solution. The issue is the constant group-

wise absorption being applied to affect the spectrum, which in reality depends on the 

detailed point-wise cross sections. The subgroup method is free from the systematical 

errors because the resonance category treatment leads to uranium ignoring the presence 
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of plutonium and vice versa, when performing the fixed source calculation, although the 

errors from quadrature approximation and within-pin interference are still significant.  

 

 
Figure 5.25 Comparison of energy dependent U-235 absorption for Case 14 

(UO2_3%+5%) 
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Figure 5.26 Comparison of energy dependent U-238 absorption for Case 14 

(UO2_3%+5%) 

 
Figure 5.27 Comparison of energy dependent Pu-239 absorption for Case 15 (UO2_MOX) 
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Figure 5.28 Comparison of energy dependent U-238 absorption for Case 15 (UO2_MOX) 

Table 5-8 Effective absorption and equivalence cross sections of Group 25 for U-238 for 
different fuel lattices 

Case 
Reference 

absorption XS 
(barn) 

ESSM-X 
absorption XS  

(barn) 

ESSM-X 
equivalence XS 

(barn) 
UO2 in uniform lattice[a] 1.510 1.509 43.07 
MOX in uniform lattice[b] 1.715 1.710 52.07 

UO2 in mixed lattice[c] 1.548 1.371 25.90 
MOX in mixed lattice 1.683 1.789 65.70 

  [a] Uniform lattice for UO2: Case 1 (UO2_600K) 
  [b] Uniform lattice for MOX: Case 9 (MOX_16%) 
  [c] Mixed lattice: Case 15 (UO2_MOX) 
 
To summarize, ESSM-X performs very well when the irregularity of lattice consists of 

moderator or similar fuel rod (Gd fuel). However, the reaction rate errors become larger 

when the lattice contains absorbers of pins significantly different from each other. Since 

the formulation of ESSM rests on equivalence theory, treatment of high-order inter-pin 

interference effects is beyond the scope of the new resonance methodology. Fortunately, 

such pin layouts (e.g., a mixture of UO2 and MOX in an assembly) are not usually seen 

Group 25 
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in current reactor design. Moreover, the errors in the U-238 absorption rate are in the 

opposite direction for UO2 and MOX fuel pins, indicating possible error cancellation for 

the effective multiplication factors, as can be seen in Table 5-9. 

Table 5-9 Comparison of multiplication factor for cases of Group 2 

Case Reference 
keff 

∆𝜌 of subgroup 
(pcm) 

∆𝜌 of ESSM 
(pcm) 

∆𝜌 of ESSM-X 
(pcm) 

11 (UO2_water) 1.40910 -51 -128 -15 
12 (UO2_AIC) 1.20539 -196 -284 111 

13 (UO2_UO2+Gd) 1.28407 -75 -133 4 
14 (UO2_3%+5%) 1.35791 -47 -110 2 
15 (UO2_MOX) 1.22387 29 -299 59 

 

5.3.3 Assembly Calculation 

To confirm the capability of the resonance methods for realistic reactor core 

applications, a few representative pins (numbered from 1 to 6) are selected from the two 

fuel assembly cases (see Section 5.1) for reaction rate analysis as shown in Figure 5.29. 

Of the UO2 assembly, Pin 1 is next to the water gap while Pin 3 is next to the empty tube 

(water hole). Pin 2 is away from any extra coolant so it is similar to the fuel pin of infinite 

lattice. Pins 4, 5 and 6 are MOX fuel pins that have different weight percent of plutonium 

isotopes. Pins 4 and 5 are located at the boundaries of two different fuels, so that the 

resonance treatment with assembly heterogeneity can be verified through comparing the 

results for those pins. 
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Figure 5.29 Representative pins of assembly cases 

In Figure 5.30, the spatially dependent U-238 absorption rate per atom computed by 

the three resonance methods are compared with the reference results of DeCART (MCNP 

XS) for the UO2 case. The reference reaction rates are plotted on the upper-left graph and 

the rest graphs show the relative errors (%) of the three methods with respect to the 

reference results for Pin 1, 2 and 3, respectively. Because of the larger equivalence cross 

section introduced by proximity to the water hole/gap, the effective absorption rates of 

Pin 1 for all fuel annuli is slightly larger than those of Pin 2, and Pin 3 has the largest 

absorption rates of the three pins. As long as ESSM is able to model the Dancoff effect 

correctly using single meshes for the fuel regions, the intra-fuel details are accurately 

retrieved by the ESSM-X, as shown in the graphs of relative errors. These results are as 

good as the ones for the infinite fuel pin. A similar comparison for the MOX fuel is given 

in Figure 5.31, which proves again the accuracy of the quasi-1D model for treating the 

heterogeneity of zoned MOX assembly. 

