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Preface

What is matter made of and what rules govern its motion? It appears that

everything—boulders, sea water, human brains, distant stars—is made of the same

building blocks obeying a single set of laws. However, as of now we know neither

the building blocks nor the laws. We are at a stage in physics where we have no

theory which fits all of the data, no theory which combines our best understanding

of gravity with quantum mechanics. I believe a key reason why such a unification

has been di�cult to achieve is that there is wild disagreement about the foundations

of quantum mechanics, disagreement about how it answers the core question above.

There are a variety of mathematically and physically distinct theories that have been

proposed to explain why the methods of quantum mechanics are so successful. These

are often called “interpretations” of quantum mechanics, but I prefer to think of

them as distinct physical theories. I focus on four that I believe to be particularly

promising: the many-worlds interpretation, Bohmian mechanics, Newtonian quantum

mechanics, and GRW theory. If these theories are all as successful as their proponents

take them to be, then quantum mechanics presents us with a fascinating case of

underdetermination of theory by data; there would be multiple mathematically and

physically distinct theories that successfully reproduce the empirical predictions

of quantum mechanics. As it turns out, enumerating the empirically successful

theories is not a straightforward task. This dissertation uses the tools of formal

epistemology—prominently, the concept of self-locating uncertainty—in addition to

those of physics and philosophy of science to investigate which of the theories that

have been put forward really are empirically adequate and what alternatives can be
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devised.

I begin by proposing and defending a new theory, Newtonian QM, which combines

aspects of two well-developed alternatives: Bohmian mechanics and the many-worlds

interpretation. In the second chapter Sean Carroll and I examine how probability

arises in the many-worlds interpretation and argues that the theory’s probabilistic

predictions are correct. In the third chapter I explore when exactly GRW theory

is capable of recovering the predictions of textbook quantum mechanics. The final

chapter is an original introduction to relativistic quantum field theory which lays

groundwork for evaluating the prospects for extending interpretations of quantum

mechanics to this more sophisticated theory. In Newton’s physics, to determine

how a body will move one simply needs to add up the various forces acting on

it: gravitational, electric, magnetic, etc. This framework is generally taken to be

inadequate for explaining the quantum behavior of subatomic particles like electrons

and protons. We are told to revise our classical picture of the world in favor of a

quantum one. In the first chapter of the dissertation I argue that if we can stomach

the existence of parallel worlds, distinct from our own but no less real, we can

account for quantum phenomena without overthrowing Newton’s mechanics; without

(at the fundamental level) introducing wave functions, Schrödinger’s equation,

superpositions, entanglement, etc. In addition to the normal forces, a quantum

force is introduced which explains why particles don’t follow classical trajectories (in

fact, they end up following essentially the same trajectories as particles in Bohmian

mechanics). This approach is arrived at by taking seriously the ways in which

quantum mechanics resembles hydrodynamics. In quantum mechanics electrons and

photons behave sometimes like particles and sometimes like waves. According to this

new theory, Newtonian quantum mechanics, electrons and photons are fundamentally

particles. The arcane waves of quantum mechanics are taken to be made of particles,

like ordinary water or sound waves.
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The universal wave function—a fundamental entity in both Bohmian mechanics

and the many-worlds interpretation—can be represented as a field on configuration

space, the space of possible ways particles can be arranged. According to Bohmian

mechanics a single point in this space is special; it represents the way all of the

particles actually are arranged. Newtonian quantum mechanics takes many of the

points in configuration space to be special; for each, there is a world in which particles

are arranged that way. There will always be multiple worlds so similar that an agent

cannot tell directly from experience which they are in—self-locating uncertainty is

unavoidable. In Newtonian quantum mechanics, assigning equal probability to each

of these worlds immediately yields the desired quantum probabilities.

The next chapter—coauthored with Sean Carroll—defends the many-worlds

interpretation. In this version of quantum mechanics, processes like quantum

measurements cause agents to split into multiple copies. There are good reasons

to reject the simple strategy of treating each copy as equiprobable, which is fortunate

as in this case doing so would yield probabilities at odds with experimental data.

We introduce an epistemic principle demarcating what facts about the world one’s

credences might reasonably depend on—only facts about what’s happening around

here—and argue from this principle that the many-worlds interpretation recovers the

correct quantum probabilities. This principle explains why treating multiple copies of

oneself as equiprobable is correct in some cases of classical self-locating uncertainty

but not in cases of self-locating uncertainty arising from quantum measurements

(and allows us to generate probabilities for cases involving both kinds of self-locating

uncertainty).

In the third chapter I focus on a fourth option in precisifying quantum

mechanics: Ghirardi-Rimini-Weber theory (GRW). According to GRW the normal

time evolution—as described by the Schrödinger equation—is interrupted on occasion

by a process known as “collapse of the wave function.” It is well-understood why the
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rate at which these collapses occur cannot be too high: the theory makes testable and

incorrect predictions (for example, that macroscopic superpositions are unavoidably

unstable). But could the theory ever be falsified or could one just make the collapse

rate arbitrarily small? As the rate goes to zero, GRW becomes more and more like

the many-worlds interpretation where collapse never occurs and the evolution of the

wave function is always governed by the Schrödinger equation. I argue that when the

rate is very small, parallel universes have time to form and one should be initially

uncertain which they are in. Most of these universes are eventually destroyed by

collapse events. Our continued survival provides empirical evidence against these

variants of GRW, generating a lower bound on the collapse rate and thereby a way

of potentially falsifying the theory.

In each of the first three chapters, there is a key point at which agents are forced

to ask where in the quantum multiverse they are located. They must try to locate

themselves in a quantum world. The papers that compose this dissertation are

each distinct and can be read in isolation. Still, they are related to one another

in complex ways. One theme that emerges from reading the first three together is

that understanding the degree to an agent should expect to find themselves in a

particular world—and how the agent’s expectations should change when worlds are

altered, created, or destroyed—is crucial to understanding which versions of quantum

mechanics are supported by the data. Debates about the foundations of quantum

mechanics have often centered on the easy case: non-relativistic quantum mechanics.

Some proposals which are very promising in this context—like Bohmian mechanics

and GRW theory—may not extend to the harder case of relativistic quantum field

theory. I am interested in understanding and overcoming the barriers to such

extensions. Uniting our best theory of particle physics, relativistic quantum field

theory, with our best theory of gravity, general relativity, is one of the central goals

of contemporary theoretical physics. I believe progress has been impeded by the
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obscurity of relativistic quantum field theory. In my opinion, this is largely due to

the fact that there are multiple very di↵erent proposals about how to understand

non-relativistic quantum mechanics. In the future I would like to examine which

“interpretations” of quantum mechanics can be extended to relativistic quantum field

theory. Chapter four of the dissertation is the beginning of this endeavor.

In the final chapter of the dissertation, relativistic quantum field theory is

presented in an atypical way which makes it especially clear what changes are

involved in moving from non-relativistic quantum mechanics or classical field theory to

relativistic quantum field theory. The move from non-relativistic quantum mechanics

to relativistic quantum field theory is made in two steps: first, the state space

is expanded so that the total number of particles can change with time; second,

the non-relativistic expression for the kinetic energy in the Schrödinger equation is

replaced with a relativistic expression. These two relatively simple changes su�ce to

move from non-relativistic quantum mechanics to relativistic quantum field theory.

However, in this story it is unclear what quantum field theory has to do with fields.

To clarify the connection, quantum field theory is next arrived at via a second path,

from classical relativistic field theory: wave functionals over the space of possible field

configurations are introduced to allow fields to enter superpositions. It is then shown

that there is a sense in which both paths yield the same theory.

At times, one might get the feeling that the theories and scenarios under

consideration in this dissertation are too wild to be relevant to the scientific question

of what laws govern our universe. Unfortunately, I fear this is unavoidable. Quantum

mechanics requires us to rethink some elements of our classical picture of the world.

Exactly what elements must be rethought is a di�cult question. There appear to

be multiple options for jettisoning this and keeping that, none of which are, in the

end, wholly intuitive and familiar. By being non-committal and imprecise, one may

be able to give the impression that quantum mechanics can be understood without
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much weirdness. As far as we know, it cannot. Here I try to tackle the strangeness

head on, looking at physical theories which—although each odd in its own way—are

at least sincere attempts to avoid vagueness, obfuscation, and imprecision; attempts

to describe what electrons might be doing when no one is looking.
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Dissertation Abstract

There appear to be multiple mathematically and physically distinct theories that

successfully reproduce the empirical predictions of quantum mechanics, so-called

“interpretations” of quantum mechanics. This dissertation uses the tools of formal

epistemology (prominently, the concept of self-locating uncertainty) to investigate

which of the theories that have been put forward really are empirically adequate and

what alternatives can be devised. The first chapter introduces a novel theory that

incorporates aspects of two well-developed alternatives, Bohmian mechanics and the

many-worlds interpretation. The quantum wave function can be represented as a

field on configuration space, the space of possible ways particles can be arranged.

According to Bohmian mechanics a single point in this space is special; it represents

the way all of the particles actually are arranged. The newly introduced theory holds

that many of the points in configuration space are special; for each, there is a world

in which particles are arranged that way. In general, there will be multiple worlds

that are so similar that an agent cannot tell directly from experience which they are

in; self-locating uncertainty is unavoidable. The next chapter argues for the empirical

adequacy of the many-worlds interpretation. In this version of quantum mechanics,

processes like quantum measurements cause agents to split into multiple copies and

enter periods of self-locating uncertainty. An epistemic principle demarcating which

facts about the world one’s credences might reasonably depend on (only facts about

what’s happening around here) is used to derive probabilistic predictions from the

many-worlds interpretation. In the third chapter self-locating uncertainty is employed

in evaluating another version of quantum mechanics, Ghirardi-Rimini-Weber theory.
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In this theory, random collapse events prevent our world from splitting into many. If

the collapse events are rare, this prevention fails. Other worlds have time to form but

most are short-lived. Our survival provides evidence against that kind of theory. The

final chapter is an original introduction to relativistic quantum field theory which

lays groundwork for evaluating the prospects of extending various interpretations of

quantum mechanics to this more sophisticated theory.
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Chapter 1

Quantum Mechanics as Classical Physics

Abstract: Here I explore a novel no-collapse interpretation of quantum mechanics

which combines aspects of two familiar and well-developed alternatives, Bohmian

mechanics and the many-worlds interpretation. Despite reproducing the empirical

predictions of quantum mechanics, the theory looks surprisingly classical. All there

is at the fundamental level are particles interacting via Newtonian forces. There is

no wave function. However, there are many worlds. [The published version of this

chapter appears in Philosophy of Science 82 (2015).]

1.1 Introduction

On the face of it, quantum physics is nothing like classical physics. Despite its oddity,

work in the foundations of quantum theory has provided some palatable ways of

understanding this strange quantum realm. Most of our best theories take that story

to include the existence of a very non-classical entity: the wave function. Here I o↵er

an alternative which combines elements of Bohmian mechanics and the many-worlds

interpretation to form a theory in which there is no wave function. According to this

theory, all there is at the fundamental level are particles interacting via Newtonian

forces. In this sense, the theory is classical. However, it is still undeniably strange as

it posits the existence of a large but finite collection of worlds, each completely and

utterly real. When an experiment is conducted, every result with appreciable Born
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Rule probability does actually occur in one of these worlds. Unlike the many worlds

of the many-worlds interpretation, these worlds are fundamental, not emergent; they

are interacting, not causally isolated; and they never branch. In each of these worlds,

particles follow well-defined trajectories and move as if they were being guided by a

wave function in the familiar Bohmian way.

In this chapter I will not attempt to argue that this theory is unequivocally

superior to its competitors. Instead, I would like to establish it as a surprisingly

successful alternative which deserves attention and development, hopefully one day

meriting inclusion among the list of promising realist responses to the measurement

problem.

In §1.2, I briefly review why quantum mechanics is in need of a more precise

formulation and discuss two no-collapse theories: the many-worlds interpretation and

Bohmian mechanics. I then go on to o↵er a rather unlikable variant of Bohmian

mechanics which adds to the standard story a multitude of worlds all guided by

the same wave function. This theory is useful as a stepping stone on the way to

Newtonian QM. Newtonian QM is then introduced. As soon as Newtonian QM is

on the table, §1.5 & 1.6 present one of the most significant costs associated with

the theory: the space of states must be restricted if the theory is to recover the

experimental predictions of quantum mechanics. In §1.7, 1.8, & 1.9, I discuss the

advantages of this new theory over Everettian and Bohmian quantum mechanics in

explaining the connection between the squared amplitude of the wave function and

probability. In §1.10, I consider the possibility of modifying the theory so that it

describes a continuous infinity of worlds instead of a finite collection, concluding that

such a modification would be inadvisable. In §1.11, I propose two options for the

fundamental ontology of Newtonian QM. In §1.12, I use Newtonian QM to explain

the way the wave function transforms under time reversal and Galilean boosts. Spin

is then discussed in §1.13.
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Some limitations of the theory presented here are worth stating up front. First,

just as hydrodynamics relies on approximating a discrete collection of particles as

a continuum, in its current form this theory must treat the discrete collection of

worlds as a continuum. As this is merely an approximation, empirical equivalence

with standard quantum mechanics is likely only approximate (§1.5). Second, one

must impose a significant restriction on the space of states if the predictions of QM

are to be reproduced (the Quantization Condition, §1.6). Third, I will not discuss

extending the theory to handle multiple particles with spin or relativistic quantum

physics.

Newtonian QM is a realist version of quantum mechanics based on the theory’s

hydrodynamic formulation (originally due to Madelung, 1927). For recent and

relevant discussions of quantum hydrodynamics, see Wyatt (2005); Holland (2005).

An approach much like Newtonian QM was independently arrived at by Hall et al.

(2014). Newtonian QM is somewhat similar to Böstrom’s (2012) metaworld theory1

and the proposal in Tipler (2006). Related ideas about how to remove the wave

function are explored in Poirier (2010); Schi↵ & Poirier (2012), including a suggestion

of many worlds.

To avoid confusion, throughout the chapter I’ll use “universe” to denote the

entirety of reality, what philosophers call “the actual world” and what in these

contexts is sometimes called the “multiverse,” reserving “world” for the many worlds

of quantum mechanics.

1The key di↵erence with Newtonian QM being that Böstrom’s theory does not as thoroughly
excise the wave function (the dynamics being given by (1.1) not (1.16)).
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1.2 The Measurement Problem

If the state of the universe is given by a wave function and that wave function always

evolves in accordance with the Schrödinger equation, then quantum measurements

will typically not have single definite outcomes. Actual measurements of quantum

systems performed in physics laboratories do seem to yield just one result. This, in

brief, is the measurement problem. There are various ways of responding.

According to Everettian quantum mechanics, a.k.a. the many-worlds

interpretation, the wave function  is all there is. The evolution of the wave

function is always given by the Schrödinger equation,

i~ @
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where  is a function of particle configuration ( #–
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,
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mass of particle k, r2

k

is the Laplacian with respect to #–
x
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, and V is the classical

potential energy of particle configuration ( #–
x

1

,

#–
x

2

, ...) at t. When an observer performs

a quantum measurement, the universal wave function enters a superposition of the

observer seeing each possible outcome. This is not to be understood as one observer

seeing many outcomes, but as many observers each seeing a single outcome. Thus, the

theory is not obviously inconsistent with our experience of measurements appearing to

have unique outcomes. According to Everettian quantum mechanics, there is nothing

more than the wave function and therefore things like humans, measuring devices,

and cats must be understood as being somehow composed of or arising out of wave

function. (Wallace, 2003, 2012 takes these things to be patterns or structures in the

universal wave function.) To summarize, here is what the Everettian QM says that
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there is (the ontology) and how it evolves in time (the dynamical laws).

Ontology: (I) universal wave function  ( #–
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, ..., t)

Law: (I) Schrödinger equation (1.1)

A second option in responding to the measurement problem is to expand the

ontology so that the universe contains both a wave function evolving according to
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Experiments are guaranteed to have unique outcomes because humans and their

scientific instruments are made of particles (not wave function). These particles

follow well-defined trajectories and are never in two places at once. This theory is

Bohmian mechanics, a.k.a. de Broglie-Bohm pilot wave theory.

Ontology: (I) universal wave function  ( #–
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, ..., t)

(II) particles with positions #–
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(t) and velocities #–
v
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Laws: (I) Schrödinger equation (1.1)

(II) guidance equation (1.2)
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Since the focus of this chapter is not on Everettian or Bohmian quantum

mechanics, I’ve sought to present each as simply as possible. The best way to

formulate each theory—ontology and laws—is a matter of current debate.

1.3 Prodigal QM

As a precursor to the theory I’ll propose, consider the following interpretation of

quantum mechanics which has both a many-worlds and a Bohmian flavor. The wave

function always obeys the Schrödinger equation. There are many di↵erent worlds,

although a finite number, each represented by a point in configuration space2. There

are more worlds where | |2 is large and less where it is small. Each world is guided by

the single universal wave function in accordance with the Bohmian guidance equation

and thus each world follows a Bohmian trajectory through configuration space. Let’s

call this ontologically extravagant theory Prodigal QM.3 Why include a multitude of

worlds when we only ever observe one, our own? We could simplify the theory by

removing all of the worlds but one, arriving at Bohmian mechanics (Valentini, 2010,

§7). But, less obviously, it turns out that there is another route to simplification: keep

the multitude of worlds but remove the wave function. This option will be explored

in the next section.

According to Prodigal QM, the universe contains a wave function  ( #–
x

1

,

#–
x

2

, ..., t)

on configuration space and a large number of worlds which can be represented as

points moving around in configuration space. The arrangement of the worlds in

configuration space is described by a number density, ⇢( #–
x

1

,

#–
x

2

, ..., t), normalized

2The location of a single particle is given by a point in space, ( #–
x ). The locations of all particles

are given by a point in configuration space, ( #–
x 1,

#–
x 2, ...), where

#–
x i is the location of particle i.

3With a continuous infinity of worlds, Prodigal QM is mentioned in Valentini (2010, §7) and in
Barrett (1999) (in Barrett’s terminology, it is a Bohmian many-threads theory in which all of the
threads are taken to be completely real); a closely related proposal is discussed in Dorr (2009).
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In Prodigal QM, if there is a world at ( #–
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, ...) at t the velocity of the kth particle in

that world is #–
v

k

( #–
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, ..., t).4 With these velocity fields, the equivariance property

of the Bohmian guidance equation (1.2) ensures that ⇢ is always equal to | |2 if it

ever is (see Dürr et al. , 1992, §3).

Ontology: (I) universal wave function  ( #–
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(II) particles in many worlds described by a world density ⇢( #–
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velocity fields #–
v

k

( #–
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Laws: (I) Schrödinger equation (1.1)

(II) guidance equation (1.6)5

The use of densities and velocity fields is familiar from fluid dynamics. A quick

review will be helpful. Consider a fluid composed of N point particles which each

4This is not true for Newtonian QM (see §1.5).
5Actually, the second dynamical law is more specific than (1.6) since it requires not just that the

velocity fields obey (1.6) but that each world follows an exact Bohmian trajectory (see §1.5). The
connection between ⇢ and  in (1.5), though not a dynamical law, might best be thought of as a
third law of Prodigal QM.
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have mass m. The number density of these particles is n( #–
x , t), normalized so that

R
d

3

x

1

d

3

x

2

... n = N . The mass density is m⇥n( #–
x , t). Integrating n( #–

x , t) over a

not-too-small volume gives the number of particles in that volume at t. Whereas

n( #–
x , t) gives the density of particles in three-dimensional space, ⇢ gives the density

of worlds in configuration space. The velocity field for the fluid is #–
u ( #–

x , t), defined as

the mean velocity of particles near #–
x at t.6 For an inviscid compressible fluid with

zero vorticity, the time evolution of n and #–
u are determined by a continuity equation

@n( #–
x , t)

@t

= �

#–
r ·

⇣
n ( #–

x , t) #–
u ( #–

x , t)
⌘
, (1.7)

and a Newtonian force law

m

#–
a ( #–

x , t) = �

#–
r


p( #–

x , t)

n( #–
x , t)

+ V ( #–
x , t)

�
, (1.8)

where V is the external potential, p is the pressure, and

#–
a ( #–

x , t) =
D

#–
u ( #–

x , t)

Dt

=
⇣

#–
u ( #–

x , t) ·
#–
r

⌘
#–
u ( #–

x , t) +
@

#–
u ( #–

x , t)

@t

. (1.9)

The acceleration is given by the material derivative of #–
u not the partial derivative

because a particle’s position in the fluid is time dependent.

The three quantum theories on the table thus far are applied to the double-slit

experiment in figure 1.1. In the bottom-right diagram is Everettian QM where the

6More precisely, the number density and velocity field provide a good description of the
particle trajectories if to a good approximation: n( #–

x , t) gives the average number of particles in
a small-but-not-too-small region R centered about #–

x over a short-but-not-too-short period of time
T around t divided by the volume of R, and #–

u ( #–
x , t) gives the average velocities of the particles in

R over T . For more detail, see Chapman & Cowling (1970, §2.2). The connection between ⇢ and
the #–

v ks and the trajectories of individual worlds could be spelled out along similar lines, but full
rigor in the context of Newtonian QM would require a better understanding of the dynamics (see
§1.5 and Hall et al. , 2014).
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universe is just a wave function. The particle’s wave function is initially peaked at the

two slits and then spreads out and interferes as time progresses. When the particle

hits the detector, a multitude of worlds will separate via decoherence and in each

the particle will be observed hitting at a particular point on the screen. In Bohmian

mechanics, one adds to the wave function an actual particle which follows a definite

trajectory in accordance with the guidance equation. In Prodigal QM, there is a

wave function and a collection of worlds, each of which contains a particle following a

Bohmian trajectory. In Newtonian QM, which will be introduced at the end of §1.4,

one retains the multitude of worlds but removes the wave function.

1.4 Removing the Wave Function

One can derive an equation for the dynamics of particles in Prodigal QM that makes

no reference to the wave function. Once this is done, we can formulate an alternate

theory where the superfluous wave function has been removed. This new theory,

Newtonian QM, will be the focus of the remainder of the chapter. The mathematical

manipulations presented in this section are familiar from discussions of Bohmian

mechanics, but take on a di↵erent meaning as derivations of particle dynamics in

Prodigal QM. Those who wish to skip the derivation should simply note that (1.16)

is derivable from (1.1), (1.5), and (1.6).

As ⇢ = | |2 (1.5), the wave function can be written in terms of the world-density

and a phase factor as

 ( #–
x

1

,

#–
x

2

, ..., t) =
p

⇢( #–
x

1

,

#–
x

2

, ..., t)ei✓(
#–
x 1,

#–
x 2,...,t)

. (1.10)
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Prodigal QM Newtonian QM

Bohmian QM Everettian QM

Figure 1.1: Four Quantum Theories Diagrams of the evolution of a single particle
in the double-slit experiment according to four di↵erent no-collapse theories. The
vertical axis gives the position of the single particle and the horizontal axis time. | |2

is shown as a contour plot and particle trajectories as lines.

Plugging (1.10) into the guidance equation (1.6) generates

#–
v

k

( #–
x

1

,

#–
x

2

, ..., t) =
~
m

k

#–
r

k

✓( #–
x

1

,

#–
x

2

, ..., t) , (1.11)

relating #–
v

k

and ✓. (At this point, I will stop repeating the arguments of  , ⇢, ✓, and
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#–
v

k

; they all depend on the configuration of particles and the time.)

The evolution of the wave function  is given by the Schrödinger equation (1.1).

Dividing both sides of (1.1) by  and using (1.10), one can derive that

i~
2⇢

@⇢

@t

� ~@✓
@t

=
X

k

�~2
2m

k


r

2

k

p

⇢

p

⇢

+
2i
p

⇢

⇣
#–
r

k

p

⇢

⌘
·

⇣
#–
r

k

✓

⌘
+ ir

2

k

✓ �

���
#–
r

k

✓

���
2

�
+ V .

(1.12)

Equating the imaginary parts, using (1.11), yields

@⇢

@t

= �

X

k

#–
r

k

· (⇢ #–
v

k

) , (1.13)

a continuity equation similar to (1.7). Equating the real parts of (1.12), using (1.11),

yields
@✓

@t

=
X

k

⇢
~

2m
k

r

2

k

p

⇢

p

⇢

�

m

k

2~ |

#–
v

k

|

2

�
�

V

~ . (1.14)

Acting with ~
mj

#–
r

j

on both sides of (1.14) and rearranging, making use of (1.11) and

the fact that

#–
a

j

=
X

k

( #–
v

k

·

#–
r

k

) #–
v

j

+
@

#–
v

j

@t

(1.15)

gives

m

j

#–
a

j

= �

#–
r

j

"
X

k

�~2
2m

k

✓
r

2

k

p

⇢

p

⇢

◆
+ V

#
. (1.16)

We have derived an equation of motion of the form F = ma, similar to both (1.3)

and (1.8).7 The last term in the brackets gives the classical potential energy of the

configuration of particles and makes no reference to the other worlds. The other term

looks like an interaction between the worlds. This term is the quantum potential Q

familiar from Bohmian mechanics (1.4), with | | replaced by
p

⇢.

7This is the multi-particle version of Wyatt (2005, eq. 1.7); Holland (2005, eq. 4.9).
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Within Prodigal QM, we’ve seen that one can derive an equation which determines

the dynamics for all of the particles in all of the worlds without ever referencing the

wave function. (1.16) gives a way of calculating the acceleration of a particle that

doesn’t mention  , as (1.6) does, but only depends on the density of worlds ⇢ and the

potential V . In Prodigal QM, this equation is derived, not part of the statement of the

theory in the previous section. But, what if we took it to be the primary equation of

motion for the particles? One can remove the wave function from Prodigal QM leaving

only the corresponding ⇢ and #–
v

k

s. So long as one enforces (1.16), the dynamics for

particles will be essentially as they were in Prodigal QM.

Now we can formulate a new theory: Newtonian QM. Reality consists of a large

but finite number of worlds whose distribution in configuration space is described

by ⇢( #–
x

1

,

#–
x

2

, ..., t). The velocities of the particles in the worlds are described by the

velocity fields #–
v

k

( #–
x

1

,

#–
x

2

, ..., t). The dynamical law for the velocity fields is (1.16), a

Newtonian force law. As the particles move, the resultant shift in the distribution ⇢

is determined by (1.13). According to Newtonian QM, quantum mechanics is nothing

but the Newtonian mechanics of particles in many di↵erent worlds.

Ontology: (I) particles in many worlds described by a world density

⇢( #–
x

1

,

#–
x

2

, ..., t) and velocity fields #–
v

k

( #–
x

1

,

#–
x

2

, ..., t)

Law: (I) Newtonian force law (1.16)8

Comparing this statement of Newtonian QM to the formulation of Bohmian

mechanics in §1.2, Newtonian QM is arguably the simpler theory. The theory has

a single dynamical law and the fundamental ontology consists only of particles.

However, this quick verdict could certainly be contested, especially in light of the

8The continuity equation (1.13), although used alongside (1.16) to calculate the dynamics, is not
here considered a dynamical law since it merely encodes the fact that worlds are neither created nor
destroyed. As is mentioned in §1.6, the Quantization Condition might be considered a non-dynamical
law.
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discussion below: (1.16) is not a fundamental law (§1.5); an unnatural restriction

must be put on the space of states (§1.6); there are multiple ways to precisify ontology

of the theory (§1.11).

1.5 The Continuum Approximation

Since the number of worlds is taken to be finite, the actual distribution of worlds will

be highly discontinuous; some locations in configuration space will contain worlds

and others will not. Still, we can use a smooth density function ⇢ to describe the

distribution of worlds well enough at a coarse-grained level (see footnote 6). The

velocity field #–
v

k

( #–
x

1

,

#–
x

2

, ...) gives the mean velocity of the k-th particle in worlds near

( #–
x

1

,

#–
x

2

, ...), but the k-th particle in a world at ( #–
x

1

,

#–
x

2

, ...) may have a somewhat

di↵erent velocity from #–
v

k

( #–
x

1

,

#–
x

2

, ...). So, in Newtonian QM worlds will typically

only approximately follow Bohmian trajectories through configuration space just as

fluid particles do not exactly follow pathlines.9

In fluid dynamics, the use of a description of the fluid in terms of n and #–
u

is justified by the fact that we can calculate the dynamics of these coarse-grained

properties (and others) without needing to know exactly what all the particles are

doing. Also, it is the coarse-grained properties that we measure (Batchelor, 1967,

§1.2; Chapman & Cowling, 1970, §5). What justifies the use of ⇢ and the #–
v

k

s to

describe the collection of worlds? As it turns out, we can calculate the dynamics

of these properties without worrying about the exact locations of worlds via (1.13)

and (1.16). Once the evolution of ⇢ and the #–
v

k

s are known, we can use ⇢(t) to get

probabilities (§1.9) and the #–
v

k

(t)s to determine pathlines (showing that particles

follow Bohmian trajectories).

9A pathline gives the trajectory of a particle always traveling at the mean velocity #–
u .
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The equation of motion for the theory (1.16) treats the collection of worlds as

a continuum. It fails to be a fundamental law since it does not describe the precise

evolution of each world and is not valid if there are too few worlds to be well-described

as a continuum. Slight deviations from standard quantum mechanical behavior

should be expected due to the fact that there are only a finite number of worlds;

worse deviations the fewer worlds there are. Future experiments may observe such

deviations and support Newtonian QM. As textbook quantum mechanics works well,

we have reason to believe there are a very large number of worlds. (The situation here

is similar to that of spontaneous collapse theories, which are in principle empirically

testable.) Ultimately, the quantum contribution to the force in (1.16) should be

derivable from a more fundamental inter-world interaction. One should be able to

calculate the forces when there are only a handful of worlds. Hopefully future research

will explain how the continuum approximation arises from a “micro-dynamics” of

worlds just as fluid dynamics arises from the micro-dynamics of molecules. For some

progress in this direction, see Hall et al. (2014).

1.6 Reintroducing the Wave Function

In §1.4 we saw that for any wave function  (t) obeying the Schrödinger equation,

there exists a world-density ⇢(t) and a collection of velocity fields #–
v

k

(t) obeying (1.16)

such that the relations between  , ⇢, and the #–
v

k

s expressed in (1.5) and (1.6) are

satisfied at all times. The converse does not hold. There are some combinations of

⇢ and the #–
v

k

s, that is, some ways the universe might be according to Newtonian

QM, that do not correspond to any wave function. In general, we’ll restrict our

attention to combinations of ⇢ and the #–
v

k

s that can be derived from a wave function

via (1.5) and (1.6) as it is these states which reproduce the predictions of quantum

physics. For such states, it may be useful to introduce a wave function,  , even
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though it is not a fundamental entity and does not appear in the equation of motion

of the theory (1.16). The wave function serves as a convenient way of summarizing

information about the positions and velocities of particles in the various worlds; the

magnitude encodes the density of worlds (1.5) and the phase encodes the velocities

of particles (1.11). The wave function need not be mentioned in stating the theory

or (in principle) for deriving empirical predictions, but introducing a wave function

is useful for making contact with standard treatments of quantum mechanics.

As was just mentioned, there are some states of the universe in Newtonian QM that

do not correspond to quantum wave functions.10 That is, there are some combinations

of ⇢ and the #–
v

k

s for which one cannot find a wave function  that satisfies (1.5) and

(1.6). The amplitude of  follows straightforwardly from ⇢, but not every set of

velocity fields #–
v

k

can be expressed as ~
mk

times the gradient of a phase (1.11). For

this to be the case, we must impose a constraint on the velocity fields.11

Quantization Condition Integrating the momenta of the particles along any closed

loop in configuration space gives a multiple of Planck’s constant, h = 2⇡~.

I (
X

k

h
m

k

#–
v

k

· d

#–
`

k

i)
= nh . (1.17)

If the Quantization Condition is satisfied initially, (1.16) ensures that it will be

satisfied at all times.

To see one sort of constraint this requirement imposes, think about the following

case: a single electron orbiting a hydrogen nucleus in the n = 2, l = 1, m = 1 energy

10This point was made concisely by Wallstrom (1994) in the context of quantum hydrodynamics;
it was noted earlier by Takabayasi (1952); see also Holland (2005, eq. 4.14).

11This is loosely analogous to the constraint on the fluid velocity field #–
u that it be irrotational

(everywhere zero vorticity) which is required to introduce a velocity potential (and for the validity
of (1.8)).
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eigenstate. For simplicity, take the nucleus to provide an external potential and the

universe to contain many worlds with a single electron in each. The electron’s wave

function is

 
2,1,1

(r, ✓,�) =
�1

8
p

a

5

⇡

e

�r
2a
e

i�

r sin ✓ , (1.18)

where a is the Bohr radius. The guidance equation tells us that the particle in

each world executes a circle around the z-axis with velocity v

�

= ~
mrsin✓

, entirely

in the b
� direction (here � is the azimuthal angle). (1.17) is trivially satisfied since

m~
mrsin✓

⇥ 2⇡rsin✓ = h. But, if the electrons were circling the z-axis a bit faster or a

bit slower the integral wouldn’t turn out right and (1.17) wouldn’t be satisfied; they

could orbit twice as fast but not 1.5 times as fast.

Without the Quantization Condition, Newtonian QM has too large a space of

states. There are ways the universe might be that are quantum mechanical and

others that are not. It is easy to specify what universes should be excluded, those

that violate (1.17), but hard to give a principled reason why those states should be

counted as un-physical, improbable, or otherwise ignorable. For now, I think it is

best to understand the Quantization Condition as an empirically discovered feature

of the current state of the universe, or equivalently, of the initial conditions. However,

one might prefer to think of it as a non-dynamical law. A better explanation of the

Quantization Condition’s satisfaction would help strengthen Newtonian QM as it

might seem that the best possible explanation of the condition’s satisfaction is the

existence of a wave function (backtracking to Prodigal QM). In the remainder of the

chapter I will assume that the Quantization Condition is satisfied.

Suppose the world density and the velocity fields at a time are given. Provided

the Quantization Condition is satisfied, there exists a wave function satisfying (1.5)

and (1.6). But, is it unique?12 That is, can (1.5) and (1.6) be used to define  in

12Here the question is considered at the level of the continuum description. Because there
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terms of ⇢ and the #–
v

k

s?13 First consider the case where ⇢ is everywhere nonzero. The

magnitude of  can be derived from (1.5), and (1.11) gives the phase up to a global

constant. The wave function can be determined up to a global phase. This would

be insu�cient if the overall phase mattered, but as the global phase is arbitrary this

gives exactly what we need. Actually, it’s even better this way. The fact that the

dynamics don’t care about the overall phase is explained in Newtonian QM by the

fact that changes in the global phase of the wave function don’t change the state of

the universe; that is, they don’t change ⇢ or the #–
v

k

s.

If the region in which ⇢ 6= 0 is not connected, the wave function is not uniquely

determined by ⇢ and the #–
v

k

s—one can introduce arbitrary phase di↵erences between

the separate regions. As an example of the breakdown of uniqueness, consider the

second energy eigenstate of a single particle in a one-dimensional infinite square well

of length L. In this case the wave function is

 

a

(x) =

r
2

L

sin

✓
2⇡x

L

◆
. (1.19)

This describes a universe with ⇢ and #–
v given by

⇢(x) =
2

L

sin2

✓
2⇡x

L

◆

#–
v (x) =

8
<

:
0 if x 6= L

2

undefined if x = L

2

. (1.20)

The velocity field #–
v is undefined where there are no worlds. These expressions for ⇢

are multiple ways of coarse-graining, there will be multiple not-too-di↵erent ⇢s and #–
v ks that

well-describe any finite collection of worlds and thus many wave functions. It may be that some ways
of coarse-graining avoid the problems raised below by ensuring that the velocity fields are always
well-defined. If they do, the derivability of  from ⇢ and the #–

v ks comes at the cost of limiting the
wave functions one can recover, losing those in (1.18), (1.19), and (1.21).

13See also the discussion in Holland (2005, §4).
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and #–
v are also compatible with14

 

b

(x) =

r
2

L

����sin
✓
2⇡x

L

◆���� . (1.21)

This exposes an inconvenient indeterminism: The time evolution of  
a

is trivial

as it is an energy eigenstate. Since  
b

is not di↵erentiable at L/2, its time evolution

cannot be calculated straightforwardly using the Schrödinger equation (1.1). As (1.5)

and (1.6) do not determine which wave function is to be used to describe the state in

(1.20), it is not clear how the state will evolve. The future evolution of the universe

is not uniquely determined by the instantaneous state (1.20), the continuity equation

(1.13), and the equation of motion (1.16). This indeterminacy arises because ⇢ is zero

and the velocity field is undefined at L/2, so @⇢

@t

and #–
a are undefined at L/2. There

is reason to think this indeterminism is an artifact of the continuum approximation

where (1.13) and (1.16) need the velocity fields to be well-defined at every point

in configuration space—even where there are no worlds—to yield a unique time

evolution. The fundamental dynamics should take as input a specification of the

position of each world in configuration space and the velocities of the particles in

those worlds, all of which will be well-defined (§1.5).

Consider a slightly di↵erent problem from that just considered: Suppose one would

would like to find a wave function (t) which describes a history of ⇢(t) and the #–
v

k

(t)s,

14The wave function  b has the disreputable property of not being smooth. It should be noted
that there exist pairs of distinct smooth non-analytic wave functions which agree on ⇢ and #–

v at a
time. (Thanks to Gordon Belot for suggesting an example like this.) For example,

 ↵(x) =

8
><

>:

Ce

�1
1�(x+2)2 if � 3 < x < �1

�Ce

�1
1�(x�2)2 if 1 < x < 3

0 else

 �(x) = | ↵(x)| .
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satisfying (1.13) and (1.16) over some time interval. There will be a collection of wave

functions which satisfy (1.5) and (1.6) at each time. For any such wave function, one

can multiply it by a spatially homogeneous time-dependent phase factor, eif(t), to

get another wave function which always satisfies (1.5) and (1.6). (The global phase

at each time is arbitrary and (1.5) and (1.6) do nothing to stop you from picking

whatever global phase you’d like at each time.) In general, some of these wave

functions will satisfy the Schrödinger equation (1.1) and others will not. To constrain

the time-dependence of the phase when using a wave function to describe histories,

(1.14) can be imposed as a third link between the wave function and the particles (in

addition to (1.5) and (1.6)). Because (1.5), (1.6), (1.13), and (1.14) hold, the wave

function must obey the Schrödinger equation.

