
Volumes and integer points of multi-index
transportation polytopes

by

David T. Benson-Putnins

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mathematics)

in The University of Michigan
2015

Doctoral Committee:

Professor Alexander Barvinok, Chair
Assistant Professor Neil P. Dasgupta
Professor Anna C. Gilbert
Professor Mark Rudelson
Professor Roman Vershynin



c© David T. Benson-Putnins 2015

All Rights Reserved



To Tessa, for always supporting me

ii



ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisor, Professor Alexander

Barvinok, whose guidance on finding and attacking the theorems here was invaluable

over the past four years.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Polytope Constraints . . . . . . . . . . . . . . . . . . . . 4
1.2 Quadratic Forms and Inner Products . . . . . . . . . . . . . . 6
1.3 Maximum Entropy in the Counting Problem . . . . . . . . . 6
1.4 Counting Integer Points of Transportation Polytopes . . . . . 7
1.5 Counting Binary Integer Points in Transportation Polytopes . 10
1.6 Measuring Volumes of Transportation Polytopes . . . . . . . 13
1.7 Polynomial Time Calculations . . . . . . . . . . . . . . . . . 16
1.8 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

II. Correlations and Variances of the Quadratic Form . . . . . . 18

2.1 Eigenvalues and Eigenvectors of q(t) . . . . . . . . . . . . . . 20
2.2 Variances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.3 Correlations . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 The Third Degree Term . . . . . . . . . . . . . . . . . . . . . 43

III. Proof of Theorem I.1 . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1 Integral Expression of the Counting Problem . . . . . . . . . 47
3.2 A Bound on F (t) Away from the Origin . . . . . . . . . . . . 49
3.3 The Proof of Theorem I.1 . . . . . . . . . . . . . . . . . . . . 54

IV. Proof of Theorem I.2 . . . . . . . . . . . . . . . . . . . . . . . . . 61

iv



4.1 Integral Expression of the Counting Problem . . . . . . . . . 62
4.2 A Bound on F (t) Away from the Origin . . . . . . . . . . . . 64
4.3 The Proof of Theorem I.2 . . . . . . . . . . . . . . . . . . . . 66

V. Proof of Theorem I.3 . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Concentration of the Gaussian Integral . . . . . . . . . . . . . 74
5.2 Integral Representation of Measuring Volume . . . . . . . . . 79
5.3 A Bound on F (t) Away from the Origin . . . . . . . . . . . . 80
5.4 The Proof Of Theorem I.3 . . . . . . . . . . . . . . . . . . . . 84

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

v



ABSTRACT

Volumes and integer points of multi-index transportation polytopes

by

David T. Benson-Putnins

Chair: Alexander Barvinok

Counting the integer points of transportation polytopes has important applications

in statistics for tests of statistical significance, as well as in several applications in

combinatorics. In this dissertation, we derive asymptotic formulas for the number of

integer and binary integer points in a wide class of multi-index k1 × k2 × . . . × kν

transportation polytopes. A simple closed form approximation is given as the kjs

go to infinity. A formula for the volume of 4-index transportation polytopes is also

given.

We follow the approach of Barvinok and Hartigan to estimate the quantities

through a type of local Central Limit Theorem. By carefully estimating eigenvalues

and eigenvectors of certain quadratic forms, we are able to prove strong concentration

results for the corresponding multivariate Gaussian random variables. We also esti-

mate correlations between linear functions of Gaussian random variables to produce

concentration results for the distribution of certain exponential functions. Combined,

these techniques allow us to give a complete accounting of the integrals of several

functions that are key to estimating the number of integer or binary integer points in

multi-index transportation polytopes. As an additional result, we transform a stan-

vi



dard concentration of measure on the sphere argument to a concentration result for

Gaussian measures whose quadratic forms contain several small eigenvalues, allowing

a similar calculation for the volume of multi-index transportation polytopes.
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CHAPTER I

Introduction

A ν-index transportation polytope is a set of k1 × . . . × kν arrays of non-negative

numbers with fixed hyper hypercube arrays of non-negative numbers of the form

(ξm1,...,mν )
k1,...,kν
m1,...,mν=1

satisfying the following relations: Fix some arbitrary j with 1 ≤ j ≤ ν, and some

arbitrary mj with 1 ≤ mj ≤ kj. Then there are constants Sjmj for each such j and

mj such that ∑
m1,...,mj−1,mj+1,...,mν

ξm1,m2,...,mν = Sjmj .

For such a j and mj we call Sjmj the mjth margin in the jth direction. In the literature

this is often referred to as a multi-index transportation polytope with fixed 1-margins,

for example in [LO04], or a planar transportation polytope in the 3-index case, for

example in [L+09].

The main results in this paper are asymptotic formulas to approximately count the

number of integer and binary integer points in a wide class of ν-index transportation

polytopes. for ν ≥ 3, and an asymptotic formula to approximate the volume of certain

4-index transportation polytopes.
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Figure 1.1: An integer point in a 2× 2× 2 three-index transportation polytope. The
entries corresponding to the first margin in the second direction are col-
ored green, and the entries corresponding to the second margin in the
second direction are colored red. The polytope this point comes from has
margins S1

1 = 14, S1
2 = 19, S2

1 = 20, S2
2 = 13, S3

1 = 26, and S3
2 = 7.

Counting the number of binary integer points in a ν-index transportation polytope

is a special case of counting ν uniform, ν-partite hypergraphs. The vertices of the jth

partition are labeled 1 through kj, and an entry in the m1,m2, . . . ,mν position says

there exists an edge connecting vertices m1,m2, . . . ,mν . Work has gone into counting

asymptotically the number of hypergraphs of certain forms, see [DFRS13].

Counting the number of integer and binary integer points in 3-way contingency ta-

bles has applications in algebraic combinatorics. The Kronecker coefficients g(λ, µ, ν)

for partitions λ, µ and ν of some integer n are defined by the identity

χλ ⊗ χµ =
∑
ν

g(λ, µ, ν)χν ,

where χα is the irreducible representation of Sn indexed by partition α. It is known

that the values of g(λ, µ, ν) are non-negative, but a combinatorial interpretation or

simple counting formula is not known. In [AV12] it is shown that the the value of
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g(λ, µ, ν) can be bounded from above by the number of integer points of a 3-way

contingency table whose margins are given by λ, µ and ν. It is also shown that

g(λ, µ, ν) is bounded from above by the number of binary integer points of a 3-way

contingency table whose margins are given by λ′, µ and ν, where λ′ is the conjugate

partition of λ. In [PP3] it is shown that g(λ, µ, ν) can be calculated exactly in terms

of the number of integer points in 3-way contingency tables of various margins.

In statistics, points in a ν-index transportation polytopes tables are constructed

from a given dataset in the following way: N objects have ν qualities divided into

k1 categories for the first quality, k2 categories for the second, through kν categories

for the last. The entry xm1,...,mν is the number of objects that have quality 1 fall into

category m1, quality 2 into category m2, through quality ν in category mν . Estimat-

ing the number of integer points contained within the corresponding transportation

polytope is critical for tests of significance in the distribution of contingency tables

and interpretation of those results. See [DE85] for an exposition in the ν = 2 case.

Much work has been done in calculating asymptotic formulas for the number of

integer points of multi-index transportation polytopes in special cases. Examples

include two-directional transportation polytopes, in the sparse case in [GM08], and

in the case of all equal margins in [CM10]. An asymptotic formula for the number

of integer points in certain ”smooth” - or close in a certain technical sense to the

case of all equal margins - two-directional multi-index transportation polytopes has

been calculated in [BH12]. Formulas for the volume and number of integer points

and binary points for smooth multi-index transportation polytope of five or more

directions was found in in [BH10]. It was not previously known that smooth three

and four directional transportation polytopes allowed the same asymptotic formula.

In addition, the asymptotic error for the case of having five or more directions is
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improved over that calculated in [BH10]. We will combine the approaches of these

last two papers, along with improved estimates on the variance of certain Gaussian

random variables to achieve the result.

We also extend the results of Barvinok and Hartigan in [BH10] to estimate the

volume of a large class of 4-index transportation polytopes defined by a similar condi-

tion to being smooth. In [BH10] they estimate the volume of ν-index transportation

polytopes for ν ≥ 5. We apply well known concentration of measure results on the

sphere to improve estimates of integrals and allow for the general proof technique to

be used on 4-index transportation polytopes as well.

The layout of this paper is: the remainder of Chapter I states the three main

theorems, and discusses future potential work related to them. In the proof of all

three theorems we rely heavily on the eigenspace of quadratic forms of a certain type.

Chapter II calculates the eigenspace of these quadratic forms, and proves several

lemmas and theorems common to the proofs of all three main theorems. The theorems

are then proven in Chapters III, IV, and V.

1.1 The Polytope Constraints

In what follows, a set P ⊂ Rn is called a polyhedron - and a polytope, if it is

bounded - if it can be defined as

P = {x = (ξ1, . . . , ξn) : Ax = b and ξj ≥ 0 for all j}

for some A a d× n matrix of real numbers, and b ∈ Rd. In this case the columns of

A will be denoted a1, . . . , an. For the ν-index transportation polytope defined earlier,
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we write a point in our hypercube array as

(ξ11...1, ξ11...2, . . . , ξ11...k1 , ξ11...121, . . . , ξk1k2...kν )

with the coordinate ξm1...mν being the coordinate lying in the mjth margin of the

jth direction. The transportation polytope then fits the above definition with n =

k1k2 . . . kν , and each am1...mν being a vector of length k1 + k2 + . . . + kν that has all

0s, except for a 1 in positions m1, k1 +m2, k1 + k2 +m3,..., and k1 + . . .+ kν−1 +mν .

In this case the entry of b in position k1 + . . .+ kj−1 +mj is Sjmj for each j and mj.

It is important to note that the constraint matrix A for a multi-index transporta-

tion polytope does not have full rank. This is easily seen by observing that for each

j, the sum
kj∑

mj=1

Sjmj

must be the same value, as it gives the sum of all entries in the hypercube array. This

is the only linear dependency amongst the constraints, and a basis of the constraints

consists of removing the constraint on the kjth margin in the jth direction for j =

2, . . . , ν. If L ⊂ Rk1+...+kν is the subspace

L =
{

(ξ1, . . . , ξk1+...+kν ) : ξk1+...+kj = 0 for all 2 ≤ j ≤ ν
}
, (1.1)

and Q : Rk1+...+kν → Rk1+...+kν is the orthogonal projection onto L, then QA is a

full rank linear transformation from Rk1+...+kν → L and the system of constraints

QAx = Qb is equivalent to selecting a linearly independent set of constraints for P .
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1.2 Quadratic Forms and Inner Products

Recall if q(t) is a positive semidefinite quadratic form on Rd, then there exists a

positive semidefinite symmetric matrix B such that q(t) = 1
2
〈t, Bt〉. We define the

eigenvalues and eigenvectors of q to simply be the eigenvalues and eigenvectors of B.

If V ⊂ Rd is a linear subspace and Q the orthogonal projection onto V , then q|V(t)

will denote the quadratic form 1
2
〈t, QBQt〉. For t ∈ V this conforms with the original

definition, but we will occasionally decompose t into vectors not contained in V which

will make this definition convenient.

If B is positive semidefinite symmetric d × d matrix, then QBQ is a positive

semidefinite symmetric d×d matrix whose kernel includes V⊥. Therefore there exists a

basis of orthogonal eigenvectors that all lie in V or V⊥. By det(q) we mean the product

of the eigenvalues of B, and by det(q|V) we mean the product of the eigenvalues of

the eigenvectors of QBQ that lie in V .

Lastly, we recall that if q is a positive definite quadratic form on some subspace

V ⊂ Rn, then ∫
V

e−q(t)dt =
(2π)dim(V)/2√

det(q|V)
. (1.2)

1.3 Maximum Entropy in the Counting Problem

In many counting and volume measurement problems, the problem is reduced

to calculating an integral. Examples include [BH12] and [BH10] in counting inte-

ger points of general polytopes. In [BH13], the number of graphs satisfying certain

conditions on the degrees of its vertices is counted in a similar manner.

The principle that allows the construction of the integral is inspired by the stan-
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dard ’Monte Carlo’ or random sampling method. To count the number of integer

points in a polytope P ⊂ Rn
+ defined by the system of equations Ax = b, we first

construct a random variable X that takes values in Zn+, for which EX ∈ P . We then

express |P ∩ Zn| as a function of Pr(X ∈ P ). Rather than a numerical sampling

to estimate Pr(X ∈ P ), we use X ∈ P if and only if AX = b. If A is d × n with

n � d, and each row of A has sufficiently many nonzero entries, and each entry of

X is picked independently, then the entries of AX are approximately Gaussian by

the Central Limit Theorem. The integrand of the integral we use to estimate the

number of integer points is simply e−q(t), where q(t) is a certain quadratic form that

we construct later.

It turns out that a useful choice of X is the random variable of maximum entropy

whose expected value lies in P that takes the relevant values. In the integer point

case the entries of X are independent geometric random variables, in the binary

integer point case the entries of X are independent Bernoulli random variables, and

in the volume case the entries of X are independent exponential random variables.

In Sections 3.1, 4.1, and 5.1, we cite several lemmas and theorems of Barvinok and

Hartigan that describe the choice of a random variable X that is appropriate for

counting integer points, counting binary integer points, and measuring volumes, and

how to construct the probability mass function or density of the distribution explicitly,

but the focus of this paper will be on the application of these theorems to the specific

example of multi-index transportation polytopes. See [BH10] for more details on the

general case.