1 

2 

3 

4 

5 

6 

Inter-assembly water gap 
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Figure 5.30 Comparison of radially dependent absorption rates of U-238 for Pin 1, 2 and 

3 of UO2 assembly.  

 
Figure 5.31 Comparison of radially dependent absorption rates of U-238 for Pin 4, 5 and 

6 of MOX assembly 
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The resonance interference treatment for complex fuel material has been analyzed in 

the infinite MOX pin cell. Consistent results are expected for the MOX assembly 

problem. Figure 5.32-Figure 5.35 show the energy dependent reaction rate comparison of 

uranium and plutonium isotopes for the selected pins of MOX assembly. As done 

previously, the reference effective cross sections are plotted on the upper graphs and the 

relative errors (%) of reaction rates for the three methods with respect to the reference 

results are plotted on the lower graphs. Although U-238 is still the dominant resonance 

isotope, the presence of plutonium isotopes affects the accuracy of the U-238 absorption 

rates as a result of resonance interference. For example, the ESSM and subgroup method 

yield large errors in the U-238 absorption rate around the 1eV resonance of Pu-240, and 

these errors are essentially eliminated by ESSM-X. As shown in Figure 5.33-Figure 5.35, 

the absorption and fission rates of other non-dominant isotopes such as U-235, Pu-239 

and Pu-240 are more accurately predicted by ESSM-X, as compared to ESSM and the 

subgroup method.        

 
 

 
Figure 5.32 Comparison of energy dependent absorption rates of U-238 for Pin 4, 5 and 6 

of MOX assembly.  
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Figure 5.33 Comparison of energy dependent absorption rates of U-235 for Pin 4, 5 and 6 

of MOX assembly 

 

 
Figure 5.34 Comparison of energy dependent fission rates of Pu-239 for Pin 4, 5 and 6 of 

MOX assembly 
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Figure 5.35 Comparison of energy dependent absorption rates of Pu-240 for Pin 4, 5 and 

6 of MOX assembly 

5.3.4 Computing Resources 

As the CE slowing-down calculation is involved in the ESSM-X correction model, it 

is important to consider the computing resources required for the method. Table 5-10 

compares the computing time and memory usage for the subgroup method, ESSM and 

ESSM-X, leading to the following observations. 

(1) The computing times for ESSM and the subgroup method are primarily determined 

by the number of fixed source problems to be solved. The average number of 

iterations to converge equivalence cross sections for each group in ESSM is in the 

range three to five, which is about the same as the number of subgroup levels. 

However, the subgroup method distributes the resonance isotopes into resonance 

categories for the fixed source calculations, which leads to additional computing time 

for the subgroup method.  

(2) For most cases, ESSM-X costs an additional 30%~100% of Tres, the resonance 

calculation time, compared to ESSM. Basically, Tres is the summation of computing 

time spent on ESSM iterations and the quasi-1D slowing-down calculation. For a pin 

cell, longer times for the quasi-1D slowing-down calculation (the values in the 

brackets) are observed for the cases of non-uniform temperature and complex 
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material compositions. This is mainly due to the increased size of the energy mesh for 

the slowing-down calculation to treat either a large number of nuclides or nuclides 

with a number of temperatures involved in the problem. For the cases with complex 

materials, the number of resonance isotopes is 3~4 times that of fresh UO2 fuel, so 

looping over isotopes to determine the scattering source also becomes more time-

consuming. By comparing the problems of different geometrical size, the computing 

time of quasi-1D slowing-down calculation is roughly increased in a linear manner 

with the number of pins, which is expected since those slowing-down calculations are 

independent for different pins. In addition, Cases 16 and 17 even have a shorter Tres 

for ESSM-X than ESSM, because ESSM-X converges the equivalence cross section 

for each single mesh of the fuel, which could be faster than ESSM that converges the 

equivalence cross section for the fuel subregions. In all, compared to ESSM, ESSM-

X increases the total computing time by about 5%~20% for most cases, which is a 

modest increase. However, for some cases such as the assembly cases, the total 

computing time of ESSM-X may be shorter than ESSM. 