This section began with the observation that there are states in Newtonian QM

that cannot be described by a wave function. However, these can be excised by

imposing the Quantization Condition. Given a state that can be described by a wave

function, one might hope that this wave function would be unique. Sometimes it is

not. A wave function aptly describes a state in Newtonian QM at a time if (1.5) and

(1.6) are satisfied. But, if these are the only constraints, a history in Newtonian QM

can always be described by many wave functions. So, there is freedom to add a third

connection between the wave function and the particles. Imposing (1.14) proves

a convenient choice as it guarantees that the wave function obeys the Schrödinger

equation—a desirable feature since the point of introducing a wave function was to

clarify the connection between Newtonian QM and standard treatments of quantum

mechanics.

Because a wave function can be introduced to describe the world density and

the velocity fields, one is free to use well-known techniques to calculate the time

evolution of the wave function and use that to determine how the world density and

velocity fields evolve. However, there is evidence that it is sometimes easier to use
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the trajectories of worlds to calculate the time evolution (Wyatt, 2005; Hall et al. ,

2014).

1.7 Probability: Versus Everettian Quantum

Mechanics

The Born Rule is easier to justify in Newtonian QM than in the many-worlds

interpretation. In Everettian QM, there is dispute over how one can even make

sense of assigning probabilities to measurement outcomes when the way the universe

will branch is deterministic and known (the incoherence problem). There is also

the quantitative problem of why the Born Rule probabilities are the right ones to

assign. Recent derivations tend to appeal to complex decision-theoretic arguments,

which, although they may ultimately be successful, are not uncontroversially accepted

(Saunders et al. , 2010). Things look worrisome because there are some prima facie

plausible ways of counting agents which yield the result that the vast majority of

agents see relative frequencies of experimental outcomes which deviate significantly

from those predicted by the Born Rule (although the total amplitude-squared weight

of the branches in which agents see anomalous statistics is small). Newtonian QM

does not run into similar problems since the number of worlds in a particular region

of configuration space is always proportional to | |2. At any time, most agents are

in high amplitude regions. So, in typical measurement scenarios, most agents will see

long-run frequencies which agree with the predictions of the Born Rule.

Were a proponent of Prodigal QM to claim similar advantages over Everettian

QM, one could reasonably object that the Born Rule is recovered only because it

was put in by hand. In Prodigal QM, (1.5) is an additional postulate. In Newtonian

QM, it is not. The density of worlds is given by | |2 because  is definitionally
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related to the density of worlds by (1.5) (see §1.6). The wave function is, after all,

not fundamental but a mere description of ⇢ and the #–
v

k

s.

1.8 Probability: Versus Bohmian Mechanics

Although it is widely agreed that the Born Rule can be justified in Bohmian

mechanics, there is disagreement about how exactly the story should go. In this

section I will briefly discuss three ways of justifying the Born Rule in Bohmian

mechanics and then argue that Newtonian QM can give a cleaner story. First, though,

note an important similarity between the two theories. According to Newtonian QM

each world follows an approximately Bohmian path through configuration space. So

if you think that worlds in which particles follow Bohmian trajectories are able to

reproduce the results of familiar quantum experiments, you should think worlds in

Newtonian QM can too.

In Bohmian mechanics, not all initial conditions reproduce the statistical

predictions of quantum mechanics. That is, not all specifications of the initial wave

function  (0) and particle configuration ( #–
x

1

(0), #–
x

2

(0), ...) yield a universe in which

experimenters would see long-run statistics of measurements on subsystems which

agree with the predictions of the Born Rule. Why should we expect to be in one of

the universes with Born Rule statistics? One way to respond to this problem is to

add a postulate to the theory which ensures that ensembles of particles in the universe

will (or almost certainly will) display Born Rule statistics upon measurement (e.g.,

Holland, 1993, §3.6.3). A second option is to argue that typical universes are such

that Born Rule frequencies will be observed when measurements are made (Dürr et al.

, 1992). To say that such results are “typically” observed is to say that: for any initial

wave function  (0), the vast majority of initial particle configurations reproduce Born

Rule statistics. Speaking of the “vast majority” of initial configurations only makes
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sense relative to a way of measuring the size of regions of configuration space; here

the measure used is given by | |2. A third option: one could argue that many initial

states will start to display Born Rule statistics su�ciently rapidly that, since we are

not at the beginning of the universe, we should expect to see Born Rule frequencies

now even if such frequencies were not displayed in the distant past (Valentini &

Westman, 2005).

Each of these proposals faces challenges. The additional postulates which might

be added to the theory look ad hoc. The measure used to determine typicality must

be satisfactorily justified.15 The desirable evolution of states described in the third

option has only been demonstrated in relatively simple cases. Also, there will certainly

exist initial conditions that do not come to display Born Rule statistics su�ciently

rapidly and these must somehow be excluded. To the extent that one finds these

objections to Bohmian strategies worrisome, it is an advantage of the new theory

that it avoids them.

Although Newtonian QM, like Bohmian mechanics, permits a particular world

to have a history of measurement results where the frequencies of outcomes do not

match what one would expect from the Born Rule, it is impossible for the density

of worlds to deviate from | |2. So, in light of the results in Dürr et al. (1992), it

will always be the case that Born Rule statistics are observed in the vast majority of

worlds in any universe of Newtonian QM. Since we’re not sure which world we are

in, we should expect to be in one in which Born Rule statistics are observed.

15For a statement of the objection, see Dickson (1998, §5.4). For a variety of reasons to regard
the measure as natural, see Goldstein & Struyve (2007).
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1.9 Probability: Newtonian QM

If the universe’s evolution is deterministic and the initial state is known, what

is there left for an agent to assign probabilities to? There is no incoherence

problem in Newtonian QM since, given the state of the universe, one is generally

uncertain which of the many distinct worlds one is in. There will always be many

possibilities consistent with one’s immediate experiences. The uncertainty present

here is self-locating uncertainty (see Lewis, 1979). Of course, there will generally also

be uncertainty about the state of the universe.

On to the quantitative problem:16 Given a particular distribution of worlds ⇢ and

set of velocity fields #–
v

k

, that is, given a specification of the state of the universe,

one ought to assign equal credence to being in any of the worlds consistent with one’s

evidence.17 Because there are only a finite number worlds, this advice is unambiguous.

As it turns out, this basic indi↵erence principle su�ces to derive the correct quantum

probabilities. Consider an idealized case in which the agent knows the world density

and the velocity fields, and knows that there is an agent in each of these worlds

having experiences indistinguishable from her own. In this case, the above indi↵erence

principle tells her to assign probabilities to being in di↵erent regions of configuration

space in accordance with ⇢. Since ⇢ = | |2, she must assign credences in accordance

with | |2 and thus in agreement with the Born Rule. Next, suppose this agent learns

the outcome of an experiment. Then she ought to assign zero credence to the worlds

inconsistent with her evidence and reapportion that credence among those which

remain (keeping the probability of each non-eliminated world equal). This updating

is analogous to learning which branch you are on after a measurement in Everettian

16See also the discussion in Boström (2012, §2.4).
17This follows from a more general epistemic principle defended in Elga (2004).
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QM.

In general, the probability agent S ought to assign to her own world having

property A, conditional on a particular state of the universe at a certain time, is

Pr
�
A

��
⇢,

#–
v

1

,

#–
v

2

, ...) =
number of worlds with property A and a copy of S

number of worlds with a copy of S

=

R
dV

AS

⇢( #–
x

1

,

#–
x

2

, ...)R
dV

S
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x
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, ...)
=

R
dV
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| ( #–
x

1

,

#–
x

2

, ...)|2R
dV

S

| ( #–
x

1

,

#–
x

2

, ...)|2
. (1.22)

Here A could be something like, “the pointer indicates 7” or “the particle just fired will

hit in the third band of the interference pattern.” The volume V

S

delimits the set of

worlds, specified by a region of configuration space, compatible with S’s data. Worlds

in this region are such that previous experiments had the outcomes S remembers them

having, macroscopic arrangements of particles match what S currently observes, and

some person is having the same conscious experiences as S.18 The volume V

AS

gives

the set of worlds compatible with S’s data in which A holds.19 These conditional

probabilities can be used to test hypotheses about ⇢ and the #–
v

k

s and thus to learn

about the state of the universe (not just one’s own world) from experience.

1.10 Continuous Infinity or Mere Multitude of

Worlds?

So far, we have taken ⇢ to describe the distribution of a large but finite number

of worlds. But, one might be tempted to defend a variant of Newtonian QM in

which there are a continuous infinity of worlds, one at every point at which ⇢ is

18For simplicity, I have neglected the possibility that S’s memories or current observations are
deceptive.

19Note that the boundaries of VS and VAS will often depend on ⇢ and the #–
v ks.
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non-zero. This causes trouble. The meaning of ⇢ becomes unclear if we move to

a continuous infinity of worlds since we can no longer understand ⇢ as yielding the

proportion of all worlds in a given volume of configuration space upon integration

over that volume. There would be infinite worlds in any finite volume (where ⇢ 6= 0)

and infinite total worlds. If ⇢ doesn’t give the proportion of worlds in a region, it

is unclear why epistemic agents should apportion credences as recommended in the

previous section. So, the continuous variant, if sense can be made of it, faces the

quantitative probability problem head on.

As discussed in §1.5, the dynamical law proposed for Newtonian QM (1.16) is

not fundamental. If it somehow turns out that we cannot view the force caused by

the quantum potential as arising from an interaction between individual worlds, this

would provide a reason to accept a continuous infinity of quantum worlds over a

mere multitude. It might appear to be a strength of the continuous variant that its

laws can already be precisely stated, but I expect that this advantage will evaporate

when possible fundamental interactions are formulated for the discrete variant. The

continuous variant does have a serious advantage: the continuum approximation

(§1.5) is no approximation. Particles will unerringly follow Bohmian trajectories.

1.11 Ontology

According to Newtonian QM, what the universe contains is a finite collection of

worlds. There are at least two ways to precisify this idea. First, one might

take configuration space to be the fundamental space, inhabited by point-particles

(worlds). Second, one might take the fundamental space to be ordinary

three-dimensional space, inhabited by particles in di↵erent worlds.

According to the first picture, on the fundamental level, the universe is

3N -dimensional and contains a large number of point particles, each of which has
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dynamics so complex that it merits the name of “world” or “world-particle.” Forces

between these world-particles are Newtonian and the dynamics are local. Here

Newtonian QM is a theory of the Newtonian dynamics of a fluid of world-particles

in 3N -dimensional space. Albert (1996) has argued that the one world of

Bohmian mechanics can be understood as a world-particle which moves around in

configuration space guided by the wave function. He provides a way of explaining

how the appearance of a three-dimensional world arises from the motion of this

world-particle which applies mutatis mutandis to Newtonian QM in which there are

more world-particles executing the same old Bohmian dances.

On the second picture there are particles interacting in three-dimensional space,

nothing more.20 Space is very densely packed with particles, but not all particles

are members of the same world. Some particles are members of world #1, some of

world #2, etc. What world a particle belongs to might be a primitive property, like

its mass or charge. The equation of motion for a particle in world #827, (1.16),

says that the force from the potential V depends only on the positions of the other

particles in world #827. However, the quantum potential introduces an inter-world

force whereby particles that are not members of world #827 can still impact the

trajectory of a particle in this world. So, particles which happen to be members of

the same world interact in one way, whereas particles which are members of di↵erent

worlds interact another way.

In the many-worlds interpretation, one must tell a somewhat complicated story

about how people and quantum worlds arise as emergent entities in the time-evolving

quantum state (e.g., Wallace, 2003). This story may not be successful. It might be

the case that wave functions evolving in accordance with the Schrödinger equation

20This second option resembles the novel ontology for the many-worlds interpretation proposed
by Allori et al. (2011).
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are incapable of supporting life or at least lives that feel like ours (Maudlin, 2010).

If that’s right, Newtonian QM has a potential advantage. On the second ontological

picture, people are built from particles in the usual way. On the first ontological

picture, there is a story about emergence that must be told but the details of the

story are very di↵erent from the Everettian one and it succeeds or fails independently.

If, on the other hand, the Everettian story about emergence is successful,

then Bohmian mechanics (as formulated here) faces the Everett-in-denial objection

(Deutsch, 1996; Brown & Wallace, 2005; Valentini, 2010). Both Everettian QM and

Bohmian mechanics contain in their fundamental ontology a wave function which

always obeys the Schrödinger equation. If such a wave function is su�cient for there

to be creatures experiencing what appears upon not-too-close inspection to be a

classical world, then Bohmian mechanics, like Everettian QM, includes agents who

see every possible outcome of a quantum measurement. If the Everettian story about

emergence works and the Everett-in-denial objection against Bohmian mechanics is

successful, then Newtonian QM has a serious advantage over Bohmian mechanics.

Newtonian QM cannot be accused of being a many worlds theory in disguise since

the theory embraces its many worlds ontology.

1.12 Symmetries: Time Reversal and Galilean

Boosts

Newtonian QM can help us understand symmetry transformations in quantum

mechanics. First, consider time reversal. Albert (2000) proposes an intuitive

and general account of time reversal symmetry in physical theories which judges

QM, in all of its familiar precisifications, to fail to be time-reversal invariant.

A deterministic physical theory specifies which sequences of instantaneous states
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are allowed and which are forbidden through dynamical laws. If the laws

allow the time-reversed history of instantaneous states for any allowed history

of instantaneous states, then the theory is deemed time-reversal invariant. In

theories like Bohmian mechanics or Everettian QM, the instantaneous state includes

the wave function at a time  ( #–
x

1

,

#–
x

2

, ..., t) and a complete history includes the

wave function at all times. The time reverse of the history is  ( #–
x

1

,

#–
x

2

, ...,�t).

 ( #–
x

1

,

#–
x

2

, ...,�t) will not necessarily satisfy the Schrödinger equation whenever

 ( #–
x

1

,

#–
x

2

, ..., t) does—so quantum mechanics is judged not to be time-reversal

invariant. However,  ⇤( #–
x

1

,

#–
x

2

, ...,�t) will always satisfy the Schrödinger equation

whenever  ( #–
x

1

,

#–
x

2

, ..., t) does (standard textbook accounts take this to be the time

reversed history and thus judge the theory to be time-reversal invariant).

In Newtonian QM, it is straightforward to show that time reversing the history

of particle trajectories amounts to changing the history of the wave function from

 ( #–
x

1

,

#–
x

2

, ..., t) to ⇤( #–
x

1

,

#–
x

2

, ...,�t). The instantaneous state of the world is specified

by giving the locations (but not the velocities) of all of the particles in all of

the worlds. The time reversal operation thus takes the history ⇢( #–
x

1

,

#–
x

2

, ..., t) and

#–
v

k

( #–
x

1

,

#–
x

2

, ..., t) to ⇢( #–
x

1

,

#–
x

2

, ...,�t) and �

#–
v

k

( #–
x

1

,

#–
x

2

, ...,�t). By (1.11), flipping the

phase generates a wave function which describes the flipped velocities of particles in

the time-reversed history. The complex conjugation in the textbook time reversal

operation for quantum mechanics can be explained as deriving from a reversal in the

velocities of the particles.

Newtonian QM is time-reversal invariant according to Albert’s account. Even if

one doesn’t agree with Albert’s account of time-reversal invariance, it is a virtue of

this theory over others that it can give a simple explanation of why the wave function

transforms in the textbook way under time-reversal.

Next, consider Galilean boosts. In a similar spirit to Albert’s criticism of

the standard account of time-reversal, one could argue that quanrtum mechanics
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is not invariant under Galilean boosts since the equations of motion are not

generally obeyed when we take  ( #–
x

1

,

#–
x

2

, ..., t) to  ( #–
x

1

�

#–
wt,

#–
x

2

�

#–
wt, ..., t).21 The

invariance of quantum mechanics under Galilean boosts is sometimes demonstrated

by showing that, for certain potentials, there exists a transformation of the state

which appropriately shifts the probability density and guarantees satisfaction of the

Schrödinger equation (e.g., Ballentine, 1998, §4.3). Under a boost by #–
w, the wave

function is supposed to transform as
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(1.23)

It’s interesting that there exists a transformation which moves probability densities in

the right way and guarantees that the Schrödinger equation is invariant under boosts,

but it is unclear why this particular transformation is the one that really represents

Galilean boosts. In Newtonian QM this transformation of the wave function results

from boosting the velocities of all of the particles in all of the worlds.

Adding #–
w to the velocity of each particle transforms the original density ⇢

0

(t) and

the original velocity fields #–
v

0k

(t) to
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Suppose  
0

(t), ⇢
0

(t), and the #–
v

0k

(t)s satisfy (1.5), (1.6), and (1.14); that is,  
0

(t)

describes this density and these velocity fields. Then, the new wave function  (t)

generated by the transformation in (1.23) will satisfy (1.5), (1.6), and (1.14) for the

⇢(t) and #–
v

k

(t)s in (1.24), provided that the potential V is translation invariant (as

21A point made by Albert in presentations. See also Valentini (1997).
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the reader can verify). Thus, (1.23) gives a general recipe for finding a wave function

which correctly describes the boosted particles.

1.13 Spin-1/2 Particles

There appears to be serious trouble on the horizon for this new theory. In Bohmian

mechanics spin is often treated as a property of the wave function, not the particles

pushed along by it.22 So, if we remove the wave function, it looks like we’ll lose all of

the information about the spin of the system! Actually, there is a very natural way

to extend Newtonian QM to a single particle with spin. If we endow the particle with

a definite spin in every world, we can recover the standard dynamics. Here I’ll apply

to Newtonian QM a strategy which has been used in quantum hydrodynamics and

(a version of) Bohmian mechanics (see Holland, 1993, ch. 9 and references therein).

Consider the dynamics of a single spin-1/2 particle. To our basic ontology,

consisting of a distribution of worlds ⇢( #–
x , t) where the particle has velocity #–

v ( #–
x , t)

in each world, let us add a property to the particle in each world: spin magnetic

moment. The spin magnetic moment #–
u ( #–

x , t) of a particle can be specified by a polar

angle ↵( #–
x , t), an azimuthal angle �( #–

x , t), and a constant µ (for an electron, µ ⇡

�e~
2m

,

where e is the magnitude of the electron’s charge).

#–
µ = µ

0

BBB@

sin↵ cos �

sin↵ sin �

cos↵

1

CCCA
(1.25)

Alternatively, we can speak of the particle’s internal angular momentum
#–
S , which is

22e.g., Dürr & Teufel (2009, §8.4) and Albert (1994, ch. 7)
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related to #–
µ by

#–
S =

~
2µ

#–
µ . (1.26)

With the magnetic moment in hand, we can partially define23 the spinor wave function

� from ⇢ and #–
µ by

� =
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A
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similar to (1.10). Here the z-spin basis is used to represent the spinor.

The Bohmian guidance equation for a spin-1/2 particle is

#–
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m

Im
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�
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r�

�

†
�

#
. (1.28)

Inserting the expression for � in (1.27) yields

#–
v =

~
m

#–
r✓ +

~
m

sin2

↵

2

#–
r� , (1.29)

similar to (1.11).

The Pauli equation for a spin-1/2 particle in the presence of an external magnetic

field is

i~ @

@t

� =

⇢
�~2
2m

r

2 + V � µ

#–
B · �

�
� , (1.30)

where � are the Pauli spin matrices. To focus on spin, the contributions to the

Hamiltonian arising because the particle has a charge (not just a magnetic moment)

have been omitted. From (1.27), (1.29), and (1.30) one can derive the time dependence

23This definition is only partial as ✓ is left unspecified.
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of #–
µ and #–

v . The magnetic moment vector evolves as

~
2µ

d
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dt
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B
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, (1.31)

using the Einstein summation convention over spatial index a.24 The right hand side

gives the net torque on the particle, which arises from a quantum and a classical

contribution. These torques can be combined by defining

#–
B

Tot

⌘

#–
B +

~2 [@
a

(⇢ @
a

#–
µ )]

4mµ

2
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. (1.32)

The net magnetic field
#–
B

Tot

is the sum of a classical and a quantum contribution.

(1.31) gives the classical dynamics for the angular momentum of a magnetic dipole

in the presence of the magnetic field
#–
B

Tot

.

From (1.27), (1.29), and (1.30), it follows that the acceleration can be expressed

as

m

#–
a = �

#–
r [Q+Q

P

+ V ] + µ

a

#–
rB

Tot

a

. (1.33)

This is simply the equation of motion for a particle without spin (1.16) with two new

terms: the classical force on a particle with magnetic moment #–
µ from a magnetic

field
#–
B

Tot

and a spin-dependent contribution to the quantum potential,

Q

P

=
~2

8mµ

2

#–
µ ·

�
r

2 #–
µ

�
=

1

2m

#–
S ·

⇣
r

2
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S

⌘
. (1.34)

24Result as in Holland (1993, eq. 9.3.15). Note that di↵erent conventions are adopted for the sign
of µ. (1.33) is in agreement with Holland’s eq. 9.3.19, although written in a more suggestive form.

32



As with the quantum potential Q discussed in §1.4, this new term represents an

interaction between worlds (as does the quantum contribution to the net magnetic

field
#–
B

Tot

). Together, the above equations of motion for #–
µ and #–

v , (1.31) and (1.33),

serve to define Newtonian QM for a single spin-1/2 particle. We can omit any mention

of the spinor wave function � or the phase ✓ in the fundamental laws. The equations

of motion for #–
µ and #–

v , which govern the evolution of ⇢ via (1.13), will guarantee that

⇢, #–
µ , and #–

v will evolve as if they were governed by a spinor wave function satisfying

the Pauli equation, provided that the velocity field obeys a constraint like the one

imposed for spin-0 particles in §1.6,

I ⇣
m

#–
v � ~ sin2

↵

2

#–
r�

⌘
· d

#–
` = nh . (1.35)

In Newtonian QM, particles have well-defined spin magnetic moments at all times.

How can the theory recover the results of standard experiments involving spin if

particles are never in superpositions of di↵erent spin states? Consider, for example,

a z-spin “measuring” Stern-Gerlach apparatus. Suppose the wave function is in a

superposition z-spin up and z-spin down: 1p
2

|"

z

i+ 1p
2

|#

z

i. When passed through the

inhomogeneous magnetic field, the wave function will split in two. On the standard

account, the particle will be found in either the upper region (corresponding to z-spin

up) or the lower region (corresponding to z-spin down) upon measurement with

equal probability. In Newtonian QM, there is initially an ensemble of worlds, in

each of which the particle has some initial position in the wave packet and in all

of which the particle’s spin magnetic moment points squarely in the x-direction. A

particle in the top half of the initial wave packet has its spin rotated to point in

the z-direction as it passes through the Stern-Gerlach apparatus (in accordance with

(1.31)); a particle in the lower portion will end up with spin pointing in the negative

z-direction. In this theory, the Stern-Gerlach apparatus does not measure z-spin, but
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instead forces particles to align their magnetic moments along the z-axis. This is also

how Stern-Gerlach measurements are interpreted in versions of Bohmian mechanics

where particles have definite spins (see Dewdney et al. , 1986; Holland, 1993, ch. 9).

1.14 Conclusion

An optimistic synopsis : Once we realize that Newtonian QM is a viable way of

understanding non-relativistic quantum mechanics, we see that we never needed to

overthrow Newtonian mechanics with a quantum revolution. One can formulate

quantum mechanics in terms of point particles interacting via Newtonian forces. The

mysterious wave function is merely a way of summarizing the properties of particles,

not a piece of fundamental reality.

There are a variety of reasons not to like this theory. First, there is arguably a

cost associated with the abundance of other worlds which, although detectable via

their interactions with our own world, are admittedly odd. Second, the space of states

for the theory is larger than one might like in two distinct ways: There are possible

combinations of ⇢ and the #–
v

k

s that do not correspond to any wave function because

the velocity fields cannot be expressed as the gradient of a phase (§1.6). There are

also states of the universe where the number of worlds is not su�ciently large for the

continuum description to be valid (§1.5). Even if there are a great many worlds, slight

divergence from the predictions of standard quantum mechanics is to be expected.

Third, it is a shortcoming of the current formulation of Newtonian QM that we must

approximate the actual distribution of worlds as continuous and cannot yet formulate

the fundamental equation of motion precisely for a discrete collection of worlds (§1.5).

Finally, the theory is limited in that it is not here extended to systems of multiple

particles with spin or to relativistic quantum physics.

In addition to its seductive conservatism, I view the following comparative
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strengths as most compelling. Against the many-worlds interpretation, Newtonian

QM has two main advantages. First, there is no incoherence problem or quantitative

probability problem—the Born Rule can be justified quickly from self-locating

uncertainty (§1.7). Second, the theory avoids the need to explain how worlds emerge

from the wave function—worlds are taken to be fundamental (§1.11). Compared to

Bohmian mechanics, the theory is arguably simpler—it replaces an ontology of wave

functions and particles with one just containing particles (§1.4). Newtonian QM’s

explanation of why we should expect our world to reproduce Born Rule statistics

is potentially more compelling than the Bohmian stories (§1.8). Also, Newtonian

QM is forthright about its many worlds character, sidestepping the Everett-in-denial

objection (§1.11).
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Chapter 2

Self-Locating Uncertainty and the Origin of

Probability in Everettian Quantum Mechanics

Charles T. Sebens and Sean M. Carroll

Abstract: A longstanding issue in attempts to understand the Everett (Many-

Worlds) approach to quantum mechanics is the origin of the Born rule: why is the

probability given by the square of the amplitude? Following Vaidman, we note that

observers are in a position of self-locating uncertainty during the period between the

branches of the wave function splitting via decoherence and the observer register-

ing the outcome of the measurement. In this period it is tempting to regard each

branch as equiprobable, but we argue that the temptation should be resisted. Ap-

plying lessons from this analysis, we demonstrate (using methods similar to those of

Zurek’s envariance-based derivation) that the Born rule is the uniquely rational way

of apportioning credence in Everettian quantum mechanics. In doing so, we rely on a

single key principle: changes purely to the environment do not a↵ect the probabilities

one ought to assign to measurement outcomes in a local subsystem. We arrive at a

method for assigning probabilities in cases that involve both classical and quantum

self-locating uncertainty. This method provides unique answers to quantum Sleeping

Beauty problems, as well as a well-defined procedure for calculating probabilities in

quantum cosmological multiverses with multiple similar observers. [The published

version of this chapter is forthcoming in the British Journal for the Philosophy of
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Science.]

2.1 Introduction

The Everett (or Many-Worlds) approach to quantum mechanics is distinguished by

its simplicity. The dynamics of the theory consists of a single deterministic evolution

law, the Schrödinger equation. There are no separate rules for dealing with ‘wave

function collapse’ and quantum measurement, nor are there additional hidden vari-

ables. A longstanding challenge for such an approach is to reproduce the Born rule:

the probability of a measurement yielding eigenvalue a of the observable bA, given that

the system was prepared in state | i, is given by |ha| i|2, where |ai is the1 eigenstate
with eigenvalue a. Indeed, it seems like quite a challenge to explain how Everettian

quantum mechanics could provide a theory of probabilities at all, given that states

can be specified with arbitrary precision and all evolution is perfectly deterministic.

In this paper we argue that probability arises in Everettian quantum mechanics

because observers with perfect knowledge (of their immediate circumstances and the

state of the universe as a whole) necessarily evolve into conditions of self-locating

uncertainty, in which they do not know which approximately isolated semi-classical

world (or ‘branch’) they inhabit.2 We propose a general principle, the Epistemic

Separability Principle (ESP), which captures the idea that predictions made by local

agents should be independent of their environment. Given ESP, we show that there is

a unique rational way for such an agent to assign a credence to each of the quantum

worlds they might be in. These credences are precisely the ones recommended by

the Born rule. The probabilities are fundamentally subjective in the sense that that

1Assuming there is a unique eigenstate with eigenvalue a.
2The increase in the number of branches over time is a consequence of unitary evolution, not an

additional postulate (Wallace, 2003a, 2010a).
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they are not written into the laws—as they are in spontaneous collapse theories—but

instead capture the degrees of belief of a rational agent; however, they are objective in

the sense that a rational agent must assign Born rule probabilities (if ESP is correct).3

We believe that recent proofs of the Born rule (Deutsch, 1999; Wallace, 2010c;

Zurek, 2005) are on the right track, latching onto symmetries in the theory that serve

to explain the validity of the Born rule in Everettian quantum mechanics. However,

there are serious objections to the approaches already explored and many remain

unconvinced, so we o↵er this derivation as a novel alternative. We seek to provide

an epistemic—as opposed to a decision-theoretic—derivation of the Born rule which

connects quantum uncertainty to the sort of self-locating uncertainty present in very

large universes (discussed recently in Hartle & Srednicki, 2007; Page, 2007; Srednicki

& Hartle, 2010). This approach shares formal features with Zurek’s (2003a; 2003b;

2005) argument based on the idea of envariance, while o↵ering a clearer explanation

of the way in which probabilities arise in a deterministic setting.

At first glance, standard treatments of self-locating uncertainty seem to generate

a serious problem for the many-worlds interpretation. Elga (2004) has put forward

a compelling principle of indi↵erence for cases of self-locating uncertainty, roughly:

an observer should give equal credence to any one of a discrete set of locations in

the universe that are consistent with the data she has. A simplistic extension to

the quantum case would seem to favor treating each world as equiprobable (branch-

counting) rather than the Born rule, since Everettian observers on di↵erent branches

find themselves in situations of identical data. We believe that the reasoning behind

Elga’s principle, when properly applied to Everettian quantum mechanics, actually

leads to the Born rule—not branch-counting.

3One who finds the probabilities discussed here insu�ciently physical/objective may want to
adopt the strategy for moving from unique rational subjective probabilities to objective physical
probabilities discussed in (Wallace, 2006).
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One common assumption appealed to in determining what probabilities one ought

to assign is that certain features of the case are irrelevant, in particular, one can alter

the environment in many ways without changing what probability assignments are

rational. We formalize this idea by proposing a constraint on rational credences (ESP)

and showing that, somewhat surprisingly, the principle su�ces to derive the Born

rule. A careful derivation will be provided after extensive stage-setting in §2.3.2 and

appendix 2.C, but the spirit of the approach can be seen in this simplified version of

the argument for two equal amplitude branches. Imagine that there are two quantum

measurement devices which measure the z-spin of an x-spin up particle, the first

displaying either ~ or }, the second either | or � depending on the result of the

measurement. The post-measurement state of the detectors can be written as

1p
2
|~i ||i+ 1p

2
|}i |�i . (2.1)

If we assume there is an experimenter who has yet to observe the outcome, they

ought to be uncertain about which of the two branches they are on. The probabilities

assigned to the possible states of detector 1 (~/}) should be the same if the case

is modified so that detector 2 is wired to show the opposite symbols from those in

(2.1) as the state of the second detector is irrelevant to to the experimenter’s question

about their relation to the first detector,

1p
2
|~i |�i+ 1p

2
|}i ||i . (2.2)

The probability of ~ in (2.1)—which is the probability of being in the first branch of

(2.1)—is the same as that of ~ in (2.2)—which is the probability of being in the first

branch of (2.2). If instead we focus on assigning probabilities to the possible states

of detector 2 (|/�), they too should be the same in (2.1) and (2.2). Focusing on
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� yields the requirement that the probability of being in the second branch of (2.1)

be the same as the probability of being in the first branch of (2.2). And thus the

probabilities assigned to each branch of (2.1) must be equal.

In §2.2, we begin by introducing the many-worlds interpretation and discussing

how self-locating uncertainty arises during quantum measurements. If we extend

standard methods of handling self-locating uncertainty to quantum cases in a simple

way, we get the odd recommendation that branches should be weighted equally re-

gardless of their quantum amplitudes. We argue that this cannot be the right way

to handle the uncertainty that arises in cases of quantum branching. In §2.3 we

provide an alternative principle for handling self-locating uncertainty across physical

theories (ESP) and show that it yields the Born rule when applied to Everettian

quantum mechanics. In §2.4, we show that this principle (when strengthened) yields

the result that each copy of oneself should be judged equiprobable in cases of classical

self-locating uncertainty. We then use the principle to generate probabilities in cases

which involve both uncertainty arising from quantum measurement and from duplica-

tion of one’s experiences elsewhere in the universe, such as ‘quantum sleeping beauty’

scenarios and quantum measurements in very large universes. Then, in §2.5 we argue

that although in Everettian quantum mechanics there is nothing to be uncertain of

before measurement (in idealized cases where the wave function and the dynamics

are known), we can still generate rules for rational decision making pre-measurement

and theory testing post-measurement. In §2.6 we compare our treatment with the

approaches of Zurek, Deutsch, and Wallace.

Before diving in, a choice of terminology. In this article we’ll use ‘universe’ to

denote the collection of all branches as described by the universal wave function,

reserving ‘world’ as a way of denoting a particular branch of the wave function, i.e.,

one of the many worlds of Everettian quantum mechanics. Using this terminology,

‘quantum multiverse’=‘universe.’
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2.2 Preliminaries: Many-worlds, Self-locating

Uncertainty, and Branch-counting

2.2.1 The Many-worlds Interpretation

If the state of the universe is given by a wave function and that wave function’s

time evolution is at all times in accordance with the Schrödinger equation, strange

things start to happen. Many of us have come to accept that tiny particles can

be in superpositions of distinct states, e.g., passing through two slits at once. But,

if the wave function always obeys the Schrödinger equation then these microscopic

superpositions can be amplified, leading to cases where macroscopic measuring devices

and even human beings are in superpositions of distinct states.

Once At t1 Alice has prepared particle a in the x-spin up eigenstate,

|"xia =
1p
2

⇣

|"zia + |#zia
⌘

. (2.3)

She then measures the z-spin of the particle. At t4, she has just observed the

outcome of the experiment. If the particle were in a z-spin eigenstate, Alice and

the measuring device would simply record that outcome. But, since the particle

is in a superposition of z-spins, Alice and her device evolve into a superposition

of di↵erent recorded outcomes. The state of Alice (A), her particle (a), the

measuring device (D), and the rest of the universe evolve as below. Here R

indicates the ready state and "/# denote the possible outcomes.

| Once(t1)i = |RiA |RiD |"xia |E0i

| Once(t4)i = 1p
2
|"iA |"iD |"zia |E1i+ 1p

2
|#iA |#iD |#zia |E2i (2.4)
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In | Once(t4)i both Alice and the detector have entered superpositions of recording

up and down as the result of the measurement. In practice, just one outcome is

observed. One could modify the theory to ensure that only a single outcome actually

occurs. This is the strategy taken by Bohmian mechanics, GRW theory, and other

venerable responses to the measurement problem. However, such a modification may

be unnecessary. According to the many-worlds interpretation, | Once(t4)i is a state

where there are two (or more) copies of Alice, each of which has just observed the

readout of a z-spin measurement. There’s a version of Alice who saw up and a version

who saw down, but no version that saw both up and down. Seeing a single definite

outcome is not precluded by the state evolution given above, it is guaranteed since

every one of Alice’s successors sees a definite outcome.

Even if each copy of Alice has an ordinary experience at t4, one still might be

worried about the fact that there exist parts of the universe in which each possible

outcome happens. Particularly, one might hope that after a measurement like this is

made and Alice dutifully records up as the result, she can forget about the fact that

the particle might have been down for the sake of all her future calculations. But, if

the state of the universe is as in (2.4), then the possibility that the result might have

been down is no mere possibility, that part of the wave function is still out there and

could potentially interfere with Alice’s part. If the many-worlds interpretation is to

be viable, there must be some reason why Alice can ignore the other worlds in which

the experiment turned out di↵erently. Fortunately, there is: decoherence.

As the result of the measurement is recorded in the device and observed by Alice,

many traces of this result will appear in the environment. Due to the large number of

traces present in the environment, the states E1 and E2 are (at least approximately)

orthogonal and can be expected to stay orthogonal as time progresses. Because these

environment states are and will be orthogonal, the two components of | Once(t4)i
will evolve in a non-interacting way, each component evolving in accordance with the
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Schrödinger equation as if the other were not present. They can thus be treated as

separate worlds (or collections of worlds) since they are e↵ectively causally isolated

and within each of them there are versions of Alice having clear and determinate

experiences.4

In quantum mechanics, the state of a subsystem is given by a reduced density

matrix, generated by taking a partial trace over the Hilbert space of the environ-

ment (Schlosshauer, 2007, §2.4; Nielsen & Chuang, 2010, §2.4). In ordinary cases of

quantum measurement, the process of decoherence diagonalizes the reduced density

matrix for the macroscopic degrees of freedom describing our observer and measuring

apparatus in a very specific basis, the so-called pointer basis (Zurek, 1981, 1982, 1993,

2003a). The pointer basis is distinguished by being robust with respect to ordinary

interactions with the environment.

The state of Alice, the detector, and particle a at t1 can be written as a reduced

density matrix by tracing out the environment,

b⇢ADa(t1) = TrE
⇣

| Once(t1)i h Once(t1)|
⌘

=
1

2
|RiA |RiD |"zia h"z|a hR|D hR|A +

1

2
|RiA |RiD |"zia h#z|a hR|D hR|A

+
1

2
|RiA |RiD |#zia h"z|a hR|D hR|A +

1

2
|RiA |RiD |#zia h#z|a hR|D hR|A .

(2.5)

As the z-spin of the particle has yet to be entangled with the measuring device and

the environment, the diagonal terms of the reduced density matrix (the middle two

terms of the sum in the second line of (2.5)) are non-zero and potentially very relevant

to the evolution of the system—e.g., if the x-spin of the particle were to be measured.