1.4 Counting Integer Points of Transportation Polytopes

In this section we state the main theorem estimating the number of integer points

in a multi-index transportation polytope. The theorem is
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Theorem I.1. Let P be a k1× . . .×kν multi-index transportation polytope with ν ≥ 3

defined as in Section 1.1 by the overdetermined linear equations Ax = b with L the

subspace defining a linearly independent subset of equations, and let n = k1× . . .×kν.

Let z = (ζ1, . . . , ζn) be the unique point in P on which the strictly concave function

g(x) =
n∑
j=1

(ξj + 1) ln(ξj + 1)− ξj ln(ξj) for x = (ξ1, . . . , ξn)

attains its maximum value. Let D be the matrix whose columns are (ζj + ζ2
j )1/2aj,

where aj are the columns of A, and let q(t) = 1
2
〈t,DDtt〉. Suppose there exist numbers

0 < ω < 1, along with k > 0, and R > r > 0 such that the following inequalities hold:

ωk ≤ kj ≤ k for j = 1, . . . , ν, and

r ≤ ζ2
j + ζj ≤ R for j = 1, . . . , n,

along with the inequalities ωk ≥ 2, and R > 1. If k is large enough to satisfy the

following inequalities:

π22νν3

ων ln(1 + 2
5
π2r)

(
1

2
ν2k ln(k) +

1

2
νk ln(R)

)
k−ν+1 ≤ 1

4ν2R
, and

8π22νν7R2

ωνr
ln(k)k−ν+2 ≤ 3/4,

then |P ∩ Zn| is approximated by

eg(z)

(2π)(k1+...+kν−ν+1)/2
det(q|L)−1/2

to within relative error

Γk−ν+2.5

for some constant Γ = Γ(R, r, ω, ν). In particular, if r, R, ω and ν are fixed, there
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exists N = N(r, R, ω, ν) such that for all k ≥ N , we have

Γ =
4R2π44νν10

ω2ν
.

The conditions of Theorem I.1 essentially say that P looks similar to the most

symmetric case possible. P is called a polystochastic tensor if k1 = k2 = . . . = kν and

every entry of b is equal to kν−1. In this case we can take k = kj for all j = 1, . . . , ν,

and ω = 1. Furthermore, by the symmetry of the problem, we get ζj = 1 for

j = 1, . . . , n. The value of ω measures how far from a hypercube the shape of the

polytope’s arrays are. The values R/r essentially measure how far from equal the

entries of b are, and the magnitude of r (or R) is a measure of how large the entries

of b are.

The assumption that R > 1 is trivial, as R is simply an upper bound on the values

of ζm1,...,mν and can be chosen to be larger if needed. If any of the kjs are equal to 1,

then P is a ν−1 index transportation polytope, so ωk ≥ 2 is also a trivial assumption.

The two non-trivial assumptions on how large k is are generated by the specific proof

we use. Informally, they say if R is too large compared to k, the theorem is not

valid. Fixing R/r and letting r, R go to infinity is equivalent to letting the margin

sums go to infinity. In this case the number of integer points well-approximates the

volume of P [KV97]. As we will see in Theorem I.3, estimating the volume of multi-

index transportation polytopes is more difficult. As we will discuss in Section 1.8 this

restriction is likely artificial. Under the heuristic described in Section 1.3, we would

expect the problem of estimating the number of integer points to become easier as

the margins go to infinity.

To prove Theorem I.1, we show that the number of integer points in P can be
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expressed using ∫
Π

F (t)dt,

where Π ⊂ L for L as in (1.1) is a cube centered at the origin whose sides have length

2π, and F (t) is a function that will be defined later. We then split L into three

regions X1, X2, and X3. We show that

∫
(X2∪X3)∩Π

|F (t)|dt and

∫
X2∪X3

e−q(t)dt�
∫
L

e−q(t)dt,

where q(t) is the quadratic form constructed in Theorem I.1, and that

∫
X1

F (t)dt ≈
∫
X1

e−q(t)dt ≈
∫
L

e−q(t)dt.

To facilitate these calculations we will require several results about the probability

distribution whose density is proportional to e−q(t) on L. Chapter II will contain

these, and the proof of Theorem I.1 will take place in Chapter III.

1.5 Counting Binary Integer Points in Transportation Poly-

topes

In this section we state the main theorem estimating the number of binary integer

points in a multi-index transportation polytope. We use several pieces of notation

that overlap with Theorem I.1. The usage as in Theorem I.1 will be restricted to its

proof in Chapter III, and the usage in Theorem I.2 will be restricted to its proof in

Chapter IV.

Theorem I.2. Let P be a k1× . . .× kν transportation polytope with ν ≥ 3 defined by

the overdetermined linear equations Ax = b as described in Section 1.1, with L the

subspace defining a linearly independent set of equations, and let n = k1 × . . . × kν.
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Let z = (ζ1, . . . , ζn) be the unique point in P ∩ [0, 1]n on which the strictly concave

function

g(x) =
n∑
j=1

ξj ln
1

ξj
+ (1− ξj) ln

1

1− ξj
for x = (ξ1, . . . , ξn)

attains its maximum value. Let D be the matrix whose columns are (ζj − ζ2
j )1/2aj,

where aj are the columns of A, and let q(t) = 1
2
〈t,DDtt〉. Suppose there exist numbers

0 < ω < 1, along with k > 0 and r > 0 such that

ωk ≤ kj ≤ k for j = 1, . . . , ν, and

r ≤ ζj − ζ2
j for j = 1, . . . , n,

along with ωk ≥ 2. If k is large enough so that

5ν52ν−1

2rων
ln(k)k−ν+2 ≤ 1

4ν2
and

10ν72ν−1

r2ων
ln(k)k−ν+2 ≤ 3/4,

then |P ∩ {0, 1}n| is approximated by

eg(z)

(2π)(k1+...+kν−ν+1)/2
det(q|L)−1/2

to within relative error

Γk−ν+2.5

for some constant Γ = Γ(r, ω, ν). There exists some constant N = N(r, ω, ν) such

that if k ≥ N , then Γ may be chosen to be

Γ =
25ν144ν−1

4r2ω2ν
.
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The conditions of the theorem essentially say that P looks similar to the most

symmetric case possible. Suppose k1 = k2 = . . . = kν and every entry of b is equal to

kν−1/2. In this case we can take k = kj for all j = 1, . . . , ν, and ω = 1. Furthermore,

by the symmetry of the problem, we get ζj = 1/2 for j = 1, . . . , n, and ζj − ζ2
j = 1

4

for all values of j. The value of ω measures how far from a hypercube the shape of

the polytope’s arrays are. The value of r measures how far from kν−1/2 the entries

of b are - as the entries of b approach the extremal permissible values of kν−1 and 0

where the counting problem is trivial, the value of r goes to zero. It is easily seen

r can never be larger than 1/4 as by hypothesis, if z ∈ P ∩ [0, 1]n then 0 ≤ ζj ≤ 1

for all j = 1, . . . , n. The inequality ωk ≥ 2 is trivial, as if any kj = 1, then P is

a ν − 1-index transportation polytope. The non-trivial relationship between k, r, ω

and ν is a consequence of how the proof of the theorem is constructed, and is likely

not optimal. However, under the heuristic described in Section 1.3, we also would

not expect Theorem I.2 to hold if r is small enough compared to k.

To prove Theorem I.2, we show that the number of binary integer points in P can

be expressed using ∫
Π

F (t)dt,

where Π ⊂ L for L as in (1.1) is a cube centered at the origin whose sides have length

2π, and F (t) is a function that will be defined later. Note that F (t) is a different but

similar function to the one described after Theorem I.1, and each function’s definition

will be restricted to the chapter containing the respective theorems’ proofs. We then

split L into three regions X1, X2, and X3. We show that

∫
(X2∪X3)∩Π

|F (t)|dt and

∫
X2∪X3

e−q(t)dt�
∫
L

e−q(t)dt,
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where q(t) is the quadratic form constructed in Theorem I.2, and that

∫
X1

F (t)dt ≈
∫
X1

e−q(t)dt ≈
∫
L

e−q(t)dt.

To facilitate these calculations we will require several results about the probability

distribution whose density is proportional to e−q(t) on L. Chapter II will contain

these, and the proof of Theorem I.2 will take place in Chapter IV.

1.6 Measuring Volumes of Transportation Polytopes

In this section we state the main theorem estimating the volume of a 4-index

transportation polytope. As in the case of Theorem I.2, we will allow conflicting

notation whose usage will be restricted to the proof of Theorem I.3 in Chapter V.

Theorem I.3. Let P be a k1 × k2 × k3 × k4 transportation polytope defined by the

overdetermined linear equations Ax = b as described in Section 1.1, with L the sub-

space defining a linearly independent subset of equations, and let n = k1k2k3k4. Let

z = (ζ1, . . . , ζn) be the unique point in P on which the strictly concave function

g(x) = n+
n∑
j=1

ln ξj for x = (ξ1, . . . , ξn)

attains its maximum value. Let D be the matrix whose columns are ζjaj, where aj

are the columns of A, and let q(t) = 1
2
〈t,DDtt〉 and s(t) = 1

2
〈t, AAtt〉. Suppose there

exist numbers 0 < ω < 1 along with k > 0 and R > r > 0, such that

ωk ≤ kj ≤ k for j = 1, . . . , ν, and

r ≤ ζ2
j ≤ R for j = 1, . . . , n,

13



along with the inequalities ωk ≥ 2, R > 1 and k > 4. Suppose

3072R2

ω3r

(
8k−1 ln(k) + 2k−1 ln(R)

)
≤ 1,

1− 3072R

rω3k
> 0,

245760R2

ω3r
k−1 ln(k) ≤ 1, and

k ≥ 2

ω
(2π)4/ω.

Then vol(P ) is approximated by

eg(z)

(2π)(k1+k2+k3+k4−3)/2

det(s|L)1/2

det(q|L)1/2

to within relative error

Γk−.2

for some constant Γ = Γ(R, r, ω) > 0. Furthermore, there exists some constant

N = N(R, r, ω) such that for k ≥ N , we can let Γ = 2R3/2

3
.

The conditions of the theorem essentially say that P looks similar to the most

symmetric case possible. P is called a polystochastic tensor if k1 = k2 = . . . = kν and

every entry of b is equal to kν−1. In this case we can take k = kj for all j = 1, . . . , ν,

and ω = 1. Furthermore, by the symmetry of the problem, we get ζj = 1 for

j = 1, . . . , n. The value of ω measures how far from a hypercube the shape of the

polytope’s arrays are, and the values r and R essentially measure how far from equal

the entries of b are.

The inequality ωk ≥ 2 is trivial because if any kj = 1, then P is a 3-index

transportation polytope. The inequalities R > 1 and k > 4 are also trivial as R and

k are upper bounds on values, and can always be taken to be larger if necessary. The

other inequalities are non-trivial and consequences of how the proof is constructed.
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One consequence of them is that if R is too large compared to k, the theorem is not

valid. As R goes to infinity the volume is well-approximated by the number of integer

points in P , so for similar reasons as in the description following Theorem I.1, we

expect this restriction to be artificial, and replaceable with a relationship between k

and R/r.

Similar to the proofs of Theorems I.1 and I.2, we show that the volume in P can

be expressed using ∫
L

F (t)dt,

for L as in (1.1) and F (t) a function that will be defined later. The F (t) in the proof

of Theorem I.3 will be different than the function F (t) discussed after Theorems I.1

and I.2, and the notation will be restricted to the proof in Chapter V. We then split

L into three regions X1, X2, and X3. We show that

∫
(X2∪X3)

|F (t)|dt and

∫
X2∪X3

e−q(t)dt�
∫
L

e−q(t)dt,

where q(t) is the quadratic form constructed in Theorem I.3, and that

∫
X1

F (t)dt ≈
∫
X1

e−q(t)dt ≈
∫
L

e−q(t)dt.

Unlike the proofs of the other main theorems, this last approximate equality will

require splitting X1 into several pieces as well - this complication is why the volume

calculation cannot be extended to ν = 3 readily. To facilitate these calculations

we will require several results about the probability distribution whose density is

proportional to e−q(t) on L. Chapter II will contain these, and the proof of Theorem I.3

will take place in Chapter V.
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1.7 Polynomial Time Calculations

In all of Theorems I.1, I.2, and I.3, to calculate the given estimate one must calcu-

late the determinant of a known quadratic form, which can be done in time polynomial

in n, and find the extremal value of a strictly concave function. This can be calculated

to within error ε in time polynomial in n and ln(1/ε), see [NN94]. Combined, this says

that all three theorems give polynomial time algorithms for estimating the number

of integer points, binary integer points, or volume of transportation polytopes.

1.8 Future Work

In Theorems I.1 and I.3, the value R cannot be too large or the hypothesis of the

theorem is not satisfied. This is likely an artifact of the proof technique and not a hard

requirement. In [BH12], Barvinok and Hartigan count the number of integer points

in 2-way transportation polytopes as long as R/r is held constant, and R is bounded

by any arbitrary polynomial in k. For very large values of r and R, the polytope

itself is large enough that the volume and number of integer points approximate each

other quite well. The authors use scaling of the polytope to show that any value of R

is admissible, and to estimate the volume of 2-way transportation polytopes as well

with no upper bound on the value of R.

