Vibrational Probe and Methods Development for Studying
the Ultrafast Dynamics of Preferential Solvation of
Biomolecules by 2D-IR

by
Josef Adrian Dunbar

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Biophysics)
in the University of Michigan
2015

Doctoral Committee:
Associate Professor Kevin J. Kubarych, Chair
Professor Eitan Geva
Associate Professor Nicolai Lehnert
Professor Ayyalusamy Ramamoorthy



© Josef Adrian Dunbar

2015



To my family: my parents who instilled in me a sense of
curious-engineering and mathematics, Papa whose love and
wonder for the sciences he imparted on me, and Grace who

has stood by me, with encouragement, throughout.

ii



Acknowledgements

“If I have seen further it is by standing on the shoulders of giants.” - Issac
Newton. The work described here would not have been possible without the help of
those around me. My adviser, Kevin Kubarych, has provided me with key guidance
throughout my degree, encouraging me to think creatively and critically of problems
and providing me with the flexibility to pursue my interests. When I first joined the
lab Kevin was instrumental in helping me catchup on the important aspects of our
complicated experimental setup and data analysis. [ would also like to acknowledge
key former and current members in the group including: Ph.D. Derek Osborne
whose guidance, over the three years we overlapped, is immeasurable, Ph.D. Matt
Ross and Ph.D. Robert (Bobby) McCanne who helped me understand the hardware
of the experimental setup, encouraging me to hook up an oscilloscope and monitor
the hardware, and Aaron White my friend and colleague who has provided me with
a listening ear and guidance when needed. The Biophysics program at Michigan has
provided an outstanding environment to perform research and my class mates
Matthew Stone, Sima Mofakham, and Edwin Najera, as well as the other student and

faculty in the program have been amazing colleagues over the last five years.

My family has always proved a major source of support in my life. My parents,
Lee, Harriet, and late mother Anna, provided me with invaluable encouragement
throughout my education. My sister Katrina and Grandparents have provided me
with counseling and continued support as [ pursued my degree, even when it
involved me moving to the other side of the country. Grace has been by my side
since the start of my time at Michigan and has offered untold support and love over
the course of my degree. [ am truly thankful for the support I have received, and

continue to receive, from my family and colleagues over the last five years.

iii



Table of Contents

DediCaAtION.....iicciisissisnsss s ———————————————— ii
ACKNOWIEAZEMENLS ..o s s s sas s nsass iii
LiSt Of FIGUIES ... sss s sssas s snsassssssssseaes viii
LiSt Of ADPENAICES ...oecieiciinsncsisnsssnsssssssssssssssss s sssss s sassssssssssssssssssss XV
Chapter One INtroduction ... ———————— 1
I o 0 <] 1 1 1

1.2 Protein DYNAIMICS .o sss s s ssssssssssssssesssssssssssssssssssssssessssens 3

1.3 Vibrational SPECtIOSCOPY ..eeeereeresseesreseesseessesseessessessesssessesssssssessssssessssssessssssssssesneas 4

B Y oT<Tutn o= U DT 0 (o) o T 8

1.5 Site Specific Vibrational Labels ......oeneneeeeeseeseesseeseeseesseessessessesseeses 10

1.6 Method Development Towards Faster ACQUISItioNn ......ocveeereereeseeseesseessesseennes 12

1.6.1 Rapidly Acquired Spectral Diffusion........oeneneesnenseseesseeseeseeeseenns 13

1.6.2 COMPresSed SENSING .....orecerreererreeresseesseesesseessessesssessessesssessessesssessssssssssans 13

1.7 SUMMATY Of CRAPLETS .oeeeeeereeeereeeer et sesses s sses s ssssss s ssssssssessssnes 15

1.8 REfEIENCES: ..ot 17
Chapter Two Accelerated 2D-IR Using Compressed Sensing .........coumsssssscsnsnns 27
2 0 0 01 oo 6 10 ot [ ) o 0PN 27

2.2 Experimental Methods ... sssssessessesssesssssssasees 29

2.2.1 Sample Preparation... . ceeseessessessesssessesssesssessssssssssssessesssessssssesssees 29

W2 D 1 21 ] D)o 30

2.2.3 Compressed Sensing Pulse SEQUENCE........cerreneereenrerneenesseesesseesseenees 30

2.2.4 Compressed Sensing Data ANalySiS.....oeeeneneenmesneesesseessesseessessees 32

2.3 Results and DiSCUSSION ....rrririssssssssessssssssssssssssssssssssssssssssssssssssssssssssssssaes 32

iv



B 070 s Lol LTS3 o) 0 K< 36

2.5 ACKNOWIEAGEIMENLS ...ouveeeeeeeeesreeeesseesessessseseessesssessesssessessssss s sss s sssssssssssssssasees 36

B S 2 (53 = Lol X3S 37
Chapter Three Ultrafast 2D-IR and Simulation Investigations of Preferential
Solvation and Cosolvent Exchange Dynamics.......c.uummmmmmmmmmmmssss 41
1 790 B o U /oY 16 Uot 0 ) o 000N 41

R J0720 (7 =] Vo Yo 3T 44

R T B - U= = TP 44

3.2.2 BTNN-BCT SYNTRESIS .oveureereereererseesrereesseesessesssessesssessssssssssessssssesssssssssessesasees 44

3.2.3 Sample Preparation... . ceesneessessessessessssssesssessssssssssssessesssessssssesssees 45

3.2.4 Four-Wave MixXing EXperiments.......ssseesessssssnees 45

3.2.5 Molecular DYNamiCS. ... eeenemesseessessessesssessssssesssesssssssssssssessesssessssssssssees 46

3.2.6 Radial Distribution FUNCHIONS.......coereereeereereeseesseeseessessesseessesseessessessessees 47

3.3 ReSUltS and DiSCUSSION.....ueureeresreereseesseseessessessesssesssessessssssssssssssssssssessssssessssssessees 47

3.3.1 Solvent-Dependent FTIR SPECtra.....eeereereeneesseensesseessesseesseseessessees 48

3.3.2 Spectral Diffusion DYNamiCs .....c.oeeneeenseeseessesssessessesssessesseessessessesssees 48

3.3.3 Comparison with Bulk Solution Properties......enenecneennens 50

3.3.4 Radial Distribution Functions: Preferential Solvation........ccccccconueunee. 51

SPECLral DYNAMIICS wooueueereereesrereessereessessessesssessessesssessssssssssssssssesssssssssssssesssees 53

R 7 000 Tod 103 o) o -0 58

3.5 ACKNOWIEAGEIMENLS ....oveereeeeeeereeeesreesesseesseseessesssesssesse s ssssse s sss s ssssssessssssssasees 59

R TS R (53 = Lol X3 TS 60
Chapter Four Dynamical Effects of Point Mutations in an Engineered Protein
Heterogeneous Catalyst ......sssssssssssssssssssssssssssssssssssssss 67
7230 0 91 oo Ta 10 (o o) o TP 67

4.2 Experimental Methods ......oeeneeeenecseeseeseeseeseesseesessesssessesssessessesssessesssssseens 69

0 =) =1 PP 69

4.2.2 SampPle Preparation.. ... eeesesssssesseessssssesssssssssssssssssessssssssssssesssees 69



4.2.3 FTIR MEASUICIMIEINLS c.ceerrirecrerrsreeressesesessssesessssssessssssesssssssssssssssssssssssnsssssssssssssnens 69

4.2.4 2D-1R EXPETIMENTES ..coirieieiercesresressesssssssssssssssssesssssessessssssssssssssssssssssssessssssssssns 69
4.2.5 Molecular Dynamics Simulations - SEtUP .....c.coeereereereeneensesseesesseesseenees 70
4.2.6 Solvent Sphere ANAlYSIS .....ooeeeereeseeseeseessessessesssessesssesssessesssesssssesssees 71
4.2.7 Spatial Correlation of Solvent Molecules.......ccuneneenneneesneeneeseennens 71

4.3 Results and DiSCUSSION ... s sssssssssssssssssssssssssssssssssssssses 72
4.3.1 Linear IR SPeCtra.... e sssssssssssesssssesssssesssens 72

TS TV A D B 0 ) =T 0 ¢ T 73
4.3.3 Molecular Dynamics Simulation of Protein Dynamics.......cccuuereennee. 74
4.3.4 Solvent Dynamics from Molecular Dynamics ........ooeneneesmeeseesseennens 75
4.3.5 Characterization of Preferential Solvation..........onnn: 78
4.3.6 Structural Basis for Preferential Solvation ... 80

T 010) 4 1o LTS o) 80
T 2ES (=) (=) o Lol 82
Chapter Five Conclusions & LooKing FOrward ... 88
S0 B 09T 0T 16 Tt 1o ) 88
5.2 CUIrent Capabilities. ..o eeereereesseeeesseessesseessessessessessssssessesssssssessssssessessssssssssesaees 89
5.3 2D-IR Probes fOr BiOlOZY .....cuerienreeneeneeseessesnsessessesssessessssssssssessssssessesssessssssesssees 91
5.4 Preferential SOIVAtioN ... 92
5.5 Increasing Experimental Capabilities: Phase Wobblers.......ccccvoineenienen. 94
5.6 Increasing Experimental Capabilities: Syringe Pump .....ccoccoeeeveerrernecneenens 96
5.7 LOOKING FOTWAT ..oooueeeeceeereeseeseeeessessesseesse s ssessesssessssssssesssssssssssssssssesssssssessssasees 97
5.8 REfEIENCES: ...cririrircrrrirs s 99
FL ] 0123 1 Lo oL 102

vi



List of Figures

Figure 1.1 Classifications of protein structure from lowest to highest (left to right).
The primary structure is composed of the sequence of amino acids in the
polypeptide chain. Secondary structures are simple repeating motifs, such as (3-
sheet and a-helix, which fold to assemble the 3D, tertiary, structure. The
quaternary structure defines the interactions between multiple protein
molecules (structures from TFNT.pAD) .. seesesseesseeeessessseseens 1

Figure 1.2 Comparison of structures for two biotin-binding proteins Avidin
(2AVI1.pdb) from chicken and Streptavidin (1STP.pdb) from the Streptomyces
avidinii bacterium. These homologous proteins have a 30% sequence
conservation and show a sticking similarity in their secondary and tertiary
18 0 D0 2

Figure 1.3 Hydrogen bond fluctuations within the local minima structure give rise to
ultrafast dynamics of the protein structure. Slower dynamics, involving the
rotation of amino acid side chains creates additional heterogeneity of the
structure. These additional minima experience separate ultrafast dynamics,
specific to their ENVIFONIMENT. ... sessessesssss s ssssssssseas 4

Figure 1.4 a) Traditional vibrational spectroscopy utilizes a continuous IR source to
investigate the sample. By comparing the frequency composition of the light
before and after interaction with the sample, information is gained on the
energetic transitions of the sample which can be used to assign its chemical
bonds. b) Pump-Probe vibrational spectroscopy allows for monitoring the
relaxation of vibrational energy in the sample with a high degree of temporal
resolution. By scanning the time delay between the two pulses, A¢t, the recovery
of the ground state signal can be linked to dynamical motions of the system......5

Figure 1.5 2D-IR pulse sequence. Three laser pulses, k;, k2, and k3, interact with the
sample to generate the signal field, k;. The signal is collected in the frequency
domain, utilizing a spectrometer (not shown), as a function of the coherence
time, 7, which is scanned for each waiting time, Tw. The detection frequency,
Wdetection, VS. coherence time data is then Fourier transformed over the
coherence time dimension to obtain the excitation frequency axis, wexcitation. FOr
each waiting time a 2D spectrum correlating the excitation and detection
FRQET0 LTS QLTI R 0] ] = U1 4 LT P T 7

Figure 1.6 Sample 2D-IR spectra showing an inhomogeneously broadened line
shape at early waiting time (left) and a homogeneously broadened line shape at
a late waiting time (right). By monitoring the ellipticity of the observed peak

viil



the correlation between the excitation and detection frequencies can be
quantified as a function of waiting time. This correlation measurement allows
for the quantification of the spectral diffusion time scale. .....cccooereerrrreerrerneeseesneeneens 8

Figure 1.7 Sample Correlation Functions plotted vs. the Waiting Time (Tw) for a
system undergoing fast and slow spectral diffusion (purple and blue curves
respectively). By fitting the data to an analytical function, such as an
exponential decay, one is able to quantify: the degree of system inhomogeneity
from the y-intercept, the spectral diffusion lifetime, and the degree of
unsampled microstates from the correlation function value at long waiting time.

Figure 1.8 Derivatives of benzoyl chromium tricarbonyl (BCT) used as site-specific
molecular labels. Cholesterol-BCT has shown to incorporate into lipid bicelles
offering insight into the dynamics of water at lipid interfaces. Biotin hydrazide
BCT (BTNN-BCT) can be incorporated into the streptavidin family of proteins
and offers site-specific information on the protein dynamics. ......ccoconeeereereereeneenn. 11

Figure 2.1 Two waves differing in frequency by Aw produce a wave (blue line)
whose amplitude is modulated by the difference frequency. Due to the
amplitude modulation (black line) during a relatively short time window
highlighted in purple (see inset), Compressed Sensing is able to determine the
frequency composition of the signal (pink and red dashed lines). .....cccovuereueenn. 28

Figure 2.2 Graphical depiction of data collection method for CS analysis. The
coherence time is continuously scanned (blue line) between two set points. A
range corresponding to 600 fs (grey region) is used to collect spectra. When the
coherence time motor leaves the collection range (dashed lines) the waiting
time motor is stepped (red line). The three-pulse sequence that is created by
this method is depicted to the right (D). oo seesesseeas 31

Figure 2.3 2D-IR rephasing spectrum of RDC in hexane at 8.9 ps waiting time. The
spectrum was constructed using the MP algorithm with a 503 fs coherence time
window and € =1x10-3. A7 cm'! shift is observed in the excitation frequency of
the UPPET CIOSS PEAK. w.ceeeieecereeceteeret s sesses s s s s s senanes 33

Figure 2.4 (a) Integrated rephasing amplitudes for the low frequency diagonal cross
peak (blue) and the (2015, 2084 cm) cross peak (green), with biexponential
fits (lines). The coherence beating pattern in the cross peak is apparent by
looking at the residuals of the fit (inset). (b) The Fourier transform of the
quantum beats reveals the 69 cm! splitting between the two modes.................. 35

Figure 3.1 Chemical structure of Biotin Hydrazide Benzoyl Chromium Tricarbonyl
(BTNN-BCT). coettetreerseesssessseesssessssessssessssessssessssessssessssesssssssssssssssssssssssssssssssssssessssessasssssssssssessaseseas 42

Figure 3.2. FTIR spectra of metal carbonyl region for 2.5 mM BTNN-BCT in pure
DMF (blue) and xpmr = 0.07 DMF (magenta), normalized to high frequency peak
volume. The data show a 6 cm-1 blue shift of the high frequency mode when

ix



solvated in xpmr=0.07 compared to pure DMF. This blue shift at lower
xpwmr highlights the increased nonpolar environment of the probe, suggesting
preferential solvation by the DMF methyl groups.....coenenneenseseensesseesseeseenns 48

Figure 3.3. a) 100 fs window averaged measured correlation functions for xpmr = 1
(grey), 0.41 (magenta), 0.19 (blue), 0.11 (green), and 0.07 (red) plotted vs.
Waiting Time, exponential fits are shown as black solid lines. Spectra were
normalized at Tw=0 and scaled to decay to 0 at Tw=00. b) Correlation lifetimes
from exponential fits with error bars plotted vs. Mole Fraction DMF, colors are
the SAME S IN Q. ————————— 49

Figure 3.4. Correlation decay constant of BTNN-BCT plotted versus (a) bulk
viscosity and (b) acceptor number, same coloring as (a). Error bars for decay
constants are Shown in both Plots..... e 50

Figure 3.5. a) Radial distribution functions (RDFs) measuring the density of DMF
near the carbonyl atoms of the probe were calculated for both series of
simulations. RDFs shown for model hydrophobe (black) and BTNN-BCT (blue)
for all simulated values of xpwr. At low values of xpmr the model hydrophobe
shows a slightly higher density of DMF near the carbonyls than the BTNN-BCT
system, these differences are absent in pure DMF. b) Maximum relative density
of DMF obtained by fitting the data in (a) to two Gaussian functions, error bars
are shown for 95% confidence bounds of fits. The first and second solvation
shells (circles and triangles respectively) show similar trends for both the
model hydrophobe (black) and BTNN-BCT (blue). ¢) Comparing the maximum
DMF densities to the dynamics observed from the probe, Maxgris found to
correlate strongly with the decay rate for C(t), dashed lines show least squares
linear fit to data (same €OlOTING AS D). .o seessesseeens 52

Figure 3.6. The solvent exchange model is able to describe the observed dynamical
slowdown caused by preferential solvation of the probe. In pure solvent the fast
orientational and librational motions of the solvent cause the spectral diffusion
to decay rapidly. As cosolvent is added and the mole fraction of the preferred
solvent is lowered, the frequency of exchange events increases, contributing a
slower dynamical component to the spectral diffusion. At low concentrations of
the preferred solvent these exchange events can contribute to a slowdown of
the spectral diffusion of the Probe. ... 55

Figure 3.7. The sum of the squares between the model and experiment were
calculated, scanning all values of the exchange time constant (Texcn) and the
exchange scaling factor (3). The data shows an area of high agreement with the
data (pink region) with a global minimum at Texen = 7.9 ps and [=6.9.
Considering the known diffusion constant of DMF in water the root mean
square (RMS) displacement of a DMF molecule can be calculated and is found to
agree well with the displacement of a single water molecule, ca. 2.8 A............. 57

Figure 4.1 FTIR spectra of carbonyl frequencies for BTNN-BCT in pure DMF stock
solution (black), WT (green), s112a (red), and s112h (blue) streptavidin



systems. The spectra have been baseline corrected and are normalized to the
area of the high-frequency symmetric mode. The spectra of the protein samples
show a slight increase in peak width for both symmetric and asymmetric
modes compared to the stock DMF sample. All three proteins have similar
spectra indicating no large differences in electrostatic environments between
the different MULANTS. ... ——————— 72

Figure 4.2 Frequency Fluctuation Correlation Function (C(t)) values plotted as a
function of waiting time for each WT (green), s112a (red), and s112h (blue)
protein system. For each system the experimental time points (circles) were fit
to a single exponential with an offset (solid line) to extract the correlation
lifetimes: twr = 2.86 ps, Ts112a = 0.53 ps, and Ts112n = 0.86 ps. The data show a
clear dynamical difference between WT streptavidin and the two mutants
10 16 1= PP 73

Figure 4.3 Visualization of the root mean square fluctuations (rmsf) about the mean
positions of the protein backbone shown for each system, WT (green), s112a
(magenta), and s112h (red). Gradient color and line thickness indicate degree
of the rmsf value with blue-thin lines showing areas of rigid structure. An
overall conservation of the rmsf values in observed in the system with the
largest fluctuations occurring in the loop regions of the protein. Comparing the
degree of the fluctuations and their locations to the BTNN-BCT positions
(shown in yellow) we see that the three proteins show a high degree of
similarity in the binding pocket fluctuations. ... seesseeseeens 74