4For more on how Everettian branches arise from decoherence, see (Schlosshauer, 2005; Saunders,
2010a, §1.3) and references therein. One might object that this sort of story about the emergence
of separate worlds cannot be assumed in a derivation of the Born rule. See appendix 2.B.
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After the measurement is made and the environment gets entangled with the particle’s

spin, the reduced density matrix becomes

b⇢ADa(t4)=
1
2 hE1|E1i |"iA |"iD |"zia h"z|a h"|D h"|A + 1

2 hE1|E2i |"iA |"iD |"zia h#z|a h#|D h#|A
+1

2 hE2|E1i |#iA |#iD |#zia h"z|a h"|D h"|A + 1
2 hE2|E2i |#iA |#iD |#zia h#z|a h#|D h#|A

= 1
2 |"iA |"iD |"zia h"z|a h"|D h"|A + 1

2 |#iA |#iD |#zia h#z|a h#|D h#|A . (2.6)

Here we’ve assumed for simplicity that E1 and E2 are perfectly orthogonal, hE1|E2i =
0, and the diagonal terms vanish; in realistic cases hE1|E2i is very close to zero. The

diagonal terms have dropped out and the state is now decomposable into two parts—

branches—of the reduced density matrix, one in which the result was up and a second

in which it was down. It is common to speak of the universal wave function splitting

into several branches upon measurement, components that will no longer interact

because of decoherence.5 Similarly, one can just as easily speak of the density matrix

for the universe as being decomposable into branches. Reduced density matrices can

also evolve into pieces that because of decoherence will no longer interact. We call

these pieces ‘branches’ too, although this is a non-standard use of the term ‘branch.’

Branches of a reduced density matrix should not be confused with branches of the

universal wave function. A branch of a reduced density matrix may correspond to

many branches of the universal wave function, as occurs in the possible elaboration

of Once below.

Once-or-Twice Alice’s particle (a) and Bob’s particle (b) are both initially pre-

pared in the x-spin up eigenstate. Alice’s device measures the z-spin of her

particle first. Then, Bob’s device, which is connected to Alice’s, measures z-

5Although we will use the language of ‘branching’ throughout the paper, we do not mean by this
to prejudge the issue of whether these branches diverge or overlap (discussed in Saunders, 2010b;
Wilson, 2012). Our strategy can be implemented on either picture (see footnote 29).
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spin of particle b only if particle a was measured to have z-spin up. By t1

the setup is prepared; by t2 Alice’s particle has been measured but Bob’s has

not; by t3 both particles have been measured. Bob has been watching as the

results of the experiments are recorded. Up through t3, Alice has not looked

at the measuring devices and is unaware of the results. By t4, Alice has looked

at her device and seen the result of the measurement of particle a, although

she remains ignorant about the z-spin of particle b. The branching structure of

this scenario is shown in figure 2.1. The evolution of the state is shown below.

Here Bob (B) and his particle (b) have been pulled out of the environment, but

otherwise the state is broken down as in (2.4) (Bob’s device is treated as part

of the environment; X indicates that the measurement was not made).

| OT(t1)i= |RiA |RiD |"xia |RiB |"xib |ERi

| OT(t2)i= 1p
2
|RiA |"iD |"zia |"iB |"xib |E"i+ 1p

2
|RiA |#iD |#zia |#iB |"xib |E#i

| OT(t3)i= 1
2 |RiA |"iD |"zia |", "iB |"zib |E""i+ 1

2 |RiA |"iD |"zia |", #iB |#zib |E"#i

+ 1p
2
|RiA |#iD |#zia |#,XiB |"xib |E#Xi

| OT(t4)i= 1
2 |"iA |"iD |"zia |", "iB |"zib

�

�E 0
""
↵

+ 1
2 |"iA |"iD |"zia |", #iB |#zib

�

�E 0
"#
↵

+ 1p
2
|#iA |#iD |#zia |#,XiB |"xib

�

�E 0
#X
↵

(2.7)

If we focus on the state of Alice, the detector, and particle a at t4, the reduced

density matrix for Once-Or-Twice will be exactly as it was in Once (2.6). How-

ever, this is clearly a case where there are at least three branches of the universal

wave function corresponding to the three di↵erent possible outcomes of the series of

experiments as recorded by Bob. In this case, the branch of b⇢ADa in which Alice

observes up corresponds to at least two branches of the universal wave function, as

there are two possible outcomes Bob might have observed.
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Figure 2.1: Once-Or-Twice

2.2.2 Self-locating Uncertainty and the Everettian

Multiverse

On many interpretations of quantum mechanics, quantum measurements yield just

one result. Before a measurement is made, the experimenter is typically uncertain

about which outcome will actually occur, even if he knows as much about the universal

wave function as could be helpful. This uncertainty can be quantified using the Born

rule. In the many-worlds interpretation, if we assume that the experimenter knows

the relevant information about the wave function, it is unclear what the agent might

be uncertain of before a measurement is made. They know that every outcome will

occur and that they will have a successor who sees each possible result. Before we

can discuss the quantitative problem of what numerical probabilities an agent in

an Everettian multiverse should assign to di↵erent outcomes, we must answer the
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question: What can one assign probabilities to? Our answer will be that agents

performing measurements pass through a period of self-locating uncertainty, in which

they can assign probabilities to being one of several identical copies, each on a di↵erent

branch of the wave function.

Consider Alice in Once-or-Twice. At time t2 the state can be written in either

of two equivalent forms,

| OT(t2)i = 1p
2
|RiA

⇣

|"iD |"zia |"iB |"xib |E"i+ |#iD |#zia |#iB |"xib |E#i
⌘

(2.8)

=
1p
2
|RiA |"iD |"zia |"iB |"xib |E"i+ 1p

2
|RiA |#iD |#zia |#iB |"xib |E#i .

(2.9)

In the first way of writing the state, it appears as if there is only one copy of Alice

(represented by |RiA), while the rest of the state has branched in two. But in the

second expression, it appears as if there are two branches with two identical copies

of Alice. (2.8) and (2.9) are manifestly mathematically identical, but suggest di↵er-

ent physical pictures, corresponding to two plausible attitudes about wave function

branching. One attitude would be that Alice herself doesn’t branch until her own

reduced density matrix splits into multiple distinct branches (in the pointer basis)

sometime between t3 and t4; in that case (2.8) gives the right physical picture, and

there is only one copy of Alice even after the first measurement has occurred. The

other attitude is that branching happens throughout the whole wave function when-

ever it happens anywhere. When the universal wave function splits into multiple

distinct and e↵ectively non-interacting parts, the entire world splits—along with ev-

ery object and agent in it. Then (2.9) is the more perspicuous way of writing the

state. There are two identical post-measurement copies of Alice, one on each branch.6

6Wallace (2012, §8.6) advocates a version of the first picture and Vaidman (2014a, 2014b, forth-
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We will work under the assumption that the second attitude (branching happens

globally throughout the wave function whenever it happens anywhere) is the right

way to think about the process.7 The branching structure of the wave function in

Everettian quantum mechanics is not uniquely defined by the theory, which is just a

state space and a dynamical law; like coarse-graining in classical statistical mechanics,

it is imposed by us with a degree of arbitrariness. We must decide how well-separated

two putative branches must be to count as distinct. However, treating branching

on a subsystem-by-subsystem basis—as advised by the first attitude—is needlessly

arbitrary; it depends on how the universe is carved into subsystems. Some very small

piece of a post-measurement detector might remain in the same state on every branch,

but it seems wrong to think that whether the single piece has branched into many

depends on whether it is considered as part of the detector or as a separate subsystem

in its own right. For Alice’s purposes, it makes sense to distinguish between the two

copies of herself in (2.9); even though they are currently unentangled with the rest of

the state, in the future they will evolve di↵erently (and independently of one another)

as Alice becomes aware of the measurement outcome.

The non-local nature of the globally-branching view might cause some discomfort.

It implies that observers here on Earth could be (and almost surely are) branching all

the time, without noticing it, due to quantum evolution of systems in the Andromeda

Galaxy and elsewhere throughout the universe.8 We take this to be one among

many psychologically unintuitive but empirically benign consequences of Everettian

coming) the second.
7In our derivation of the Born rule, §2.3.2, this second attitude plays an important role in allowing

us to examine cases like (2.17) where the agent is in a physically identical state on each branch.
8However, the reduced density matrix describing the state of the observer on Earth is una↵ected

by the events occurring in the Andromeda galaxy. In a relativistic context, the number of copies
of an observer will be frame-relative. But, the probabilities assigned to measurement outcomes will
not be (as the reduced density matrix is all that is relevant to the calculation of probabilities, see
§2.3.1).
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quantum mechanics.

There are two copies of Alice at t2 inOnce-or-Twice. Each copy can reasonably

wonder which one she is. Thus even if she (incredibly) knows the universal wave

function exactly, Alice still has something to be uncertain of. She isn’t uncertain

about the way the universe is; by supposition she knows the wave function and this

gives a complete specification of the state of the universe. Alice is uncertain about

where she is in the quantum multiverse (as has been emphasized by Vaidman 1998,

2011, 2014a, 2014b). She doesn’t know if she’s in the branch of the wave function

in which the detector displays up or the one in which it shows down. Alice has

self-locating uncertainty (see Lewis, 1979; Bostrom, 2002). We call this period in

which self-locating uncertainty is present, after the measurement has been made and

branching has occurred via decoherence but before the experimenter has registered

the result, the ‘post-measurement pre-observation’ period.

During the post-measurement pre-observation there are multiple copies of Alice

seeing di↵erent results. Are any or all of them the same person as Alice before

the measurement? This is a tricky metaphysical question upon which we will not

speculate. We will indiscriminately refer to a post-branching version of Alice as a

‘copy,’ or a ‘successor,’ or simply ‘Alice.’ In appealing to self-locating uncertainty

during the post-measurement pre-observation period, all that is needed is that each

copy of Alice can coherently wonder what sort of branch they inhabit.

At this point it may be objected that Once-or-Twice is highly atypical as Alice

is for a time unaware of the measurement result. Actually, self-locating uncertainty

is generic in quantum measurement. In Everettian quantum mechanics the wave

function branches when the system becomes su�ciently entangled with the environ-

ment to produce decoherence. The normal case is one in which the quantum system

interacts with an experimental apparatus (cloud chamber, Geiger counter, electron

microscope, or what have you) and then the observer sees what the apparatus has
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recorded. For any realistic room-temperature experimental apparatus, the decoher-

ence time is extremely short: less than 10�20 seconds. Even if a human observer looks

at the quantum system directly, the state of the observer’s eyeballs will decohere in

a comparable time. In contrast, the time it takes a brain to process a thought is

measured in tens of milliseconds. No matter what we do, real observers will find

themselves in a situation of self-locating uncertainty (after decoherence, before the

measurement outcome has been registered).9 The observer may not have enough time

to think and reorganize their credences before learning the outcome (Wallace, 2006,

§4.2), but, in trying to approximate ideal rationality, the agent can attempt to re-

construct the probabilities they ought to have assigned during the post-measurement

pre-observation period. Despite often being short-lived, these probabilities are rele-

vant for deciding what to believe after seeing the measurement outcome, §2.5.2, and
deciding how to act in anticipation of the measurement, §2.5.1.

Self-locating uncertainty has been discussed in great depth by formal epistemol-

ogists. The general question of how to extend Bayesian updating to cases involving

self-locating uncertainty is very di�cult and a matter of contemporary philosophical

debate, but many di↵erent proposals10 agree on one minimal constraint on rational

credences (a.k.a. subjective probabilities or degrees of belief):

Indi↵erence Suppose that in a given possible universe U , agent S has a finite number

NU of copies in an internally qualitatively identical state to S. Further, suppose

that the hypothesis H is true for NUH of these copies. Then, S should assign

9Although we think that self-locating uncertainty is typical, it may not be necessary for our
account that it is always present. See the end of §2.5.2.

10In particular, we’re thinking of the proposals of (Bostrom, 2002; Meacham, 2008; Manley, un-
published) as formulated in (Manley, unpublished).
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the following conditional credence to H being true given that S is in U :

P (H|U) =
NUH

NU

(2.10)

Indi↵erence was originally put forward in (Elga, 2004); the version here is from (Man-

ley, unpublished) (paraphrased). Two agents are in the same internal qualitative state

if they have identical current evidence: the patterns of colors in their visual fields are

identical, they recall the same apparent memories, they both feel equally hungry, etc.

This principle should not be confused with a Laplacean ‘principle of indi↵erence.’

To see Indi↵erence in action, consider the following case from Elga (2004):

Duplicating Dr. Evil Dr. Evil is plotting the destruction of Earth from his lunar

battle station when he receives an unwelcome message. Back on earth some

pesky philosophers have duplicated the entirety of his battle station, perfectly

replicating every piece of furniture, every weapon, and every piece of food, even

replicating the stale moon air and somehow the weaker gravitational field. They

went so far that at t they created a duplicate of Dr. Evil himself, Dup. Dup’s

immediate experiences are internally identical to Dr. Evil’s. The two men pace,

think, and scratch themselves in perfect synchronicity.

Upon learning of his duplication, what credence should Dr. Evil assign to being in

his lunar base and not the terrestrial fake? According to Indi↵erence, Dr. Evil should

assign a credence of one half (and Dup should do the same). Dr. Evil knows that in

any universe U he might inhabit there are two copies of himself (NU = 2) and that

one is on the moon (NUH = 1 for H = ‘I am on the moon.’).
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2.2.3 Indi↵erence and the Quantitative Probability Problem

In the previous section we showed that in the post-measurement pre-observation

period it is possible to assign probabilities to the di↵erent possible outcomes of a

completed experiment. But, what probabilities ought one to assign? If you take

Indi↵erence to be a constraint on rational probability assignments and count agents

in the most naive way, there appears to be a simple rule for assigning probabilities:

branch-counting.11 The probability that H is true is given by the fraction of branches

in which H holds. Since there is a single copy of the experimenter on each branch,

the fraction of branches is the same as the fraction of agents and branch-counting is

a direct consequence of Indi↵erence.

There is a well-known problem for this kind of approach.12 The number of

branches in which a certain outcome occurs might not be well-defined. Branches

are structures in the wave function which emerge via decoherence, and although this

process will guarantee that on each branch a definite outcome is observed, it will

generally not yield a good answer to the question of how many branches feature a

certain outcome or even how many branches there are in total. In contrast, the total

mod-squared amplitude of branches in which a certain outcome occurs is well-defined

(although not to arbitrary precision). The di�culty of branch-counting provides good

reason to think Indi↵erence will often be unhelpful in Everettian scenarios. However,

Indi↵erence does give clear recommendations in idealized scenarios, so for the time

being we’ll restrict our attention to cases where the number of branches is well-defined.

Assume thatOnce-or-Twice really is a case in which one branch becomes three,

as depicted in figure 2.1. At t3, what probability should Alice assign to particle a

having been measured to be z-spin down? By the methods of textbook quantum

11Lewis (2009a) considers a proposal along these lines.
12For more in-depth discussion, see Wallace (2007, §9, 2012, §3.11).
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mechanics, we should use the Born rule to calculate the probability. That is, we

should square the coe�cient of the third branch of the wave function in (2.7),

Pt3(down) =

✓

1p
2

◆2

=
1

2
. (2.11)

To apply Indi↵erence we simply need to determine the fraction of branches in which

the result of the first measurement was down,

Pt3(down) =
number of down branches

number of branches
=

1

3
, (2.12)

the coe�cients of 1/2, 1/2, and 1/
p
2 of the branches in | OT(t3)i are irrelevant

to the calculation. Supposing Indi↵erence is true and people are to be counted

in this straightforward way, textbook quantum mechanics and Everettian quantum

mechanics make di↵erent predictions about the probability of seeing down. Thus, we

can empirically test the many-worlds interpretation in any case where the fraction of

branches in which some hypothesis H is true is unequal to the combined weights of

branches in which H is true (the generic case).

We now have the strongest kind of argument against Everettian quantum mechan-

ics: it is empirically inadequate. The theory fails to reproduce the empirical predic-

tions of textbook quantum mechanics and thus has been conclusively falsified by the

data typically taken as evidence for quantum mechanics.13 However, this argument

relies on the assumption that Indi↵erence is a universally valid principle applicable

to Everettian multiverses as well as cases of classical duplication like Duplicating

Dr. Evil. As we will see, it is not.

13Admittedly, the force of this argument is weakened by the fact that we are working under an
idealization. Branch number may not be well-defined in realistic cases and then it becomes unclear
what probabilities the proponent of Indi↵erence thinks one should assign.
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2.2.4 Against Branch-counting

When Indi↵erence is applied to Once-or-Twice, something odd happens. At t2

the principle advises each copy of Alice to assign a probability of one half to particle

a being down as half of the copies of Alice are in a branch where the particle was

measured to be down. Then, at t3 Alice is supposed to assign down a probability of

one third (as in (2.12)). According to the Born rule, the recommended probability

assignment is one half at both t2 and t3. If Indi↵erence is right, there’s a strange

switch in the probabilities between t2 and t3. Is there any reason to think this under-

mines the branch-counting strategy advocated by Indi↵erence? David Wallace has

argued that such a switch violates a constraint he calls ‘diachronic consistency.’ In

appendix 2.A, we argue that this is not the right diagnosis of the problem with the

switch in credences. This kind of ‘inconsistency’ is a common result of Indi↵erence

and not something which should be taken to refute the principle. Still, we agree that

there’s something wrong with the probability switch.

Between t2 and t3 what happens? Particle b is measured and Bob takes note of

the result. Nothing happens to Alice, particle a, or Alice’s device. If nothing about

Alice or her detector changes, why should her degree of belief that she bears a certain

relation to the detector change? At t2, the state of Alice and her detector is given by,

b⇢AD(t2) =
1

2
|RiA |"iD h"|D hR|A +

1

2
|RiA |#iD h#|D hR|A . (2.13)

At this time Alice is trying to locate herself in one of the two branches of this Al-

ice+Detector system and, if she applies Indi↵erence, decides that she should assign a

probability of one half to each branch. At t3, the state of the Alice+Detector system

is unchanged, it is still exactly as in (2.13). Now she decides that the probability

of being in the second branch is one third. Why should her probability for being in
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di↵erent subsystems (branches of b⇢AD) of the Alice+Detector system change when

nothing about that system changes and she knows that she is somewhere in that

system? It shouldn’t. In the next section we will use this insight to motivate a

replacement for Indi↵erence.

It is tempting to think that the number of copies of Alice cannot change without

her physical state changing—this is the way things work in classical physics. But,

in Everettian quantum mechanics, changes that purely a↵ect her environment can

change the number of copies of Alice in existence. For example, the change of state

from t2 to t3 in Once-or-Twice, (2.7). Two intuitive constraints come into conflict:

Indi↵erence, and the belief that Alice’s probabilities should be una↵ected by changes

in the state of her environment. We recommend rejecting the former in favor of the

latter.

2.3 The Epistemic Irrelevance of the

Environment

2.3.1 The Epistemic Separability Principle

In §2.2.4 we argued that branch-counting is unreasonable because it requires Alice to

change her credences about the result of the measurement of particle a when things

change elsewhere in the universe. In particular, when particle b is measured. In

the Duplicating Dr. Evil case, whatever one thinks of Indi↵erence, it seems

clear that certain facts are irrelevant. The probability P (I’m Dr. Evil|U) should not

depend on what’s happening deep inside the Earth’s core or what’s happening on

the distant planet Neptune or any other remote occurrences. Unless, of course, the

actions of the Earth’s core cause earthquakes which the terrestrial Dup feels but the
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lunar Dr. Evil does not. Or, if what’s happening on Neptune includes another copy

of the laboratory with another duplicate Dr. Evil in it. If there’s a duplicate on

Neptune, Dr.Evil can no longer be sure that Neptune is in fact a distant planet and

not the one under his feet (and thus cannot treat it as irrelevant to his probability

assignments). As long as the copies of Dr. Evil are una↵ected and no new copies

are created elsewhere, P (I’m Dr. Evil|U) should be una↵ected by changes to the

environment. This thought, which was essential to our argument in §2.2.4, can be

stated in imprecise slogan form as:

ESP-gist The credence one should assign to being any one of several observers having

identical experiences is independent of the state of the environment.

In more precise but still theory-independent language, this epistemic principle be-

comes:

ESP Suppose that universe U contains within it a set of subsystems S such that

every agent in an internally qualitatively identical state to agent A is located

in some subsystem which is an element of S. The probability that A ought to

assign to being located in a particular subsystem X 2 S given that they are in

U is identical in any possible universe which also contains subsystems S in the

same exact states (and does not contain any copies of the agent in an internally

qualitatively identical state that are not located in S).

P (X|U) = P (X|S) (2.14)

ESP stands for ‘Epistemic Separability Principle,’ as the principle allows one to sep-

arate the relevant parts of the universe from the rest; that is, to separate the set

of subsystems where the agent might, for all they know, be located from everything

else. X, U , and S are not propositions; (2.14) is shorthand that must be clarified.
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P (X|U) is the probability that A assigns to being in X given that they are in U . In

P (X|S), ‘S’ is shorthand for: there exist subsystems S and there are no internally

qualitatively identical copies of A outside of these subsystems. To be precise, let’s say

that one is ‘located in’ subsystem X just in case one is a proper part of the subsystem

(no limb or brain cell is omitted). There may be more than one copy of A in a given

subsystem. In general, There will be many ways to carve out a set of subsystems from

the universe. ESP applies to any such carving. The subsystems in S together need

not cover the entire world, there may well be parts of U that are not in any of these

subsystems, however these omitted parts cannot contain copies of A. The principle

is restricted to cases where S has a finite number of members. The subsystems need

not be located at the same time. One may, for example, be unsure if they are the

person waking up in their bed on Monday or Tuesday (see §2.4.2).
We need to be somewhat careful about what exactly a ‘subsystem’ is supposed

to be, although we will not attempt to give a rigorous characterization applicable to

any conceivable theory. The essential idea is that a subsystem is a part of the larger

system that can be considered as a physical system in its own right. Slightly more

formally, we imagine that the overall state of a system can be decomposed into the

states of various subsystems, so that two constraints are satisfied: (1) the state of

each subsystem, perhaps with some additional information about how the subsystems

are connected, can be used to uniquely reconstruct the original state; and (2) the in-

formation contained within each subsystem’s state is enough to specify its immediate

dynamical evolution, as long as the other subsystems are not influencing it.14 So, in

classical particle physics, a subsystem might be a collection of particles at a time and

its state specified by giving the masses, positions, and velocities of the particles in

14Work would need to be done to formulate these constraints precisely, here they serve as rough
guides.
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the collection. By contrast, giving only the positions (or only the velocities) of a col-

lection of particles would not specify a subsystem, since that wouldn’t be su�cient to

determine the collection’s evolution. In quantum mechanics, systems can be divided

into subsystems in two fundamentally di↵erent ways—quite unlike classical physics.

The state of a system can be written as a density matrix b⇢sys corresponding to some

factor of the Hilbert space Hsys (a reduced density matrix unless the system is the

whole universe). As Hsys can itself be decomposed into factors, Hsys = H1 ⌦ H2,

one can treat the reduced density matrices b⇢1 and b⇢2 as subsystems of b⇢sys. Alterna-

tively, if—as in (2.13)—branching has occurred, the di↵erent branches of b⇢sys can be

regarded as separate subsystems.15

Examination of the argument given by Elga (2004) for Indi↵erence reveals that

something like ESP is taken for granted. In his Toss&Duplication thought exper-

iment, Elga assumes that the outcome of an additional coin toss should not a↵ect the

credence we assign to being either the original or a duplicated person with identical

experiences; the justification for such an assumption would have to be something like

ESP. ESP is compatible with Indi↵erence in standard cases of classical self-locating

uncertainty like Duplicating Dr. Evil. Requiring that all one care about in

assigning credences between Dr. Evil and Dup is what’s happening in the lunar lab-

oratory, X, and the terrestrial replica, Y , (together, S = {X, Y }) looks like it allows

any assignment of credences to the two copies at all, provided one is consistent across

universes that vary only in the state of the world outside the two laboratories. Ac-

tually, in §2.4.1 we’ll see that although ESP is compatible with Indi↵erence, the rule

is not as permissive as it might initially seem. At least, not if we strengthen it as

in §2.4.1. In classical cases, the strengthened principle requires one to consider each

15In specifying the state of each branch of a reduced density matrix like (2.13) one must retain
the numerical prefactors before each term as they would be necessary to reconstruct the state of the
system as a whole.
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copy of oneself to be equiprobable—in agreement with Indi↵erence.

Now that ESP is on the table, let’s apply it to cases of measurement in Ev-

erettian quantum mechanics. Consider Once-or-Twice. At t2, after particle a

has been measured, Alice has branched into multiple copies. Alice knows that she

is somewhere in the Alice+Detector system which is characterized by the reduced

density matrix in (2.13). The density matrix b⇢AD itself can be divided into branches

X & Y corresponding to the particle spin being measured as either up or down. Any

universal wave function which agrees on the density matrix b⇢AD agrees on the state of

X and Y . So, the probability of being in X, which is the probability of an up result,

must be the same in any universe with the same reduced density matrix b⇢AD.

More generally, suppose that an experimenter A has just measured observable bO

of system S and the measuring device has recorded some eigenvalue Oi on each branch

of the wave function.16 As discussed in §2.2.1, the reduced density matrix, b⇢AD, will

be diagonalized in the pointer basis for the Agent+Detector subspace, HA ⌦ HD,

by the decoherence process. Each pointer state (with nonzero amplitude) defines a

branch of the reduced density matrix, b⇢AD, on which the detector D registered a

particular outcome Oi.17 In assigning credences to the di↵erent outcomes, the agent

is assigning probabilities to being located in these di↵erent branches. Specifying the

state of b⇢AD determines the state of all its branches and thus of all the subsystems in

which the agent might find themselves (S).

16
ESP is not only applicable to Everettian quantum mechanics in cases of measurement. It can

be applied whenever one is trying to locate oneself within a collection of decohered branches of the
wave function. For example, this decoherence might have been caused by chaotic processes instead
of quantum measurement (Wallace, 2012, ch. 3).

17After a measurement, the branching structure of b⇢AD—the set of pointer states—can be derived
either by examining the interaction with the environment or by seeing in which basis the matrix
is diagonal. One need not know anything about the state of the environment; the reduced density
matrix alone is su�cient.
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Thus in ordinary cases of quantum measurement, we can formulate a less general

version of ESP which will be su�cient for our derivation of the Born rule.

ESP-QM Suppose that an experiment has just measured observable bO of system S

and registered some eigenvalue Oi on each branch of the wave function. The

probability that agent A ought to assign to the detector D having registered Oi

when the universal wave function is  , P (Oi| ), only depends on the reduced

density matrix of A and D, b⇢AD:

P (Oi| ) = P (Oi|b⇢AD) (2.15)

This principle tells us that when observers assign probabilities to recorded outcomes of

measurements that have already occurred, these probabilities should only depend on

the Agent+Detector state, b⇢AD (not on other features of the universal wave function).

By applying this principle to quantum cases instead of Indi↵erence, we are now able

to shake the unrealistic assumption that the number of branches in which a certain

outcome occurs is well-defined.

In formulating ESP-QM, we’ve relied on the fact that the state of a quantum

subsystem is specified by a reduced density matrix. Although this is the standard

way of representing subsystems in quantum mechanics, one might worry that its use

here requires further justification. We discuss this concern in appendix 2.B.

2.3.2 Deriving the Born Rule

In this section we will derive the Born rule probabilities as the rational assignment of

credences post-measurement pre-observation. We will first derive the rule in a case

with two branches that have equal amplitudes, then use similar techniques to treat

a case with two branches of unequal amplitude. It is straightforward to extend these
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methods to more general cases (see appendix 2.C). Mathematically, our argument is

most similar to that of Zurek (2005) and not far from those of the decision theoretic

approach (Deutsch, 1999; Wallace, 2003b, 2010c, 2012). The interest of this proof is

not its mathematical ingenuity but the facts that (a) it applies to cases where uncer-

tainty is undeniably present and (b) it is based on a single well-motivated principle

of rationality, ESP.

Proof of the Born rule for 1
2/

1
2 case: Alice measures the z-spin of a single par-

ticle in the x-spin up state. One display (D1) will show the result of the experiment.

If the spin is up, a second display (D2) will show ~. If it is down, a } will appear on

the second display. Alice is not immediately a↵ected by the result; in particular, she

is for a time unaware of the experiment’s outcome.18 The wave function of Alice, the

detectors, the particle, and the environment (the rest of the universe) evolves from

| 0i = |R0iA |RiD1 |RiD2 |"xi |ERi (2.16)

to

| 1i = 1p
2
|RiA |"iD1 |~iD2 |"zi |E"~i+ 1p

2
|RiA |#iD1 |}iD2 |#zi |E#}i . (2.17)

To use ESP-QM to demonstrate that P ("| 1) = P (#| 1) = 1/2, we will need to

also consider an alternate scenario where the computer (part of the environment) is

programmed di↵erently so that ~ displays if down is measured and } displays if up.

18That is, we assume that Alice is in the same physical state on both branches of the wave function
(|RiA in (2.17)). As time passes and the result of the measurement has e↵ects on various parts of
the universe, Alice’s state will come to di↵er on the two branches (e.g., if she observes the result).
But, immediately after measurement her state will be una↵ected.
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Then the post-measurement pre-observation wave function would be

| 2i = 1p
2
|RiA |"iD1 |}iD2 |"zi |E"}i+ 1p

2
|RiA |#iD1 |~iD2 |#zi |E#~i . (2.18)

Step 1: Focus first on Alice and D1. The Alice+Detector 1 reduced density matrices

for  1 and  2 are the same,19

b⇢AD1 ( 1) = b⇢AD1 ( 2) =
1

2
|RiA |"iD1 hR|A h"|D1 +

1

2
|RiA |#iD1 hR|A h#|D1 . (2.19)

ESP-QM requires that the probabilities Alice assigns to the possible spin results be

the same in these two universes as they have the same Observer+Detector reduced

density matrix,

P (#| 1) = P (#| 2) . (2.20)

Step 2: If we ask what probability Alice should assign to the display being ~, we

need to consider the reduced density matrix generated by tracing over D1, the spin

of the particle, and the environment.  1 and  2 agree on b⇢AD2. By ESP-QM, the

probabilities assigned to ~ must be equal,

P (~| 1) = P (~| 2) . (2.21)

Step 3: Next, note that the ~-branches just are the "-branches in  1 and the ~-

branches just are the #-branches in  2. Thus Alice is in the ~-branch of b⇢AD2( 1)

if and only if she is in the "-branch of b⇢AD1( 1). Similarly, she is in the ~-branch

of b⇢AD2( 2) if and only if she is in the #-branch of b⇢AD1( 2). Therefore, Alice must

19Here we assume for simplicity that the environments are perfectly orthogonal. What is crucial
is that we choose  2 such that b⇢AD1 ( 1) = b⇢AD1 ( 2) and b⇢AD2 ( 1) = b⇢AD2 ( 2), both of which
can be easily satisfied even if the environment states are not perfectly orthogonal.
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assign

P ("| 1) = P (~| 1)

P (#| 2) = P (~| 2) . (2.22)

Step 4: Putting together the results in (2.20) - (2.22), we see that in  1 the proba-

bility of being on a "/~-branch must be the same as that for being on a #/}-branch:

P ("| 1) = P (#| 1). So, the unique rational degrees of belief in the first scenario

consider each branch to be equiprobable. Since these are the only two alternatives,

the probability of each outcome is one half. In fact, using ESP-QM, we have shown

that for any case in which the reduced density matrix is as in (2.19), the two spin

states are equiprobable; there doesn’t have to be a second display present. The result

applies to a state in the general form:

1p
2
|RiA |"iD1 |"zi |E"i+ 1p

2
|RiA |#iD1 |#zi |E#i (2.23)

Proof of the Born rule for 1
3/

2
3 case: Suppose Alice measures a particle in the

state
r

2

3
| "zi+

r

1

3
| #zi , (2.24)

in which case upon measurement b⇢AD1 would be

b⇢AD1 ( 2) =
2

3
|RiA |"iD1 hR|A h"|D1 +

1

3
|RiA |#iD1 hR|A h#|D1 . (2.25)

To determine the probabilities in this scenario, we will consider two di↵erent ways of

having three displays linked to the measurement outcomes in the post-measurement
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pre-observation state,

| ↵i =
r

1

3

⇣

|RiA |"iD1 |}iD2 ||iD3 |"zi |E↵1i+ |RiA |"iD1 |~iD2 |�iD3 |"zi |E↵2i

+ |RiA |#iD1 |~iD2 ||iD3 |#zi |E↵3i
⌘

| �i =
r

1

3

⇣

|RiA |"iD1 |~iD2 ||iD3 |"zi |E�1i+ |RiA |"iD1 |~iD2 ||iD3 |"zi |E�2i

+ |RiA |#iD1 |}iD2 |�iD3 |#zi |E�3i
⌘

(2.26)

Step 1: Using ESP-QM to ignore D2, D3, and the environment, we can focus on

the first display and compare the probabilities for #,

P (#| ↵) = P (#| �) . (2.27)

Step 2: Focusing on the second display gives

P (}| ↵) = P (}| �) . (2.28)

Since the }-branches of  � are the #-branches, we have

P (}| �) = P (#| �) . (2.29)

Step 3: Similarly, focusing on D3 and noting that the #-branches of  � are the

�-branches yields

P (�| ↵) = P (#| �) . (2.30)

Step 4: Combining (2.27) - (2.30) gives

P (}| ↵) = P (�| ↵) = P (#| ↵) . (2.31)
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Since these are all of the possibilities, the probability of each is a third and

P (#| ↵) =
1

3

P ("| ↵) =
2

3
. (2.32)

This result holds whenever the reduced density matrix is as in (2.25).

The logic of this section suggests a way of thinking about the Born rule at an

intuitive level. Our recipe amounts to the following prescription: write the state

vector as a sum of orthogonal vectors with equal amplitudes by unitarily transforming

the environment. Then (and only then), ESP justifies according equal credence to

each such basis vector. In that sense, the Born rule is simply a matter of counting.

However, we don’t want to take this picture too literally. In particular, the counting

occurs only after the original state is transformed and the branching structure altered.

Also, the orthogonal basis vectors of the transformed state do not necessarily each

correspond to a single quantum world. Thus the relevant counting is not simply a

matter of counting agents in the original state.

Now that ESP-QM has revealed its power, one might reasonably suspect that we

have given it too much. Let’s take a moment to reflect on the principle’s plausibility.

As was discussed in §2.2.4 and 2.3.1, if ESP-QM is correct then Alice’s credence that

the result was up should not change between t2 and t3 in Once-Or-Twice even

though the number of copies of Alice changes. The proof for the 1
3/

2
3 case above

relies on the same trick: the reduced density matrix in (2.25) could describe a case of

three detectors with three di↵erent combinations of outputs—as in (2.26)—or a single

detector with two di↵erent outputs. By ESP-QM the probability of an up result must

be the same in either case. When ESP was introduced it was immediately restricted

to only apply in cases where the changes made to the environment do not involve

the creation of additional copies of the agent elsewhere. Why? We cannot claim
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that the problem is that such changes increase the number of copies in existence—the

change from t2 to t3 in Once-Or-Twice does too. One problem with omitting the

restriction is that it would be impossible to assign non-zero credences to the additional

copies in the environment, since the agent would have to assign the same probabilities

to all of the original copies whether or not additional copies are present. This problem

does not arise when ESP-QM is applied to the quantum case. The change from t2

to t3 in Once-Or-Twice increases the number of copies of Alice in existence, but

she is not forced to assign any of the copies probability zero. The fact that ESP-QM

avoids this particular problem does not fully exonerate the principle. The change

in the quantum state from t2 to t3 could conceivably turn out to be relevant. The

motivation for ESP-QM, emphasized earlier, is that when Alice is wondering about

her relation to some detector D, things happening elsewhere are in fact not relevant.

We believe the principle to be well-motivated but not established beyond any doubt,

and thus our derivation is provisional: if one can focus on the reduced density matrix

in calculating probabilities as recommended by ESP-QM, the Born rule follows.

2.4 Varieties of Uncertainty

2.4.1 ESP and Indi↵erence

In classical physics, you experience self-locating uncertainty when, for example, the

universe is so large that you should expect there to exist a distant planet where

someone is having the exact same immediate experiences that you are, or when the

universe survives so long that you should expect short-lived Boltzmann brains to

pop out of the vacuum in the exact subjective state you are in now, or when, as

in Duplicating Dr. Evil, you have reason to think someone has purposefully

created a duplicate of you. Such phenomena can also occur in quantum mechanical
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contexts, leading to within-branch uncertainty. Once the principle is strengthened,

ESP mandates that this sort of uncertainty should be treated with Indi↵erence. This

brings out an important virtue of the epistemic principle we’ve proposed: ESP ex-

plains why Indi↵erence was a good heuristic valid in a wide variety of cases and also

explains why the uncertainty arising from quantum measurements should be treated

di↵erently, using the Born rule.20

To apply ESP fruitfully to classical cases, it will help to strengthen the principle.

The stronger version of ESP is not concise when stated precisely (below), but the

basic idea is simple: Not only should it be irrelevant what’s going on outside of the

subsystems in S, it also should be irrelevant where in spacetime each subsystem in S
is located. Consider again Duplicating Dr. Evil. It seems irrelevant where the

philosophers decide to build the replica of the lab. They could make it in America or

Japan or on Mars. The choice shouldn’t a↵ect the probability that Dr. Evil assigns

to being on the moon. Perhaps more controversially, we believe it is irrelevant when

they build the replica. Suppose they tell Dr. Evil that they are scanning his lab

now and will (unstoppably) make the replica next week. In such a case, Dr. Evil

should start to wonder whether he’s mistaken about the date. Further, we believe his

doubts about being on the moon should not be mitigated by the temporal separation

between himself and the replica.

Strong ESP Suppose that universe U contains within it a set of subsystems S
such that every agent in an internally qualitatively identical state to agent

A is located in some subsystem which is an element of S = {X, Y, ...}. Let

20In a recent paper, (Wilson, forthcoming) has o↵ered a clever alternative explanation as to why
within-branch uncertainty should be treated di↵erently from which-branch uncertainty: di↵erent
Everettian worlds are in fact di↵erent possible worlds and thus Indi↵erence does not constrain one’s
treatment of which-branch uncertainty. Our analysis goes further than just explaining the di↵erence
between the two kinds of uncertainty, we also explain the commonality (by giving a unified account
of how both the Born rule, quantifying which-branch uncertainty, and Indi↵erence, quantifying
within-branch uncertainty, arise from a single core epistemic principle, ESP).
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S 0 = {MX(X),MY (Y ), ...} where each M(·) is a transformation which rotates,

spatially translates, and/or temporally shifts21 the subsystem. The probability

that A ought to assign to being located in a particular subsystem X 2 S given

that they are in U is identical to the probability that they ought to assign to

being in MX(X) 2 S 0 given that they are in some universe U 0 (which contains

within it a set of subsystems S 0 such that every agent in an internally qual-

itatively identical state to agent A is located in some subsystem which is an

element of S 0).