The extra flexibility comes from being able to show that

∫
X2∪X3

F (t)dt�
∫
L

e−q(t)dt

for a much larger set X2 ∪X3 than we are able to construct for ν ≥ 3. It is an open

question if for ν ≥ 3 there is no upper bound on how large R can be for the number

of integer points and volume calculations. It is also an open question if there exists
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a formula for the volume of 3-way transportation polytopes even in the case when R

is held constant as k grows.
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CHAPTER II

Correlations and Variances of the Quadratic Form

For the entirety of this chapter, we will let q(t) : Rk1+...+kν → R be the quadratic

form

q(t) =
1

2

k1,...,kν∑
m1,...,mν=1

αm1,...,mν (t1m1 + . . . tνmν )
2, (2.1)

where αm1,...,mν are arbitrary positive constants, such that each ki is at least 2. Note

that the quadratic forms in Theorems I.1, I.2 and I.3 are of this form with αm1,...,mν =

ζm1,...,mν + ζ2
m1,...,mν

in the first case, αm1,...,mν = ζm1,...,mν − ζ2
m1,...,mν

in the second, and

αm1,...,mν = ζ2
m1,...,mν

in the last. We will let B be the unique positive semidefinite

matrix such that

q(t) =
1

2
〈t, Bt〉 .

Note that for D as in Theorems I.1, I.2, or I.3, we have B = DDt. Suppose X is a

random variable whose density is proportional to e−q(t) restricted to L, where L is as

defined in (1.1). The objective of this chapter is to calculate correlations of random

variables of the form 〈X, ei〉 for any standard basis vector ei ∈ L. To do so, we will

carefully bound the eigenvalues of q(t) and estimate the eigenvectors of q(t).

The application of these results will be applied in the proofs of the main theorems

in two ways. It will allow us to show that the integral of e−q(t) outside of a neigh-
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borhood of the origin is negligible. It will also allow us to place bounds on E
(
eif(t)

)
for a certain cubic polynomial f(t) when t is drawn according to the distribution

given by X. In the proofs of each of the main theorems we will show the quantity to

be measured is equal to the integral of a function F (t) (different for each theorem),

which we will approximate near the origin via Taylor polynomial approximations as

F (t) ≈ e−q(t)+if(t). The results of this chapter will allow us to then estimate the

integral of F in a neighborhood of the origin.

We introduce some notation and concepts for the chapter. If C is a symmetric

matrix, we write λi(C) to be the ith largest eigenvalue of C. Throughout the entire

chapter we assume that there are values R > r > 0 such that

r ≤ αm1,...,mν ≤ R for all m1, . . . ,mν .

We also assume there exists ω and k such that

1 ≤ ωk ≤ k1, . . . , kν ≤ k.

For notational convenience we will define

k′j =
∏

i=1,...,ν
i 6=j

ki.

We will also denote Q : Rk1+...+kν → Rk1+...+kν to be the orthogonal projection onto

L.
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2.1 Eigenvalues and Eigenvectors of q(t)

In this section we calculate the eigenvalues and eigenvectors of q(t) (that is, the

eigenvalues and eigenvectors of B), and the eigenvalues and eigenvectors of q(t) when

restricted to the subspace L defined in Equation (1.1). Throughout we will let Q :

Rk1+...+kν → Rk1+...+kν be the orthogonal projection onto L. The main result of this

section is the following:

Theorem II.1. For ν ≥ 2, there exists a set of eigenvectors and eigenvalues of QBQ

as follows: there are ν − 1 eigenvectors with eigenvalue 0 lying in the kernel of Q,

ν − 1 unit eigenvectors with eigenvalues that lie between

r
ων−1

ν(ν − 1)
kν−2 and Rω−1kν−2

such that the square of the distance of each eigenvector to ker(B) is smaller than

R

r
ω−νk−1,

one eigenvalue which lies between

r

2
ων−1νkν−1 and Rνkν−1,

and the remaining eigenvalues all lie between

rων−1kν−1 and Rkν−1.

This theorem describes the eigenvalues and eigenvectors of the quadratic form q|L.

The outline of the proof is as follows: we first calculate all the eigenvectors and eigen-

values of B, and see the eigenvalues are all Θ(kν−1). Most of these eigenvectors will

lie in L and hence be eigenvectors of q|L as well. The remaining few eigenvectors will
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be nearly orthogonal to L, which we will use to show that the remaining eigenvalues

are Θ(kν−2).

We require the use of two well known lemmas on comparing eigenvalues of sym-

metric matrices.

Lemma II.2. Let C and D be symmetric positive semidefinite m×m matrices such

that C −D is positive semidefinite. Then

λi(C) ≥ λi(D) for all i = 1, . . . ,m.

Proof. This is Corollary 7.7.4 of [HJ85].

Lemma II.3. (The Weyl Inequalities): Let C and D be m × m real symmetric

matrices. Then

λi+j−1(D + C) ≤ λi(C) + λj(D)

as long as 1 ≤ i, j ≤ m such that i+ j − 1 ≤ m.

Proof. This inequality is shown in Section 1.3.3 of [Ta12].

Lemma II.4. The matrix B has a basis of orthogonal eigenvectors such that ν − 1

lie in the kernel of B, one has eigenvalue between rων−1νkν−1 and Rνkν−1, and the

remaining eigenvalues lie between rων−1kν−1 and Rkν−1.

Proof. If q(t) = 1
2
〈t, Bt〉 then

∇q(t) = Bt.

Calculating the gradient in (2.1) gives us

∂q

∂τjmj
=

∑
m1,...,m̂j ,...,mν

αm1,...,mν (τ1m1 + . . .+ τνmν ). (2.2)

First we consider the case when αm1,...,mν = 1 for all m1, . . . ,mν . Then for all 1 ≤
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j ≤ ν and 1 ≤ mj ≤ kj,

∂q

∂τjmj
= k′jτjmj +

k1,...,k̂j ,...,kν∑
m1,...,m̂j ,...,mν=1

(
τ1m1 + . . .+ τ̂jmj + . . .+ τνmν

)
. (2.3)

From this it is immediately clear by substituting in the relevant vectors that for any

1 ≤ j ≤ ν, any non-zero vector contained in the subspace

Wj =

( 0, . . . , 0︸ ︷︷ ︸
k1+...+kj−1

, τj1, . . . , τjkj , 0, . . . , 0︸ ︷︷ ︸
kj+1+...+kν

) :

kj∑
i=1

τji = 0

 (2.4)

is an eigenvector of B with eigenvalue k′j. As B has a basis of orthogonal eigenvectors,

we can complete the description of its eigenspace by considering vectors orthogonal

to each Wj, which are of the form

(σ1, . . . , σ1︸ ︷︷ ︸
k1

, σ2, . . . , σ2︸ ︷︷ ︸
k2

, . . . , σν , . . . , σν︸ ︷︷ ︸
kν

).

If σ1 + . . .+ σν = 0 then this vector lies in the kernel of B, so is an eigenvector with

eigenvalue 0. By dimension counting there is one remaining eigenvector of B, which

has σj = k′j for all j and has an eigenvalue of

ν∑
j=1

k′j.

If instead we have r < αm1...mν < R, the set of vectors of the form

(σ1, . . . , σ1︸ ︷︷ ︸
k1

, σ2, . . . , σ2︸ ︷︷ ︸
k2

, . . . , σν , . . . , σν︸ ︷︷ ︸
kν

) such that σ1 + . . .+ σν = 0

still form the kernel of B, and the remaining eigenvectors will be orthogonal to this

space. Applying Lemma II.2 and comparing the eigenvalues of q(t) with the quadratic
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forms

q̃Z(t) =
Z

2

k1,...,kν∑
m1,...,mν=1

(τ1m1 + . . .+ τνmν )
2

for Z = R and Z = r completes the proof.

At this point we are ready to prove Theorem II.1.

Proof. We will first prove the result when αm1,...,mν = 1 for all m1, . . . ,mν . Then

for Wj as defined in Equation (2.4) we immediately get that Wj ∩ L are eigenspaces

of QBQ with eigenvalues k′j. Furthermore, W1 ∩ L = W1 has dimension k1, and for

j ≥ 2, the subspaceWj∩L has codimension 1 inWj so is a subspace of L of dimension

kj − 1. By dimension counting we are left with ν linearly independent eigenvectors

of QBQ in L that are unaccounted for. There must exist a set of eigenvectors of the

form

s = (σ1, . . . , σ1︸ ︷︷ ︸
k1

, σ2, . . . , σ2︸ ︷︷ ︸
k2−1

, 0, σ3, . . . , σ3︸ ︷︷ ︸
k3−1

, 0, . . . , σν , . . . , σν︸ ︷︷ ︸
kν−1

, 0) (2.5)

as they are orthogonal to the eigenspaces of QBQ that we have calculated so far. Let

V be the subspace of all vectors of the form defined in Equation (2.5). We decompose

s into a linear combination of the 2ν − 1 remaining eigenvectors of B orthogonal to

Wj ∩ L for all j. These are the kernel vectors

(σ1, . . . , σ1︸ ︷︷ ︸
k1

, σ2, . . . , σ2︸ ︷︷ ︸
k2

, . . . , σν , . . . , σν︸ ︷︷ ︸
kν

) with
ν∑
j=1

σj = 0, (2.6)

the vector

v0 = (k′1, . . . , k
′
1︸ ︷︷ ︸

k1

, k′2, . . . , k
′
2︸ ︷︷ ︸

k2

, . . . , k′ν , . . . , k
′
ν︸ ︷︷ ︸

kν

) (2.7)

and one vector from each Wj for j 6= 1 of the form

vj = (0, 0 . . . , 0︸ ︷︷ ︸
k1+...+kj−1

, 1, 1, . . . , 1︸ ︷︷ ︸
kj−1

, 1− kj, 0, 0, . . . , 0︸ ︷︷ ︸
kj+1+...+kν

). (2.8)
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The projection of s onto the span of vj by definition is

〈vj, s〉
〈vj, vj〉

vj.

For s ∈ im(Q), we have 〈vj, s〉 = 〈Qvj, s〉. If Pj is the projection onto vj, then

QBQs = QBQ

(
P0s+

ν∑
j=2

Pjs

)

can be rewritten as

QBQs =
〈Qv0, s〉
〈v0, v0〉

QBQv0 +
∑
j≥2

〈Qvj, s〉
〈vj, vj〉

QBQvj. (2.9)

Let

u0 = Qv0 = (k′1, .., k
′
1︸ ︷︷ ︸

k1

, k′2, . . . , k
′
2︸ ︷︷ ︸

k2−1

, 0, k′3, . . . , k
′
3︸ ︷︷ ︸

k3−1

, 0, . . . , k′ν , . . . , k
′
ν︸ ︷︷ ︸

kν−1

, 0), (2.10)

and for j > 1,

uj = Qvj = ( 0, . . . , 0︸ ︷︷ ︸
k1+...+kj−1

, 1, . . . , 1︸ ︷︷ ︸
kj−1

, 0, 0, . . . , 0︸ ︷︷ ︸
kj+1+...+kν

). (2.11)

By the eigenvalues of the vjs calculated in Lemma II.4, plugging Equations (2.10)

and (2.11) into Equation (2.9), we get

QBQ|V =

∑ν
j=1 k

′
j

〈v0, v0〉
u0u

t
0 +

∑
j≥2

k′j
〈vj, vj〉

uju
t
j.

We can then write QBQ|V = C +D, where

C =

∑ν
j=1 k

′
j

〈v0, v0〉
u0u

t
0,
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is a rank one symmetric matrix with nonzero eigenvector u0 and eigenvalue

λC =
〈u0, u0〉
〈v0, v0〉

ν∑
j=1

k′j,

and

D =
∑
j≥2

k′j
〈vj, vj〉

uju
t
j

is a rank ν − 1 symmetric matrix that has nonzero eigenvectors uj for j ≥ 2 of

eigenvalue

λj =
〈uj, uj〉 k′j
〈vj, vj〉

.

By Equations (2.7) and (2.10),

(
1− 1

k

)
νων−1kν−1 ≤ λC ≤

(
1− ω

k

)
νkν−1, (2.12)

and by Equations (2.8) and (2.11), for all j ≥ 2 we have

ων−1kν−2 ≤ λj ≤ ω−1kν−2. (2.13)

By Lemma II.3, we get by plugging in i = 2 and j = 1 that

λ2 (QBQ|V) ≤ λ2 (C|V) + λ1 (D|V) ≤ ω−1kν−2. (2.14)

Furthermore,

λ1 (QBQ|V) ≥ λ1 (C|V) ≥
(

1− 1

k

)
νων−1kν−1.

Also, the largest eigenvalue of QBQ|V must be smaller than the largest eigenvalue of

B, which is νkν−1. Taking the largest eigenvalue of QBQ|V and the eigenvalues we

have calculated previously, we find that all but ν − 1 eigenvalues of QBQ on L lie
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between

ων−1kν−1 and νkν−1.

Furthermore, by (2.14), to complete the proof on the magnitude of the eigenvalues it

suffices to show that

λν (QBQ|V) ≥ ων−1

ν(ν − 1)
kν−2.

If t ∈ L is an eigenvector of QBQ|V with eigenvalue λ, then q(t) = 1
2
λ||t||2. Decom-

posing t = w1 +w2 with w1 ∈ ker(B), and w2 ⊥ ker(B), we also have q(t) = q(w2) ≥
1
2
ων−1kν−1||w2||2 by Lemma II.4. Combining these gives

λ ≥ ων−1kν−1 ||w2||2

||t||2
. (2.15)

Assume t is of the form given in Equation (2.5). Let T be the orthogonal projection

onto the kernel of B, so w1 = Tt. Then

||w2||2

||t||2
= 1− 〈t, u〉

2

||t||2
. (2.16)

Furthermore,

Tt = 〈t, u〉u for u =
1

||w1||
w1,

and

||Tt||2

||t||2
=
〈t, u〉2

||t||2
.

