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ABSTRACT 

 

 Protein-protein interactions (PPIs) are macromolecular contacts critical in 

physiological processes and they play a role in both normal cellular processes and disease 

pathogenesis. Targeting PPIs represents a new but poorly explored therapeutic strategy. 

In this thesis, I have investigated peptide and nonpeptide approaches to two separate PPIs. 

Repressor activator protein 1 (RAP1) is a binding partner of telomeric repeat-

binding factor 2 (TRF2) for the regulation of telomere function. A previous study has 

suggested that RAP1 recruits IκB kinases (IKK) to NF-κB complex phosphorylate p65 

S536 and activates NF-κB pathway. Knocking down RAP1 sensitizes breast cancer cells 

apoptosis via NF-κB suppression. We employed a structure-based design strategy to 

develop a series of triazole-stapled α-helical peptides based upon the TRF2 sequence to 

block both RAP1/TRF2 and RAP1/IKK interactions. The most potent peptide 

synthesized binds to RAP1 with a Ki value of 7 nM, and is 400-fold more potent than the 

initial TRF2 peptide. Cellular studies show that an optimized peptide dose-dependently 

down-regulates p65 phosphorylation and inhibits cell growth in the HeLa and MDA-MB-

157 cancer cell lines. This study generates the first-in-class inhibitor targeting RAP1, 

which can be used as a pharmacological tool to study NF-κB signaling in certain type of 

cancer. 

Bromodomain and extra terminal (BET) proteins, including BRD2, BRD3 and 

BRD4, are epigenetic readers and play a key role in regulation of gene transcription by 
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binding to acetylated lysine residues on histone tails. Small-molecule inhibitors of BET 

have therapeutic potential for the treatment of human cancers and other diseases. We 

have carried out structure-based design, synthesis and evaluation of γ-carboline-

containing compounds as a new class of small molecule BET inhibitors. Our most potent 

inhibitor (compound 18, RX-37) binds to BET bromodomain proteins (BRD2, BRD3 and 

BRD4) with Ki values of 3.2-24.7 nM and demonstrates high selectivity over other 

bromodomain proteins. RX-37 potently and selectively inhibits cell growth in human 

acute leukemia cell lines harboring rearranged mixed lineage leukemia 1 gene. Further 

modification of RX-37 yielded RX-201 which shows high oral bioavailability and in vivo 

efficacy in mice. This study has introduced a new chemical scaffold with potential 

therapeutic value in clinic. 
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CHAPTER 1 

Introduction: protein-protein interactions as anticancer drug targets. 

 

1.1 General survey of clinical anticancer drugs 

 Cancer is one of the most life-threatening illnesses in the world, causing the death 

of 8.2 million people worldwide in 20121. The efforts in development of clinical 

anticancer drugs have been a major task in academia and in the pharmaceutical industry 

through the decades, and have recorded a number of successes and challenges in patient 

response and toxicities as well as drug resistance2.  

Classical chemotherapy which directly blocks DNA replication and cell division 

was firstly introduced in 1946 when nitrogen mustard, a DNA-alkylating substance 

successfully induced remission in lymphoma3. Subsequent discoveries of new agents in 

this class including methotrexate4 (antifolate), vinca alkaloids5 (targeting mitotic spindle), 

platinum derivatives6 (DNA cross-linker), nucleoside analogues7 (DNA polymerase 

inhibitor) and taxanes8, 9 (tubulin) are still the major clinical chemotherapeutics currently 

and can successfully treat leukemia, ovarian, testicular and other types of cancer. 

However, the lack of selectivity between cancer and normal cells leads to toxicities for 

human organs and normal physiological functions as these drugs target rapidly dividing 

cells2.  

Limitations of chemotherapy gave rise to “targeted therapies” which can more 

successfully differentiate tumor cells from normal cells, thus achieving higher specificity 
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and lower toxicity. Protein targets that play a more important role in cancerous than in 

normal cells were identified and targeted with drugs that could offer clinical benefit to 

cancer patients2.  

Several clinical successes were mainly oncogenic signaling intermediates such as 

the BCR-ABL kinase inhibitor imatinib10-12 (Gleevec; Novartis), the EGFR inhibitor 

Gefitinib13, 14 (Iressa; AstraZeneca) and monoclonal antibodies targeting cell surface 

receptors such as trastuzumab15, 16 (Herceptin; Genetech/Roche). Even though these new 

approaches have generally milder side-effects than the older cytotoxic drugs, new 

challenges regarding the persistence of these agents have emerged and have resulted 

occasionally in relapse of the therapeutic response17. For example, the resistance 

mechanisms for imatinib in BCR-ABL are mutations and amplification of target fusion 

protein, over-expression of multidrug-resistance protein 1, or activation of an alternative 

survival signaling pathway18, 19. Combination therapies of drugs targeting different 

signaling pathways or design of single drugs targeting multiple targets have been tested 

in clinical trials in the past decade, but few have shown long-term success20, 21.  

Thus, new targeted therapies have emerged, aimed at “tumor-supportive cellular 

machineries”, such as chromatin modifiers, protein chaperones or the proteasome2. Upon 

approval of bortezomib22, 23 (Velcade; Millennium Pharmaceuticals) and SAHA24, 25 

(Vorinostat, Zolinza/Merck) for the treatment of different types of lymphoma, an 

increasing number of targets have been validated and agents binding to those proteins 

were identified and optimized for pre-clinical or clinical development26-28. Whether and 
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to what extent these new targets could overcome previous limitations and provide clinical 

benefit still await examination with more clinical evidence. 

In both classes of targeted therapies: signaling intermediates and cellular 

machineries, protein-protein interactions (PPIs) have been viewed as offering attractive 

new anticancer drug targets, because of their essential role in organizing molecular 

processes and maintaining intra- and extracellular physiological function26, 29. Altered 

cellular signals that were transduced via PPIs may finally give rise to various 

malignances26, 29. There are estimated 650,000 distinct PPIs, most of whose functions are 

still to be clarified30. Targeting protein-protein interactions has become therefore a “gold 

mine” for scientists who seek a better understanding of biological systems, and more 

importantly, design of new anticancer therapies.  

1.2 Progress of targeting protein-protein interactions  

PPIs normally refer to physical contacts between two or more proteins forming 

complexes that contribute to certain biological events such as molecular dynamics, 

enzymatic reactions and signaling transductions29. Inhibitors of PPIs are either orthosteric 

inhibitors that competitively bind to protein interfaces or allosteric inhibitors that induce 

conformational changes thus disrupting the protein complex31. Current research is mostly 

focussed on orthosteric inhibitors32. 

Twenty years ago, PPIs were considered as “undruggable” targets because crystal 

structures disclosed at that time showed a much larger (1,000-2,000 A2) and flatter 

interface area than traditional deep cavities (~300-500 A2) familiar in small molecule 
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binding32. Even though some peptide hormones had been approved as drugs for clinical 

use33, poor cell-permeability and bioavailability issues hampered their application for 

intracellular targets29. Employment of computational techniques in drug discovery in the 

1990’s led to the first clinical PPI modulators, including aggrastat34 (tirofiban) which was 

derived from virtual screening leads and was approved as an anticoagulant35. Natural 

products like taxanes were among the first anticancer drugs that modulate tubulin PPI 

interactions8.  

The last decade has witnessed amazing progress in the study of PPIs. Computer-

assisted structural analysis and rational design revealed the existence of small “hot spots” 

on the interfaces that contributed most of the binding free-energy36. This discovery 

further strengthened the possibility of designing “drug-like” small-molecules as potent 

PPI inhibitors by utilizing these “hot spots”37. In addition to this, a number of cell-

permeable peptide-based molecules were reported to target intracellular PPI targets30, 38.  

1.3 Oncogenic PPIs and ligand design strategy 

 Traditionally, PPI inhibitors have high molecular weights (>500 Da) and high 

LogP values (>5) compared to typically drug-like small-molecules. This violates two 

principals of “Lipinski’s rule of five”39, 40, and reduces their chances of entering clinical 

trials. Recent discoveries of new pathologically important PPIs however revealed protein 

interfaces with the different sizes and shapes which led to novel PPI inhibitors with 

diverse physicochemical properties, from peptide based compounds (>2000 Da) to drug-

like small molecules (<500 Da)30.  
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 The shapes of PPI interfaces can be classified according to the conformation of 

interacting peptide sequences as: (1) continuous short loops, (2) α-helices, β-sheets or 

turns and (3) tertiary structures. The difficulties associated with the design of small 

molecule PPIs increase as the conformation becomes more complex32. 

 In the first class of the PPI interface, which normally comprise 3-4 continuous 

residues and adopt unstructured loop conformation, short peptide segments can be 

converted to either small molecule peptide mimetics or to nonpeptide small molecules.  

XIAP, an inhibitor of apoptosis proteins (IAP), is an example of the first class of 

the PPI interface. It binds to the BIR domain of caspase-3, caspase-7 and caspase-9 and 

inhibits the caspases’ proapoptotic activity41. An endogenous ligand of XIAP, the second 

mitochondrial activator of caspases (Smac) which competes with caspases for binding to 

the BIR domain of XIAP can reactivate caspases and induce cancer cells to undergo 

apoptosis42. The Smac motif at the interface is a four-residue peptide, AVPI, all of whose 

hydrophobic side chains interact with hot-spot residues Glu314, Leu307, Trp310 and 

Trp323 on the XIAP BIR3 domain43. Peptide mimetics utilizing these interactions have 

resulted in discovery of seven clinical drugs and currently, five Smac mimetic 

compounds are active in clinical trials for various types of cancer (Figure 1)32. 
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Figure 1 Smac mimetics bind to XIAP. (A) GDC-0152 (green) binds to XIAP (surface) 
overlaid with Smac peptide (pink). (B) Structures of Smac mimetics in clinical trials. 

 

 Besides peptide-based small molecules, there are also some nonpeptide small 

molecules that mimic the interaction of short peptides. A typical example is the 

bromodomain-containing proteins, which mainly interact with only one residue from the 

interacting partner44. Bromodomain and extra terminal (BET) proteins are epigenetic 

“readers” that recognize histone acetyl-lysine markers and recruit transcriptional 

complexes to the corresponding site for gene transcription45. BET proteins contain a deep 

hydrophobic pocket for acetyl-lysine recognition, which makes it plausible to design 

nonpeptide-based small molecules. The details of BET inhibitor design will be discussed 

below in CHAPTER 3. 

The second class of PPI interfaces consists of well-defined secondary structures 

such as the α-helix. For example, two cell apoptosis related PPIs, that between Bcl-2 

family proteins, and that between oncogenic protein MDM2 and tumor suppressor p53, 

have a well-defined helical structure46,47.  

(A) (B) 
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As the interface of the Bcl-2/BAX interaction is quite large, two strategies have 

been employed for the design of PPIs. One strategy called for the design of stapled 

peptides.  Hydrocarbon stapled BH3 peptides, prepared by olefin-metathesis reactions 

have been shown to have in vivo activities in animal models because they have an 

improved helical propensity as well as stability to proteolysis that benefits their cell-

permeability and pharmacokinetic profiles38. In the second approach, non-peptide small-

molecule inhibitors, such as ABT-73748, were designed. ABT-737 was designed using a 

fragment-based approach, which covers all the interacting hot spots residues and achieves 

sub-nanomolar affinity for the protein (Figure 2). ABT-263, an optimized version of 

ABT-737 is now in Phase I/II clinical trials29, 49. ABT-263, with a molecular weight of 

975 Da and a cLogP value of 12.4, is clearly an outlier of the “Lipinski’s rule of five”, 

but surprisingly, is orally bioavailable.The interface of MDM2/p53 is smaller than the 

interface in the Bcl-2 family protein PPIs, and this allows traditional drug screening 

approaches to succeed. Nutlin-3a, a small molecule inhibitor of the MDM2/p53 

interaction, was discovered by high-throughput screening, followed by extensive 

medicinal chemistry optimization50. MI-88851, a designed spiro-oxindole compound, was 

shown to mimic three key interacting residues in p53: Phe19, Trp23 and Leu26 for 

interaction with MDM2 but has an affintity 1000-times superior to that of p53 (Figure 3). 

MI-7730152, an analog of MI-888, has advanced into clinical development.  
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Tertiary structures, while fewer than the α-helical structures discovered in PPI 

interfaces, contribute to some key pathological events in inflammation and HPV 

infection53, 54. However, due to their structural complexity, there have been very few 

successes in academic studies and no clinical trials have been reported.  

(B) (A) 

(A) (B) 
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In the following chapters, two projects will be presented. These projects use either 

peptide or nonpeptide molecules targeting two protein-protein interfaces for the discovery 

of novel anticancer therapeutics.  
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CHAPTER 2 

Design of stapled peptides targeting RAP1/TRF2 and RAP1/IKK interaction. 

2.1 Introduction 

2.1.1 Function of RAP1 and its interaction with TRF2 and IKK 

Repressor Activator Protein 1 (RAP1) is an evolutionarily conserved telomere-

associated protein that was initially discovered as a protean regulator in budding yeast55, 

where it either represses or activates transcription of genes at its DNA binding site and 

also preserves the topological structure of the chromosome tail.  

Later studies in fission yeast and mammals revealed a different mechanism for  

the impact of RAP1 on telomere integrity. It forms a six-subunit protein complex named 

shelterin56, which facilitates telomere folding and prevents the single strand overhang 

from being processed by DNA repair machinery57-59. Unlike budding yeast RAP1, 

mammalian and fission yeast RAP1 binds to telomere DNA via its interacting partner in 

the shelterin complex, the Telomeric Repeat binding Factor 2 (TRF2) in mammalian cells 

or Tar-EnvZ hybrid molecule (Taz1) in fission yeast60. The biophysical explanation for 

“losing” its direct DNA binding property is loss of the second Myb-like domain during 

evolution. Removal of RAP1 from mouse telomere does not affect telomere capping, or 

the viability and fertility of the animal, but induces chromosome recombination which 

leads to homology-directed repair (HDR) in absence of nonhomologous end joining 

(NHEJ)57. HDR threatens telomere integrity and alters telomere length and is related to 

senescence and cancer61, 62. 



11 
 

In recent years, several telomere-independent functions of RAP1, including gene 

transcription63-66 and NF-κB activation67 have been discovered.  

Martinez et al.63 and Yeung et al.65 reported that RAP1 binds to both telomere and 

extratelomeric region through a (TTAGGG)(2) consensus motif, regulating transcription 

of metabolic related genes such as Pparα and Pgc1-α. In vivo experiments showed that 

RAP1 deficiency leads to metabolic disorders and accumulation of excess fat, and thus 

forges a link between RAP1 transcriptional regulation and obesity65, 66. Surprisingly, 

studies also revealed that RAP1 binds to DNA in a TRF2-independent manner, indicating  

either that RAP1 may directly interact with DNA or that there is an unidentified partner 

that recruits the protein to DNA65.  

RAP1 was also implicated as an NF-κB regulator through a genome-wide gain-of-

function screen67. Free RAP1 was detected in cytoplasm where it recuites IκB kinases 

(IKK) to NF-κB, phosphorylates p65 at Ser536 and activates NF-κB pathway. In turn, the 

activated NF-κB induces RAP1 expression thus forming a feedback loop which further 

amplifies the activation. Knock down of RAP1 with shRNA sensitizes TNFα induced 

apoptosis in breast cancer cell lines67. Accordingly, blocking RAP1/IKK interaction with 

a PPI inhibitor might have a similar effect as RAP1 knockdown and hence, targeting the 

RAP1/IKK interaction with synthetic chemical entities could also be the basis of a 

strategy for the development of clinical therapeutics for cancer. 
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2.1.2 Analysis of the TRF2-RAP1 protein-protein interaction.	

Although the precise details of the interaction between RAP1 to IKK are still 

limited, the crystal structure of human RAP1 and its shelterin partner TRF2 was 

determined several years ago (Figure 4, PDB ID: 3K6G)68.   

 

 

Figure 4 Crystal structure of the RAP1/TRF2 complex. Helix α1 of TRF2 RBM (yellow) 
interacts with RAP1 RCT (green) and a shared binding motif (blue) of RAP1 RCT to 
both TRF2 and IKK. 

 

The RAP1 Binding Motif (RBM) of TRF2 adopts two α-helices with which to 

interact with a six-helical bundled RAP1 C-Terminus (RCT), an evolutionarily conserved 

motif for RAP1 protein-protein interactions. The two helices of RBM, α1 and α2 are both 

three-turn short helices linked by four unstructured residues that enable them to fold and 

clamp onto the surface of RCT68. The crystal structure also provides conformation for 
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part of the IKK interacting motif in RAP1 (Val306-Ser330)67, which locates mainly at a 

19-residued α-helix, interacting closely with α1 of TRF2 (Figure 4). This observation 

reveals on RAP1, an interacting motif shared by TRF2 and IKK, and indicates that the 

short helix α1 which binds to the RAP1/TRF2 interface might be able to block both PPIs 

of RAP1/TRF2 and RAP1/IKK either by competitively binding the same location or 

inducing conformational change from an allosteric site. In our study, we applied a 

structure-based design strategy and developed a potent inhibitor, which blocks 

RAP1/TRF2 interaction in biochemical assays, and functions intracellularly as an NF-κB 

inhibitor. This mechanism is associated with disruption of the RAP1/IKK interaction.   