Figure 4.4 Partial Radial Distribution Function (RDFs) calculated between the
BTNN-BCT chromium atoms and the DMF cosolvent nitrogens. The RDFs have
been normalized to the bulk value of g(r). Present in all mutants is the observed
preferential solvation by DMF seen by the peak near 0.6 nm. Besides the
primary peak the RDFs for the s112a (red) and s112h (blue) mutants are
featureless. A secondary DMF solvation shell is seen for the WT protein (green)
L0 1D PP 75

Figure 4.5 Calculated spatial correlations of the different solvents (rows) for each
protein system studied (columns). Heat maps represent the degree of spatial
correlation with warmer colors indicating a larger degree of correlation. The
same heat map is utilized for all figures. To aid visualization the protein
structure (grey) and BTNN-BCT (dark blue) have been overlaid with the maps.
The data show a decrease in the water interaction near the BTNN-BCT probes
for the WT protein system compared to the two mutants studied. The data also
shows a relative increase in DMF correlation near the WT binding pocket. This
data is consistent with the calculated RDFs however provides more detail on
the solvation eNVIrONMENT. ... s 76

Figure 4.6 Locations of planes used for illustrating the spatial correlation of the
solvent in Figure 4.5 (left) and Figure 4.7 (right).....conneneersenecseenseeseesseeseenns 77

Xi



Figure 4.8 a) Calculated mean xpmr values of the solvent within specified distances of
chromium atom in BTNN-BCT. Near the probe DMF is found at higher xpmr than
the bulk value (grey dashed line). As the spheres are incresed in size the three
systems are seen to converge to the bulk value (red line). b) Mean lifetimes
from the autocorrelation of solvent shell occupancy fluctuations for DMF
(triangles) and water (spheres) for shell sizes of 0.8, 1.1, and 1.8 nm (dark to
light colors). For the s112a and s112h the lifetimes of the DMF and water
fluctuations are seen to coexist on the same time scale. For the WT protien the
mean lifetime for the DMF and water are seen to separate with the DMF
showing slower occupancy flucuation dynamics than the water. ......cccccoveeerreneenn. 78

Figure 4.7 Calculated spatial correlations of the different solvents (rows) for each
protein system studied (columns) for the reverse side of the protein. The same
coloring and map is used as for Figure 4.5. Similar to what was seen on the
other side of the protein, the data show a decrease in the water interaction near
the BTNN-BCT probes for the WT protein system compared to the two mutants
studied. The data also shows a relative increase in DMF correlation near the WT
binding pocket, though this affect is seen to be lessened.......couereneeereerecreenrencens 78

Figure 4.9 RDF between the s112 hydroxyl oxygens and the carbonyl oxygens of
DMF. The peak seen at 2.7 A suggests a hydrogen bonding population of DMF
bound to s112. The second peak observed at 4.3 A shows the association of the
methyl groups of DMF with the s112 residues. .....ooeneneenneeseenseeseeseesseeseesseeseenns 80

Figure 5.1 Overview of 2D-IR methods implemented in our lab highlighting the
pulse sequences used, green, orange, and blue lines, as well as the benefits and
limitations of each method. The Grey boxes overlaid on top of the pulses
designate the acquisition windows for each method.......coeninonsreneeiseeneenn. 89

Figure 5.2 Overview of functions enabled by a DSP. The new implementation of the
Control in connection (blue box) allows for multiple DSPs to communicate with
each other. This enables complex pulse scanning techniques to be employed..90

Figure 5.3 2D-IR vibrational probes based off of BCT have been developed to target
protein (red), lipid (cyan), and cytosolic (orange) dynamics. BCT probes offer a
high degree of modularity allowing for the potential targeting of additional
features in the Cell. ... —————— 91

Figure 5.4 Initial studies of BTNN-BCT in a DMF-Water cosolvent system highlighted
a striking dependency of the observed solvent dynamics on the degree of probe
preferential solvation. This same trend is observed for the streptavidin protein
systems offering insight into how local dynamics around the protein can be
modulated and how these dynamics can be studied by 2D-IR ......cccoeonerereerreeneenn. 93

Figure 5.5 Front and back views of phase wobblers built to resonate a Brewster
window at 250 Hz to modulate the phases of the pulses. The optical window
(not shown) is mounted to the upper platform of the wobbler which is

xii



connected to the lower platform utilizing a flex bearing. The two inductors
serve as a driver and monitor of the upper platform’s resonance..........cccoueereeeenn. 94

Figure 5.6 Timing diagram highlighting the function of the designed pulse delay
generator. The 1 kHz laser pulse train is down sampled to generate a 250 Hz
pulse train. An arbitrary delay between the triggering pulse and the
corresponding 250 Hz pulse, At, can also be controlled to vary the phase
between the tWo PULSE traiNS. . ssssssesseanes 95

Figure 5.7 To fully realize the ability to manufacture designed proteins structural
information will be supplemented by dynamical information as well as other
information. These powerful nano-machines will continue serving an important
1ole aCross the SCIENCES. ... s 96

Figure 5.8 The far-filed resolution limit of infrared approaches, ca. 5 pm, is not able
appreciable resolve the featured of a cell. By adopting newer near-filed imaging
method, which routinely show <100 nm resolution in the IR, 2D-IR will be able
to monitor the dynamics across different aspects of a cell.....coneeoreneeseenneneens 97

Figure A.1 The ability to resolve peaks of different amplitudes was found to depend
on the value of €. Large values of € were found to cause the algorithm to miss
peaks. Decreasing € resulted in quick convergence in the ability to reconstruct
peaks. Further lowering of € resulted in similar peak recovery though required
more iterations of the function. Data are shown for a single detection frequency
and Normalized fOr ClaTity. . sses s sessssaes 102

Figure A.2 Dependence of reconstruction on the length of coherence time used. As
the coherence time window used is decreased the central frequency and the
peak splitting is found to change. Spectra are normalized by the amplitude of
the oW freqUENCY PEAK. ...ttt ses s sessse st ses s ssssssaes 103

Figure A.3 Comparison of rephasing 2D spectra from analyzing a full, 10 ps,
coherence data set with the Fourier transform (a) and analyzing 565 fs of the
same data set using the MP algorithm (b). The main peaks along the diagonal
are nicely resolved as well as the cross peaks. The excitation frequency of the
cross peaks is found to be shifted away from the actual value though their
location remains constant as a function of waiting time. .......ccoeereeereereerneeseeseennes 104

Figure A.4 Rephasing peak volume trace comparison between spectra calculated
using the Fourier transform with the full 10 ps data set and spectra calculated
using the MP algorithm with 522 fs (a and b) and 260 fs (c and d) coherence
time data. Traces comparing the low frequency diagonal peak (a and c) and the
cross peak at excitation 2084 cm-!, detection 2015 cm™! (b and d) are shown.
The ability of the MP spectra to follow the same dynamics as the FT spectra is
apparent when using 522 fs of coherence time. With the shorter data set the
ability of the MP spectra to follow the FT spectra is reduced. .....cccceeneeereereeureennes 105

xiil



Figure A.5 Further validation of the MP algorithm comes from looking at the
residuals of fitting a double exponential function to the cross peak trace, Figure
S4 b. The beating pattern seen in the FT spectra is also seen in the MP spectra
(a). Fourier transforming the beating pattern recovered by each method reveals
the same underlying frequency components in the spectra. ... 106

Figure A.6 Comparison of the spectra obtained by looking at a single excitation
frequency and using: the full 10 ps data set with the Fourier transform (blue
line), 565 fs of the data set with the MP algorithm (green line), and the same
565 fs with the Fourier transform (black line). ..o 106

Figure B.1 Structure of BTNN-BCT with sites used for the conformational
determination highlighted (blue circles). From left to right: epsilon carbon to
biotin carbonyl group, alpha carbon to biotin carbonyl group, and center of
0723 V=] 4 LI 40 TS 112

Figure B.2 Angle populations shown with 3-Gaussian fit for the model hydrophobe
and BTNN-BCT for each solvent composition. As xXDMF increases the model
hydrophobe (a) transitions from a compact structure to a more extended state.
This is in contrast to BTNN-BCT (b) which exists in a less collapsed state at low
xDMF . BTNN-BCT is still found to extend as DMF is added however samples a
narrower distribution of angles than the hydrophobe. ... 113

Figure B.3 Comparison between traditionally measured LI. and RASD method (left)
for BTNN-BCT in pure DMF. RASD shows identical decay characteristics as the
traditional method with greatly improved signal to noise. On the right a 2D-IR
rephasing spectrum of the symmetric mode of BTNN-BCT is shown in pure
DMF for 500 fs. The apparent circular line shape is indicative of the rapid
spectral diffusion experienced by the probe in this system.........coneneneeeneenns 114

Figure B.4 Experimentally obtained RASD decay in spectral diffusion (black), C(t)
calculated from the optimal parameters (magenta), and single exponential fit to
the normalized C{(t) function. By removing the offset and normalizing the double
exponential expression for C(t) we find excellent agreement between the
experimental decay constant and the single exponential fit to the C(t). .................. 115

Xiv



List of Appendices

Appendix A Further details of Compressed Sensing ..........ccussnssnsnsssssesanns 102
A.2 Matching Pursuit AlGOTithim ... seesseseees 107
A.3 Matching PUTrSUIL COAE......mereeeereereeseesesseesseseessessessessssssesssssssesssssssssssssssssees 107
Appendix B Ultrafast 2D-IR and Simulation Investigations of Preferential
Solvation and Co-solvent Exchange Dynamics ... 111
B.1 Molecular Dynamics Details .......ccueeenesneenmeeseessesssesssssessesssessesssessessesssessseans 111
B.2 Solution Composition Dependent Conformational Distributions............. 111
B.3 Comparison between RASD and traditional 2D-IR.......coorneereeneereenreeneenn. 114
B.4 Additional details from preferential solvation fit........cnnerneenneneenn. 114
B.5 RefeIeNCES: ..o 116

XV



Chapter One
Introduction

1.1 Proteins

At a fundamental level biology relies on the complex orchestration of
proteins and their reactions within the cell. Comprised of linear polymers of the
twenty naturally-occurring amino acids, proteins offer a highly modular scaffold
enabling the catalysis of many of the cellular reactions. In many ways catalytic
proteins, enzymes, represent idealized machines performing specially-tailored
reactions, often at the speed of substrate and product diffusion. Harnessing the
power of enzymes has led to improvements in commercial products where, by
stabilizing enzymes for specialty applications, engineers have been able to take
advantage of their catalytic power.1-3 In addition to the utilization of enzymes for
their natural reactions it has long been the romance of the chemist and biochemist
to utilize the rich body of knowledge on proteins to design customized de novo
enzymes. 47

Primary Secondary Tertiary Quaternary

21

B-sheet a-helix

Figure 1.1 Classifications of protein structure from lowest to highest (left to right).
The primary structure is composed of the sequence of amino acids in the polypeptide
chain. Secondary structures are simple repeating motifs, such as 3-sheet and a-helix,
which fold to assemble the 3D, tertiary, structure. The quaternary structure defines
the interactions between multiple protein molecules (structures from 1FNT.pdb).



Protein structure is often classified into four categories (highlighted in Figure
1.1): primary, secondary, tertiary, and quaternary. These respectively relate to the
linear sequence of amino acids, the presence of common folding motifs such as a-
helices or (-sheets, the three-dimensional structure of the protein atoms, and finally
any interactions of the protein within a complex. Due to the hierarchical nature of
these structural properties one is able to control and modulate the higher degrees of
protein structure through mutation of the primary amino acid sequence.8-° Indeed
the natural process of sequence mutation through evolution!? is evident when
comparing proteins of similar functions across organisms, homologs.11-12 An
example of homologous proteins are the avidin and streptavidin proteins from
chickens and Streptomyces avidinii bacterium respectively.!® These proteins
(shown in Figure 1.2) both bind the vitamin H, biotin, with a very high affinity and
are known to show nearly identical secondary, tertiary, and quaternary structures.
A primary sequence comparison between avidin and streptavidin however shows
only 30% sequence conservation between these proteins. The conservation of
protein structure and function across homologous proteins is commonly seen

despite considerable sequence mutations. This is due to the fact that the

Avidin
Streptavidin

Figure 1.2 Comparison of structures for two biotin-binding proteins Avidin
(2AVL.pdb, yellow) from chicken and Streptavidin (1STP.pdb, blue) from the
Streptomyces avidinii bacterium. These homologous proteins have a 30% sequence
conservation and show a striking similarity in their secondary and tertiary
structures.



evolutionary pressure to maintain protein function and cell viability is high.

Much effort has been spent studying protein structures and developing
predictive models for determining the secondary and higher structure of proteins
based on their primary structures.!41° While these models have proven useful in
predicting some aspects of protein structure, considerable work remains to fully
realize their potential. Protein engineering requires a further level of abstraction
wherein instead of predicting a protein structure from a primary structure, one tries
to determine the appropriate primary structure for a desired reaction site
conformation. This formidable challenge is apparent for even small proteins with a
100 amino acid protein possessing 201%° ~ 1.3 x 1013° primary sequence mutations.
Taking a cue from biology this intimidating conformational space can be made more
manageable through the utilization of protein scaffolds onto which the catalytic site
is engineered. This rational design approach has proven useful in the realization of
multiple de novo enzymes?0-22, however, without more detail on the effects of

protein mutation on the scaffold enzyme, design remains challenging.

1.2 Protein Dynamics

Proteins structures are often determined through x-ray crystallography,
where proteins are made to form crystals under narrow solvent conditions?3. Due to
differences between the crystal buffer solution and the cell’s environment, and the
absence of crystal packing within the cell, it is justified to expect proteins to exhibit
a degree of structural heterogeneity in vivo.2428 Interconversion between these
states gives rise to protein dynamics for which multiple biophysical experiments are
able to showcase the structural heterogeneity of proteins.2°-30 Protein dynamics
span many timescales3!: from slow global conformational changes on the second
timescale to the ultrafast shuttling of energy from photon absorption on the
femtosecond, a millionth of a billionth of a second, timescale. These ultrafast
dynamics, which further include localized vibrations of the protein structure and the
motions of the solvent around the amino acids, serve as the foundation upon which

many of the slower dynamics of proteins manifest. Thus to fully understand the



Reaction Coordinate

Figure 1.3 Hydrogen bond fluctuations within the local minima structure give rise to
ultrafast dynamics of the protein structure. Slower dynamics, involving the rotation
of amino acid side chains creates additional heterogeneity of the structure. These
additional minima experience separate ultrafast dynamics, specific to their
environment.

dynamical nature of proteins one must understand the manifestation and

propagation of their ultrafast dynamics.

A classic example of structural heterogeneity that fluctuates on the ultrafast
timescale is the hydrogen bond present in liquid water.32-3¢ Due to the transient
nature of the hydrogen bond and the multiple donors and acceptors present in
solution the heterogeneity of hydrogen bonds in solution arises naturally. Similar to
hydrogen bonds in water, the secondary and tertiary structures of proteins are often
stabilized by hydrogen bonds to the peptide backbone and amino acid side chains.37
39 These hydrogen bonds, schematically shown in Figure 1.3 fluctuate about their
local minima, which in addition to slight conformationally distinct arrangements of
the amino acid side chains, gives rise to a heterogeneous ensemble of protein

structures.

1.3 Vibrational Spectroscopy

Vibrational spectroscopy offers a unique way of investigating the bond
energies of a system. For a typical experiment a molecule is made to interact with
infrared (IR) light of a known frequency composition, Figure 1.4a. Similar to other
spectroscopic methods, transitions of the molecule that correspond to the energy of
incident light allow the molecule to absorb a photon. Photon absorption is

accompanied by the transition of the molecule into an excited state that can relax
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back to the ground state through interactions with its environment. By investigating
the frequency composition of the IR light after interaction with the sample one is
able to determine the transitional energies in the sample. These energies are well
characterized in the IR and are known to correspond to specific bonds between

atoms.

Freq.

e

Freq.

Figure 1.4 a) Traditional vibrational spectroscopy utilizes a continuous IR source to
investigate the sample. By comparing the frequency composition of the light before
and after interaction with the sample, information is gained on the energetic
transitions of the sample which can be used to assign its chemical bonds. b) Pump-
Probe vibrational spectroscopy allows for monitoring the relaxation of vibrational
energy in the sample with a high degree of temporal resolution. By scanning the time
delay between the two pulses, At, the recovery of the ground state signal can be
linked to dynamical motions of the system.

Additional information can be obtained from vibrational spectroscopy if one
is able to obtain temporal resolution of the spectra. By simply time-resolving IR
spectra, one is able to monitor the progression of slow reactions by monitoring key
frequencies. With a significantly high temporal resolution one can monitor the
formation and breaking of molecular bonds in a heterogeneous environment,
gaining valuable information regarding the timescales of dynamics.*0-43 Temporal
resolution can be obtained in multiple ways. For low temporal resolution
requirements one can rely on the temporal binning of the IR spectra, processing

each spectrum such that it has a known time value. This method scales poorly



however as one tries to go towards higher temporal resolution. This is due to many
issues including: the detectors ability to monitor and report the desired frequency
of light, as well as needing a light source of sufficient power so that enough photons
are interacted with the sample and subsequently the detector such that a spectra

can be obtained.

To address the issues that arise from trying to increase the temporal
resolution of an experiment, pulsed lasers are frequently used in a relatively simple
pump-probe setup, Figure 1.4b. These laser systems are commonly capable of
probing dynamics on the tens of femtoseconds timescale.#0. 4445 This is achieved
through the interaction of the sample with two light fields separated by a time delay,
At. Time delays can be made very short through the manipulation of the physical
path the light takes to reach the sample. In this two-pulse experiment the first light
pulse interacts with the sample exciting the transitions that fall within its frequency
spectrum. After a variable time delay the second weaker pulse then interacts with
the sample and is spectrally resolved to measure its frequency composition. If the
time delay is sufficiently short the molecules will have not been able to relax back to
their ground energy state and the resulting spectra will show a depletion of the
ground state signal (as well as the presence of an excited state signal). By stepping
the delay time between the two pulses, commonly referred to as excitation and
detection pulses, one can follow the recovery of the ground state signal (or loss of
the excited state signal) as a function of delay time. Applied to proteins pump-probe
vibrational spectroscopy has been able to monitor the loss and rebinding of carbon
monoxide to Cytochrome c Oxidase on the ultrafast timescale*-47 as well as gain

insight into the energy transport within proteins.40 47

Further spectroscopic information can be obtained through the utilization of
two-dimensional infrared spectroscopy (2D-IR).48-50 2D-IR incorporates an
additional dimension to the Pump-Probe spectroscopy allowing for temporally
resolving the dependency of the detection frequency on the excitation frequency. By
mapping this dependency of the detection frequency we are able to gain insight into

the heterogeneous nature of the microstates of the system. Further information is
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gained by allowing for interconversion of the system’s microstates on the ultrafast
time scale. Following how vibrational energy redistributes between the vibrational
modes of the system allows for an understanding of the dynamics arising from

microstate conversion.