We also use the fact that

||Qu||2 ≥ 〈t, u〉
2

||t||2

as the projection of u onto L is at least as large as the projection of u onto the span

of t. Combining these along with (2.15), we get that

λν (QBQ|V) ≥ ων−1kν−1
(
1− ||Qu||2

)
. (2.17)
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We consider the problem

minimize ||(Id−Q)u||2 given u ∈ ker(B), ||u|| = 1.

Recall that every u ∈ ker(B) is in the form given in Equation (2.6), so the problem

reduces to finding a lower bound for

||(Id−Q)u||2 =
ν∑
j=2

σ2
j

under the conditions that

ν∑
j=1

kjσ
2
j = 1 and

ν∑
j=1

σj = 0.

Substituting −σ1 = σ2 + . . .+ σν , we reduce the problem to

minimize
ν∑
j=2

σ2
j given k1

(
ν∑
j=2

σj

)2

+
ν∑
j=2

kjσ
2
j = 1.

If the minimum is achieved at (σ2, . . . , σν) = (β2, . . . , βν), then every βj must have

the same sign. If not, then

k1

(
ν∑
j=2

|βj|

)2

+
ν∑
j=2

kjβ
2
j ≥ k1

(
ν∑
j=2

βj

)2

+
ν∑
j=2

kjβ
2
j = 1,

and therefore we can take the vector (|β2|, . . . , |βν |) and scale it down to find a smaller

minimum satisfying the constraints. By taking negatives if necessary, assume βj > 0

for all j ≥ 2. If for some i we have βi ≥ βj for all j ≥ 2, then

(
(ν − 1)2k1 +

ν∑
j=2

kj

)
β2
i ≥ k1

(
ν∑
j=2

βj

)2

+
ν∑
j=2

kjβ
2
j = 1,
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so

β2
i ≥

1

(ν − 1)2k1 +
∑ν

j=2 kj

and hence
ν∑
j=2

β2
j ≥

1

(ν − 1)2k1 +
∑ν

j=2 kj
.

Therefore

||(Id−Q)u||2 ≥ 1

ν(ν − 1)k
||u||2,

which combined with Equation (2.17) completes the proof that on V ,

λν(QBQ|V) ≥ ων−1

ν(ν − 1)kν−2
.

Combining this with (2.14) completes the proof of the theorem in the case that

αm1,...,mν = 1 for all m1, . . . ,mν .

By Lemma II.2, if r ≤ αm1,...,mν ≤ R, the eigenvalues of q|L are bounded from

above by the previously calculated eigenvalues multiplied by R, and bounded from

below by the previously calculated eigenvalues multiplied by r. Furthermore if t ∈ L

is a unit eigenvector whose eigenvalue is smaller than Rω−1kν−2, then writing

t = αtt1 + βtt2

with t1 ∈ ker(B), t2 ∈ im(B), we get that

1

2
Rω−1kν−2 ≥ q(t) ≥ 1

2
β2
t rω

ν−1kν−1,

and hence

β2
t ≤

R

r
ω−νk−1,
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which completes the proof.

We immediately get the following corollary:

Corollary II.5.

∫
L

e−q(t)dt ≥ exp

(
−1

4
ν2k ln(k)− 1

2
νk ln(R)

)
.

Proof. First, we observe by (1.2) and Theorem II.1 that

∫
L

e−q(t)dt ≥ (2π)(k1+...+kν−ν+1)/2

√( ω

Rkν−2

)(ν−1) 1

Rνkν−1

(
1

Rkν−1

)k1+...+kν−2ν+1

.

Observing that ωk ≥ 1, we can simplify this to

∫
L

e−q(t)dt ≥ (2π)(k1+...+kν−ν+1)/2 1√
ν

(
Rkν−1

)−(k1+...+kν−ν+1)/2
,

which we can further simplify by using the fact that k ≥ 2 to the claim of the corollary.

2.2 Variances

In this section we continue to use the notation introduced at the beginning of the

chapter before Section 2.1. In particular the quadratic form q(t), the subspace L,

and the constants r, R, ω and k introduced there are used extensively, as well as the

notation for k′j. We consider the probability density on L proportional to e−q(t), and

show the total measure outside of a small box around the origin in L is negligible.

The main result is the following:
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Lemma II.6. Let

Xδ = {t ∈ L : ||t||∞ ≥ δ} .

Then ∫
Xδ

e−q(t)dt ≤ νk exp
(
−δ2kν−1/Γ

) ∫
L

e−q(t)dt,

where dt is the Lebesgue measure on L, and

Γ =
2ν4R

ω6ν−3r2
.

To prove Lemma II.6, we consider random variables of the form 〈t, v〉 for a fixed

vector v when t is drawn from the distribution with density proportional to e−q(t)

restricted to L. In general, if ψ(t) is a positive definite quadratic form on a vector

space V of dimension d with unit eigenvectors v1, . . . , vd and eigenvalues λ1, . . . , λd,

and t is drawn randomly from the distribution whose density is proportional to e−ψ(t)

on V , and u ∈ V is fixed, then 〈u, t〉 is a normal random variable, and

Var (〈u, t〉) =
d∑
j=1

1

λi
〈u, vi〉2 . (2.18)

Before we begin the proof of the main result we require a technical lemma.

Lemma II.7. Let ej be a standard basis vector of Rk1+...+kν , and let T be the or-

thogonal projection onto the kernel of q(t). Then there exist constants γ(ω, ν) > 0,

Γ(ω, ν) > 0 such that

γ

k
≤ ||Tej||∞ ≤

Γ

k
.

The constants may be chosen to be

γ =
ω2ν−1

2
, and Γ =

1

ω2ν−1
.
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Proof. For notational simplicity we assume that ej corresponds to one of the first k1

entries. An orthogonal basis of the kernel of q(t) can be written as follows:

uν−1 = ( 0, . . . , 0︸ ︷︷ ︸
k1+...+kν−2

,−k′ν , . . . ,−k′ν︸ ︷︷ ︸
kν−1

, k′ν , . . . , k
′
ν︸ ︷︷ ︸

kν

),

uν−2 = ( 0, . . . , 0︸ ︷︷ ︸
k1+...+kν−3

,−(k′ν−1 + k′ν), . . . ,−(k′ν−1 + k′ν)︸ ︷︷ ︸
kν−2

, k′ν−1, . . . , k
′
ν−1︸ ︷︷ ︸

kν−1

, k′ν , . . . , k
′
ν︸ ︷︷ ︸

kν

),

and for any 2 ≤ i ≤ ν, we have ui−1 given by

( 0, . . . , 0︸ ︷︷ ︸
k1+...+ki−2

,−(k′i + . . .+ k′ν), . . . ,−(k′i + . . .+ k′ν)︸ ︷︷ ︸
ki−1

, k′i, . . . , k
′
i︸ ︷︷ ︸

ki

, . . . , k′ν , . . . , k
′
ν︸ ︷︷ ︸

kν

),

culminating with

u1 = (−(k′2 + . . .+ k′ν), . . . ,−(k′2 + . . .+ k′ν)︸ ︷︷ ︸
k1

, k′2, . . . , k
′
2︸ ︷︷ ︸

k2

, k′3, . . . , k
′
3︸ ︷︷ ︸

k3

, . . . , k′ν , . . . , k
′
ν︸ ︷︷ ︸

kν

).

It is easy to see by construction that each ui lies in the kernel of q(t), and by dimension

counting they therefore form a basis. To see that they form an orthogonal set, for

any i < l we have

〈ui, ul〉 = −klk′l

(
ν∑

p=l+1

k′p

)
+

ν∑
p=l+1

kp(k
′
p)

2.

As kpk
′
p = k1k2 . . . kν for any p, we can re-write this as

−(k1k2 . . . kν)

(
ν∑

p=l+1

k′p

)
+ (k1k2 . . . kν)

ν∑
p=l+1

k′p = 0.

Then ej is orthogonal to ui for all i > 1, and therefore the projection of ej onto the
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kernel of q(t) is simply

〈ej, u1〉
〈u1, u1〉

u1 =
−(k′2 + . . .+ k′ν)

k1(k′2 + . . .+ k′ν)
2 + k2k′22 + . . .+ kνk′2ν

u1. (2.19)

Using the inequality ωk ≤ k1, . . . , kν ≤ k, we get

(ν − 1)ων

(ν − 1)2 + ν − 2
k−ν ≤

∣∣∣∣ −(k′2 + . . .+ k′ν)

k1(k′2 + . . .+ k′ν)
2 + k2k′22 + . . .+ kνk′2ν

∣∣∣∣ , and

∣∣∣∣ −(k′2 + . . .+ k′ν)

k1(k′2 + . . .+ k′ν)
2 + k2k′22 + . . .+ kνk′2ν

∣∣∣∣ ≤ (ν − 1)

ω2ν−1 ((ν − 1)2 + ν − 2)
k−ν .

Combining these with

(ν − 1)ων−1kν−1 ≤ ||u1||∞ ≤ (ν − 1)kν−1

in (2.19) and simplifying bounds completes the proof.

Lemma II.8. Suppose t is drawn from the distribution with density proportional to

e−q(t) restricted to L. Then if ej is a standard basis vector contained in L, there exists

a constant Γ = Γ(ω, ν, r, R) > 0 such that

Var (〈t, ej〉) ≤
Γ

kν−1
.

The constant Γ may be chosen to be

Γ =
14ν4R

ω6ν−3r2
.

Proof. We apply Equation (2.18) with V = L, letting u = ej be any standard basis

vector contained in L and ψ(t) = q(t) restricted to L. Let v1, . . . vν−1 be the unit

eigenvectors whose distance to ker(B) was calculated in Theorem II.1. Substituting in

the lower bound for the eigenvalues of the remaining eigenvectors from Theorem II.1
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into Equation (2.18), we get the variance is bounded from above by

1

rων−1kν−1
+

ν(ν − 1)

rων−1kν−2

ν−1∑
i=1

〈ej, vi〉2 . (2.20)

For any such vi, we can decompose it as

vi = ai + bi, where

ai ∈ ker(B), ||ai|| ≤ 1, and

bi ⊥ ker(B), ||bi|| ≤
√
R

r
ω−νk−1/2.

Then

〈ej, vi〉2 = 〈ej, ai〉2 + 〈ej, bi〉2 + 2 〈ej, ai〉 〈ej, bi〉 . (2.21)

If T is the orthogonal projection onto the kernel of B, then

|〈ej, ai〉| ≤ ||Tej|| ≤
√
νk||Tej||∞.

Applying Lemma II.7,

|〈ej, ai〉| ≤
√
ν

ω2ν−1
k−1/2.

Also,

|〈ej, bi〉| ≤ ||bi|| ≤
√

R

ωνr
k−1/2.

Combining these into Equation (2.21) yields

〈ej, vi〉2 ≤

(
ν

ω2ν−1
+

R

ωνr
+ 2

√
νR

ω5ν−2r

)
k−1.
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Simplifying the bound to be

〈ej, vi〉2 ≤
4νR

ω5ν−2r
k−1,

plugging this into Equation (2.20) and simplifying again completes the proof.

To calculate bounds on probabilities we use the following lemma.

Lemma II.9. Let X be a normal variable with variance σ2 and E(X) = 0. Then

Pr (|X| ≥ τ) ≤ e−τ
2/(2σ2).

Proof. We use the well known result that if X is a standard normal variable then

Pr(|X| ≥ τ) ≤ e−τ
2/2.

If X has variance σ2, then X/σ is the standard normal variable, so

Pr(|X| ≥ τ) = Pr(|X|/σ ≥ τ/σ) ≤ e−τ
2/(2σ2).

Combining Lemmas II.8 and II.9, along with a union bound, gives Lemma II.6.

2.3 Correlations

In this section we continue to use the notation introduced at the beginning of this

chapter before Section 2.1, in particular the quadratic form q(t), the subspace L, the

constants r, R, ω and k, and the definition of k′j. If we draw

t = (τ11, . . . , τ1k1 , τ21, . . . , τ2k2 , . . . , τν1, . . . , τνkν )
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from L with density proportional to e−q(t), then we can treat the individual coordi-

nates τij as random variables. In this section we will calculate the correlation between

pairs of coordinates. The main result is the following:

Theorem II.10. Let M be any subspace of Rk1+...+kν of codimension ν− 1 such that

M∩ ker(q) = {0}. Suppose that t ∈ M is drawn from the distribution with density

proportional to e−q(t) restricted toM. Then there exists some constant Γ(r, R, ω, ν) >

0 such that

|E(τ1m1 + τ2m2 + . . .+ τνmν )(τ1p1 + τ2p2 + . . .+ τνpν )| ≤
Γ

kν−1

for all m1, . . . ,mν , p1, . . . , pν, and

|E(τ1m1 + τ2m2 + . . .+ τνmν )(τ1p1 + τ2p2 + . . .+ τνpν )| ≤
Γ

kν

as long as mj 6= pj for all j = 1, . . . , ν. The constant Γ may be chosen to be

Γ =
4ν4R2

r3ω7ν−5
.

We will make use of two basic lemmas.

Lemma II.11. Let M1, M2 be any subspaces of codimension ν − 1 such that M1 ∩

ker(q) =M2 ∩ ker(q) = {0}. Then

E1(τ1m1 + . . .+ τνmν )(τ1p1 + . . .+ τνpν ) = E2(τ1m1 + . . .+ τνmν )(τ1p1 + . . .+ τνpν ),

where E1 is taking the expected value over the distribution with density proportional

to e−q(t) restricted toM1, and E2 the expected value over the distribution with density

proportional to e−q(t) restricted to M2.