(3) The memory demand of the slowing-down calculation depends primarily on the 

number of isotopes and the range of temperatures in the problem. Although the total 

memory increases with the problem size, the memory used for the slowing-down 

calculation does not increase since the slowing-down calculations for the fuel pins are 

independent. This also makes the model easy to be implemented in parallel. 

Table 5-10 Computing resources of the resonance methods 

Case Subgroup ESSM ESSM-X 
 Ttot

[1] Tres
[2] Mem.[3] Ttot Tres Mem. Ttot Tres

[4] Mem. 
1 25.83 9.41 103 18.69 2.36 103 20.39 3.24(1.19) 149 
2 25.12 9.02 103 18.56 2.20 103 19.72 3.26(1.02) 143 
3 25.20 8.80 103 19.43 2.22 103 20.05 3.37(0.99) 142 
4 26.85 9.44 103 19.96 2.45 103 22.25 5.05(3.01) 169 
5 25.02 8.81 103 18.08 2.34 103 20.54 4.93(2.68) 166 
6 26.25 9.45 103 19.95 2.46 103 21.17 3.35(1.17) 145 
7 27.49 10.00 103 19.41 2.22 103 20.71 3.24(1.19) 145 
8 49.81 22.59 103 31.34 2.42 103 34.96 4.54(2.43) 182 
9 47.90 22.46 103 26.96 2.89 103 28.65 4.90(2.29) 188 
11 296.0 132.2 238 173.3 33.62 238 192.0 52.29(23.6) 287 
12 435.1 291.0 239 219.6 69.72 239 224.2 73.87(26.8) 290 
13 391.1 296.2 239 130.0 35.47 239 160.7 63.87(32.1) 314 
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14 291.1 143.5 239 179.1 34.40 239 204.5 59.83(28.7) 291 
15 460.0 311.8 240 193.3 42.70 240 237.8 89.45(51.8) 321 
16 2659.9 1195.6 1221 2262.8 808.2 1222 1957.3 494.8(235.8) 1274 
17 4513.5 2656.5 1229 3059.2 1176.5 1231 2758.4 913.2(617.8) 1312 

[1] Ttot is the total computation time (s) of the eigenvalue problem including everything. 
[2] Tres is the time (s) spent on resonance calculation. 
[3] Mem. is the memory usage (MB) of the method. 
[4] The value in the bracket is the computing time spent on quasi-1D slowing-down calculation. 

5.4 Investigation of Azimuthally Dependent Self-shielding 

So far, our method is subject to radial subdivision of the fuel rod. In some 

circumstance, the azimuthal dependence of the effective cross section becomes important, 

say a fuel pin close to a water hole or reflector. The azimuthal distribution of the self-

shielded cross section in a typical PWR fuel rod is examined by setting up a 

heterogeneous lattice case of 5×5 pin cell as shown in Figure 5.36. All the yellow pins are 

fresh UO2 fuel with 5% enrichment. The central red pin is a water hole. The purpose of 

the following calculation is to quantitatively show the azimuthal dependence of shielded 

cross sections within a fuel pin (# 8) adjacent to the water hole. 

 

     

     

     

     

     

Figure 5.36 Pin layout of the test lattice problem 

The MCNP eigenvalue calculation is performed with multigroup flux and reaction rate 

tally under a specific geometrical mesh of Pin # 8 shown in Figure 5.37. The fuel region 

is subdivided into three rings, each with eight symmetric azimuthal zones. Sufficient 

neutrons are simulated (1.6 million per cycle, 700 active cycles) to guarantee that the 

statistical error of reaction rate in every energy group and every subregion is below 0.5%. 

Particularly, the shielded cross sections of subregions 1 and 2, which are relatively closer 

to the water hole, are compared with those of subregions 3 and 4 which are relatively 

8 

600K everywhere 
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further away. Also, the shielded cross sections of the whole sectors A and B are 

compared.  