Similar to Pump-Probe spectroscopy, 2D-IR is implemented using ultrafast
laser pulses in order to gain the needed temporal resolution, Figure 1.5. In total
three laser pulses must interact with the sample in a 2D-IR experiment. The first
two pulses of the experiment, k; and kz, represent an excitation pair whose time
separation, 7, is scanned for fixed values of Tw, the time delay between the second
and third pulse, k3. These time delays are often referred to as the coherence time
and waiting time respectively. After interaction with the three pulses the sample is
left in an excited state which radiates a fourth field, ks, at a time delay T3. In practice
T3 is detected in the Fourier domain, via a spectrometer, and is recorded as a
vibrational echo spectrum. By scanning the coherence time delay for a fixed waiting
time and recording the vibrational echo spectra, one is able to apply a Fourier
transform over the coherence time dimension to obtain the excitation frequency,
Wexcitation- The obtained 2D-IR spectrum resolves the dependence of the spectrally
resolved echo signal on the excitation frequency.>-53 This mapping of the detection

frequency, wdetection, and excitation frequency is performed for multiple waiting

Fixed T, Fixed T,

wdetecﬂon
-
T
I3
wdetectiog

T Wy citation
Figure 1.5 2D-IR pulse sequence. Three laser pulses, ki, k2, and k3, interact with the
sample to generate the signal field, k. The signal is collected in the frequency domain,
utilizing a spectrometer (not shown), as a function of the coherence time, t, which is
scanned for each waiting time, Tw. The detection frequency, wdetection, VS. coherence
time data is then Fourier transformed over the coherence time dimension to obtain
the excitation frequency axis, wexcitationn FOor each waiting time a 2D spectrum
correlating the excitation and detection frequencies is obtained.



times, allowing one to monitor how the vibrational energy redistributes in the

system.

1.4 Spectral Diffusion

wdetection

w

excitation excitation

Figure 1.6 Sample 2D-IR spectra showing an inhomogeneously broadened line shape
at early waiting time (left) and a homogeneously broadened line shape at a late
waiting time (right). By monitoring the ellipticity of the observed peak, the
correlation between the excitation and detection frequencies can be quantified as a
function of waiting time. This correlation measurement allows for the quantification
of the spectral diffusion time scale.

As previously described vibrational spectroscopy allows for the monitoring
of the vibrational energies of a given molecule. Due to interactions with their
environment each molecule will exhibit a shifted vibrational frequency from the
mean ensemble value, leading to a broadening in the sample’s vibrational spectra.
This broadening, which arises from the different environments of the molecules in
the sample, is termed inhomogeneous broadening.>* As the different environments
interchange with one another the frequency of a given oscillator will appear to
undergo Brownian diffusion. This diffusion of the frequency, termed spectral
diffusion, provides valuable information on the timescales for the molecules of a
sample to interchange between different microstates. Applied to biological systems,
spectral diffusion has been used to monitor the slowdown of hydrating water at the

interface of proteins®>-57 and extended lipid environments.>8

The traditional 2D-IR method provides an insightful picture of how one can
measure the spectral diffusion, however alternative methods exist for extracting

this information.>-61 2D-IR allows for measuring the detection frequency’s



dependency on the excitation frequency at a specific waiting time. Examining a 2D-
IR spectrum acquired at an early waiting time, Figure 1.6 left, an elongation of the
spectrum is observed along the wexcitation = Wdetection diagonal. Due to the short waiting
time, the probed molecules have not had sufficient time to sample alternate
microstates in the system, leaving the excitation and detection frequencies highly
correlated. The observed elongation of the peak, along the diagonal, represents the
inhomogeneous broadening of the vibrational spectrum. As the waiting time is
extended the sample will lose its inhomogeneous character and the line shape will
become less elongated, appearing rounded in the spectrum. In the late waiting time
limit, Figure 1.6 right, the sample has had ample time to explore all possible
microstates of the system. This leads to a total loss of the inhomogeneous
broadening observed at early waiting time accompanied by the loss of correlation
between the excitation and detection frequencies. This correlation loss is

quantifiable by fitting the peak shape and determining the ellipticity of the 2D-IR

Correlation
Function
o
Ul

tf ts

Waiting Time
Figure 1.7 Sample Correlation Functions plotted vs. the Waiting Time (Tw) for a
system undergoing fast and slow spectral diffusion (purple and blue curves
respectively). By fitting the data to an analytical function, such as an exponential
decay, one is able to quantify: the degree of system inhomogeneity from the y-

intercept, the spectral diffusion lifetime, and the degree of unsampled microstates
from the correlation function value at long waiting time.

spectrum at each waiting time point.62

Plotting this correlation function as a function of the waiting time, see Figure

1.7, provides insight into the spectral diffusion dynamics of the system. In practice



the correlation function is fit to an analytical function, commonly an exponential
decay, to aid in the interpretation of the data. The y-intercept is a direct measure of
the inhomogeneity of the system and allows one to extract the homogeneous and
inhomogeneous line width from a linear absorption spectrum. The decay rate
provides a measure of the timescale of the systems spectral diffusion, which is
relatable to the dynamics of the systems interconversion between microstates.
Finally any offset of the correlation function observed at a long waiting time
highlights unsampled dynamics that occur on timescales longer than the vibrational
lifetime of the probed transition.®? Together this information provides valuable

insight into the nature of the molecules in the sample.

1.5 Site Specific Vibrational Labels

For biophysical systems it is often ideal to possess a high degree of temporal
and spatial resolution. Ultrafast laser pulses are able to provide the needed
temporal resolution. To achieve a high degree of spatial resolution, however,
molecular labels are frequently employed to gain detail at the molecular level.63-66
The most widely recognized molecular probes in biophysics are arguably the green
fluorescent proteins (GFPs).67-6° These molecule probes can be incorporated into
the DNA of an organism, such that when certain proteins are expressed in a cell, the
probe is covalently linked to the protein of interest. GFP and its derivatives’%-71 are
powerful spectroscopic probes for visible spectroscopy. Multiple other probes exist
for alternative wavelengths, providing varying levels of spatial resolution depending
on the technique used and the probe. A great advantage of utilizing spectroscopic
probes is the ability to study the same probe in a variety of systems. This allows for
the characterization of the probe in different environments, allowing one to
calibrate the probe’s response to environmental parameters. A common example of
this is the frequency shift of a spectroscopic probe due to its environment’s
polarity.”>-73 Utilized in this way, probes allow for the monitoring of: site-specific
protein folding and unfolding’47¢, ligand binding’’, charge state of neighboring

atoms®8, and many other properties.’8
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For vibrational spectroscopy two routes are commonly taken to incorporate
spectroscopic probes in biological samples. The first method is the least invasive
and involves the isotopically pure synthesis of a system, such as a protein.”® This
method relies on the incorporation of an isotopic label at a specific site of the
molecule such that the lighter and heavier isotopes possess a different vibrational
frequency and can be isolated in a spectrum. A second approach, more commonly
taken in our group, is the introduction of unique spectroscopic probes that exhibit
vibrational frequencies outside of the naturally occurring modes found in biology.>7-
58,80 This second method offers a higher degree of sensitivity than the first due to
the ability to select vibrational modes with a strong spectroscopic signature in a
background free region of the IR spectrum. Additionally the later method allows for
the study of larger systems that would prove cost prohibitive to synthesize in most

labs.

Cholesterol-BCT BTNN-BCT
OO \T/ 'QS\/\/\IrH i
_Cr,, HN N.
oC kCOCo O)"NH e} HJ\(CT;
¥ \\g\\\o

Figure 1.8 Derivatives of benzoyl chromium tricarbonyl (BCT) used as site-specific
molecular labels. Cholesterol-BCT has shown to incorporate into lipid bicelles
offering insight into the dynamics of water at lipid interfaces. Biotin hydrazide BCT
(BTNN-BCT) can be incorporated into the streptavidin family of proteins and offers
site-specific information on the protein dynamics.

The vibrational probes commonly used by our group are based on metal
carbonyls. These probes offer a strong signal in IR spectroscopy and have been
repeatedly shown to serve as sensitive dynamical probes of their environment.32 52,
55-58, 81-89 The rich chemistry offered by the organic backbone of some metal
carbonyls allows these probes to be specifically synthesized to incorporate with
different biological systems. Significant progress has been made to realize the
potential of, benzoic chromium tricarbonyl (BCT) as a probe for biological systems,
highlighted in Figure 1.8. Utilizing the benzoic acid chemical group as a handle we

have linked the probe to site-specific molecules in multiple systems. The first
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system our group realized utilizing the BCT probe was in the derivatization of BCT
with cholesterol, Figure 1.8 left, to create a lipid specific probe of solvation
dynamics.82 This probe demonstrated the dynamical slowdown of water at extended
lipid interfaces utilizing low millimolar concentration. Additionally we have shown
the derivatization of BCT with a biotin analogue, Figure 1.8 right, to allow for
monitoring the dynamical response of site-specific mutations in a protein scaffold
(described more in Chapter 4). This labeling chemistry hinges on applying Steglich
Esterification to BCT and offers great potential in studying these and future

biologically relevant systems.

1.6 Method Development Towards Faster Acquisition

The signal isolation and strength metal carbonyls offer vibrational
spectroscopy, compared to isotopic labels, allows them to be utilized at relatively
low sample concentrations. This enables the study of precious biological samples by
2D-IR. In addition to the amount of sample needed however, sample stability must
also be considered for many biological systems. This pays an effect when trying to
study proteins that may denature or come out of solution on the hour time scale
required for the acquisition of multiple 2D-IR spectra. Additionally one may wish to
average over multiple data sets to improve the signal to noise ratio of the data which,
due to its square root scaling with the acquisition number, can prove foreboding
when large improvements are desired. To address these common issues in 2D-IR,
we have worked on introducing and implementing two complimentary data
acquisition methods in addition to our traditional setup. Rapidly Acquired Spectral
Diffusion (RASD)®0 serves as the fastest method for acquiring spectral diffusion data,
eliminating the need to scan the coherence time delay. Compresses Sensing 2D-IR
(CS-2D-IR)%? allows for sidestepping the Nyquist sampling requirement, offering
greatly reduced acquisition times while still providing complete 2D-IR spectra.
These two methods, described below, offer significant reduction in the data
acquisition time allowing for more spectra to be obtained within a time period and

for the study of more transiently stable systems.
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1.6.1 Rapidly Acquired Spectral Diffusion

The method of rapidly acquired spectral diffusion (RASD) eliminates the
need to scan the coherence time delay in the traditional 2D-IR method. This
reduction in the dimensionality of the acquisition provides a significant reduction in
the acquisition time of spectral diffusion measurements. Furthermore by
eliminating the need to scan the coherence time for each waiting time, we are able
to continuously scan the waiting time delay as opposed to stepping the motor.
Scanning the delay provides a finer resolution of delay than is available by stepping
the motor, allowing for an over ten-fold oversampling of the waiting time while

reducing the required acquisition time over sixty-fold.

Compared to the traditional method of 2D-IR, RASD reports on the spectral
diffusion of a single excitation and detection frequency as opposed to monitoring
the entire spectral band. The excitation frequency is determined from first collecting
a traditional 2D-IR spectrum and integrating over the desired detection frequency
window. The signal intensity as a function of the coherence time delay is then
calculated to determine the optimal coherence time delay and the corresponding
motor positions. Once optimized, the coherence time is set and the waiting time is
scanned. By fixing the coherence time a spectral grating is imposed on the sample
exciting only specific frequencies in the sample and providing excitation specificity.
In practice multiple waiting time scans are collected allowing for the averaging of
the measured spectral diffusion which when combined with the waiting time over
sampling, allows for an approximate ten-fold increase in signal-to-noise of the data.
This increased signal-to-noise of the data has allowed for the detailed analysis of
preferential solvation of a bio-inspired molecular probe, described in detail in
Chapter 3. The greatly reduced acquisition time offered by RASD allows for the
monitoring of transiently stable systems and when combined with phase control

methods should prove useful for monitoring protein aggregation pathways.

1.6.2 Compressed Sensing
Compressed Sensing (CS) is a signal processing method that utilizes data

sparseness to reduce the data needed for signal reconstruction and has seen
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widespread adoption across many disciplines.??-2 In a typical 2D-IR experiment the
coherence time is scanned from 0 - 10 ps with a resolution of ~1 fs. In the frequency
domain, after Fourier transformation of the coherence time axis, this corresponds to
a frequency range of 0- 16,500 cm! with a resolution of 3.3 cm-L. Due to limitations
of mid-IR pulse generation the laser bandwidth is typically limited to 100 cm-,
centered near 2,000 cml. Frequencies outside the laser’s bandwidth will not be
coherently driven in an experiment and do not contribute to the observed 2D-IR
signal. Thus considering the 2D-IR spectrum as being comprised of only 33 of the

available 5,000 frequency components, the signal sparseness becomes apparent.

Applying the ansatz of sparseness, CS aims at solving a given system of linear
equations by minimizing the lynorm, ||l|l; = X’ ,|x;].92 This optimization problem
can be thought of as trying to find the minimal number of terms to reconstruct the
measured signal. In 2D-IR the system of equations set up for determining the
excitation frequencies can be represented by, b = Ax. The vector b represents the
time domain data acquired during a scan of the coherence time. The basis set used, 4,
is the discrete Fourier transform matrix and x is the sparse frequency
representation of the time domain signal. By considering x to be a sparse vector we
are able to greatly reduce the scan range of b. This scan range is further reduced
when the linear vibrational spectrum of the molecule under investigation is taken
into account and the number of frequency components in the basis set, 4, is reduced.
In practice we are able to reduce the scanned range twenty-fold, leading to a
significant speedup of the acquisition. As described in detail in Chapter 2, CS allows
for further speedup of the 2D-IR method and is able to reproduce the full signal
amplitude with high fidelity. Similar to RASD, applications of CS-2D-IR will allow for
the study of more transiently stable samples by 2D-IR. By providing the complete
2D-IR spectrum CS allows for a more detailed picture of the system than is provided
by RASD however one loses the advantage offered by continuously scanning the

waiting time delay.
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1.7 Summary of Chapters

2D-IR spectroscopy is a powerful technique, capable of investigating the
ultrafast dynamical motions that are fundamental to many processes in biology. The
following chapters highlight a significant body of work in developing new 2D-IR
methods and probes. Chapter 2 is provided, along with Appendix A, as a detailed
description of the application of compressed sensing to 2D-IR. Further details of the
implementation of CS-2D-IR are provided in these sections as well, including the full
code of the algorithmic solver and a description of the pulse scanning utilized to

realize the full advantages of compressed sensing.

Chapters 3 and 4 respectively introduce BTNN-BCT as a molecular probe and
demonstrate its utilization in a biological setting. Chapter 3 specifically looks at
monitoring the ultrafast dynamics of spectral diffusion to study solvation effects
arising from preferential interactions between the probe and cosolvent. This work is
supported by a significant body of molecular dynamics simulation data, detailed in
chapter 3. The characterization of the preferential solvation of the BTNN-BCT probe,
outlined in chapter 3, is interpreted in the context of a protein environment in
chapter 4. In the protein system we find that the observed dynamics in the protein
system are consistent with the interpretation framework established in chapter 3.
Together, these works highlight the use of 2D-IR and metal carbonyls as a sensitive,

site-specific, method for the investigation of dynamics in biological systems.

The final chapter of this manuscript, Chapter 5, summarizes the
advancements made on the application of 2D-IR towards studying biological
systems, detailed in the previous chapters. A forward-looking summary is provided
in this chapter taking a prospective look at future improvements of the 2D-IR
method made possible by the adoption of new acquisition software and hardware in
the lab. 2D-IR as well as other multidimensional spectroscopic methods have seen
rapid adoption as the technologies to implement these complex systems are fine-
tuned. With the recent realization of a turnkey 2D-IR setup, the application of 2D-IR

towards biological systems is expected to grow. Building upon the growing body of
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work, 2D-IR will offer significant insight on characterizing and understanding the

dynamics of biological systems complementary to existing methods.
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Chapter Two
Accelerated 2D-IR Using Compressed Sensing

2.1 Introduction

Two-dimensional infrared (2D-IR) spectroscopy is a powerful tool to study
the dynamics and structure of molecules in condensed phases. 2D-IR spectra offer
important insight into the coupling between molecular vibrations, the dynamics of
vibrational energy transfer, vibrational and orientational relaxation, as well as
chemical exchange and spectral diffusion 1-10. Given the increasingly clear chemical
applications of 2D-IR spectroscopy, it is desirable to be able to combine traditional
thermodynamic variables with 2D-IR spectroscopy. Any acceleration in data
acquisition can enable a wide range of investigations which are currently

impractical with traditional Fourier scanning methods.

As has become routine in NMR, dynamical information can be obtained using
optical pulse sequences that do not provide the full multidimensional response.
Recently, for example, we demonstrated a new method for rapidly measuring the
frequency-frequency correlation function by combining approaches of three-pulse
photon echo spectroscopy with an “inhomogeneity index” inspired by 2D
spectroscopy !l Compressed sensing (CS) offers another means of obtaining
spectral information without the exhaustive sampling required for Fourier
transform 2D spectroscopy. CS has already shown promise in many fields including
2D electronic spectroscopy 1213, impulsive stimulated Raman !4, magnetic
resonance imaging 15-16, image processing 1718, astronomy 1%, genomics 20-21, and
NMR 22-23, [n this letter, we report the implementation of a new data collection
method for accelerated 2D-IR, which can decrease the acquisition time for collecting
individual 2D-IR spectra over sixteen-fold using rapidly moving wedges for the
coherence time delay. Additionally, we present a detailed comparison (see Appendix

A) of compressed sensing (CS) and traditional Fourier analysis on the same data set,
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finding CS’s nearly perfect reproduction of time-dependent peak amplitudes despite

using only a small fraction of the measured data.

The bottleneck in Fourier transform 2D spectroscopy is the need to scan the
coherence time delay (t1) between the first two pulses of the echo sequence. In

conventional 2D-IR spectroscopy, the excitation frequency resolution Aw1 is equal

tmax

to 2/t , where "1

is the maximum scanned t; delay (shown in Figure 2.1).
Intuitively, this temporal duration corresponds to twice the beat period of two

waves that differ in frequency by Aw, which beat at a frequency of Aw, and hence

Amplitude
o

0 t; ty
Coherence time, t1

Figure 2.1 Two waves differing in frequency by Aw produce a wave (blue line) whose
amplitude is modulated by the difference frequency. Due to the amplitude
modulation (black line) during a relatively short time window highlighted in purple
(see inset), Compressed Sensing is able to determine the frequency composition of
the signal (pink and red dashed lines).

have a period of 2w/Aw. The FT resolution amounts to the minimum beat frequency
that fits in half the temporal sampling window. If one measures only a small fraction
of the full window, it is not possible to determine the two underlying frequencies
deterministically. Nevertheless, a signal exhibiting amplitude modulation indicates
that at least one other frequency is present and is causing interference. Compressed
sensing exploits the amplitude modulation, and aims to find the smallest set of

frequencies that can produce a given signal. Intuitively, it is clear that the beating of
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two frequencies is most apparent near the nodes of the modulation (purple window
in Figure 2.1). CS is capable of providing accurate signal reproduction with effective
spectral resolution much higher than would be possible by directly Fourier

transforming the temporal data.