Proof. Let S : M1 → M2 be the restriction of the orthogonal projection onto M2
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whose kernel is ker(q):

St = t+ u with u ∈ ker(q) for all t ∈M1.

As det(q|M1) det(S) = det(q|M2), and e−q(t) = e−q(St), we get that the push forward

of the probability measure with density proportional to e−q(t) restricted to M1 by S

is equal to the probability measure with density proportional to e−q(t) restricted to

M2. Furthermore, (τ1m1 + . . .+τνmν ) for any m1, . . . ,mν is unchanged when replacing

t by St. Therefore

E1(τ1m1 + . . .+ τνmν )(τ1p1 + . . .+ τνpν ) = E2(τ1m1 + . . .+ τνmν )(τ1p1 + . . .+ τνpν )

as required.

Lemma II.12. Let v1, v2 ∈ Rn, and C : Rn → Rn be a positive definite self-adjoint

linear transformation, and let there exist absolute constants γ1, γ2, Γ1, Γ2, Γ3, and

Γ4 so that

1.

||Cvi − γivi|| ≤ Γ1 for i = 1, 2,

2.

|〈Cvi − γivi, vj〉| ≤ Γ2 for i 6= j,

3.

|〈v1, v2〉| ≤ Γ3, and

4.

λn(C) ≥ Γ4
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where λn(C) is the smallest eigenvalue of C. Then

∣∣〈C−1v1, v2

〉∣∣ ≤ Γ3

γ1

+
Γ2

γ1γ2

+
Γ2

1

γ1γ2Γ4

.

Informally, the lemma states that if v1 and v2 are very close to being orthogonal

eigenvectors of C, then C−1v1 is close to being orthogonal to v2.

Proof. We can write this expression as

∣∣〈C−1v1, v2

〉∣∣ =
1

γ1

∣∣〈C−1 (γ1v1 − Cv1 + Cv1) , v2

〉∣∣ .
By linearity and the triangle inequality,

∣∣〈C−1v1, v2

〉∣∣ ≤ 1

γ1

|〈v1, v2〉|+
1

γ1

∣∣〈C−1 (γ1v1 − Cv1) , v2

〉∣∣ . (2.22)

Using that C−1 is self adjoint, and by linearity and the triangle inequality again we

get

∣∣〈C−1 (γ1v1 − Cv1) , v2

〉∣∣ ≤ 1

γ2

(
|〈γ1v1 − Cv1, v2〉|+

∣∣〈γ1v1 − Cv1, C
−1 (γ2v2 − Cv2)

〉∣∣) .
By conditions (1) and (4), we have

∣∣〈γ1v1 − Cv1, C
−1 (γ2v2 − Cv2)

〉∣∣ ≤ Γ2
1

Γ4

.

Combining this with condition (2) yields

∣∣〈C−1 (γ1v1 − Cv1) , v2

〉∣∣ ≤ Γ2

γ2

+
Γ2

1

Γ4γ2

.

This along with condition (3) and Equation (2.22) completes the proof.
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We use this lemma to prove the following:

Lemma II.13. Let BM be the linear transformation B restricted to M = im(B),

and let S : Rk1+...+kν → Rk1+...+kν be the orthogonal projection onto M. Then there

exist constants κ1 = κ1(r, ω, ν) > 0 and κ2 = κ2(r, R, ν, ω) > 0 such that for any

choice of i and j, we have

∣∣〈B−1
MSej, Sei

〉∣∣ ≤ κ1δijk
−ν+1 + κ2k

−ν .

If ν ≥ 3, the constants may be chosen such that

κ1 =
2R

r2ω2ν−2
, and κ2 =

7ν2R2

r3ω7ν−5
.

If ν = 2 the same result holds, but the algebraic simplifications to arrive at κ2

requires an extra multiplicative factor greater than 7.

Proof. We apply Lemma II.12, with v1 = Sej, v2 = Sei, and C = BM. By Lemma

II.4, we get condition (4) is satisfied with

λk1+...+kν−ν+1 (BM) ≥ Γ4 = ων−1rkν−1. (2.23)

By Lemma II.7, we can write

Sej = ej + wj, where (2.24)

||wj||∞ ≤
1

ω2ν−1
k−1.

This gives condition (3) of Lemma II.7,

|〈Sej, Sei〉| ≤ Γ3, with
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Γ3 = δij +
2

ω2ν−1
k−1 +

1

ω4ν−2
k−2.

We can simplify this to be

Γ3 = δij +
3

ω4ν−2
k−1. (2.25)

By (2.2), we can see that the entries of B are bounded by the following: the diagonal

entries are bounded from above by Rkν−1 and the off-diagonal entries are bounded

by Rkν−2. Hence,

Bej = γ1ej + w′j, and Bei = γ2ei + w′i, where (2.26)

||w′j||∞, ||w′i||∞ ≤ Rkν−2, and (2.27)

rων−1kν−1 ≤ γ1, γ2 ≤ Rkν−1.

Therefore, using that BMSej = BSej and applying B to (2.24),

BMSej = γ1ej + w′j +Bwj.

Applying (2.24) again, we get

||BMSej − γ1Sej|| ≤ ||w′j||+ ||Bwj||+ ||γ1wj||,

and similarly for ei. By (2.27),

||w′j||, ||w′i|| ≤
√
νkRkν−2,

and by (2.24) and Lemma II.4,

||Bwj||, ||Bwi|| ≤
√
νk

1

ω2ν−1
Rνkν−2.
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Also, by (2.24) and (2.27),

||γ1wj||, ||γ2wi|| ≤
√
νkR

ω2ν−1
kν−2.

Therefore we get condition (1) is satisfied with

Γ1 =
√
νR

(
1 +

2

ω2ν−1

)
kν−1.5,

and γ1, γ2 as in (2.26). We simplify the bound to be

Γ1 =
3
√
νR

ω2ν−1
kν−1.5. (2.28)

Also,

|〈BSej − γ1Sej , Sei〉| ≤ ||w′j ||∞+ ||Bwj ||∞+
∣∣〈w′j , wi〉∣∣+ |〈Bwj , wi〉|+γ1 〈ej , ei〉+γ1||wi||∞.

Using (2.24) and the bounds on the entries of B described above we get

||Bw||∞ ≤
(ν + 1)R

ω2ν−1
kν−2.

This along with (2.27), and the fact that for u, v ∈ Rn we have |〈u, v〉| ≤ n||u||∞||v||∞,

gives that condition (2) holds with

Γ2 ≤
(

1 +
ν

ω2ν−1
+
ν + 1

ω2ν−1
+
ν(ν + 1)

ω2ν−1
+

1

ω2ν−1

)
Rkν−2 + δijRk

ν−1.

We can simplify this bound to be

Γ2 =
3ν2R

ω2ν−1
kν−2 + δijRk

ν−1. (2.29)

Taking (2.23), (2.25), (2.28), (2.26), and (2.29), and applying Lemma II.12 gives
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us

∣∣〈B−1
MSej , Sei

〉∣∣ ≤ δij ( 1

rων−1
+

R

r2ω2ν−2

)
k−ν+1 +

(
3

rω5ν−3
+

3ν2R

r2ω4ν−3
+

9νR2

r3ω7ν−5

)
k−ν .

Simplifying the coefficients completes the proof.

The last observation we need is:

Lemma II.14. Let ψ(z) : Rd → R be a positive definite quadratic form, and let D

be the positive definite matrix such that ψ(z) = 1
2
〈z,Dz〉. Let l1(z) = 〈v1, z〉 and

l2(z) = 〈v2, z〉 for some fixed v1, v2 ∈ Rd. If z is drawn from the distribution with

density proportional to e−ψ(z), then

E(l1(z)l2(z)) =
〈
v1, D

−1v2

〉
.

Proof. Let

vi = (v1
i , . . . , v

d
i ) for i = 1, 2.

By linearity of expectation we can write

E(l1(z)l2(z)) =
d∑

i,j=1

vi1v
j
2E(zizj) for z = (z1, . . . , zd).

D−1 is exactly the matrix whose entries are E(zizj), so the sum composes into

〈v1, D
−1v2〉 which completes the proof.

We are now ready to prove Theorem II.10. For notational purposes it will be

convenient to write t as

t = (χ1, . . . , χk1+k2+...+kν ),

so for example τ11 = χ1 and τ22 = χk1+2.
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Proof. By Lemma II.11, it suffices to prove the result only for M = ker(q)⊥. By

Lemma II.14, if t is drawn from M with distribution with density proportional to

e−q(t) then for t = (χ1, . . . , χk1+k2+...+kν ),

E(χiχj) =
〈
Sei, B

−1
MSej

〉
.

We apply Lemma II.13, noting that we can simplify the bound to be

∣∣〈B−1
MSej, Sei

〉∣∣ ≤ 14ν2R2

r3ω7ν−5
k−ν+δij .

We distribute and use the linearity of expectation and the triangle inequality to get

|E(τ1m1 + . . .+ τνmν )(τ1p1 + . . .+ τνpν )| ≤
ν∑

i,j=1

E
∣∣τimiτjpj ∣∣ .

In the event that at least one mj = pj, we can bound all ν2 terms of the form |E(χiχl)|

by

14ν2R2

r3ω7ν−5
k−ν+1,

giving

|E(τ1m1 + . . .+ τνmν )(τ1p1 + . . .+ τνpν )| ≤
14ν4R2

r3ω7ν−5
k−ν+1.

If there is no j such that mj = pj, we can bound each expression of the form |E(χiχl)|

by

14ν2R2

r3ω7ν−5
k−ν ,

giving

|E(τ1m1 + . . .+ τνmν )(τ1p1 + . . .+ τνpν )| ≤
14ν4R2

r3ω7ν−5
k−ν .

This completes the proof.
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2.4 The Third Degree Term

In this section we use the notation and concepts introduced at the beginning of

the chapter before Section 2.1, in particular the quadratic form q(t), the subspace L,

and the constants r, R, ω and k. The main result of this section is:

Lemma II.15. Assume ν ≥ 3. Let

um1...mν = βm1,...,mν (τ1m1 + . . .+ τνmν )

be random variables for 1 ≤ mj ≤ kj for each j = 1, . . . , ν, where t = (τ11, τ12, . . . τνkν )

is drawn from the distribution with probability density proportional to e−q(t) restricted

to L. Let θ > 0 be chosen such that

|βm1,...,mν | ≤ θ for all m1, . . . ,mν ,

and let

U =

k1,...,kν∑
m1,...,mν=1

u3
m1...mν

.

Then there exists a constant Γ = Γ(θ, ν, ω,R, r) > 0 such that

∣∣EeiU − 1
∣∣ ≤ Γk2−ν .

The constant Γ may be chosen to be

Γ =
3360θ6ν13R6

r9ω21ν−15
.

We will apply this lemma in the proof of Theorems I.1 and I.2. In the proof of these

theorems, we will show the points to be counted can be expressed as the integral of a

function F (t) (different for each theorem). We will construct a neighborhood, which
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in the proof will be called X1, of the origin in which we can use Taylor polynomial

approximations to express F as F (t) = e−q(t)+if(t)+h(t), where f(t) is a pure cubic

function in the form of U in Lemma II.15, and h(t) is small. We will also show that

the asymptotically all of the integral of e−q(t) is contained in X1. Combining these will

allow us to approximate
∫
X1
F (t)dt, and show it is asymptotically equal to

∫
L e
−q(t).

The proof of Theorem I.3 will proceed similarly but not use Lemma II.15.

A version of Lemma II.15 exists for ν = 2 as well. In this case the upper bound

does not go to zero as k goes to infinity. This qualitative difference introduces an

extra factor called the Edgeworth correction into the formula for counting integer

points in 2-way transportation polytopes, see [BH12].

The proof of Lemma II.15 relies on a more general result based on Wick’s formula,

see for example [Zv97], for the expected value of a product of Gaussian random

variables. Let w1, . . . , wl be Gaussian random variables with expected value of 0.

Then

E(w1 . . . wl) = 0 if l is odd, and

E(w1 . . . wl) =
∑

(Ewi1wi2) . . .
(
Ewil−1

wil
)

if l is even,

where the sum is taken over all unordered pairings of the set of indices 1, 2, . . . , l. In

particular,

Ew3
1w

3
2 = 9

(
Ew2

1

) (
Ew2

2

)
(Ew1w2) + 6 (Ew1w2)3 . (2.30)

Note that the random variables um1,...,mν are Gaussian random variables by construc-

tion. We are now ready to prove Lemma II.15.

Proof. By Theorem II.10,

|Eum1,...,mνup1,...,pν | ≤
14θ2ν4R2

r3ω7ν−5
k−ν+1 for all m1, . . . ,mν , p1, . . . , pν , and
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|Eum1,...,mνup1,...,pν | ≤
14θ2ν4R2

r3ω7ν−5
k−ν if mj 6= pj for all 1 ≤ j ≤ ν.

By (2.30), with w1 = um1,...,mν and w2 = up1,...,pν ,

∣∣E(u3
m1...mν

u3
p1...pν

)
∣∣ ≤ 3360θ6ν12R6

r9ω21ν−15
k−3ν+2 for all m1, . . . ,mν , p1, ..., pν , and

∣∣E(u3
m1...mν

u3
p1...pν

)
∣∣ ≤ 3360θ6ν12R6

r9ω21ν−15
k−3ν+1 if mj 6= pj for j = 1, . . . , ν.