                             
Figure 5.37 Geometrical discretization of Pin 8 for MCNP tally 

Figure 5.38 shows the ratio of U-238 effective absorption cross section of Subregion 1 

to 3, Subregion 2 to 4 and Sector A to B. Figure 5.39 shows the same comparison for 

reaction rate. 4%~15% differences for the effective cross sections in major resonance 

groups are observed by comparing Subregion 1 with 3, which are near the fuel surface, 

while 10%~35% differences are observed for the reaction rates in these groups 

(Subregion 1 with 3). Interestingly, for large resonances such as the U-238 6.67eV 

resonance, the azimuthal difference of the effective cross section is small, but the 

azimuthal difference of the reaction rate is large, which means that the reaction rate 

difference is mostly due to the difference in the calculated flux. For small resonances, the 

azimuthal difference in reaction rate is primarily due to the difference in the effective 

cross section.  
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Figure 5.38 Comparison of azimuthally dependent cross sections of MCNP results 
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Figure 5.39 Comparison of azimuthally dependent reaction rates of MCNP results 
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Next, the same case is computed by DeCART using the subgroup method, ESSM and 

ESSM-X. Although the effective cross sections of the subgroup method and ESSM are 

biased in the radial direction, the azimuthal variation of the cross sections is still 

examined by comparing the ratio of effective cross sections for different subregions. The 

option of azimuthally dependent cross section mesh is turned on in DeCART so that each 

azimuthal zone of the fuel ring has its own equivalence cross section computed from the 

flux of that zone. The quasi-1D slowing-down equation is solved for each sector of the 

fuel instead of the whole fuel so that the computing time is a factor of m larger than the 

azimuthally independent calculation, where m is the number of azimuthal zones. Figure 

5.40 compares the cross section ratios of Sector A to Sector B for the three methods with 

those from MCNP. For most resonance groups, ESSM and ESSM-X partially resolve the 

azimuthal variation of effective cross section, but the ratio is underestimated. The 

subgroup method gives better agreement with the MCNP results. Figure 5.41 shows the 

same comparison for reaction rates. It is worth pointing out that relatively good ratios of 

reaction rates are obtained by ESSM and ESSM-X in spite of the biased ratios of the 

effective cross section, especially for the large resonances. The flux difference of the 

azimuthal zones appears to be more important than the difference of effective cross 

sections in accounting for the reaction rate difference, so the results of ESSM and ESSM-

X are acceptable with regard to the reaction rate calculation. 
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Figure 5.40 Comparison of azimuthally dependent cross sections (Sector A/Sector B)  
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Figure 5.41 Comparison of azimuthally dependent reaction rates (Sector A/Sector B) 
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A similar comparison regarding the ratio of Subregion 1 to Subregion 3 is presented in 

Figure 5.42 and Figure 5.43. Still, ESSM and ESSM-X underestimate the azimuthal 

effect with regard to the effective cross section, but predict acceptable ratios for the 

absorption rates. 
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Figure 5.42 Comparison of azimuthally dependent cross sections (Subregion 1/Subregion 

3) 
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Figure 5.43 Comparison of azimuthally dependent reaction rates (Subregion 1/Subregion 

3) 

Since the subgroup method properly predicts the reaction rates of azimuthal 

subregions, the subgroup method is used to investigate the azimuthal dependence of 

depletion. Starting with the same case in Figure 5.36, the depletion calculation is 

performed by DeCART and the plutonium concentrations during depletion are plotted in 

Figure 5.44-Figure 5.47. For the azimuthal subregions near the fuel surface, Figure 5.44 

and Figure 5.45 show that both Pu-239 and Pu-240 concentrations are predicted >10% 

more in Subregion 1 than Subregion 3 at a burnup of 31.2GWd/tU. This effect is more or 

less smeared out over each sector of the fuel, so the azimuthal difference of the whole 

sector is not that large, as shown in Figure 5.46 and Figure 5.47. Therefore, the results 

suggest turning on the azimuthally dependent calculation for fuel pins near a water hole 

or reflector, especially when the radial variation of reaction rates is also taken into 

account. 
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Figure 5.44 Pu-239 content of the azimuthal subregions 

 
Figure 5.45 Pu-240 content of the azimuthal subregions 
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Figure 5.46 Pu-239 content of the azimuthal sectors 

 
Figure 5.47 Pu-240 content of the azimuthal sectors 
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5.5 Summary 