In FT spectroscopy, the discrete Fourier transform (DFT) matrix is used to
calculate the Fourier transform (FT). In CS a DFT matrix is chosen such that it
provides finer frequency spacing than would be justified using Fourier analysis of
the smaller data set. Since the time domain signal is not artificially extended, the
DFT matrix used is no longer square, resulting in an underdetermined system with
more unknown frequency components than time data points. The essence of CS
reconstruction is to apply an ansatz of sparseness in the frequency domain, where
sparseness is invoked merely as an algorithmic requirement, not because the
underlying spectral features are truly sparse. Viewed in another way, the very short
temporal window used in CS effectively pretends that the dephasing is very (or
infinitely) slow. In the context of 2D-IR spectroscopy, the relative peak amplitudes
of the frequency data and their waiting time dynamics can be obtained from data
sets with many fewer t; points using CS than would be required for a conventional
FT analysis. Our current implementation of CS-accelerated 2D-IR is not able to
recover the 2D spectral peak shape, but does accurately reproduce peak amplitudes
(see Appendix A). In 2D-IR, CS permits a remarkable reduction of the scanned
coherence time window, allowing for the implementation of new experimental
approaches to chemical problems, where ultrafast dynamical measurements can be

recorded under varying thermodynamic conditions.
2.2 Experimental Methods

2.2.1 Sample Preparation

For all experiments the well characterized benchmark system dicarbonyl-
acetylacetonato-rhodium(I) (RDC) % 24-26 was studied in a hexane solution. RDC was
purchased from Sigma Aldrich and was used without further purification.

Approximately 8 mM solutions were prepared and filtered to remove particulates
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before use. The sample cell used a 100 pm Teflon spacer between two 3 mm x 25

mm diameter calcium fluoride windows.

2.2.2 2D-IR Setup

The 2D-IR setup has been previously described. 27-28 Three fields Ei, E, and
Ez are 100 fs infrared pulses generated by a white-light seeded optical parametric
amplifier followed by difference frequency generation. The signal is made collinear
with a reference pulse before sum-frequency-generation with a chirped 800 nm
pulse to allow for heterodyne detection on a 1340 x 100 pixel CCD camera
synchronized to the laser at 1 kHz. The coherence time, ti, is scanned continuously
with a pair of 7° apex ZnSe wedges mounted to a translation stage using an optically
encoded, 7 nm resolution, DC motor. A digital signal processor (DSP) monitors the
value of the encoder as well as controls the movement of the motor. The position of
the motor is recorded with a National Instruments Data Acquisition Card (DAC) that

records the position value of the motor when triggered.

A typical complete Fourier transform 2D-IR experiment involves collecting
over 10,000 1D spectra over a coherence time of approximately 10 ps. Using Fourier
transform methods this range of coherence times allows 2D-IR to detect frequencies
from 0 cm! to approximately 16,700 cm! with a 3.3 cm™! frequency resolution. The
2D-IR spectrum usually focuses on a relatively narrow frequency window of about
100 cm, limited by the bandwidth of the pulses used as well as the finite phase
matching bandwidth of the upconversion detection. Windowing the spectra means
only a fraction of the possible frequencies have meaningful amplitude. By
considering the frequencies outside the range of interest to have zero amplitude, the
sparseness of 2DIR is apparent. The goal of compressed sensing is to restrict
attention to only the frequencies that are contained in the signal, assuming that all

other frequency components are of zero amplitude.

2.2.3 Compressed Sensing Pulse Sequence
Details of the new method used in this paper to collect data for CS analysis

follow (see Figure 2.2 for a graphical representation of the method). First the t;
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motor is set to scan continuously between two points using the DSP. A range in the
middle of the scan corresponding to approximately 500 fs (117,000 encoder values)
is chosen, for which a digital output voltage is set to high on the DSP. The collection
range is overscanned to avoid artifacts caused by abrupt changes in motor direction.
The digital output pin from the DSP is logically combined with the 1 kHz pulse train
of the laser, using an AND gate, to trigger the camera and DAC to record spectra and

positions, respectively.

A second DSP is also programed to monitor the state of first DSP’s logic pin,
and upon detecting a downward edge (indicating the t; motor has moved out of
range) steps the waiting time motor. This sets up the three-pulse sequence where t;
is held fixed while the t; time delay is continually scanned in a loop; t; is stepped
after each scan of t;. A 2DIR spectrum can be generated from scanning the motor in
either direction, which in principle could reduce the acquisition time by a factor of
two. With the motors and stages we employ, however, significant amplitude
differences in forward-scanned and backward-scanned 2D spectra require that we

only analyze one set of data. We anticipate that choosing mechanical components

e [” 2
= B

2

= to
2

2

= : l } t1
= 600fs /'

5 VAR >
[@] : :

O H H

. , >
Experiment Time

Figure 2.2 Graphical depiction of data collection method for CS analysis. The
coherence time is continuously scanned (blue line) between two set points. A range
corresponding to 600 fs (grey region) is used to collect spectra. When the coherence
time motor leaves the collection range (dashed lines) the waiting time motor is
stepped (red line). The three-pulse sequence that is created by this method is
depicted to the right (b).
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appropriate for the new demands presented by compressed sensing would allow
recording reliable spectra by scanning in both directions. Using the digital pin of the
DSP to gate when spectra are recorded a full set of waiting times (104 2D-spectra)
can be stored in the camera’s memory, allowing the camera buffer to only be read

off once per experiment, further reducing the time needed to obtain data.

2.2.4 Compressed Sensing Data Analysis

The single file of spectra is parsed into a three-dimensional array (detection
frequency x coherence time x waiting time) prior to analysis with the MP algorithm.
Parsing is done by using the coherence motor position data acquired by the DAQ for
each camera frame to determine the frames corresponding to the coherence motor
switching directions. Grouping sequential frames between the turning points of the
coherence motor we build a slice of our data array at a single waiting time. Waiting
times are assigned by using the waiting time motor position recorded by the DAQ
for each spectra and using a known calibration to convert the motor position to a

time delay.

The assignment of excitation frequencies in the implementation of CS as
described only requires knowledge of coherence time step size, Ati, obtained from a
calibration of the t; motor delay. Using the Discrete Fourier Transform (DFT) matrix
as the basis set, frequencies can be assigned to the columns by linearly interpolating
a vector spanning from 0 Hz to 2m/At; Hz so that the vector’s length corresponds to
the number of columns in the matrix. One can also trim the DFT matrix, removing
columns (frequencies) that are known not to contribute to the signal, in order to
speed up calculations. In this case assignment of frequencies requires knowledge of
Aty, the size of the original DFT matrix, and which columns of the original matrix

were used in the CS algorithm.

2.3 Results and Discussion
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Compressed sensing aims to find the smallest set of frequencies that will
reproduce a time domain signal, which in the present case is the t1 dependent signal
recorded at each detection frequency ws. CS reconstructions rely on sparseness,
where given a particular basis set, a signal can be constructed such that most of the
coefficients are zero. Sparseness allows for one to approximately solve an
underdetermined system of equations by taking the solution with the smallest
number of non-zero coefficients 2930, The number of non-zero values in a set is
defined as the lp-norm. Hence, CS algorithms minimize the lo-norm, a combinatorial
problem requiring all possible solutions to be enumerated before the problem can
be solved. Due to the cost of enumerating all possible solutions, the minimal lp-norm

is often approximated by various methods when implementing CS 31.
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Figure 2.3 2D-IR rephasing spectrum of RDC in hexane at 8.9 ps waiting time. The
spectrum was constructed using the MP algorithm with a 503 fs coherence time

window and £ =1x10-3. A 7 cm- shift is observed in the excitation frequency of the
upper cross peak.
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In this work we used a Matching Pursuit (MP) 31-33 solver to approximate the
lo-norm. This solver uses a “greedy” algorithm to iteratively reconstruct the spectra
from the collected data and serves as a drop-in replacement for the FT used
traditionally (see Appendix A for code and mathematical formulation). While it is
known that the MP algorithm does not explicitly solve the system for the minimum
lo-norm 31-32 it proved to be much less computationally costly and to yield more
accurate reconstructed spectra than the popular SPGL1 solver 34 The MP algorithm
requires four input parameters: a reduced DFT matrix, t; data for each detection
frequency, a noise threshold (€), and the number of iterations per reconstruction. To
generate the reduced DFT matrix, rows of the DFT matrix are truncated to match the
length of the time domain signal. For the input data, the algorithm is given a matrix
from a single waiting time that contains the coherence time data at each detection
frequency. The noise threshold and number of iterations typically depend on the
details of the experimental data, although it was found that spectra typically

converge in fewer than 200 iterations using € = 5x10-3.

To validate the use of CS in the calculation of 2D-IR spectra, we tested the
ability of the new method to reproduce the well-characterized response of RDC. The
spectrum in Figure 2.3was produced by scanning a 503 fs coherence time window,
t1 =477 fs to t1 = 980 fs corresponding to scanning through a node in the amplitude
modulation, sampled uniformly with steps of 0.791 fs at a waiting time of 8.9 ps and
was analyzed with the MP algorithm. By oversampling ¢; using continually scanned
wedges we avoid the need to sample our time points randomly to account for
frequency components below the actual sampling rate 1235, as is often done in CS.
The CS-accelerated 2D-IR spectrum reproduces well the features of the response of
RDC. It was noticed that excitation frequencies of the cross peaks became slightly
shifted with shorter t; windows but still exhibited waiting time dynamics similar to
the full FT 2D spectra (see SI). This shifting is consistent with previously reported
frequency variations!? 3¢ and is seen in the 7 cm-! shift of the upper left cross peak
in Figure 2.3. To further test our CS implementation, we analyzed various peak

volumes as a function of the waiting time. Figure 2.4a shows the rephasing
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amplitude trace for the low frequency diagonal peak, Figure 2.3 blue box, as well as
the lower cross peak, Figure 2.3 green box. Fitting the diagonal peak rephasing
amplitudes with a double exponential yields a decay time of 60 ps, which agrees
well with the value of 60 ps obtained using traditional Fourier analysis 2¢. Further
validation of the CS analysis can be found in the quantum-beat modulated cross
peak volumes where coherent beating is clearly seen between the high and low
frequency modes of RDC. Fourier transforming the coherence signal returns the
splitting between the two fundamental vibrations to be 69 cm-! (Figure 2.4b), which

is again consistent with known values.

The applicability of CS to 2D-IR spectroscopy as a replacement for the FT is
apparent in its success in reproducing both the spectrum and t; dependent peak
volumes. We have shown that CS offers a promising alternative to the Fourier
transform in 2D-IR spectroscopy by analyzing conventionally measured data (see
SI) and data collected specifically for CS analysis using the accelerated scanning
approach introduced here. CS accurately reproduces the main features of a 2D-IR
spectrum using less than one-sixteenth the temporal data traditionally needed. The
accuracy of CS-determined peak frequencies is known to be dependent on the length

of the input time signal and care must be taken to avoid undersampling the data.
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Figure 2.4 (a) Integrated rephasing amplitudes for the low frequency diagonal cross
peak (blue) and the (2015, 2084 cm) cross peak (green), with biexponential fits
(lines). The coherence beating pattern in the cross peak is apparent by looking at the
residuals of the fit (inset). (b) The Fourier transform of the quantum beats reveals
the 69 cm! splitting between the two modes.



2.4 Conclusions

The ability to quickly obtain a single 2D-IR spectrum, less than 0.7 seconds
acquisition time on a 1kHz system, and to collect multiple spectra in rapid
succession, over 200 spectra in under 9 minutes, greatly speeds up the acquisition
of 2D-IR. Further speedup in collecting successive spectra is straightforward by
combining CS with pulse shaping methods 37-38. The drastic reduction in acquisition
time made possible by CS opens up the ability of 2D-IR to easily study the waiting
time dependent spectral changes in systems of varying pH, ionic strength,
concentration, or other chemically important parameters. We note that the speed
improvement found here is fully general, and is not dependent on the specifics of the
signal level or spectral region. Any 2D spectrum can benefit from compressed
sensing, though the benefits of speed may not outweigh the lack of lineshape
information for some applications. Although spectral diffusion measurements were
not considered in the context of CS because rapid methods for collecting this
information already exist 11, CS should still be amenable to the analysis of spectral
diffusion by the inhomogeneity index, where only the integrated peak volumes from

the rephasing and non-rephasing spectra are needed ¢ 3°.
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Chapter Three
Ultrafast 2D-IR and Simulation Investigations of Preferential
Solvation and Cosolvent Exchange Dynamics

3.1 Introduction

Biomolecule hydration is central to macromolecular structure and function
in living organisms!#4, yet detailed experimental probes of interfacial structure and
dynamics remain challenging. Considerable recent progress has been made in
assessing the degree and nature of biomacromolecular perturbation of hydration
water structure and dynamics using spectroscopy®>’ and computation.8-11 To probe
hydration dynamics at biomolecule interfaces, we have coupled metal carbonyl
vibrational labels with ultrafast two-dimensional infrared (2D-IR) spectroscopy,
accessing the hydration dynamics of macromolecules such as proteins!?-14 and lipid
bilayers.1> These investigations are consistent with the following picture: in the
vicinity of extended interfaces, the orientational motion of hydrating water is
modestly slowed by a factor of 2-3 relative to the bulk liquid. The biomolecule's
surface limits the availability of three-body transition state configurations, thus
raising the free energy barrier to large angular jumps because of the transition
state's entropy decrease. Adding cosolutes, such as glycerol, polymers, or more
protein, generally slows the water dynamics, but large, crowding species induce a

dynamical transition due to the collective hydration of multiple extended interfaces.

In contrast to our previous studies, here we consider a cosolvent system of
two liquids, water and N,N-dimethylformamide (DMF), where we expect a certain
degree of preferential solvation by the non-aqueous component. We establish the
preference for DMF solvation using a probe solute that is nearly insoluble in pure
water, but highly soluble in DMF. We employ a vibrationally labeled flexible
biomolecule consisting of biotin derivatized with a tripodal metal carbonyl complex

(Figure 3.1), to characterize the solvation dynamics in binary water/DMF solutions.
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This ternary system provides a model to investigate several aspects of biomolecule
hydration, such as preferential solvation as well as solvent-induced conformational

modulation of the solute.

S H O
H)L\L e NHJ\©
o O Cr,

Figure 3.1 Chemical structure of Biotin Hydrazide Benzoyl Chromium Tricarbonyl
(BTNN-BCT).

Solvent mixtures appear in numerous chemical and biochemical contexts,
from chemical synthesis to protein denaturation. In biochemistry, mixed solvents
are frequently employed to increase the solubility of proteins, substrates, and other
metabolites. Though cosolvents can act as denaturants or stabilizers of protein
structure, a detailed understanding of the nature of these interactions is still
incomplete.1® Since cosolvents, buffers and other osmolytes can associate directly
with biomolecule interfaces, a substrate’s approach to and exit from an enzyme’s
active site is determined by the potentially complex transport properties of
heterogeneous solvation as well as the dynamical perturbation caused by the
extended biomacromolecular interface. In principle, the present biotin/DMF/water
system provides a window into both preferential solvation and the associated

dynamics of motion within and between solvent shells.

Biotin is a key coenzyme for carboxylase enzymes serving as a shuttle for the
bicarbonate ion through the enzymel’, and is widely recognized for its unique
ability to bind streptavidin and its homologues, with femtomolar affinity.18
Chemically modifying the terminal carbonyl of the biotin tail has made biotin
analogues ubiquitous across a wide range of fields ranging from molecular biology
to analytical chemistry.l® In particular, biotin has been used to install precisely
anchored organometallic catalysts within the streptavidin host, where a
combination of protein engineering and catalyst modifications have enabled a new

class of hybrid enzymes.20-23
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Biotin is amphiphilic but only slightly soluble in aqueous solutions, ca.
0.9 mM in water?4, and is often introduced into the aqueous phase through a
miscible carrier solvent such as DMF where it shows roughly an order of magnitude
greater solubility. In addition to the dynamics under preferential solvation
conditions, there is the additional possibility that structural changes associated with
varying solution composition might alter the solution dynamics. In previous reports
of biotin in aqueous solution using NMR and molecular dynamics simulations, biotin
was found to exist in rapid equilibrium between three states: folded, semi-folded,
and extended.?> Hence, the ternary system studied has the potential to use
modifications of the solvent environment of the BTNN-BCT solute to manipulate the

structural ensemble.

2D-IR is a proven method capable of elucidating the complex dynamics
associated with hydration dynamics of water in the bulk26-30, at surfaces!> 31, and in
other complex environments. Leveraging the well-defined metal carbonyl
vibrational modes of BTNN-BCT, 2D-IR allows for the measurement of the
timescales for dynamical fluctuations in the vicinity of the probe. 2D-IR correlates
excited and detected frequencies, and by analyzing the time-dependent decay of
spectral inhomogeneity, it is possible to measure the frequency fluctuation
correlation function (FFCF). The FFCF reports on the loss of frequency correlation of
the probe transition resulting from equilibrium fluctuations of the probe’s
environment as well as internal motions, a process denoted "spectral diffusion”.
Spectral diffusion describes the stochastic sampling of the vibrational line shape as a
random walk with steps induced by fluctuations of the solvent and solute. Multiple
studies have shown the sensitivity of the FFCF decay to report on the local solvent
dynamics3?, including the orientational motion of water at the surface of proteins

and biomembranes.12 14-15,33

By measuring the FFCF at multiple concentrations of DMF/water solutions,
we can correlate the observed local dynamical changes to the mole fraction of the
DMF cosolvent (xpmr). Indeed, we find the spectral diffusion time scales to exhibit a

pronounced DMF concentration dependence, suggesting both a structural and
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dynamical variation that is dictated by solution composition. Despite the fact that
metal carbonyl spectral diffusion in both water and DMF alone occurs on roughly
the same time scale, we observe a marked slowdown in spectral diffusion as we
dilute the preferred DMF solvent. Molecular dynamics simulations complement the
information gained from 2D-IR, providing structural snapshots of the solvation
environment around BTNN-BCT probe at varying xpmr. Together these data provide
an explanation where the slowdown can be attributed to the exchange of roughly

one water-DMF pair.
3.2 Methods

3.2.1 Materials

(Ethyl benzoate) chromium tricarbonyl, N,N-Diisopropylcarbodiimide (DIC),
anhydrous N,N-Dimethylformamide (DMF), and deuterium oxide were purchased
from Sigma-Aldrich and used without further purification. EZ-Link Hydrazide-Biotin
(BTNN, spacer arm 15.7 A) was purchased from Thermo Scientific and used as

received.

3.2.2 BTNN-BCT Synthesis

Biotin Hydrazide Benzoyl Chromium Tricarbonyl (BTNN-BCT) is synthesized
using a modified Steglich esterification protocol. (Ethyl benzoate) chromium
tricarbonyl, 240 mg, is first subjected to hydrolysis using 400 mg NaOH in 30 mL
H>0 with stirring for ca. 16 hr. The unreacted ester is extracted through washing the
solution 3x with 5 mL diethyl ether. (Benzoate) chromium tricarbonyl is then
precipitated from the aqueous phase by addition of HCl and recovered through
subsequent extractions with diethyl ether, 5x 3 mL. Combination of the ether
fractions and evaporation of the solvent yields (benzoate) chromium tricarbonyl

(BCT), dark orange crystals.