There are no more than k2ν total choices of m1, . . . ,mν , p1, . . . , pν , and no more than

νk2ν−1 of them in which there exists j such that a pair mj and pj are equal, so

EU2 ≤ 3360θ6ν12(ν + 1)R6

r9ω21ν−15
k−ν+2. (2.31)

By the Taylor series estimate

∣∣eiξ − (1 + iξ)
∣∣ ≤ 1

2
ξ2 for ξ ∈ R,

along with the triangle inequality for expected values, we get that

∣∣(EeiU)− 1
∣∣ ≤ 1

2
EU2 yields

∣∣E (eiU)− 1
∣∣ ≤ 1680θ6ν12(ν + 1)R6

r9ω21ν−15
k−ν+2.

Applying the simplification ν + 1 ≤ 2ν completes the proof.
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CHAPTER III

Proof of Theorem I.1

In this chapter, we complete the proof of Theorem I.1. For the entirety of this

chapter we use the notation introduced in the statement of the theorem, most impor-

tantly the quadratic form q(t) and the constants r, R, ω and k. We also recall the

overdetermined system of equations for a multi-index transportation polytope of the

form Ax = b, where A has columns a1, . . . , an as described in Section 1.1, along with

the subspace L that describes a linearly independent set of equations. The matrix

Q : Rk1+...+kν → Rk1+...+kν will be the orthogonal projection onto L. The outline of

the proof is as follows: we construct a function F (t), and show that for a multi-index

transportation polytope P as in Theorem I.1,

|P ∩ Zn| = eg(z)

(2π)(k1+...+kν−ν+1)/2

∫
Π

F (t)dt,

where Π = L ∩ [−π, π]k1+...+kν . We then split Π up into three regions: an outside

region X3, a middle region X2, and an inner region X1. We show that

∫
X2∪X3

F (t)dt and

∫
L\X1

e−q(t)dt
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are negligible compared
∫
L e
−q(t)dt. We show through use of Taylor polynomial ap-

proximations that in X1, F (t) ≈ e−q(t)+if(t)+h(t), where h(t) is small in X1, and f(t)

is a cubic polynomial in t of the form given in Lemma II.15. We finish the proof by

applying Lemma II.15 to show that

∫
X1

∣∣F (t)− e−q(t)
∣∣ dt� ∫

L

e−q(t)dt.

3.1 Integral Expression of the Counting Problem

We use two results of [BH10] to express the number of integer points of P as an

integral of a function F (t). Let Π ⊂ L be the cube centered at the origin:

Π = {t ∈ L : ||t||∞ ≤ π}.

We will show that for multi-index transportation polytopes P satisfying the conditions

of Theorem I.1, the number of integer points satisfies

|P ∩ Zn| = eg(z)

(2π)k1+...+kν−ν+1

∫
Π

e−i〈t,b〉
n∏
j=1

1

1 + ζj − ζjei〈aj ,t〉
dt. (3.1)

Before we do, we recall the concept of a geometric random variable. We say x is a

geometric random variable if for some 0 < p < 1,

Pr(x = j) = (1− p)pj for all j ∈ Z≥0.

In this case, Ex = p
1−p . Conversely, if Ex = ζ, then p = ζ

1+ζ
. The first theorem we

need is the following:

Theorem III.1. Let P ⊂ Rn be the intersection of an affine subspace in Rn and the

non-negative orthant Rn
+. Suppose that P is bounded and has a non-empty interior,
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that is a point y = (η1, . . . , ηn) where ηi > 0 for i = 1, . . . , n. Then the strictly concave

function

g(x) =
n∑
j=1

((ξj + 1) ln(ξj + 1)− ξj ln(ξj))

attains its maximum value in P at a unique point z = (ζ1, . . . , ζn) such that ζj > 0

for j = 1, . . . , n. Furthermore, suppose x1, . . . , xn are independent geometric random

variables with Exj = ζj, and let X = (x1, . . . , xn). Then the probability mass function

of X is constant on P ∩ Zn and equal to e−g(z) at every x ∈ P ∩ Zn. In particular,

|P ∩ Zn| = eg(z)Pr (X ∈ P ) .

This is Theorem 4 of [BH10]. This theorem lets us reduce counting the number

of integer points in P to calculating Pr (X ∈ P ). We combine this result with the

following:

Lemma III.2. Let pj, qj be positive numbers such that pj + qj = 1 for j = 1, . . . , n

and let µ be the geometric measure on the set Zn+ of non-negative integer vectors with

µ{x} =
n∏
j=1

pjq
ξj
j for x = (ξ1, . . . , ξn).

Let P be defined by the linear equalities Ax = b, where A has columns a1, . . . , an, and

a1, . . . , an, b ∈ Rd. Let Π = [−π, π]d be a cube centered at the origin in Rd. Then

µ (P ) =
1

(2π)d

∫
Π

e−i〈t,b〉
n∏
j=1

pj
1− qjei〈aj ,t〉

dt.

Here, 〈·, ·〉 is the standard inner product in Rd and dt is the Lebesgue measure.

This is Lemma 13 of [BH10]. We combine this with Theorem III.1 to derive (3.1) in

the following way: we identify L with Rk1+...+kν−ν+1 in the natural way by identifying

the non-zero coordinates of L with the coordinates of Rk1+...+kν−ν+1. Then P is
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defined by the linear equations QAx = Qb where Q is the orthogonal projection onto

L. We note that for t ∈ L, 〈Qaj, t〉 = 〈aj, t〉 and 〈Qb, t〉 = 〈b, t〉 so we can write

the integrand using the vectors a1, . . . , an, b instead of Qa1, . . . , Qan, b. The random

variable X in Theorem III.1 has probability mass function equal to the geometric

measure µ in Lemma III.2 when ζj = qj/pj = (1 − pj)/pj. This turns the integrand

of Lemma III.2 into

e−i〈t,b〉
n∏
j=1

1

1 + ζj − ζjei〈aj ,t〉
,

which proves (3.1). Let

F (t) = e−i〈t,b〉
n∏
j=1

1

1 + ζj − ζjei〈aj ,t〉
.

The bulk of the proof is dedicated to showing that

∫
Π

F (t)dt ≈
∫
L

e−q(t)dt.

3.2 A Bound on F (t) Away from the Origin

The main result of this section is the following:

Lemma III.3. Let

F (t) = e−i〈t,b〉
n∏
j=1

1

1 + ζj − ζjei〈aj ,t〉
.

Then there exists a constant γ = γ(ω, ν, R) > 0 such that

|F (t)| ≤ exp
(
−γ||t||2∞kν−1

)
for all t ∈ L.

If we restrict t such that

ων ||t||2∞
π22ν−1ν3

kν−1 ≥ 2,
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then γ may be chosen to be

γ =
ων

π22νν3
ln

(
1 +

2

5
π2r

)
.

We apply this lemma in the following way: we construct a region, which in the

proof will be called X3, which is the complement of a neighborhood of the origin in

Π. Then we use Lemma III.3 and Lemma II.6 to show that∣∣∣∣∣∣
∫

X3∩Π

F (t)dt

∣∣∣∣∣∣ ,
∫
X3

e−q(t) �
∫
L

e−q(t)dt.

In Π \ X3 we will then be able to express F (t) as F (t) = e−q(t)+if(t)+h(t) and show

that f(t) and h(t) have a negligible effect on the integral.

To prove Lemma III.3 we use the following:

Lemma III.4. Let D be a d × n integer matrix with columns d1, . . . dn ∈ Zd. For

each 1 ≤ l ≤ d, let Yl ⊂ Zn be a non-empty finite set such that for all y ∈ Yl, we have

Dy = el, where el is the lth standard basis vector. Let ψl : Rn → R be the quadratic

form

ψl(x) =
1

|Yl|
∑
y∈Yl

〈y, x〉2 for x ∈ Rn,

and let ρl be a constant such that

ψl(x) ≤ ρl||x||2 for all x ∈ Rn.

Suppose further that for ζ1, . . . , ζn > 0 we have

ζj + ζ2
j ≥ α for some α > 0 and j = 1, . . . , n.
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Then for any t = (τ1, . . . , τd) ∈ Rd, and for each l, we have

∣∣∣∣∣
n∏
j=1

1

1 + ζj − ζjei〈dj ,t〉

∣∣∣∣∣ ≤
(

1 +
2

5
απ2

)−γl
where γl =

⌊
τ 2
l

π2ρl

⌋
.

This is Lemma 14 of [BH10]. We are now ready to prove Lemma III.3. We do

so by constructing arrays Yl for each el ∈ L, following a similar construction in a

different coordinate system presented in [BH10]. We then find a uniform bound on

ρl and apply Lemma III.4 to every coordinate uniformly.

Proof. We identify L with Rk1+...+kν−ν+1 in the natural way, and construct a set Yl

for each el ∈ L.

For fixed 1 ≤ p < k2, let Yk1+p (corresponding to a margin in the second direction)

be the set of hypercube arrays labeled with m1,m3,m4, . . . ,mν with 1 ≤ mj ≤ kj for

each j 6= 2, and let ym1m3m4...mν that have a 1 in the m1pm3 . . .mν position and a

−1 in the m1k2m3 . . .mν position, and a 0 in every other position. There are k′2 such

arrays, and the corresponding quadratic form is

ψk1+p(x) =
1

k′2

∑
m,p

(ξm1pm2...mν − ξm1k2m3...mν )
2 .

No two terms (ξm1pm2...mν − ξm1k2m3...mν )
2 of the above sum share any variables, so

the eigenvalues of ψk1+p are simply the non-zero eigenvalues of the simpler quadratic

forms

1

k′2
(ξm1pm2...mν − ξm1k2m3...mν )

2 ,

along with 0. The eigenvalues of this quadratic form are 2
k′2

. Furthermore, for every

y ∈ Yk1+p, we have Ay = ek1+p − ek1+k2 , so QAy = ek1+p.

Similarly for fixed 1 ≤ p < k3, let Yk1+k2+p (corresponding to a margin in the third

direction) be the set of all hypercubes labeled by m1m2m4 . . .mν with 1 ≤ mj ≤ kj
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for all j 6= 3, and let ym1m2pm4...mν have a 1 in an m1m2pm4 . . .mν position and a

−1 in the m1m2k3m4 . . .mν position, and a 0 in every other position. There are k′3

such arrays, the corresponding quadratic form has largest eigenvalue 2
k′3

, and for each

y ∈ Yk1+k2+p, we have Ay = ek1+k2+p − ek1+k2+k3 , so QAy = ek1+k2+p.

This process can be repeated for any 2 ≤ j ≤ ν and 1 ≤ p < kj to get an array

Yk1+...+kj−1+p of hypercubes such that the corresponding quadratic form has largest

eigenvalue 2
k′j

and for all y ∈ Yk1+...+kj−1+p, we have QAy = ek1+...+kj−1+p.

We now construct Yp corresponding to any margin in the first direction. For

any choice of m1,m2,m3, . . . ,mν with 1 ≤ mj < kj for each 2 ≤ j ≤ ν and 1 ≤

m1 ≤ k1 with m1 6= p, let ym1m2...mν be the array which contains a −(ν − 1) in

the m1m2m3 . . .mν position, a 1 in the pm2m3 . . .mν position, and a 1 in every

m1m2 . . .mj−1kjmj+1...mν position. Then the sum over every margin except for the

pth margin in the first direction and the last margin in every other direction are zero,

and the sum over the pth margin in the first direction is 1. Therefore for all y ∈ Yp,

we have QAy = ep as required. Furthermore there are
∏

j(kj − 1) such points, and

the corresponding quadratic form is

ψp(x) =
ν∏
j=1

1

kj − 1

∑
m1,...mν

(
(1− ν)ξm1...mν + ξpm2...mν + ξpk2m3...mν + . . .+ ξpm2...mν−1kν

)2
.

In general for real numbers γ1, . . . , γν+1

(
ν+1∑
i=1

γi

)2

≤ (ν + 1)
ν+1∑
i=1

γ2
i ,
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so

ψp(x) ≤ ν + 1∏ν
j=1(kj − 1)2

∑
m1 6=p,...,mν

(ν−1)2ξ2
m1...mν

+ξ2
pm2...mν

+ξ2
pk2m3...mν

+. . .+ξ2
pm2...mν−1kν

.

This latter quadratic form has as its eigenvectors the standard unit basis vectors, and

the largest eigenvalue it has is bounded by

(ν − 1)2(ν + 1)∏ν
j=1(kj − 1)

max
j=1,...,ν

{kj − 1} .

The subspace L is spanned by all the standard basis vectors with the exception of

ek1+...+kj for each j = 1, . . . , ν. For every other el we have constructed a set Yl and a

corresponding quadratic form ψl with maximum eigenvalues all no larger than

(ν − 1)2(ν + 1)(k − 1)

(ωk − 1)ν

satisfying the hypothesis of Lemma III.4. Furthermore, if λl is the largest eigenvalue

of ψl as defined in Section 1.2, then ρl = 1
2
λl satisfies the hypothesis of Lemma III.4.

Assuming ωk− 1 ≥ ωk/2 and noting (ν − 1)(ν + 1) ≤ ν2, we can simplify this bound

to

ρl ≤
ν32ν−1

ων
k−ν+1.

Applying Lemma III.4 uniformly over all values of l with D = QA, and observing we

can let α = r, we arrive at

|F (t)| ≤
(

1 +
2

5
rπ2

)−γ
, where

γ =

⌊
||t||2∞
π2

ων

ν32ν−1
kν−1

⌋
.
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As long as

||t||2∞
π2

ων

ν32ν−1
kν−1 ≥ 2,

we can apply the inequality

⌊
||t||2∞
π2

ων

ν32ν−1
kν−1

⌋
≥ 1

2

(
||t||2∞
π2

ων

ν32ν−1

)
kν−1.