P (X|U) = P (MX(X)|U 0) (2.33)

HereMX(X) is a relocated version of X, MY (Y ) is a relocated version of Y , etc. Since

MY (Y ) is simply a relocated version of subsystem Y , being inMY (Y ) will feel just like

being in Y . One might worry that the fact that MY (Y ) is surrounded by a di↵erent

local environment than that around Y could make MY (Y ) and Y distinguishable.

If the replica of the laboratory is built floating in outer space instead of sitting on

Earth’s surface, the instantaneous arrangement of furniture and fermions may be the

same, but the copy of Dr. Evil would quickly notice the absence of a force keeping

his feet on the floor. Still, if we focus on the instant22 when the outer space replica

really is a perfectly shifted version of the terrestrial replica, all of the particles in the

each agent’s brain are in the same arrangement and the outer space copy must be

having exactly the same experiences as those had by the terrestrial copy (and thus

21
Strong ESP loses some of its plausibility if these three transformations are not symmetries of

the dynamical laws of U and U 0. Here we assume that they all are.
22If one thinks (reasonably enough) that it takes time to have an experience, the subsystems X,

Y , ... must be taken to be temporally extended if they are to contain agents having experiences. For
example, let Y be the terrestrial laboratory persisting over the course of, say, one minute. Moving
Y into outer space wouldn’t change what’s happening inside the laboratory during that minute at
all. It would, however, involve a violation of the laws of nature (as the felt downward force would
have no source) unless other appropriate changes were made (like the addition of an appropriately
sized planet beneath the laboratory’s floor).
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the same experiences as those of the original Dr. Evil).

Using Strong ESP, it is straightforward to prove that one must follow the recom-

mendations of Indi↵erence in cases of classical duplication. In fact, the proof is so

quick that it may cause you to doubt the principle. It shouldn’t. Indi↵erence was

intuitively plausible.23 Strong ESP retains those intuitive recommendations while

avoiding the unacceptable recommendations in cases like Once-or-Twice (§2.2.4).
We’ll first apply Strong ESP to Duplicating Dr. Evil and then move to the

general case. Let X be the lunar laboratory and all of its contents (including Dr.

Evil) and Y be the terrestrial replica and its contents. Let MX(X) move the lunar

laboratory to where the terrestrial replica was and MY (Y ) move the lunar laboratory

to where the terrestrial replica was (MX(X) = Y & MY (Y ) = X, provided the two

laboratories are in truly identical physical states). Take U to be the original world

and U 0 to be the universe you get by switching the two laboratories (which, as it

happens, doesn’t change anything: U 0 = U). Then, (2.33) yields

P (X|U) = P (MX(X)|U 0) = P (Y |U) . (2.34)

Generalizing to arbitrary many copies of an agent is simple. By pairwise swaps like the

one above it can be shown that any two copies are equiprobable. Thus when we restrict

attention to cases where the agent’s copies are physically identical and not merely

having identical experiences, the recommendations of Strong ESP align with those

of Indi↵erence. The recommendations even agree in cases of quantum measurement

when the agent’s copies are truly identical, as in equal amplitude superpositions like

(2.17).

The above justification for assigning equal credence to being in the lunar and

23In fact, it’s not just intuitive, there are arguments for it. The argument given by Elga (2004)
essentially relies on something like ESP, as we discussed in Section 2.3.1.
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terrestrial laboratories in the Duplicating Dr. Evil case at no point relied on

the laws being classical. One could equally well apply the reasoning to cases of

within-branch uncertainty. For simplicity, focus on a single branch which contains

a copy of Dr. Evil on the moon and another on Earth. The state might then be

represented as | i = |Li|T i|Ei, where |Li is the lunar lab, |T i is the terrestrial lab,

and |Ei is everything else. Take subsystem X to be the lunar laboratory, represented

by the reduced density matrix |LihL|, and Y to be terrestrial one, |T ihT |. We can

define two unitary shift operators: bSX which takes |Li to |T i and bSY which takes

|T i to |Li. With these operators we can express MX and MY mathematically as

MX(·) = bSX(·)bS†
X and MY (·) = bSY (·)bS†

Y . The remainder of the argument proceeds as

above. Note that the division into subsystems is di↵erent here than in §2.3.2. There
we assumed you know what particles you are made of and are trying to determine

what branch of a particular reduced density matrix you inhabit. Here we’ve focused

on the question of what you’re made of—that is, which reduced density matrix gives

the state of the particles that compose your body.

2.4.2 Mixed Uncertainties

We have now seen that, depending on the scenario, probability in quantum mechan-

ical contexts is sometimes handled by the Born rule and other times handled by

Indi↵erence. What about cases where the two types of uncertainty are mixed—when

one knows neither where they are in spacetime nor which branch they are on? Here

we must rely on the rule from which both individual prescriptions arise: Strong ESP.

In this section, we’ll discuss two illustrative ‘quantum sleeping beauty’ scenarios that

combine both kinds of uncertainty (Lewis, 2007, 2009b; Papineau & Durà-Vilà, 2009a,

2009b; Peterson, 2011; Bradley, 2011, forthcoming; Wilson, 2014; Groisman et al. ,

2013).
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Two-Branch-Beauty The experimental subject, Beauty, will be put to sleep on

Sunday night. While she is asleep, there will be a z-spin measurement of particle

a which is initially x-spin up. If the result is up, she will be awoken on Monday

and then her memory of Monday’s events will be erased so that on Tuesday

when she wakes up her last memories will be of going to sleep Sunday night.

If the result is down, she will not have her memory erased. Beauty knows

everything that might be relevant about the setup.

Figure 2.2: Two Quantum Sleeping Beauty Scenarios

Consider Beauty’s situation upon waking with her most recent memories being

those of going to bed Sunday evening. Her evidence doesn’t discern between three

possible locations in the multiverse where she might be: Monday morning on a branch

where a was measured to be up, M", Tuesday morning on a branch where a was up,

T", or Monday morning on a branch where a was down, M#. Upon waking, what

probability should Beauty assign to particle a being up? That is, what probability

should she assign to M" _ T"? By ESP -based arguments like those in §2.3.2, she
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should assign equal probability to M" and M#,

P (M") = P (M#) . (2.35)

However, since M" and M# are not the only alternatives, it does not follow that she

should assign a probability of one half to each.

Given that a was spin up, we’re dealing with a case of within-branch uncertainty

about what day it is. Here Indi↵erence and Strong ESP agree that Alice should

assign equal probability to it being Monday or Tuesday morning (provided that the

Monday and Tuesday Alices are in identical physical states, a useful albeit unrealistic

assumption),

P (M") = P (T") . (2.36)

Since M", M#, and T" are the only three options, it follows from (2.35) and (2.36)

that Alice should assign each alternative a probability of one third. The answer to

our original question is that P (") = P (M" _ T") ought to be two thirds. We thus

recover the popular ‘thirder’ result for this kind of sleeping beauty scenario.24

Two-Branch-Beauty may appear to be merely a fanciful philosopher’s con-

coction, of little to no physical importance. In fact, the case is importantly similar to

inflation scenarios where some quantum branches have no life, others have life, and

some have so much life that one can reasonably expect that one’s own experiences

are duplicated somewhere else in spacetime. If we hope to develop a framework for

testing theories like this, we need epistemic principles which can handle uncertainty

about both which branch one is on and where one is within that branch.

24Vaidman (2011, §6) gets the same result in this case through his consideration of self-locating
uncertainty.
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There’s something odd about the recommendations of Strong ESP in Two-

Branch-Beauty. The probability that the principle tells Beauty to assign to up

is 2/3 whereas the Born rule recommends a probability of 1/2. Is the Born rule

invalid?25 We think that the right lesson to draw is that there are two sources of un-

certainty here and the Born rule is perfectly correct for quantifying the uncertainty

brought about by quantum measurement. However, there is also uncertainty arising

from the duplication of Beauty’s experiences on the up branch. When both types of

uncertainty are present, we need a rule for aggregating them. Strong ESP is capable

of doing this, as discussed here and in §2.4.3.
To understand what’s special about the Two-Branch-Beauty case discussed

above, it is worth considering a variant of the case.

Three-Branch-Beauty Beauty will be put to sleep on Sunday night. While she is

asleep, there will be a z-spin measurement of particle a which is initially x-spin

up. If the result is up, particle b (identically prepared) will also be measured:

If b is up, Beauty will awake on Monday morning; if down, Beauty will be kept

asleep until Tuesday morning. If particle a is measured to be down, particle

b will not be measured and Beauty will awake on Monday. Beauty knows the

setup.

This is simply a case of repeated quantum measurements, essentially the same setup

as Once-or-Twice. Here we can run arguments like those in §2.3.2 to show

that Beauty should assign Born rule probabilities: P (M") = 1/4, P (T") = 1/4,

and P (M#) = 1/2.26 Comparing Three-Branch-Beauty and Two-Branch-

25See the discussion of cosmological cases where it appears that the Born rule is untenable in
(Page, 2009a); see also §2.4.3.

26A wrinkle: Before we can apply the methods of §2.3.2, one must first shift attention to a universe
where the T" copy of Beauty is temporally translated back to Monday. Strong ESP says that the
probabilities will be the same in such a universe. However, this new case is easier to handle as it is
exactly analogous to Once-or-Twice.
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Beauty, we see that Strong ESP explains how the popular thirder solution can

be correct for Two-Branch-Beauty whereas the halfer solution is correct in the

quantum Three-Branch-Beauty case (solving the mystery of Lewis, 2007).

2.4.3 Large Universe Cosmology and the Quantum

Multiverse

The tricks of §2.4.2 can be used to give recommendations in the general case. Con-

sider a universe U—recall that in our terminology ‘universe’ means ‘entire quantum

multiverse’—with a set of observers {Oi} who find themselves in indistinguishable

circumstances.27 They may be on the same branch of the wave function, on di↵erent

branches, or even at di↵erent times. For each observer Oi existing at some time ti,

the overall state describing the universe can be written in the form

| (ti)i = ↵i|�ii+ �i|�?
i i , (2.37)

where |�ii is the branch on which the observer lives and |�?
i i is the remainder of

the quantum state, including all other branches. |�?
i i is (at least approximately)

orthogonal to |�ii.
In this case, by the considerations above, Strong ESP provides an unambiguous

procedure for assigning credences. To each observer we assign a weight

wi = |↵i|2 . (2.38)

27Here we work under the fiction that the observers can be easily distinguished, labeled, and
counted. In actuality there may be multiple ways of carving the wave function into branches (see
§2.2.2). Corresponding to di↵erent ways of carving the wave function into branches, there will be
di↵erent collections of observers Oi. However, predictions derived using (2.39) will not depend
significantly on the particular carving. In applying Strong ESP we also assume that the observers
are physically identical (modulo the weights of their branches).
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Then the probability for being observer Oi is simply28

P (Oi|U) =
wi

P

j wj

. (2.39)

Note that the weights {wi} will not in general sum to unity for a variety of reasons:

the weights may be calculated at di↵erent times for di↵erent observers; there may be

multiple observers on a single branch; there may be branches with no observers. This

rule reduces to Indi↵erence in the case of multiple observers on a single branch and

to the Born rule when there is a single observer on each branch.

This recipe provides a resolution of the ambiguity in applying the Born rule in

large universes that was identified by Page (2009a, 2009b, 2010); see also (Aguirre &

Tegmark, 2011; Albrecht & Phillips, 2014). Consider a universe that is large enough to

contain multiple observers with identical experiences on the same branch of the wave

function. Imagine that each observer plans to measure the z-spin of their particle,

each particle being in a potentially di↵erent pre-measurement state:

|�ii = �i| "zi+ �i| #zi . (2.40)

In simple cases of quantum measurement, the Born rule can be expressed as the

statement that the probability of an observational outcome is given by the expectation

value of a projection operator. For example, in an individual state of the form (2.40),

the probability of observing spin-up is P ("z|�i) = h�i|⇧̂"|�ii = |�i|2, where ⇧̂" =

|"zih"z|. Page shows that there is no projection operator that gives the probability

that an observer, not knowing which observer they are, will measure "z or #z; in that

sense the Born rule is insu�cient to fix the probabilities of measurement outcomes.

Strong ESP resolves this ambiguity; using (2.39), the probability of z-spin up (post-

28Groisman et al. (2013) have proposed essentially the same rule.
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measurement, pre-observation) is simply given by

P ("z|U) =
X

i

P (Oi|U)⇥ |�i|2 , (2.41)

and analogously for z-spin down. Here P (Oi|U) are the probabilities assigned to

being di↵erent observers before the measurement is conducted.

This result has consequences for the measure problem in cosmology (Freivogel,

2011; Salem, 2012; Vilenkin, 2012), although we will not explore them in detail here.

We will only note that the probability one should assign to being a particular observer

in the multiverse clearly depends on the amplitude of the branch on which that

observer finds themselves. For example, consider one evolving branch on which the

temporal density of observers grows exponentially, n(t) / e!t, such as might happen

in inflationary cosmology. Let B be the subset of observers who live on that branch.

According to our prescription, the probability one should assign to being on that

branch is not proportional to the integral of n(t) over time, which is obviously infinite.

Rather, it should be weighted by the amplitude ↵(t) of the corresponding branch:

P (B|U) /
Z

dt |↵(t)|2n(t). (2.42)

If the the amplitude is decaying exponentially in time, ↵(t) / e��t, we will have a

well-defined finite probability for being a member of B as long as � > !/2. If � < !/2,

the numerator and denominator of (2.39) both go to infinity and the rule fails to give

a well-defined probability for being in B.
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2.5 Probability in Practice

In §2.3.2 we showed that, post-measurement pre-observation, agents should assign

probabilities to measurement outcomes in accordance with the Born rule. This alone

is not a su�ciently strong result to show that the many-worlds interpretation recovers

all of the important aspects of quantum probability. There remain two key problems,

identified in Papineau (1996); Greaves (2007a). First, the practical problem. When

faced with decisions whose repercussions depend upon the outcomes of future quan-

tum measurements, why should agents act as they would if only one outcome were

going to occur with probability determined by the Born rule? Second, the epistemic

problem. Why can we infer facts about the wave function from observed long-run

frequencies? Also, why do the data usually taken as evidence for quantum mechanics

provide evidence for Everettian quantum mechanics? As we are primarily concerned

with our reasons for believing in the many-worlds interpretation, we focus on the

epistemic problem. The practical problem is less urgent. If Everettian quantum me-

chanics is well-confirmed by the evidence but turns out to recommend that we act

di↵erently, then we would do well to adjust the way we make decisions. In §2.5.1 we

suggest that perhaps there is no adjustment, that an Everettian can continue to act

as if a single outcome will occur with probability given by the Born rule.

A common objection to Everettian quantum mechanics is that there is no way

for probabilities to arise in a deterministic theory when the entire physical state and

the laws are known. Consider Once-or-Twice. At t1 before the measurements

have been made, Alice knows what will happen. She will have a successor who sees

that particle a was measured to be down and two who see up. If she knows the

universal wave function, there is nothing for her to be uncertain of. Of course, as

was discussed in §2.2.2, she will experience self-locating uncertainty at t2 and t3.
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But, at t1 there is no uncertainty. Still, it may be that Alice should act as if she

was uncertain (perhaps there is, as Vaidman 2011, 2014a would say, an ‘illusion of

probability’). Regardless of how Alice is to act at t1, when the data is collected

and the theories are tested, between t3 and t4, the requisite uncertainty is present

and confirmation can proceed as usual. Here we follow Greaves (2004) in admitting

that Everettian quantum mechanics lacks pre-measurement subjective uncertainty

but arguing that it is not thereby refuted.29 The core problem of this section, whether

post-measurement pre-observation probabilities are su�cient for solving the practical

and epistemic problems, has been discussed by Tappenden (2011) and we are largely

in agreement with his conclusions.

2.5.1 Betting and Branching

Imagine that, in Once-or-Twice, at t1 Alice is o↵ered a bet which costs $20 and

pays $50 if the first measurement yields down, nothing if up. The net reward or

cost is assessed at t4. Should Alice accept the bet? At t2, all of her successors will

wish that she had taken the bet. They each assign a probability of 0.5 to up and

0.5 to down, so the expected value of the bet is $5. At t3, the expected value of

the bet is the same and again all of Alice’s successors will wish she had taken it.

Alice knows ahead of time that although she’ll gain no new information about the

29Although we will not explore the option here, one could try to revive some notion of pre-
measurement uncertainty which would be present even in cases where the wave function is known;
strategies include conceiving of persons as four-dimensional worms, taking Everettian worlds to be
diverging as opposed to overlapping, and/or trying to most charitably interpret words like ‘un-
certainty’ as uttered by agents who unknowingly reside in an Everettian multiverse (see Saunders
& Wallace, 2008; Saunders, 2010b; Wilson, 2012; Wallace, 2012, ch. 7). Our proof of the Born
rule post-measurement could potentially be combined with such an account to justify setting the
pre-measurement probabilities in alignment with the Born rule. However, it is not clear that true
pre-measurement uncertainty is needed to solve the practical or epistemic problems. Although there
may be some way of making sense of pre-measurement probabilities, we hope to show that our
approach does not rely on the success of such a program (here we adopt the strategy of Greaves,
2007a, §1.3).
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outcome as time progresses, once the measurement has occurred she will wish she’d

taken the bet. So, it seems reasonable that at t1 she should gamble in the way her

future selves will wish she had and accept the bet. Generalizing this reasoning, Alice

should always bet as if one outcome were going to occur with probability given by

the Born rule since during the inevitable post-measurement pre-observation period

all of her successors will approve of choices made under this supposition. (This type

of argument is presented and assessed in Tappenden, 2011.)

When Alice decides, pre-measurement, to accept the bet, she is not doing so

because she is trying to make a decision under uncertainty. Instead, she is trying to

make a decision about how to distribute goods among her successors. If she distributes

goods as recommended above, each successor will think the decision reasonable before

they come to know which successor they are. Once they come to realize which branch

they’re on, they may well not endorse the bet. This should not be surprising. Even

the most careful gambler can lose and in such cases would prefer that the bet was

never made.

The strategy for arriving at e↵ective pre-measurement uncertainty outlined above

has three distinct shortcomings. First, the claim that one’s pre-measurement deci-

sions must align with the post-measurement preferences of one’s successors must be

justified. This alignment might be enforced by some sort of decision-theoretic reflec-
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tion principle, but such a principle would need to be precisely stated and defended.30

Second, this strategy only works if the preferences of agents are narrow: each suc-

cessor only cares about what’s happening in their own branch.31 If each of Alice’s

successors only cares about their own wealth, then the bet described above seems

lucrative. There is a 50% chance of winning $30 and a 50% chance of losing $20.

The probability of being on a certain branch acts, for all practical purposes, like the

probability that a certain thing is happening. But, if the successors care about, say,

the average wealth of all successors, then at t2 it seems like a good bet but at t3 it

does not. (Here we’ve assumed an idealized case, as in §2.2.3, where the number of

successors is well-defined. Removing the idealization makes decision making harder,

but doesn’t fix the problem that one’s preferences may extend beyond the goings on

in one particular branch. For example, one might conceivably desire that no copy

of oneself elsewhere in the multiverse be experiencing a truly miserable life (Price,

2010, §7).) Third, the strategy outlined above does not directly address cases where

there is no period of uncertainty at all because observation happens immediately upon

measurement. We believe such cases are atypical, but perhaps possible (§2.2.2). In

such a case, one can use the strategy above to argue that had there been a period of

uncertainty of any length at all, it would have been rational to treat the psi-squared

30Some work has already been done in this direction. Wallace (2002, §8.1) introduces a decision-
theoretic reflection principle which is discussed in Greaves (2004, §4.2) and Greaves (2007a, §5.2.1).
The requirement is roughly that one’s betting behavior ought not change over a period of time
in which no new evidence is gained (and this is coupled with the idea that the occurrence of an
expected branching event provides no new evidence). Wallace (2010c,2012) defends a requirement
of diachronic consistency which does similar work. Unfortunately, both of these principles condemn
agents we take to be acting rationally in various cases where self-locating uncertainty is important
(such cases often violate epistemic reflection principles, see Lewis, 2009a; Arntzenius, 2003). For
example, the principles condemn an agent who accepts the Duplicating Dr. Evil Dutch book in
appendix 2.A as the agent’s betting behavior changes once the duplicate is created. We thus believe
that these two principles cannot be correct as stated.

31Tappenden (2011) is aware of this problem (which was raised in the context of anticipated
branching by Price, 2010).
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branch weights as probabilities for the sake of decision making—to care about one’s

successors in proportion to the weights of the branches they occupy. As the limit of

the amount of time after measurement before observation is taken to zero, the same

decisions remain rational. It would be very odd if they were not the right actions to

take when there is no period of uncertainty at all.32

2.5.2 Theory Confirmation

For the purposes of empirically testing competing theories—about the state of the

system or the laws that govern its evolution—it is necessary that when the data

come in we can judge whether the data are considered probable or improbable by the

various theories under consideration. That is, immediately before the agent observes

the result, probabilities of di↵erent outcomes must be well-defined. However, it is

inessential that there be well-defined probabilities before the measurement is made

and the outcome is recorded by the measuring device (the point at which the wave

function branches). Post-measurement pre-observation probabilities are su�cient for

theory confirmation. On our account, immediately before looking at the outcome of

an experiment an agent in an Everettian multiverse is uncertain of what the observed

outcome will be and is perfectly capable of quantifying that uncertainty. Theories

can be tested in familiar ways.

Although theory testing in Everettian QM proceeds essentially as usual, we dis-

cuss two kinds of learning scenarios here for the sake of illustration. First, consider

testing theories about the wave function of the system by gathering data about which

eigenvalues are measured. We will treat the problem from a Bayesian perspective, but

one could apply alternative methods (see Wallace, 2012, §6.2 & 6.3). For simplicity,

32A similar limiting argument is made by Greaves (2007a, §5.2.1), and another appealing to a
hypothetical period of uncertainty by Tappenden (2011, §4)
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consider a case where there are just two theories under consideration:

What Wave Function? Alice will measure the z-spin of a single particle which

she knows to be prepared in either state ‘P "’ (‘probably up’) or state ‘P #,’

| P"i =
r

9

10
|"zi+

r

1

10
|#zi

| P#i =
r

1

10
|"zi+

r

9

10
|#zi . (2.43)

Before the experiment, she considers either wave function equally likely. Let

t1 be a time after preparation before measurement, t2 be post-measurement

pre-observation, and t3 be immediately post-observation.

On our account it is not hard to see that observing an up result confirms  P". At t2,

Alice assigns conditional probabilities Pt2 ("z| P") = 0.9 and Pt2 ("z| P#) = 0.1. As

she knows branching has occurred, these are the probabilities she assigns to being on

an up branch conditional on particular initial wave functions. If upon observation she

sees that the spin was up, she should update her credence in  P" by conditionalizing

on her new evidence,

Pt3 ( P") =
Pt2 ("z| P")Pt2 ( P")

Pt2 ("z| P")Pt2 ( P") + Pt2 ("z| P#)Pt2 ( P#)

=
0.9⇥ 0.5

0.9⇥ 0.5 + 0.1⇥ 0.5
= 0.9 . (2.44)

The credence Alice assigns to  P" jumps from 0.5 to 0.9, as it should. Continuing

to observe more up results than down in identically prepared systems would further

confirm the  P" hypothesis over  P#. In analyzing this case we’ve assumed that Alice

should update as usual, by (2.44), even though some of the probabilities involved
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quantify her self-locating uncertainty, like Pt2 ("z| P").33

Next, consider a second type of learning scenario. We can empirically confirm

Everettian quantum mechanics over competing empirically inequivalent hypotheses

about the physical laws by observing Born rule statistics. Suppose we run a large

number of experiments without observing the outcomes (one could equally well look

after each experiment, but this way things will be a bit simpler). Some sequences

of results would be deemed likely by the Born rule and others would be judged very

improbable. Suppose that the actual sequence of outcomes, S , is one that the Born

rule judges likely. For example, imagine that of a large number of measurements of

bA on systems prepared in the same state | i, the fraction in which eigenvalue a is

observed is approximately |ha| i|2. Then, the probability of the evidence given the

theory, P (S |EQM& ), is high for Everettian quantum mechanics, EQM, because

Everettian probabilities match the Born rule probabilities (§2.3.2). If another theory
considered such sequences to be less probable, then updating on S would support

Everettian quantum mechanics over this competing theory. If the alternative theory

assigned the same probability to S , the data would not discern between the two

theories.

In general, confirmation will work as usual in cases where Alice has a period

of uncertainty before the outcome is revealed to her. What happens if in What

Wave Function? Alice sees that the particle is "z exactly when the branching

occurs so that there is no post-measurement pre-observation period? This is a tricky

33There is a way in which the case of theory testing here is di↵erent from normal cases. On either
of the two hypotheses about the wave function, it was guaranteed that a version of Alice would see
spin up. This leads to a worry: What Alice learns upon seeing up is that ‘in my universe, one of
the copies saw up’—which doesn’t provide evidence for either theory over the other as Alice already
knew with certainty that it would happen—and that ‘I’m the one who saw up’—which is purely
self-locating information about where she is in the universe and thus not informative about the way
the universe is. We side with Titelbaum (2008) and Greaves & Myrvold (2010, pp. 294-295) in
rejecting the final step, ‘purely self-locating evidence’ can be informative about the way the world
is. For a theory about learning from evidence that disagrees on this point, see Meacham (2008).

86



question. Alice might try to update her credences immediately after branching by

conditionalization as in (2.44) (now moving directly from the pre-measurement time

t1 to the post-observation time t3 as there is no post-measurement pre-observation

period),

Pt3 ( P") =
Pt1 ("z| P")Pt1 ( P")

Pt1 ("z| P")Pt1 ( P") + Pt1 ("z| P#)Pt1 ( P#)
. (2.45)

In this equation, the probability Pt1 ("z| P") is hard to interpret. It’s definitely not

the probability that the particle was up given  P" at t1 since the particle was in

a superposition of up and down before the measurement was made. It cannot be

Alice’s pre-measurement probability that ‘I will see up’ given that the particle is

currently in state  P" since the claim is ill-defined; some successors will see up and

others will see down, all are Alice’s descendants. It should not be interpreted as the

probability that some successor of Alice sees up. In cases where stochastic theories are

under consideration this proposal would make Everettian QM too easy to confirm—

all outcomes that one might observe are given probability one (see Greaves, 2007a,

p. 140). Standard Bayesian methods break down. The question of how to revise

Bayesian confirmation theory is di�cult and numerous proposals have been made—

many of which rely on Elga’s indi↵erence principle and thus are incompatible with

ESP (see footnote 2.2.2). To thoroughly address the question of how to update when

the outcome is immediately observed upon branching, we must await philosophical
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progress.34 There is reason to be optimistic. Plausibly, in the case of immediate

observation one should adjust their beliefs in the way they would if there were a

short period of self-locating uncertainty as the adjustment is the same no matter how

short the period of self-locating uncertainty is (Tappenden, 2011, p. 107).

2.6 Comparison to Other Approaches

The main purpose of this article is to present our derivation of the Born rule. It is

consistent with the success of our derivation that other attempts to derive the Born

rule are also satisfactory. However, there would have been little motivation to embark

on this project if we did not have concerns about existing approaches. In this section

we will highlight the di↵erences between our derivation and two existing programs:

Zurek’s envariance-based derivation and the decision-theoretic approach.

2.6.1 Zurek’s Envariance-based Derivation of the Born Rule

Here we will briefly present Zurek’s (2005) argument in the simplest case and mention

some of the limitations of his approach.

According to Zurek, the probabilities for a system S to manifest various proper-

ties upon measurement depend only on the state of the system (‘Fact 2’). Further,

the state of a system is not a↵ected by unitary transformations on the environment

(‘Fact 1’). From these assumptions, one can prove that the probabilities for di↵erent

34One appealing recent suggestion is to replace Pt1 ("z| P") with ⌧( P" !"z) where ⌧( P" !"z)
is a ‘transition probability,’ capturing something like the degree to which the copies of Alice on "z
branches are Alice’s successors if the initial wave function is  P"; or, more operationally, specifying
how much of Alice’s credence in  P" should shift to the "z branches at t3 before she takes account
of any new evidence (Schwarz, forthcoming). If Schwarz’s suggestion is adopted, one could argue
that the transition probabilities should be given by the amplitude-squared of the wave function by
requiring that belief update when there is no period self-locating uncertainty agree with the case of
an arbitrarily small period of self-locating uncertainty.
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measurement outcomes are in agreement with the Born rule in ordinary scenarios.

For example, suppose the state of the universe is

1p
2

⇣

|"ziS |E1i+ |#ziS |E2i
⌘

, (2.46)

where E1 and E2 are orthogonal. It is taken to follow from the perfect entanglement

between system and environment that P ("z) = P (E1). The following universal state

can be reached by a unitary swap of the environment states (or a unitary swap of the

system states),
1p
2

⇣

|#ziS |E1i+ |"ziS |E2i
⌘

. (2.47)

This swap does not change the state of the system or the environment, it only a↵ects

the entanglement between the two. The perfect entanglement of (2.47) yields P (#z
) = P (E1). Combining these two results gives P ("z) = P (#z), in agreement with the

Born rule.35

Zurek has provided a compelling argument that the Born Rule gives the only

sensible probability measure in Everettian quantum mechanics. However, that has

arguably already been established by Gleason’s Theorem (Gleason, 1957). What

Zurek fails to explain is how probabilities arise at all in this deterministic theory—

self-locating uncertainty is not discussed. Thus in his derivation the nature of the

probabilities involved is obscure. Zurek claims that he is calculating probabilities

for future measurement outcomes, but he does not explain clearly what these are

probabilities of, saying that the ‘observer can be ignorant of his future state, of the

outcome of the measurement he has decided to carry out’ (Zurek, 2005, §VII.C).36

This would be reasonable if only one outcome were expected to occur. However,

35In our exposition of (Zurek, 2005, §II.C) we take option 3 since it seems strongest and is most
similar to the reasoning in our derivation.

36See also FAQ #5 of (Zurek, 2010).
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as explained in §2.2.2, it is not obvious that there is anything for one to assign

probabilities to in the many-worlds interpretation when all outcomes will occur and

the future evolution of the wave function is known.37 One could reasonably argue that

Facts 1 and 2 are insu�ciently motivated in Zurek’s treatment, especially given that

the probabilities involved are not the usual sort.38 Although our derivation relies on

an assumption as well, ESP-QM (which is similar to Facts 1 and 2 taken together),

we have attempted to provide a more thorough justification of our assumption and a

more philosophically careful treatment of the probabilities involved.

2.6.2 The Decision-theoretic Program

Starting with (Deutsch, 1999), there have been a variety of attempts to justify Born

rule probabilities using decision theory (Greaves, 2004, 2007a; Greaves & Myrvold,

2010; Wallace, 2003b; 2010c, 2012; Wilson, 2013). The basic strategy is to argue that

plausible constraints on rational preferences ensure that when we make bets about

the outcomes of future quantum measurements we will act as if we assign Born rule

probabilities to the various branches. The success of their program is compatible with

the success of our purely epistemic arguments. In fact, the mathematical methods

used to derive the Born rule are quite similar.39 At this point, many remain un-

37Zurek (2005, §III.C) recognizes this challenge and responds by departing from the many-worlds
interpretation and discussing his Existential interpretation instead. This raises doubts about the
applicability of his proof to Everettian quantum mechanics.
Wallace (2012, ch. 7, esp. §7.6) argues that we should expand our concept of subjective probability

so that one can not only assign probabilities to ways the world might be and locations they might
have in it, but also to di↵erent futures within a branching Everettian multiverse. Doing this would
help preserve the correctness of language used by agents in Everettian worlds. Wallace may be right
that such an extension is possible and advisable, but to the extent that it is, it requires a significant
change in the way we understand probability. In this new context, fact 2 is far from obvious.
Wallace’s derivation of the Born rule is not susceptible to similar concerns as his assumptions are
about the preferences of ideal agents, not their probability assignments.

38See also (Schlosshauer & Fine, 2005, esp. §III.F2; Albert, 2010, §3.1).
39Compare Wallace’s, 2012, §5.5, use of erasure to ignore irrelevant details and our use of ESP-QM

in §2.3.2 to do the same.
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convinced by the decision-theoretic program (Baker, 2007; Albert, 2010; Price, 2010;

Dizadji-Bahmani, forthcoming; Maudlin, 2014). We focus on one particular type of

concern here to highlight an advantage of our approach.

The constraints proposed in the decision-theoretic approaches may reasonably be

doubted as they manifestly conflict with a prima facie reasonable epistemic principle,

Indi↵erence. Deutsch’s original formulation of the decision-theoretic argument for the

Born rule implicitly appeals to the following assumption (Wallace, 2003b):

Measurement Neutrality. A rational agent is indi↵erent between any two

quantum bets that agree on the state | i on which the measurement is to be

performed, the observable bX to be measured, and the ‘payo↵ function’ P from

the spectrum of bX to the set of consequences. (Greaves, 2007b, p. 119)

Wallace (2007) has proved that Measurement Neutrality is equivalent to:

Equivalence. A rational agent is indi↵erent between any two quantum bets

that agree, for each possible reward, on the mod-squared measure of branches

on which that reward is given. (Greaves, 2007b, p. 119)

The arguments in (Deutsch, 1999; Greaves, 2004, 2007b; Wallace, 2003b) appeal

to this assumption in one of its manifestations. Measurement Neutrality may have

some intuitive plausibility but, looking at Equivalence, it is obvious that this assump-

tion will be inconsistent with a branch-counting rule for assigning probabilities. The

principle seems to beg the question against the defender of Indi↵erence who takes

branch-counting to be the proper way to assign probabilities in Everettian quantum

mechanics. Defenders of the decision-theoretic program typically point out that the

conflict with branch-counting should not cause doubt about Equivalence since there

are independent reasons to think branch-counting is wrong. Two main reasons are

given. First, branches cannot generally be counted so branch-counting is not a rule

one could actually apply. As discussed in §2.2.3, there are cases, albeit somewhat
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contrived, where branch number is well-defined and in these cases branch-counting

gives definite recommendations which are in conflict with the Born rule. The fact that

it is unclear how to apply a rule in some cases is not necessarily a reason to think it

incorrect when it yields a clear judgment. Second, branch-counting is diachronically

inconsistent. We do not take this to be a strong reason to reject branch-counting (see

appendix 2.A).

In more recent decision-theoretic derivations of the Born rule, Wallace (2010c,

2012) introduces a somewhat di↵erent collection of rationality axioms, multiple of

which might be contested by the defender of branch-counting. Wallace argues in

favor of these axioms and does not take their conflict with branch-counting (Wallace,

2012, §5.8.1) as a reason to think them incorrect, since branch-counting can be shown

to be irrational. For one who believes his axioms, this gives reason to doubt branch-

counting. But for the proponent of Indi↵erence, it gives reason to doubt Wallace’s

axioms. We also reject Indi↵erence because it conflicts with an assumption about

rationality (ESP). However, we take our argument to be potentially more persuasive

to the proponent of Indi↵erence for two main reasons: ESP is a single, simple, general

epistemic principle which we believe has similar (if not more) initial plausibility than

Indi↵erence; ESP is consistent with Indi↵erence (and Strong ESP entails it) in cases

of classical self-locating uncertainty and thus it is capable of explaining why (and how)

quantum cases are to be handled di↵erently (though see footnote 20). A strength of

our approach, over both the decision-theoretic program and Zurek’s derivation, is

that it can be applied in both cases of classical duplication and in cases of quantum

branching.
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2.7 Conclusion

In this paper we have presented a justification for the Born rule in Everettian quantum

mechanics in which self-locating uncertainty played a fundamental role. The policy

of reacting to self-locating uncertainty by treating each observer as equiprobable,

Indi↵erence, is reasonable in classical scenarios but yields strange recommendations

in quantum contexts. Instead we proposed the Strong Epistemic Separability Principle

(Strong ESP), which extends smoothly from Indi↵erence in the classical regime to

the Born rule in cases of quantum measurement.

Following the consequences of Strong ESP leads us to a simple and physically

transparent derivation of the Born rule in the many-worlds interpretation. The ap-

pearance of probabilities in a deterministic theory is explained by evolution from

perfect knowledge to unavoidable self-locating uncertainty. Our approach provides a

unified perspective on uncertainties in both the classical and quantum contexts, with

implications for large-universe cosmology as well as for the foundations of quantum

mechanics.

There are a few ways in which future work could strengthen the approach

to probability in Everettian quantum mechanics developed in this article. First,

although Strong ESP has some intuitive appeal, one could seek further philosophical

justification for the principle and a more precise formulation of it. Second, more

work could be done in justifying the appeal to reduced density matrices as the

correct way of representing subsystems in Everettian quantum mechanics. Third,

one might hope to reach more definitive conclusions about the connection between

post-measurement probabilities and pre-measurement decision making.
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2.A What’s Not Wrong with Branch-counting

Wallace (2012, §4.3) gives the following diagnosis of why the switch from Pt2(up) =
1
2

to Pt3(up) =
2
3 in Once-or-Twice is irrational: it is diachronically inconsistent.40

According to ‘the standard rules of the probability calculus,’ the probability of particle

a being up at t3 ought to be

Pt3(up at t3) = Pt2(up at t3|up at t2)Pt2(up at t2) + Pt2(up at t3|down at t2)Pt2(down at t2) .

(2.48)

But, it clearly is not if

Pt3(up at t3) =
2

3

Pt2(up at t3|up at t2) = 1

Pt2(up at t3|down at t2) = 0

Pt2(up at t2) = Pt2(down at t2) =
1

2
, (2.49)

as recommended by Indi↵erence. Without the subscripts, the point is certainly valid.

At t2 or t3 (or any other time), it must be the case that

P (up at t3) = P (up at t3|up at t2)P (up at t2) + P (up at t3|down at t2)P (down at t2) ,

(2.50)

40He credits Deutsch with giving a version of the argument in conversation (Wallace, 2013, footnote
15).
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provided ‘up at t2’ and ‘down at t2’ are mutually exclusive and exhaustive alterna-

tives. This forbids certain unsophisticated ways of filling in the branch-counting story,

but is of no concern to the defender of Indi↵erence. At t2, P (up at t3) is only 1/2.

At t3, P (up at t2) has risen to 2/3.