To 100 pL anhydrous DMF on ice, 8 mg BCT, 18 mg BTNN, and 11.4 pL. DIC
was added. The reaction was stirred on ice for one minute before the addition of
0.5 mg of 4-dimethylaminopyridine (DMAP). The reaction was stirred on ice for five

additional minutes, followed by stirring at room temperature for three hours.
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The BTNN-BCT product was purified from the reaction mixture by separation
on an alumina column using a 2:3 volumetric ratio of ethyl acetate and heptane as
the mobile phase. The product, fast moving light-orange band, was collected and the
solvent was evaporated, yielding the final product. Chemical composition was

confirmed by mass spectrometry and infrared spectroscopy.

3.2.3 Sample Preparation

2.5 mM solutions of BTNN-BCT in pure DMF, 75 % (v/v), 50 % (v/v), 35 %
(v/v), and 25 % (v/v), DMF in D20 were prepared using a 10 mM stock solution of
BTNN-BCT in DMF. Using the bulk densities for DMF and D20, mole fractions were
calculated for the solutions. Samples were placed in a custom sample cell utilizing

two round 25 mm x 3 mm calcium fluoride windows with a 100 um Teflon spacer.

3.2.4 Four-Wave Mixing Experiments

Frequency fluctuation correlation function (FFCF) measurements were
preformed using rapidly acquired spectral diffusion (RASD) as previously
described.34-35 RASD, a modified implementation of the traditional photon-echo
peak shift technique, allows for collection of the FFCF with much faster acquisition
times than traditional 2D-IR pulse sequences. This is achieved by holding the first
two pulses of a non-collinear 2D-IR pulse sequence at a fixed t; time delay,
generating a frequency grating in the sample that preferentially excites the chosen
transition. Following the two excitation pulses, the third pulse continuously scans
the waiting time (t2). Alternating the time ordering of the first two excitation pulses
allows for collection of the rephasing and non-rephasing signals. The inhomogeneity

index (I.1), which is related to the FFCF, is given by:

Ar _An

I..=———
A+ A,

where Ar and A, are the absolute moduli of the rephasing and nonrephasing signals,
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respectively, integrated over the given vibrational band. It is possible to achieve
some degree of excitation selectivity by tuning the excitation pulses and by choosing
the coherence time delay to suppress the non-detected modes. With typical
scanning speeds and the 1 kHz laser repetition rate, we obtain FFCF values with
roughly 7 fs waiting time spacing. Since this time spacing is much smaller than our
~100 fs pulse width limited resolution, we apply a 100-fs windowed moving-
average to the recorded FFCF results. All correlation functions were fit using a single
exponential decay to the non-averaged data, after normalization. We average

several waiting time scans to improve the signal-to-noise ratio for the FFCF.

3.2.5 Molecular Dynamics

Simulations of BTNN-BCT in the five experimental solvent conditions:
xpmr = 0.07, 0.11, 0.19, 0.41, and 1.00 were implemented using the GROningen
Machine for Chemical Simulations (GROMACS3%). For all simulations except
xpmr = 1.00, the SPC/E37 water model was used. All simulations were run in a cubic
box with at least 10 A from all BTNN-BCT atoms for 20 ns each (see Appendix B for

more detail).

AMBER99SB38 all-atom force field parameters for DMF and BTNN-BCT were
generated using the Antechamber3® program from the AmberTools12 software
package. Molecular structures for these molecules were first optimized in Gaussian
0940 using the B3LYP functional and the 6-31G(d) basis set. Partial charges of the
DMF and the organic backbone of the BTNN-BCT molecule were then assigned using
the Restrained Electrostatic Potential (RESP) method. Force field modifications for
the metal center and carbonyls were generated using LEaP.#! A virtual atom was
constrained to the center of the benzene ring and used as an anchor for the metal
tri-carbonyl group, attaching it to the organic backbone and allowing for rotation of

the carbonyls about the chromium - benzene bond.

Since biotin is so sparingly soluble in water, it is tempting to view the solute
as being essentially hydrophobic. Many computational investigations of biomolecule

hydration dissect the potentially distinct influences of chemical interactions in
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contrast to the geometrical nature of the constraints placed on water by the
extended surface.#24> For example, there is a well known de-wetting transition
predicted for model hydrophobes as a function of solute size, producing a vapor-like
interface due to the expulsion of water near the extended surface. The extent of
water vacancy, however, is greatly diminished when attractive interactions are
included to mimic, for example, hydrogen bonding and van der Waals attraction.*¢ In
the biotin case, clearly the whole molecule is not hydrophobic since the ring system
is anchored into binding proteins by strong hydrogen bonds, and water can form
hydrogen bonds to stabilize the solvation of that fragment. The alkyl chain, on the
other hand, is likely the main source of biotin's low solubility, suggesting a

heterogeneous hydrophobicity even in a relatively small biomolecule.

To test the effect of chemical interaction as opposed to ideal
hydrophobicity,*¢ we simulated a model of biotin that lacks partial charges on all of
the atoms except the Cr and three carbonyl ligands. All simulations were carried
identically for the "hydrophobe" model and for the solute with realistic partial

charges determined using RESP.

3.2.6 Radial Distribution Functions

Radial distribution functions (RDF) were calculated from the 20 ns
production simulations for all metal-carbonyl oxygen DMF-nitrogen pairs. For each
RDF the first and second solvation shells were fit to separate Gaussian functions to

obtain the maximum shell density of DMF, Max{g(r)}.

3.3 Results and Discussion
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Figure 3.2. FTIR spectra of metal carbonyl region for 2.5 mM BTNN-BCT in pure DMF
(blue) and xpmr = 0.07 DMF (magenta), normalized to high frequency peak volume.
The data show a 6 cm-1 blue shift of the high frequency mode when solvated in
xpmr = 0.07 compared to pure DMF. This blue shift at lower xpwmr highlights the
increased nonpolar environment of the probe, suggesting preferential solvation by
the DMF methyl groups.

3.3.1 Solvent-Dependent FTIR Spectra

The solvatochromic properties of BCT have previously been described!> and
follow a trend typical of metal carbonyls, exhibiting red shifted carbonyl frequencies
in increasingly polar solvents. Assuming simple solvation of BTNN-BCT in the DMF
(EL = 0.386) and D20 (EL = 0.991)%” mixtures, the spectrum of BTNN-BCT would
be expected to red shift with decreasing xpmr. However comparing the linear
absorption spectra for 2.5 mM BTNN-BCT in xpvr = 1 and xpmr = 0.07, there is a 6
cm! blue shift for the symmetric mode upon the addition of D20 (Figure 3.2),
suggesting a decrease in local polarity around the carbonyls with increased bulk
polarity. This decrease can be attributed to the preferential solvation of BTNN-BCT
by DMF. Similar results have been seen for amphiphilic fluorophores in DMF-H,0

mixtures and readily highlight the complexity of solvation in mixed solvents.

3.3.2 Spectral Diffusion Dynamics
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Figure 3.3. a) 100 fs window averaged measured correlation functions for xpmur = 1
(grey), 0.41 (magenta), 0.19 (blue), 0.11 (green), and 0.07 (red) plotted vs. Waiting
Time, exponential fits are shown as black solid lines. Spectra were normalized at
Tw=0 and scaled to decay to 0 at Tw=c0. b) Correlation lifetimes from exponential fits
with error bars plotted vs. Mole Fraction DMF, colors are the same as in a.

The FFCF is a powerful measurement, allowing for quantification of the
timescales for a probe to sample the microstates of its system. FFCF measurements
have provided valuable insight into the dynamics of water, water-lipid interfaces,
inclusion complexes, and many other systems. Normalized FFCF measurements of
the symmetric carbonyl mode and corresponding exponential fits are shown in
Figure 3.3a for xpmr = 1, 0.41, 0.19, 0.11, and 0.07. Figure 3.3b shows the decay
constants obtained from the exponential fits as a function of xpmr. The decays exhibit
a highly nonlinear three-fold increase in correlation lifetime in going from xpmr = 1
to xpmr = 0.07. The magnitude of this slowdown is comparable to that seen in
multiple model hydration systems previously studied by our group and others.
Relative to biomacromolecules which induce a modest slowdown of hydration
dynamics, were it possible to study BTNN-BCT in neat water, biotin's relatively
small size would not be expected to induce dramatic changes in the hydration
dynamics. Thus in analogy with previous studies of binary mixtures of polar
solvents, we would expect a smooth variation of solvation time scales between ~1
ps for neat DMF and ~1.5 ps for neat D20. In the present case, however, we find a
rapid, smooth, spectral diffusion slowdown, apparent for xpmr < 0.4. Understanding

the molecular nature of this dynamical slowdown is the primary goal of this
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investigation.

3.3.3 Comparison with Bulk Solution Properties

In order to understand the change in local dynamics of BTNN-BCT in the
mixed solvents, we attempted to correlate bulk solution properties to the change in
the local dynamics sensed by the carbonyl probes. For other metal carbonyl probes,
we have previously observed spectral diffusion timescales to be strongly correlated
with the solvent's bulk viscosity.32 For BTNN-BCT in DMF-D;0 solutions (Figure
3.4a), however, we find no clear trend to the known viscocity.#® Similar comparisons
of spectral diffusion dynamics to empirically measured bulk properties have been
carried out for metal-nitrosyls#*, where the acceptor number of the solvent was

found to be negatively correlated to the FFCF decay constants. For BTNN-BCT in
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Figure 3.4. Correlation decay constant of BTNN-BCT plotted versus (a) bulk viscosity
and (b) acceptor number, same coloring as (a). Error bars for decay constants are
shown in both plots.
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DMF-D;0, we find a nonlinear dependence of the spectral diffusion time scale on the
known acceptor numbers of the solutions®? (Figure 3.4b). In contrast to the nitrosyl
case, we find that the spectral diffusion is slower with increased bulk solvent
acceptor number. The lack of any simple trend in the dynamics, coupled with the
blue shifted vibrational bands, suggests that bulk properties will not be applicable in
understanding the complex ternary solute-solvent-cosolvent structure and
dynamics. Thus, we turn to all-atom molecular dynamics simulations as a way to

gain insight into the microscopic behavior.

Mixed-solvent molecular dynamics simulations were run for the system at
varying DMF /water compositions. To control for the hydrophobic solvation effects
arising from the solvent mixture and to gain further insight into the nature of the
BTNN-BCT solvation, complementary simulations were run with and without the
RESP charges on the BTNN molecule. In order to preserve the solvent structuring
around the carbonyl probes, however, charges were retained for the metal and
carbonyl atoms. The simulations enable a direct comparison between solvating a
realistic molecule and an ideal hydrophobic model of BTNN-BCT. By simulating this
model system we are able to control for the solvation properties resulting from
specific interactions between the solute and the solvent, gaining insight into the

nature of the DMF-water solution.

3.3.4 Radial Distribution Functions: Preferential Solvation

Since preferential solvation is not unusual in mixed solvent ternary systems,
we quantify the solvent structural information provided by the simulations by
calculating partial radial distribution functions (RDFs). These allow for the direct
comparison of the DMF density (relative to the bulk solution) within specific solvent

shells of the metal carbonyls.
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Figure 3.5. a) Radial distribution functions (RDFs) measuring the density of DMF near
the carbonyl atoms of the probe were calculated for both series of simulations. RDFs
shown for model hydrophobe (black) and BTNN-BCT (blue) for all simulated values
of xpmr. At low values of xpur the model hydrophobe shows a slightly higher density of
DMF near the carbonyls than the BTNN-BCT system, these differences are absent in
pure DMF. b) Maximum relative density of DMF obtained by fitting the data in (a) to
two Gaussian functions, error bars are shown for 95% confidence bounds of fits. The
first and second solvation shells (circles and triangles respectively) show similar
trends for both the model hydrophobe (black) and BTNN-BCT (blue). ¢) Comparing
the maximum DMF densities to the dynamics observed from the probe, Max{g(r)} is
found to correlate strongly with the decay rate for C(t), dashed lines show least
squares linear fit to data (same coloring as b).

Comparing the Oco-Npmr RDFs for the model hydrophobe and BTNN-BCT
(Figure 3.5a), we find that the main features of the solvation environment are
conserved and thus do not depend on the charges on the rest of the molecule. At all
DMF concentrations there is an increased density of DMF near the carbonyls relative
to the bulk. This preferential solvation is seen to increase with lower mole fractions
of DMF, with xpmr = 0.07 showing the largest relative DMF density near the solute. At
low mole fractions of DMF the model hydrophobe shows increased maximum DMF
density in both solvation shells compared to BTNN-BCT (i.e. with full partial
charges) though this distinction is absent in pure DMF. The similarity observed
between these two models and their RDFs is in contrast to the significant difference

in the structural conformations between these two systems (see Appendix B for a
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detailed analysis of the concentration-dependent conformational changes). The
model hydrophobe is found to exist in a predominantly collapsed state at low xpwmr,
opening up as DMF is added to the system. The BTNN-BCT molecule also samples a
larger conformational space as xpwmr increases, however the fully collapsed state is

not observed at low Xpwmr.

For both simulated systems the maximum relative density of DMF in the
solvent shells was found to correlate strongly with the experimentally observed
FFCF decay constant. The model hydrophobe system shows a slightly higher
correlation between these parameters than the system with full partial charges
(Figure 3.5c). The high correlation found between the degree of preferential
solvation and observed FFCF decays highlights the link between the degree of
solvent structural ordering around the carbonyl probe and the solvent’s dynamical

motions.

3.3.5 Preferential Solvation Can Explain the Composition-Dependent Spectral
Dynamics

The simulations show clear evidence for preferential solvation of the
carbonyls by the DMF solvent molecules, which is also the intuitive result based on
the generally poor solubility of transition metal carbonyl complexes in water.
Although we were not able to measure the spectral diffusion of the BTNN-BCT in
100% D20 due to the low solubility, we can compare with our previous report of
benzoate chromium tricarbonyl in D20, where we found 1.4 ps spectral diffusion.1®
This value agrees quantitatively with 2D-IR measurements of D,0 directly using
dilute HOD.?7-29 Thus we conclude based on the present determination of spectral
diffusion in pure DMF, that the spectral diffusion dynamics for the pure solvents
takes place on the 1-1.5 ps timescale. If the solution were homogeneous, lacking any
preferential solvation and concomitant influence on the dynamics, we might expect
a monotonic variation from 1.5 to 1.0 ps as the mole fraction of DMF is varied from 0
to 1. Instead, we observe a rather sharp increase in the spectral diffusion time as we
increase the water concentration. In analogy with previous solvation dynamics

studies of binary solvents®1-57, we propose the following picture. Given preferential
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solvation by one component of a binary solvent mixture, where both solvents induce
dynamics on a similar time scale, there is the possibility that a new, slower time
scale emerges due to exchange of distinct solvent species near the solute. The FFCF

can be modeled as the sum of three terms:

C(t) = tzoe(_t/ 0,0) + wpyrel Tromr) + Wexche(_t/ exch)

where the weights of D20, DMF, and solvent exchange are given by wy, o, Wppmr, and
Wexch, T€SPectively. Since the expected bulk water spectral diffusion time scale and
that measured for DMF are similar, we can simplify the correlation function to be a

sum of two terms:

-t -t
) = Wsolvente( /Tsowent) + Wexche( /TexCh)

where both pure solvents are captured in the wsonens weighted term. Exchange
events switching occupancy of D20 and DMF require mutual translational diffusion,
which is expected to be slower than the largely orientational fluctuations that
determine neat solution solvation dynamics.>! For ideally homogeneous solutions
one would expect the maximum contribution from exchange to occur near a mole
fraction of 0.5, as has been recently reported.>8 With equal numbers of both solvents,
fluctuations in solvent shell composition would result in more events that exchange
the two solvent species. In contrast to this homogeneous solvation limit, our data
shows that the slowest spectral diffusion occurs with the smallest DMF
concentration. This finding is consistent with preferential solvation by DMF, which
is most pronounced in the solution with the highest water concentration. For a
preferentially solvated solute one would expect the greatest contribution from
solvent exchange to occur at the smallest mole fraction of the preferred solvent. At
low concentrations of the preferred solvent the system has the greatest opportunity
to exchange cosolvent molecules near the solute. Figure 3.6 shows a cartoon
representation of three solution compositions for a scenario with preferential

solvation.

54



J
Wi %4
N.
TOr H Cr‘ ( \i‘
o//\\\\\\o (
XpMF <« 1 0 J
\f/ - E" )<
\4 /X)(f ~ O
( Ay )
x.),) J J

Figure 3.6. The solvent exchange model is able to describe the observed dynamical
slowdown caused by preferential solvation of the probe. In pure solvent the fast
orientational and librational motions of the solvent cause the spectral diffusion to
decay rapidly. As cosolvent is added and the mole fraction of the preferred solvent is
lowered, the frequency of exchange events increases, contributing a slower
dynamical component to the spectral diffusion. At low concentrations of the
preferred solvent these exchange events can contribute to a slowdown of the spectral
diffusion of the probe.

Based on the picture that the exchange contribution should be most
important at low DMF concentration, we can further refine the model for the
correlation function decay. A simple model that incorporates the concentration

dependence is
(“/esotvent) 4+~ (rexcn)
C(t) = Xpur€ Tsolvent) 4 [_}(1 — xDMF)e Texch
where [ is a concentration-independent parameter that scales the contribution of
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the exchange dynamics to the spectral diffusion. There are two justifications for this
parameter. First, without a detailed electrostatic mapping of electric field to
carbonyl frequency, there is no guarantee that the motional time scale will
correspond directly to the spectral diffusion time scale. Second, the degree of
preferential solvation must also be considered, since it is unlikely that the first
solvation shell is exclusively occupied by DMF. Indeed, it has been shown previously
that the solvent exchange contribution to solvation dynamics probed with dynamic
Stokes shift methods is considerably smaller in magnitude than the rapid, libration-
like motion within the solvation shell.>” The decay of C(t) in our model is clearly
biexponential, however we do not fit biexponentials to our data. Nevertheless, it is
possible to obtain adequate fits to C(t) using a single exponential and an offset. As
described above, we subtract the offsets from our RASD decays due to the difficulty
of determining the offsets reliably in practice,34-3> thus we believe that our fitting

allows for accurate comparison between the model and experimental data.

To compare the predictions of the model, we computed C(t)s numerically and
then fit them using single exponentials with constant offsets for numerous values of
Texch and B, fixing the Tsowen: at the 1.06 ps value obtained with xpmwr = 1. By summing
the squares of the residuals between the experimental and modeled decay constants,
we identified a range of parameters that are consistent with our data (Figure 3.7).
The globally optimal solution corresponds to Texch = 7.9 ps and § = 6.9, but solutions
within the pink region of Figure 3.7 are all consistent with our data. The value of 8
indicates that the solvent exchange contribution to the overall spectral diffusion is
considerably less than the direct, rapid orientational/librational motion of the
immediate solvation shell. If the value can be interpreted literally, then the exchange

accounts for roughly 14% of the total spectral diffusion dynamics.