Our analysis of the TRF2 / RAP1 interface at the helical α1 fragment showed the 

helix to be located at a large and flat hydrophobic area where the six residues Ile283, 

Thr287, Leu288, Ala291, Phe292 and Leu295 in TRF2 interact with corresponding 

hydrophobic pockets in RAP168 (Figure 5A). Meanwhile, two hydrogen bond 

interactions from the backbone of Thr281 and Ile283 on N-terminal loop anchor the 

following helix to the surface (Figure 5B). Two charged residues, Lys289 and Lys293, 

are exposed to solvent and contribute to the solubility of the peptide (Figure 5C).  

Typically, a hydrophobic surface like this is considered undruggable as it is very 

difficult to design potent, specific and drug-like small-molecular inhibitors69. We 

therefore took advantage of the α1 helix sequence and performed extensive modifications 

of the peptide to enhance its binding affinity and cell-permeability. Although such 

peptide-based compounds may not be suitable for clinical development, they may be used 
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as pharmacological tools for target validation as well as further investigation of 

physiological functions of RAP157, 63, 65-67, 70.  

   

 

Figure 5 Analysis of TRF2 α1 (yellow) and RAP1 (green) interactions. (A) Hydrophobic 
interacting residues (sticks). (B) N-terminal hydrogen bond interactions (dashed lines). (C) 
Solvent-exposed residues (sticks), residues to be stapled (pink sticks). 

 

2.1.3 Stapled α-helical peptides. 

 The major obstacle for peptides to approach intracellular targets and become 

therapeutic agents is the lack of drug-like properties, including potency, cell permeability 

and resistance to proteolysis69. One of the reasons is that short helical peptide tends to 

adopt an extended structure when dissolved in aqueous solution38. Such loss of secondary 

structure results in a high energy barrier for restoration of the active conformation and 

exposure of amide bonds make peptides more susceptible to digestion by proteases. To 

(A) (B) 

  (C) 
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overcome these weaknesses, chemical modifications via introduction of conformational 

restrictions that have been intensively studied in the past 20 years30 include hydrogen-

bonding surrogates71-74, photocontrolled α-helices75 and various types of stapled 

peptides38, 69, 76-86. Among the strategies that were pursued, the all hydrocarbon “stapled” 

BH3 helical peptides furnished by ring-closing metathesis (RCM) reaction successfully 

activated leukemia cell-line apoptosis in animal models38 (Figure 6A). This breakthrough 

discovery expanded the role of α-helical peptides from tool molecules for target 

validation to potential drug candidates for clinical therapeutics. An all-hydrocarbon 

stapled peptide ALRN-5281 which is a growth-hormone-releasing hormone agonist 

entered clinical trials in 2013 for the treatment of rare endocrine disorders87. 

 

Figure 6 All-hydrocarbon and triazole stapling strategies. (A) Hydrocarbon stapling 
applies RCM reaction. (B) Triazole stapling uses Huisgen cycloaddion (click chemistry). 

 Another stapling strategy using Huisgen cycloaddition (click chemistry) yielded a 

triazole-stapled BCL9 peptide in our laboratory in 2012 (Figure 6B)86. The investigation 

suggested that the triazole-stapled peptide had improved binding affinity, enzymatic 

stability and helical propensity in biochemical assays. To further explore the application 

(A) 

(B) 
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of triazole-stapled peptides in cell-based assays, we employed the triazole-stapling 

strategy described in this study to develop a potent and cell-permeable TRF2 peptide as 

an inhibitor of RAP1/TRF2. 

2.2 Design and synthesis of high-affinity stapled peptides binding to RAP1. 

2.2.1 Design and optimization of tracers for fluorescence polarization assay. 

The fluorescence polarization (FP) assay is widely used in testing the binding 

affinities of ligands that block protein-protein interactions88. A tracer molecule attached 

to a fluorescein can be excited by polarized light. When the tracer binds to a protein, the 

molecule absorbs energy and emits polarized fluorescence as if it is in a stationary state. 

As long as there are unlabeled ligands binding competitively with the tracer, the energy 

level emitted would be decreased as more tracer molecules are free in solution89. To 

establish an FP assay targeting RAP1/TRF2 interaction, a tracer molecule that binds to 

target protein RAP1 must be designed and synthesized.  

Wild-type 16-residue TRF2 peptides were labeled with 5-carboxyfluorescein (5-

FAM) at either the N-terminus or the C-terminus using two β-alanine molecules as a 

spacer (Table 1). Our saturation experiments showed that the tracer labeled at the C-

terminus has a Kd value of 0.3 µM, 7-times better than the tracer labeled at the N-

terminus. Thus, we developed a competitive FP assay using the tracer labeled at the C-

terminus (cF) for initial binding experiments, but further optimized the assay by using a 

more potent stapled peptide subsequently labeled with FAM  (14TnF, Kd =11 nM).  
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As shown in Table 1, the Kd values of 14TnF and 14TcF are comparable while 

nF and cF have a 7-fold difference. One of the possible explanations is that labeling 

fluorescein at C-terminus might have a stronger α-helix induction effect than fluorescein 

at the N-terminus for unstapled peptides, as it was linked directly to the α-helical portion, 

and this effect gets weaker as the conformation of 14TnF and 14TcF are stabilized by 

staples.  

Table 1 Sequence and Kd value of tracers binding to RAP1 protein. 

ID Sequence Kd (µM) 
nF FAM-βA-βA-TTIGMMTLKAAFKTLS-NH2 2.2 
cF Ac-TTIGMMTLKAAFKTLS-βA-βA-K(FAM)-NH2 0.3 

14TnF 

                                                       
FAM-βA-βA-TTFGMMTLK*AFK^LS-NH2 

0.011 

14TcF 

                                 
Ac-TTFGMMTLK*AFK^LS-βA-βA-K(FAM)-NH2 

0.011 

          *L-configuration, ^D-configuration 

2.2.2 Truncation study  

 Before introducing the staple, we firstly determined the minimum sequence that is 

required for RAP1 interaction. As truncated versions of TRF2 peptides have poor water 

solubility, a solvent-exposed residue Met286 was mutated to Lys to generate 2, which 

binds to RAP1 with a Ki value of 2 µM, very similar to that of the wild-type (WT) 

peptide (Table 2). Truncation of 2 by 1-2 residues from either N or C-terminus gave 9-12 

with weaker or abolished binding affinity to RAP1. These data thus suggest that 16 

residues are necessary for achieving good binding affinity. 
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Table 2 Binding affinitites of truncated TRF2 peptides to RAP1. 

ID Sequence Ki (μM) 
WT Ac-TTIGMMTLKAAFKTLS- NH

2
2.0±0.1 

2 Ac-TTIGMKTLKAAFKTLS-NH
2
 1.8±0.1 

9 Ac-TTIGMKTLKAAFKTL-NH
2
 5.8±0.1 

11 Ac-TTIGMKTLKAAFKT-NH
2
 No Binding 

12 Ac-TIGMKTLKAAFKTL-NH
2
 19.5±0.9 

10 Ac-IGMKTLKAAFKTL-NH
2
 39.1±0.4 

 

2.2.3 Triazole stapling 

 Triazole-stapled peptides were furnished by Huisgen 1,3-dipolar cycloaddition 

reaction, also called “click chemistry”. In our study on BCL9 peptides86, two non-natural 

amino acids norleucine-εN3 (Nle-εN3) and propargylglycine (Pra) were inserted at the i 

and i+4 residues respectively (Figure 6B), with Nle-εN3 adopting an L-confirguration 

and Pra adopting either the L or D-configuration. L-Nle-εN3 was prepared from Fmoc-

protected lysine using the reported method90.   

 To determine the location of these stapling residues, a lysine screening was 

performed on “solvent-exposed” residues Met285, Met286, Ala290 and Thr294 to 

examine the tolerance for a long side chain in these positions (Figure 5C, Table 3). Our 

binding data show that 1 (M285K) decreases binding affinity to 10-fold, while 2-4 all 

bind to RAP1 at a level comparable to that of WT. Based on these data, Met286, Ala290 

and Thr294 were selected as residues to be replaced by L-Nle-εN3 and Pra. The other two 

non-interacting residues, Lys289 and Lys293 were kept in the sequence for reasons 

related to solubility. 
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Table 3 Binding affinities of peptides mutated at solvent-exposed residues. 

ID Sequence IC50 (μM) Ki (μM) 
WT Ac-TTIGMMTLKAAFKTLS-NH

2
 7.4 2.0±0.1 

1 Ac-TTIGKMTLKAAFKTLS-NH
2
 53.8 19.6 

2 Ac-TTIGMKTLKAAFKTLS-NH
2
 6.5 2.2 

3 Ac-TTIGMMTLKKAFKTLS-NH
2
 11.3 4.0 

4 Ac-TTIGMMTLKAAFKKLS-NH
2
 5.9 2.0 

  

Table 4 Binding affinities of stapled peptides and unstapled precursors. 

Ac-TTIGMMTLKAAFKTLS-NH2 
ID  Met286 Ala290 Thr294 IC50 (μM) Ki (μM)  

WT Met Ala Thr 7.4 2.6 

5 
L-Nle-εN3 D-Pra Thr 

137.1 50.2 
5Ta 43.3 15.7 
6 

L-Nle-εN3 L-Pra Thr 
37.8 13.7 

6T 36.5 13.2 
7 

Met L-Nle-εN3 D-Pra 
 >15μMb  - 

7T 0.7±0.1  0.14±0.03
8 

Met L-Nle-εN3 L-Pra 
6.03 2.1 

8T 67.4 24.6 
     aT means the triazole-stapled version of the corresponding peptide sequence.  
         bNo binding up to 15 μM and precipitated. 

 

L-Nle-εN3 and Pra (L or D) were inserted to either Met286-Ala290 or Ala290-

Thr294 locations to give four stapled peptides and their unstapled precursors were also 

prepared (Table 4). As predicted, applying D-Pra in the sequence gives the much more 

weakly binding unstapled peptides 5 and 7. However, their stapled counterparts: 5T and 

7T, exhibit improved binding affinities. The binding affinity of 7T for example, was 

improved from >15 μM to 0.14 μM. Interestingly, L-Pra-containing peptides 6 and 8 bind 

286 290 294
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more potently than the unstapled 5 and 7, but 6T and 8T, failed to show any 

improvement after being stapled. 

To investigate how triazole stapling affects the secondary structure of these 

peptides and their binding affinities, we selected 5T, 7T, 14 and 14T to test their helical 

propensity using circular dichroism spectrometry. Since the solubility of unstapled 

peptide 7 was poor, we used a modified version: 14 with an I283F mutation in the 

sequence of 7. As shown in Figure 7, the unstapled peptide 14 (Ki = 18 μM) adopts a 

random coil conformation in aqueous solution but after conversion to its stapled form 

14T (Ki = 0.019 μM), the α-helical conformation is restored and this results in a 1000-

fold improvement in its binding affinity (Table 5). In contrast, the stapled 5T, which fails 

to improve α-helical population, binds weakly to RAP1 (Table 4). In addition to 

improved helical propensity, the stapled peptides show better solubility than their 

unstapled counterparts. For example, 7T dissolves completely in buffer at 100 μM, while 

7 is precipitated at 15 μM. 

 

Figure 7 Circular dichroism spectra of selected peptides. 
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2.2.4 Mutation of interacting residues 

In an effort to further enhance the binding affinities, we examined the effect of 

mutations of hydrophobic residues in the α1 helix on their interactions with RAP1. 

Structural analysis showed that Ile283 sits in a large hydrophobic pocket in RAP1 in 

which a larger hydrophobic group could be tolerated. We modeled a number of 

compounds containing larger hydrophobic groups to replace Ile283 and showed that 

replacement of Ile283 with compounds containing Phe or Trp may enhance the 

interactions of the peptide with RAP1 (Figure 8).  

 

Figure 8 Modeled binding pose of mutated residues: (A) I283F and (B) I283W. TRF2 α1 
(yellow), modeled mutations (green) and RAP1 (surface) are as depicted. 

 

 Based on our modeling studies, further modifications were performed using 7T as 

a template in which Ile283 was replaced with a larger natural or non-natural amino acid. 

As shown in Table 5, the binding affinities of the resulting peptides improve as the size 

of the hydrophobic moieties becomes larger (7T, 14T, 16T-18T). However, 15T with a 

Trp residue has an affinity similar to that of 7T but less than that of 18T with a naphthyl 

(A) (B) 
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group, due perhaps to the polar nitrogen atom which is unfavorable in this hydrophobic 

environment. As the binding affinities of 14T and 18T are in a comparable range, further 

modifications were made to 14T by introducing a chlorine substitution in different 

positions of the Phe283 phenyl group. This yielded 19T, 20T and 21T, and while 20T 

and 21T have a binding affinity similar to that of 14T, 19T is three-fold more potent. To 

understand the structural basis for the improved binding affinity of 19T over 14T, we 

modeled the binding mode of 19T (Figure 9), which shows that the Cl atom in the 2-

position of the phenyl ring has additional interactions with the F336 residue of RAP1, 

which are absent in 14T, 20T and 21T. 

Table 5 Binding affinities of stapled peptides with modification at Ile283. 

 

ID Ile283 IC50  (μM) Ki  (μM) 

7T 
     

0.696 0.14±0.03 

17T 
    

0.276 0.053±0.0110 

16T 
    

0.182 0.032±0.004 

14T  
    

0.121 0.019±0.030 

15T 
  

0.614 0.13±0.05 

18T 0.104 0.016 

19T 0.065 
0.007±0.001 

20T 0.118 0.019±0.001 

21T 0.134 0.022±0.001 

           *L-configuration, ^D-configuration 

283    
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Figure 9 Binding model of 19T to RAP1. TRF2 α1 (yellow), the chloride atom (green), 
Cl-π interaction (dashed lines), F336 from RAP1 (grey stick) and RAP1 (surface) are as 
depicted. 

 

Table 6 Contribution of stapling and Ile283 modification to the Ki. 

Ac-TTIGMMTLKAAFKTLS-NH2 

ID Ile283 Ala 290 Thr294 Ki (μM) 
Fold improved 

v.s WT 
WT Ile 

Ala Thr 
2.6 1 

22 2Cl-Phe 0.26 10.0 
7T Ile 

Triazole stapled 
0.14±0.03 18.6 

19T 2Cl-Phe 0.007±0.001 371.4 
14T Phe 0.019±0.030 136.8 

 

The unstapled peptide 22 with mutation at Ile283 was also synthesized in order to 

evaluate the individual contributions of stapling and mutation to potency. As shown in 

Table 6, the “mutation only” peptide 22 binds to RAP1 with a Ki value of 0.26 μM, 

while the “staple only” peptide 7T binds to RAP1 with a Ki value of 0.14 μM, indicating 

that using mutation or stapling alone gave 10-20 fold improvement of binding affinity 

over that of the wild-type peptide (WT). Combination of stapling and mutation leads to 

283 290 294
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400-fold improvement in binding compared to the WT, suggesting a cooperative effect of 

stapling and mutation. Another potent peptide, 14T is about 150-times more potent than 

WT, and since preliminary cellular tests using the WST assay showed that 14T dose-

dependently inhibits growth of the MDA-MB-231 breast cancer cell line while 19T was 

much weaker (data not shown), we finally chose 14T for additional investigations. 

2.2.5 Improvement of water solubility 

Since this peptide is largely hydrophobic and precipitates were observed in 100 

μM cell cultures, we next sought to improve its solubility. To this end, we introduced a 

hydrophilic group: 3-(4-methylpiperazin-1-yl)propanoic acid, to the N-terminus of 14T 

using two β-Ala residues as a spacer. This gave 14TnPip (Figure 10) which dissolves in 

cell culture at 300 μM without visible precipitation, and binds to RAP1 with a Ki value of 

10 nM. To further address the specificity issue, an inactive control molecule 14TnPip (-) 

was made by using the D-isoform of Phe283 on 14TnPip. Competitive binding 

experiments showed that this control molecule was about 100-fold less potent than 

14TnPip in binding to RAP1. 

 

Figure 10 Structures and RAP1 binding affinities of optimized stapled peptides for 
cellular studies. *L-configuration, ^D-configuration. 
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2.3 Stapled peptide down-regulates NF-κB activation and inhibits cell growth in breast 
cancer cell lines. 

2.3.1 Stapled peptide down-regulates NF-κB activation in HeLa and MDA-MB-157 cell-
lines. 
 

 Teo et. al.67 have shown that knock-down of RAP1 by RNAi down-regulates the 

level of phosphorylated p65 (P-p65) within 60 minutes in the HeLa cell line and several 

breast cancer cell lines. We analyzed the effect of 14TnPip and 14TnPip(-) to see if they 

have similar effects in the same cell lines. As shown in Figure 11, 14TnPip dose-

dependently down-regulates P-p65 level while the control molecule has no significant 

effect at 300 µM, the highest concentration tested. Similar data were obtained using the 

MDA-MB-157 breast cancer cell line. Taken together, these data indicate that the stapled 

peptide penetrates the cell-membrane and inhibits p65 phosphorylation.  

  

Figure 11 Stapled peptide down-regulates NF-κB activation in cell. 

 

2.3.2 Cell growth inhibition by the stapled peptides.	

As knocking-down RAP1 also sensitizes cancer cell lines to apoptosis67, we tested 

our stapled peptides in a cell-growth inhibition assay using the same cell lines that were 

discussed above.  
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 In our evaluation, 14TnPip was found to be able to dose-dependently inhibit 

proliferation of the MDA-MB-157 and the HeLa cell lines, while the control peptide 

14TnPip (-) is only effective at its highest concentration (Figure 12A). When comparing 

the cell survival rate in both cell lines treated at 100 μM, significant differences were 

observed between the active and control molecules (Figure 12B), suggesting at least 

some specificity for these molecules.  
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Figure 12 Cell growth inhibition of 14TnPip and 14TnPip(-) in MDA-MB-157 and 
HeLa cell lines. (A) Dose-dependent curves. (B) Histograms showing cell survival rate at 
0 or 100 μM concentrations. 