This completes the proof.

3.3 The Proof of Theorem I.1

At this point we are ready to prove Theorem I.1. The outline of the proof is as

follows: we first construct a region X3 ⊂ L which is of the form

X3 = {t ∈ L : ||t||∞ ≥ β}

for some β ∈ R. We apply Lemma III.3 to show that

∫
X3∩Π

|F (t)|dt�
∫
L

e−q(t)dt.

For ||t||∞ < β, we express F (t) as

F (t) = e−q(t)−if(t)+h(t),

where q(t) is the quadratic form as in Theorem I.1, f(t) is a cubic polynomial, and

h(t) is bounded by a quartic polynomial. We use Lemma II.6 along with an inequality

comparing q(t) to h(t) to show that for some set X2 ⊂ L of the form

X2 = {t ∈ L : δ ≤ ||t||∞ ≤ β} ,
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we have ∫
X2

|F (t)|dt�
∫
L

e−q(t)dt.

We also use Lemma II.6 to show that

∫
X2∪X3

e−q(t)dt�
∫
L

e−q(t)dt.

We then let

X1 = {t ∈ L : ||t||∞ ≤ δ} .

We show that |h(t)| is small for all t ∈ X1, and then use Lemma II.15 to show that

∣∣∣∣∣∣
∫
X1

F (t)− e−q(t)dt

∣∣∣∣∣∣�
∫
L

e−q(t)dt.

Combining the calculations over the three regions X1, X2, X3 will allow us to show

that ∫
Π

F (t)dt ≈
∫
L

e−q(t)dt.

Proof. By (3.1) and (1.2), it suffices to show that

∣∣∣∣∣∣
∫
L

e−q(t)dt−
∫
Π

F (t)

∣∣∣∣∣∣ ≤ Γk−ν+2.5

for some constant Γ. Let

X3 =

{
t ∈ L : ||t||2∞ ≥

π22νν3

ων ln
(
1 + 2

5
π2r
) (1

2
ν2k ln(k) +

1

2
νk ln(R)

)
k−ν+1

}
. (3.2)

By Lemma III.3, observing that

2

(
1

2
ν2k ln(k) +

1

2
νk ln(R)

)
≥ 2
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always holds as k ≥ 2, ν ≥ 3 and R ≥ 1, we have

∫
X3∩Π

|F (t)|dt ≤ (2π)νk exp

(
−1

2
ν2k ln(k)− 1

2
νk ln(R)

)
.

By Corollary II.5 , we have

∫
X3∩Π

|F (t)|dt ≤ exp

(
−1

4
ν2k ln(k) + νk ln(2π)

)∫
L

e−q(t)dt, (3.3)

which is negligible compared to
∫
L e
−q(t)dt.

For the middle and inside regions, we can use the Taylor polynomial estimate

∣∣∣∣eiξ − 1− iξ +
ξ2

2
+ i

ξ3

6

∣∣∣∣ ≤ ξ4

24
for all ξ ∈ R

to write

ei〈aj ,t〉 = 1 + i 〈aj, t〉 −
〈aj, t〉2

2
− i〈aj, t〉

3

6
+ gj(t) 〈aj, t〉4 ,

where |gj(t)| ≤ 1
24

for all j = 1, . . . , n for n = k1 × k2 × . . .× kν . Therefore

F (t) = e−i〈b,t〉
n∏
j=1

(
1− ζj + iζj 〈aj, t〉 − ζj

〈aj, t〉2

2
− iζj

〈aj, t〉3

6
+ ζjgj(t) 〈aj, t〉4

)−1

.

Furthermore, using

∣∣∣∣ln(1 + ξ)− ξ +
ξ2

2
− ξ3

3

∣∣∣∣ ≤ |ξ|42
for all complex |ξ| ≤ 1/2,

plus
n∑
j=1

ζjaj = b,
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we can write

F (t) = e−q(t)−if(t)+h(t), where

q(t) =
1

2

∑
m1,...,mν

(
ζ2
m1...mν

+ ζm1...mν

)
(τm11 + τm22 + . . .+ τmνν)

2 ,

f(t) =
1

6

∑
m1,...,mν

(
ζm1,...,mν + ζ2

m1,...,mν

)
(2ζm1,...,mν + 1) (τm11 + τm22 + . . .+ τmνν)

3 ,

is a cubic polynomial of the form in Section 2.4, and

|h(t)| ≤ 2
∑

m1...mν

(
1 + ζ4

m1...mν

)
(τm11 + τm22 + . . .+ τmνν)

4 . (3.4)

This expansion is valid as long as ||t||∞ ≤ 1/(2ν
√
R). For t ∈ Π \X3, this inequality

is true as long as

π22νν3

ων ln
(
1 + 2

5
π2r
) (1

2
ν2k ln(k) +

1

2
νk ln(R)

)
k−ν+1 ≤ 1

4ν2R
,

which is assumed by hypothesis. Let

X2 =

{
t ∈ L :

π22νν5

ων
k−ν+1.25 ≤ ||t||2∞ ≤

π22νν5R

ωνr
ln(k)k−ν+2

}
.

We have simplified the upper bound on ||t||∞ from the X3 lower bound by making it

strictly larger, using ln(R)/ ln(1 + 2π2r/5) ≤ R/r, and ν ln(k) ≥ 2 as long as k ≥ 2

and ν ≥ 3. Then we get

∣∣∣∣∣∣
∫
X2

F (t)dt

∣∣∣∣∣∣ ≤
∫
X2

|F (t)|dt =

∫
X2

e−q(t)+h(t)dt.

As

(τm11 + . . .+ τmνν)
2 ≤ π22νν7R

ωνr
ln(k)k−ν+2 for t ∈ X2, and
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1 + ζ4
m1...mν

ζ2
m1...mν

+ ζm1...mν

≤ R2 + 1

R
≤ 2R as R ≥ 1,

we get for t ∈ X2 that

|h(t)| ≤ 8π22νν7R2

ωνr
ln(k)k−ν+2q(t).

Assuming as in the hypothesis of Theorem I.1 that

δ =
8π22νν7R2

ωνr
ln(k)k−ν+2 ≤ 3/4,

for t ∈ X2 we get |F (t)| = e−q(t)+h(t) ≤ e−(1−δ)q(t). Therefore,

∣∣∣∣∣∣
∫
X2

F (t)dt

∣∣∣∣∣∣ ≤
∫
X2

e−(1−δ)q(t)dt.

Doing the change of variables t 7→ (
√

1− δ)t we get

∣∣∣∣∣∣
∫
X2

F (t)dt

∣∣∣∣∣∣ ≤ (1− δ)−νk/2
∫

√
1−δX2

e−q(t)dt.

We use the bound

(
1− 8π22νν7R2

ωνr
ln(k)k−ν+2

)−νk/2
≤ exp

(
16π22νν6R2

ωνr
ln(k)k−ν+3

)
,

and by Lemma II.6 and the choice of the lower bound in the definition of X2, we get

∣∣∣∣∣∣
∫
X2

F (t)dt

∣∣∣∣∣∣ ≤ νk exp
(
16π22νν6R2

ωνr
ln(k)k−ν+3 − π2ω5ν−32νr2ν

2R
k.25

)∫
L

e−q(t)dt. (3.5)
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Similarly, by Lemma II.6, we get

∫
X2∪X3

e−q(t)dt ≤ νk exp

(
−π

2ω5ν−32νr2ν

R
k.25

)∫
L

e−q(t)dt. (3.6)

For the inner region, we define

X1 =

{
t ∈ L : ||t||2∞ ≤

π22νν5

ων
k−ν+1.25

}
.

For t ∈ X1, the inequality |〈aj, t〉|4 ≤ ν4||t||4∞ gives us

|h(t)| ≤ 2R2π
44νν10

ω2ν
k−ν+2.5. (3.7)

Hence, writing

∣∣∣∣∣∣
∫
X1

F (t)− e−q(t)dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
X1

e−q(t)+if(t)+h(t) − e−q(t)dt

∣∣∣∣∣∣ ,
we use the triangle inequality to get

∣∣∣∣∣∣
∫
X1

F (t)− e−q(t)dt

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
X1

e−q(t)−if(t)+h(t) − e−q(t)−if(t)dt

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
X1

e−q(t)−if(t) − e−q(t)dt

∣∣∣∣∣∣ .
By Holder’s inequality,

∣∣∣∣∣∣
∫
X1

e−q(t)−if(t)+h(t) − e−q(t)−if(t)dt

∣∣∣∣∣∣ ≤ sup
t∈X1

∣∣eh(t) − 1
∣∣ ∫
X1

∣∣e−q(t)−if(t)
∣∣ dt.

Applying (3.7) yields

∣∣∣∣∣∣
∫
X1

e−q(t)−if(t)+h(t) − e−q(t)−if(t)dt

∣∣∣∣∣∣ ≤
(
exp

(
2R2π

44νν10

ω2ν
k−ν+2.5

)
− 1

)∫
L

e−q(t)dt. (3.8)
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Furthermore, applying Lemma II.15 with β3
m1,...,mν

= (ζ2
m1,...,mν

+ζm1,...,mν )(2ζm1,...,mν+

1) ≤ 2R3/2, and noting that almost all of the measure of e−q(t) is contained in X1

by (3.6) gives us

∣∣∣∣∣∣
∫
X1

e−q(t)−if(t) − e−q(t)dt

∣∣∣∣∣∣ ≤(
2νk exp

(
−π

2ω5ν−32νr2ν

R
k.25

)
+

13440ν13R9

r9ω21ν−15
k2−ν

)∫
L

e−q(t)dt.

(3.9)

Combining Equations (3.3), (3.5), (3.6), (3.8) and (3.9) completes the proof. If k is

large enough, the k−2.5+ν term from (3.8) dominates, and doubling it gives us the

example value for Γ.
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CHAPTER IV

Proof of Theorem I.2

In this chapter, we complete the proof of Theorem I.2. For the entirety of this

chapter we use the notation introduced in the statement of the theorem, most impor-

tantly the quadratic form q(t) and the constants r, R, ω and k. We also recall the

overdetermined system of equations for a multi-index transportation polytope of the

form Ax = b, where A has columns a1, . . . , an as described in Section 1.1, along with

the subspace L that describes a linearly independent set of equations. The matrix

Q : Rk1+...+kν → Rk1+...+kν will be the orthogonal projection onto L. The outline of

the proof is as follows: we construct a function F (t), and show that for a multi-index

transportation polytope P as in Theorem I.2,

|P ∩ {0, 1}n| = eg(z)

(2π)(k1+...+kν−ν+1)/2

∫
Π

F (t)dt,

where Π ⊂ L is the set {t ∈ L : ||t||∞ ≤ π}. We then split Π up into three regions:

an outside region X3, a middle region X2, and an inner region X1. We show that

∫
X2∪X3

F (t)dt and

∫
L\X1

e−q(t)dt

are negligible compared
∫
L e
−q(t)dt. We show through use of Taylor polynomial ap-

proximations that in X1, F (t) ≈ e−q(t)+if(t)+h(t), where h(t) is small in X1, and f(t)
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is a cubic polynomial in t of the form given in Lemma II.15. We finish the proof by

applying Lemma II.15 to show that

∫
X1

∣∣F (t)− e−q(t)
∣∣ dt� ∫

L

e−q(t)dt.

4.1 Integral Expression of the Counting Problem

We use two results of [BH10] to express the number of binary integer points of P

as an integral of a function F (t). Let Π ⊂ L be the cube centered at the origin:

Π = {t ∈ L : ||t||∞ ≤ π}.

We will show that for multi-index transportation polytopes P satisfying the conditions

of Theorem I.2, the number of binary integer points satisfies

|P ∩ {0, 1}n| = eg(z)

(2π)k1+...+kν−ν+1

∫
Π

e−i〈t,b〉
n∏
j=1

(
1− ζj + ζje

i〈aj ,t〉
)
dt. (4.1)

Before we do, we recall the concept of a Bernoulli random variable. We say x is a

Bernoulli random variable if for some 0 < p < 1,

Pr(x = 0) = p and Pr(x = 1) = (1− p).

In this case, Ex = 1 − p. Conversely, if Ex = ζ, then p = 1 − ζ. The first theorem

we need is the following:

Theorem IV.1. Let P ⊂ Rn be the intersection of an affine subspace in Rn and

the unit cube [0, 1]n. Suppose that P is bounded and has a non-empty interior, that

is a point y = (η1, . . . , ηn) where ηi > 0 for i = 1, . . . , n. Then the strictly concave
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function

g(x) =
n∑
j=1

(
ξj ln

1

ξj
+ (1− ξj) ln

1

1− ξj

)
attains its maximum value in P at a unique point z = (ζ1, . . . , ζn) such that 0 < ζj < 1

for j = 1, . . . , n. Furthermore, suppose x1, . . . , xn are independent Bernoulli random

variables with Exj = ζj, and let X = (x1, . . . , xn). Then the probability mass function

of X is constant on P ∩ {0, 1}n and equal to e−g(z) at every x ∈ P ∩ {0, 1}n. In

particular,

|P ∩ {0, 1}n| = eg(z)Pr (X ∈ P ) .