With the range of exchange time scales, we can link the model's spectral
diffusion dynamics to the motion of DMF within water using the known mutual
diffusion coefficient of DMF in water (1x10-° m2/s).5° The root mean squared (RMS)

displacement is therefore given by
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Figure 3.7. The sum of the squares between the model and experiment were
calculated, scanning all values of the exchange time constant (texc) and the exchange
scaling factor (). The data shows an area of high agreement with the data (pink
region) with a global minimum at Texen = 7.9 ps and B=6.9. Considering the known
diffusion constant of DMF in water the root mean square (RMS) displacement of a
DMF molecule can be calculated and is found to agree well with the displacement of a
single water molecule, ca. 2.8 A.

from which we find that a time of 7.9 ps corresponds to an RMS displacement of 2.2
A. Actually, the mutual diffusion coefficient is weakly concentration dependent,>°
but the variation is small, and due to the square root dependence of the RMS
displacement, the variation is further suppressed. Indeed all of the good solutions to
the model for the spectral diffusion are near or below 2.8 A, which is the distance to
the first maximum in the 0-0 radial distribution function of liquid water.®? In other
words, the model is consistent with the interpretation that the slowdown in spectral
diffusion at low DMF concentration reports the time scale for the exchange of a
single pair of DMF and water molecules. The use of the model highlights, however,
that one cannot simply read the values of the spectral diffusion directly, since there

are two dynamically distinct contributions which are separated in time by roughly
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an order of magnitude, and the slower contribution is weighted much less than is

the faster process.

3.4 Conclusions

Here we show a detailed view of the dynamical effects of preferential
solvation in a DMF/water solution. With the 2D-IR method RASD we are able to
experimentally determine the spectral diffusion timescale of a small amphiphilic
probe molecule in a variety of solvent environments. The data show a pronounced
solvent dependence of the spectral diffusion timescale on the solvent composition. It
is found that increasing concentrations of water induce a dynamical slowdown,
despite the fact that both water and DMF alone produce spectral diffusion on the 1-
1.5 ps time scale. With the aid of all-atom molecular dynamics simulations, this
slowdown is found to correlate strongly with the degree of preferential solvation of
the solute by DMF, as measured with partial RDFs. Remarkably the RDFs between
the solute and DMF are found not to depend on the charges or conformation of the
solute itself. The lack of correlation between the conformation of the solute and the
solvation environment suggests that our probe can be thought as minimally
perturbing to the solvent, below the Lum-Chandler-Weeks transition length scale of

~1 nm.6?

The dynamical slowdown caused by preferential solvation is modeled as the
introduction of a slow exchange mechanism between the preferred solvent and the
bulk. This exchange model is found to agree well with the experimental data and the
optimal 7.9 ps timescale for exchange dynamics is in excellent agreement with the
timescale for a DMF molecule to diffuse the distance of one water molecule. Our
findings complement the extensive body of work investigating binary solution
solvation dynamics using dynamic fluorescence Stokes shift methods, highlighting
the sensitivity of nonlinear infrared echo experiments to probe the structural

dynamics of cosolvent exchange involving polar molecules.

By demonstrating the use of a biotin-linked metal carbonyl to monitor

solvent shell exchange by 2D-IR, this system is well poised to offer site-specific
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insight into the dynamical solvent environment near proteins, within cells, and
other engineered systems. This work provides an understanding on how dynamical
effects arise from a changing environment, which may offer valuable insight into
how solvent dynamics can be controlled and leveraged in the design of artificial

enzymes.
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Chapter Four
Dynamical Effects of Point Mutations in an Engineered Protein
Heterogeneous Catalyst

4.1 Introduction

The ability to recombinantly express proteins has offered a myriad of insight
into the functioning of these highly complex and tailored molecular machines. Built
from a polymeric structure of the twenty natural amino acids, even short proteins
can quickly exceed the samplable space for sequence mutations in the lab.!
Regardless of this formidable conformational space, protein engineering through
design and directed mutations remains a highly active field of the biosciences.?® To
aid the development of protein engineering there has been a push in the
biochemical field towards developing predictive computational models!%-17, based
on the known structures of many biological proteins. These tools have led to great
successes in the development of de novo enzymes’ 18-20 however there remains

much to be desired in their predictive ability.

A main limitation of many of these models is in their representation of the
protein solely on structure without respect to any of its conformational dynamics.
This is due in part to the difficulty in measuring protein dynamics experimentally
and incorporating these parameters into models. Furthermore the vast libraries of
structural information provided by protein crystal structures dwarfs the amount of
dynamical information available on proteins. Without dynamical considerations
designed enzyme scaffolds are engineered to stabilize a transition state of the
desired reaction.?! This method subsequently relies on time-consuming sequence
mutation of the protein backbone to modulate the dynamical binding and releasing
rates of the enzyme.?2-23 To aid in the directed mutation of these enzymes
knowledge of how different amino acids affect their local dynamics is needed. This

work utilizes a model engineered protein system?#-26, based on the streptavidin-
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biotin interaction?’, in combination with a site-specific probe of conformational and
solvent dynamics to gain insight into the ultrafast dynamical effects of point

mutations in the enzyme scaffold.

Streptavidin and biotin are commonly utilized for their ability to act as
molecular Velcro in a variety of environmental conditions.?8-31 The high degree of
promiscuity offered by streptavidin in binding biotin analogs has enabled
researchers to incorporate organometallic enzymes into the binding site of the
protein by attaching them to the biotin tail. This system offers the engineered
enzymes a structured and chiral environment allowing for chiral catalysis.?6
Mutations of the protein scaffold in the vicinity of the catalytic site are able to tune
the reactivity and enantiomeric selectivity of the catalyst providing many routes for
optimization of the enzyme.?# Utilizing a vibrational molecular probe and 2D-IR we
aim to characterize how these mutations affect the conformational dynamics of the
protein and surrounding environment. The observed ultrafast dynamics will be
compared to molecular dynamics simulations to gain insight into the molecular

nature of observed dynamical changes.

2D-IR has repeatedly proven its versatility in measuring the ultrafast
dynamics of biological dynamics through the correlation of the inherent frequency
inhomogeneities.32-35 These inhomogeneities arise from the multiple microstates of
the system surrounding the vibrational probe. By correlating the time scales for the
interchange between these microstates, our group has been able to quantify the
degree of water slowdown at the interface if lipid membranes33 as well as the extent
of environmental slowdown as a consequence of preferential solvation of a small
amphiphile. 2D-IR allows for the direct measurement of the frequency fluctuation
correlation function by temporally measuring the correlation loss between the
excitation and detection frequencies for the probe molecules, a process called
spectral diffusion.36-37 If the correlation is measured at an early waiting time, where
we have not allowed the microstates of the probe ample time to sample alternate
conformations, the spectra will show a high degree of correlation between the

excitation and detection frequencies. This correlation is lost as the waiting time is
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increased and the microstates are allowed more time to interconvert. Using a site-
specific probe and molecular dynamics we are able to gain detailed information on
the local dynamics of the protein and how they are modulated by single mutations

of the peptide backbone by monitoring the spectral diffusion.
4.2 Experimental Methods

4.2.1 Materials

Dimethylformamide (DMF) and deuterium oxide (D20) were purchased from
Sigma-Aldrich and used without further purification. Wild Type (WT) streptavidin
and the two mutants, s112a and s112h, were provided by Professor Thomas Ward
at the University of Basel. Biotin hydrazide benzyl chromium tricarbonyl (BTNN-

BCT) was prepared as previously described.

4.2.2 Sample Preparation

Samples were prepared to a final concentration of 2.5 mM protein and BTNN
BCT in a solution of 25% v/v DMF in D20 (xpmr = 0.07). This was accomplished by
the drop-wise addition of 50 pL of 10 mM BTNN-BCT in DMF to a 150 pL solution of
3.3 mM protein dissolved in D;0. The solution was gently aspirated, to avoid bubble
formation, before being placed in a custom sample cell comprised of two 1in by

3 mm calcium fluoride windows separated by a 100 um spacer.

4.2.3 FTIR Measurements

FTIR Spectra were collected for the 2.5 mM BTNN-BCT in pure DMF in
addition to the three protein-ligand systems studied. Spectra were baseline
corrected by subtracting a 4™-order polynomial and normalized to the area of the

high-frequency symmetric mode for comparison.

4.2.4 2D-IR Experiments

The details of the 2D-IR methodology and experimental setup have been
previously described elsewhere.38-40 2D-IR allows for the direct monitoring of
spectral diffusion by calculation of the inhomogeneity index (I I.) from the absolute

moduli of the rephasing (4, ) and nonrephasing (4,,) signals:
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integrating over the appropriate spectral range.3” The L I is calculated at
multiple waiting times for the probe. From this data we are able to extract the
functional form of the FFCF by fitting the I I data to an exponential decay with a
constant offset. The lifetime of the decay reports on the timescale of the microstate

sampling of the probe.

4.2.5 Molecular Dynamics Simulations - Setup

Molecular dynamic simulations were run using the GROningen Machine for
Chemical Simulation (GROMACS#1) 4.5.5 software package and the AMBER99SB#2
force field. For all simulations the SPC/E*3 water model was used in addition to DMF
for the solvent. The structure of WT homotetrameric streptavidin was obtained by
generating symmetry mates in PyMOL#* from the published 1STP.pdb*> crystal
structure. Starting structures for the s112a and s112h mutants were obtained using
the mutagenesis wizard in PyMOL. BTNN-BCT was placed into the cavity of each
monomer by aligning the energy-minimized structure of BTNN-BCT with the
crystalized biotin position. The protein-ligand complex was placed in an
equilibrated, cubic, solvent box with xpmr = 0.07 to correspond to the experimental
solvent environment. The box was constructed to allow for a minimum of 1 nm

distance between any protein or ligand atom and the edge of the box.

The topology and coordinate files for the protein systems were automatically
generated utilizing the pdb2gmx function of GROMACS and the pdb structure. BTNN-
BCT was previously characterized for the AMBER99SB force field and used as
previously described. The charges of the organic backbone of the BTNN-BCT
molecule are removed for these simulations. As was shown in the previous chapter,
the effect of the charges on the organic backbone minimally effected the solvation of
the carbonyl probe. Due to the buried nature of the biotin group in the protein, the
lack of formal charges on the organic backbone is expected to have minimal effect

on the simulation results due to the short simulation time relative to the time scale
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of ligand removal. Eight sodium ions were added to each system to neutralize the

system charge arising from the protein.

Simulations for each system were first energy minimized using a steepest
decent algorithm for 100,000 steps with a step size of 1 fs. These minimized systems
were then equilibrated in sequential Canonical (NVT) and isothermal-isobaric (NPT)
simulations for 100 ps using step sizes of 0.5 fs and the leapfrog integrator. For
these simulations the V-rescale and Parrinello-Rahman thermostat and barostat
were used with lifetimes of 100fs and 2 ps respectively, when appropriate.
Production simulations were run for 5 ns with a step size of 1 fs and utilizing the
same thermostat and barostat parameters as the isothermal-isobaric simulations.
Structures from the simulations were saved every 1 ps of the simulation, generating

5000 structures for each system.

4.2.6 Solvent Sphere Analysis

Solvation spheres were defined around each chromium atom by indexing the
molecules within 0.8, 1.1, and 1.8 nm radius of the chromium. This was
accomplished by using Matlab to import the full 5 ns trajectories and extract the
atoms within the cutoff radius of the chromium. The molecular identity of each
extracted atom was determined from the structural information file and the whole
molecule was included in reconstructing a reduced trajectory file containing the
atoms of interest and their positions. From these reduced trajectories, the numbers
of water and DMF molecules were determined, frame-by-frame, though indexing the

structural information file with the reduced trajectory.

4.2.7 Spatial Correlation of Solvent Molecules

For each simulated system, the trajectories were processed to maintain a
constant frame of reference with respect to the protein, removing the translational
and rotation degrees of freedom from the system. The g_spatial utility of GROMACS
was used to calculate the spatial correlations of the solvent in 0.1 nm x 0.1 nm x

0.1 nm bins for the 5 ns simulations. The correlation maps are overlaid with the
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initial WT streptavidin and BTNN-BCT structures to highlight the locations of

solvent interaction.

4.3 Results and Discussion
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Figure 4.1 FTIR spectra of carbonyl frequencies for BTNN-BCT in pure DMF stock
solution (black), WT (green), s112a (red), and s112h (blue) streptavidin systems. The
spectra have been baseline corrected and are normalized to the area of the high-
frequency symmetric mode. The spectra of the protein samples show a slight increase
in peak width for both symmetric and asymmetric modes compared to the stock DMF
sample. All three proteins have similar spectra indicating no large differences in
electrostatic environments between the different mutants.

4.3.1 Linear IR Spectra

The ability to gain site-specific ultrafast dynamical information from a
protein system provides insightful information on the effects of single residue
mutations. For our streptavidin system, FTIR and 2D-IR spectra were acquired for
the WT, s112a, and s112h mutant systems, utilizing the carbonyl frequencies of the
BTNN-BCT probe. Readily apparent from the linear FTIR spectra, shown in Figure
4.1, is the similarity of the spectra in the three protein systems indicating a similar
binding environment between the three systems. Compared to the stock DMF
solution, the protein spectra show a slight increase in the peak width and a red-
shifted frequency. As has been observed for BCT in other systems, this shift is
consistent with a more polar solvation environment of the probe molecules bound
to the protein. In order to gain dynamical information on these systems 2D-IR was
utilized allowing for the investigations of the site-specific vibrational dynamics in

each system.
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Figure 4.2 Frequency Fluctuation Correlation Function (C(t)) values plotted as a

function of waiting time for each WT (green), s112a (red), and s112h (blue) protein

system. For each system the experimental time points (circles) were fit to a single

exponential with an offset (solid line) to extract the correlation lifetimes:

Twr = 2.86 pS, Ts112a = 0.53 ps, and Ts112n = 0.86 ps. The data show a clear dynamical
difference between WT streptavidin and the two mutants studied.

4.3.2 2D-IR Spectra

For each protein sample, 2D-IR spectra were acquired for 2.5 mM BTNN-BCT
bound to streptavidin in D20 with xpmr = 0.07. DMF was utilized as a carrier solvent
for the BTNN-BCT probe; see the previous chapter for a full characterization of the
DMF-D;0 solvent dynamical effects on the probe molecule. The 2D-IR spectra allow
for the quantification of the spectral diffusion dynamics through the FFCF in the
different protein systems Figure 4.3. In the presence of protein we see a decrease in
the spectral diffusion timescales from those observed in the previously reported
xpmr = 0.07system. This difference is the most extreme for the s112a and s112h
mutants, which show a significantly faster relaxation (0.53 and 0.86 ps respectively)
of their FFCFs compared to the WT protein (2.86 ps). Between protein systems we
observe a drastic quickening in the loss of correlation for the two mutant proteins
compared to WT streptavidin. Utilizing the same framework established in chapter
3 to understand the preferential solvation dynamics of our probe, we would expect
that the faster lifetimes observed for the protein bound probe can be attributed to a

loss of the preferential solvation by DMF of the unbound probe. The observed
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dynamical differences in C(t), considering the similarity in the FTIR spectra,

highlights the importance of dynamical information gained from 2D-IR.

Figure 4.3 Visualization of the root mean square fluctuations (rmsf) about the mean
positions of the protein backbone shown for each system, WT (green), s112a
(magenta), and s112h (red). Gradient color and line thickness indicate degree of the
rmsf value with blue-thin lines showing areas of rigid structure. An overall
conservation of the rmsf values in observed in the system with the largest
fluctuations occurring in the loop regions of the protein. Comparing the degree of
the fluctuations and their locations to the BTNN-BCT positions (shown in yellow) we
see that the three proteins show a high degree of similarity in the binding pocket
fluctuations.

4.3.3 Molecular Dynamics Simulation of Protein Dynamics

To control for the effect of side chain mutations on the flexibility of the
protein backbone, molecular dynamics simulation were utilized to monitor for
destabilization of the protein structure. Over the course of the 5 ns simulations the
root mean square fluctuations of the backbone were calculated. These results,
shown in Figure 4.3, represent the regions of the protein backbone that undergo the

largest fluctuations as thicker, colored, sections of the traced mean backbone
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structure. The data shows that the rigidity of the streptavidin binding pocket
remains in the presence of point mutations of the backbone. As would be expected
for a rigid structure, the maximal rmsf values are seen to be conserved to the loop
regions of the scaffold and do not interact directly with the bound BTNN-BCT
ligands. The conservation of the binding site rmsf values indicates an alternative
mode of spectral diffusion relaxation than through purely protein dynamics near the

binding site.
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Figure 4.4 Partial Radial Distribution Function (RDFs) calculated between the BTNN-
BCT chromium atoms and the DMF cosolvent nitrogens. The RDFs have been
normalized to the bulk value of g(r). Present in all mutants is the observed
preferential solvation by DMF seen by the peak near 0.6 nm. Besides the primary
peak the RDFs for the s112a (red) and s112h (blue) mutants are featureless. A
secondary DMF solvation shell is seen for the WT protein (green) at 1 nm.

4.3.4 Solvent Dynamics from Molecular Dynamics

In addition to the dynamical information of the protein provided by the
simulations, we are also able to gain insight into the solvation environment around
the protein and our probe. The partial radial distribution functions (RDFs) between
the BTNN-BCT probes and DMF cosolvent were calculated for each mutant, Figure
4.4. From the RDFs, the DMF is found to preferentially associate with the probe and
protein surface for all mutants. Unique to the WT protein system is the structuring
of a second solvation shell of DMF emerging from the RDF at a separation distance
of 1nm. As was observed in the ternary BTNN-BCT, DMF, and D0 system,

preferential solvation can contribute a slow timescale to the observed spectral
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diffusion. This term arises from the exchange of DMF and water in the solvation
environment of the probe and has been shown to lead to a slow-down in the

observed spectral diffusion.

The spatial correlation of the DMF and water solvent molecules was also
calculated separately for each protein mutant. These data highlight the spatial

clustering of solvent molecules across multiple frames of the simulation. The heat

Spatial Correlation of Solvent Molecules in System
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Figure 4.5 Calculated spatial correlations of the different solvents (rows) for each
protein system studied (columns). Heat maps represent the degree of spatial
correlation with warmer colors indicating a larger degree of correlation. The same
heat map is utilized for all figures. To aid visualization the protein structure (grey)
and BTNN-BCT (dark blue) have been overlaid with the maps. The data show a
decrease in the water interaction near the BTNN-BCT probes for the WT protein
system compared to the two mutants studied. The data also shows a relative increase
in DMF correlation near the WT binding pocket. This data is consistent with the
calculated RDFs however provides more detail on the solvation environment.

maps utilize a color scale, with warmer colors representing a higher degree of
clustering, to indicate regions of the system that experience a preferential
interaction with a particular solvent. From this data, shown in Figure 4.5, two main

features of the solvation environment can be observed. The first is the relative
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decrease of water solvation of the protein surface near the BTNN-BCT probe
molecules in the WT protein compared to the two mutant systems. Secondly it can
be seen by looking at the spatial correlation of the DMF that the WT experiences a
higher degree of preferential interaction of the DMF near the BTNN-BCT probe. This

latter trend is consistent with the measured RDFs presented above.