 

2.4 Summary and discussion 

Our design of stapled-peptide inhibitors of RAP1 starts with the co-crystal 

structure of RAP1 RCT domain complexed with the RBM domain of TRF2.  Review of 

(A) 

(B) 
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the structure suggests that a 16mer peptide from TRF2 may serve as a template for the 

design of peptide-based inhibitors of the RAP1/TRF2 protein-protein interaction. We first 

designed and developed a fluorescence polarization assay by synthesis of a fluorescent 

tagged TRF2 peptide. A truncation study established that the 16-residues from TRF2 are 

the minimum sequence associated with good affinity to RAP1. Lysine screening 

identified the potential stapling sites. Triazole stapling based upon the wild-type TRF2 

sequence yielded 7T as the most potent peptide, 18-fold more potent than the wild-type 

peptide. Further modifications of Ile283, replacing it with larger natural or non-natural 

hydrophobic residues resulted in a number of potent stapled peptides, such as 14T and 

19T, which bind to RAP1 at 19 nM and 7 nM, respectively. To address the solubility 

issue concerning these peptides, we synthesized a new analogue of 14T by attaching a 

soluble group to its N-terminus through a spacer, yielding 14TnPip. We also synthesized 

a control molecule for 14TnPip by replacing the natural L-isoform of Phe283 with a D-

isoform, resulting in 14TnPip(-). Testing of 14TnPip and 14TnPip(-) revealed that 

14TnPip dose-dependently down regulates p65 phosphorylation in two cancer cell lines, 

14TnPip(-) being less potent.  

In the RAP1 binding assay, 14TnPip is 100 times more potent than 14TnPip(-). 

However, in the cell growth assay, 14TnPip(-) is just few fold weaker than 14TnPip, 

which suggests there might be some nonspecific effect for the control molecule. As the 

N-methyl-piperazine moiety is considered to be cytotoxic in some cases, conversion of 

this group to morpholinyl could be a solution.  
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Even though the 14TnPip peptide binds to RAP1 at 10 nM of Ki, its activity in 

down-regulation of P-p65 (S536) is in the 100 μM range. The 10000-fold difference may 

be due to its poor cell-permeability and/or the protease stability of the peptides. Our 

subsequent evaluations showed that the stapled peptides had t1/2 < 2 hours in a trypsin 

digestion assay (Figure 13). In order to find a more potent molecule for cellular 

mechanism study or ultimately for drug development, these two issues have to be 

addressed. 

 

Figure 13 Trypsin digestion assay using Ac-ARA-NH2 as negative control. 

 

2.5 Future directions  

2.5.1 Further modification of peptide-based α-helix mimetics. 

 Peptide-based α-helix mimetics are also referred to as Type I mimetics30 which 

include side chain cyclized “stapled” peptides, intramolecular hydrogen bond surrogates, 

and β or α/β mixed peptide foldamers91 (Figure 14).  
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Figure 14 Proposed modification strategies to improve cellular activity (Type I 
mimetics). All-hydrocarbon stapling (I), double stapled stitched peptide (II), α/β mixed 
foldamer (III). 

 

These modifications have already seen success in improving enzymatic stability 

as well as intramolecular activities in a number of cases38, 72, 74, 92-94, especially for the all-

hydrocarbon stapled peptide (I) which shows in vivo activity against cancer38. Comparing 

the stapling strategies, it is noteworthy that same sequence with different side chain 

linkers could provide distinct performances in cellular assays92, 95. Thus, replacing the 

1,2,3-triazole linker with the all hydrocarbon linker could improve the cellular activity of 

TRF2 peptides. In addition to the single staple approach, a second cycle could be inserted. 

This creates a “stitched peptide”85 which tends to have a higher α-helical population and 

reduced exposure of amide bonds for digestion (II). 

 Aside from changing the side chain triazole linker, modification on the backbone 

by using α/β mixed amino acids (III) has been reported to improve the stability to 

proteolysis of the Puma BH3 peptide94. β amino acids alter the enzymatic recognition 
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motif on the backbone, making the peptide more stable and pharmacodynamically 

favorable30.  

2.5.2 Non-peptide α-helix mimetics. 

 Non-peptide α-helix mimetics could behave as drug-like small molecules (Type II 

mimetics) or synthetic molecules that mimic the spatial orientations of the side chain 

residues (Type III mimetics)30.  

 For the design of small molecule PPI inhibitors, we can take advantage of the 

high affinity fluorescent polarization assay and perform high throughput screening with 

virtual screening effort as a filter for this hydrophobic target. Optimization of the hit by 

medicinal chemistry efforts could give a small molecule inhibitor with similar binding 

affinity to that of the peptide but with a more potent activity in cell or animal experiments. 

If the HTS results are not informative with respect to further modification, another 

screening approach, a fragment-based screening could be applied using advantages in 

exploring chemical spaces in PPI interfaces that are large, flat and hydrophobic. 

Besides design of small molecules for various PPI interfaces, application of Type 

III mimetics (Figure 15)96-98 is a cheaper and broadly applicable strategy. The interacting 

side chains i, i+4, i+7 can be directly installed onto the template at appropriate sites, and 

this gives these templates an application that is broader than that of the small molecules. 

In the case of TRF2, there are two combinations: Thr285-Ala289-Leu295 and Leu288-

Phe292-Ser296. These two faces can be embedded into a template to make two molecules, 

both of which should be attached with the N-terminal loop region. If molecules bearing 
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these features have useful binding affinity to RAP1, further modifications can be made to 

make the molecule more drug-like. 

 

Figure 15 Selected non-peptide proteomimetic scaffolds (Type III mimetics). 

 

2.6 Experiments  

2.6.1 Peptide synthesis 

All the peptides were synthesized using Fmoc solid phase peptide synthesis 

(SPPS) strategy using an ABI 433A peptide synthesizer. The conditions regarding 

synthesis and purification followed previously reported methods86.  

2.6.2 Fluorescence polarization assay 

 Competitive FP binding assays were designed and optimized to determine the 

binding affinities of synthesized peptides to the RAP1 protein. A fluorescent probe (cF or 

14TnF) was designed and synthesized by tethering FAM to the C terminal of a stapled 

TRF2 peptide which binds to RAP1 with high affinity, as determined by preliminary 

experiments.  



32 
 

The Kd value of the tracer to RAP1 protein was determined by monitoring the 

total fluorescence polarization of mixtures having the fluorescent probe at a fixed 

concentration and proteins at increasing concentrations up to full saturation. Fluorescence 

polarization values were measured using the Infinite M-1000 plate reader (Tecan U.S., 

Research Triangle Park, NC) in Microfluor 1 96-well, black, round-bottom plates 

(Thermo Scientific). Serial dilutions of the protein being tested were mixed with the 

tracer to a final volume of 125 l in the assay buffer (100mM potassium phosphate, pH 

7.5, 100 g/ml bovine γ-globulin, 0.02% sodium azide, Invitrogen, with 0.01% Triton X-

100 and 4% DMSO). The final tracer concentration was 2 nM. Plates were incubated at 

room temperature for 1-2 hours with gentle shaking to assure equilibrium. The 

polarization values in millipolarization units (mP) were measured at an excitation 

wavelength of 485 nm and an emission wavelength of 530 nm. Equilibrium dissociation 

constants (Kd) were then calculated by fitting the sigmoidal dose-dependent FP increases 

as a function of protein concentrations using Graphpad Prism 5.0 software (Graphpad 

Software, San Diego, CA). The influence of DMSO, detergent and incubation time was 

evaluated to determine the optimal conditions under which the Kd value showed minimal 

variation. 

The IC50 and Ki values of compounds were determined through a compound dose-

dependent competitive binding experiment in which serial dilutions of compounds 

competed against a fixed concentration of the fluorescent probe for binding to the protein 

with a fixed concentration (typically 2 to 3 times the Kd values determined above). 

Mixtures of 5l of the tested compounds in DMSO and 78 l of preincubated 



33 
 

protein/probe complex solution in the assay buffer (100mM potassium phosphate, pH 7.5, 

100 g/ml bovine γ-globulin, 0.02% sodium azide, Invitrogen with 0.01% Triton X-100) 

were added into assay plates and incubated at room temperature for 1 hour with gentle 

shaking. Final concentrations of the protein and probe were 40 nM and 2 nM, 

respectively. Negative controls containing protein/probe complex only (equivalent to 0% 

inhibition), and positive controls containing only free probes (equivalent to 100% 

inhibition), were included in each assay plate. FP values were measured as described 

above. IC50 values were determined by nonlinear regression fitting of the competition 

curves. The Ki values of competitive inhibitors were calculated using the derived 

equation described previously, based upon the measured IC50 values, the Kd value of the 

probe to the protein, and the concentrations of the protein probes in the competitive 

assays99, 100. 

2.6.3 Circular Dichroism  

Circular Dichroism experiments were performed using a Jasco J715 

spectropolarimeter. Peptides were dissolved in 10 mM phosphate buffer (pH = 7.4) to 

produce a ~100 μM solution. Spectrum generation and percentage helicity calculation 

were performed using the same method in the previous study86, 101. 

2.6.4 Proteolytic stability assasys 

 In a 12-well plate, peptide (100 μM) and tryptophan (100 μM) as an internal label, 

were co-incubated in presence of trypsin (5 nM) for two hours. Samples were collected at 

20, 40, 60, 80, 100, 120 mins time points, quenched with 20% TFA aqueous solution to 
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make a 50 μM sample solution which was centrifuged at 13,000 rpm for 5 minutes before 

being analyzed by HPLC (Method: 20%-50% MeCN in 30 mins). The AUC of peptide 

peaks were calculated and the percentage remaining was plotted as is shown in Figure 13. 

2.6.5 Molecular modeling 

Based on the crystal structure between RAP1 and TRF2 (PDBID: 3K6G)102 the 

chemical linkage between A290 and T294 with different D- and L- conformations were 

built using MOE program. The designed peptides were minimized to assess the potential 

clash of the linker with RAP1 and the conformational deviation of the helix from the 

crystal structure of the unstapled TRF2 peptide. The model structure with least 

conformational deviation from the wild type peptide was correlated with the highest 

binding affinity determined from the biochemical assay. The same method was used to 

model the binding pose of 19T and gave the modeled structure shown in Figure 9. 

2.6.6 Cellular assays	

The cell growth inhibition and western-blot analysis followed a similar method 

reported previously103.  

  



35 
 

Appendix 

Structures of TRF2 peptides 

ID Sequence 
m/z [M+2H]2+/2 

(detected) 

WT Ac-TTIGMMTLKAAFKTLS-NH2 878.27 

1 Ac-TTIGKMTLKAAFKTLS-NH2 876.80 

2 Ac-TTIGMKTLKAAFKTLS-NH2 876.36 

3 
Ac-TTIGMMTLKKAFKTLS-NH2 

906.72 

4 
Ac-TTIGMMTLKAAFKKLS-NH2 

891.36 

5 
Ac-TTIGM(L-Nle-εN3)TLK(D-Pra)AFKTLS-NH2 

901.92 

5T 
 

Ac-TTIGM*TLK^AFKTLS-NH2

901.92 

6 
Ac-TTIGM(L-Nle-εN3)TLK(L-Pra)AFKTLS-NH2 

901.90 

6T 
 

Ac-TTIGM*TLK*AFKTLS-NH2

901.90 

7 
Ac-TTIGMMTLK(L-Nle-εN3)AFK(D-Pra)LS-NH2 

916.92 

7T 
 

Ac-TTIGMMTLK*AFK^LS-NH2

916.92 

8 
Ac-TTIGMMTLK(L-Nle-εN3)AFK(L-Pra)LS-NH2 

916.88 

8T 
 

Ac-TTIGMMTLK*AFK*LS-NH2

916.84 

9 
Ac-TTIGMMTLKAAFKTL-NH2 

834.06 

10 
Ac-IGMMTLKAAFKTL-NH2 

731.86 

11 
Ac-TTIGMMTLKAAFKT-NH2 

776.46 
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12 
Ac-TIGMMTLKAAFKTL-NH2 

782.34 

14 
Ac-TTFGMMTLK(L-Nle-εN3)AFK(D-Pra)LS-NH2 

933.84 

14T 
 

Ac-TTFGMMTLK*AFK^LS-NH2 

933.84 

15 
Ac-TTWGMMTLK(L-Nle-εN3)AFK(D-Pra)LS-NH2 

953.30 

15T 
 

Ac-TTWGMMTLK*AFK^LS-NH2 

953.42 

16 
Ac-TTChaGMMTLK(L-Nle-εN3)AFK(D-Pra)LS-NH2 

936.78 

16T 
 

Ac-TTChaGMMTLK*AFK^LS-NH2 

936.82 

17 
Ac-TTTalGMMTLK(L-Nle-εN3)AFK(D-Pra)LS-NH2 

923.72 

17T 
 

Ac-TTTalGMMTLK*AFK^LS-NH2 

923.44 

18 
Ac-TT(1-Nal)GMMTLK(L-Nle-εN3)AFK(D-Pra)LS-NH2 

958.82 

18T 
 

Ac-TT(1-Nal)GMMTLK*AFK^LS-NH2 

958.86 

19 
Ac-TT(2Cl F)GMMTLK(L-Nle-εN3)AFK(D-Pra)LS-NH2 

951.22 

19T 
 

Ac-TT(2Cl F)GMMTLK*AFK^LS-NH2 

950.74 

20 
Ac-TT(3Cl F)GMMTLK(L-Nle-εN3)AFK(D-Pra)LS-NH2 

950.86 

20T 
 

Ac-TT(3Cl F)GMMTLK*AFK^LS-NH2 

951.32 

21 
Ac-TT(4Cl F)GMMTLK(L-Nle-εN3)AFK(D-Pra)LS-NH2 

951.24 

21T 
 

Ac-TT(3Cl F)GMMTLK*AFK^LS-NH2 

950.76 
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22 
Ac-TT(2Cl F)GMMTLKAAFKTLS-NH2 

913.56 

14TnPip 

(+) 
 

Pip-βA βA-TTFGMMTLK*AFK^LS-NH2 
1062.54 

14TnPip 

(-) 
 

Pip-βA βA-TT(^F)GMMTLK*AFK^LS-NH2 
1061.67 

nF FAM-βA-βA-TTIGMMTLKAAFKTLS-NH2 
1107.80 

cF Ac-TTIGMMTLKAAFKTLS-βA-βA-K(FAM)-NH2 
1193.07 

14TnF 
 

FAM-βA-βA-TTFGMMTLK*AFK^LS-NH2 

1162.89 

14TcF 
 

Ac-TTFGMMTLK*AFK^LS-βA-βA-K(FAM)-NH2 

1247.84 

*L-configuration ^D-congiguration. 

Abbreviations: 

L-Nle-εN3

 

D-Pra 

 

L-Pra 

 

Cha

 

Tal 

 

1-Nal

 

2Cl F

 

3Cl F

 

4Cl F βA

 

Pip
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CHAPTER 3 
Structure-based design and synthesis of novel small-molecular inhibitors targeting 

BET bromodomains. 

3.1 Introduction 

3.1.1 Epigenetic histone modifications 

Epigenetics is the study of heritable changes in gene expression in the absence of 

alterations to the nucleoside sequence104. The molecular mechanisms of epigenetics 

include DNA methylation and histone modifications including methylation and 

acetylation, which are among the most frequently observed. These modifications alter the 

interaction between histone and DNA or other nuclear proteins, control chromatin 

folding/unfolding, and consequently modulate gene transcription26. A large number of 

proteins have been found to be involved in histone modifications and a growing number 

of these have been implicated in human diseases, including cancer, inflammation and 

neuropsychiatric disorders26, 105.   

Targeting proteins that are involved in these processes led to the design and 

synthesis of a number of small-molecule regulators, some of which have been approved 

for the treatment of cancer. A number of other compounds are in clinical trials for cancer, 

inflammation and neuropsychiatric disorders26, 105.  

There are three different types of proteins involved in histone modifications. 

These are termed “writers”, and include histone acetyltransferases (HATs) and histone 

methyltransferases (HMTs), “erasers” such as histone deacetylases (HDACs) and histone 

demethylases (HDMs), and “readers” such as acetyl-lysine readers, which include 
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bromodomain-containing proteins. These writers, erasers and readers work in concert to 

modulate the chromatin structure and regulate gene expression26,105  (Figure 16). In this 

Chapter, we will focus on structure-based design of a new class of small-molecule 

inhibitors to target the bromodomain and extra-C terminal domain (BET) protein family. 

 

Figure 16 Transcriptional regulations by HATs, bromodomains and HDAC. 

 

3.1.2 Bromodomains as acetylated lysine binding partners 

 Bromodomains are a group of evolutionarily conserved protein motifs106 which 

were initially discovered in the study of brahma, a gene required for activation of 

homeotic genes in Drosophila107. The mechanism by which bromodomains modulate  

protein-protein interactions was revealed about 12 years ago when 3D structures of 

bromodomains were determined, and showed direct interaction with acetylated lysines 

(K-Ac) in histone108 (Figure 17, PDB ID: 3jvk). Structurally, bromodomains adopt a four 

left-handed helical bundle conformation composed of helices A, B, C and Z. The 

unstructured loop regions ZA and BC pack against each other and form a hydrophobic 
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pocket for K-Ac recognition. Despite the length and sequential variation of ZA and BC 

loops among bromodomain subtypes, the sequence at K-Ac binding site is highly 

conserved. Normally, an asparagine residue such as Asn140 in BRD4 BD1 will form a 

hydrogen bond with the oxygen atom of an acetyl carbonyl, while a water-mediated 

hydrogen bond network was observed to connect the acetyl-lysine with the protein 

backbone. Beyond the conserved binding motif, variations of residues outside the K-Ac 

recognition cavity are thought to be important for selectivity108.  