(2.48) is not a requirement of consistency for one’s credences at a time, it is a

constraint on the way one ought to adjust their credences over time and not one that

a proponent of Indi↵erence should accept. At t2 Alice knows that there’s a 50/50

chance that she’s on an up branch and that if she is on one she’ll definitely still be

on one later. However, once the second measurement is made she realizes there are

three branches she might be on and that none of her evidence discerns between the

three possibilities. So, by the logic of Indi↵erence, she should think it more likely

that she’s on an up branch since there are twice as many of them.

Wallace (2012, §5.4) rightly notes that because of the prevalence of branching in

Everettian quantum mechanics, such credence shifts will be so common that delib-

erative action will be near impossible. Such are the dangers of living in a wildly

branching multiverse.

The violation of (2.48) can be made more worrisome as it leads to an Everettian

Dutch book.41 If Alice reasons by Indi↵erence, there are a series of bets which can

be given to her and her successors such that each bet will be judged fair but the

combination of bets guarantees a loss on every branch. Here is a way of constructing

the Dutch book (from Peterson, 2011, §2): At t2 a bet is o↵ered which pays $15 if

particle a is down and �$15 if up. At t3 a bet is o↵ered which pays $10 if particle

a is up and �$20 if down. All costs/rewards will be collected/paid at t4. If Alice

assigns probabilities as in (2.49), these bets will seem fair. However, if she accepts

41Wallace would likely see this as a friendly strengthening of his quick argument (see Wallace,
2012, §4.8 together with Wallace, 2010b, p. 247). For an alternate strategy, see (Wallace, 2010b,
§II).
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both bets then she will lose $5 on each branch. There is an apparent inconsistency

here. Looking forward from t1 Alice can see that this series of bets will guarantee

her a loss and thus would presumably choose not to take them if o↵ered as a package

before the branching starts. However, as she goes through the experiment and her

credences shift (in a way which she could have anticipated), she finds each bet fair

when o↵ered.

The defender of Indi↵erence should not be perturbed.42 Consider this potential

Dutch book for Dr. Evil in the Duplicating Dr. Evil case: Before t (that is,

before the duplication), Dr. Evil is o↵ered a bet that some time long after t will pay

out $100 to Dr. Evil and �$300 to Dup. Not long after t, he is o↵ered a second bet

which will pay out $200 to Dup and �$200 to Dr. Evil. If both bets are accepted,

Dr. Evil and Dup will each lose $100. The first bet seems lucrative. Since Dup

has yet to come into existence, Dr. Evil can be sure he’s not the duplicate. The

second bet is fair by Indi↵erence. Thus it turns out that accepting Indi↵erence in

the original case where the principle was most plausible already leads to a diachronic

Dutch book. The defender of Indi↵erence finds the recommendations of the principle

reasonable in cases like Duplicating Dr. Evil and thus must reject the idea that

this kind of diachronic Dutch book demonstrates irrationality. The Everettian Dutch

book discussed above raises no new concerns for Indi↵erence.

The same point can be expressed in another way. If the fission in Once-or-

Twice, depicted in figure 2.1, was classical fission instead of quantum fission then

assigning credences in accord with Indi↵erence and betting accordingly would be

reasonable (imagine cases of amoeba-like division as discussed in, e.g., Parfit, 1971).

If these beliefs and betting behaviors are acceptable in the classical case, why not

in the quantum case as well? The charge of diachronic inconsistency does not raise

42Thanks to David Manley for essential discussion here. See (Lewis, 2009a) for a related point.
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distinctively quantum problems for Indi↵erence.
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2.B Circularity

There are reasons to be concerned that an appeal to reduced density matrices in

deriving the Born rule involves some sort of illegitimate circularity (Zeh, 1997; Baker,

2007; Schlosshauer, 2007, §8.2.2; Zurek, 2003b, 2005, 2010; Kent, 2010, §5.4). This

objection comes in a variety of forms. We’ll consider three.

First, one might be concerned that the very use of inner products, partial trace

operations, and reduced density matrices is forbidden until one has derived a connec-

tion between squared inner product and probability. This cannot be right. How could

one derive such a thing without ever writing an inner product? Partial trace opera-

tions and reduced density matrices are perfectly well-defined mathematically within

the framework of quantum theory. Their definition does not require understanding

any number as a probability. The concern about circularity must then be a concern

about the physical interpretation of these mathematical objects (see also Zurek, 2010,

FAQ #6).

Second, the idea that the reduced density matrix describes the state of a

subsystem—which we appeal to in our derivation of the Born rule—could be doubted.

It is not obvious that the reduced density operator for system A is in any

sense a description for the state of system A. The physical justification for

making this identification is that the reduced density operator provides the

correct measurement statistics for measurements made on system A. (Nielsen

& Chuang, 2010, §2.4.3)

It is true that the use of reduced density matrices to describe subsystems is often mo-
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tivated by the fact that the reduced density matrix retains enough information about

the state to deduce Born rule probabilities for outcomes of measurements performed

solely on that system (Schlosshauer, 2007, §2.4.6; Nielsen & Chuang, 2010, box 2.6).

However, we believe an alternative justification is possible which has nothing to do

with probabilities or measurements (although we only gesture at such a justification

here). In §2.3.1 we proposed that the mathematical representation of the state of a

subsystem should (1) together with the states of all other subsystems and facts about

the connections between the subsystems yield the total state, and (2) be su�cient

to determine its own evolution when the subsystem is isolated. Condition (1), inter-

preted appropriately, seems to be satisfied for reduced density matrices. Specifying

the reduced density matrices for A and B, along with facts about the entanglement

between the two systems, should be su�cient to specify the density matrix for the

composite system AB. (We are currently thinking about the precise sense in which

this is so and hope to include a more careful discussion in the published version of

this chapter.) To see that (2) is met, suppose that at least for a time subsystems A

and B are isolated. Let bUt be the unitary operator that gives the time evolution of

the total state. Since A and B are non-interacting, bUt = bUA⌦ bUB. The time evolution

of b⇢A is then given by bUAb⇢A bU
†
A (bUB is irrelevant).

Third, there is a worry that we cannot assume a structure of branching quantum

worlds without assuming squared-amplitudes give probabilities. Suppose that the

reduced density matrix for a macroscopic system is approximately diagonal. Why are

we justified in treating the diagonal terms as branches and the o↵-diagonal terms as

somehow unimportant and certainly not branches themselves? (See Baker, 2007; brief

reply in Wallace, 2012, pp. 243-254.) Our derivation treats the probabilities involved

as purely epistemic, quantifying an agent’s uncertainty about which world they are in.

The question of how patterns in the wave function give rise to distinct worlds—and

people who can wonder about which world they are in—is primarily metaphysical. In
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this article we’ve o↵ered no additional insights on how this important project is to

be completed, choosing to work under the assumption that it can be.

It should be noted that the use of density matrices, while convenient, is not

strictly necessary for our derivation of the Born rule. The proof of the Born rule

could equally well be derived using purely the language of state vectors. Instead of

starting from the idea that the state of the environment is irrelevant, we could begin

with the closely related thought that changes in the environment—represented by

unitary transformations—ought not change the probabilities one assigns. In Carroll

& Sebens (2014) we gave a derivation along these lines.
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2.C Generalization of the Born Rule Derivation

In the main text we showed how one can derive the Born rule in two simple cases. Here

we extend the arguments of §2.3.2 to the more general case of N orthogonal branches

with arbitrary rational squared-amplitudes and arbitrary phases. As the proof here

is restricted to rational squared-amplitudes, one might be concerned about whether

the account gives any advice at all when the squared-amplitudes are irrational. This

is especially worrisome as there are more irrational numbers than rational numbers.

However, if we assume (plausibly) that the probabilities vary continuously with small

changes in the amplitudes, the restricted proof is su�cient. For any wave function

with irrational squared-amplitudes there exist arbitrarily similar wave functions with

rational squared-amplitudes (as the rationals are a dense subset of the reals).

A general state of the above form can be written as

| 0i = c1
T
ei✓1 |RiA |d1iD |E1i+ c2

T
ei✓2 |RiA |d2iD |E2i+ ...+

cN
T

ei✓N |RiA |dNiD |ENi

=
N
X

k=1

ck
T
ei✓k |RiA |dkiD |ekiE , (2.51)

where each ck > 0, c2k 2 Z+, ✓k 2 R, and T =
p

P

k c
2
k. |RiA is Alice’s state which

is taken to be the same on every branch. |dkiD are possible states of the detector

or system of interest, D, the entity whose states Alice is assigning probabilities to.

|Eki are the possible states of the environment. Here Alice would like to know what

probabilities to assign to each possible state dk. We will show that the appropriate

probability of dk is
c2k
T 2 (unless dk = dj for some j, a situation where the particle is in
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the same state for two or more di↵erent environments, in which case the probability

is given by the sum of the amplitude-squared for each j such that dk = dj including

j = k,
P

j

c2j
T 2 ). The probability that Alice ought to assign to each pk will be unchanged

if we make the following transformation on each environment state (this follows from

ESP-QM, since the transformation leaves the Alice+Detector reduced density matrix

una↵ected),

|Eki �! 1

ck

n

|E 0
k,1i+ ...+ |E 0

k,c2k
i
o

. (2.52)

The environment state Ek is taken to a superposition of c2k di↵erent environment

states. These transformations take  0 to

| eqampi =
N
X

k=1

c2k
X

j=1

1

T
ei✓k |RiA |dkiD

�

�E 0
k,j

↵

. (2.53)

In this state, all of the components have equal amplitude. Further, there are c2k terms

where D is in state dk (unless dk = dj for some j, in which case there are
P

j c
2
j

terms). Presently we will prove that each component of  eqamp has equal probability.

Looking at the number of terms with each dk, it is clear that this is all that is needed

to show that the probabilities in  0 for each dk are given by the Born rule. The above

method for moving from a state of unequal amplitudes to one of equal amplitudes is

also used in (Zurek, 2005, §II.D).
We’ve reduced the problem to showing that terms in equal amplitude superposi-

tions are equiprobable. A general state with equal amplitude terms, such as  eqamp,

can be written as

| i =
N
X

k=1

1p
N
ei✓k |RiA |dkiD |Eki . (2.54)

Here some states dk may be identical. Now consider two possible transformations

which leave the Alice+Detector reduced density matrix unchanged. First, consider a
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transformation which entangles N display screens with each environment state Ek.

The symbol on the first screen, symbol 1, may be either S1 or S 0
1, maybe either ~

or }, symbol 2 might be S2 or S 0
2, etc. The first transformation entangles the kth

state with N displays, most of which show the unprimed symbols but the kth display

shows the primed symbol:

|Eki �! |S1i |S2i ... |S 0
ki ... |SNi |E⇤

ki . (2.55)

This takes the state  to

| ↵i =
N
X

k=1

1p
N
ei✓k |RiA |dkiD |S1i ... |S 0

ki ... |SNi |E⇤
ki . (2.56)

The second transformation gives most environment states the same set of symbols,

except the Nth state which gets all of the primed symbols,

|Eki �!

8

>

>

>

<

>

>

>

:

|S1i |S2i ... |SNi |E⇤⇤
k i if k 6= N

|S 0
1i |S 0

2i ... |S 0
Ni |E⇤⇤

k i if k = N

. (2.57)

This takes  to

| �i =
N�1
X

k=1

1p
N
ei✓k |RiA |dkiD |S1i |S2i ... |SNi |E⇤⇤

k i

+
1p
N
ei✓N |RiA |dNiD |S 0

1i |S 0
2i ... |S 0

Ni |E⇤⇤
N i . (2.58)

Now we use similar techniques as in §2.3.2 to show that the probabilities of each

component of  ↵ are the same as the probability of the N -th component of  �.
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Focusing on the reduced density matrix of Alice+Display k, we see that

P (dk| ↵) = P (dN | �) . (2.59)

Combining these results for all k, we see that the probability of each term in  ↵

must be equal and thus that the probability of each dk in state  is given by the

Born rule (because  ↵, (2.56), and  , (2.54), agree on the Alice+Detector reduced

density matrix). In combination with the discussion in the previous paragraph, this

completes the proof that the probabilities for di↵erent states dk in the general state

 0 are given by the Born rule.
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Chapter 3

Killer Collapse: Empirically Probing the

Philosophically Unsatisfactory Region of GRW

Abstract: GRW theory o↵ers precise laws for the collapse of the wave function.

These collapses are characterized by two new constants, � and �. Recent work has

put experimental upper bounds on the collapse rate, �. Lower bounds on � have been

more controversial since GRW begins to take on a many-worlds character for small

values of �. Here I examine GRW in this odd region of parameter space where collapse

events act as natural disasters that destroy branches of the wave function along with

their occupants. Our continued survival provides evidence that we don’t live in a

universe like that. I o↵er a quantitative analysis of how such evidence can be used to

assess versions of GRW with small collapse rates in an e↵ort to move towards more

principled and experimentally-informed lower bounds for �. [The published version

of this chapter is forthcoming in Synthese.]

3.1 Introduction

One central point of disagreement in the foundations of quantum mechanics is whether

the collapse of the wave function is a genuine physical process. If collapse is to be

taken seriously, we should seek to determine physical laws that might govern this

process. Ghirardi-Rimini-Weber theory (GRW) o↵ers possible precise laws which
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guarantee that the wave function collapses during familiar quantum measurements.

However, observers and measurements have no special status in the theory; collapses

happen whether or not scientists are watching.

The laws of GRW include two new fundamental constants not present in textbook

discussions of quantum mechanics. One parameter, �, characterizes the precision

of the collapse events and the other, �, the rate at which collapses occur. If these

parameters are chosen properly, the theory appears to succeed in generating the

correct probabilistic predictions for experiments taken to be within the purview of

non-relativistic quantum mechanics. However, as more experiments are conducted

we continue to shrink the space of possible values for � and �. Potentially, the

allowed region could shrink so much it disappears and GRW could be ruled out.

Alternatively, new experiments might confirm GRW over its competitors. As of now,

there seems to be a fair amount of leeway as to what values we may assign to the

parameters (figure 3.1). Focus on the collapse rate �. It is fairly well-understood

how we can put experimental upper bounds on the collapse rate. If collapse

events were too frequent, interference patterns would be destroyed by particles

collapsing mid-experiment, isolated systems would heat up, undisturbed atoms would

spontaneously emit photons, and in other varied ways the experimental predictions

of the theory would be corrupted (these constraints have been reviewed recently in

Adler, 2007; Feldmann & Tumulka, 2012; Bassi et al. , 2013).

In this chapter, I would like to explore how we might put experimental lower

bounds on the collapse rate �. The trend in the literature has been to dismiss

low values of � for non-empirical reasons or for reasons that presuppose the failure

of the many-worlds interpretation. When � is very small GRW becomes an odd

theory. Macroscopic objects are not prevented from entering superpositions and the

theory takes on a many-worlds character (§3.3). Such versions of GRW have been

rejected as philosophically unsatisfactory. Surely they are. But, there has been
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Figure 3.1: Parameter Diagram of GRW

Theory Figure from Feldmann & Tumulka
(2012). ERR is the “empirically refuted
region.” PUR is the “philosophically
unsatisfactory region.” The points labeled
“GRW” and “Adler” indicate the values
suggested in Ghirardi et al. (1986) and Adler
(2007) respectively. It should be noted that
Adler’s proposal was made in the context of
CSL, not GRW.

disagreement about exactly where the problems arise. Feldmann & Tumulka (2012)

give the criterion, “We regard a parameter choice (�,�) as philosophically satisfactory

if and only if the PO [primitive ontology] agrees on the macroscopic scale with what

humans normally think macroscopic reality is like.” Bassi et al. (2010) impose the

requirement that “any superposition reaching the eye must be reduced before it is

transformed into a perception in the brain.”, building on a suggestion in Aicardi

et al. (1991). Adler (2007) and Gisin & Percival (1993) argue that the formation of

a microscopic latent image in a detector counts as a measurement even before this

image is amplified to macroscopic scale. They believe that the collapse rate must be

high enough that even these latent images do not enter superpositions.

I will argue that very small values of � are not just philosophically problematic,

they are empirically unacceptable even if the many-worlds interpretation is viable.

In doing so, I hope to begin shifting the burden from philosophical considerations to

empirical ones and to lay the foundation for a principled and experimentally informed

approach to determining lower bounds on �. Although the chapter will focus on GRW

throughout, many of the lessons could be applied mutatis mutandis to other collapse
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theories.

3.2 GRW Theory

In GRW theory, the evolution of the wave function is typically governed by the familiar

Schrödinger equation,

i~ d

dt
| (t)i = bH | (t)i . (3.1)

At some instants, the evolution of the wave function is discontinuous and not in

accord with the Schrödinger equation. The wave function collapses. According

GRW, collapse is a real physical process governed by well-defined laws and occurring

frequently, not just during measurements. Humans and other observers play no

spooky role, they are just particularly intelligent and perceptive collections of

particles.

When a collapse occurs a randomly chosen particle has its position become

extremely well-localized. Collapses occur randomly at a rate of N� where N is the

total number of particles. That is, once a collapse occurs at T1 the probability that

the next collapse, at T2, will happen within time interval �t is given by

P (T2 � T1 < �t) = 1� e�N��t . (3.2)

The collapse rate � is one of two new constants of the theory, originally suggested to

be on the order of 10�16s�1 (Ghirardi et al. , 1986).1 The collapse localizes particle I

(randomly chosen) around location X, where X is chosen randomly with probability

1It has been suggested that di↵erent particles might collapse at di↵erent rates depending on their
masses (Pearle & Squires, 1994). The analysis presented here could be applied to such a formulation.
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density

⇢
I

(x) = lim
t%T

h (t)|⇤
I

(x) | (t)i . (3.3)

“lim
t%T

” denotes the limit as t approaches the time of collapse, T , from below. ⇤
i

(x)

is the collapse operator defined by

⇤
i

(x) =
1

(2⇡�2)3/2
e�

(bxi�x)2

2�2 , (3.4)

where b
x

i

is the position operator for particle i. The wave function after the

collapse is given by the pre-collapse wave function multiplied by a tightly peaked

three-dimensional Gaussian centered about X and normalized,

lim
t&T

| (t)i = lim
t%T

⇤
I

(X)1/2 | (t)i

h (t)|⇤
I

(X) | (t)i1/2
. (3.5)

The second new constant in GRW, �, appears in (3.4) and characterizes the width of

the Gaussian that localizes the particle. It was originally proposed to be on the order

of 10�7m (Ghirardi et al. , 1986). In the remainder of the chapter di↵erent values of

� will be considered, but � will be kept fixed at about 10�7m.

In the simplest version of GRW, GRW0, the wave function is all there is and its

evolution is determined by the Schrödinger equation (3.1) and the collapse process

(3.2, 3.3, 3.5). In the limit where � is taken to zero, collapse never occurs and GRW0

becomes Everettian quantum mechanics (a.k.a. the many-worlds interpretation or

S0). All there is is the wave function and it always evolves in accordance with

the Schrödinger equation. Defenders of Everettian quantum mechanics tend to view

GRW0 as the right way to think about GRW theory since they think that our

experiences of reality can emerge from patterns in wave functions. For Everettians

and others who prefer GRW0 to the alternatives below, this chapter can be read as a

discussion of GRW0 in the strange regime where it approaches Everettian quantum

116



mechanics.

For some, GRW0 is unsatisfactory (e.g., Allori et al. , 2008, §4.3; Maudlin, 2010).

According to GRW0 there are no objects in familiar three-dimensional space, there is

only a wave function in an abstract space: a vector in Hilbert space, a complex-valued

function on configuration space, or some other exotic beast. In GRWm, the universe

contains a wave function which obeys the above dynamics, but that’s not all there

is, and, in some sense, that’s not the important stu↵. In particular, it’s not the stu↵

we’re made of. In addition to the wave function, there also exists a distribution of

matter in three-dimensional space specified by a density,

m(x, t) = h (t)| cM(x) | (t)i . (3.6)

Here cM(x) is the mass density operator defined by

cM(x) =
NX

i=1

m
i

�3(bx
i

� x) . (3.7)

In the limit as � goes to zero, there is no collapse and GRWm becomes Sm,

Schrödinger evolution with a mass density (discussed in Allori et al. , 2011). Sm

is a many-worlds theory much like Everettian quantum mechanics, but where the

universe contains a distribution of mass in three-dimensional space in addition to the

unitarily evolving wave function. Some think that GRW0 and S0 are unsatisfactory

because such laws would not give rise to creatures with conscious experiences like

ours, perceiving an apparently three-dimensional world. Readers who think GRW0 is

unsatisfactory can understand this chapter as a discussion of GRWm in the awkward

bit of parameter space where it approaches Sm. In the following sections, I will not

di↵erentiate between GRW0 and GRWm. Read GRW in whichever way you think

makes it the stronger theory. Read MWI as S0 if you’re reading GRW as GRW0, as
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Sm if you’re reading GRW as GRWm.

Perhaps neither S0 nor Sm really are many-worlds theories. Without collapse,

one might argue, it’s not that every outcome of a quantum experiment is observed

by a separate copy of the experimenter but that the single experimenter somehow

experiences all outcomes at once or otherwise ceases to have a normal mental state.

If this is the problem with these theories, GRW will become empirically inadequate as

it approaches S0 or Sm. However, determining when and how it becomes inadequate

would require a specific account of the abnormality that should be expected in the

absence of collapse. For the purposes of this chapter, I will assume that the theory

GRW limits to as the collapse rate is taken to zero really is a many-worlds theory.

There is a third version of GRW, GRWf. Here one supplements the wave function

with a primitive ontology of flashes. Taking � to be small in this version of the

theory raises entirely di↵erent concerns from those faced by GRW0 and GRWm. The

problem for GRWf when � is small is not that human lives are constantly ending, but

that such life may be absent altogether. Understanding the empirical adequacy of

GRWf in this region of parameter space would require a very di↵erent kind of analysis

and for that reason GRWf will not be discussed in the remainder of the chapter. A

brief discussion of GRWf in this regime can be found in Feldmann & Tumulka (2012,

§4).

3.3 Branches and Stumps

GRW was originally formulated with the rate of collapse � ⇡ 10�16s�1. With

this rate, when a measurement occurs the wave function just starts to branch into

a superposition of outcomes when, with very high probability, the wave function
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collapses to a single definite outcome.2 This is how GRW solves the measurement

problem: a single definite outcome is guaranteed by the rapid collapse of the wave

function and the fact that probabilities for collapsing to di↵erent outcomes are

(approximately) given by the Born rule is a non-trivial consequence of the collapse

process (3.2, 3.3, 3.5). If the rate of collapse is taken to zero, then collapses never occur

and GRW becomes MWI. In MWI, every possible outcome of a quantum measurement

actually occurs.

What if � is chosen so that it is not quite zero, but is very small (� ⌧ 10�16s�1,

keeping � ⇡ 10�7m3)? In this regime collapses occur, but only very rarely. When a

collapse occurs, the results are catastrophic. After a spin measurement, the laboratory

enters into a superposition of a world in which the scientists record an up result and

another in which they record down. Later, if any of the particles that compose the

scientists or the measurement readout collapse, one of the worlds will be destroyed.

Imagine 15 minutes pass between the moment when the measurement occurred and

the time when collapse chooses a world to eliminate.4 In this time, the scientists in

both worlds can walk, think, and talk. After collapse, only one world remains. When

a collapse like this occurs, all of the inhabitants of the other world are instantaneously

and painlessly killed. Or, maybe the collapse doesn’t cause the other world to go out

of existence, but instead the tail of the Gaussian distorts the world and alters its

2There has been some debate over whether the destruction of other branches is successful; see the
literature on the problem of tails. Here I assume that the problem can be solved. If it cannot, GRW
is not a viable solution to the measurement problem. In particular, I will assume that if collapse
chooses one part of the state and massively shrinks the rest, it is not merely improbable to find
oneself in a part of the state that was not fortunate enough to be the center of the collapse, it is
impossible. There is no life in those other parts soon after collapse.

3This ensures that, in general, a single collapse will be su�cient to destroy branches in which the
measurement turned out di↵erently.

4This would be typical if we choose � to be on the order of 10�33s�1 and assume that there are
about 1030 fundamental particles brought into an entangled superposition by the experiment (using
(3.2)).

119



evolution so that it is inhospitable to human life.5 In this case, death is fairly quick

but perhaps not instantaneous. Either way, in this region of parameter space collapses

are not helpful shifts which prevent macroscopic superpositions from forming, they’re

colossal natural disasters.

Figure 3.2: GRW with Di↵erent Collapse Rates Plot of GRW evolution for a
sequence of three measurements for di↵erent values of �.

The way the universe—the totality of quantum worlds—evolves in each of these

three regions of parameter space is depicted in figure 3.2. With � at or near zero,

worlds branch every time a measurement occurs and each outcome happens on some

branch. For standard values of �, branching is prevented by the collapse of the

wave function and each measurement has a definite outcome. For small values of

5See Wallace (2014); Vaidman (2014b, §8) for “solutions” to the tails problem along these lines
(also briefly discussed in Allori et al. (2011, §4)).
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� branching occurs before collapse is able to prevent it; collapse events occur after

branching. Living in such a universe is extremely dangerous as entire worlds are

constantly being obliterated. If you are lucky enough to find yourself living a long

life, you should be shocked. Repeated improbable occurrences often indicate failure

of a theory. This is no exception. The data you receive from your survival provides

strong empirical evidence against the theory.

3.4 The Rarity of Longevity

To judge the empirical adequacy of a given theory, I will focus on the likelihood of

the evidence given the theory, P (E|T ). If, for some evidence E and theories T1 and

T2, P (E|T1) > P (E|T2), then the evidence E confirms T1 over T2. If one updates on

E by Bayesian conditionalization, then for any theory T , the credence assigned to

T after gaining the evidence can be expressed in terms of the prior probabilities as

P
post

(T ) = P (T |E).6 It follows from P (E|T1) being greater than P (E|T2) that, if one

changes their credences in response to E by Bayesian updating, the ratio of one’s

credence in T1 to their credence in T2 will rise,

P
post

(T1)

P
post

(T2)
=

P (E|T1)

P (E|T2)

P (T1)

P (T2)
>

P (T1)

P (T2)
(3.8)

6Although I expect that this straightforward account of theory confirmation applies to the cases
under discussion, one might reasonably be concerned. The situations considered involve self-locating
uncertainty (see Sebens & Carroll, 2014; Vaidman, 2014a, §4.2) and Bayesian conditionalization
must be somehow modified to handle such cases (see Arntzenius, 2003). Some modifications will
vindicate the use of conditionalization here, others will not. To avoid controversy, I focus primarily
on the probability of the evidence given the theory and not the posterior probabilities that result
from updating on the evidence. I approach the problem from the familiar diachronic perspective,
taking one’s previous beliefs and evidence to together determine what one’s current beliefs should be.
Alternatively the problem could be approached synchronically, taking one’s evidence together with
what Meacham (2010) calls an “epistemic kernel” to determine what one’s current beliefs should be
(there are several competing ways of implementing this approach; see Manley, 2014).
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Theories that are empirically equivalent will assign the evidence equal probability

and the data that comes in will not discern between them.

The theories which will be compared are: versions of GRW with di↵erent

parameter values, e.g., GRW
�=10�16s�1 ; the many-worlds interpretation, MWI; and

some unspecified theory which gives the correct Born rule probabilities and guarantees

survival, QM.7 The constraint that QM gives the Born rule probabilities is the

constraint that: the probability of seeing the outcome corresponding to eigenvalue O
i

of the observable operator bO is given by

P (O
i

|QM) = | hO
i

| i |2 . (3.9)

Throughout I’ll assume that the agent knows whatever is useful to know about the

universal wave function,  , including | hO
i

| i |2 for all i. This allows us to focus on

the confirmation of alternate dynamical theories without concerning ourselves with

the way agents learn about the universe’s wave function.

I will initially suppose that MWI is capable of recovering the Born rule

probabilities.8

Convenient Conjecture In MWI, after a measurement of the observable bO has

been made and before the outcome is observed, the probability one ought

to assign to seeing the outcome corresponding to eigenvalue O
i

is given by

7What wonderful theory succeeds in recovering the Born rule, as is demanded of the theory
I’ve called “QM”? This will be a matter of disagreement. Let QM stand in for your favorite
theory, whichever you think recovers the right probabilities, be it MWI, GRW�=10�16s�1 , Bohmian
mechanics, or something else. GRW�=10�16s�1 predicts deviations from the Born rule for
certain yet-to-be-conducted experiments involving, e.g., macroscopic superpositions (which, even
if perfectly isolated from the environment, would be predicted to be unstable). However, for
the already-conducted experiments typically taken to provide support for quantum mechanics the
predictions should (approximately) match those of the Born rule (setting aside the concerns raised
in §3.6).

8For an extended defense of this conjecture, see Wallace (2012). See also Carroll & Sebens (2014);
Sebens & Carroll (2014).
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P (O
i

|MWI) = | hO
i

| i |2.

This is a highly controversial assumption, so let me clarify the spirit in which I am

introducing it. In order to put empirical lower bounds on � we need to consider

cases where GRW becomes more and more like MWI. If we don’t have quantitative

predictions from MWI, it will not be possible to quantify the success of GRW in these

bits of parameter space. Later I’ll discuss how things change if the conjecture is false

(§3.5).

In the notation used here, GRW
�=0 is MWI. So, when a measurement is made,

P (O
i

|MWI) = P (O
i

|GRW
�=0). Thus if we are assuming that the Convenient

Conjecture is true and thereby that MWI is empirically adequate, it follows that

GRW
�=0 is empirically adequate as well.

The question, then, is for what values of � is GRW approximately empirically

equivalent to QM and for what values do the predictions of GRW and QM diverge?

If the predictions diverge significantly, GRW becomes empirically inadequate—the

data we actually have fits the predictions of QM.9 For the remainder of this section,

take the rate of collapse � to be su�ciently small that whenever a measurement occurs

we can expect there to be copies of the experimenter who record each outcome. From

the Convenient Conjecture and the fact that the dynamics are the same in GRW

and MWI before collapse, it is reasonable to suppose that for these small values of �

the probability of seeing each result is given by

P (O
i

|GRW
�

) = | hO
i

| i |2 . (3.10)

But, the observed experimental outcome is not the only data one has to update on.

The experimenter should also take into account the fact that she has survived for a

9It’s fine if the predictions for certain future experiments diverge (see footnote 7) since the data
might (for all we know) support GRW over alternative formulations of quantum mechanics.
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time �t beyond the moment when the measurement was performed. The probability

for surviving to �t can be calculated as

P (�t|GRW
�

&O
i

) = 1� P (fatal collapse by �t|GRW
�

&O
i

)

= 1� P (death|collapse by �t&GRW
�

&O
i

)⇥ P (collapse by �t|GRW
�

&O
i

) .

(3.11)

The probability of a collapse occurring by �t can be approximated using (3.2) along

with the simplifying assumption that there are N
S

particles whose collapse would

cause a jump to a single outcome: P (collapse by �t|GRW
�

&O
i

) = 1 � e�NS��t.10

The probability of dying in the event of such a collapse is just the probability that

the collapse is centered around some branch other than one’s own: 1� | hO
i

| i |2.11,12

Inserting these two expressions into (3.11) yields

P (�t|GRW
�

&O
i

) = | hO
i

| i |2 + e�NS��t

� | hO
i

| i |2e�NS��t . (3.12)

10More realistically, NS would increase as a function of time.
11This is an optimistic estimate. In fact there will usually be many worlds corresponding to each

outcome and thus even when a collapse is centered on the right outcome Oi, one’s world might well
be destroyed.

12Here, to keep things simple, it is assumed that life on the branches not selected by collapse ends
immediately (setting aside the possibility of delayed death mentioned in the previous section and
footnote 5).
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The probability of the total evidence can be assessed by combining (3.10) and (3.12),13

P (O
i

&�t|GRW
�

) = P (�t|GRW
�

&O
i

)⇥ P (O
i

|GRW
�

)

=
⇣
| hO

i

| i |2 + e�NS��t

� | hO
i

| i |2e�NS��t

⌘
| hO

i

| i |2 . (3.13)

We can better understand this formula by considering a simple case. Imagine � ⇡

10�33s�1 and N
S

⇡ 1030 so that the experimenter can expect to have approximately

15 minutes between measurement and collapse (as in footnote 4). In this time, she

can form expectations about what will happen and look around. Suppose she sees

an outcome, O
A

, with low Born rule probability, | hO
A

| i |2 = 1
10 . She should be

somewhat surprised and also afraid. Now she knows that she only has a one in ten

chance of survival. If she makes it through the day, she should be surprised again.

The probability assigned to the total evidence (surviving and seeing that outcome) is

1
10 ⇥

1
10 = 1

100 , which follows from (3.13) with �t � 1
NS�

.

Consider a variation of the previous case in which the experimenter does not

observe the outcome until long after the measurement. Assume for simplicity that

there are just two possible outcomes, O
A

and O
B

, and one branch corresponding to

13Two clarifications: First, the proposition signified by “Oi&�t” in (3.13) should be understood as
the indexical claim “I am alive �t after the experiment and in my world the result of the experiment
is Oi.” not the weaker claim that “There exists a copy of me who is alive �t after the experiment and
in a world where the result of the experiment was Oi.” Long after the experiment, the probability
of the second claim is given by | hOi| i |

2 since it is just the probability that the GRW collapse will
select outcome Oi. Thus the weaker claim might appear friendlier to GRW with small �. Why focus
on the stronger claim? The weaker claim does not take into account one’s full (indexical) evidence
and using it to update probabilities in GRW and MWI leads to unacceptable results (see footnote
24).
Second, the probability of “Oi&�t” (stronger version) is di�cult (perhaps impossible) to assess

before the measurement since it is unclear whether one, all, or none of the post-branching copies
are identical to the original experimenter. Fortunately, we can focus on the probability assigned to
“Oi&�t” immediately after branching. Since the experimenter doesn’t yet know which branch they
are on or whether they will survive, it makes sense to assign probabilities at this point. Further, these
later probabilities are what matter for theory confirmation as these are the probabilities assigned to
the evidence right before the evidence is acquired.
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each (see footnote 11). In this case her survival should not be much of a surprise; the

probability is 82%. The probability of O
A

is 10% and the chance of survival given

O
A

is 10%. The probability of the other outcome, O
B

, is 90% and the chance of

survival given O
B

is 90%. Thus the total chance of survival is 1
10 ⇥

1
10 +

9
10 ⇥

9
10 = 82

100 .

The probability she should assign to O
A

given that she survived can be calculated

by Bayes’ theorem as the probability of survival conditional on O
A

, 1
10 , times the

probability of O
A

, 1
10 , divided by the probability of survival, 82

100 . This yields 1
82 .

The probability assigned to her total evidence is the probability of surviving times

the probability of seeing O
A

upon surviving, 82
100 ⇥

1
82 = 1

100 (the same result as was

obtained in the first case).

In the first case—observation before collapse—the probability assigned to seeing

O
A

was correct but the subsequent probability of survival was in disagreement with

QM. In the second case—collapse before observation—the probability of survival was

in disagreement with QM and the subsequent probability of O
A

was incorrect. The

fact that the probability of survival was less than one in the second case shows that

GRW
�

(with � very small) could be disconfirmed by repeated experiments even if

no one bothers to look at the results of the experiments. In the second case, unlike

the first, O
A

is assigned a probability in disagreement with the Born rule. (The

reason for this disagreement is that outcomes which were already improbable get

further penalized for poorly predicting the agent’s survival.) Thus the problem for

small values of � is not merely that the probability of survival is low but also that

supposing one has survived these dangerous collapse events leads to poor predictions

about the outcomes of measurements that have already been made. Note that by

focusing on the probability of the total evidence, (3.13), we need not worry about

whether collapse happens before or after observation of the outcome.

If � is so small that no collapses are expected to occur within any reasonable

length of time �t and the Convenient Conjecture holds, the predictions of
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GRW
�

approximately match those of QM. However, as has been noted (Feldmann &

Tumulka, 2012, §4), there would be little motivation for such a theory. It would be

simpler to just set � to zero and remove the collapses all together, yielding MWI. As

� grows it becomes more likely that a collapse will have occurred within �t and the

disagreement between GRW
�

and QM gets worse. QM predicts that you will be alive

whereas GRW
�

assigns a certain probability to your death. For fixed �, the larger �t

is the larger the disagreement between QM and GRW
�

; see (3.13). However, once �

is su�ciently large the assumption that branching precedes collapse becomes invalid.

In the next section I’ll consider cases in which branching is prevented by collapse.

The fact that one’s own continued survival is used as evidence for assessing theories

is undeniably odd. Experimenters don’t typically keep track of the time elapsed

since the experiment was performed. But, epistemologists have contemplated cases

much like this where survival is relevant data. Consider the following much-discussed

example (Leslie, 1989; Swinburne, 1990):

Firing Squad Suppose that a dozen well-trained shooters are ordered to execute

you by firing 12 shots each. While blindfolded you hear 144 shots ring out but

you survive unscathed.

In such a scenario, your own survival provides evidence that the shooters intentionally

let you live over the alternative hypothesis that you got lucky because each of the

144 shots missed its intended target.

The situation here is similar to Firing Squad. The hypothesis that the squad

intentionally misses is like the hypothesis that QM is true and there are no cataclysmic

collapse events. The hypothesis that the shooters were attempting to kill you is

like the hypothesis that GRW
�

is true for some troublesome small-but-not-too-small

choice of � where worlds are constantly snu↵ed out quickly and without warning.

However, there is an important di↵erence: In Firing Squad, the target will either
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survive or be killed. In GRW
�

with troublesome �, there will be many versions of

the experimenter that are killed and always at least one that survives. A closer

non-quantum analogy is:

Prison Poisoning On New Year’s Day you wake up in a nondescript prison cell,

#27. A coin was flipped. On New Year’s Eve, you were blindfolded and

shipped either to Alcatraz, if heads, or Arkham, if tails. Each prison contains

100 numbered cells and you were randomly assigned to #27.14 While you slept

in your cell the new year began with a randomly chosen 99 of the 100 cells in

Arkham being filled with deadly poison gas. Those in Alcatraz were safe. You

knew the plan all along.