A comparison of the three resonance methods on the performance of modeling the 

important resonance physics is summarized in Table 5-11. #1 is the base case of an 

infinite fresh UO2 lattice without fuel subdivision. The subgroup method and ESSM 

cannot accurately model the resonance interference, which is however, not very 

significant for fresh fuel material, thus ‘acceptable’ results are expected. For #2, we have 

shown that ESSM has large error in the radially dependent reaction rates (15%-25% off at 

surface ring), while the results of the subgroup method are acceptable (5% off at surface 

ring). Since #3 is associated with #2, ESSM is not able to model the non-uniform 

temperature effect correctly. The subgroup method lacks a theoretical foundation to 

account for non-uniform fuel temperature, so larger errors are shown compared to the 

uniform temperature case. When the material composition becomes complicated, say 

MOX fuel or Gd fuel, the subgroup method and ESSM fail to model the interference 

effect, which is more important in those cases than the case of fresh fuel. Therefore, the 

results of the subgroup method and ESSM turn out to be problematic for #4. Based on the 

numerical results, the performance of resonance methods in treating lattice heterogeneity 

is summarized in #5 and #6. All the three methods have good performance with moderate 

heterogeneity, where (1) extra coolant is included, or (2) the difference in pins is not 

significant. Only the subgroup method has acceptable results for the problems with strong 

heterogeneities, because the subgroup method ignores the absorption of isotopes in other 

categories when the FSP is performed for the category in question. This indicates that the 

high order interference effect between different pins is better to be ignored than 

improperly modeled using the average effective absorption. Finally, the subgroup method 

is able to compute azimuthally-dependent effective cross sections correctly while ESSM 

and ESSM-X can partially resolve it although the reaction rates are good for all three 

methods. 
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Table 5-11 Comparison of resonance methods on modeling the important physics 

# Important Physics Subgroup ESSM ESSM-X 

1 Uniform infinite lattice, simple fuel 
comp., single fuel reg. O O √ 

2 Radially dependent self-shielding O × √ 

3 Non-uniform fuel temperature × × √ 

4 Complex material composition × × √ 

5 Moderate heterogeneities (water 
gap/hole, Gd fuel, zoned fuel) √ √ √ 

6 Strong heterogeneities (AIC rod, 
mixed MOX and UO2 Assembly) O × × 

7 Azimuthal dependent self-shielding √ O O 

√   good                   O   acceptable           ×   problematic 
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 Chapter 6

Summary and Conclusion 

6.1 Summary of Work 

This thesis begun with the introduction of multigroup theory, which had been proven 

an effective way for solving neutron transport equation and been widely used in reactor 

core analysis. However, due to the complicated energy dependence of the cross sections 

in the resonance energy range, the energy and spatial resonance self-shielding phenomena 

complicate the procedure of preparing multigroup cross sections which are expected to be 

sufficiently consistent with the continuous-energy solution. Two types of approaches had 

been developed to perform the resonance self-shielding calculation, i.e., direct slowing-

down calculation and integral table based methods which were discussed in Chapter 2 

and Chapter 3, respectively. The direct slowing-down method attempts to fully resolve 

the resonance behavior by using the point-wise or ultrafine group cross section data. 

Because of the computational burden, the application of the direct slowing-down method 

is limited to local geometries such as a pin cell or a single assembly. The integral table 

based methods, on the other hand, performs self-shielding calculation using pre-

computed multigroup integral tables, which indicates a significant computing time 

savings compared to the direct slowing-down method. However, to derive those integral 

tables, a number of approximations have to be applied, leading to a few limitations of the 

integral table based methods on treating distributed self-shielding within the fuel rod, 

non-uniform temperature effect and resonance interference. 

 The current work developed a fusion method utilizing the advantages of both 

approaches in Chapter 4. The method performs the conventional ESSM without 

subdivision of the fuel region to capture the inter-pin shielding effect. The resultant self-
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shielded cross sections are modified by correction factors incorporating the intra-pin 

effects of radial variation of the shielded cross section, radial temperature distribution and 

resonance interference. A quasi-1D slowing-down equation is developed to calculate 

such correction factors. Instead of using explicit boundary conditions, boundary 

conditions are incorporated implicitly in the local quasi-1D calculation by modifying the 

equivalence cross section. Other efforts are made to improve the efficiency of quasi-1D 

slowing-down solver so that it computes the neutron spectra much faster than the 

standard 1-D slowing-down calculation. 

The resonance calculation was performed for a set of benchmark problems developed 

in Chapter 5. Three resonance self-shielding methods, i.e., subgroup method, ESSM and 

ESSM-X are compared with MCNP reference solutions. Numerical results show that 

ESSM-X is capable of resolving the spatially dependent self-shielding of fuel annuli. The 

error in the U-238 absorption rate over the resonance energy range for the outermost ring 

is reduced from 15%-25% (ESSM) and 5% (subgroup) to less than 1% by ESSM-X. In 

addition, the energy dependent reaction rates of non-dominant isotopes such as U-235, 

Pu-239, Pu-240 are greatly improved by explicitly accounting for the resonance 

interference. The accuracy of the new method is not affected by moderate heterogeneity 

(water hole/gap, Gd fuel, zoned fuel). For problems with strong heterogeneities (AIC rod, 

mixed UO2 and MOX fuel), slightly biased reaction rates are observed for some groups 

with small resonance absorption at the pins near the heterogeneity, which is primarily due 

to the assumption of similar pins in the ESSM derivation. However, the overall 

eigenvalue still agrees well with the reference solution. As shown in the assembly cases, 

the new method should be ready for full core configurations. In addition, a 

straightforward extension of the method is sufficient for treating the azimuthal dependent 

self-shielding effect. 