  

Figure 17 Co-crystal structure of BRD4 BD1 with a K-Ac containing peptide. (A) BRD4 
BD1 (green cartoon), K-Ac containing peptide (yellow stick). (B) Detailed interactions at 
K-Ac recognition site. The K-Ac peptide is shown as yellow sticks with carbon atoms 
colored in green or yellow, oxygen atoms in red and nitrogen atoms in blue. Water 
molecules are shown as red spheres and the hydrogen bonds are denoted by cyan dash 
lines. 

 

3.1.3 Pharmacological significance of BET bromodomains 

The Bromodomain and Extra Terminal (BET) proteins (BRD2, BRD3, BRD4, 

and BRDT) are a group of bromodomain-containing proteins that have been reported to 

(B) (A) 
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be involved in a number of pathologically relevant109 biological events. Small-molecule 

BET inhibitors contribute to the BET family protein functions as transcriptional 

activators in cancer110-116, inflammation117, HIV infection118, 119 and cardiovascular 

diseases116, 118, 119.  

In cancer, the molecular mechanism of BRD4 depends on cellular context of a 

different subtype. For example, NUT-Midline carcinoma, an aggressive epithelial cancer, 

is chacterized by formation of a fusion protein between the NUT coding sequence and 

BRD3 or BRD4 for oncogenic function110. In hematological malignancies such as MLL-

fusion leukemia and acute myeloma, BRD4 transcriptionally activates oncogenes such as 

c-MYC and BCL2 (Figure 18)115. Similarly, inhibition of BET bromodomains in 

neuroblastomas suppresses NMYC transcription120. In contrast, the MYC level is 

independent of BET functions in non-small-cell lung cancer, but it involves modulation 

of FOSL1 by BET inhibition112. BRD2-BRD4 proteins also have been shown to interact 

directly with the androgen receptor (AR) and function as co-activators of AR, and BET 

inhibition is effective in vitro and in vivo against castration-resistant prostate cancer114. 

 BET-dependent transcriptional regulation has also been found in other human 

diseases and conditions. For example, in inflammation, BRD2-4 is related to 

lipopolysaccharide (LPS) induced lethal septic shock117. BRD4 is also linked to the 

regulation of cardiomyocyte hypertrophy that can prevent heart failure121, 122. Further 

mechanism studies show that BRD4 binds to positive transcription elongation factor (P-

TEFb) and regulates Pol II-dependent transcription123.  This interaction is also important 
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in HIV replication because BRD4 competitively binds to P-TEFb with Tat resulting in 

HIV latency118. Meanwhile, a Tat-independent mechanism was also reported to involve 

BRD2 as an endogenous regulator of HIV latency124. BRD2 has also been reported to be 

related to metabolism125 and lymphomagenesis126. Inhibition of a testis specific BET 

family member BRDT, results in reduction of spermatogenesis and testis volume which 

offers a new approach to male contraception127.  

 

Figure 18 BRD4 transcriptionally activates oncogenes c-MYC and BCL2 family in MLL-
fusion leukemia. 

 

3.1.4 Development of BET bromodomain inhibitors for cancer treatment 
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Figure 19 Potent and selective BET bromodomain inhibitors. 
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 Small molecular inhibitors that bind selectively to BET family bromodomain 

proteins have been reported to be able to down-regulate pathogenic gene transcription, 

and demonstrate strong in vivo activity in animal models, especially in the area of 

oncology110, 112, 114, 115. In October 2014, there were reported to be six BET bromodomain 

inhibitors in clinical trials for the treatment of various types of cancer 

(https://clinicaltrials.gov). 

Studies of selective BET bromodomain inhibitors in academia started from 

Bradner’s group at the Dana-Farber Cancer Institute110. They synthesized JQ-1 (Figure 

19), a thienotriazolodiazepine type of compound which had been initially disclosed in a 

Mitsubishi Tanabe Pharma patent128, 129. JQ-1 has served as a pharmacological tool with 

which to elucidate the functions of BET family proteins and their pharmacological 

significance as a class of drug targets111-114, 118, 124, 127, 130-135. In 2012, a Swiss biotech 

company Oncoethix licensed OTX015136, a JQ1 analog discovered by Mitsubishi, and 

initiated a Phase I clinical trial for the treatment of different forms of human cancer137, 138. 

I-BET 762, a benzotriazolodiazepine molecule was discovered by 

GlaxoSmithKline (GSK) via phenotypic and chemoproteomic screenings139. This was 

initially reported as an anti-inflammatory therapeutic agent but it has also shown 

antitumor effects in other studies117 and it is now in Phase I clinical trials for treatment of 

NUT-midline carcinoma140. In addition to I-BET 762, GSK also published I-BET 151, a 

new chemical scaffold featuring dimethylisoxazole as an acetyl-lysine mimetic (Figure 
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19). This molecule showed significant improvement in plasma exposure compared to JQ1 

and I-BET 762, and effectively prolonged survival in a MLL-fusion leukemia model115. 

Other BET inhibitiors in clinical trial for cancer treatment are TEN-010 and CPI-

0610 (structures not disclosed). TEN-010 is now in clinical trials for treatment of solid 

tumors while CPI-0610 has three clinical trials ongoing mainly addressing hematological 

malignances141-144.  

Despite the fact that there is already more than one candidate in this area, it is 

well known that different chemical moieties with the same therapeutic target may 

demonstrate different toxicity and pharmacokinetic profiles which result in different 

clinical applications. Therefore, we have designed and synthesized several γ-carboline-

containing compounds as a new class of potent small-molecule BET inhibitors. 

3.2 Structure-based design of novel BET bromodomain inhibitors. 

 We undertook the design of new BET bromodomain inhibitors based on the 3D 

co-crystal structure of 4 (I-BET 151) with BRD4 BD1 (Figure 20A). The interaction of 4 

with the BRD4 BD1 protein can be divided into three regions: the dimethylisoxazole 

“head” mimics the acetyl-amine, which forms a direct or water-bridged hydrogen 

bonding network with the Asn140 and Tyr97 residues of BRD4 BD1 in the K-Ac 

recognition pocket; the “body”, a [6,6,5] tricyclic ring system, which serves as the acetyl-

lysine side chain that interacts with the channel; and the “tail”, a pyridyl group which 

interacts with “WPF shelf”, a hydrophobic pocket outside the K-Ac binding cavity, which 

is conserved in bromodomain proteins of the BET subfamily139. Since 4 also binds to  
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BRD4 BD2 with a high affinity145, we also modeled the binding mode of 4 complexed 

with BRD4 BD2 and found that the binding pose is similar to that observed with BRD4 

BD1 (Figure 20B). 

 

Figure 20 Co-crystal and modeled structures of I-BET 151 (4). (A) Co-crystal structure 
of 4 with BRD4 BD1. (B) Modeled structure of 4 with BRD4 BD2. Compound 4 is 
shown in stick form with carbon atoms colored in green or yellow, oxygen atoms in red 
and nitrogen atoms in blue. Electrostatic potential is mapped to the surface of BRD4 BD1 
and BD2 proteins where blue, red, grey correspond to positive, negative and neutral 
charged regions, respectively. Water molecules are shown as red spheres and the 
hydrogen bonds are denoted by cyan dash lines. 

 

 The design of a new class of BET inhibitors started by replacing the [6,6,5]-

tricyclic “body” of 4 with a [6,5,6] γ-carboline system. The electron statistics of the two 

tricyclic systems was mapped in Figure 21C, which suggests that both of the structures 

are conjugated systems with similar shape and electron distribution, and a major 

difference at the central amine which was converted from an H-bond acceptor to an H-

bond donor. Based on this observation, new and potent BET bromodomain inhibitors 

(RX series) can be discovered by employing the γ-carboline structure and performing 
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structure-activity relationship (SAR) study using different “head” and “tail” groups 

(Figure 21A).  

 

Figure 21 Design of γ-carboline core structure. (A) Conversion from I-BET-151 to RX 
series with R and X representing the “head” or “tail” group. (B) Structures of new RX 
series compounds 5 and 6. (C) Electrostatic potential mapped to the I-BET151 and RX 
series core fragments. 

 

To test this design idea, two molecules bearing γ-carboline were first synthesized, 

employing dimethylisoxazole as the “head”, and with either an H (5) or a Cl (6) atom at 

the “tail” (Figure 21B). Modeling showed that 5 adopts a binding mode similar to that of 

the “head” and “body” parts of 4, but misses a fragment which interacts with the 

hydrophobic WPF shelf  (Figure 22). Binding affinities of 5 and 6 to the two domains of 

BRD4 were obtained using a Fluoroscence Polarization assay. The data showed that 5 
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binds to BD1 at 1644 nM, and BD2 at 824 nM; while 6 binds to BD1 at 305 nM, BD2 at 

194 nM, respectively (Table 7). Although both compounds 5 and 6 are weaker than 4, we 

viewed these compounds as promising starting points for further optimization since both 

compounds miss the important “tail” moiety which interacts with the WPF hydrophobic 

shelf near Met149 (Figure 22A).  

 

Figure 22 Modeled structures of compound 5 (yellow stick) bound to (A) BRD4 BD1 
and (B) BRD4 BD2. Compound 5 is shown in stick with carbon atoms colored in yellow, 
oxygen atoms in red and nitrogen atoms in blue. Electrostatic potential is mapped to the 
surface of BRD4 BD1 and BD2 proteins where blue, red, grey correspond to positive, 
negative and neutral charged regions. Water molecules are shown as red spheres and the 
hydrogen bonds are denoted by cyan dash lines. 

 

3.3 Structure activity relationship studies of the new class of BET bromodomain 
inhibitors. 
 

We next performed SAR studies based upon compounds 5 and 6 with the goal of 

further improving the binding affinities to the BET proteins. 
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3.3.1 SAR of “head” groups 

Replacing R group with other isoxazoles or pyrazoles gave compounds 7-11 

(Table 7). Enlarging substituents on 3- and 5-positions of isoxazole by adding one carbon 

atom on either or both sides yielded 7-9. Compound 7 binds to BRD4 at 1243 nM to BD1 

and 478 nM to BD2, about 3-4 fold weaker than 6. Shifting the ethyl group to the other 

side further reduced binding affinity of 6 by 10-fold (8, Ki =2814 nM to BRD4 BD1, 

2182 nM to BRD4 BD2). Employing a 3,5-diethylisoxazole moiety as the R group gave 9, 

which binds to BD1 and BD2 at 4842 nM and 1948 nM respectively, even weaker than 8 

at BD1. Introducing 3,5-dimethyl-1H-pyrazole (10) as the head group almost completely 

eliminated its binding to BRD4 BD1. Replacement of dimethylisoxazole with 1,3,5-

trimethyl-1H-pyrazole resulted in 11, which is 4-6 fold weaker than 6. Hence, 3,5-

dimethyloxazole is the best among the head groups explored.  

Table 7 SAR of new BET inhibitors with modification “head” groups. 

 

ID R X 
BRD4 BD1 BRD4 BD2 

IC50 (nM) Ki (nM) IC50 (nM) Ki (nM) 

4 - - 31.7±7.7 9.0±2.9 226±44 74.8±8.6 

5 

 

H 4592±72 1644±71 2691±460 824±25 
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6 

 

Cl 862±100 305±26 579±71 194±24 

7 

 

Cl 
3868±1972 1243±549 1817±136 478±69 

8 

 

Cl 
9443±3797 2814±782 13826±3706 2182±132 

9 

 

Cl 
14022±781 4842±29 6175±549 1948±175 

10 

 

Cl 
>10000 > 10000 73970±7844 8322±1272 

11 

 

Cl 
4874±320 1726±17 2580±80 867±107 

 

3.3.2 SAR of five-membered aromatic system as “tail” groups. 

 Modeling of the “tail” group suggested that replacement of the Cl atom in 

compound 6 with a 3,5-dimethylisoxazole group yielded 12, which can occupy the WPF 

shelf and may enhance the binding affinity. Indeed, compound 12 binds to BRD4 BD1 

and BD2 proteins with Ki values of 47.8 nM and 70.1 nM respectively, and is thus 3-

times more potent than compound 6.  
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Figure 23 Co-crystal structures of (A) 6 and (B) 12 with BRD4 BD2. Compounds are 
shown in stick with carbon atoms colored in green, oxygen atoms in red and nitrogen 
atoms in blue. Electrostatic potential is mapped to the surface of BRD4 BD1 and BD2 
proteins where blue, red, grey correspond to positive, negative and neutral charged 
regions. Water molecules are shown as red spheres and the hydrogen bonds are denoted 
by cyan dash lines.  

To confirm our predicted binding mode for 12 and facilitate further optimization, 

we determined a co-crystal structure of 6 and 12 complexed with the BRD4 BD2 protein 

at 1.33 Å resolution (Figure 23). The co-crystal structure for 12 shows that it indeed 

interacts nicely with the three key regions in BRD4 protein observed in the co-crystal 

structure of 4 complexed with BRD4 BD1.  

The crystal structure also suggests that the WPF shelf can accommodate groups 

larger than 3,5-dimethylisoxazole. Since 1H-pyrazoles have more structural diversity 

than isoxazoles, we performed additional modifications at this site using 1H-pyrazole 

ring systems (Table 8).  

Replacement of the 3,5-dimethylisoxazole group in 12 with a 1H-pyrazole group 

or 3,5-dimethyl-1H-pyrazole resulted in compounds 13 and 14, which have Ki values of 

98.8 nM and 247 nM to BRD4 BD1, 2-5 times less potent than 12. Adding methyl or 

(B) (A) 
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phenyl substitutions to the NH group of 3,5-dimethyl-1H-pyrazole group in 14 gave  15 

and 16, which bind to BRD4 BD1 with comparable affinities (116 nM and 103 nM), 

suggesting that this position might be solvent-exposed. Replacement of both of the 

methyl groups on the “tail” of 14 with ethyl groups resulted in compound 17, which has a 

Ki value of 44.1 nM to BRD4 BD1, 6-times more potent than 14. Changing the “tail” to a 

3-cyclopropyl-5-methyl-1H-pyrazole group led to compound 18 (RX-37), which has a Ki 

value of 24.7 nM to BRD4 BD1 and is 10-times more potent than 14 and 2-times more 

potent than 12. Replacement of the “tail” group in 14 with a 3-phenyl-5-methyl-1H-

pyrazole group yielded compound 19, which binds to BD1 with a similar affinity but is 3-

times less potent in BD2 than compound 18. 

Table 8 SAR of new BET inhibitors with modification “tail” groups. 

 

ID X 
BRD4 BD1 BRD4 BD2 

IC50 (nM) Ki (nM) IC50 (nM) Ki (nM) 

4 
- 

- 31.7±7.7 9.0±2.9 226±44 74.8±8.6 

12 

 

134±7 47.8±1.0 221±38 70.1±2.0 

13 
 

276±44 98.8±11.6 324±8 100±16 

14 

 

702±53 247±29 658±67 201±5 
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15 
N

N

 

327±11 116±5 481±86 134±42 

16 

 

301±37 103±3 316±24 98.1±6.1 

17 

 

131±11 44.1±6.4 61.9±13.9 16.1±2.8 

18 

 

75.5±6.2 24.7±1.0 36.5±8.9 12.2±1.6 

19 

 

80.6±1 26.9±1.0 129±45 38.0±2.2 

 

The high-resolution co-crystal structure of 18 complexed with BRD4 BD2 

provides a structural basis for its high affinity binding to BDR4 BD2. As shown in 

Figure 24A, 18 binds to BRD4 BD2 in a fashion similar to what was observed for 6 and 

12. The 3,5-dimethylisoxazole sits comfortably in the K-Ac binding pocket; its oxygen 

atom forms a hydrogen bond with the side chain amide of Asn433, its nitrogen atom is 

involved in a water-mediated H bond network in which Tyr390, Pro375 as well as the 

indole amine of γ-carboline are linked via six conserved water molecules139 (Figure 24B). 

The WPF shelf has hydrophobic interactions with the pyridyl of γ-carboline and the 

cyclopropyl of the “tail”. The NH group of 1H-pyrazole is solvent exposed, which is 

consistent with the binding data for compounds 15 and 16 (Table 8) 

 (B) 
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Figure 24 Co-crystal structure and schematic representation of 18 interactions. (A) 3D 
co-crystal structure of compound 18 and BRD4 BD2. 18 is shown in stick form with 
carbon atoms colored in green, oxygen atoms in red and nitrogen atoms in blue. 
Electrostatic potential is mapped to the surface of BRD4 BD2 where blue, red, grey 
correspond to positive, negative and neutral charged regions. Water molecules are shown 
as red spheres and the hydrogen bonds are denoted by cyan dash lines. (B) Schematic 
representation of 18 (RX-37) interactions in K-Ac recognition pocket. 

 

3.4 Selectivity of new BRD4 inhibitors in biochemical and cellular assays 

3.4.1 Selectivity among BET family bromodomains 

We selected the three most potent inhibitors 17-19 and tested their binding 

affinities to other bromodomains in the BET family, with compounds 1-4 as references. 