In this case, you should initially think it equally likely that you ended up in either

prison. After surviving the night you should come to believe that you were probably

shipped to Alcatraz since being shipped to Arkham would have likely resulted in your

death. It was guaranteed that one of the prisoners in Arkham would survive, but it

was not likely to be the one in cell #27. Alcatraz is like MWI and Arkham is like

GRW with troublesome �. The numbered cells represent 100 possible results of a

measurement and the gas plays the role of collapse. For an analogue of GRW with

a normal collapse rate, one could introduce the possibility of being sent to a third

prison with a single cell, randomly numbered and free of poison.15

Cases like Firing Squad and Prison Poisoning have a curious feature: in both

scenarios, one hypothesis cannot be confirmed by the subject. If the bullets and

poison kill instantly, no course of experience would support the hypothesis that the

squad was trying to kill you or that you were sent to Arkham. Similarly, if collapse

14For the closest analogy, imagine that each cell of your prison is occupied by a copy of you that
resulted from a 1-to-100 fission midday on New Year’s Eve.

15In this case, the fission in footnote 14 should not be supposed.
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kills instantly there are no experiences one could have that would provide evidence

for GRW with troublesome � over QM (if the Convenient Conjecture holds).

In Firing Squad, the problem with the hypothesis that the squad is trying to kill you

is not that it predicts odd experiences but that it predicts your experiences will end.

In GRW with small � too the problem is not odd experiences. In fact, in a theory

like GRW
�=10�33s�1 if the outcomes of many repeated experiments are recorded one

can expect16 with high probability that at any given time the record will show a

sequence of results that looks randomly generated with each outcome’s probability

weighted by | hO
i

| i |2.17 If a branching has just occurred, there may be multiple

distinct versions of the record but each will show the same long-run frequencies for

the various outcomes as the records will only di↵er in the last few entries. At any

time, a typical observer will remember, and have records of, measurement results

that fit the predictions of QM. This feature of the theory might cause one to doubt

whether we could have empirical evidence against GRW
�=10�33s�1 , but it shouldn’t.18

As in Prison Poisoning and Firing Squad, the fact that one has survived is relevant

16That is, looking at the probabilities derived from the collapse process this is what one should
expect. As discussed earlier in this section, if one performs experiments, survives for a long time,
and doesn’t look at the outcome, the probabilities that should be assigned to the di↵erent possible
outcomes are not the standard Born rule probabilities. Seeing a sequence that fits these expectations
should shift one’s credence towards GRW with small lambda—but, only after the theory has been
significantly disconfirmed by one’s survival. Thus unlike Firing Squad and Prison Poisoning, there
is in fact a way to get a piece of evidence that points towards the dangerous hypothesis. Still, one’s
total course of experience will never favor GRW with small � over QM; as can be seen by noting
that the expression in parentheses in (3.13) is at most one.

17If the collapse rate is much smaller, there will be many records only some of which show sequences
deemed probable by the Born rule (as in MWI).

18Wallace (2014) in considering a similar situation seems to find this—“strictly
speaking”—su�cient empirical success as the theory does manage to “explain why the scientific
community has so far observed statistical results in accord with quantum mechanics (via the
anthropic fact that worlds in which violations were observed are now radioactive deserts [the fate
he believes befalls worlds in the tails]). And it explains why it is rational to act as if the predictions
of quantum mechanics were true (because in those worlds where they turn out false, we’re all
doomed anyway).” Vaidman (2014b, §8) also seems untroubled by the possibility of death in the
tail branches.
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evidence in determining which hypothesis to believe. In contrast to GRW with small

�, MWI predicts that there will at any time be many observers whose memories and

records don’t fit the predictions of QM—every sequence of quantum measurement

results is observed by the inhabitants of some quantum world. The theory then faces

the challenge of explaining why we should not expect to be one of these observers

(the challenge of establishing the truth of the Convenient Conjecture).

Those who are attracted to the idea of quantum immortality may object to the

conclusions reached in this section. Consider a dangerous branching event from

the perspective of the many-worlds interpretation (a “quantum suicide” scenario).

Suppose you will survive on one branch and die immediately, or quickly, on all others.

It is tempting to think you should expect survival with certainty. As Lewis (2004)

put it, “The experience of being dead should never be expected to any degree at all,

because there is no such experience.” If death is indeed immediate on all branches but

one, the thought has some plausibility. But if there is any delay it should be rejected.

In such a case, there is a short period of time when there are multiple copies of you,

each (e↵ectively) causally isolated from the others and able to assign a credence to

being the one who will live.19 Only one will survive. Surely rationality does not

compel you to be maximally optimistic in such a scenario.20 The situation in GRW

with a troublesome collapse rate is just like the delayed-death version of the above

quantum suicide scenario and, as in that case, survival should not receive probability

one.21 If the collapse rate is raised so that the agent never splits into multiple copies,

19Do the copies need to last long enough to have thoughts to cause trouble? I think not. If you
survive, you can consider what credences you should have assigned during the short period after
splitting when you coexisted with the other copies.

20The situation here is like that of the prisoner in Arkham if the period between the splitting
event (see footnote 14) and the deaths were made much shorter.

21Anticipating an upcoming branching and subsequent collapse, can one assign a probability to
survival before splitting? If so, does the fact that some successor will survive the collapse mean
that before splitting survival is certain? These questions need not be answered as the relevant
probabilities are those assigned immediately after branching (footnote 13).
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there is no danger of death and survival can be expected with certainty.

3.5 Averting Branching

If collapse occurs su�ciently soon after a measurement, branching can be averted. As

the other branches of the universe where the outcome was di↵erent are just beginning

to form the collapse event occurs, ensuring that the macroscopic readout gives a

definite result and the experimenter sees a single outcome. The simplest way to

incorporate this feature of the theory is by introducing a cuto↵ characterizing the

amount of time that passes before branching occurs if there is no collapse. If a collapse

happens within ⌧ , branching is averted and a single outcome occurs. If collapse does

not occur until after ⌧ , then there is a branching of worlds before the collapse, as in

the previous section.22 Let C
<⌧

indicate that collapse occurs before the cuto↵, C
>⌧

indicate after. Including both of these possibilities, the probability of the data given

the theory can be expressed as

P (O
i

&�t|GRW
�

) =

¨z }| {
P (O

i

&�t|GRW
�

&C
>⌧

)⇥

≠z }| {
P (C

>⌧

|GRW
�

)

+ P (O
i

&�t|GRW
�

&C
<⌧

)| {z }
Æ

⇥P (C
<⌧

|GRW
�

)| {z }
Ø

. (3.14)

The first piece, ¨, is just as in (3.13) where it was assumed that branching preceded

collapse. The fourth piece, Ø, is the probability that a collapse happens by ⌧ . This

follows directly from (3.2), Ø = 1�e�NS�⌧ . The second piece is simply the probability

that a collapse does not occur, ≠ = 1�Ø. The third piece, Æ, is the probability that

a given outcome resulted from the GRW collapse process in a case where branching

22The cuto↵ ⌧ is not a free parameter and not derived from the collapse process. It could be
calculated by determining when branching occurs in the absence of collapse (see §3.6).
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does not occur. Here we have GRW working as intended and the probability should be

in approximate agreement with the Born rule provided � is not so large as to push us

into the empirically refuted region of parameter space (figure 3.1), Æ ⇡ | hO
i

| i |2.23

Inserting these expressions in (3.14) and rearranging gives,

P (O
i

&�t|GRW
�

) = | hO
i

| i |2 �
⇣
1� | hO

i

| i |2
⌘⇣

1� e�NS��t

⌘
| hO

i

| i |2e�NS�⌧ ,

(3.15)

which limits to the Born rule probabilities as � goes to zero or infinity. (3.15) is not

valid if � is large enough that the probabilities in Æ deviate significantly from those

given by the Born rule. It cannot be extended in a simple and general manner as the

way in which Æ deviates from | hO
i

| i |2 will be depend on the particular experiment

under consideration.

In this simplified story, the probability of surviving to �t and seeing a certain

outcome O
i

depends dramatically and discontinuously on whether collapse happens

before or after branching. The expressions for ¨ and Æ are quite di↵erent. A more

careful analysis would ideally give a smooth transition or justify a precise cuto↵,

but this would require wading into the murky territory of collapses that occur during

branching and settling questions of personal identity there (in particular, when exactly

personal fission occurs and whether it can, in any relevant sense, partially occur). It

might be seen either as intriguing or disconcerting that we must answer questions of

personal identity in the context of MWI to put precise lower bounds on � in GRW.

To recap: If � is so extremely small that you should not expect (relevant) collapses

to have occurred in your lifetime (figure 3.2.a), then GRW
�

is empirically adequate

if the Convenient Conjecture holds. If � is large enough that collapses must be

considered but small enough that branching typically precedes collapse (figure 3.2.c),

23Here it is also assumed that we’re considering familiar experiments, not future ones that probe
smaller values of � (see footnote 7).
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then early death is the norm and one’s continued survival provides strong evidence

against the theory. If � is increased to around the initially proposed value of 10�16s�1

(figure 3.2.b), the theory may again be empirically adequate as branching is prevented

by collapse and the collapse process ensures that the probabilities of various outcomes

are given by the Born rule. If � is increased even further, so that � > 10�8, the theory

is again empirically inadequate as collapses occur too frequently. Superpositions are

destroyed mid-experiment and other maladies ensue (see Feldmann & Tumulka, 2012;

Bassi et al. , 2013).

What happens if the Convenient Conjecture is false and MWI gives di↵erent

probabilities from QM? Then, GRW
�=0 is empirically inadequate as GRW

�=0 is MWI.

This failure also rules out GRW
�

for very small � where collapses can be neglected.

For larger values of � where collapse is rare but relevant, there are now two ways in

which the theory fails: the probabilities of the various outcomes are incorrect and

there is, in general, some probability that one would not have survived to �t.24 For

still larger values of � that successfully avert branching, the theory again has a chance

of being empirically adequate since the probabilities of outcomes are now determined

by the collapse process and the MWI probabilities are irrelevant.

3.6 The Race: Decoherence versus Collapse

For GRW to be tenable, there must be values of � for which the theory is empirically

adequate. On the one hand, � must be large enough that collapse practically never

24When �t is large, the probability of the total evidence given by (3.13) is | hOi| i |
4 because the

probability of seeing Oi is | hOi| i |
2 and the probability of subsequently surviving is also | hOi| i |

2.
This suggests a crafty maneuver to save GRW with small �. What if the probability of each outcome
were one—after all, each outcome will be recorded by someone—so that the probability of total
evidence is | hOi| i |

2 as in QM? This proposal faces a fatal problem: practically every experiment
would confirm MWI over single-world theories (see Greaves, 2007, §4).
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occurs after the experimenter has branched into multiple copies. Otherwise, one’s

continued survival empirically refutes GRW
�

, (3.15). On the other hand, � must be

small enough that collapses do not spoil the predictions for experiments that have

already been performed. That is, � must lie below the experimentally refuted region

of figure 3.1. But, are there any values in this range? To answer this, we need

to determine whether decoherence-induced branching tends to occur before or after

collapse.25

We know that for values of � near the originally suggested value, 10�16s�1, the

experiment readout and the experimenter are in a well-defined state corresponding to

a single outcome very soon after the measurement occurs. But, what is not clear

is which of two possibilities occurred immediately after the measurement (figure

3.3): (a) the world briefly branched and then a collapse event destroyed some of

the copies of the experimenter, or (b) there was never a branching event because

collapse prevented the microscopic superposition from causing the experimenter to

enter into a superposition.

A proper analysis is warranted, but beyond the scope of this chapter. Here is

a very rough calculation of how quickly collapse would have to occur to prevent

decoherence-induced branching: Decoherence is fast. A slow estimate might be 10�23s

for 1 gram of matter at room temperature in a superposition of two locations separated

by one centimeter (Zurek, 2003). To ensure a 95% probability of collapse by 10�23s,

� would have to be at least 3 s�1 (from (3.2), assuming the number of particles is on

the scale of moles, N = 1023). But, experiments restrict � to being at most 10�8s�1

(figure 3.1). This calculation suggests trouble. There may not be a safe region of

parameter space.26

25See Schlosshauer (2005, §IV.E); Bacciagaluppi (2012, §3.1.2) for discussion of decoherence in
GRW.

26This concern is corroborated by the calculations in Tegmark (1993); Benatti et al. (1995).
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Figure 3.3: Two Potential Close-ups of Figure 3.2b

Let me highlight one particularly pernicious simplification in this rough

calculation: It is assumed that the bit of matter starts in a superposition. In

actuality, it would take time for the matter to enter a superposition and a collapse

event could occur in this interval, preventing the macroscopic superposition from

forming. It would (normally) take even longer for a large object like a human to

enter a superposition of spatially disjoint states (although this is certainly asking too

much; the presence of a far less dramatic superposition should be su�cient for the

human to branch).

I’ll close by summarizing the key lessons of the analysis. First, to determine

precise experimental bounds on the parameters � and � in GRW, we must answer

metaphysical and epistemological questions about MWI: When/how does branching

occur in the absence of collapse (§3.5 & 3.6)? What probabilities should be assigned

to di↵erent outcomes in MWI (§3.4)? This provides additional motivation for

that ongoing research program. Second, even if the Convenient Conjecture
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holds and MWI is empirically adequate, some of the philosophically unsatisfactory

region of parameter space is also empirically refuted (§3.3, 3.4, & 3.5). Surprisingly,

it is not refuted by the outcomes we observe, but by the fact that we live long

enough to observe so many of them. Third, it is not clear how to draw a principled

border for the philosophically unsatisfactory region if our dissatisfaction is purely

“philosophical” (§3.1). But, with the realization that small values of the collapse

rate � are empirically refuted, we now have a method to begin drawing principled

lower bounds on �: determine whether the experimenter branches before or after

collapse (§3.5 & 3.6). Simple calculations suggest that the lower bound generated

from empirical considerations will be stronger than the bound generated from a

distaste for long lasting macroscopic superpositions, perhaps strong enough to rule

out GRW entirely (§3.6). This merits further study.
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Tamar, & Hawthorne, John (eds), Oxford Studies in Epistemology, vol. 3.

Pearle, Philip, & Squires, Euan. 1994. Bound State Excitation, Nucleon Decay
Experiments and Models of Wave Function Collapse. Phys. Rev. Lett., 73, 1–5.

Schlosshauer, M. 2005. Decoherence, the Measurement Problem, and Interpretations
of Quantum Mechanics. Reviews of Modern Physics, 76(4).

Sebens, Charles T., & Carroll, Sean M. 2014. Self-Locating Uncertainty and
the Origin of Probability in Everettian Quantum Mechanics. arXiv:1405.7577
[quant-ph].

Swinburne, Richard. 1990. The Argument from the Fine Tuning of the Universe. In:
Leslie, John (ed), Physical Cosmology and Philosophy. MacMillan, New York.

Tegmark, Max. 1993. Apparent Wave Function Collapse Caused by Scattering.
Foundations of Physics Letters, 6(6), 571–590.

Vaidman, Lev. 2014a. Many-Worlds Interpretation of Quantum Mechanics. In: Zalta,
Edward N. (ed), The Stanford Encyclopedia of Philosophy, spring 2014 edn.

138

http://arxiv.org/abs/1405.7577


Vaidman, Lev. 2014b. Quantum Theory and Determinism. Quantum Studies:
Mathematics and Foundations, 1(1-2), 5–38.

Wallace, David. 2012. The Emergent Multiverse: Quantum Theory According to the
Everett Interpretation. Oxford University Press.

Wallace, David. 2014. Life and Death in the Tails of the GRW Wave Function.
arXiv:1407.4746 [quant-ph].

Zurek, Wojciech H. 2003. Decoherence and the Transition from Quantum to
Classical–REVISITED. quant-ph/0306072.

139

http://arxiv.org/abs/1407.4746
http://arxiv.org/abs/quantph/0306072


Chapter 4

A Laws-First Introduction to

Quantum Field Theory

Abstract: Here I present an atypical introduction to the foundations of relativistic

quantum field theory (QFT). I seek to be especially clear about the space of physical

states and the laws of the theory, as well as the connection between QFT and two of its

predecessors: quantum mechanics and classical field theory. Part I introduces QFT as

an extension of non-relativistic quantum mechanics with two important modifications

(introduced one at a time): the number of particles is allowed to be indeterminate and

the energy of a state is given by a relativistic expression. In part II, I present QFT as

a quantum version of the classical theory of fields where the the field is permitted to

be in a superposition of distinct states, described by a wave functional. The limiting

case of classical field theory is then derived using path integrals. Throughout, I use

the Schrödinger picture. I hope to prepare readers for derivations of Feynman rules

and experimental predictions, but I do not cover such machinery here. I further limit

my treatment by not discussing (much) spin, fermions, or renormalization. I will

instead focus on theories of interacting spin-0 bosons (or real scalar fields, depending

on how you look at it).
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4.1 Introduction: Schrödinger-picture QFT in

the Particle and Field Bases

When we first meet relativistic quantum field theory (QFT) we are presented

with a very strange theory that seems quite di↵erent from special relativity,

electromagnetism, quantum mechanics, and other physical theories we have come

to know and love. In moving from classical particle or field theories to QFT we are

faced with a variety of changes: the theory is (in some sense) quantized, we move from

talk of states to speaking almost exclusively of operators, the number of particles is

allowed to vary with time, particles are treated as (in some sense) excitations of a

field, and the theory is made relativistic. To provide a clear and intuitive entry into

the theory, these modifications should be made carefully and in the right order. If

this is done properly, students should be able to apply the intuitive grasp they had

of other theories to better understand QFT and visualize possible phenomena. In

this chapter, I o↵er two ways to develop QFT that I find intuitive and thus hope

will be pedagogically useful and helpful for foundational and philosophical work. My

treatment will ignore the history of rejected theories leading to QFT and instead

focus on the logical structure of the successful theory we have arrived at.1

It is too easy to learn QFT without answering the following central questions

1The treatment here is largely a synthesis of bits and pieces from various sources. Part I develops
QFT along the lines of Schweber (1961) and Teller (1997). The variable-particle QM theory I
introduce in §4.3 & 4.4 is similar to the one briefly discussed in (Srednicki, 2007, pg. 11-13).
The version of QFT presented in part I is similar to that utilized in Bell-type Bohmian QFTs
(Tumulka, 2007; Dürr et al. , 2004, 2005). Part II presents a similar formulation to Hatfield’s (1992)
“Schrödinger representation.” The treatment of path integrals in appendix 4.A is significantly
di↵erent from, but closest to, that in (Hatfield, 1992). The classical field theory limit comes from
Zee’s (2010) textbook. The version of QFT in part II provides the starting point for Bohm and
Hiley’s (1993) version of Bohmian QFT. Part III is largely original, but incorporates insights from
(Hatfield, 1992, ch. 10 & 11).
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(which will be emphasized in this introduction): What are the physical states of

systems in QFT? What are the dynamical law(s) that these states obey? How could

QFT possibly limit to both QM in the low energy regime and classical field theory

when quantum e↵ects are negligible? What is the quantum field operator b�( #–x )? I

will provide answers to these questions in this chapter.

The order in which one introduces the complexities associated with QFT is key

to the intelligibility of the presentation. I will begin part I by briefly reviewing

non-relativistic quantum mechanics (QM). In section 4.3 I will move to a new version

of QM in which a system can be in a superposition of states with di↵erent total particle

number, allowing for the possibility that particles may be created or destroyed. In

section 4.5 I will introduce a relativistic Hamiltonian in order to complete the move

from non-relativistic quantum mechanics to relativistic quantum field theory. In

section 4.6, I will introduce some more sophisticated technical machinery including

the Lagrangian and the quantum field operator b�. In the last section of part I, I will

discuss a simple interaction term.

In part II, I present QFT as a quantum version of classical field theory. In quantum

mechanics, the instantaneous state of the world is representable as a wave function

over the space of possible particle configurations (instead of a point in configuration

space, as it is in classical particle mechanics). In quantum field theory, we can

represent the state of the world as a wave functional over the space of possible field

configurations. The evolution of this wave functional is governed by a version of the

Schrödinger equation. Using this Schrödinger equation, we can derive an expression

for the path integral in QFT (appendix 4.A) and use the path integral to show that

QFT limits to classical field theory in the appropriate regime.

In part III I will show that the presentations of QFT in part I and II, although quite

di↵erent in appearances, are in fact equivalent. Part I presents QFT in a particular

basis, the particle basis. Part II presents QFT in the field basis. To demonstrate that
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the theories di↵er only in a choice of basis, we will show that the definitions and laws

introduced in part I can be derived from the formulation in part II (and vice versa).

At the end of part III, we will very briefly discuss the measurement problem as it

manifests itself in QFT and use the development of QFT presented here to introduce

some proposed solutions.

The ideal audience for this piece is someone who has struggled through the first few

chapters of a QFT textbook and/or the first few weeks of an introductory graduate

course in quantum field theory (or much more), but feels like they still don’t have an

intuitive grip on the theory (who does?). Srednicki’s (2007) textbook would be an

ideal accompaniment to the presentation here as it is best aligned with the order of

development and choice of notation, but Peskin and Schroeder’s (1995) would be fine

too. I hope that this introduction proves useful to both physicists and philosophers

of physics.

There are many places where the story told here may be found lacking in su�cient

rigor for the precise philosopher or mathematician. There are interesting questions to

be asked about defining localized particle states, rigorously computing path integrals,

carefully explicating the ways in which certain theories are reduced to others, etc.

Here I don the hat of the working physicist and attempt to give as intuitive a picture

of textbook QFT as I can, leaving the task of further precisification to others.

In this chapter I will focus quantum field theories for spin-0 bosons, ignore

the complications introduced by spin, and, as much as possible, not worry about

renormalization. Throughout the chapter I will take ~ = c = 1.
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Part I

From Quantum Mechanics to QFT

4.2 Non-relativistic Quantum Mechanics in

Configuration Space

In this section we will very briefly review quantum mechanics in the position basis.

In QM, the state of a single isolated spin-0 particle at time t is specified by

giving a complex valued function  ( #–x , t) over position space. The Schrödinger

equation determines how  ( #–x , t) evolves over time: i @
@t
 ( #–x , t) = bH ( #–x , t). For

a single particle in a time-independent potential, the Hamiltonian bH would be:
⇣

�

r2

2m + V ( #–x )
⌘

. The probability of finding the particle in a volume V at time t

is given by
R

V
d3x | ( #–x , t)|2.

When we move to a system which contains n particles, the wave function is defined

over configuration space (the 3n-dimensional space of all possible positions for each

of the n particles):  n(
#–x 1,

#–x 2, ...,
#–x n). The Schrödinger equation for a general state

vector is:

i
@

@t
 n(

#–x 1,
#–x 2, ...,

#–x n, t) = bH n(
#–x 1,

#–x 2, ...,
#–x n, t) . (4.1)

The (configuration space) probability density for a certain configuration of particle

positions is given by | ( #–x 1, ...,
#–x n)|

2. This can be integrated over a volume for each

particle to get the probability of finding the particles in those regions. States must
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be normalized as follows:

Z

d3x1

Z

d3x2...

Z

d3xn 
⇤( #–x 1,

#–x 2, ...,
#–x n) (

#–x 1,
#–x 2, ...,

#–x n) = 1 . (4.2)

As mentioned earlier, we will be focusing on bosons in this chapter. For identical

bosons the wave function must be symmetric under particle permutations:

8i, j  ( #–x 1, ...,
#–x i, ...,

#–x j, ...,
#–x n) =  (

#–x 1, ...,
#–x j, ...,

#–x i, ...,
#–x n) . (4.3)

One could limit the space on which is defined to the space of unique configurations of

particles (that is, to the space of configurations that do not di↵er by simply swapping

identical particles). As it makes the calculations easier, we will simply require that

the  s we consider obey eq. 4.3. In the box below, QM is summarized so we can

easily compare it to theories introduced later.2

2Here the theory is presented in a rough way so that the details could be spelled out by the
various interpretations of QM. I present it in this simplified way so we don’t (yet) have to address
questions like: Is Schrödinger’s equation the only equation of motion or does collapse occur? What
counts as an “appropriate experiment”? See §4.13 for a brief discussion of questions like these.
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Theory 1: n-particle QM (in the position basis)

States The states of the theory are wave functions on n-particle configuration

space:  ( #–x 1,
#–x 2, ...,

#–x n)

Schrödinger Equation The Hamiltonian as it appears in Schrödinger’s

equation can be decomposed into a free part and a term representing

interactions and external potentials:

i
@

@t
 ( #–x 1,

#–x 2, ...,
#–x n, t) =

✓

�

r

2
x1

2m
� ...�

r

2
x
n

2m
+ bHint

◆

 ( #–x 1,
#–x 2, ...,

#–x n, t) .

(4.4)

Probabilities The probability of observing the system in state |�i (or

probability density, depending on the state |�i) in an appropriate

experiment is given by the square of the inner product of |�i and the

system’s state | i:

|h�| i|2 =

�

�

�

�

Z

d3x1d
3x2...d

3xn�
⇤( #–x 1,

#–x 2, ...,
#–x n) (

#–x 1,
#–x 2, ...,

#–x n)

�

�

�

�

2

.

(4.5)

A note on Probabilities: If |�i is properly normalized, like the ground state

of the harmonic oscillator, then |h�| i|2 gives a probability. If |�i is delta-function

normalized, like a position or momentum eigenstate, then |h�| i|2 gives a probability

density.
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4.3 Superpositions of Particle Number

In QM as discussed above, the wave function is defined over a space where every state

it gives a probability to has the same number of particles. If the wave function is a

function of the positions of 7 particles, then the states it assigns probability to are all

di↵erent configurations of those 7 particles. However, in the real world we know that

particles can be created and destroyed. So, it would be nice to have a theory that

assigns non-zero probability to changes in particle number.

It is simple enough to extend QM to allow for superpositions of states with di↵erent

numbers of particles. In the last section we noted that for every number of particles n

you might have, there is a di↵erent 3n-dimensional space over which the wave function

is defined. Why can’t we just define the wave function as assigning a complex number

to every point in each one of these configuration spaces? In other words, why not

have the wave function assign a complex number to every possible arrangement of

any number of particles? To pick out this wave function | i, we will have to specify

a function  1(
#–x 1, t) which gives an amplitude to each possible position that a single

particle might be in; and we will have to specify a function  2(
#–x 1,

#–x 2, t) which gives

an amplitude to each possible set of positions that two particles might have; and

we will have to give  3 and  4 and  5 and etc. all the way out to infinity (if the

probability of a large number of particles falls o↵ su�ciently quickly, the state can

still be normalized). Further, there will be a complex number  0(t) which gives an

amplitude to the vacuum (a state of zero particles). The wave function is now a map

from elements of the disjoint union of all n-particle configuration spaces to complex

numbers.3 This constitutes a move from defining the state | i as an element of a

3See (Dürr et al. , 2004) for a di↵erent choice of notation for representing variable-particle wave
functions.
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Hilbert space to defining | i as an element of a Fock space. Figure 4.1 provides a

visual representation of the wave function (squared) for a variable-particle-number

system.

Figure 4.1: Wave Function in Variable-particle QM When we allow the number
of particles to vary, we define  on the disjoint union of n-particle configuration
spaces. These graphs depict the amplitude-squared of a single wave function | i in
one spatial dimension. The first plot shows the amplitude-squared assigned to the
possibility of zero particles, the next shows the possible locations of a single particle
and their probability densities, etc.. Note that in the two particle space, | 2|

2 is
invariant under a permutation of the two particles.

The equation of motion for this state is simply the Schrödinger equation (eq. 4.1)

imposed on each configuration space. For the case of non-interacting particles where

each particle experiences the same time-independent potential V ( #–x ), the equation

becomes:

8n, i @
@t
 n(

#–x 1, ...,
#–x n, t) =

⇣

�

r2
x1

2m � ...�
r2

x

n

2m + V ( #–x 1) + ...+ V ( #–x n)
⌘

 n(
#–x 1, ...,

#–x n, t) .

(4.6)

With this Hamiltonian, there is no probability for changes in particle number. If the

wave function is initially only non-zero on the configuration space for 64 particles,

there will be zero probability for any state in the future with more or less than 64

particles. This is not true for a general Hamiltonian. Probability is conserved so
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long as the Hamiltonian is Hermitian4, but many Hermitian Hamiltonians in which

particles can interact will allow for changes in total particle number (see end of §4.4

for an example).

We can easily define the inner product on this space. We can take states of di↵erent

definite particle number to be orthogonal and states of identical particle number to

have the standard inner product on a configuration space of that dimension. For a

pair of arbitrary states, this leads to the expression:

h�| i = �⇤
0 0 +

Z

d3x1�
⇤
1(

#–x 1) 1(
#–x 1) +

Z

d3x1d
3x2�

⇤
2(

#–x 1,
#–x 2) 2(

#–x 1,
#–x 2) + ... .

(4.7)

To get a feel for this theory, let’s begin by calculating the probability density for

finding exactly one particle at #–x and no particles anywhere else. This is simply given

by the square of the matrix element of the state  with a one particle state. Since any

multi-particle state will be orthogonal to a one particle state, the only contribution

comes from  1:

|h

#–x | i|2 = | 1(
#–x )|2 . (4.8)

This expression follows from eq. 4.7 with the wave function for | #–x i given by  1(
#–x 1) =

�( #–x 1 �
#–x ) and  0 =  2(

#–x 1,
#–x 2) = ... = 0. In general, the probability density for

n particles in a certain configuration is simply | n(
#–x 1, ...,

#–x n, t)|2. This leads to the

following normalization condition for a state | i:

h | i = | 0|
2 +

Z

d3x1| 1(
#–x 1)|

2 +

Z

d3x1d
3x2 | 2(

#–x 1,
#–x 2)|

2 + ... = 1 . (4.9)

4Proof that a Hermitian Hamiltonian conserves probability:
@
@t (h | i) =

@
@t (h |) | i+ h | @@t (| i)

= h |i bH†
| i+ h |� i bH| i by eq. 4.1

= 0 if bH = bH†
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Next, let us consider the number density of particles at #–x (integrating this over a

region gives the expected number of particles in that region):

hnumber of particles at #–x i = |h

#–x | i|2 + 2

Z

d3x2|h
#–x , #–x 2| i|

2 + ...

= | 1(
#–x )|2 + 2

Z

d3x2 | 2(
#–x , #–x 2)|

2 + ... . (4.10)

The contribution from the possibility of a single particle is intuitive: we simply add

the probability density for that particle being at #–x . For 2-particles, we need to sum

the probability that particle 1 is at #–x (regardless of where particle 2 is) with the

probability that particle 2 is at #–x .

Z

d3x2 | 2(
#–x , #–x 2)|

2 +

Z

d3x1 | 2(
#–x 1,

#–x )|2 . (4.11)

Since the wave function over two dimensional configuration space is symmetric (as

we are considering identical particles), these two terms can be combined to give the

second contribution in eq. 4.10.

4.4 Creation and Annihilation Operators

It turns out that it will be convenient to be able to talk about states (wave functions)

as operators acting on the vacuum. In the new theory introduced in the previous

section, a state is an assignment of an amplitude to each point in each n-particle

configuration space, an amplitude to any way any number of particles might be

arranged. An operator is simply a mapping from states in our theory to other states

in the theory (possibly un-normalized states, possibly zero which isn’t really a state).

Let us define a†0(
#–x ) as the operator which adds a particle definitely located at #–x to
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any state.5,6 Acting on the vacuum, a†0 gives: a†0(
#–x )|0i = |

#–x i. Acting on a state

of n particles, a†0 brings it to a new—un-normalized—state with n + 1 particles:

a†0(
#–x )| ni =

p

n+ 1| new
n+1@ #–x i (see fig. 4.2).7,8 Here | new

n+1@ #–x i is simply the original

state | ni with an additional particle localized at #–x (and is itself normalized). a†0 is

called a “creation” operator since it adds a particle to the state. From this definition

it follows that a†0(
#–x )’s conjugate is an annihilation operator which decreases the total

particle number by 1 by removing a particle localized at #–x if there is one to be

removed (and takes |0i to 0).

h new
n+1@ #–x |a

†
0(

#–x )| ni =
p

n+ 1

) h n|a0(
#–x )| new

n+1@ #–x i =
p

n+ 1 . (4.12)

Here we start with the known (stipulated) action of a†0(
#–x ) on an arbitrary state and

show that a0(
#–x ) takes a state with a particle localized at #–x to a state with one

less particle located at #–x (and pulls out a factor of
p

n). We can now derive the

5Here I follow Teller (1997, pg. 41) in defining the creation operator by its action on states, not
its canonical commutation relations.

6The subscript 0 is used to indicate that this creation operator has a non-relativistic
normalization; a† proper will be introduced in eq. 4.43.

7To be precise, the wave function of  new
n+1@ #–x can be given in terms of  n by:

 new
n+1@ #–x (

#–x 1, ...,
#–xn+1) =

1p
n+1

(�( #–x �

#–x 1) n(
#–x 2, ...,

#–xn+1) + �( #–x �

#–x 2) n(
#–x 1,

#–x 3, ...,
#–xn+1) + ...+ �( #–x �

#–xn+1) n(
#–x 2, ...,

#–xn))

(as in Weinberg, 1995, eq. 4.2.3)
8One could, of course, introduce the creation operation without the

p

n+ 1 factor which makes
the new state un-normalized, but I choose to include the factor since it allows us to use a†0(

#–x )a0(
#–x )

as the number operator (see eq. 4.17).
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commutation relations for creation and annihilation operators9:

h

a†0(
#–x ), a†0(

#–x 0)
i

= [a0(
#–x ), a0(

#–x 0)] = 0
h

a0(
#–x ), a†0(

#–x 0)
i

= �3( #–x �

#–x 0) . (4.14)

Figure 4.2: Particle Creation The creation operator a†0(y) takes a one-particle
state (in one spatial dimension) to a two particle state where the second particle is
localized at position y. Here we examine a special case where the wave function is
real (so it can be plotted easily). The delta function is represented as a very steep
Gaussian.

It should be clear that two of these creation operators will create two particles (the

order doesn’t matter because boson states are symmetric under particle permutations;

alternatively, because a†0’s commute): a†0(
#–x 1)a

†
0(

#–x 2)|0i = a†0(
#–x 2)a

†
0(

#–x 1)|0i =

9
Derivation: Let | i be an arbitrary state that can be decomposed into particle number

eigenstates as follows | i =
P

n ↵n| ni

h |
h

a0(
#–x ), a†0(

#–x 0)
i

| i = h |a0(
#–x )a†0(

#–x 0)� a†0(
#–x 0)a0(

#–x )| i

=
X

n

|↵n|
2
�

h new
n+1@ #–x |(n+ 1)| new

n+1@ #–x 0i � h new
n�1@ #–x 0 |n| new

n�1@ #–x i
�

=
X

n

|↵n|
2
�

�3( #–x �

#–x 0)⇥ (n+ 1� n)
�

= �3( #–x �

#–x 0) . (4.13)

See (Teller, 1997, pg. 42-45) for a discussion of why the creation/annihilation operators for fermions

di↵er in such a way that �3( #–x �

#–x 0) is the anti -commutator of a and a†.
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p

2| #–x 1,
#–x 2i. A general state will be a superposition of such n-particle, localized

states:

| i =

✓

 0 +

Z

d3x1 1(
#–x 1)a

†
0(

#–x 1) +
1
p

2

Z

d3x1d
3x2 2(

#–x 1,
#–x 2)a

†
0(

#–x 1)a
†
0(

#–x 2) + ...

+
1

p

n!

Z

d3x1...d
3xn n(

#–x 1, ...,
#–x n)a

†
0(

#–x 1)...a
†
0(

#–x n)

◆

|0i

= b |0i . (4.15)

In the second equality we define b as shorthand for the operator given in the first

equality which acts on the vacuum creating the state | i. In this way we can associate

a unique operator with each state in our theory.

To get some practice with these operators, let’s calculate the probability for finding

one particle at #–x and no particles anywhere else. As in eq. 4.8, we just take the square

of the inner product of the state with a position eigenstate:

|h

#–x | i|2 =
�

�

�

h0|a0(
#–x )

⇣

 0 +
R

d3x1 1(
#–x 1)a

†
0(

#–x 1) +
1p
2

R

d3x1d3x2 2(
#–x 1,

#–x 2)a
†
0(

#–x 1)a
†
0(

#–x 2) + ...
⌘

|0i
�

�

�

2

= | 1(
#–x )|2 . (4.16)

The vacuum amplitude commutes with the annihilation operator and thus allows

it to annihilate the vacuum on the right. The components of the wave function

corresponding to multi-particle states annihilate the vacuum on the left when

commuted through the single annihilation operator. Only the single-particle

component is relevant. Here we retrieve the same result as eq. 4.8. To calculate

the number density, we simply take the expectation value of the number operator
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a†0(
#–x )a0(

#–x ):

h |a†0(
#–x )a0(

#–x )| i

= h |a†0(
#–x )a0(

#–x )
⇣

 0 +
R

d3x1 1(
#–x 1)a

†
0(

#–x 1) +
1p
2

R

d3x1d3x2 2(
#–x 1,

#–x 2)a
†
0(

#–x 1)a
†
0(

#–x 2) + ...
⌘

|0i

= h |
⇣

R

d3x1 1(
#–x 1)a

†
0(

#–x )�3 ( #–x �

#–x 1)

+ 1p
2

R

d3x1d3x2 2(
#–x 1,

#–x 2)a
†
0(

#–x )
h

a†0(
#–x 2)�3 (

#–x �

#–x 1) + a†0(
#–x 1)�3 (

#–x �

#–x 2)
i

+ ...
⌘

|0i

= | 1(
#–x )|2 + 2

R

d3x2 | 2(
#–x , #–x2)|

2 + ... . (4.17)

Here we have shown that the operator a†0(
#–x )a0(

#–x ) is the number operator by showing

that its expectation value gives the expression previously derived in eq. 4.10.