The computational efficiency of ESSM-X was examined. The resonance calculation in 

ESSM-X costs an additional 30%~100% computing time over that for ESSM, depending 

on the size of energy mesh and material complexity. For the worst case, the total 

computing time of ESSM-X rises by 20% compared to that of ESSM. For the assembly 

cases, ESSM-X may save total computing time since the equivalence cross section is 

calculated for each single mesh of the fuel, which converges much faster than those for 
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the fuel subregions using ESSM. The memory demand of the slowing-down calculation 

depends primarily on the number of isotopes and the range of temperatures in the 

problem. Since the slowing-down calculations for the fuel pins are independent, the 

memory requirement of the model does not increase with the geometrical size of the 

problem. Overall, the new method is very promising for the deterministic resonance 

treatment of direct transport calculation.  

6.2 Future Work 

A few issues have been identified for further study. First, since ESSM has slightly 

biased results on treating problems with strong heterogeneities, refinement of the method 

is required if one wants to further improve local reaction rates. The possibilities could be 

to (1) ignore the high-order inter-pin interference for different isotopes by performing the 

fixed source problem using category concept, which is similar to the subgroup strategy; 

(2) resolve the effect using a slowing-down model with multiple-pin consideration. In 

practice, Option (1) would be easier to incorporate into the current implementation of 

ESSM. Either category dependent ESSM or subgroup method could be options to 

compute the effective cross section of the fuel region with a single mesh. An additional 

ESSM iteration without category separation would then be needed to produce the region-

wise equivalence cross sections for the quasi-1D slowing-down calculation. Second, 

solving the quasi-1D slowing down equation could be expensive when the number of 

isotopes becomes very large (depleted fuel), because the scattering source has to be 

accumulated independently for each isotope. A possible approach for saving computing 

time is to combine the isotopes of similar atomic weights for the scattering source 

calculation, since the asymptotic scattering kernel is only dependent on the atomic weight. 

Further investigation is required to devise this isotopic combination scheme to accelerate 

the scattering source calculation given the accuracy of the slowing-down calculation is 

guaranteed. Third, extensive analysis should be performed to investigate the axial effect 

on the resonance calculation. Currently, the resonance calculation is performed 

independently for each 2-D plane with reflective axial boundary conditions. However, the 

axial effect might become non-negligible for the boundary nodes with reflector instead of 
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reflecting boundary conditions. Improvement to account for axial heterogeneity might be 

needed if the boundary nodes have significant errors with the current methodology.   

Some of the assumptions applied at the starting point of the slowing-down equation 

could also be replaced by ‘true’ physics in the future work. In the current work, the 

epithermal up-scattering is neither considered in the multigroup library generation, nor in 

the quasi-1D slowing-down solver. As the asymptotic scattering treatment could bias the 

fuel temperature coefficient by more than 10%, the epithermal up-scattering should be 

modeled for heavy nuclides such as U-238 to improve the effective scattering and 

absorption. Additionally, if one wants to extend the new method for fast reactor 

applications, the fission source might be considered for the slowing-down calculation in 

an extended energy range. In the meantime, the current work does not consider the 

unresolved resonance separately from the resolved resonance for the slowing-down 

calculation. Since the CE cross section library includes infinite diluted data in the 

unresolved resonance energy range, probability table method should be utilized in order 

to shield the unresolved resonance cross section, which becomes important for fast 

reactor applications. 
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Appendix A 

Carlvik Method for Computing Collision Probability of 1-D 

Cylindrical Geometry 

It is customary to eliminate the axial coordinate to facilitate the calculation of collision 

probability for 1-D cylindrical geometry. First we consider the probability that neutrons 

emitted in a small azimuthal angle of dα  will travel through a path of R without any 

collision. As shown in Figure A.1, by introducing the neutron path projected on to the 

plane perpendicular to z, where the projected length is sint R θ=  or sinτ ρ θ=  in 

optical length, the probability of uncollided neutron can be written as exp( / sin )τ θ− .     