The results are summarized in Table 9, which shows that compounds 17, 18 and 19 have 

low nanomolar affinities to both the BD1 and BD2 domains in BRD2 and BRD3 proteins. 

Compound 18 is the most potent inhibitor with Ki values of 11.1 nM and 11.7 nM to 

BRD2 BD1 and BD2 domains, and 7.3 nM and 3.2 nM to BRD3 BD1 and BD2 domains, 

respectively. 

  

(B) (A) 
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Table 9 Binding affinities of new BET inhibitors among BET family members. 

ID 
K

i 
(nM)

BRD2 BRD3 BRD4 
BD1 BD2 BD1 BD2 BD1 BD2

1 13.2±4.5 12.5±2.7 6.6±1.2 8.9±1.6 7.6±0.4 10.7±1.1 
2 16.6±1.0 5.4±0.2 10.7±1.0 4.0±0.6 10.9±0.6 6.0±0.3

3 56.8±10.0 49.2±6.5 53.9±6.0 30.3±4.5 38.8±5.0 32.3±3.8 
4 9.0±4.3 49.6±10.8 7.2±3.0 22.3±3.5 9.0±2.9 74.8±8.6 
17 21.0±3.3 15.4±3.2 12.9±2.9 4.2±0.4 44.1±6.4 16.1±2.8 
18 11.1±1.0 11.7±3.0 7.3±0.1 3.2±0.5 24.7±1.0 12.2±1.6 
19 12.2±1.7 22.2±2.8 10.4±1.0 9.4±1.0 26.9±1.0 38.0±2.2 

 

3.4.2 Selectivity among bromodomains from other families 

To test the selectivity of 18 to bromodomains from the BET family, we applied 

Bio-Layer Interferometry, a label-free technology for assessment of interactions between 

biomolecules. The binding affinities of 18 to BRD2-4 BD1 and BD2 domains and 9 

representative bromodomain-containing proteins from 7 other subfamilies were evaluated. 

Compounds 1, 3 and 4 were included as controls. 

Table 10 Binding affinities of selected BET inhibitors to other family bromodomains 
measured by Bio-Layer Interferometry. 

Protein 

aK
d
 (nM) 

1 3 4 18 

BRD2(BD1) 14.7±1.9 159±11 54.8±7.8 48.1±4.0 

BRD2(BD2) 6.2±1.8 45.4±1.0 70.3±7.3 29.6±6.9 
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BRD3 (BD1) 13.6±1.0 60.7±10.3 29.8±7.3 17.7±3.6 

BRD3 (BD2) 11.7±1.5 40.7±8.5 40.5±7.2 16.3±4.1 

BRD4 (BD1) 12.8±2.9 99.4±5.8 52.8±9.2 47.0±14.8 

BRD4 (BD2) 6.7±0.7 47.6±2.7 215±29 44.6±22.1 

CREBBP > 10000 3084 670 

ATAD2A > 10000 > 10000 > 10000 

ATAD2B > 10000 

TRIM24 ~ 10000 

BAZ2B > 10000 

MLL1 9500 

TAF1B2 > 10000 

BRG1 > 10000 

PB1BR5 > 10000 
aKd values were calculated using global fitting.  

Compound 18 has Kd values of 16.3-48.1 nM for BET family proteins, which are 

largely consistent with the binding data obtained from the FP-based, competitive binding 

assays (Table 10). Among the 9 non-BET bromodomain proteins evaluated, compound 

18 displays a moderate affinity to CREBBP protein (Kd = 670 nM) but has very low 

affinities (Kd values ≥ 10,000 nM) for all 8 other bromodomain proteins. These data 

show that 18 is a potent BET bromodomain inhibitor with selectivity over other 

bromodomain proteins. 

3.5 RX-series BET bromodomain inhibitors selectively induce cell-cycle arrest and 
apoptosis in leukemia cell-lines. 
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 Previous studies have shown that potent and specific BET inhibitors such as 1, 3 

and 4 potently inhibit cell growth in human acute leukemia cell lines containing the 

MLL1 chromosomal rearrangement, such as MV4;11 and MOLM-13 cell lines115. Also, 

BET inhibitors demonstrate selectivity over human acute leukemia cell lines harboring 

different gene rearrangements such as the K562, which harbors the BCR-ABL fusion 

protein111. We tested three of the most potent BET inhibitors (17-19) for their cellular 

activity and specificity among MV4;11, MOLM-13 and K562 cell lines.  

The resulting data (Table 11) demonstrated that compounds 17-19 potently 

inhibit cell growth in the MV4;11 and MOLM-13 cell lines.  For example, 18 has IC50 of 

20 nM and 66 nM in inhibition of cell growth in MV4;11 and MOLM-13 cell lines, 

respectively, and is therefore as potent as 1 (JQ-1) but 4-8 times more potent than 3 and 4. 

Compounds 17-19 have IC50 values of >2,000 nM in inhibition of cell growth in the 

K562 cell line harboring BCR-ABL fusion protein, thus displaying excellent cellular 

specificity. 

Table 11 Cell growth inhibitory activity of new BET inhibitors in acute leukemia cell 
linesa. 

ID\IC
50 

(nM) MV4; 11 MOLM-13 K562 
1 24±19 56±24 >2000 
3 93±45 241±58 >2000 
4 162112 22852 >2000 
17 2310 78±12 >2000 
18 209 66±14 >2000 
19 3415 144±31 >2000 

aCompounds were were co-incubated with cells for 4 days before analysis. 
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Previous studies have shown that the cytotoxicity of BET inhibitors involves the 

downregulation of oncogene c-MYC and anti-apoptotic BCL2 in acute leukemia cell lines 

harboring MLL1 gene rearrangements130. We investigated the mechanism of action for 

compounds 17 and 18 by western blot analysis in MV4;11 acute leukemia cell lines 

harboring the MLL1-AF4 fusion gene. As shown in Figure 25, compounds 17 and 18 

down-regulate the protein levels of c-Myc and Bcl-xL in a dose-dependent manner, and 

both are more efficent than 3 (I-BET-762) and 4 (I-BET-151). Compounds 17 and 18 

effectively and dose-dependently induced the cleavage of PARP, a biochemical marker of 

apoptosis. 

 

Figure 25 New BET bromodomain inhibitors down-regulate target oncoprotein 
expression and induce apoptosis in MV4-11 cells. 

 

To further test the ability of compounds 17 and 18 to induce apoptosis in other 

leukemia cells harboring MLL gene rearrangements, we performed Annexin-

V/propidium iodide double staining by flow cytometry in the MOLM-13 cell line 
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containing the MLL-AF9 fusion. As shown in Figure 26, compounds 17 and 18 induced 

robust apoptosis at concentrations as low as 0.3 µM and were ~3-times more potent than 

3 (I-BET-762). 

Hence, compounds 17 and 18 effectively down regulate c-Myc as well as anti-

apoptotic Bcl-xL, concomitant with apoptosis induction in leukemia cell lines containing 

MLL fusions. The potency of compounds 17 and 18 is several times greater than that of 3 

(I-BET-762), a BET inhibitor in clinical development. 

 

 

Figure 26 New BET bromodomain inhibitors induce apoptosis in Molm-13 cells. 

 

3.6 SAR of mono- or bicyclic aromatics as “tail” group	

 Besides the 1H-pyrazole systems, we also tested other aromatic mono- or bicyclic 

structures to identify a possible “tail”. Monocyclic groups such as phenyl, pyridyl, fluoro- 

or chloro- substituted phenyl display binding affinities to BRD4 BD2 of about 100-400 

nM, more than 100-fold weaker than 18. Bicyclic systems gave significant variations in 

binding affinities when attached at different carbon atoms. For example, angular biphenyl 
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substituted 64 has a binding affinity to BRD4 BD2 at 354 nM, 7-fold more potent than 

the linear 65. Fused ring systems such as naphthyl, quinolinyl, indolyl or indazolyl group 

in a favored orientation bind even tighter than biphenyl. Compounds 66, 68 and 71 have 

Ki values of 31.6 nM, <20 nM and 16.4 nM respectively, which are in a comparable 

range with the most potent 1H-pyrazole analogs (17, 18 and 19).  

Table 12 Structure and binding affinities of compounds with mono- and bi-cyclic 
aromatic “tails”. 

 

ID 
BRD4 BD2 

ID 
BRD4 BD2 

IC50 (nM) Ki (nM) IC50 (nM) Ki (nM) 

18 36.5±8.9 12.2±1.6 63 2164606 41829 

55 514 83.4 64 1011 354 

56 873 232 65 10268 2528 

57 49986 9843 66 283178 31.615.0 

58 577 135 67 1077110 30520 

59 821 223 68 36.3±3.2 < 20 

60 1318 404 69 31434 40.85.7 

61 928 213 70 490 95.2 

62 1087 250 71 19799 16.4 
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3.7 Pharmacokinetic and antitumor efficacy studies  

Further modification at the “tail” position of the BET inhibitors discussed above 

gave RX-201 (Ki=1.4 nM to BRD4 BD1, IC50= 26 nM in MDA-MB-436, structure not 

shown), which shows good oral PK profile and high plasma and tumor exposure in mice 

(Table 13 and Figure 27), suggesting this molecule should be orally bioavailable. In 

efficacy studies using the MD-MBA-436 xenograft, RX-201 shows superior antitumor 

activity compared with 1 (JQ1) and the clinical compound 2 (OTX015) (Figure 28). 

Table 13 RX-201 concentrations in mouse plasma and tumor. 

25mg/kg(PO) 
RX-201 concentration in mouse 

plasma (ng/mL)
RX-201 concentration in mouse tumor (ng/g) 

Animal Number Mouse 1 Mouse 2 
Time   points 

(h) 1 2 Mean SD R L R L Mean SD 
1 4210 10700 7455 4589 4675 4960 2310 3155 3982 1258

3 <1 7680 7680 - <1 <1 <1 <1 1 -

6 12700 3380 8040 6590 2830 2730 2170 2560 2577 291

24 <1 1.35 1.35 - 167 126 215 170 169 36

48 <1 <1 1 - 99 85 55.5 57 80 21

 

Figure 27 RX-201 concentrations in mice plasma and tumor. 
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Figure 28 Antitumor activity of RX-201 in a mouse xenograft model. 

 

3.8 Synthesis of γ-carboline-containing compounds as BET bromodomain inhibitors. 

 The general synthetic strategy for synthesis of γ-carboline-containing BET 

bromodomain inhibitors can be generally summarized as γ-carboline core synthesis 

followed by “head” and “tail” attachment. 

 The γ-carboline core was synthesized using a reported method146, in which 

Fischer indole synthesis was applied to furnish the tricyclic system 78 from its precursor 

77, which was prepared in four steps from the commercially available materials 72 and 

75. Chlorination of 78 gave 20 which was converted to 21 by selective bromination at its 

7 position (Scheme 1).  
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Scheme 1 Synthetic route to γ-carboline core structure. 

  

 

Scheme 2 General synthetic method for 6-11. 
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The core structure 21 was coupled selectively to different boronates (22-27) at the 

“head” position under Suzuki conditions to give compounds 6-11 (Scheme 2). 5 was 

prepared from 6 by stirring under H2 for 12 hours (Scheme 3). 

 

Scheme 3 Synthetic method for 5. 

 

 A second Suzuki coupling reaction between 6 and the isoxazole or 1H-pyrazole 

analogs (22, 26-32) led to 12-19 as the final compounds for BET inhibition (Scheme 4).  

Boronates of isoxazole or 1H-pyrazole analogs 23-25, 29-32 were prepared in 3-4 steps 

from various diketones (33-36, Scheme 5). Refluxing the diketones with 37 or 38 

furnished the five-membered heterocyclics (39-43) which were halogenated with N-

bromosuccinimide (NBS) or N-iodosuccinimide (NIS) and consequently converted to the 

correspondent boronic acid pinacol ester with (30-32) or without (23-25, 29) an 

intermediate Boc protecting step (Scheme 5).  

The “tail” attachments for 55-71 were made under the same condition used for 

12-19. All the “tail” moieties were purchased in their boronic acid form from commercial 

sources. 
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Scheme 4 General synthetic route for 12-19. 

 

 

Scheme 5 General synthetic route for five-membered heterocyclic boronates. 
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3.9 Future Directions 

Extensive SAR studies of this class of compounds have been performed with the 

goal of obtaining potent and orally bioavailable BET inhibitors. To date, a number of 

useful BET inhibitors, including RX-201, have been obtained in our laboratory. 

Extensive in vitro and in vivo evaluations to determine their mechanism of action and 

therapeutic potential as a new class of anticancer drugs are ongoing.  

 More selective inhibitors of BET family proteins147 which can discriminate BD1 

from BD2 should be able to avoid side-effects stemming from the inhibition of regular 

biological function by each bromodomain subtype.  

In addition to targeting BET family proteins at their bromodomains, other critical 

PPIs including CTD domains of BRD4 to each subunits of TEFb, mediator binding motif 

of BRD445, ET domains to Jmjd6 arginine demethylase and Nsd3148, 149, lysine 

methyltransferase, and nucleosome remodeling related SWI/SNF and CHD4149 are 

potential opportunities for therapeutic intervention. 

Key safety issues regarding use of epigenetic modifiers as drugs are the long-term 

effects of a drug on stem cells, germ cells and transgenerational effects which should 

monitored closely as clinical trials proceed45.  

Critical PPIs, downstream target genes, and genomic binding sites relevant to 

BRD4 dependent disease processes should be further studied in the clinic for an 

understanding of resistant mechanisms. 
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3.10 Experiments  

3.10.1 Synthetic methods and characterizations of BET bromodomain inhibitors 

General Methods 

Proton nuclear magnetic resonance (1H NMR) spectroscopy and carbon nuclear 

magnetic resonance (13C NMR) spectroscopy were performed in Bruker Advance 300 

NMR spectrometers. 1H chemical shifts are reported with CHD2OD (3.31 ppm) or HDO 

(4.70 ppm) as internal standards. The final products were purified by C18 reverse phase 

semi-preparative HPLC column with solvent A (0.1% TFA in H2O) and solvent B (0.1% 

TFA in CH3CN) as eluents. The final compounds were isolated in their TFA salt form, 

and the purities, in all cases, were confirmed by analytical HPLC to be >95%.  

 

Synthesis of compound 5 

4-(8-Methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole (5). 10% Pd-C (5 mg) 

was suspended in a solution in MeOH of 6 (15 mg, 0.046 mmol). The reaction was stirred 

for 26 hours under H2 at room temperature. The Pd-C was removed by filtration and the 

filtrate was purified by semi-preparative HPLC to give 4 mg (30%) of 5 as a colorless 

powder after being lyophilized for 24 h.1H NMR (300 MHz, MeOD-d4) δ 9.61 (s, 1H), 

8.54 (d, 1H, J=6.9 Hz), 8.11 (s, 1H), 7.97 (s, 1H), 7.61 (s, 1H), 4.00 (s, 3H), 2.36 (s, 3H), 

2.19 (s, 3H). ESIMS m/z  [M+H]+ calcd. = 294.33; found = 294.75. 

 

Synthesis of compounds 6-19 
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4-(1-Chloro-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole (6). 

Compounds 21 (157 mg, 0.5 mmol) and 22 (655 mg, 2.0 mmol), and K2CO3 (345 mg, 2.5 

mmol) were dissolved in a dimethoxyethane/H2O (2:1) mixture (75 mL). The reaction 

system was vacuumed, followed by addition of tetrakis (triphenylphosphine) palladium 

(0), the system was vacuumed again then filled with N2. After heating at reflux overnight, 

the mixture was extracted with EtOAc, and the organic fraction was concentrated before 

purification by preparative HPLC. 57 mg (35%) of compound 6 was obtained as pale 

yellow powder after being lyophilized for 24 h. 1H NMR (300 MHz, MeOD-d4) δ 8.26 (d, 

1H, J= 6.0 Hz), 8.09 (s, 1H), 7.60 (d, 1H, J= 6.3 Hz), 7.49 (s, 1H), 3.98 (s, 3H), 2.63 (s, 

3H), 2.20 (s, 3H). 13C NMR (75 MHz, MeOD-d4), δ168.07, 161.30, 155.05, 148.78, 

143.09, 141.11, 136.57, 122.59, 122.28, 118.84, 116.16, 115.01, 108.08, 105.09, 56.69, 

11.69, 10.84. ESIMS m/z  [M+H]+ calcd. = 328.77; found = 328.83. 

 

4-(1-Chloro-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3-ethyl-5-methylisoxazole (7). This 

compound was prepared by coupling 21 and 23 under conditions similar to those used for 

the preparation of 6. 1H NMR (300 MHz, MeOD-d4) δ 8.27 (d, 1H, J= 6.3 Hz), 8.02 (s, 

1H), 7.64 (d, 1H, J= 6.3 Hz), 7.48 (s, 1H), 3.93 (s, 3H), 2.70 (q, 2H, J= 7.5 Hz), 2.13 (s, 

3H), 1.20 (t, 3H, J= 7.5 Hz). ESIMS m/z [M+H]+ calcd. = 342.80; found = 342.42. 

 

4-(1-Chloro-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-5-ethyl-3-methylisoxazole  (8). This 

compound was prepared by coupling 21 and 24 under conditions similar to those used for 

the preparation of 6. 1H NMR (300 MHz, MeOD-d4) δ 8.19 (d, 1H, J= 5.7 Hz), 8.08 (s, 



68 
 

1H), 7.49 (d, 1H, J= 5.7 Hz), 7.43 (s, 1H), 3.96(s, 3H), 2.64 (q, 2H, J= 7.5 Hz), 2.34 (s, 

3H), 1.12 (t, 3H, J= 7.5 Hz). ESIMS m/z [M+H]+ calcd. = 342.80; found = 342.67. 