It is straightforward to do everything we’ve done so far in the momentum basis.

a†0(
#–
k ) is defined as the operator which adds a particle with definite momentum

#–
k (just as a†0(

#–x ) was defined as the operator which adds a particle in a position

eigenstate). It will be convenient to choose the a†0(
#–
k ) operators to have the following

normalization (as we did with a†0(
#–x )): a†0(

#–
k )| ni =

p

n+ 1| new
n+1@

#–
k
i. This leads to

similar commutation relations for a0(
#–
k ):

h

a0(
#–
k ), a†0(

#–
k 0)

i

= �3(
#–
k �

#–
k 0). Equations

4.9, 4.15, and 4.17 all hold in momentum space when we replace #–x by
#–
k and the

complex functions  n with their Fourier transforms, defined (symmetrically) by:

e n(
#–
k 1, ...,

#–
k n) ⌘

Z

d3x1...d3xn

(2⇡)3n/2
e�i

#–
k 1· #–x 1 ...e�i

#–
k

n

· #–x
n n(

#–x 1, ..,
#–x n)

 n(
#–x 1, ..,

#–x n) =

Z

d3k1...d3kn
(2⇡)3n/2

ei
#–
k 1· #–x 1 ...ei

#–
k

n

· #–x
n

e n(
#–
k 1, ...,

#–
k n) . (4.18)

The rules for Fourier-transforming the wave functions in eq. 4.18 induce rules for

transforming between a†0(
#–x ) and a†0(

#–
k ). Since it should not matter whether we

express a single particle wave function in the position or the momentum basis, we
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must have,

| i =

Z

d3x ( #–x )a†0(
#–x )|0i =

Z

d3ke (
#–
k )a†0(

#–
k )|0i . (4.19)

It follows from eq. 4.18 and 4.19 that,

a†0(
#–x ) =

Z

d3k

(2⇡)3/2
e�i

#–
k · #–xa†0(

#–
k ) a†0(

#–
k ) =

Z

d3x

(2⇡)3/2
ei

#–
k · #–xa†0(

#–x ) . (4.20)

Using the number operator in momentum space, we can rewrite the free Schrödinger

equation, eq. 4.6 with V = 0. Our strategy will be to count the number of particles

expected to be in each momentum eigenstate and weight this counting by the energy

associated with momentum
#–
k .

i
@

@t
| (t)i =

Z

d3k
|

#–
k |2

2m
a†0(

#–
k )a0(

#–
k )| (t)i . (4.21)

It is important to remember that at this point we have introduced some new

notation but fundamentally have done very little to alter the original theory (QM).

We have simply extended the theory to allow states that are in superpositions of

di↵erent particle numbers and permitted terms in the Hamiltonian that cause the

total number of particles to change. In this section, we have introduced a slight

generalization to QM that will make the shift to QFT easier. In the next section

we will move to relativistic quantum field theory. The only di↵erence between (real

scalar) QFT and the variable-particle QM we have been discussing in this section

(and the last) is the move to a relativistic Hamiltonian.
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We can summarize the theory we have come up with as we did for n-particle

QM. The main di↵erence between theory 1 and theory 2 is a wider range of possible

states. The version of the Schrödinger equation is just the natural extension of eq.

4.1 to this larger space (rewritten in terms of creation and annihilation operators).

Probabilities is essentially unchanged.

Theory 2: Variable-particle QM

States The states of the theory are wave functions on the disjoint

union of n-particle configuration spaces: | i is specified by

h 0, 1(
#–x 1), 2(

#–x 1,
#–x 2), ...i

Schrödinger Equation Basically eq. 4.6, but, a bit more generally, eq. 4.21

with the possibility of interactions:

i
@

@t
| (t)i =

 

Z

d3k
|

#–
k |2

2m
a†0(

#–
k )a0(

#–
k ) + bHint

!

| (t)i . (4.22)

Probabilities The probability (or probability density) of observing the system

in state |�i in an appropriate experiment is given by the square of the inner

product of |�i and the system’s state | i: |h�| i|2 (where the inner product

is defined in equation 4.7)

Before we move on, let’s briefly consider the sort of interaction term you might

want to add to eq. 4.22. An example:

bHint = �

Z

d3x
⇣

a†0(
#–x )a†0(

#–x )a0(
#–x ) + a†0(

#–x )a0(
#–x )a0(

#–x )
⌘

. (4.23)

Note that bHint, like the free Hamiltonian, is hermitian, so states will stay normalized.
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This term would allow for interactions in which two particles are destroyed and one

is created and interactions where one particle is destroyed and two are created (all at

the same point #–x ). Fourier transforming the creation/annihilation operators in eq.

4.23 (using eq. 4.20) makes it clear that momentum is conserved in these interactions:

bHint =
�

(2⇡)3/2

R

d3k1d3k2
⇣

a†0(
#–
k 1)a

†
0(

#–
k 2)a0(

#–
k 1 +

#–
k 2) + a†0(

#–
k 1 +

#–
k 2)a0(

#–
k 1)a0(

#–
k 2)

⌘

.

(4.24)

To see how this interacting Hamiltonian can be used to time evolve state, we can

calculate how a momentum eigenstate |

#–
k , t = 0i evolves (using eq. 4.22):

@

@t
|

#–
k i = �i

⇣

bHfree + bHint

⌘

|

#–
k i

= �i
|

#–
k |2

2m
|

#–
k i � i

p

2�

(2⇡)3/2

Z

d3k1|
#–
k 1,

#–
k �

#–
k 1i . (4.25)

Although momentum is conserved explicitly by eq. 4.24, there is no guarantee that

kinetic energy will be the same in the state observed after a period of Schrödinger

equation time evolution. However, the probability of a large di↵erence in kinetic

energy is small. Treating bHint as a small perturbation in the Hamiltonian, we can

calculate the time evolution of a momentum eigenstate: |
#–
k , t = 0i. Let’s look at how

the two-particle part of wave function, which is initially uniformly zero, evolves with

time (to first order):

e 2(
#–
k 1,

#–
k 2, t) = �

�
p

2

(2⇡)3/2

0

@

Exp
h

�i |
#–
k |2
2m t

i

� Exp
h

�i |
#–
k 1|2+| #–

k 2|2
2m t

i

| #–
k 1|2+| #–

k 2|2
2m �

| #–
k |2
2m

1

A �3(
#–
k 1+

#–
k 2�

#–
k ) .

(4.26)

Here we can see that the denominator of the middle factor suppresses large di↵erences

in energy. Similarly, the interactions that arise in relativistic QFT do not enforce

relativistic energy,
q

|

#–
k |2 +m2, conservation, but the amplitude for large di↵erences
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in energy between the initial and final states is small (an energy conserving delta

function appears when the initial and final states are taken to ±1, as they are in

standard derivations of the Feynman rules).

An important feature of the theory described by eq. 4.24: the vacuum is the

ground state of the theory (this is not true in general), but the one particle states |
#–
k i

and |

#–x i are not eigenstates of the Hamiltonian. Here I make an important distinction

between the vacuum state and the ground state. The vacuum is the zero particle state

with wave function:  0 = 1,  1 =  2 = ... = 0. The ground state is the lowest energy

eigenstate of the Hamiltonian.

4.5 A Relativistic Hamiltonian

Now we can handle theories in which the number of particles in a system varies as a

function of time and we have a way of writing states in terms of operators acting on

the vacuum state. Let us attempt to create a relativistic theory. One of the simplest

things we can try is modifying the free non-relativistic Schrödinger equation (eq.

4.21) to have a Hamiltonian operator which corresponds to the relativistic energy.

Since, Erel =
q

|

#–
k |2 +m2, you might try bH =

R

d3x
p

�r

2 +m2. Unfortunately, the

square root of a di↵erential operator is a bit hard to make sense of. Instead, we can

work directly from the idea that the energy of a momentum eigenstate is
q

|

#–
k |2 +m2.

By decomposing the state into momentum eigenstates and summing their relativistic

energies (as in eq. 4.21 & 4.22) we get an expression for the (free) Hamiltonian which

we can plug into the Schrödinger equation to get a law of temporal evolution for the

state | i:

i
@

@t
| (t)i =

Z

d3k
q

|

#–
k |2 +m2 a†0(

#–
k )a0(

#–
k )| (t)i . (4.27)
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As you can see, we needed creation and annihilation operators to be able to express

this Hamiltonian and that is why we needed to develop theory 2 before we could move

to the relativistic extension of QM.

Taking the theory developed in §4.3 & 4.4 and using a relativistic Hamiltonian

like eq. 4.27, we’re done. That is all you need to have a relativistic quantum field

theory. To recap: the state of the system is an assignment of complex numbers to

points in each n-particle configuration space. The law of temporal evolution is still

Schrödinger’s equation, just with a relativistic Hamiltonian (eq. 4.27 + interactions).

States are normalized according to eq. 4.9 and number densities can be calculated

by eq. 4.10, or equivalently, eq. 4.17. The creation operator a†( #–x ) is defined by its

action on states (as in first paragraph of §4.4) and the momentum creation operator

is defined similarly and related by a Fourier transformation, eq. 4.20.10

Using our free relativistic Schrödinger equation (eq. 4.27), we can calculate the

way some simple states evolve in time. We will begin by deriving the time dependence

of single particle momentum eigenstates. Here | i = |

#–
k , ti where |

#–
k , 0i = a†0(

#–
k )|0i.

|

#–
k , 0i is an eigenstate of the Hamiltonian with energy

q

|

#–
k |2 +m2, so the time

evolution is just a constant phase rotation:

|

#–
k , ti = e�i

p

| #–
k |2+m2ta†0(

#–
k )|0i . (4.28)

The time evolution of a position eigenstate can be calculated by decomposing the

state into its Fourier components (using eq. 4.20):

|

#–x , 0i =
1

(2⇡)3/2

Z

d3ke�i
#–
k · #–xa†0(

#–
k )|0i . (4.29)

10The most similar account of QFT to this that I’ve seen is the formulation of QFT used in
Bell-type approaches to Bohmian QFT Dürr et al. , 2004, 2005.
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Then, using the known time evolution of momentum eigenstates from eq. 4.28:

|

#–x , ti =
1

(2⇡)3/2

Z

d3ke�i
#–
k · #–x e�i

p

| #–
k |2+m2ta†0(

#–
k )|0i . (4.30)

Be careful. This equation represents how a state localized at #–x at t = 0 evolves, it

does not represent the evolution of a particle localized at ~x at time t. In general, a

particle localized at #–x at time x0 will evolve in time t according to (it is apparent

that the particle is localized at #–x at x0 since this equation become |

#–x i for t = x0):

|x, ti =
1

(2⇡)3/2

Z

d3ke�i
#–
k · #–x e+i

p

| #–
k |2+m2 x0e�i

p

| #–
k |2+m2 ta†0(

#–
k )|0i . (4.31)

Here we’ve dropped the vector hat on #–x to denote a four-vector. Defining !(
#–
k ) as the

energy of a particle with momentum
#–
k , k0 = !(

#–
k ) ⌘

q

|

#–
k |2 +m2, we can rewrite

eq. 4.31 in terms of the four dimensional dot product (using the Minkowski metric

with (�,+,+,+) signature):

|x, ti =
1

(2⇡)3/2

Z

d3ke�ik·xe�i
p

| #–
k |2+m2 ta†0(

#–
k )|0i (4.32)

We can calculate the time dependence of an arbitrary state. This will be just like

eq. 4.15 but now all of the position eigenstates evolve with t.

| (t)i=
⇣

 0(0) +
R

d3x1d3k1 1(
#–x 1, 0)e�i

#–
k1· # –x1�ik10x10a†0(

#–
k 1) + ...

+ 1p
n!

R

d3x1...d3xnd3k1...d3kn n(
#–x 1, ...,

#–x n, 0)e�i
#–
k 1· #–x 1�ik10x10a†0(

#–
k 1)...e�i

#–
k

n

· #–x
n

�ik
n0xn0a†0(

#–
k n)

⌘

|0i .

(4.33)

The probability density for a certain configuration of n particles is (as in theories

1 & 2):

|h

#–x 1, ...,
#–x n, t| i|

2 = | n(
#–x 1, ...,

#–x n, t)|
2 . (4.34)
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We have deftly avoided problems with probability that plagued early attempts at

developing relativistic versions of QM. States stay normalized as they evolve because

the Hamiltonian is Hermitian, but, as an exercise, one can show that it follows from

eq. 4.33.11

Again, we summarize the theory we have arrived at. Note that the only di↵erence

between theory 2 and theory 3 is the expression for the energy of free particles that

appears in the Hamiltonian of the free theory.

11
Proof (using momentum basis to expand | (t)i):

h (t)| (t)i = h (t)|0ih0| (t)i+
R

d3k1h (t)|
#–
k 1, tih

#–
k 1, t| (t)i+

R

d3k1d
3k2h (t)|

#–
k 1,

#–
k 2, tih

#–
k 1,

#–
k 2, t| (t)i+ ...

= | 0|
2 +

R

d3k1

�

�

�

h0|ei!(
#–
k 1)ta0(

#–
k 1)

R

d3ke 1(
#–
k )e�i!(

#–
k )ta†0(

#–
k )|0i

�

�

�

2

+
R

d3k1d
3k2

�

�

�

h0| 1p
2
ei(!(

#–
k 1)+!(

#–
k 2))ta0(

#–
k 1)a0(

#–
k 2)

1p
2

R

d3kd3k0e 2(
#–
k ,

#–
k 0)e�i(!(

#–
k )+!(

#–
k 0))ta†0(

#–
k )a†0(

#–
k 0)|0i

�

�

�

2
+ ...

= | 0|
2 +

R

d3k1

�

�

�

h0|
R

d3ke 1(
#–
k )ei!(

#–
k 1)te�i!(

#–
k )t�3(

#–
k �

#–
k 1)|0i

�

�

�

2

+
R

d3k1d
3k2

�

�

�

h0| 12
R

d3kd3k0e 2(
#–
k ,

#–
k 0)ei(!(

#–
k 1)+!(

#–
k 2))te�i(!(

#–
k )+!(

#–
k 0))t

⇣

�3(
#–
k �

#–
k 1)�3(

#–
k 0

�

#–
k 2) + �3(

#–
k �

#–
k 2)�3(

#–
k 0

�

#–
k 1)

⌘

|0i
�

�

�

2
+ ...

= | 0|
2 +

R

d3k1|e 1(
#–
k 1)|2 +

R

d3k1d
3k2

�

�

�

e 2(
#–
k 1,

#–
k 2)

�

�

�

2
+ ... = 1 . (4.35)

The first line of eq. 4.35 gives the identity element in Fock space. For single particle QM we had:
Z

d3k|
#–
k , tih

#–
k , t| = 1̂ . (4.36)

In Fock space we must allow any number of particles to have a full basis of states:

|0ih0|+

Z

d3k1|
#–
k 1, tih

#–
k 1, t|+

Z

d3k1d
3k2|

#–
k 1,

#–
k 2, tih

#–
k 1,

#–
k 2, t|+ ... = 1̂ . (4.37)

To get the second line of eq. 4.35, we use eq. 4.19 to expand | i and rewrite the momentum
eigenstates using eq. 4.28. Then we use eq. 4.14 to eliminate the creation and annihilation operators.
Finally, we integrate out the delta functions to get a form which matches our requirement for the
initial wave function’s normalization (eq. 4.9, in momentum space).
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Theory 3: Real Scalar QFT (in the particle basis)

States The states of the theory are wave functions on the disjoint

union of n-particle configuration spaces: | i is specified by

h 0, 1(
#–x 1), 2(

#–x 1,
#–x 2), ...i

Schrödinger Equation As presented below or, equivalently, writing the free

Hamiltonian as in eq. 4.46.

i
@

@t
| (t)i =

✓

Z

d3k
q

|

#–
k |2 +m2 a†0(

#–
k )a0(

#–
k ) + bHint

◆

| (t)i . (4.38)

Probabilities The probability (or probability density) of observing the system

in state |�i in an appropriate experiment is given by the square of the inner

product of |�i and the system’s state | i: |h�| i|2 (where the inner product

is defined in equation 4.7)

It is easy to see how this theory limits to QM in the free case or when there is a

fixed external potential. If the momenta involved are su�ciently small relative to m

(the particles are traveling slowly relative to the speed of light), then
q

|

#–
k |2 +m2 is,

to first order in |

#–
k |2, m + | #–

k |2
2m . So, the free part of the Hamiltonian that appears in

eq. 4.38 is the same as theory 2’s (eq. 4.22) up to an invisible constant12 shift in the

energy:
R

d3k m a†0(
#–
k )a0(

#–
k ). It is more complicated to show that interactions like

those in the Standard Model can limit to the sort of simple inter-particle interactions

discussed in QM (How do photon exchanges in QFT manifest themselves as 1/r2

12Actually, the shift is dependent on the total number of particles (which can change when
interactions are present). But, it is constant if we confine the wave function to a particular n-particle
configuration space (and don’t allow interactions which take it out of there).
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attractive forces in a Hydrogen atom?). Examination of equation 4.38 suggests that

theory 3 should limit to special relativity in the same way that QM limits to classical

particle mechanics.13

4.6 The Lagrangian and the Quantum Field

We have now seen the basic laws of relativistic quantum field theory and can introduce

some more sophisticated notation. I would like to define and discuss an operator

that is of particular interest in the theory: the field operator b� and its conjugate

momenta b⇧. In this section, we will define these operators in terms of our creation and

annihilation operators, show that the Hamiltonian for free bosons can be rewritten

in terms of b� and b⇧, and discuss some properties of these new operators. By

reformulating our version of QFT in terms of these new operators, we connect the

treatment thus far to more standard textbook treatments and prepare for part II by

presenting the theory in a way that makes it appear similar to the version discussed

there (in part III we will see that the similarity goes beyond mere appearances, it’s

the same theory). So, this new notation will look like an unnecessary complication of

a clean and simple theory. But don’t worry, the motivation will become clear in part

III when we compare theory 3 and theory 4 (introduced in part II).

13Here’s how one might try to prove it: One should be able to develop a path integral approach to
QFT starting with eq. 4.38 and make an argument similar to that in §4.11 that when variations in
the action are large relative to ~, we can use a steepest decent approximation to derive the classical
equations of motion for special relativity.
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Define the operators b�(
#–
k ) and b⇧(

#–
k ) as:

b�(
#–
k ) ⌘

1
q

2!(
#–
k )

⇣

a0(
#–
k ) + a†0(�

#–
k )

⌘

b⇧(
#–
k ) ⌘ �i

s

!(
#–
k )

2

⇣

a0(
#–
k )� a†0(�

#–
k )

⌘

. (4.39)

In terms of these operators, we can rewrite the Hamiltonian in eq. 4.27 as:

bH =

Z

d3k
q

!(
#–
k ) a†0(

#–
k )a0(

#–
k )

=

Z

d3k

(

1

2
b⇧(

#–
k )b⇧(�

#–
k ) +

|

#–
k |2

2
b�(

#–
k )b�(�

#–
k ) +

m2

2
b�(

#–
k )b�(�

#–
k )�

!(
#–
k )

2
�(0)

)

.

(4.40)

We can rewrite the Hamiltonian as an integral over space by Fourier transforming b�

and b⇧. Omitting the spatial integral, we can write the Hamiltonian density as:

cH =
1

2
b⇧2( #–x ) +

1

2
(rb�( #–x ))2 +

1

2
m2

b�2( #–x )� ⌦0 . (4.41)

Here ⌦0 ⌘
R

d3k !(
#–
k )

2(2⇡)3 (yes this is infinite, we’ll discuss it soon). This looks like the

Hamiltonian for a classical Klein-Gordon field (except that � and ⇧ are operators not

classical fields). In part II we will see how “quantizing” the classical Klein-Gordon

field leads to a (relativistic) quantum field theory where eq. 4.41 is the Hamiltonian

that appears in the theory’s Schrödinger equation (teaser from part II: h |b�( #–x , t)| i

gives the expectation value of a measurement of a classical field at #–x , t). Although

the operator b� is introduced via a di↵erent definition in part II (eq. 4.66), we’ll see in

part III that they are indeed the same operator. In part III we will examine how the

equivalence of the Hamiltonians in eq. 4.27 and eq. 4.41 (just proved) can be used to
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show that theory 3 (developed here) is equivalent to the theory introduced in part II.

Fourier transforming the definitions of b� and b⇧ in eq. 4.39 gives the following

expressions:

b�( #–x ) =

Z

gd3k
⇣

e�i
#–
k · #–xa†(

#–
k ) + ei

#–
k · #–xa(

#–
k )

⌘

b⇧( #–x ) =

Z

gd3k i!(
#–
k )

⇣

e�i
#–
k · #–xa†(

#–
k )� ei

#–
k · #–xa(

#–
k )

⌘

. (4.42)

Here we have replaced the familiar creation and annihilation operators with

renormalized versions defined by:14

a†(
#–
k ) ⌘ (2⇡)3/2(2!(

#–
k ))1/2a†0(

#–
k ) . (4.43)

The commutation relation (eq. 4.14) then becomes:
h

a(
#–
k ), a†(

#–
k 0)

i

=

(2⇡)32!(
#–
k )�3(

#–
k �

#–
k 0). a†(

#–
k ) is a convenient operator to use for relativistic theories

since it transforms simply under Lorentz transformations. In eq. 4.42 we have also

introduced the notation gd3k for the following relativistically invariant integration

measure which will appear often:

gd3k ⌘

d3k

(2⇡)32!(
#–
k )

. (4.44)

An expression for b�( #–x , t), which denotes acting with b�( #–x ) on the state at some time

t later than now, can be found by time evolving a state forward, acting with the field

operator, and then time evolving the state back (similarly for b⇧).

b�( #–x , t) = ei
bHt
b�( #–x )e�i bHt . (4.45)

14These operators now match what you see throughout many QFT textbooks, for example
(Srednicki, 2007, pg. 28).
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With our new notation, the Hamiltonian in eq. 4.27 can be written as:

bH =

Z

gd3k !(
#–
k )a†(

#–
k )a(

#–
k ) . (4.46)

Using this Hamiltonian and eq. 4.45, we see that (in the free case), the time

dependence of � is given by:15

b�( #–x , t) ⌘

Z

gd3k
⇣

e�ik·xa†(
#–
k ) + eik·xa(

#–
k )

⌘

. (4.47)

Here we have moved from three-dimensional to four-dimensional dot products in the

exponentials (with x0 = t).16 The corresponding expression for b⇧ can be calculated

in the same manner:

b⇧( #–x , t) =

Z

gd3k i!(
#–
k )

⇣

e�ik·xa†(
#–
k )� eik·xa(

#–
k )

⌘

. (4.49)

From eq. 4.47 & 4.49 and the commutation relations for a and a†, we can show:

[b�( #–x , t), b�( #–x 0, t)] = [b⇧( #–x , t), b⇧( #–x 0, t)] = 0

[b�( #–x , t), b⇧( #–x 0, t)] = i�3 ( #–x �

#–x 0) . (4.50)

15In deriving this, the following operator identity is useful (the Hadamard lemma of the

Campbell-Baker-Hausdor↵ formula): eÂB̂e�Â = B̂ + [Â, B̂] + 1
2! [Â, [Â, B̂]] + ...

16We can show that b�( #–x , t) (eq. 4.47) must satisfy the Klein-Gordon equation (@2f( #–x , t) =
m2f( #–x , t)).

�

�@2 +m2
�

b�( #–x , t) =
�

@2
0 � @2

#–x +m2
�

Z

gd3k
⇣

e�ik·xa†(
#–
k ) + eik·xa(

#–
k )

⌘

=

Z

gd3k
⇣

�!(
#–
k )2 +

#–
k 2 +m2

⌘⇣

e�ik·xa†(
#–
k ) + eik·xa(

#–
k )

⌘

= 0 . (4.48)
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We can derive the Hamiltonian in the free relativistic Schrödinger equation (eq.

4.27, or equivalently, as in eq. 4.41) from a specified Lagrangian density (operator)

defined in terms of b�.

cL = �

1

2
@µ

b�@µb��

1

2
m2

b�2 + ⌦0 . (4.51)

If we take this as the Lagrangian, we can derive the Hamiltonian by defining the

conjugate momentum operator to b�( #–x , t) as b⇧( #–x , t) = @L

@
{

@0b�( #–x ,t)
}

= @0b�(
#–x , t)17 and

defining the Hamiltonian density in terms of the Lagrangian by: cH = b⇧
⇣

@0b�
⌘

�

cL

(replacing time derivatives of the field operator by their expression in terms of the

conjugate momenta).18

The ⌦0 term that appears first in eq. 4.41 has the e↵ect of shifting the energy by

a constant and thus does not change the physics. The factor is included in eq. 4.41

so that the Hamiltonian is exactly equal to that in eq. 4.27 and so that the energy

of the ground state of the free theory is zero. We could avoid the funny ⌦0 term

by normal ordering the terms that appear in the Hamiltonian. The normal ordering

: bO : of an operator bO, is given by expanding bO in terms of a’s and a†’s and then

ordering all products of creation and annihilation operators so that the annihilation

operators appear to the right of the creation operators.19 For example, the normal

ordering of
R

d3xa( #–x )a†( #–x )a( #–x ) is :
R

d3xa( #–x )a†( #–x )a( #–x ) : =
R

d3xa†( #–x )a( #–x )a( #–x ).

We can thus rewrite eq. 4.41 without ⌦0 as:

cH =
1

2
: b⇧2 : +

1

2
: (rb⇧)2 : +

1

2
m2 : b�2 : . (4.52)

17This equation is consistent with the expressions for b� and b⇧ in eq. 4.47 & 4.49.
18Forgive me the abuse of notation used in defining the derivative with respect to an operator in

b⇧( #–x , t) = @L
@
{

@0
b�( #–x ,t)

}

.
19Weinberg (1995, §4.2) proves that every operator can be written in terms of creation and

annihilation operators.
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4.7 An Interacting Quantum Field Theory

In this section we will briefly consider what happens when you add an interaction

term to the Lagrangian in eq. 4.51, examining how the Hamiltonian is a↵ected by

the new term and explicitly considering the infinitesimal time evolution of a single

particle momentum eigenstate. Let’s consider adding the term �� : b�4 : to our free

Lagrangian. This will have the e↵ect of changing the Hamiltonian to:

bHnew = bHFree +

Z

d3x : �b�4( #–x ) :

=

Z

gd3k !(
#–
k )a†(

#–
k )a(

#–
k )

+ �(2⇡)3
⇢

Z

gd3k1...gd3k4 a(
#–
k 1)a(

#–
k 2)a(

#–
k 3)a(

#–
k 4)�

3(
#–
k 1 +

#–
k 2 +

#–
k 3 +

#–
k 4)

+ 4

Z

gd3k1...gd3k4 a†(
#–
k 1)a(

#–
k 2)a(

#–
k 3)a(

#–
k 4)�

3(
#–
k 1 �

#–
k 2 �

#–
k 3 �

#–
k 4)

+ 6

Z

gd3k1...gd3k4 a†(
#–
k 1)a

†(
#–
k 2)a(

#–
k 3)a(

#–
k 4)�

3(
#–
k 1 +

#–
k 2 �

#–
k 3 �

#–
k 4)

+ 4

Z

gd3k1...gd3k4 a†(
#–
k 1)a

†(
#–
k 2)a

†(
#–
k 3)a(

#–
k 4)�

3(
#–
k 1 +

#–
k 2 +

#–
k 3 �

#–
k 4)

+

Z

gd3k1...gd3k4 a†(
#–
k 1)a

†(
#–
k 2)a

†(
#–
k 3)a

†(
#–
k 4)�

3(
#–
k 1 +

#–
k 2 +

#–
k 3 +

#–
k 4)

�

.

(4.53)

In interacting theories, a†(
#–
k ) and b�( #–x ) are defined exactly as they were in the free

case. What is the e↵ect of all these new terms on an arbitrary state? The first

term would annihilate four particles that have a net momentum of zero, the second

would annihilate three and create one with the sum of the momenta of the original

particles, etc. The terms in 4.53 should look a bit familiar since the interaction term

we experimented with at the end of §4.4 (in eq. 4.24) was quite similar. Unlike the
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toy theory discussed there, here the vacuum is not the ground state of the theory (it

should be clear that the vacuum is not even an energy eigenstate).

To see explicitly how a state evolves in this theory, let’s consider acting with the

Hamiltonian on a one particle momentum eigenstate (as we did in eq. 4.25). After an

infinitesimal period of time, the single particle state has some probability of staying

a single particle state, some probability of evolving into a three particle state, and

some probability of being joined by four particles created from the vacuum:

@
@t
|

#–
k i= �i!(

#–
k )|

#–
k i � i

p
3! �

(2⇡)3

R

d3k1d3k2
h

1
!(

#–
k )!(

#–
k 1)!(

#–
k 2)!(

#–
k� #–

k 1�
#–
k 2)

i

1
2
|

#–
k 1,

#–
k 2,

#–
k �

#–
k 1 �

#–
k 2i

�i
p
5! �

(2⇡)3

R

d3k1d3k2d3k3
h

1
!(

#–
k )!(

#–
k 1)!(

#–
k 2)!(

#–
k 3)!(�

#–
k 1�

#–
k 2�

#–
k 3)

i

1
2
|

#–
k 1,

#–
k 2,

#–
k 3,�

#–
k 1 �

#–
k 2 �

#–
k 3,

#–
k i .

(4.54)

Notice that in the second and third terms the probability of producing terms with

high momentum decreases because of the !� 1
2 factors. The larger � is, the greater

the chance of a change in particle number.

In this chapter we will not go on to derive testable predictions from interacting

QFTs. But, you are now prepared to derive the Feynman rules for �4-theory and

calculate amplitudes for various transitions to occur in particle collisions (from which

you can derive cross-sections and decay rates). You can start with Peskin and

Schroeder’s perturbative calculation of transition amplitudes in (Peskin & Schroeder,

1995, §4.2) (then come back and read parts II and III). Or, if you prefer to study QFT

from textbooks that start with path integrals (such as Srednicki, 2007 or Zee, 2010), I

recommend reading through parts II and III before/while studying their calculations

of transition amplitudes.
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Part II

From Classical Field Theory to QFT

In part I we moved from QM to QFT by allowing for the creation and annihilation

of particles and introducing a relativistic expression for the Hamiltonian in the

Schrödinger equation. In part II, we will re-introduce QFT as a quantum version

of classical field theory (CFT). We will begin by moving from classical states of

definite field configuration to quantum states with indeterminate field configuration

(wave functionals over the space of possible field configuration). The time evolution of

these states is determined by a Schrödinger equation which uses the CFT expression

for the energy of a state. Since the particular field theory we will start from is

already relativistic (Klein-Gordon field theory), the quantum theory we end up

with will be relativistic as well. In order to show that this formulation of QFT is

empirically equivalent to the textbook variety, we will use path-integrals to derive

the generating functional for interacting field theories from which the Feynman rules

can be derived by standard perturbative methods. Once the path-integral analysis

has been completed, it will be straightforward to show that the classical field theory

emerges as a limiting case. The version of QFT that we will arrive at in part II, by

starting with CFT, will look di↵erent from the form examined in Part I. In part III

we will demonstrate that the two formulations are just manifestations of a di↵erent

choice of basis for the abstract, Dirac-notation, formulation of the theory.
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4.8 The Space of States: Wave Functionals over

Field Configurations

In classical particle dynamics, one specifies the instantaneous state20 of a system of

identical particles by picking out a point in configuration space which determines

the locations of all the particles: ( #–x 1,
#–x 2, ...,

#–x n). When we move to a

quantum description of the same system, the state becomes a wave function which

assigns a complex number to every possible classical configuration for the system:

 ( #–x 1,
#–x 2, ...,

#–x n). In CFT, the instantaneous state of a region is given by a classical

field configuration, a function which assigns a real number to each point in space:

�( #–x ). In a quantum description, the state of an isolated region will be an assignment

of a complex number to each possible field configuration. That means, the state will

be a wave functional which takes a function, the classical field configuration, as its

argument and returns a complex number:  [�( #–x )] ( depends on the function � but

not on a specific value of #–x , so I will omit the argument of � in the future but continue

to use square brackets to remind ourselves that  is a functional, not a function).21

The role of the wave function is depicted in figure 4.3.

Working with wave functionals over continuous spaces is di�cult, less intuitive,

and harder to do rigorously, so we will take the discrete case to be central. When

20The use of “instantaneous” here is taken from Albert’s Time and Chance (Albert, 2000, ch.
1, §3). A point in phase space gives more than just the instantaneous state of the system, it says
something (independent of the dynamical laws) about how the state of the system is changing.

21Wave functional methods are often discussed in textbook treatments of QFT (for example,
Huang, 2008, pg. 29-33) but I have rarely seen them bestowed with the fundamentality I give them
here. In (Weinberg, 1999), Weinberg suggests their foundational importance, but doesn’t provide
much explanation about how the story is supposed to go. Wallace (2006, §2.3) provides a wave
functional account of states, but does not give a detailed discussion of the dynamics of such states.
Hatfield’s (1992, ch. 9-14) textbook gives a nice, in-depth treatment of the wave functional approach
similar to that developed here. My derivation of the generating functional from the path integral is
significantly di↵erent from Hatfield’s and fits well with the treatment in (Srednicki, 2007, ch. 6-9).
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Figure 4.3: Wave Functional A 2-D classical field configuration �(x, y) is mapped
by the wave functional  [�] to a complex number.

Figure 4.4: Discrete Field Configuration A field configuration in 1-D discrete
space.

in doubt, any calculation of a transition probability or other prediction of the theory

can be done in discrete space and then upon completion the lattice spacing can be

taken to zero.

Consider the simple case where space is 1-dimensional and discrete with lattice

spacing ✏, as in figure 4.4. Classically, at each point there is a number �i that gives

the value of the field at that point. Specifying �i for all i specifies the classical

field configuration: �(x) ! {...,��✏,�0,�✏, ...}. So, the quantum wave functional

becomes a function of as many arguments as there are points in space:  [�(x)] !

 (...,��✏,�0,�✏, ...). In this case, it is easy to define the inner product of states by

integrating over all possible field configurations:

h | 0
i =

Z

...d��✏d�0d�✏... 
⇤(...,��✏,�0,�✏, ...) 

0(...,��✏,�0,�✏, ...) . (4.55)
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Moving to three dimensions, we can define
Q

#–x ,✏ as the product over all points on our

lattice (with lattice spacing ✏) so that:

Y

#–x ,✏

d� #–x = ...d��ẑ, d�0, d�x̂, d�ŷ, d�ẑ, d�2x̂... . (4.56)

Here x̂/ŷ/ẑ is the vector of length ✏ pointing in the x/y/z-direction. In three

dimensions, the inner product becomes:

h | 0
i =

Z

Y

#–x ,✏

d� #–x 
⇤(...��ẑ,�0,�x̂, ...) 

0(...��ẑ,�0,�x̂, ...) . (4.57)

The probability that a certain state  0 is observed when the wave functional of the

system is  is, as in QM, given by |h 0
| i|2. States are normalized by requiring that:

|h | i|2 = 1. In the case of a discrete lattice, mathematically di�cult-to-understand

integrations over the space of functions become more straightforward integrations

over field values at points:

Z

D�F [�] �!

Z

Y

#–x ,✏

d� #–xF (...��ẑ,�0,�x̂, ...) . (4.58)

Here
R

D�F [�] is the integral of the functional F [�] over all possible field

configurations �.

We can define a derivative of a functional with respect to a function at a specified

point #–x as follows:
�F [�]

��( #–x )
⌘ lim

h!0

F [�⇤]� F [�]

h
. (4.59)

�⇤ is equal to the function � everywhere except at the point #–x where its value is

�⇤( #–x ) = �( #–x ) + h. We are considering the e↵ect of changing the function by an

arbitrarily small amount at #–x and seeing how the value of the functional depends on
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this shift. In the discrete case, this becomes:

�F [�]

��( #–x )
�! lim

h!0

F (...,� #–x + h, ...)� F (...,� #–x , ...)

h
. (4.60)

Here we consider the di↵erence between the value of the functional at the field

configuration � and the configuration obtained by shifting the value of the field at #–x

by an arbitrarily small amount (leaving the field value at all other points unchanged,

as depicted in figure 4.5). It is useful to note that functional derivatives obey the

product rule and the chain rule.22

Figure 4.5: The Functional Derivative Visual depiction of the definition of
a functional derivative in the discrete case (with two spatial dimensions). Here we
consider the amplitude assigned to to the function that di↵ers from � by an arbitrarily
small displacement in the field value at a particular point ~x.

We can move from a wave functional representation to a “ket” by integrating over

all possible states of definite field configuration:

| i =

Z

D� [�]|�i . (4.61)

We require that |�i is normalized so that the inner product of two states is a delta

functional. In the discrete case, the delta functional becomes an infinite product of

22See (Hatfield, 1992, ch. 9) for a detailed discussion of functional di↵erentiation and methods for
solving functional di↵erential equations.
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delta functions of the field value at each point in space:

h�|�0
i = ...�

�

��ẑ � �0
�ẑ

�

� (�0 � �0
0) � (�x̂ � �0

x̂) ... =
Y

#–x ,✏

[� (� #–x � �0
#–x )] . (4.62)

With this requirement, eq. 4.57 follows from eq. 4.61. Note that the state |�i

is not properly normalized, h�|�i = 1 (just as h

#–x | #–x 0
i = �3 ( #–x �

#–x 0) makes |xi

un-normalized in QM23). The wave functional for the state |�i is given by:  �[�0] =
Q

#–x ,✏ [� (� #–x � �0
#–x )] (this follows from eq. 4.62 & 4.57). From eq. 4.57 and our

expression for  �[�0], we see that h�| i =  [�], so eq. 4.61 can be written as:

| i =

Z

D� h�| i|�i . (4.63)

Thus we have the following representation of the identity:

1 =

Z

D� |�ih�| . (4.64)

23See the note on probability at the end of §4.2.
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4.9 The Schrödinger Equation for Wave

Functionals

The fundamental law of temporal evolution in this wave functional understanding of

QFT is24:

i @
@t
 [�, t]= bH [�, t]

=
R

d3x



1
2

⇣

b⇧( #–x )
⌘2

+ 1
2

⇣

r

b�( #–x )
⌘2

+ 1
2m

2
⇣

b�( #–x )
⌘2

� ⌦0 + V0

⇣

b�( #–x )
⌘

�

 [�, t] .

(4.65)

This is simply the QM Schrödinger equation where states are now mappings from field

configurations and times to complex numbers, wave functionals, instead of functions

on configuration space and the Hamiltonian gives the energy of a Klein-Gordon field

(with interactions if V0 6= 0). In the free case, we need to shift the energy by ⌦0

if we would like the Hamiltonian that appears in the (free) Schrödinger equation

(eq. 4.65) to agree with the one introduced in part I (eq. 4.27), as we’ve already

shown that the Hamiltonian in eq. 4.46 is the same as that in eq. 4.41, which is the

Hamiltonian in the Schrödinger equation above, eq. 4.65 (except that eq. 4.41 has

V0 = 0). In appendix 4.A I argue that ⌦0 is also needed in interacting theories so

that we can ensure that the ground state of the theory has zero energy (which is an

experimentally unobservable but calculationally useful feature). To understand eq.