Due to the symmetry of streptavidin we can utilize the same analysis to

Spatial Correlation Cut Sites
REVERSE

Figure 4.6 Locations of planes used for illustrating the spatial correlation of the
solvent in Figure 4.5 (left) and Figure 4.7 (right).

investigate the solvation environments of the reverse side of the protein Figure 4.6,
which contains the other biotin binding sites. The data for this reverse side, Figure
4.7, is consistent with the previously shown spatial correlation maps. A decrease of
the water preferential interacting near the probe in the WT protein compared to the
two mutants is seen. Additionally a slight increase in the preferential interaction of
DMF near the probe is seen in the WT protein though this affect is seen to be smaller

than for the other side of the protein.

The appearance of the preferential solvation, of the BTNN-BCT by DMF in the
WT protein suggests that the solvent exchange dynamics arising from the
heterogeneity of the solvation environment is responsible for the observed
dynamical slowdown. This effect was previously reported for the solvation
dynamics of the BTNN-BCT in a series of DMF - D20 solutions where the preferred
solvent, DFM, preferentially associates with the BTNN-BCT probe. This preferential
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Figure 4.7 Calculated spatial correlations of the different solvents (rows) for each
protein system studied (columns) for the reverse side of the protein. The same
coloring and map is used as for Figure 4.5. Similar to what was seen on the other side
of the protein, the data show a decrease in the water interaction near the BTNN-BCT
probes for the WT protein system compared to the two mutants studied. The data
also shows a relative increase in DMF correlation near the WT binding pocket, though
this affect is seen to be lessened.

solvation leads to a larger contribution of solvent exchange dynamics as the
concentration of DMF is decreased and the likelihood of DMF - D20 exchange

increases.

4.3.5 Characterization of Preferential Solvation

The preferential solvation of the BTNN-BCT in the protein can also be
visualized by calculating the mole-fraction of DMF within shells of a fixed distance
from the BTNN-BCT probe, as shown in Figure 4.8a. Looking at the mean xpmr within
0.8, 1.1, and 1.8 nm spheres of each mutant we see that xpwmr is increased near the
protein surface and tapers off to the bulk value, xpmr = 0.07, at large distances. We
can continue the analysis of the solvent shells by studying how the solvent within

the shell exchanges with the surrounding solvent. From our simulations we are able
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to quantify the number of solvent molecules within a shell at each time point. By
analyzing how the solvent occupancy of the shells fluctuates we are able to compute
the solvent occupancy-fluctuation autocorrelation for the solvent shells in each
mutant. These autocorrelation functions are subsequently normalized and
integrated from 0 - 100 ps to extract the mean lifetime of the correlation. This data
shown in Figure 4.8b provides insight into the solvent occupancy dynamics around

the probe.
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Figure 4.8 a) Calculated mean xpwr values of the solvent within specified
distances of chromium atom in BTNN-BCT. Near the probe DMF is found at a higher
xpmr than the bulk value (grey dashed line). As the spheres are increased in size the
three systems are seen to converge to the bulk value (red line). b) Mean lifetimes
from autocorrelation of solvent shell occupancy fluctuations for DMF (triangles) and
water (spheres) for shell sizes of 0.8, 1.1, and 1.8 nm (dark to light colors). For the
s112a and s112h the lifetimes of the DMF and water fluctuations are seen to coexist
on the same time scale. For the WT protein the mean lifetime for the DMF and water
seen to separate with the DMF showing slower occupancy fluctuation dynamics than
the water.

For s112a and s112h, the water and DMF occupancy fluctuations, spheres
and triangles respectively, are found to be comparable across shells of the same size.
The similarity of mean lifetimes for these systems suggests a homogeneous
solvation environment around the probe; absent of preferential solvation effects
that would manifest as a disparity between the timescales of the solvent occupation
fluctuations of the two solvents. For the WT protein we see a separation in
timescales between the DMF and water occupancy fluctuations. This separation of
time scales can be explained form the preferential association of the DMF to the

environment around the probe. By preferentially solvating the probe and protein
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the DMF constrains its motion to near the protein, resulting in an increase in the
occupancy fluctuation lifetime. The utilization of the mutants in our experiment

offers powerful insight into the nature of this preferential solvation.

4.3.6 Structural Basis for Preferential Solvation

As the effects from preferential solvation are not observed by either mutant
studied, the preferential solvation of DMF can be hypothesized to occur due to the
presence of the WT s112 residue. Looking at the RDF of the hydroxyl oxygen of s112
and the carbonyl oxygen of DMF, Figure 4.9, we see a classic indication of hydrogen
bonding from the peak at 2.7 A. An additional peak is observed near 4.3 A
corresponding to the association of the DMF methyl groups with the s112 residue
highlighting the transient nature of these hydrogen bonds and the sensitivity of our
probe to the solvation dynamics surrounding the protein. Together this work
demonstrates the ability to control the solvation dynamics of a protein through

mutation of its primary structure and the application of 2D-IR in reporting of these

)

dynamical changes.
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Figure 4.9 RDF between the s112 hydroxyl oxygens and the carbonyl oxygens of DMF.
The peak seen at 2.7 A suggests a hydrogen bonding population of DMF bound to
s112. The second peak observed at 4.3 A shows the association of the methyl groups
of DMF with the s112 residues.

4.4 Conclusions
Here we show how the utilization of site-specific vibrational probes and 2D-

IR allows for the study of solvation dynamics near the surface of a protein. The site
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specificity of the probe and modularity of the protein system allows us to study the
solvation dynamics arising from the preferential interaction of cosolvent near the
probe’s binding site. Comparing the observed dynamics of our BTNN-BCT probe
bound to WT streptavidin and two mutants, we see a greater than three-fold
quickening of the sensed dynamics due to the mutation of the s112 residue. Through
simulations this quickening is found to arise due to the loss of the preferential
interaction between DMF and the serine residue, which can associate with DMF

through hydrogen bonding.

The loss of the preferential solvation in the system causes a breakdown in
the heterogeneity of the solvent environment around the probe. As others and we
have previously reported on the dynamics of preferential solvation, this
heterogeneity is able to introduce an additional slow term to the measured spectral
diffusion, originating from the exchange dynamics of the solvent.#6-52 The
localization of DMF near the BTNN-BCT probe greatly increases the likelihood of
exchange events between the DMF and water to occur due to the entropic cost of
preferential solvation. The fact that this preferential solvation is not observed for
either the s112a or s112h mutant highlights how the dynamics near the protein

surface can be controlled by mutation of the protein sequence.

2D-IR combined with site-specific dynamical markers allows for the profiling
of the dynamics near the protein surface.3? 3%+ The solvent dynamics near an
enzyme’s surface is important for substrate binding and product release from the
enzyme.>3 This dynamical information is expected to aid in the design and
realization of engineered enzymes, offering a method for calculated tuning of the
dynamical environment around a protein. This system offers a high degree of
modularity allowing future investigations on how steric effects, charges, and
hydrogen bond donor strength can similarly affect the dynamics near the protein

surface.
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Chapter Five
Conclusions & Looking Forward

5.1 Introduction

The dynamical and structural insight at the molecular level offered by 2D-IR
has already provided significant insight into the nature of biomolecules and their
environments.1-13 Despite large advances in implementing and understanding 2D-IR
spectroscopy in recent years!#-17, much work remains for 2D-IR to become a staple
of the biophysical toolkit. To realize the full potential of this powerful
multidimensional spectroscopic technique, this work has demonstrated
improvements in the implementation, sensitivity, and understanding of 2D-IR
investigations of biomolecules. Implementation improvements are made possible by
the utilization of advanced signal processing methods!# and the introduction of new
acquisition hardware and software. Sensitivity improvements are attributed to the
utilization and synthesis of strongly absorbing IR probes.? The rich body of
knowledge provided by studying these probes in a variety of systems lends itself
well to their further development and application to biological systems. A greater
understanding of 2D-IR is accomplished by the development of explicit molecular
dynamics simulations, with a fully flexible and parameterized metal carbonyl probe.
These simulations represent the first fully parameterized molecular dynamics
simulations of metal carbonyl systems in our group allowing for a detailed

molecular picture of the system’s dynamics.

Current efforts in the group continue to improve the methodologies of 2D-IR
building upon the established modularity of the current setup as well as
implementing alternative hardware. These methods are summarized below and
include multiple methods for further improving the applicability of 2D-IR to
investigating biological samples. As the technology progresses and our

understanding of the spectra and measured dynamics continues to mature, 2D-IR
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will continue to be a powerful analytical method for the investigation of complex
systems. Recent funding support of the Laboratory for Multidimensional Optical
Spectroscopy (LUMOS) center at Michigan highlights the maturity of the field as well

as the versatility of these methods.
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Figure 5.1 Overview of 2D-IR methods implemented in our lab highlighting the pulse
sequences used, green, orange, and blue lines, as well as the benefits and limitations
of each method. The Grey boxes overlaid on top of the pulses designate the
acquisition windows for each method.

5.2 Current Capabilities

Compressed sensing (CS) is a powerful signal processing method that allows
for greatly reduced requirements of data acquisition without losing signal
information. CS requires that the data which is to be reconstructed is sparse, this is
to say that the data can be represented by a relatively few elements from a given
basis.1® The flexability offered by CS as to which basis is used makes this method
truly powerful and is attributed to its widespread adoption in the sciences and in
other fields.1# 19-21 CS has been proven applicable to 2D-IR as well as other
multidimensional spectroscopies, where the reduction in acquisition time grows as

a power of the dimensionality of the approach. By reducing the acquisition time of
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2D-IR 6 fold using CS we have improved the ability to study multiple systems as well
as systems that are not stable over multiple hours. CS has been shown to provide
the same level of detail as traditional 2D-IR spectroscopy utilizing a model system4,
and complements the faster RASD method?!5, Figure 5.1, in providing full 2D-IR

spectra.
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Figure 5.2 Overview of functions enabled by a DSP. The new implementation of the
Control in connection (blue box) allows for multiple DSPs to communicate with each
other. This enables complex pulse scanning techniques to be employed.

The implementation of CS and RASD in the 2D-IR setup was made possible by
software and hardware improvements in the 2D-IR setup. The data acquisition
software was modified to allow for full experimental control to occur within
LabVIEW. This modification detached the data acquisition’s dependency on an
outside camera driver, removing the requirement to manually calibrate the camera
for acquisition before each experiment. Calibration of the camera is now handled
automatically by a variable file in LabVIEW, greatly increasing the day-to-day
reliability of the 2D-IR setup as well as providing a higher degree of modularity for
future improvements. Additional software improvements were made to the digital
signal processors (DSPs), schematically shown in Figure 5.2, which control the
motor tracking and motion functions. These were modified to allow for simple real-
time communication between multiple DSPs. This allowed us to continuously scan
the motor positions of the coherence time motor and send a step signal to the

waiting time motor’s DSP at the appropriate motor position. Hardware
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improvements were made in the implementation of a new DAQ card (NI-6320) to
the existing 2D-IR setup. The pertinent feature of the card is the ability to monitor
simultaneously up 4 motor positions. This has offered us the needed flexibility to
record the waiting time delay with a high precision, as is required in RASD, without
needing to exchange the wiring of the current setup. These software and hardware
improvements have greatly improved the modularity and reliability of our current

2D-IR system creating a stable platform on which to build future developments.

5.3 2D-IR probes for Biology

Figure 5.3 2D-IR vibrational probes based off of BCT have been developed to target
protein (red), lipid (cyan), and cytosolic (orange) dynamics. BCT probes offer a high
degree of modularity allowing for the potential targeting of additional features in the
cell.

The biological probes utilized for 2D-IR as described in this text are
derivatives of inorganic metal carbonyls, which have served as the foundation for
many of the spectroscopic investigations in the group. Benzoic Acid Chromium
Tricarbonly (BCT) was selected due to its high availability and the chemistry offered
through its acid group. Under mild linking conditions we have shown the ability to
create multiple derivatives of this molecular probe. Applying these derivatives to
their respective biological settings, Figure 5.3, we have been able to observe the site

specific dynamics of solvation at the lipid interface? and in the binding site of a
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protein. Investigations of the protein bound BCT probe show that its local dynamics
can be modulated though mutation of a neighboring side chain, offering
experimental insight into the rational engineering of these systems towards better
catalytic activity. Having demonstrated the ability to link BCT to cholesterol and a
biotin analog, we have demonstrated a method that can be adopted to link BCT to
other biomolecules including sugars and fatty acids. These derivatives, along with
the current probes, could be used to further understand the dynamics of lipid in the

cell as well as ligand binding.

The biotin hydrazide BCT (BTNN-BCT) probe described in the text serves as
a powerful probe of local protein dynamics. Protein investigations were made
possible by our collaborator, Dr. Thomas Ward, who generously provided us with
mutants of the protein streptavidin containing a site-specific mutation near the
BTNN-BCT carbonyls. As detailed in Chapter 4, utilizing 2D-IR and our probe in this
protein system, we are able to discern the change in local dynamics of the protein
arising from the mutation of a single amino acid in the protein’s binding site. This
offers a highly detailed view of the effects of point mutations in the protein system.
Characterizing these effects across additional mutations could hold key insight into
the rational design of these systems, allowing for control of the binding site
dynamics of enzymes through backbone mutations. This work has laid the
groundwork for future investigations of the streptavidin BTNN-BCT system and has
provided insight on how local protein dynamics are modulated though side chain
mutations. Utilizing sensitive dynamical probes, 2D-IR is able to obtain detailed
information on biological samples and promises to continue providing insight into

these systems’ dynamics.

5.4 Preferential Solvation

The processes and reactions that occur within the complex solution
environment of the cell must proceed with fidelity to ensure cell viability.
Considering the many different types of species in the cytosol of the typical cell, it is
clear that certain metabolites will associate preferentially with various proteins and

cellular structures. Indeed the often invoked hydrophobic collapse of proteins can
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Figure 5.4 Initial studies of BTNN-BCT in a DMF-Water cosolvent system highlighted a
striking dependency of the observed solvent dynamics on the degree of probe
preferential solvation. This same trend is observed for the streptavidin protein
systems offering insight into how local dynamics around the protein can be
modulated and how these dynamics can be studied by 2D-IR

be attributed to the preferential interaction of the hydrophobic side chains amongst
themselves compared to in aqueous solution. Similar interactions can be attributed
to the insertion of some molecules into the lipid environment of the cell membrane.
Preferential solvation and interactions restrict the entropy of a system by creating a
heterogeneous environment.?22 We have shown 2D-IR to be a sensitive probe for
monitoring this heterogeneity though the introduction of a slow timescale in the

spectral diffusion measurements, detailed in chapter 3.

This was first realized in the solvent mixture DMF-D,0, which was studied at
multiple concentrations of DMF. In either pure solvent the spectral diffusion is
known to decay on the picosecond timescale. This rapid decay in spectral diffusion
was lost however in mixtures of these solvents where we instead found that at low
compositions of DMF, the spectral diffusion slowed down three-fold. Utilizing
explicit molecular dynamics simulations, we were able to show a strong correlation
between the degree of the spectral diffusion slow down and preferential interaction
of the DMF and our probe. In the framework of preferential solvation, this
heterogeneous structuring of the solvent around our probe slows down the system

dynamics by introducing an additional, slow, time component to the spectral
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diffusion. This slower term arises from the solvent exchange near the probe. From
modeling our system we found the additional decay terms to quantitatively agree
with the timescale for diffusional exchange between DMF and D0. This trend is also
observed in the streptavidin protein system, Figure 5.4, and is linked to the
mutation of a single amino acid near the metal carbonyl probe. Together these
measurements highlight 2D-IR as a sensitive measurement of the local dynamics of
this biological probe. The observations for BTNN-BCT are expected to be applicable
to additional spectroscopic probes and will aid in the mapping and understanding of
the dynamical consequences of solvation heterogeneity in biological systems.
Through mapping how solvation dynamics of enzymes are modulated by sequence
mutations, 2D-IR offers insight into how enzymes can be engineered to increase the
diffusion rate of substrates and products in their active sites. This information will
prove invaluable in the development of enzymes that are diffusion-controlled,
allowing for a deeper understanding of the effects of sequence mutations on enzyme

function.

Front Back

Figure 5.5 Front and back views of phase wobblers built to resonate a Brewster
window at 250 Hz to modulate the phases of the pulses. The optical window (not
shown) is mounted to the upper platform of the wobbler which is connected to the
lower platform utilizing a flex bearing. The two inductors serve as a driver and
monitor of the upper platform’s resonance.

5.5 Increasing Experimental Capabilities: Phase Wobblers
The setup and implementation of the current 2D-IR data acquisition system
has benefited greatly from the adoption of a more modular control system. This has

allowed for the implementation of two new data acquisition methods, CS-2D-IR and
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RASD, and offers the ability to easily implement novel methods in the future. One
such implementation involves realizing the benefit offered by phase control of the
pulses used for excitation and detection of the 2D-IR spectra.?3-2# By controlling the
phases of these pulses we would be able to operate our traditional 2D-IR setup in
such a way as to remove the contributions of the signal arising from the scattering of
the IR pulses with the sample. This method has been shown by pulse shaping
method to allow for the study of fibroid systems by 2D-IR?4 and would allow for an
over ten-fold reduction in the noise for regular 2D-IR spectra.?3 For our traditional
pulse scanning 2D-IR setup, phase control is operated in the far field, where by
periodically displacing the pulses, we can control their phase when they interact
with the sample. This is accomplished by designing ‘phase wobblers’ as described by
Hamm et. al?3, Figure 5.5, to resonate Brewster windows at 250 Hz. These wobblers,
when introduced to the delay arms separating the two excitation pulses and the
detection pulse, enable for the decoupling of the phases of the three pulses and

cancelation of the scattering terms from the signal.

1ms
1 kHz I I I I I I I I
3 4 ms - -
At 4 ms -

250 Hz I I

Figure 5.6 Timing diagram highlighting the function of the designed pulse delay
generator. The 1 kHz laser pulse train is down sampled to generate a 250 Hz pulse
train. An arbitrary delay between the triggering pulse and the corresponding 250 Hz
pulse, At, can also be controlled to vary the phase between the two pulse trains.

Complementary to the design and building of the phase wobblers, significant
work has been accomplished in the electronics required to drive their resonance at
250 Hz. The pulse delay generators have been implemented on an Arduino Due
utilizing serial communications over USB to allow for the down-sampling ratio of

the triggering pulse as well as a phase offset for the pulse, Figure 5.6. A simple
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LabVIEW program has also been written to communicate with the pulse delay
generator allowing for simple control of its parameters. The final realization of these
phase wobblers requires their placement in the optical path, the development of
further triggering electronics to allow for controlling the amplitude of their
displacement, characterization of the optical delays, and adaptation of the analysis
methods to account for the phase correction. Proof of concept analysis code has
been written demonstrating the compatibility of phase wobbling with the
continuous acquisition of the coherence time as is common in our experiments. This
method will allow for a greatly improved signal to noise in our spectra without the
need to average over additional scans. By also allowing the investigation of strongly
scattering samples such as aggregates, phase control will broaden the application of

2D-IR to biological samples.