 

4-(1-Chloro-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-diethylisoxazole (9). This 

compound was prepared by coupling 21 and 25 under conditions similar to those used for 

the preparation of 6. 1H NMR (300 MHz, DMSO-d6) δ 12.06 (s, 1H), 8.22 (d, 1H, J= 5.7 

Hz), 7.96 (s, 1H), 7.52 (d, 1H, J= 5.7 Hz), 7.49 (s, 1H), 3.89 (s, 3H), 2.65 (q, 2H, J= 7.5 

Hz), 2.53 (q, 2H, J= 7.5 Hz), 1.15 (t, 3H, J= 7.5 Hz), 1.04 (t, 3H, J= 7.5 Hz). 13C NMR 

(75 MHz, DMSO-d6), δ 169.85, 163.67, 152.08, 145.84, 143.62, 143.55, 133.92, 119.93, 

119.20, 116.06, 114.30, 111.86, 106.71, 103.19, 55.71, 18.94, 18.49, 11.81. ESIMS m/z 

[M+H]+ calcd. = 356.67; found = 356.83. 

 

1-Chloro-7-(3,5-dimethyl-1H-pyrazol-4-yl)-8-methoxy-5H-pyrido[4,3-b]indole (10). This 

molecule was prepared by coupling 21 and 26 under conditions similar to those used for 

the preparation of 6. 1H NMR (300 MHz, MeOD-d4) δ 8.24 (d, 1H, J= 6.0 Hz), 8.10 (s, 

1H), 7.56 (d, 1H, J= 6.0 Hz), 7.49 (s, 1H), 3.97 (s, 3H), 2.31 (s, 6H). 13C NMR (75 MHz, 

MeOD-d4), δ 154.63, 148.56, 145.51, 142.58, 136.32, 122.52, 121.86, 118.63, 118.34, 

116.15, 107.94, 105.19, 101.44, 56.69, 10.75. ESIMS m/z [M+H]+ calcd. = 327.79;  

found = 327.92. 

 

1-Chloro-8-methoxy-7-(1,3,5-trimethyl-1H-pyrazol-4-yl)-5H-pyrido[4,3-b]indole (11). 

This molecule was prepared by coupling 21 and 27 under conditions similar to those used 
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for the preparation of 6. 1H NMR (300 MHz, MeOD-d4) δ 8.26 (d, 1H, J= 6.0 Hz), 8.07 

(s, 1H), 7.61 (d, 1H, J= 6.3 Hz), 7.45 (s, 1H), 3.95 (s, 3H), 3.88 (s, 3H), 2.24 (s, 3H), 2.20 

(s, 3H). ESIMS m/z [M+H]+ calcd. = 341.81; found = 342.33. 

 

4,4'-(8-Methoxy-5H-pyrido[4,3-b]indole-1,7-diyl)bis(3,5-dimethylisoxazole) (12). This 

compound was prepared by coupling 6 and 22 under conditions similar to those used for 

the preparation of 6. 1H NMR (300 MHz, MeOD-d4) δ 8.63 (d, 1H, J=6.6 Hz), 8.04 (d, 

1H, J=6.6 Hz), 7.67 (s, 1H), 7.02 (s, 1H), 3.78 (s, 3H), 2.52 (s, 3H), 2.34 (s, 3H), 2.28 (s, 

3H), 2.17 (s, 3H). 13C NMR (75 MHz, MeOD-d4), δ 172.28, 168.28, 161.12, 160.42, 

155.77, 149.23, 138.54, 137.66, 136.81, 124.16, 122.24, 121.46, 117.29, 114.52, 109.87, 

109.42, 103.77, 56.42, 12.05, 11.68, 10.79, 10.60. ESIMS m/z [M+H]+ calcd. = 389.43; 

found = 389.50. 

 

4-(1-(3,5-Dimethyl-1H-pyrazol-4-yl)-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-

dimethylis-oxazole (13). This molecule was prepared in 75% yield by coupling 6 and 26 

under conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, 

MeOD-d4) δ 8.54 (d, 1H, J= 6.9 Hz), 7.95 (d, 1H, J= 6.9 Hz), 7.63 (s, 1H), 7.02 (s, 1H), 

3.74 (s, 3H), 2.34 (s, 3H), 2.29 (s, 6H), 2.16 (s, 3H). 13C NMR (75 MHz, MeOD-d4), δ 

168.23, 161.18, 155.58, 148.99, 146.03, 143.05, 137.39, 136.23, 123.63, 122.87, 121.08, 

116.98, 114.63, 108.64, 103.98, 56.29, 11.68, 11.41, 10.79. ESIMS m/z [M+H]+ calcd. = 

388.44; found = 388.42.  
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4-(8-Methoxy-1-(1H-pyrazol-4-yl)-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole 

(14). This molecule was prepared by coupling 6 and 28 under conditions similar to those 

used for the preparation of 6. 1H NMR (300 MHz, MeOD-d4) δ 8.48 (s, 2H), 8.45 (d, 1H, 

J=6.9 Hz), 7.89 (d, 1H, J=6.9 Hz), 7.63 (s, 1H), 7.61 (s, 1H), 3.82 (s, 3H), 2.35 (s, 3H), 

2.17 (s, 3H). 13C NMR (75 MHz, MeOD-d4), δ 168.18, 161.18, 155.28, 149.11, 143.30, 

137.25, 135.69, 123.48, 123.01, 119.19, 116.80, 114.66, 113.69, 108.22, 104.50, 56.37, 

11.67, 10.80. ESIMS m/z [M+H]+ calcd. = 360.39; found = 361.17. 

 

4-(8-Methoxy-1-(1,3,5-trimethyl-1H-pyrazol-4-yl)-5H-pyrido[4,3-b]indol-7-yl)-3,5-

dimethylisoxazole (15). This molecule was prepared by coupling 6 and 27 under 

conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 

8.54 (d, 1H, J= 6.9 Hz), 7.95 (d, 1H, J= 6.9 Hz), 7.63 (s, 1H), 7.04 (s, 1H), 3.97 (s, 3H), 

3.75 (s, 3H), 2.34 (s, 3H), 2.32 (s, 3H), 2.21 (s, 3H), 2.16 (s, 3H). ESIMS m/z  [M+H]+ 

calcd. = 402.47; found = 402.75. 

 

4-(1-(3,5-Dimethyl-1-phenyl-1H-pyrazol-4-yl)-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-

3,5-dimethylisoxazole (16). This molecule was prepared by coupling 6 and 29 under 

conditions similar to those used for the preparation of 6. 1H NMR (300 MHz, MeOD-d4) 

δ 8.60 (d, 1H, J= 6.6 Hz), 8.00 (d, 1H, J= 6.9 Hz), 7.64-7.66 (m, 6H), 7.11 (s, 1H), 3.78 

(s, 3H), 2.35 (s, 3H), 2.33 (s, 3H), 2.31 (s, 3H), 2.17 (s, 3H). 13C NMR (75 MHz, MeOD-

d4), δ 168.26, 161.16, 155.67, 149.62, 149.10, 142.49, 142.22, 140.20, 137.48, 136.42, 
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131.02, 130.49, 126.75, 123.83, 122.75, 121.30, 117.06, 114.60, 112.68, 108.87, 103.95, 

56.38, 12.56, 11.74, 11.69, 10.81. ESIMS m/z  [M+H]+ calcd. = 464.54; found = 464.42.  

 

4-(1-(3,5-Diethyl-1H-pyrazol-4-yl)-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethyl-

isoxazole (17). This molecule was prepared in 35% yield by coupling 6 and 30 under 

conditions similar to those used for the preparation of 6. 1H NMR (300 MHz, MeOD-d4) 

δ 8.55 (d, 1H, J= 6.9 Hz), 7.97 (d, 1H, J= 6.9 Hz), 7.64 (s, 1H), 6.92 (s, 1H), 3.70 (s, 3H), 

2.65 (m, 4H). 2.34 (s, 3H), 2.16 (s, 3H), 1.10 (t, 6H, J= 7.5 Hz). 13C NMR (75 MHz, 

MeOD-d4), δ 168.25, 155.57, 148.83, 143.32, 137.42, 136.27, 123.78, 122.91, 121.45, 

117.08, 114.59, 108.86, 103.85, 56.30, 30.88, 24.41, 20.51, 13.97, 11.69, 10.81. ESIMS 

m/z  [M+H]+ calcd. = 416.50; found = 416.42.  

 

4-(1-(3-Cyclopropyl-5-methyl-1H-pyrazol-4-yl)-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-

3,5-dimethylisoxazole (18). This molecule was prepared in 19% yield by coupling 6 and 

31 under conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, 

MeOD-d4) δ 8.55 (d, 1H, J= 6.9 Hz), 7.96 (d, 1H, J= 6.6 Hz), 7.63 (s, 1H), 7.12 (s, 1H), 

3.76 (s, 3H), 2.35 (s, 3H), 2.28 (s, 3H), 2.17 (s, 3H), 1.73 (m,1H), 0.87 (m, 4H). 13C 

NMR (75 MHz, MeOD-d4), δ 168.18, 161.15, 155.46, 152.39, 148.94, 145.13, 143.14, 

137.35, 136.19, 123.61, 122.93, 121.20, 116.85, 114.63, 110.46, 108.60, 104.41, 56.32, 

11.66, 11.01, 10.77, 9.22, 8.45, 8.25. ESIMS m/z  [M+H]+ calcd. = 414.48; found = 

414.50.  
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4-(8-Methoxy-1-(5-methyl-3-phenyl-1H-pyrazol-4-yl)-5H-pyrido[4,3-b]indol-7-yl)-3,5-

dimethyl-isoxazole (19). This molecule was prepared by coupling 6 and 32 under 

conditions similar to those used for the preparation of 6. 1H NMR (300 MHz, MeOD-d4) 

δ 8.54 (d, 1H, J= 6.9 Hz), 7.98 (d, 1H, J= 6.9 Hz), 7.57 (s, 1H), 7.34 (m, 2H), 7.25 (m, 

3H), 6.98 (s, 1H), 3.70 (s, 3H), 2.33 (s, 3H), 2.30 (s, 3H), 2.12 (s, 3H). 13C NMR (75 

MHz, MeOD-d4), δ 168.18, 161.13, 155.42, 148.93, 143.24, 137.32, 136.38, 130.28, 

128.12, 123.68, 122.65, 121.39, 116.84, 114.58, 108.90, 104.08, 56.33, 11.65, 10.88, 

10.76.  ESIMS m/z  [M+H]+ calcd. = 450.51; found = 450.75. 

 

 

1-chloro-8-methoxy-5H-pyrido[4,3-b]indole (20). POCl3 (20 mL) and 78 were refluxed 

for 24 h followed by removal of POCl3 under reduced pressure. The residue was refluxed 

with HCl for additional 2 h. After cooling, the mixture was neutralized with ammonium 

hydroxide, and extracted with DCM. Combined organic layer was dried and purified with 

flash column chromatography (EtOAc: hexane = 1:1 as eluent) to give 0.44 g (64.5%) 

titled compound as a colorless powder. 1HNMR (300 MHz, MeOD-d4) δ 8.26 (d, 1H, 

J=6.3 Hz), 7.94 (d, 1H, J=2.1 Hz), 7.61 (m, 2H), 7.31 (dd, 1H, J1= 2.1 Hz, J2= 8.7 Hz), 

3.96 (s,3H). 

 

7-Bromo-1-chloro-8-methoxy-5H-pyrido[4,3-b]indole (21). Compound 20 (377 mg, 1.6 

mmol) and NaOAc (197 mg, 2.4 mmol) were dissolved in AcOH (40 mL). Bromine (389 

mg, 2.4 mmol) was added dropwise to the reaction system. After stirring at room 
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temperature overnight, the reaction was quenched with Na2SO3 solution. The AcOH was 

then removed under reduced pressure and H2O was added followed by extraction with 

EtOAc. The combined organic fractions were concentrated and purified with preparative 

HPLC to give 157 mg (31%) of 21 as a colorless powder. 1H NMR (300 MHz, MeOD-d4) 

δ 8.21 (d, 1H, J= 5.7 Hz), 8.00 (s, 1H), 7.84 (s, 1H), 7.50 (d, J=6.0 Hz), 4.03 (s, 3H). 

 

Synthesis of intermediates 23-25 and 29-32. 

t-Butyl 3-cyclopropyl-5-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-

pyrazole-1-carboxylate (31). Compound 51 (1.312 g, 3.77 mmol) was dissolved in THF 

(30 mL) and cooled to -78 ⁰C under N2. n-Butyl lithium (0.362 g, 5.65 mmol) was added 

slowly into the solution which was then stirred for 30 min at -78 ⁰C. 54 (0.77 g, 4.14 

mmol) was added to the reaction system, and the mixture was stirred at -78 ⁰C for 

additional 2 h. Upon completion, the reaction was quenched by adding NH4Cl saturated 

solution. The mixture was then extracted with EtOAc and dried over anhydrous Na2SO4. 

Purification by flash column chromatography (EtOAc: hexane = 1: 10) gave 31 as a 

colorless oil (0.459 mg, 35% yield). 1H NMR (300 MHz, CDCl3), δ 2.65 (s, 3H), 2.28 (m, 

1H), 1.62 (s, 9H), 1.33 (s, 12H), 0.99 (m, 2H), 0.88 (m, 2H). 

 

3-Ethyl-5-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isoxazole  (23). This 

molecule was prepared by treatment of 45 and 54 under conditions similar to those used 

for the preparation of 31. Compound 23 was prepared in a mixture with 24. 1H NMR 

(300 MHz, CDCl3), δ 2.93 (q, J=7.5 Hz, 2H), 2.35 (s, 3H), 1.31 (s, 12H), 1.26 (m, 3H).  
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5-Ethyl-3-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isoxazole  (24). This 

molecule was prepared by treatment of 46 and 54 under conditions similar to those used 

for the preparation of 31. 24 was prepared in a mixture with 23. 1H NMR (300 MHz, 

CDCl3), δ 2.77 (q, J=7.5 Hz, 2H), 2.53 (s, 3H), 1.31(s, 12H), 1.26(m, 3H). 

 

t-Butyl-5-cyclopropyl-3-methyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-

pyrazole-1-carboxylate (25). This molecule was prepared by treatment of 44 and 54 

under conditions similar to those used for the preparation of 31. 1HNMR (300 MHz, 

CDCl3), δ 2.93 (q, J=7.5 Hz, 2H), 2.77 (q, J=7.5 Hz, 2H), 1.31 (s, 12H), 1.26 (m, 6H). 

 

3,5-Dimethyl-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole (29). 

This molecule was prepared by treatment of 53 and 54 under conditions similar to those 

used for the preparation of 31. 1H NMR (300 MHz, CDCl3), δ 7.35-7.50 (m, 5H), 2.45 (s, 

3H), 2.44 (s, 3H), 1.34 (s, 12H). 

 

t-Butyl 3,5-diethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole-1-

carboxylate (30). This molecule was prepared by treatment of 50 and 54 under conditions 

similar to those used for the preparation of 31. 1H NMR (300 MHz, CDCl3), δ3.15 (q, 

J=7.5 Hz, 2H), 2.74 (q, J=7.5 Hz, 2H), 1.61 (s, 9H), 1.27 (s, 12H), 1.17 (m, 6H). 
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t-Butyl 5-methyl-3-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrazole-

1-carboxylate (32). This molecule was prepared in 39% yield by reaction of 52 and 54 

under conditions similar to those used for the preparation of 31. 1H NMR (300 MHz, 

CDCl3), δ 7.81 (m, 2H), 7.37 (m, 3H), 2.76 (s, 3H), 1.67 (s, 9H), 1.32 (s, 12H). 

 

Synthesis of compounds 39, 41 and 42. 

3,5-Diethylisoxazole (39). NH2OH. HCl (37, 0.542 g, 7.8 mmol) was neutralized with 

Na2CO3 (0.413 g, 3.9 mmol) in MeOH/H2O (1:2, 30 mL) solution. 33 (1.0 g, 7.8 mmol) 

was added into the mixture and heated at reflux overnight. After being cooled to room 

temperature, the mixture was extracted with Et2O (40 mL × 2) and the organic layer was 

dried over anhydrous Na2SO4. Removal of solvents gave 39 as a light yellow liquid 

(0.559 g, 57%).  1H NMR (300 MHz, CDCl3), δ 5.85 (s, 1H), 2.63-2.78 (m, 4H), 1.24-

1.31 (m, 6H). 

 

3-Ethyl-5-methylisoxazole (41). This molecule was prepared by condensation of 34 and 

37 under a similar conditions for the preparation of 39. 41 was made as a mixture with 42 

and used in the next step without purification. 1H NMR (300 MHz, CDCl3), δ 5.82 (s, 

1H), 2.74 (q, J=7.5 Hz, 2H), 2.28 (s, 3H), 1.28 (q, J=7.5 Hz, 3H). 

 

5-Ethyl-3-methylisoxazole (42). This molecule was prepared by treatment of 35 and 37 

under conditions similar to those used for the preparation of 39. 42 was prepared as a 
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mixture with 41 and used in the next step without purification.  1HNMR (300 MHz, 

CDCl3), δ 5.85 (s, 1H), 2.66 (q, J=7.5 Hz, 2H), 2.40 (s, 3H), 1.28 (q, J=7.5 Hz, 3H). 