4.65, we must understand the operators involved. In part I, the operators denoted by

b� and b⇧ were introduced in eq. 4.39. For now, pretend that you don’t know about

those definitions and you’ve just encountered two new operators (in §4.12 we’ll show

24This equation is given in (Hatfield, 1992, eq. 10.12) and is used as the starting point for a
Bohmian version of bosonic QFT in (Bohm & Hiley, 1993, eq. 11.26).
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that we are discussing the same operators here as those in eq. 4.42, but that shouldn’t

be obvious yet). b�( #–x ), when acting on a field configuration eigenstate, pulls out the

value of the field at #–x according to that field configuration: b�( #–x )|�i = �( #–x )|�i. b⇧

acts on a state by taking the functional derivative of the wave functional with respect

to the field value at #–x .25 The operators b� and b⇧ are defined by:

b�( #–x )| i ⌘

Z

D� �( #–x )|�ih�| i

=

Z

D� �( #–x ) [�]|�i

b⇧( #–x )| i =

Z

D� � i
� [�]

��( #–x )
|�i . (4.66)

Be careful! Here b� is an operator, � is a specific field configuration, and |�i is a field

configuration eigenstate with definite field configuration �. From these definitions,

we can derive the commutation relations for b� and b⇧ (and they agree with those of

eq. 4.50):

[b�( #–x ), b�( #–x 0)] = [b⇧( #–x ), b⇧( #–x 0)] = 0

[b�( #–x ), b⇧( #–x 0)] = i�3 ( #–x �

#–x 0) . (4.67)

Here we use the fact that ��( #–x )
��( #–x 0) = �3 ( #–x �

#–x 0). Note that (so long as h | bH| i is

finite) the hermiticity of bH guarantees conservation of probability.26

25One might reasonably wonder whether the definition of the conjugate field momenta operator
b⇧( #–x ) in eq. 4.66 is consistent with the definition of conjugate momenta in eq. 4.49 as: b⇧( #–x , t) ⌘

@L
@
{

@0
b�( #–x ,t)

}

which is @0b�(
#–x , t) for our Lagrangian from eq. 4.51. In fact it is. Taking the time

derivative of b�( #–x , t) = ei
bHt
b�( #–x )e�i bHt (see eq. 4.45) with bH defined in terms of b� and b⇧ by eq. 4.65

(using the commutator from eq. 4.67) gives @0b�(
#–x , t) = b⇧( #–x , t).

26
Proof :

@
@t h | i =

@
@t

�R

D� ⇤[�] [�]
�

=
R

D�
�

@
@t 

⇤[�]
�

 [�] +
R

D� ⇤[�]
�

@
@t [�]

�

= ih bH†
i � ih bHi = 0 .

(4.68)
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As we did in Part I, let us briefly summarize the theory we’ve developed:

Theory 4: Real Scalar QFT (in the field basis)

States The states of the theory are wave functionals on the space of possible field

configurations:  [�]

Schrödinger Equation

i @
@t
 [�, t] =

✓

R

d3x



1
2

⇣

b⇧( #–x )
⌘2

+ 1
2

⇣

r

b�( #–x )
⌘2

+ 1
2m

2
⇣

b�( #–x )
⌘2

� ⌦0

�

+ bHint

◆

 [�, t] .

(4.69)

Probabilities The probability (or probability density) of observing the system

in state |�i in an appropriate experiment is given by the square of the inner

product of |�i and the system’s state | i: |h�| i|2. The inner product is

defined in equation 4.57 which in the continuous case becomes:

h�| i =

Z

D� �⇤[�] [�] . (4.70)

4.10 To Predictions via Path Integrals

Now, if this were a QFT textbook we would be obligated to go on to derive the

Feynman rules and calculate cross-sections. These skills are important, but as we

are only trying to clarify the theory’s foundations, we will not go on to calculate

predictions of the theory here. However, it is important that you are convinced that
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the formulation of QFT discussed here is capable of entailing the standard Feynman

rules for interacting Klein-Gordon fields. To show this capability, appendix 4.A uses

the Schrödinger equation for wave functionals (eq. 4.65) to derive the following

equation for ground state expectation values of time-ordered field operators (as in

Srednicki, 2007, eq. 9.5)27:

h⌦|T b�( #–x , t)b�( #–x ⇤, t⇤)...|⌦i =



1

i

�

�J( #–x , t)

1

i

�

�J( #–x 0, t0)
...

Z

D� Exp



i

Z

d4x(L + J�)

��

J=0

.

(4.71)

Here
R

D� is an integral over all paths through the space of possible field

configurations, |⌦i is the time-independent28 ground state (which is in general not

equal to the zero-particle vacuum state), and b�( #–x , t) pulls out the value of the field

at t (eq. 4.45 still holds as the definition of b�( #–x , t) in terms of b�( #–x )). T in eq.

4.71 denotes the time-ordered product of the field operators, enforcing a re-ordering

of the field operators so that those with later times appear first when reading from

left to right. From eq. 4.71, one can use the LSZ reduction formula to calculate

the Feynman rules for the theory (see, for example, Srednicki, 2007, ch. 5, 9, 10).29

Empirical predictions of the theory, like decay rates and cross-sections, can then be

calculated from the Feynman rules. In order to keep in mind the similarities between

27One is not forced to use path integrals and reduction formulas to calculate measurable predictions
from interacting scalar field theories in the field basis. Hatfield (1992, ch. 11) shows that you can
calculate cross sections by perturbatively calculating the time evolution of wave functionals using
standard (non-path-integral) methods from QM (like those used to derive eq. 4.26).

28The state is time-independent because ⌦0 is chosen so that the ground state has zero energy.
29To derive the LSZ formula, we need a Hamiltonian which satisfies various constraints listed

in (Srednicki, 2007, ch. 5) (typically we start with one that doesn’t and then change it through
renormalization). A note on following Srednicki’s derivation in light of part I: First, it is a†0 not a†

which creates a normalized one particle state, so the wave function in eq. 5.6 must be chosen to
counteract the un-normalized nature of a†(

#–
k )|0i. Second, It is not obvious that the ground state

of a renormalized interacting theory is the same as the vacuum, so it is not obvious that a(
#–
k ) will

annihilate the ground state. However, if we have a Hamiltonian for which Srednicki’s assumptions
are satisfied (eq. 5.25 & 5.19), it follows that a(

#–
k ) (defined in terms of b� & b⇧ in eq. 4.75) will

annihilate the ground state. So, for renormalized theories, the ground state is the vacuum.
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QFT and QM, here is the single-particle QM analogue of eq. 4.71:

h⌦, t = tf |T x̂(t)x̂(t0)...|⌦, t = tii =
h

1
i

�
�f(t)

1
i

�
�f(t0) ...

R

Dx Exp
h

i
R t

f

t
i

dt(L+ fx)
ii

f=0
.

(4.72)

Note that
R

Dx is an integral over the space of paths through space, the field operators

are replaced by position operators, and the state |⌦, t = tii is the ground state at

t = ti (not the vacuum).

4.11 The Limiting case of Classical Field Theory

QM limits to classical mechanics when the variation in the action (
R

d3xL ) is large

relative to ~. Similarly, QFT limits to classical field theory when the variation in the

action is large relative to ~.30 Let’s begin with eq. 4.102 (a step in the derivation of

eq. 4.71 from eq. 4.65 in appendix 4.A) with the factor of ~ restored.

h�00, t00|�0, t0i =

Z

D�Exp

"

i

~

Z t00

t0
dt

Z

d3xL (�̇( #–x , t),�( #–x , t))

#

. (4.73)

Here
R

D� is an integral over all paths through the space of field configurations

keeping the endpoints fixed at �0 = �0 and �N+1 = �00. We are summing a contribution

for each possible classical evolution of the field (see figure 4.6 in appendix 4.A for a

visual depiction of the path integral in eq. 4.73). When the variation in the action

is large relative to ~, we can use a steepest descent approximation to calculate the

transition amplitude. The integral will be dominated by the region in the space

of paths through field configuration space where
R t00

t0 dt
R

d3xL (�̇( #–x , t),�( #–x , t)) is

minimized. The transition amplitude then (approximately) only gets a contribution

30This limit is appropriately introduced early in (Zee, 2010, §1.3).
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from a single path (that is, a single time evolution for a definite-valued classical field):

h�00, t00|�0, t0i / Exp

"

i

~

Z t00

t0
dt

Z

d3xL (�̇⇤( #–x , t),�⇤( #–x , t))

#

. (4.74)

So, the system evolves along a determinate trajectory through the space of field

configurations. What path �⇤( #–x , t) minimizes
R t00

t0 dt
R

d3xL (�̇⇤( #–x , t),�⇤( #–x , t))? The

path of least action! So, the CFT principal of least action (from which one can

derive classical equations of motion for fields) arises from a limiting case of the QFT

dynamics.

We have now shown how QFT limits to QM when the momenta are small (relative

to mc, see §4.5) and to relativistic CFT when the variation in the action is large

(relative to ~). However, we used di↵erent formulations of the theory to get each

limiting case. In part III, we will show that the formulations in parts I and II (theories

3 & 4) are in fact equivalent.
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Part III

Relating the Particle and Field Bases

In part I we developed theory 3, a formulation of QFT where the physical states are

wave functions on the space of all possible positions for all possible configurations

of any number of particles and time evolution is determined by eq. 4.38. In part II

we developed theory 4, a formulation where the possible states are wave functionals

on the space of possible field configurations and time evolution is determined by eq.

4.69. As it turns out, remarkably, theories 3 & 4 are actually equivalent! At the level

of QFT, the world seems to be representable in terms of fields or particles, and we

can freely go back and forth between representations at our convenience. Just as QM

can be developed in the position or momentum bases, QFT can be developed in the

particle or field bases (actually, it can be developed in the field basis, theory 4, or the

field-momenta basis, using eq. 4.96, or the particle-position basis, theory 3, or the

particle-momentum basis, §4.4 & 4.5, or the particle-energy basis (if the conditions

are right), see Teller, 1997, ch. 3 with Â(1) = bH, or ...).31

Part III is short. In the first section, we will show that you can derive theory 3

from theory 4 if we posit a certain mapping between states. In the second and final

section, I will very briefly introduce the measurement problem as it manifests itself

in QFT.

31Thank you to David Wallace for suggesting to me in conversation the idea that the particle and
field formulations of QFT are merely di↵erent bases in which we can represent states (I do not mean
to suggest that he would endorse the presentation here, although he might).
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4.12 Making Particles out of Fields

In this section we will show that theory 3 can be derived from theory 4. To-do list:

The creation and annihilation operators a† and a do not appear in part II so we must

find a way to define them in the context of theory 4. In part I, we defined b�, b⇧, and

an inner product. Since these things were defined again in part II, we must show

that the “definitions” in part I can be derived as consequences of the definitions in

part II. Further, we introduced a Schrödinger equation (eq. 4.38) for theory 3, but

if theory 4 is to underlie theory 3 we must show that eq. 4.38 can be derived from

eq. 4.65 (actually, we’ve already basically done this in eq. 4.39-4.41). In positing the

equivalence of the two formulations, we are free to choose a mapping between wave

functions and wave functionals so as to preserve the machinery of theory 3.

b� and b⇧ were defined in part II by eq. 4.66, but a and a† were not introduced.

There are no wave functions on the union of configuration spaces in theory 4, so a and

a† cannot be defined by their actions on such wave functions (as in §4.4). However,

we can freely define a(
#–
k ) and a†(

#–
k ) by the inversions of our expressions for b� and b⇧

(eq. 4.4232) from §4.6 in part I:

a(
#–
k ) =

Z

d3x ei
#–
k · #–x

h

ib⇧( #–x ) + !(
#–
k )b�( #–x )

i

a†(
#–
k ) =

Z

d3x e�i
#–
k · #–x

h

�ib⇧( #–x ) + !(
#–
k )b�( #–x )

i

. (4.75)

From these, we can define a0 and a†0 by scaling a and a† as in eq. 4.43.

We can now use the creation and annihilation operators to determine the mapping

32For the relation between b⇧ (as in eq. 4.49) and cL to be b⇧( #–x , t) = @L
@
{

@0
b�( #–x ,t)

}

, the dependence

of L on @0b� must be as in eq. 4.51, which it would be if we are only considering interaction terms
like those allowed in 4.65.
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between wave functions and wave functionals. We can define the vacuum wave

functional as the one which is annihilated by a(
#–
k ):

a(
#–
k )|0i =

Z

D� a(
#–
k )|�ih�|0i =

Z

D� a(
#–
k ) 0[�]|�i . (4.76)

This yields (derivation in Huang, 2008, §2.1233):

 0[�] = ⌘ Exp



�

Z

d3xd3x0 �( #–x )�( #–x 0)

Z

gd3k !2(
#–
k )ei

#–
k ·( #–x� #–x 0)

�

. (4.77)

⌘ is the normalization of the state (given in Hatfield, 1992, pg. 203). Then, all other

states are defined by acting on the vacuum with the appropriate creation operators.

We will now explicitly construct one and two particle states to see what particle

states look like in the field basis. First, the wave functional for a single particle with

momentum
#–
k :

 #–
k [�] = h�|

#–
k i = h�|a†0(

#–
k )|0i =

1
q

(2⇡)32!(
#–
k )

h�|a†(
#–
k )|0i

= 1
p

(2⇡)32!(
#–
k )

R

D�0
n⇣

R

d3x e�i
#–
k · #–x

h

�

�
��0( #–x ) + !(

#–
k )�0( #–x )

i⌘

h�|�0
ih�0

|0i
o

=
2
q

!(
#–
k )

p

2(2⇡)3

Z

d3x �( #–x )ei
#–
k · #–x  0[�] . (4.78)

In moving to the second line, we insert a complete set of field eigenstates and use eq.

4.66 to replace the b� and b⇧ operators with the field �0 and the functional derivative

with respect to it, �
��0 . In the next step we use the fact that the inner product of field

eigenstates is the delta functional to integrate over �0 and act with the functional

derivative on the vacuum state from eq. 4.77. Acting with two creation operators

33Alternate derivations in (Bohm & Hiley, 1993, §11.4) and (Hatfield, 1992, §10.1).
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gives a similar result:34

 #–
k 1,

#–
k 2
[�] = h�|a†0(

#–
k 1)a

†
0(

#–
k 2)|0i =

4
p

!(
#–
k 1)!(

#–
k 2)

2(2⇡)3

R

d3xd3y �( #–x )�( #–y )ei
#–
k 1· #–x ei

#–
k 2· #–y  0[�] .

(4.79)

Now we can generate a mapping between mapping between wave functions and

wave functionals. In part I, we could write an arbitrary state in terms of n-particle

wave functions (see eq. 4.15):

| i =  0|0i+

Z

d3k1 e 1(
#–
k 1)|

#–
k 1i+

Z

d3k1d
3k2 e 2(

#–
k 1,

#–
k 2)|

#–
k 1,

#–
k 2i+ ... . (4.80)

In part II, we used the wave functional to specify a state (eq. 4.61):

| i =

Z

D� [�]|�i .

If we insert a complete set of n-particle states in eq. 4.61 (as in eq. 4.37), we can get

it in the form of eq. 4.80.

| i=
R

D�
n

 [�]
⇣

|0ih0|+
R

d3k1|
#–
k 1ih

#–
k 1|+

R

d3k1d3k2|
#–
k 1,

#–
k 2ih

#–
k 1,

#–
k 2|+ ...

⌘

|�i
o

=
R

D�  ⇤
0[�] [�]|0i+

R

d3k1
R

D�  ⇤
#–
k 1
[�] [�]|

#–
k 1i+

R

d3k1d3k2
R

D�  ⇤
#–
k 1,

#–
k 2
[�] [�]|

#–
k 1,

#–
k 2i+ ...

(4.81)

Here  0[�],  #–
k 1
[�], and  #–

k 1,
#–
k 2
[�] are specified by eq. 4.77, 4.78, and 4.79 respectively

(wave functionals for more particles would be generated similarly). Thus, comparing

eq. 4.80 and 4.81, the following relations specify the wave function in terms of the

34One must be very careful with commutators here. a†0(
#–
k 1)a

†
0(

#–
k 2) 0[�] does not give the same

result.
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wave functional for a particular state | i:

 0 =

Z

D�  ⇤
0[�] [�]

e 1(
#–
k 1) =

Z

D�  ⇤
#–
k 1
[�] [�]

e 2(
#–
k 1,

#–
k 2) =

Z

D�  ⇤
#–
k 1,

#–
k 2
[�] [�]

... (4.82)

The wave functional can be determined from the wave function by inserting a complete

set of field eigenstates in eq. 4.80 and comparing to 4.61, yielding:

 [�] =  0 0[�] +

Z

d3k1 e 1(
#–
k 1) #–

k 1
[�] +

Z

d3k1d
3k2 e 2(

#–
k 1,

#–
k 2) #–

k 1,
#–
k 2
[�] + ... .

(4.83)

Next, we need to show that the inner product defined in part I, eq. 4.7, is

equivalent to the inner product on the space of wave functionals (eq. 4.70).

h�| i= �⇤
0 0 +

R

d3k1 e�⇤
1(

#–
k 1)e 1(

#–
k 1) +

R

d3k1d3k2 e�⇤
2(

#–
k 1,

#–
k 2)e 2(

#–
k 1,

#–
k 2) + ...

=
R

D�D�0 �⇤[�] [�0] ⇤
0[�

0] 0[�] +
R

d3k1
R

D�D�0 �⇤[�] [�0] ⇤
#–
k 1
[�0] #–

k 1
[�] + ...

=
R

D�D�0 �⇤[�] [�0]h�0
|

n

|0ih0|+
R

d3k1|
#–
k 1ih

#–
k 1|+

R

d3k1d3k2|
#–
k 1,

#–
k 2ih

#–
k 1,

#–
k 2|+ ...

o

|�i

=
R

D� �⇤[�] [�] . (4.84)

From line 1 to 2 we use eq. 4.82. In moving to the next line we rewrite the  0[�],

 #–
k 1
[�], etc. as inner products and rearrange terms. Then, we note that the complete

set of states is the identity and get a delta functional from the inner product of field

configuration eigenstates.

Finally we need to show that the particle basis Schrödinger equation (eq. 4.38)

can be derived from eq. 4.65. In §4.6, eq. 4.39-4.41, we showed that if the relations
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between b�, b⇧, a†, and a posited in eq. 4.39 hold, then the Hamiltonian in eq. 4.38 is

equivalent to 4.41, which is the Hamiltonian that appears in the field basis Schrödinger

equation, eq. 4.65. By defining a and a† by eq. 4.75, we have ensured that eq. 4.39

is valid.

Success! We have shown that theory 3 can be reduced to theory 4. It should be

clear that you could use similar reasoning to go the other way and ground theory 4

in theory 3. So, the two theories are equivalent.

4.13 Setting up the Measurement Problem in

QFT

The presentation of QFT provided in this chapter allows us to briefly introduce

some possible solutions to the measurement problem in relativistic quantum field

theory. The problem, simply stated, is to find out what makes Probabilities (in the

statement of theories 3 & 4) true. In basis-independent language, the condition is:

Probabilities The probability of observing the system in state |�i (or probability

density) in an appropriate experiment is given by the square of the inner product

of |�i and the system’s state | i: |h�| i|2.

One simple answer is to refuse to precisify condition or derive it. Some processes

count as “appropriate experiments” and when you do one of these it is an axiom

of the theory that probabilities for various results are given by |h�| i|2. Upon

being observed to be in a certain subset of all possible states, the wave function (or

wave functional) collapses so that it assign non-zero amplitude only to states in this

subset. This is the QFT-analogue of a simple version of the Orthodox or Copenhagen

interpretation of QM (in QM, see von Neumann, 1955 for von Neumann’s version and

Albert, 1994, ch.5 for philosophical discussion of it).
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Another option is to deny that collapse occurs and deny that Probabilities is

a postulate of the theory, arguing that the entire content of the theory is captured

by the space of states and the universally valid Schrödinger equation. This is the

strategy advised by modern Everettians who defend the many-worlds interpretation

of quantum theories.35 David Wallace has argued briefly (Wallace, 2008, §7.3) that

the Many-worlds interpretation extends unproblematically and smoothly to QFT

and this seems plausible. In the framework presented here, the Everettian argues

that the abstract representation of the theory introduced in part III is correct and

Probabilities can somehow be derived from Schrödinger equation evolution (recent

arguments pursue a decision theoretic line, see (Deutsch, 1999; Greaves, 2004, 2007;

Wallace, 2010, 2012); for an alternative see (Carroll & Sebens, 2014; Sebens & Carroll,

forthcoming)). Which representation of the theory (3 or 4 or something else) is

most useful for representing the emergent branching of worlds would be settled by

decoherence-based arguments (see Wallace, 2003; Schlosshauer, 2005).

Extending Bohmian mechanics (a.k.a. de Broglie-Bohm Pilot Wave theory) to

QFT is certainly less straightforward. According to Bohmian mechanics, the world

contains more than just a wave function: there are particles with definite positions.36

These particles get “pushed around” by the wave function in a way that ensures

that probabilities are typically given by the amplitude-squared. This is a “hidden

variables” interpretation of QM, and has often been criticized for including some sort

of relativistically-unacceptable action at a distance. But, this is a bit unfair. For the

theory to be compatible with special relativity, we must surely move to a Bohmian

version of relativistic quantum field theory. In extending the Bohmian approach to

35For a brief introduction to the theory in its modern form, see (Wallace, 2008, §4), or for a
book-length treatment, see (Wallace, 2012). For the original formulation, see (Everett III, 1957).

36For a brief introduction to Bohmian mechanics in QM, see (Berndl et al. , 1995). For a more
comprehensive treatment of the theory, see (Dürr & Teufel, 2009).
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QFT, it is not obvious what the definite states should be: particles with definite

positions or a field in a definite configuration? That is, should we work from theory

3 and add particles with definite position or work from theory 4 stipulating that the

world is in fact in a definite field configuration at each time? Both strategies have

been pursued and it seems that, at least in the case of spin-0 bosons / real scalar fields,

both can be made to work. Bell-type quantum field theories take the world to be in

a definite state in the disjoint union of n-particle configuration spaces. There really

are a certain number of particles in a particular arrangement. One recent version

argues that particles typically move in a deterministic manner, guided by the wave

function, but there are stochastic jumps from one n-particle configuration space to

another when particles are created or destroyed (see Dürr et al. , 2004, 2005). This

theory suggests taking Feynman diagrams completely seriously as possible trajectories

for real particles. Another option is to take the world to contain no particles, only

fields and wave functionals. However, the fields have definite values at each spacetime

point. This version of Bohmian mechanics takes the formulation of QFT in theory

4 as more fundamental. This kind of Bohmian QFT was proposed by David Bohm

himself (together with Basil Hiley) in (Bohm & Hiley, 1993), so we will call them

“Bohm-type” approaches to Bohmian QFT. A recent discussion of both types of

Bohmian QFTs can be found in (Tumulka, 2007); a survey of Bohm-type approaches

is given in (Struyve, 2010).

GRW’s spontaneous collapse version of QM has been extended to non-interacting

relativistic quantum mechanics (Tumulka, 2006c,a) and to non-relativistic quantum

field theory (Tumulka, 2006b), but it has not yet been extended to the realm of

relativistic quantum field theory.
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4.A Computing Path Integrals with Wave

Functionals

In the following derivation I will try to highlight a couple (minor?) assumptions that

I am somewhat unsatisfied with having to make in the hopes that some astute reader

will show me why they are legitimate or unnecessary. We would like to derive the

following expression (eq. 4.71)37:

h⌦|T b�( #–x , t)b�( #–x ⇤, t⇤)...|⌦i =
h

1
i

�
�J( #–x ,t)

1
i

�
�J( #–x 0,t0) ...

R

D� Exp
⇥

i
R

d4x(L + J�( #–x , t))
⇤

i

J=0
.

(4.85)

First, we will write h⌦|T b�( #–x , t)b�( #–x ⇤, t⇤)...|⌦i in terms of the inner product of states of

definite field configuration: h�00, t00|T b�( #–x , t)b�( #–x ⇤, t⇤)...|�0, t0i. Then, we will evaluate

these inner products using path integrals (ignoring the time-ordered product of field

operators). Finally, we will reintroduce the field operators.

Step 1: Field Configuration Eigenstates

The most natural way to write h⌦|T b�( #–x , t)b�( #–x ⇤, t⇤)...|⌦i in terms of the inner

product of states of definite field configuration would be to expand the ground state

in terms of field configuration eigenstates:

h⌦|T b�( #–x , t)b�( #–x ⇤, t⇤)...|⌦i =
R

D�00D�0 ⇤
⌦[�

00]h�00, t00|T b�( #–x , t)b�( #–x ⇤, t⇤)...|�0, t0i ⌦[�0] .

(4.86)

37For a refresher on path integrals in QM with a similar structure to the derivation presented
here, see (Srednicki, 2007, ch. 6).
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However, the ground state wave functional is complicated (see eq. 4.77) and, in

interacting theories, often unknown. So, instead we will use a clever trick to isolate

the ground state. We will assume that there is a unique minimum energy state |⌦i

and choose the constant ⌦0 in bH so that the energy of this state is zero: bH|⌦i = 0

(in the free theory, V0 = 0, the ground state is the vacuum state, but in general it

won’t be). If we replace the Hamiltonian that appears in Schrödinger’s equation by

(1� i✏) bH, then a field configuration eigenstate at t0 is given by:

|�0, t0i = ei(1�i✏) bHt0
|�0

i . (4.87)

Here we use the Schrödinger equation to evolve the eigenstate at t0 backwards to

whatever state it would have been in at t = 0. Be careful: |�0, t0i denotes a particular

state at t = 0 which, if evolved forward by Schrödinger equation evolution for a time

t0, would become the field configuration eigenstate |�0
i. We can now introduce a

complete set of energy eigenstates38:

|�0, t0i =
1
X

k=0

eiEk

t0eEk

t0✏ ⇤
k[�

0]|ki . (4.88)

If we then take the limit as t0 ! �1 at constant ✏, all contributions are annihilated

except for that from the ground state.

lim
t0!�1

|�0, t0i =  ⇤
⌦[�

0]|⌦i . (4.89)

Similarly, in the limit as t00 goes to infinity, h�00, t00| !  ⌦[�00]h⌦|. So, in the limit as

38The summation is symbolic. It indicates integration where there is an infinite degeneracy of
eigenstates or a continuous spectra of eigenvalues; what is important is that there is a single minimum
energy state with energy zero.
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the time interval goes to infinity:

limt0!�1, t00!+1
R

D�0D�00
h�00, t00|T b�( #–x , t)b�( #–x ⇤, t⇤)...|�0, t0i = Zh⌦|T b�( #–x , t)b�( #–x ⇤, t⇤)...|⌦i .

(4.90)

Where Z ⌘

R

D�0D�00 ⇤
⌦[�

0] ⌦[�00] is a constant which I assume is non-zero and the

time evolution of the states on the left-hand-side is determined by bH ! (1 � i✏) bH.

The right-hand-side is what we want in eq. 4.71 (up to a constant), so we just need

to find h�00, t00|T b�( #–x , t)b�( #–x ⇤, t⇤)...|�0, t0i.

Before moving on, I should note that there is an even trickier way to implement

the 1 � i✏ maneuver. If we are working with a Hamiltonian for which the non-zero

energy states scale positively with m (which we would expect if they were particle-like

excitations), then we can ensure that they are removed when the times are taken to

infinity if we change m2 to m2
�i✏ in the Hamiltonian (this is how the trick is typically

implemented and explains the origin of m2
� i✏ in the Feynman rules). Although the

Hamiltonian in eq. 4.65 with, for example, V0 = ��b�4 may not have the required

spectrum to allow implementing this maneuver, if we were to renormalize the theory

by adding counter terms, it would (see Srednicki, 2007, ch. 5).

Step 2: Evaluating the Path Integral

To make things a bit simpler, let’s begin by ignoring the time-ordered product

of fields and just try to calculate h�00, t00|�0, t0i in terms of a path integral. In QM

we considered paths through the space of possible trajectories of the system through

configuration space. In QFT, we will also consider the possible trajectories of the

classical system, but this time we will be considering paths through the space of

possible field configurations.

Using the unitary time evolution operator that follows from eq. 4.65 (as in eq.
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4.87), we can write the inner product as:

h�00, t00|�0, t0i =
h

h�00
|e�i bH

J

(t00�t0)
|�0

i

i

J=0
. (4.91)

The Hamiltonian operator is as it appears in the Schrödinger equation except for the

infinitesimal imaginary shift in m2 and the addition of a J-dependent term which

does not contribute since J is set to zero (the motivation for the addition of this term

will be explained in step 3, but it should be clear that eq. 4.91 & 4.92 are legitimate):

bHJ =

Z

d3x



1

2

⇣

b⇧( #–x )
⌘2

+ V (b�( #–x ))

�

V (b�( #–x )) ⌘
1

2

⇣

r

b�( #–x )
⌘2

+
1

2
(m2

� i✏)
⇣

b�( #–x )
⌘2

� ⌦0 + V0

⇣

b�( #–x )
⌘

� J b�( #–x ) .

(4.92)

We can break eq. 4.91 into N + 1 time steps of length �t, inserting a complete set of

field-configuration eigenstates after each time step:

h�00, t00|�0, t0i =

"

Z N
Y

j=1

D�jh�
00
|e�i bH

J

�t
|�Nih�N |e

�i bH
J

�t
|�N�1i...h�1|e

�i bH
J

�t
|�0

i

#

J=0

.

(4.93)

Here we are calculating the amplitude for the field to transition from definite state

�0 to definite state �00 by looking at contributions from each path through the space

of possible field configurations. The integrals in eq. 4.93 are depicted in figure 4.6.

Using the Campbell-Baker-Hausdor↵ formula (eÂ+B̂ = eÂeB̂e�
1
2 [Â,B̂]+...) and throwing

out terms of order �t2, we can write:

e�i bH
J

�t = e�i�t
R
d3x 1

2(b⇧( #–x ))
2

e�i�t
R
d3xV (b�( #–x )) . (4.94)

We can expand a typical term in eq. 4.93 by inserting a complete set of field momenta
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Figure 4.6: The Path Integral for Fields Here the summation of amplitudes in eq.
4.93 is depicted for two-dimensional fields for N=3 (4 time steps). The amplitudes
for di↵erent possible evolutions of the field are added to give the amplitude for a
field starting at �0 at t0 evolving to �00 at t00. Note that the initial and final field
configuration is held fixed.

eigenstates:

h�2|e
�i bH

J

�t
|�1i =

Z

D⇧1h�2|e
�i�t

R
d3x 1

2(b⇧( #–x ))
2

|⇧1ih⇧1|e
�i�t

R
d3xV (b�( #–x ))

|�1i

=

Z

D⇧1e
�iH

J

(⇧1,�1)�t
h�2|⇧1ih⇧1|�1i . (4.95)
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To calculate h⇧1|�1i, we need an expression for a field-momentum eigenstate:

 ⇧1 [�] =
1

(2⇡)N/2
ei

R
d3x⇧1(

#–x )�( #–x ) . (4.96)

Here N is the number of points in space. The choice of normalization comes from the

requirement that: h⇧|⇧0
i =

Q

#–x ,✏ [� (� #–x � �0
#–x )] (as in eq. 4.62). So, h�2|e�iĤ�t

|�1i

becomes:

h�2|e
�i bH

J

�t
|�1i =

1

(2⇡)N

Z

D⇧1e
�iH

J

(⇧1,�1)�tei
R
d3x⇧1(

#–x )(�2(
#–x )��1(

#–x )) . (4.97)

Now we repeat the analysis in 4.97 for each expectation value in 4.93 and we see that

the formula becomes:

h�00, t00|�0, t0i =

"

1

(2⇡)N(N+1)

Z N
Y

j=1

D�j

N
Y

i=0

D⇧ie
�iH

J

(⇧
i

,�
i

)�tei
R
d3x⇧

i

(�
i+1��

i

)

#

J=0

.

(4.98)

Note that here �0 is �0 and �N+1 is �00 and that these fields are not integrated over

but fixed by the incoming/outgoing field eigenstates (they will be integrated when

we plug the expression for h�00, t00|�0, t0i into eq. 4.90). We can then complete the

integrals over ⇧ which are all similar to:

Z

D⇧1e
�i�t

R
d3x 1

2 (⇧1(
#–x ))2ei

R
d3x⇧1(

#–x )(�2(
#–x )��1(

#–x ))

=

Z

Y

#–x ,✏

h

d⇧1 #–
x

e�i�t 12(⇧1 #–
x

)
2

ei⇧1 #–
x

(�2 #–
x

��1 #–
x

)
i

. (4.99)

Here we shift to the discrete case to compute the integral. The integral over the field

momenta at each point in the space can then be calculated by completing the square,
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yielding a contribution of:

✓

2⇡

i�t

◆N/2

e
i

2�t

R
d3x(�2��1)2 . (4.100)

Incorporating such contributions from each integral over D⇧, eq. 4.98 becomes:

h�00, t00|�0, t0i =

"

Z N
Y

j=1



D�j

(2⇡i�t)N/2

�

e
i�t

2

R
d3x

(�
j+1��

j

)2

�t

2 e�i�t
R
d3xV (�

j

)

#

J=0

. (4.101)

We can then take the limit as �t approaches zero where the equation becomes:

h�00, t00|�0, t0i =

"

Z

D�Exp

"

i

Z t00

t0
dt

Z

d3x

✓

1

2
�̇2( #–x , t)� V (� ( #–x , t))

◆

##

J=0

=

Z

"

D�Exp

"

i

Z t00

t0
dt

Z

d3xL (�̇( #–x , t),�( #–x , t)) + J b�( #–x , t)

##

J=0

.

(4.102)

Here we have defined D� =
QN

j=1

h

Q

#–x ,✏

h

d�
j,

#–
x

(2⇡i�t)1/2

ii

(for discrete spacetime).39 This

equation is now a sum over all possible paths through the space of field configurations.

Step 3: The Time-Ordered Product of Field Operators

Now that we have derived an expression for h�00, t00|�0, t0i, we would like to

generalize to the case where we include the time-ordered product of field operators

as in eq. 4.90 (so we can derive eq. 4.71). I will examine the case of a single field

operator and leave it to the reader to extend the treatment to multiple operators. Let

us calculate (using eq. 4.45):

h�00, t00|b�( #–x , t)|�0, t0i = h�00
|e�i bH(t00�t)

b�( #–x )ei
bH(t0�t)

|�0
i . (4.103)

39This measure is in agreement with that derived in (Hatfield, 1992, eq. 13.13).
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Now we have broken the time evolution into two steps. First, we evolve the state

from t0 to t, then we act with b�( #–x ) and evolve the rest of the way to t00. So, eq. 4.93

is modified to:

h�00, t00|b�( #–x , t)|�0, t0i =
h

R

QN
j=1 D�jh�00

|e�i bH
J

�t
|�Nih...�t+1|e�i bH

J

�t
b�( #–x )|�ti...h�1|e�i bH

J

�t
|�0

i

i

J=0
.

(4.104)

The field operator simply pulls out the value of the field at t and eq. 4.102 becomes:

h�00, t00|b�( #–x , t)|�0, t0i =

"

Z

D��( #–x , t)Exp

"

i

Z t00

t0
ds

Z

d3yL (�̇( #–y , s),�( #–y , s))

##

J=0

.

(4.105)

When there are multiple field operators, the time ordering will ensure that we can use

the same trick. Next, we will show that taking a functional derivative with respect

to J gives the same result. We start with eq. 4.102, isolating the J dependent term:

1
i

�
�J( #–x ,t)h�

00, t00|�0, t0i =
h

R

D�Exp
h

i
R t00

t0 ds
R

d3yL (�̇( #–y , s),�( #–y , s))
i ⇣

1
i

�
�J( #–x ,t)e

J b�( #–y ,s)
⌘i

J=0
.

(4.106)

The functional derivative can be calculated by the chain rule, using the fact that

�f( #–y ,s)
�f( #–x ,t) = �3( #–x �

#–y )�(t� s). This gives:

1
i

�
�J( #–x ,t)h�

00, t00|�0, t0i =
h

R

D��( #–x , t)Exp
h

i
R t00

t0 ds
R

d3yL (�̇( #–y , s),�( #–y , s))
ii

J=0
.

(4.107)

Since eq. 4.105 and 4.107 are equivalent, we can replace the time-ordered product of

field operators with functional derivatives with respect to J . Now we can see why it

was useful to add J to the Hamiltonian in eq. 4.92. Allowing for arbitrarily many
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operators, the expression becomes:

h�00, t00|T b�( #–x , t)b�( #–x ⇤, t⇤)...|�0, t0i =
1

i

�

�J( #–x , t)

1

i

�

�J( #–x ⇤, t⇤)
...h�00, t00|�0, t0i . (4.108)

Plugging eq. 4.108 into eq. 4.90 derived at the end of step 1 gives the following

expression for the ground state expectation value of the time-ordered product of field

operators:

h⌦|T b�( #–x , t)b�( #–x ⇤, t⇤)...|⌦i = 1
Z
limt0!�1, t00!+1

R

D�0D�00 1
i

�
�J( #–x ,t)

1
i

�
�J( #–x ⇤,t⇤) ...h�

00, t00|�0, t0i .

(4.109)

Now, we can insert the expression for h�00, t00|�0, t0i derived in step 2, eq. 4.102, and

taking the limit as the time interval goes to infinity:

h⌦|T b�( #–x , t)b�( #–x ⇤, t⇤)...|⌦i =
h

1
i

�
�J( #–x ,t)

1
i

�
�J( #–x 0,t0) ...

R

D� Exp
⇥

i
R

d4x(L + J�)
⇤

i

J=0
.

(4.110)

Here we define
R

D� ⌘

1
Z

R

D�0D�00D�, which is equivalent to

(2⇡i�t)N

Z

QN+1
j=0

h

Q

#–x ,✏

h

d�
j,

#–
x

(2⇡i�t)1/2

ii

in the discrete case. The
R

D� integrated over

all paths through the space of field configurations holding the initial and final

configurations fixed.
R

D� also integrates over the field configuration at the end

points.

At this point the derivation is complete. Eq. 4.110 was our goal from section

4.10.
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