 
Figure A.1 Elimination of coordinate z for 1-D cylindrical calculation 

Assuming the neutrons are emitted from an isotropic line source S along z, the neutrons 

emitted into dα  are given as 

z 
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( )
2
dN d S αα
π

=
 

(A.1) 

Also, we can evaluate the number of neutrons emitted into dα  and horizontally reaching 

τ without any collision by integrating neutrons emitted into dΩ  and horizontally 

reaching τ without any collision over all possible θ  

( ) /sin

0
sin

4uncol
dN d S e d

π τ θαα θ θ
π

−= ∫
 

(A.2) 

Therefore, the probability of neutron travelling by an optical length of τ at the projection 

plane without collision is given as 

( )
( )

/sin

0

/2 /2/sin /cos
20 0

1( ) sin
2

sin cos ( )

uncol
un col

N d
P e d

N d

e d e d Ki

π τ θ

π πτ θ τ θ

α
τ θ θ

α

θ θ θ θ τ

−
−

− −

= =

= = =

∫

∫ ∫  

(A.3) 

where 2( )Ki x is the Bickley function of second order. Note that θ dependence has been 

embedded into the uncollided probability ( )un colP τ− . The following content will focus on 

the collision probability calculation in the projection plane, which was developed by 

Carlvik [57]. 

Consider an azimuthally symmetric problem, in which the physical quantities only 

depend on radius r. As shown in Figure A.2, for a unit isotropic neutron source in Vi, the 

first flight collision probability from subregion i to j is equal to the collision probability 

computed by the shadowed quadrant of subregion i to j due to the geometrical symmetry. 

If we consider a thin strip y∆  in which ( )it y y∆ isotropic neutron sources are born, the 

probability that the neutron flies to the left and has its first collision in subregion j can be 

written as 

( )( ) ( )

2 , 1 , 1 2 , , 10 0

1( ) ( ) ( )
2 ( )

i it y t yleft
i j i j i i i i j i i i

i

P y Ki t dt Ki t dt y
t y y

tttt   − − − −
→ − − −= + − Σ − + − Σ ∆

∆ ∫ ∫  (A.4) 

For the first integral, let , 1 , 1i j i i il ttt − −
− −= + − Σ  
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, 1 , 1 1, 1

, 1 , 1

( )

2 , 1 , 1 2 20

1 1( ) ( ) ( )i i j i i i j

i j i j

t y

i j i i i
i i

Ki t dt Ki l dl Ki l dl
ttt 

tt
tt

− − −
− − − −

− −
− −

+− −
− −+ − Σ = =

Σ Σ∫ ∫ ∫
 

(A.5) 

Using 1 1( ) ( ) ( )
b

n n na
Ki x dx Ki a Ki b+ += −∫ , 

( )( )

2 , 1 , 1 3 , 1 3 1, 10

1( ) ( ) ( )it y

i j i i i i j i j
i

Ki t dt Ki Kitttt   − − − −
− − − − −+ − Σ = −

Σ∫
 

(A.6) 

Similarly, the second integral can be written as 

( )( )

2 , , 1 3 , 3 1,0

1( ) ( ) ( )it y

i j i i i i j i j
i

Ki t dt Ki Kitttt   − − − −
− −+ − Σ = −

Σ∫
 

(A.7) 

     

 

Figure A.2 Collision probability on 1-D cylindrical geometry 
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Definition: 

Vi - the volume of subregion i 

Si - the surface boundary of subregion i 

ti - the physical thickness of the neutron travels through in the quadrant of subregion i 

t - the variable of physical length 

𝜏𝑖,𝑗− - the shorter optical length from subregion boundary i to j 

𝜏𝑖,𝑗+ - the longer optical length from subregion boundary i to j 

y - the variable of vertical location of a chord  

All the optical and physical lengths are a function of y, but we omit it for simplicity 

 

Therefore, 

( )3 , 1 3 1, 3 1, 1 3 ,
1( ) ( ) ( ) ( ) ( )

2 ( )
left

i j i j i j i j i j
i i

P y Ki Ki Ki Ki
t y

tttt   − − − −
→ − − − −= + − −

Σ
 (A.8) 

Using the same approach, the probability that neutron flies to the right and has the first 

collision in subregion j is written as 

( )3 1, 1 3 , 3 1, 3 , 1
1( ) ( ) ( ) ( ) ( )

2 ( )
right

i j i j i j i j i j
i i

P y Ki Ki Ki Ki
t y

tttt   + + + +
→ − − − −= + − −

Σ
 (A.9) 

The overall collision probability from subregion i to j is obtained by integrating the sum 

of Equation (A.8) and Equation (A.9) over the volume of quadrant, 

0

1 ( )( ) ( )
2 4

iR left right i
i j i j i j

i

t y dyP P y P y
V→ → → = + ∫

 
(A.10) 

where iR  is the radius of ring i. 