 

Synthesis of 40 and 43. 

3,5-Diethyl-1H-pyrazole (40). 33 (1.128 g, 8.8 mmol) and hydrazine monohydrate 38 

(0.44 g, 8.9 mmol) were suspended in H2O (5 mL). One drop of AcOH was added and 

the reaction mixture was heated at reflux for 1 h. After cooling to room temperature, the 

mixture was extracted with EtOAc and dried over anhydrous Na2SO4. Removal of EtOAc 

gave 40 as a light yellow liquid, (0.96 g, 88%) which was used in the next step without 

further purification.   1H NMR (300 MHz, CDCl3), δ 5.89 (s, 1H), 2.67 (q, J=7.5 Hz, 4H), 

1.27 (t, J=7.5 Hz, 6H).  

 

3-Cyclopropyl-5-methyl-1H-pyrazole (43). This molecule was prepared in 95% yield by 

reaction of 36 and 38 under conditions similar to those used for the preparation of 40. 1H 

NMR (300 MHz, CDCl3) δ 9.01 (br, 1H), 5.72 (s, 1H), 2.27 (s, 3H), 1.90 (m, 1H), 0.92 

(m, 2H), 0.70 (m, 2H). 

 

Synthesis of 44-48. 

3,5-Diethyl-4-iodo-1H-pyrazole (47). 40 (0.96 g, 7.7 mmol) and N-iodosuccinimide (1.73 

g, 7.73 mmol) were dissolved in DMF (8 mL) and stirred at room temperature overnight. 

Then the reaction mixture was poured into H2O (80 mL) and the aqueous layer was 

extracted with EtOAc (50 mL × 3). The combined organic phases were washed with H2O 
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(30 mL × 6) and dried over anhydrous Na2SO4. The product was purified using silica gel 

chromatography and obtained as yellow crystals (1.74 g, 90%). 1H NMR (300 MHz, 

CDCl3), δ 2.65(q, J=7.5 Hz, 4H), 1.27 (t, J=7.5 Hz, 6H). 

 

4-Bromo-3,5-diethyl-isoxazole (44).  This molecule was prepared by treatment of 39 with 

N-bromosuccinimide (NBS) under conditions similar to those used for the preparation of 

47. 1HNMR (300 MHz, CDCl3), δ 2.78 (q, J=7.5 Hz, 2H), 2.67 (q, J=7.5 Hz, 2H), 1.28-

1.34 (m, 6H). 

 

4-Bromo-3-ethyl-5-methylisoxazole  (45). This molecule was prepared by treatment of 41 

with NBS under conditions similar to those used for the preparation of 47. 45 was 

obtained in 71% yield in a mixture with 46. 1H NMR (300 MHz, CDCl3), δ 2.77 (q, J=7.5 

Hz, 2H), 2.28 (s, 3H), 1.30 (t, J=7.5 Hz, 3H).  

 

4-Bromo-5-ethyl-3-methyl-isoxazole (46). This molecule was prepared in 71% yield by 

treatment of 42 with NBS under conditions similar to those used for the preparation of 47. 

46 was obtained as a mixture with 45.  1H NMR (300 MHz, CDCl3), δ 2.67 (q, J=7.5 Hz, 

2H), 2.41 (s, 3H), 1.30 (t, J=7.5 Hz, 3H). 

 

3-Cyclopropyl-4-iodo-5-methyl-1H-pyrazole  (48). This molecule was prepared in 95% 

yield by treatment of 43 with NIS under conditions similar to those used for the 
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preparation of 47. 1H NMR (300 MHz, CDCl3) δ 2.23 (s, 3H), 1.83 (m, 1H), 0.95 (m, 2H), 

0.80 (m, 2H). 

 

Synthesis of 50-52. 

t-Butyl-3-cyclopropyl-4-iodo-5-methyl-1H-pyrazole-1-carboxylate (51). Compound 48 

(2.67 g, 10.8 mmol) was dissolved in THF and cooled to 0 ⁰C. (Boc)2O (4.7 g, 21.5 mmol) 

and DMAP (1.32 g, 10.8 mmol) were added successively. After stirring at room 

temperature for 1 h, the solvent was removed and the crude product was purified by silica 

gel flash column chromatography (3.41 g, 91% yield). 1H NMR (300 MHz, CDCl3), δ 

2.52 (s, 3H), 1.82 (m, 1H), 1.61 (s, 9H), 0.98 (m, 2H), 0.90 (m, 2H). 

 

t-Butyl 3,5-diethyl-4-iodo-1H-pyrazole-1-carboxylate (50). This molecule was prepared 

by treatment of 47 with (Boc)2O under conditions similar to those used for the 

preparation of 51. 1H NMR (300 MHz, CDCl3), δ 3.01 (q, J=7.5 Hz, 2H), 2.65 (q, J=7.5 

Hz, 2H), 1.66 (s, 9H), 1.28 (t, J=7.5 Hz, 3H), 1.18 (t, J=7.5 Hz, 3H).  

 

t-Butyl 4-bromo-5-methyl-3-phenyl-1H-pyrazole-1-carboxylate (52). This molecule was 

prepared by treatment of 49 with (Boc)2O under conditions similar to those used for the 

preparation of 51. 1H NMR (300 MHz, CDCl3), δ 7.94 (m, 2H), 7.45 (m, 3H), 2.62 (s, 

3H), 1.69 (s, 9H). 
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4-(8-methoxy-1-phenyl-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole (55). This 

molecule was prepared by coupling 6 and phenylboronic acid under conditions similar to 

those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 8.53 (d, 1H, J=6.9 

Hz), 7.98 (m, 3H), 7.86 (m, 3H), 7.61 (s, 1H), 7.17 (s, 1H), 3.63 (s, 3H), 2.33 (s, 3H), 

2.15 (s, 3H). ESIMS m/z  [M+H]+ calcd. = 370.42; found = 370.42. 

 

4-(8-methoxy-1-(pyridin-3-yl)-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole (56). 

This molecule was prepared by coupling 6 and pyridin-3-ylboronic acid under conditions 

similar to those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 9.21 (br, 

1H), 9.06 (br, 1H), 8.61 (d, 1H, J=6.9 Hz), 8.49 (d, 1H, J=7.8 Hz), 8.03 (d, 1H, J=6.6 Hz), 

7.93 (br, 1H), 7.65 (s, 1H), 7.07 (s, 1H), 3.67 (s, 3H), 2.33 (s, 3H), 2.15 (s, 3H). ESIMS 

m/z  [M+H]+ calcd. = 371.41; found = 371.75. 

 

4-(8-methoxy-1-(pyridin-4-yl)-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole (57). 

This molecule was prepared by coupling 6 and pyridin-4-ylboronic acid under conditions 

similar to those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 9.07 (d, 

2H, J= 5.7 Hz), 8.62 (d, 1H, J= 6.9 Hz), 8.06 (m, 3H), 7.65 (s, 1H), 7.12 (s, 1H), 3.67 (s, 

3H), 2.33 (s, 3H), 2.15 (s, 3H). ESIMS m/z  [M+H]+ calcd. = 371.41; found = 372.25. 

 

4-(1-(2-fluorophenyl)-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole (58). 

This molecule was prepared by coupling 6 and (2-fluorophenyl)boronic acid under 

conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 
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8.61 (d, 1H, J= 6.6 Hz), 8.03 (d, 1H, J= 6.9 Hz), 7.94 (m, 2H), 7.66 (m, 3H), 6.96 (s, 1H), 

3,62 (s, 3H), 2.33 (s, 3H), 2.15 (s, 3H). ESIMS m/z  [M+H]+ calcd. = 388.41; found = 

388.75 . 

 

4-(1-(3-fluorophenyl)-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole (59). 

This molecule was prepared by coupling 6 and (3-fluorophenyl)boronic acid under 

conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 

8.55 (d, 1H, J= 6.9 Hz), 8.00 (d, 1H, J= 6.9 Hz), 7.85 (m, 3H), 7.67 (m, 1H), 7.63 (s, 1H), 

7.18 (s, 1H), 3.67 (s, 3H), 2.34 (s, 3H), 2.16 (s, 3H). ESIMS m/z  [M+H]+ calcd. = 388.41; 

found = 388.50 . 

 

4-(1-(4-fluorophenyl)-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole (60). 

This molecule was prepared by coupling 6 and (4-fluorophenyl)boronic acid under 

conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 

8.53 (d, 1H, J= 6.9 Hz), 8.05 (m, 2H), 7.98 (d, 1H, J= 6.6 Hz), 7.61 (m, 2H), 7.62 (s, 1H), 

7.18 (s, 1H), 3.68 (s, 3H), 2.33 (s, 3H), 2.16 (s, 3H). ESIMS m/z  [M+H]+ calcd. = 388.41; 

found = 389.08. 

 

4-(1-(2-chlorophenyl)-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole (61). 

This molecule was prepared by coupling 6 and (2-chlorophenyl)boronic acid under 

conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 

8.62 (d, 1H, J=6.9 Hz), 8.04 (d, 1H, J=6.6 Hz), 7.89 (m, 3H), 7.80 (m, 1H), 7.63 (s, 1H), 
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6.64 (s, 1H), 3.56 (s, 3H), 2.32 (s, 3H), 2.14 (s, 3H). ESIMS m/z  [M+H]+ calcd. = 404.87; 

found = 404.92. 

 

4-(1-(3-chlorophenyl)-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole (62). 

This molecule was prepared by coupling 6 and (3-chlorophenyl)boronic acid under 

conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 

8.56 (d, 1H, J=6.9 Hz), 8.09 (d, 1H, J=1.2 Hz), 8.02 (d, 1H, J=6.9 Hz), 7.85-7.93 (m, 3H), 

7.65 (s, 1H), 7.20 (s, 1H), 3.69 (s, 3H), 2.34 (s, 3H), 2.16 (s, 3H). ESIMS m/z  [M+H]+ 

calcd. = 404.87; found = 405.00 . 

 

4-(1-(4-chlorophenyl)-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole (63). 

This molecule was prepared by coupling 6 and (4-chlorophenyl)boronic acid under 

conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 

8.54(d, 1H, J=6.9 Hz), 8.00 (d, 2H, J=8.7 Hz), 7.98 (d, 1H, J=6.6 Hz), 7.88 (d, 2H, J=8.7 

Hz), 7.62 (s, 1H), 7.19 (s, 1H), 3.69 (s, 3H), 2.33 (s, 3H), 2.16 (s, 3H). ESIMS m/z  

[M+H]+ calcd. = 404.87; found =405.33 . 

 

4-(1-([1,1'-biphenyl]-3-yl)-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole 

(64). This molecule was prepared by coupling 6 and [1,1'-biphenyl]-3-ylboronic acid 

under conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, 

MeOD-d4) δ 8.56 (d, 1H, J= 6.9 Hz), 8.29 (s, 1H), 8.15 (m, 1H), 7.98 (m, 3H), 7.81 (d, 
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2H, J=7.2 Hz), 7.62 (s, 1H), 7.50 (m, 3H), 7.26 (s, 1H), 3.50 (s, 3H), 2.32 (s, 3H), 2.14 (s, 

3H). ESIMS m/z  [M+H]+ calcd. =446.52; found = 446.75 . 

 

4-(1-([1,1'-biphenyl]-4-yl)-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole 

(65). This molecule was prepared by coupling 6 and [1,1'-biphenyl]-4-ylboronic acid 

under conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, 

MeOD-d4) δ 8.55 (d, 1H, J= 6.9 Hz), 8.13 (d, 2H, J= 8.7 Hz), 8.08 (d, 2H, J= 8.4 Hz), 

7.99 (d, 1H, J= 6.6 Hz), 7.83 (dd, 2H, J1= 7.8 Hz, J2= 1.2 Hz), 7.63 (s, 1H), 7.48-7.59 (m, 

3H), 7.31 (s, 1H), 3.66 (s, 3H), 2.34 (s, 3H), 2.16 (s, 3H). ESIMS m/z  [M+H]+ calcd. = 

446.52 ; found = 446.92. 

 

4-(8-methoxy-1-(naphthalen-1-yl)-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole 

(66). This molecule was prepared by coupling 6 and naphthalen-1-ylboronic acid under 

conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 

8.65 (d, 1H, J= 6.9 Hz), 8.40 (d, 1H, J= 8.1 Hz), 8.22 (d, 1H, J= 8.4 Hz), 8.09 (d, 1H, J= 

6.9 Hz), 7.93 (m, 2H), 7.70 (m, 1H), 7.59 (s, 1H), 7.54 (m, 1H), 6.10 (s, 1H), 3.11 (s, 3H), 

2.27 (s, 1H), 2.07 (s, 1H). 13CNMR (300 MHz, MeOD-d4), δ 166.5, 159.5, 153.4, 147.3, 

146.6, 135.8, 134.5, 133.7, 131.9, 130.3, 128.8, 128.4, 128.3, 128.1, 127.1, 125.4, 124.0, 

121.8, 120.9, 119.5, 115.1, 112.9, 107.6, 103.1, 54.0, 10.0, 9.1. ESIMS m/z  [M+H]+ 

calcd. = 420.48 ; found = 420.75. 
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4-(8-methoxy-1-(naphthalen-2-yl)-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole 

(67). This molecule was prepared by coupling 6 and naphthalen-2-ylboronic acid under 

conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 

8.57 (d, 1H, J= 6.9 Hz), 8.36 (d, 1H, J= 8.4 Hz), 8.17 (dd, 2H, J1 = 6.9 Hz, J2 = 1.5 Hz), 

8.04 (dd, 1H, J1 = 8.4 Hz, J2 = 1.8 Hz), 8.00 (d, 1H, J= 6.6 Hz), 7.75 (m, 2H), 7.63 (s, 

1H), 7.26 (s, 1H), 3.48 (s, 3H), 2.32 (s, 3H), 2.14 (s, 3H). ESIMS m/z  [M+H]+ calcd. = 

420.48; found = 420.92 . 

 

4-(8-methoxy-1-(quinolin-4-yl)-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole (68). 

This molecule was prepared by coupling 6 and quinolin-4-ylboronic acid under 

conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 

9.31 (d, 1H), 8.74 (d, J= 6.9 Hz, 1H), 8.40 (d, J= 8.4 Hz, 1H), 8.16 (d, J= 6.9 Hz, 1H), 

7.99-8.05 (m, 2H), 7.63-7.69 (m, 3H), 6.11 (s, 1H), 3.15 (s, 3H), 2.28 (s, 3H), 2.08 (s, 

3H). 13CNMR (300 MHz, MeOD-d4), δ 168.23, 161.02, 155.27, 150.52, 149.25, 146.69, 

143.59, 137.82, 136.76, 134.28, 131.54, 129.05, 128.72, 126.99, 126.70, 124.51, 124.23, 

121.71, 120.87, 117.11, 114.39, 110.03, 104.57, 55.90, 11.65, 10.74. ESIMS m/z  

[M+H]+ calcd. = 421.47; found =421.58. 

 

4-(1-(1H-indol-5-yl)-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole (70). 

This molecule was prepared by coupling 6 and (1H-indol-5-yl)boronic acid under 

conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 

8.47 (d, 1H, J= 6.6 Hz), 8.25 (d, 1H, J= 1.5 Hz), 7.91 (d, 1H, J= 6.6 Hz), 7.84 (d, 1H, J= 
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8.4 Hz), 7.70 (dd, 1H, J1= 8.4 Hz, J2= 1.8 Hz), 7.60 (s, 1H), 7.53 (d, 1H, J= 3.0 Hz), 7.42 

(s, 1H), 6.76 (d, 1H, J= 3.3 Hz), 3.56 (s, 3H), 2.33 (s, 3H), 2.15 (s, 3H). 13CNMR (300 

MHz, MeOD-d4), δ 166.52, 159.57, 153.41, 150.70, 147.47, 138.01, 135.66, 133.92, 

128.47, 127.17, 121.82, 121.66, 121.59, 121.44, 121.32, 117.44, 115.02, 113.09, 112.09, 

106.44, 103.31, 102.08, 54.53, 10.05, 9.18. ESIMS m/z  [M+H]+ calcd. = 409.46; found = 

409.67. 

 

4-(1-(1H-indol-3-yl)-8-methoxy-5H-pyrido[4,3-b]indol-7-yl)-3,5-dimethylisoxazole (71). 

This molecule was prepared by coupling 6 and (1H-indol-3-yl)boronic acid under 

conditions similar to those used for the preparation of 6. 1HNMR (300 MHz, MeOD-d4) δ 

8.46 (d, 1H, J= 6.9 Hz), 8.13 (s, 1H), 7.89 (d, 1H, J= 6.6 Hz), 7.72 (d, 1H, J= 8.7 Hz), 

7.59 (s, 1H), 7.40 (m, 2H), 7.25 (m, 1H), 7.01 (s, 1H), 3.30 (s, 3H), 2.33 (s, 3H), 2.14 (s, 

3H). ESIMS m/z  [M+H]+ calcd. = 409.46; found = 409.67. 

 

4-methoxycyclohexanol (73).  An aqueous solution (20 mL) of 1,4-cyclohexanediol (17.5 

g, 150 mmol) and KOH (9.3 g, 170 mmol) was heated to reflux for one h. After cooling 

to room temperature, water was removed under reduced pressure, and then CH3I (32.0 g, 

230 mmol) was added. After 24 h stirring at room temperature, the reaction mixture was 

quenched with 100 mL water and extracted with CHCl3 (100 mL × 3). The combined 

organic fraction was dried and then purified in flash column chromatography (eluted with 

EtOAc:hexane = 1:1) to give 7.14 g (36%) pale yellow liquid as the title compound.  