5.6 Increasing Experimental Capabilities: Syringe Pump

It is often advantageous to flow samples in spectroscopy due to the build-up
of photoproducts in the sample. For biological samples this can prove difficult to
achieve due to the complication of procuring enough material to allow for samples
on the milliliter scale needed for traditional peristaltic pumps. To address this large
sample requirement work has been done to utilize a syringe pump, allowing for

control over volume flow rate and allowing the solvent to be pumped in both

Structural Dynamical
Information Information

Figure 5.7 To fully realize the ability to manufacture designed proteins structural
information will be supplemented by dynamical information as well as other
information. These powerful nano-machines will continue serving an important role
across the sciences.
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directions. A LabVIEW interface for the syringe pump has been implemented and is
easily incorporated into the acquisition software of the experiment. This new pump
setup will allow for the controlled flow of the sample as well as sample recapture in
day-to-day use. Syringe pumps also are well suited to studying systems in
microfluidic sample cells, allowing precise control over the flow rate and allowing
the study of dynamical systems such as protein unfolding using specialty

microfluidic channels.25

5.7 Looking Forward

Over the last five years substantial progress has been made, in the 2D-IR
community and in our group, on the application and development of 2D-IR to
biological systems. We have demonstrated some of the first novel pulse scanning
methods in the field, allowing for significant improvements in the acquisition
time.1%15 We have also demonstrated a modular framework for the development
and implementation of biologically compatible molecular 2D-IR probe.? These
probes have demonstrated their ability to monitor the ultrafast dynamics in
biological systems as well as provide insight into the manifestation of slower
dynamics in these systems. The continued development and application of these
probes promises to offer great insight into the dynamics of proteins and their amino
acids. Site-specific dynamical information, as is made possible with 2D-IR, will
provide a valuable framework to aid in the rational design process of de novo

enzymes, Figure 5.7. This site-specific dynamical information will complement the

- 100 nm Resolution

@ 1 um Resolution

<

10 pm

Figure 5.8 The far-filed resolution limit of infrared approaches, ca. 5 um, is not able
appreciable resolve the featured of a cell. By adopting newer near-filed imaging
method, which routinely show <100 nm resolution in the IR, 2D-IR will be able to
monitor the dynamics across different aspects of a cell.
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vast structural knowledge utilized in protein structure prediction tools, helping the

protein design community realize their full potential.

Concurrently with the development of new pulse sequences and molecular
probes in our group, other groups have realized the ability to use 2D-IR as a
microscopic approach.l” This technique, still in its infancy, promises to offer a
significant improvement in the spatial resolution of 2D-IR. Coupled with near field
imaging methods, 2D-IR microscopy will enable the discerning of dynamics across
different areas of the cell, Figure 5.8. In these biological applications the ability to
decrease the acquisition time utilizing our developed methods, and future methods,
will greatly aid in the detection of weak signals. 2D-IR is expected to continue
evolving as a powerful analytical method as the field matures and the light sources
used for illumination continue being developed. By broadening the spectral
composition of the laser pulses, one is also able to additionally resolve even higher
temporal resolutions. These broader light sources have already been shown to be
useful in the measurement and characterization of small molecule structures!® and

promise a detailed look into the tertiary structure of proteins in their native states.
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Appendix A
Further details of Compressed Sensing

A.1 Direct Comparison of CS and FFT Analysis

In order to validate the use of Compressed Sensing for the analysis of 2D-IR
spectra, we analyze a comprehensive set of data recorded using the traditional
scanning approach. Data was collected on an 8 mM solution of rhodium dicarbonyl
(RDC) in hexane. Unless otherwise stated the Fourier transformation of the data
used the whole t; delay range of 10 ps and the CS analysis is done using a range on
the order of 600 fs of t; delay with € = 5x10-3. A Matching Pursuit (MP) algorithm
was used (see below for code), for the implementation of CS. The MP algorithm
requires four inputs; a tolerance value (€), the number of iterations to run the

algorithm, coherence time data composed of the complex signal field values, and a
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Figure A.1 The ability to resolve peaks of different amplitudes was found to depend
on the value of &. Large values of € were found to cause the algorithm to miss peaks.
Decreasing £ resulted in quick convergence in the ability to reconstruct peaks.
Further lowering of € resulted in similar peak recovery though required more
iterations of the function. Data are shown for a single detection frequency and
normalized for clarity.

discrete Fourier transform basis matrix. Before reconstructing spectra, we
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characterized the algorithm by testing the effects of different tolerance values and
different coherence times. In the algorithm, € is the maximum residual, which
triggers the end of the algorithm. Smaller values of € require more iterations of the
MP algorithm in order to reduce the fit residual. By using the MP algorithm on
coherence time data from a single detection frequency, we found (Figure A.1) that
values of € that are too large resulted in missed frequencies during reconstruction,

whereas values of € smaller than a threshold resulted in diminishing returns.
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Figure A.2 Dependence of reconstruction on the length of coherence time used. As the
coherence time window used is decreased the central frequency and the peak
splitting is found to change. Spectra are normalized by the amplitude of the low
frequency peak.

To assess the influence of choosing different maximum coherence time
windows on the reconstruction, we analyzed a single detection frequency. Smaller
maximum coherence time windows decrease the peak position and alter the
splitting between the two IR bands (Figure A.2). Although the peaks found using a
303 fs coherence window are shifted, it is possible to correct the peak locations by
referencing the excitation frequency axis to a full linear absorption spectrum. A
dependence between the window location and the ability to reconstruct the lower
amplitude cross peak was noticed for the smaller windows, suggesting a tradeoff
between coherence time data and dynamic range in the reconstruction.
Convergence of the reconstructed spectra is seen using larger window sizes.

Once characterized, the MP algorithm was used with a coherence time

window of 565 fs and an € value of 5x10-3 to construct the rephasing 2D-IR spectra
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Figure A.3 Comparison of rephasing 2D spectra from analyzing a full, 10 ps, coherence
data set with the Fourier transform (a) and analyzing 565 fs of the same data set
using the MP algorithm (b). The main peaks along the diagonal are nicely resolved as
well as the cross peaks. The excitation frequency of the cross peaks is found to be
shifted away from the actual value though their location remains constant as a
function of waiting time.

in Figure A.3b. Compared to the spectra obtained using the Fourier transform (FT)
of the full 10 ps data set (Figure A.3a), we see that MP reproduces the main features
of the spectrum. The cross peaks of the spectra, although slightly shifted on the
excitation frequency axis, remain fixed in location at all waiting times (tz). To follow
the waiting-time dependent peak volume dynamics, which contain the majority of
information relevant to chemical dynamics, we integrated the rephasing peak
volumes for a series of waiting times. Figure A.4 shows the waiting time dependent
rephasing peak volumes for the low frequency (2015 cm) diagonal peak as well as
the cross peak at excitation frequency 2084 cm! and detection frequency 2015 cm-1.
We compare the full FT results with two different choices of the coherence time
window width used with the MP algorithm. Figure A.4a,b compare the full FT peak
volume analysis with a coherence window width of 522 fs, and Figure A.4c,d

compare the full FT peak volume analysis with a coherence window width of 260 fs.
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The traces show that with the 522 fs coherence time window, the MP algorithm is
able to reproduce the data from the FT spectra well. With the narrower window, the
MP algorithm loses some of its ability to follow the FT data, particular the low
amplitude excursions of the coherent vibrational quantum beats. By fitting the cross
peak rephasing amplitudes to a double exponential and looking at the residuals of
both the FT and MP data we see that the data are nearly identical (Figure A.5a). The
residuals oscillate with the same beat frequency, as shown by their Fourier
transforms (Figure A.5b), further validating the ability of the MP algorithm to

recover the peak amplitudes.

a) — Fourier Transform | C) — Fourier Transform ]
— Matching Pursuit | — Matching Pursuit

— Fourier Transform d) — Fourier Transform
— Matching Pursuit ] — Matching Pursuit

Relative Amplitude (a.u)

0.060—90 20 30 40 50 60 0 10 20 30 40 50 60
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Figure A.4 Rephasing peak volume trace comparison between spectra calculated
using the Fourier transform with the full 10 ps data set and spectra calculated using
the MP algorithm with 522 fs (a and b) and 260 fs (c and d) coherence time data.
Traces comparing the low frequency diagonal peak (a and c) and the cross peak at
excitation 2084 cm-1, detection 2015 cm (b and d) are shown. The ability of the MP
spectra to follow the same dynamics as the FT spectra is apparent when using 522 fs
of coherence time. With the shorter data set the ability of the MP spectra to follow the
FT spectra is reduced.

By comparing MP and FT analysis of the same data set, we find that it is

possible to extract waiting time dependent peak amplitude information from MP
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Figure A.5 Further validation of the MP algorithm comes from looking at the residuals
of fitting a double exponential function to the cross peak trace, Figure S4 b. The
beating pattern seen in the FT spectra is also seen in the MP spectra (a). Fourier
transforming the beating pattern recovered by each method reveals the same
underlying frequency components in the spectra.

that is nearly identical to that obtained using exhaustive FT analysis on a much
larger portion of the data. By first characterizing the MP algorithm to determine
proper ranges for € and coherence time windows needed, we have shown a
remarkable reduction in coherence time data required to generate a 2D-IR spectrum
in conjunction with compressed sensing strategies. This enhancement can be
visualized in Figure A.6 comparing the excitation frequency at a single detection
frequency obtained by FT of the full data set, MP of a 565 fs window, and FT of the

same 556 fs used for the MP case. Unsurprisingly the peak resolution and position of
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Figure A.6 Comparison of the spectra obtained by looking at a single excitation
frequency and using: the full 10 ps data set with the Fourier transform (blue line),
565 fs of the data set with the MP algorithm (green line), and the same 565 fs with the
Fourier transform (black line).
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the data obtained using the FT on the shorter data set is imperfect. MP along with
other compressed sensing reconstruction algorithms, however, are able to recover
the main features of the data from these incomplete data sets and show great

promise in their application to 2D-IR.

A.2 Matching Pursuit Algorithm
Initialize Variables
IterationNumber « 1

ConstructedSignal < 0

Signal < InputSignal
While (| | Signal| |21 - || Signal| |2, = Epsilon & IterationNumber <
IterationMax

RecoveredFreq < (BasisMatrix, Signal)

Index « arg(max(RecoveredFreq))

Amplitude < max(RecoveredFreq)

Signal < Signal - Amplitude*BasisMatrix(Index, :)
ConstructedSignal(Index) < ConstructedSignal(Index) + Amplitude

IterationNumber « IterationNumber + 1

Return ConstructedSignal

A.3 Matching Pursuit Code

% Matlab interpretation of cuda code for compressive
sampling

% as done by M. Andrecut Engineering Letters, 17:3,
EL 17 3 01.

%

% Written by Josef Dunbar, University of Michigan 2013.
%

% Function should be passed:

107



basisMat DFT matrix for us, can be changed as needed.

Normalized by sqrt(# of rows).

timeData Sparse-in-time data vector to reconstruct

frequencies with

numItr Number of iterations to try for convergence

epsilon = Convergence threshold for solution

This code solves the basis pursuit denoising problem:
[A]*[B] - [C] <= sigma

using the Matching Pursuit algorithm.

output maxHldr contains the reconstructed signal
output time contains the runtime of algorithm
output failed is Boolean array containing non-converged

pixels

00 00 o® o0 00 o°® 00 o° o® 00 o° o0 o0 o° o0 o°

function [maxHldr, time, failed] = CPUcs3_ fxn(basisMat,...
timeData, numItr, epsilon)
%% Check input for correct dimensions
if(size(basisMat,2) ~= size(timeData,2));
fprintf('Number of rows in basis matix %d != ...
number of columns in timeData %d \n', ...
size(basisMat,2), size(timeData,2));
return
else
fprintf('***Data Dimensions Consistent***\n');

end

$% Initialize Program Variables

maxHldr = zeros(size(basisMat,l),size(timeData,l));
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% allocate space for solution

vector
signal = timeData.'; % convert signal to row vector
normi = abs(sqgrt(sum(signal.”2,1)));

% calculate norm-2 of vector
normfl = normi; % initialize normf for loop
normf2 = normi;
delNormf = abs(normf2 - normfl);
converged = delNormf <= epsilon; % initialize Boolean
array
failed = 0;

fprintf('***Variables Initialized***\n');

$% Matching Pursuit Algorithm
fprintf('***Starting MP Algorithm***\n');

t = 1;
X = tic;
while (sum(converged) ~= 0 && t < numItr);

% stop loop when all pix < epsilon or after t iterations
recovered = basisMat*signal;
% remaining frequencies in signal
[maximum, index] = max(recovered);
% find frequency with largest
contribution
idx = ...
sub2ind(size(maxHldr), index, l:size(index,2));
% get linearized indices of matrix
maxH1ldr (idx) = maximum*diag(converged) +
maxH1ldr (idx);
% update frequency coefficients, ignore
converged

signal = ...
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- (basisMat (index, :) '*diag(maximum*diag(converged))) +

signal;
% remove freq component from signal
normfl = abs(sqgrt(sum((signal).”2,1)));
delNormf = abs(normf2 - normfl);

% dNorm(:,t) delNormf; % look at how values

converge
normf?2 = normfl;
% determine length of remaining signal
vector
converged = delNormf >= epsilon;

% Boolean vector holding pixels that have not
converged
t =1t + 1; % increment loop counter
if t == numItr;
failed = 1;
end
% plot(converged);

end

time toc(x);

maxHldr conj(maxHldr);

$% Print Results

[max2, ind2] = max(delNormf);

fprintf(strcat('***MP Algorithm
Stopped***\n\niterations’,... ‘= %d\nmax epsilon = %d\n'),
t, max2);

fprintf('***Done***\n');

end
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Appendix B
Ultrafast 2D-IR and Simulation Investigations of Preferential
Solvation and Co-solvent Exchange Dynamics

B.1 Molecular Dynamics Details

Explicit all atom simulations were first equilibrated using a steepest-decent
algorithm with a step-size of 1 fs for 100,000 steps and an energy tolerance of
10 k] mol* nm-1. 100 ps isothermal and subsequent isothermal-isobaric equilibrium
simulations, utilizing the Verlet (leap-frog) algorithm and time-steps of 0.5 fs
followed the initial minimization step. Equilibration and production simulations
were simulated for each system at 1 atm and 300 K using the Parrinello-Rahman
barostat and V-rescale thermostat, with respective time constants of 2 ps and 0.1 ps.
System compressibility was held at 4.5 X 10-> bar for all simulations. Particle Mesh
Ewald summation was used to calculate electrostatic energies and used a Fourier
grid spacing of 1.6 A with real-space Coulomb and Lennard-Jones cutoffs of 10 A.
Production simulations were run for 20 ns using step-sizes of 1 fs and saving

coordinates every picosecond, this generated 20,000 structures for each system.

Table 1 Solvent box compositions for each simulation

System # Water Molecules # DMF Calculated
Name Molecules XDMF
xpmr = 1.00 0 733 1.00
xpmr = 0.41 864 607 0.41
xpmr = 0.19 1657 391 0.19
xpmr= 0.11 2195 273 0.11
xpmr = 0.07 2569 194 0.07

B.2 Solution Composition Dependent Conformational Distributions
Monitoring the angle distribution of the biotin solute’s linker arm provides

additional insight into the conformational space. Previous simulation studies have
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shown the ability of the ureido group to form hydrogen bonds with the solvent.!
These hydrogen bonds limit the intramolecular interaction between the ureido and
the carboxyl group of the biotin, leading to a predominately open structure of biotin
in pure aqueous environments. Functionalizing the carboxyl moiety with BCT and
removing the intramolecular interaction of the biotin, the open biotin structure

should be further enhanced.

To monitor the conformational distribution of the biotin probe in each

solvent we utilize the structures provided by the simulations. For each frame the
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Figure B.1 Structure of BTNN-BCT with sites used for the conformational
determination highlighted (blue circles). From left to right: epsilon carbon to biotin
carbonyl group, alpha carbon to biotin carbonyl group, and center of benzene ring.

angle between the center of the benzene ring, alpha carbon to the biotin carbonyl],
and the epsilon carbon to the carbonyl (Figure B.1), is calculated. A histogram is
then constructed showing the population of the angles for each system simulated. It
is found that each distribution is described well by the sum of three Gaussians

centered at 82°,102°, and 148° (Figure B.2).
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Figure B.2 Angle populations shown with 3-Gaussian fit for the model hydrophobe
and BTNN-BCT for each solvent composition. As xDMF increases the model
hydrophobe (a) transitions from a compact structure to a more extended state. This
is in contrast to BTNN-BCT (b) which exists in a less collapsed state at low xDMF .
BTNN-BCT is still found to extend as DMF is added however samples a narrower
distribution of angles than the hydrophobe.

For the model hydrophobe the collapsed, small angle, structure of the ligand
at low xpmr is found to open with increased DMF. This conformational change
contrasts with the BTNN-BCT case where BTNN-BCT is found in a more extended
conformation than the model hydrophobe at low xpwmr. Both systems show a
broadening of the angle distributions as xpmr increases, showing the loss of
constrained conformations of the biotin solute in pure DMF. This large variability
between the hydrophobe and the BTNN-BCT structures does not manifest in the
solvation structure. From calculating the partial RDFs (see main text) for these two
models a remarkable agreement in solvent structure is found. This similarity in the
RDFs for all values of xpmr, considering the solutes structural conformation,
demonstrates that this probe does not significantly perturb the solvent energy and
can be thought of as being below the Lum-chandler-Weeks transition length for

hydrophobic solvation, ~1 nm.?
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B.3 Comparison between RASD and traditional 2D-IR

RASD has been previously shown to allow for the collection of
Inhomogeneity Index (I.I.) data, similar to traditional 2D-IR.3-# As can be clearly seen
in Figure B.3 the decay in the LI for the RASD and traditional data set are the same
for BTNN-BCT in pure DMF (RASD data has been normalized to the traditional
method’s LI initial and final values). Due to the averaging of multiple data sets and
the applied 100 fs window RASD shows a significant reduction in noise while also

decreasing the experimental acquisition time. Also shown in Figure B.3 is a 2D-IR
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Figure B.3 Comparison between traditionally measured LI. and RASD method (left)
for BTNN-BCT in pure DMF. RASD shows identical decay characteristics as the
traditional method with greatly improved signal to noise. On the right a 2D-IR
rephasing spectrum of the symmetric mode of BTNN-BCT is shown in pure DMF for
500 fs. The apparent circular line shape is indicative of the rapid spectral diffusion
experienced by the probe in this system.

rephasing spectrum of the symmetric mode of BTNN-BCT in DMF taken at a waiting
time of 500 fs. The circular shape of the mode highlights the rapid loss of frequency

correlation seen for this system.

B.4 Additional details from preferential solvation fit
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Figure B.4 Experimentally obtained RASD decay in spectral diffusion (black), C(t) calculated
from the optimal parameters (magenta), and single exponential fit to the normalized C(t)
function. By removing the offset and normalizing the double exponential expression for C(t)
we find excellent agreement between the experimental decay constant and the single
exponential fit to the C(t).

The measured spectral diffusion was fit to a double exponential, C(t), as
described in the main text. Due to the difficulties in obtaining accurate decay offsets
by the RASD method the data is normalized to remove any contribution from the
offset before analysis. Applying this same normalization method to C(t) and fitting
the model with a single exponential, we find excellent agreement between the model
and the experimental data as shown in Figure B.4. Shown are the optimal
parameters of tz and . These were obtained from a binary search to minimize the
sum of the squares between the model fits and the experimental data. The high
degree of over-sampling offered by the RASD method provides robust statistics to

distinguish the decay rate between the systems studied.
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