The fuel escape probability of subregion i can be obtained by slightly modifying 

Equation (A.4), 

( )( )

, 2 , , 10

1( ) ( )
2 ( )

it yleft
i esc i j i i i

i

P y Ki t dt y
t y y

tt − −
−= + − Σ ∆

∆ ∫  (A.11) 

By substituting the variable and applying 1 1( ) ( ) ( )
b

n n na
Ki x dx Ki a Ki b+ += −∫  
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( ), 3 , 3 1,
1( ) ( ) ( )

2 ( )
left

i esc i j i j
i i

P y Ki Ki
t y

tt − −
−= −

Σ
 (A.12) 

The escape probability on the right flying neutrons is given as 

( ), 3 1, 3 ,
1( ) ( ) ( )

2 ( )
right

i esc i j i j
i i

P y Ki Ki
t y

tt + +
−= −

Σ
 (A.13) 

So the overall escape probability of subregion i is given as 

, , ,0

1 ( )( ) ( )
2 4

iR left right i
i esc i esc i esc

i

t y dyP P y P y
V

 = + ∫
 

(A.14) 

The integration over y for Equation (A.10) and Equation (A.14) are usually split into 

intervals from iR  to 1iR + , in which each integration is numerically treated by Gauss-

Jacobi quadrature. This completes the calculation of region to region collision probability 

and region-wise escape probability. 
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Appendix B 

A Problem-Dependent Energy Mesh Scheme for Quasi-1D 

Slowing-down Calculation 

Depending on the number of isotopes and temperatures existing in the problem, the 

CE cross section data are heavily used in the correction method. Since the cross section 

data of each isotope at a specific temperature has its own energy mesh, several issues 

need to be addressed properly:  

a. What energy mesh is used to solve the problem? Since the slowing-down 

calculation is performed for each pin cell, is it better to unionize the energy mesh 

for each pin cell or unionize the energy mesh for the whole problem? 

b. What is a better scheme of cross section interpolation for temperature?  Is it better 

to compute and store the cross section sets for all the temperatures occurring in the 

problem before slowing-down calculation, or only store the few cross section sets 

of temperatures available in the library and do the interpolation on the fly of 

slowing-down? 

The current work manipulates the CE data as follows: 

a. Scan the whole problem and find all isotopes in the fuel regions.  

b. Read the cross section data of these isotopes from the CE library at several discrete 

temperatures according to the library availability (say 296K, 600K, 900K, 1200K 

and 2400K).  

c. Map the cross section of each isotope to the energy mesh of the lowest temperature 

(say 296K) so that every isotope ends up with a uniform energy mesh of cross 

sections for different temperatures. 

d. Generate a union mesh for each fuel material composition using an approach 

similar to CENTRM. The energy meshes of isotopes in a material are unionized 
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and thinned in such a manner that the macroscopic total cross section can be linearly 

interpolated according to a specific tolerance. 

e. Combine the energy meshes of all fuel materials to a final union mesh ‘M’ (this will 

be used for slowing-down calculation). Alternatively, different union mesh ‘Mi’ can 

be produced for different pin i. The former is better for fresh fuel case where the 

number of different materials (composition & temperature) is relatively small, while 

the latter is better for depleted case or with thermal feedback where the number of 

different materials is large. 

f. On the fly of slowing-down calculation, interpolation is needed to obtain the cross 

section at a specific temperature on the union mesh ‘M’ or ‘Mi’. 

g. When collapsing the MG cross section of an isotope using point-wise spectrum, 

the union mesh ‘M’ or ‘Mi’ should be combined with the cross section energy 

mesh of the isotope in order to retrieve the subtleties of cross section variation 

upon energy for the isotope. 

This procedure is open to discussion, as it is very important to the efficiency and 

memory requirement of the method. Parallelization of the pin cell slowing-down 

calculation might require further design of this procedure. 
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