 



85 
 

4-methoxycyclohexanone (74). 73 (7.14 g, 54.8 mmol) was dissolved in DCM (60 mL), 

and added slowly into a pyridinium chlorochromate (23.65 g, 109.7 mmol) DCM solution 

(120 mL). The resulting mixture was stirred for 4 h under a N2 atmosphere. Pyridinium 

chlorochromate was filtered with H type silica gel, and the filtrate was concentrated to 

give 2.47 g (35%) titled compound as a pale yellow oil. 1HNMR (300 MHz, CDCl3) δ 

3.61 (t, 1H, J=2.4 Hz), 3.40 (s, 3H), 2.56 (m, 2H), 2.26 (m, 2H), 2.10 (m, 2H), 1.96 (m, 

2H).  

 

4-hydrazinylpyridin-2(1H)-one (76). 75 (4.97 g, 44.7 mmol) was slowly added to a 

solution in 2-methoxyethanol (100 mL) of H2N-NH2 (9.19 g, 290 mmol). The mixture 

was heated to reflux for 24 h, after which the solvent was removed and 4.57 g (81.6%) 

title compound was obtained by recrystallization from EtOH. 1HNMR (300 MHz, D2O) δ 

7.67 (s, 1H), 7.24 (d, 2H, J=7.2 Hz), 6.30 (s, 1H), 6.04 (d,2H, J=7.2 Hz), 5.73 (s, 1H), 

3.62 (s, 2H). 

 

4-(2-(4-methoxycyclohexylidene)hydrazinyl)pyridin-2(1H)-one (77). 76 (2.07 g, 16.5 

mmol) was suspended in 74 (2.33 g, 18.2 mmol) solution in absolute EtOH (100 mL). 

After being heated to reflux for 2 h, the reaction mixture was concentrated to half of its 

original volume. The resulting precipitates were filtered and dried to give 3.02 g (77.0%) 

colorless solid. 1HNMR (300 MHz, DMSO-d6) δ 10.50 (s, 1H), 9.28 (s, 1H), 7.07 (d, 1H, 



86 
 

J=7.2 Hz), 6.01 (d, 1H, J=5.7 Hz), 5.67 (d, 1H, J=2.1 Hz), 3.45 (m, 1H), 3.28 (s, 3H), 

2.35 (m, 2H), 2.20 (m, 2H), 1.86 (m, 2H), 1.62 (m, 2H). 

 

8-methoxy-5H-pyrido[4,3-b]indol-1-ol (78). 77 (1 g, 4.27 mmol) was dissolved in 

diphenyl ether (20 mL). The solution was heated to reflux under N2 protection for 30 min. 

After cooling to room temperature, 10% Pd-C (0.3 g) was added to the mixture which 

was heated to reflux again for 75 min. Then hexane (40 mL) was added into the cooled 

mixture. The resulting precipitates were filtered and taken up into boiling AcOH (55 mL), 

then filtered again to get rid of Pd-C. The filtrate was concentrated to give yellow solid 

which is boiled in 8 mL EtOH and filtered to give 0.63 g (63.1%) of a pale yellow solid 

as the title compound. 1HNMR (300 MHz, DMSO-d6) δ 11.54 (s, 1H), 11.03 (s, 1H), 7.60 

(d, 1H, J=2.1 Hz), 7.37 (d, 1H, J=8.7 Hz), 7.25 (m, 1H), 6.90 (dd, 1H, J1=2.7 Hz, J2=8.7 

Hz), 6.46 (d, 1H, J=7.2 Hz), 3.81 (s, 3H). 

3.10.2 Biochemical assays 

3.10.2.1 Fluorescence polarization assay 

Competitive fluorescence polarization (FP) binding assays were performed to 

quantitate the binding affinities of designed compounds to the BRD2-BRD4 BD1 and 

BD2 domains. For the development of competitive FP binding assays, we designed and 

synthesized a FAM labeled fluorescent probe based upon ZBA248, a potent BET 

inhibitor we have developed whose chemical structure is provided in the our patent150. 

Equilibrium dissociation constants (Kd) values of ZBA248 to these six proteins were 
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determined from protein saturation experiments by monitoring the total fluorescence 

polarization of mixtures composed with the fluorescent probe at a fixed concentration and 

proteins with increasing concentrations up to full saturation. Serial dilutions of each 

tested protein were mixed with ZBA248 to a final volume of 200 l in the assay buffer 

(100 mM phosphate buffer, pH = 6.5, with 0.01% Triton X-100). The final probe 

concentration for all assays was 1.5 nM. Plates were incubated at room temperature for 

30 min with gentle shaking to ensure equilibrium. FP values in millipolarization units 

(mP) were measured using the Infinite M-1000 plate reader (Tecan U.S., Research 

Triangle Park, NC) in Microfluor 1 96-well, black, round-bottom plates (Thermo 

Scientific, Waltham, MA) at an excitation wavelength of 485 nm and an emission 

wavelength of 530 nm. The Kd values for the interaction with ZBA248, calculated by 

fitting the sigmoidal dose-dependent FP, increases as a function of protein concentrations 

and analyzed with Graphpad Prism 6.0 software (Graphpad Software, San Diego, CA), 

are 2.0, 2.2, 6.5, 0.6, 5.5, and 3.0 nM to BRD2 BD1 and 2, BRD3 BD1 and 2, and BRD4 

BD1 and 2, respectively. 

The IC50 values of compounds were determined in competitive binding 

experiments. Mixtures of 10 l of the compound in an assay buffer with 40% ethylene 

glycol and 190 l of preincubated protein/probe complex solution in the assay buffer 

were added into assay plates which were incubated at room temperature for 30 min with 

gentle shaking. Final concentrations of proteins were 3, 6, 15, 2, 10, and 6 nM in assays 

for BD1 and BD2 of BRD2, BRD3, and BRD4 BD2, respectively. The final probe 

concentration in all competitive experiments was 1.5 nM. Negative controls containing 
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protein/probe complex only (equivalent to 0% inhibition), and positive controls 

containing only free probes (equivalent to 100% inhibition), were included on each assay 

plate. FP values were measured as described above. IC50 values were determined by 

nonlinear regression fitting of the competition curves. Ki values of competitive inhibitors 

were obtained directly by nonlinear regression fitting, based upon the Kd values of the 

probe to different proteins, and the concentrations of the proteins and probes in the 

competitive assays151, 152. 

3.10.2.2 Bio-layer Interferometry (BLI)  

BLI experiments were performed using an OctetRED96 instrument from 

PALL/ForteBio. All experiments were performed at 25 C using PBS (pH 7.4) as the 

assay buffer, to which 0.1% BSA and 0.01% Tween-20 were added to reduce nonspecific 

interactions. 0.5% DMSO was also introduced to increase compound solubility. Assays 

were conducted in Greiner 96 well black flat-bottom microplates containing the protein 

solutions, pure assay buffer for dissociation, and serial dilutions of the compounds being 

tested. During the experiment, sample plates were continuously shaken at 1000 RPM to 

eliminate a mass transport effect. 

Biotinylated proteins prepared using the Thermo EZ-Link long-chain 

biotinylation reagent were immobilized on Super Streptavidin (SSA) biosensors by 

dipping sensors into plate wells containing protein solutions whose concentrations were 

pre-determined from control experiments to achieve the best signal to noise ratio. Sensor 

saturation was typically achieved in 10-15 min. Biotinylated blocked Streptavidin (SAV-
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B4) sensors were prepared as the inactive reference controls following the protocol 

provided by the manufacturer. Sensors loaded with proteins were moved and dipped into 

wells with pure assay buffer then washed in the buffer for 10 min to eliminated loose 

nonspecific bound protein and establish a stable base line. Assessment was conducted of 

association-dissociation cycles of compounds started by moving and dipping sensors into 

the solutions of the compounds and pure buffer wells alternately starting from the lowest 

concentration of compound. Association and dissociation times were carefully 

determined to ensure full association and dissociation. 

Buffer-only reference was included in all assays. Raw kinetic data collected were 

processed with the Data Analysis software provided by the manufacturer using double 

reference subtraction in which both buffer-only reference and inactive protein reference 

were subtracted. The resulting data were analyzed based on a 1:1 binding model from 

which kon and koff values were obtained and then Kd values were calculated. 

3.10.3 Cellular assays 

Cell lines obtained from the American Type Culture Collection (ATCC) were 

used within three months of thawing fresh vials. Cells were maintained in the 

recommended culture medium with 10% FBS at 37 °C and an atmosphere of 5% CO2. 

The effect of BET inhibitors on cell viability was determined in a 4-day proliferation 

assay as describedpreviously153. Cells were seeded in 96-well white opaque cell culture 

plates at a density of 3,000-10,000 cells/well in 75 μL of culture medium. Each 

compound tested was serially diluted in the appropriate medium, and 75 μL of a diluted 
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solution containing the compound was added to the appropriate wells of the plate. After 

the addition of the tested compound, the cells were incubated at 37 °C in an atmosphere 

of 5% CO2 for 4 days. Cell viability was determined using the CellTiter-Glo® 

Luminescent Cell Viability Assay Kit (Promega, Madison, WI) according to the 

manufacturer’s instructions. The luminescent signal was measured using a Tecan Infinite 

M1000 multimode microplate reader (Tecan, Morrisville, NC). The readings were 

normalized to the DMSO-treated cells and the IC50 values were calculated by nonlinear 

regression analysis using the GraphPad Prism 5 software. 

3.10.4 Molecular modeling 

The co-crystal structures of BRD4 BD1 in a complex with compound 3 (PDB 

entry: 3ZYU), BRD4 BD2 in a complex with GW841819X (PDB entry: 2YEM) and 

BRD4 BD2 in a complex with compound 6 were used to model the binding poses of 

designed compounds with BRD4 BD1 and BRD4 BD2. Chain A of the BRD4 BD1 

crystal structure was first extracted and protons were added using the “protonate 3D” 

module in MOE154 where protonation states of His residues at pH 7.0 were determined by 

considering neighboring residues in the structure. All water molecules from the crystal 

structure were saved. The same procedures were used for BRD4 BD2 protein. The 

designed compound structures were drawn and optimized using the MOE program. All 

the binding poses of designed compounds with BRD4 BD1 were modeled using the 

GOLD program (version 4.0.1) 155, 156. The center of the binding site for BRD4 BD1 was 

set at C136 and that for BRD4 BD2 at C429. The radius of the binding site in both cases 

was defined as 11 Å, large enough to cover the entire binding pocket. At the binding site, 
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water molecules A2129, A2137 and A2178 of BRD4 BD1 (PDB entry: 3ZYU) were 

included during the docking simulations where flags of on, toggle, toggle were set 

individually and allowed to spin for optimal hydrogen bond interaction. In each genetic 

algorithm (GA) run, a maximum number of 200,000 operations were performed on a 

population of 5 islands each of 100 individuals. Operator weights for crossover, mutation 

and migration were set to 95, 95 and 10 respectively. The docking simulations were 

terminated after 20 runs for each ligand. ChemScore implemented in Gold 4.0.1 was used 

as the fitness function to evaluate the docked poses. The 20 conformations ranked highest 

by each fitness function were saved for analysis of the predicted docking modes. 

3.10.5 Crystallization and structure determination  

BRD4 BD2 (residues 333-460) was concentrated to ~8 mg/mL and incubated 

with a 2-fold excess of the inhibitor prior to crystallization setup. Crystals were grown in 

50% polyethylene glycol 600, 0.1 M Tris pH 8.0, and 0.01 to 0.10 M ATP.  Data were 

collected at the Advance Photon Source at Argonne National Lab on the LS-CAT 

beamlines 21-ID-F. The complex was crystallized in space group P21212 and contained 1 

molecule per asymmetric unit. Data were processed with HKL2000157 and the structure 

was solved by molecular replacement with Phaser158 using PDB code 2OUO as a model. 

The structure was refined with Buster159  and electron density maps fit with COOT160. 

Coordinates and restraints for the compound were developed using Grade with the 

mogul+qm option159. The co-crystal structures were validated using Molprobity161, 

Parvati162, and Whatcheck163. Ligand statistics were obtained from the Uppsala Electron-

Density Server164.  
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3.10.6 Pharmacokinetic analysis 

Quantitative analysis of drug concentration in mouse plasma and tumor tissue was 

completed using the previously reported method165. 

3.10.7 In vivo antitumor efficacy 

 The antitumor activity of RX-201 in MDA-MB-436 xenograft model was tested 

using the previously reported method166. 
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CHAPTER 4 

Perspective of targeting protein-protein interactions using peptide or non-peptide 
small-molecules for cancer targeted therapy 

 

In the previous two chapters, the application of either stapled peptides or non-

peptidic small-molecules to block PPIs with oncogenic significance is described. These 

two projects have different backgrounds such as the level of biological understanding, 

shape of PPI interfaces and availability of known ligands. These features allow design of 

two types of molecules serving either as a pharmacological tool to validate the target or 

as a clinical candidate with improved drug-like properties. 

The RAP1 project starts with limited biological information and no reported 

ligand and design of a tool molecule to study biological consequences is a priority for the 

project. Due to its large and hydrophobic features at the RAP1/TRF2 interface, a peptide, 

a fragment of the protein, was the initial direct chemical entity. In contrast, BET 

bromodomains have already been validated as targets with four clinical drugs developed 

by different institutions (Clinicaltrials.gov). Therefore, the aim of this project is to 

develop a new scaffold that has superior anticancer activity than other clinical 

compounds. I would like to discuss some of my experience and understanding gained 

over five years regarding application of these two types of molecules in the area of 

inhibition of oncogenic PPIs. 

As mentioned earlier, a peptide represents a straightforward ligand design strategy 

for PPI targets. Oncogenic PPIs are largely unexplored and employment of natural or 
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structurally modified peptides will accelerate ligand discovery and target validation. 

Peptide-based molecules can be applied as biochemical tools for small-molecule 

screening86, they can penetrate cell membranes to bind to intracellular targets enabling a 

study of the biology of the system38, or they can be converted to a “drug-like” peptide 

mimetic that may benefit patients clinically167. Although a peptide would appear to have 

applications as broad as those of small molecules, the length, charge and conformation of 

the specific epetide sequence will largely determine its fate.  

As discussed in Chapter 1, the peptide ligand of XIAP: Smac, is a four-amino acid 

sequence, AVPI, with all hydrophobic side chains. Such a simple and charge free nature 

facilitated conversion of the tetrapeptide into clinical compounds. Clinical molecules 

(Figure 1), still retain a largely peptide scaffold and carry a net positive charge that was 

thought to be favorable for membrane penetration and water solubility168.  

For more complex peptides, the task is more difficult. For example, α-helices 

containing PPI interfaces such as MDM2/p53, RAP1/TRF2 and Bcl-2 family members 

have all been probed by stapled peptides38, 169. These molecules were used to establish 

biochemical assays, or as tool molecules to study biology in cells. However, none of the 

stapled peptides or even peptides with secondary structure entered clinical trials targeting 

intracellular oncogenic targets. In fact not every stapled peptide even works well in 

cells170. As discussed in both Walensky’s171 and our studies, stapling alone does not 

guarantee high helical propensity, target protein binding affinity or potent cellular activity. 

And fine-tuning of the sequence is necessary to obtain potent and cell-permeable stapled 
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peptides. As shown in Figure 29, charge difference at the terminal residues of one 

stapled peptide can lead to diverse cellular performance171. This notwithstanding, it is still 

unclear whether or not a stapled α-helix can be used as drug. Efforts to put stapled 

peptides into human studies are continually being made; an example is ATSP-7041169, a 

first-in-class p53 re-activator under development by Aileron and Roche and currently in 

preclinical trials. However, no structured peptide has been reported to have clinical value 

in oncogenic PPI inhibition, suggesting the difficulty and limitation of peptides in this 

field.  

                   
 

 
Figure 29 Charge difference is important in cellular activity of stapled peptides. 

  

Non-peptide small-molecule probes on the other hand can easily be converted to 

“drug-like” molecules that function in vivo, but one of the difficulties regarding design of 
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small-molecular PPI inhibitors is the larger surface area compared with traditional targets 

like enzymes or receptors. This normally results in inhibitor molecules with larger 

structural complexity and diversity, and requires more efforts in lead discovery and 

optimization. The discovery of clinical compounds ABT-263, MI-77301 and I-BET762 

employs various screening techniques such as fragment-based screening, virtual 

screening, and phenotypic and chemoproteomic screening48, 139, 172. Compared to peptides 

which are normally a fragment of one PPI member, screening of initial leads and 

subsequent optimization are costly in terms of resources and risks. Unlike peptides, 

small-molecules are not endogenous ligands for PPIs, so the specificity of the molecule 

should be carefully examined at the outset. As PPI interfaces are mostly hydrophobic, 

exclusion of false-positive results and careful interpretation of SAR are primary concerns. 

Finally, preparation of small-molecules involves multi-step syntheses which are clearly 

more complicated than (largely automated) peptide synthesis. 

To summarize my understanding with peptide and small-molecular PPI inhibitors, 

in view of the advantages of peptides in early stage studies, they can be used to probe 

unexplored PPI interfaces. This effort could provide new biological discoveries and 

preliminary SAR that will guide the discovery of small molecules, therefore pushing the 

project further into deeper biological and even human studies which may finally benefit 

patients in the clinic. 
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