This is Theorem 5 of [BH10]. This lets us reduce counting the number of binary

integer points in P to calculating Pr (X ∈ P ). We combine this result with the

following:

Lemma IV.2. Let pj, qj be positive numbers such that pj + qj = 1 for j = 1, . . . , n,

and let µ be the Bernoulli measure on the set {0, 1}n of non-negative integer vectors

with

µ{x} =
n∏
j=1

p
1−ξj
j q

ξj
j for x = (ξ1, . . . , ξn).

Let P be defined by the linear equalities Ax = b, where A has columns a1, . . . , an, and

a1, . . . , an, b ∈ Rd. Let Π = [−π, π]d be a cube centered at the origin in Rd. Then

µ (P ) =
1

(2π)d

∫
Π

e−i〈t,b〉
n∏
j=1

(
pj + qje

i〈aj ,t〉
)
dt.

Here, 〈·, ·〉 is the standard inner product in Rd and dt is the Lebesgue measure.

This is Lemma 11 of [BH10]. We combine this with Theorem IV.1 to derive (4.1)

as follows: we identify L with Rk1+...+kν−ν+1 in the natural way by identifying the

non-zero coordinates of L with the coordinates of Rk1+...+kν−ν+1. Then P is defined

by the linear equations QAx = Qb where Q is the orthogonal projection onto L. As
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〈Qaj, t〉 = 〈aj, t〉 and 〈Qb, t〉 = 〈b, t〉 for t ∈ L, we use the columns of A and the vector

b in the integrand instead of QA and Qb. The random variable X in Theorem IV.1

induces the Bernoulli measure µ in Lemma IV.2 when ζj = 1 − pj. This turns the

integrand of Lemma IV.2 into

e−i〈t,b〉
n∏
j=1

(
1− ζj + ζje

i〈aj ,t〉
)
.

Let

F (t) = e−i〈t,b〉
n∏
j=1

(
1− ζj + ζje

i〈aj ,t〉
)
.

The bulk of the proof is dedicated to showing that

∫
Π

F (t)dt ≈
∫
L

e−q(t)dt.

4.2 A Bound on F (t) Away from the Origin

The main result of this section is the following:

Lemma IV.3. Let

F (t) = e−i〈t,b〉
n∏
j=1

(
1− ζj + ζje

i〈aj ,t〉
)
.

Then there exists a constant γ = γ(ω, ν, r) > 0 such that

|F (t)| ≤ exp
(
−γ||t||2∞kν−1

)
.

The constant γ may be chosen to be

γ =
rων

5ν32ν−1
.

We apply this lemma in the following way: we construct a region, which in the
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proof will be called X3, which is the complement of a neighborhood of the origin in

Π. Then we use Lemma III.3 and Lemma II.6 to show that∣∣∣∣∣∣
∫

X3∩Π

F (t)dt

∣∣∣∣∣∣ ,
∫
X3

e−q(t)dt�
∫
L

e−q(t)dt.

To prove Lemma III.3 we use the following:

Lemma IV.4. Let D be a d × n integer matrix with columns d1, . . . dn ∈ Zd. For

each 1 ≤ l ≤ d, let Yl ⊂ Zd be a non-empty finite set such that for all y ∈ Yl, we have

Dy = el, where el is the lth standard basis vector. Let ψl : Rn → R be the quadratic

form

ψl(x) =
1

|Yl|
∑
y∈Yl

〈y, x〉2 for x ∈ Rn,

and let ρl be constants such that

ψl(x) ≤ ρl||x||2.

Suppose further that for ζ1, . . . , ζn > 0 we have

ζj − ζ2
j ≥ α for some α > 0 and j = 1, . . . , n.

Then for any t = (τ1, . . . , τd) ∈ Rd, and for each l, we have

∣∣∣∣∣
n∏
j=1

(
1− ζj + ζje

i〈dj ,t〉
)∣∣∣∣∣ ≤ exp

(
−ατ

2
l

5ρl

)
.

This is Lemma 12 of [BH10]. We are now ready to prove Lemma IV.3.

Proof. We identify L with Rk1+...+kν−ν+1 in the natural way. We use the sets Yl
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constructed in the proof of III.3, to get sets Yl satisfying the hypothesis with

ρl ≤
ν32ν−1

ων
k−ν+1.

Applying Lemma IV.4 uniformly over all values of l with D = QA and α = r, we

arrive at

|F (t)| ≤ exp

(
−rω

ν ||t||2∞
5ν32ν−1

kν−1

)
.

4.3 The Proof of Theorem I.2

At this point we are ready to prove Theorem I.2. The outline of the proof is as

follows: we first construct a region X3 ⊂ L which is of the form

X3 = {t ∈ L : ||t||∞ ≥ β}

for some β ∈ R. We apply Lemma IV.3 to show that

∫
X3∩Π

|F (t)|dt�
∫
L

e−q(t)dt.

For ||t||∞ < β, we express F (t) as

F (t) = e−q(t)+if(t)+h(t),

where q(t) is the quadratic form as in Theorem I.2, f(t) is a cubic polynomial, and

h(t) is bounded by a quartic polynomial. We use Lemma II.6 along with an inequality

comparing q(t) to h(t) to show that for some set X2 ⊂ L of the form

X2 = {t ∈ L : δ ≤ ||t||∞ ≤ β} ,
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we have ∫
X2

|F (t)|dt�
∫
L

e−q(t)dt.

We also use Lemma II.6 to show that

∫
X2∪X3

e−q(t)dt�
∫
L

e−q(t)dt.

We then let

X1 = {t ∈ L : ||t||∞ ≤ δ} .

We show that |h(t)| is small for all t ∈ X1, and then use Lemma II.15 to show that

∣∣∣∣∣∣
∫
X1

F (t)− e−q(t)dt

∣∣∣∣∣∣�
∫
L

e−q(t)dt.

Combining the calculations over the three regions X1, X2, X3 will allow us to show

that ∫
Π

F (t)dt ≈
∫
L

e−q(t)dt.

We observe that for all the calculations in Chapter II, we can replace R with 1 as

ζm1,...,mν − ζ2
m1,...,mν

≤ 1/4 always.

Proof. By (4.1) and (1.2), it suffices to show

∣∣∣∣∣∣
∫
Π

F (t)dt−
∫
L

e−q(t)dt

∣∣∣∣∣∣ ≤ Γk−ν+2.5

for some constant Γ > 0. Let

X3 =

{
t ∈ L : ||t||2∞ ≥

5ν32ν−1

2rων
ν2 ln(k)k−ν+2

}
. (4.2)
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By Lemma IV.3, we have

∫
X3∩Π

|F (t)|dt ≤ (2π)νk exp

(
−1

2
ν2k ln(k)

)
.

By Corollary II.5 , we have

∫
X3∩Π

|F (t)|dt ≤ exp

(
−1

4
ν2k ln(k) + νk ln(2π)

)∫
L

e−q(t)dt, (4.3)

which is negligible compared to
∫
L e
−q(t)dt.

For the middle and inside regions, we can use the Taylor polynomial estimate

∣∣∣∣eiξ − 1− iξ +
ξ2

2
+ i

ξ3

6

∣∣∣∣ ≤ ξ4

24
for all ξ ∈ R

to write

ei〈aj ,t〉 = 1 + i 〈aj, t〉 −
〈aj, t〉2

2
− i〈aj, t〉

3

6
+ gj(t) 〈aj, t〉4 ,

where |gj(t)| ≤ 1
24

for all j = 1, . . . , k1k2 . . . kν . Therefore

F (t) = e−i〈b,t〉
n∏
j=1

(
1 + iζj 〈aj, t〉 − ζj

〈aj, t〉2

2
− iζj

〈aj, t〉3

6
+ ζjgj(t) 〈aj, t〉4

)
.

Furthermore, using

∣∣∣∣ln(1 + ξ)− ξ +
ξ2

2
− ξ3

3

∣∣∣∣ ≤ |ξ|42
for all complex |ξ| ≤ 1/2,

plus
n∑
j=1

ζjaj = b,
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we can write

F (t) = e−q(t)+if(t)+h(t), where

q(t) =
1

2

∑
m1,...,mν

(
ζm1...mν − ζ2

m1...mν

)
(τm11 + τm22 + . . .+ τmνν)

2 ,

f(t) =
1

6

∑
m1,...,mν

(
ζm1,...,mν − ζ2

m1,...,mν

)
(2ζm1,...,mν − 1) (τm11 + τm22 + . . .+ τmνν)

3 ,

is a cubic polynomial of the form in Section 2.4, and

|h(t)| ≤ 2
∑

m1...mν

(τm11 + τm22 + . . .+ τmνν)
4 . (4.4)

This representation is valid as long as ||t||∞ ≤ 1/(2ν). For t ∈ Π \X3, this inequality

is true as long as

5ν42ν−1

2rων
ln(k)k−ν+2 ≤ 1

4ν2
,

which is assumed by hypothesis. Let

X2 =

{
t ∈ L :

5ν52ν−1

2rων
k−ν+1.25 ≤ ||t||2∞ ≤

5ν52ν−1

2rων
ln(k)k−ν+2

}
.

Then we get ∣∣∣∣∣∣
∫
X2

F (t)dt

∣∣∣∣∣∣ ≤
∫
X2

|F (t)|dt =

∫
X2

e−q(t)+h(t)dt.

As

(τm11 + . . .+ τmνν)
2 ≤ ν2||t||2∞,

we get for t ∈ X2 that

|h(t)| ≤ 10ν72ν−1

r2ων
ln(k)k−ν+2q(t).
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Assuming as in the hypothesis of Theorem I.2 that

δ =
10ν72ν−1

r2ων
ln(k)k−ν+2 ≤ 3/4,

for t ∈ X2 we get |F (t)| = e−q(t)+h(t) ≤ e−(1−δ)q(t). Therefore,

∣∣∣∣∣∣
∫
X2

F (t)dt

∣∣∣∣∣∣ ≤
∫
X2

e−(1−δ)q(t)dt.

Doing the change of variables t 7→ (
√

1− δ)t we get

∣∣∣∣∣∣
∫
X2

F (t)dt

∣∣∣∣∣∣ ≤ (1− δ)−νk/2
∫

√
1−δX2

e−q(t)dt.

We use the bound

(
1− 10ν72ν−1

r2ων
ln(k)k−ν+2

)−νk/2
≤ exp

(
20ν62ν−1

r2ων
ln(k)k−ν+3

)
,

and by Lemma II.6 and the choice of the lower bound in the definition of X2, we get

∣∣∣∣∣∣
∫
X2

F (t)dt

∣∣∣∣∣∣ ≤ νk exp

(
20ν62ν−1

r2ων
ln(k)k−ν+3 − 5ω5ν−3rν2ν−1

16
k.25

)∫
L

e−q(t)dt. (4.5)

Similarly, by Lemma II.6, we get

∫
X2∪X3

e−q(t)dt ≤ νk exp

(
−5ω5ν−3rν2ν−1

4
k.25

)∫
L

e−q(t)dt. (4.6)

We define

X1 =

{
t ∈ L : ||t||2∞ ≤

5ν52ν−1

2rων
k−ν+1.25

}
.
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For t ∈ X1, the inequality |〈aj, t〉|4 ≤ ν4||t||4∞ gives us

|h(t)| ≤ 25ν144ν−1

4r2ω2ν
k−ν+2.5. (4.7)

Hence, writing

∣∣∣∣∣∣
∫
X1

F (t)− e−q(t)dt

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
X1

e−q(t)+if(t)+h(t) − e−q(t)dt

∣∣∣∣∣∣ ,
we can use the triangle inequality to get

∣∣∣∣∣∣
∫
X1

F (t)− e−q(t)dt

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∫
X1

e−q(t)+if(t)+h(t) − e−q(t)+if(t)dt

∣∣∣∣∣∣+

∣∣∣∣∣∣
∫
X1

e−q(t)+if(t) − e−q(t)dt

∣∣∣∣∣∣ .
We apply Holder’s inequality to get

∣∣∣∣∣∣
∫
X1

e−q(t)+if(t)+h(t) − e−q(t)+if(t)dt

∣∣∣∣∣∣ ≤ sup
t∈X1

|eh(t) − 1|
∫
X1

∣∣e−q(t)+if(t)
∣∣ dt.

By (4.7), we can bound this by

∣∣∣∣∣∣
∫
X1

e−q(t)+if(t)+h(t) − e−q(t)+if(t)dt

∣∣∣∣∣∣ ≤
(
exp

(
25ν144ν−1

4r2ω2ν
k−ν+2.5

)
− 1

)∫
L

e−q(t)dt. (4.8)

Applying Lemma II.15 with
∣∣β3
m1,...,mν

∣∣ =
∣∣(ζm1,...,mν − ζ2

m1,...,mν
)(2ζm1,...,mν − 1)

∣∣ ≤
1/4, and noting that almost all the measure of e−q(t) is contained in X1 by (4.6), we

get

∣∣∣∣∣∣
∫
X1

e−q(t)+if(t) − e−q(t)dt

∣∣∣∣∣∣ ≤(
2νk exp

(
−5ω5ν−3rν2ν−1

4
k.25

)
+

224ν13

r9ω21ν−15
k2−ν

)∫
L

e−q(t)dt.

(4.9)
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Combining Equations (4.3), (4.5), (4.6), (4.8), and (4.9) completes the proof. If k

is large enough, the k−2.5+ν term from (4.8) dominates, and doubling it gives us the

example value for Γ.
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CHAPTER V

Proof of Theorem I.3

In this chapter we prove Theorem I.3, counting the volume of certain 4-way trans-

portation polytopes. For the entirety of this chapter we use the notation introduced

in the statement of the theorem, most importantly the quadratic form q(t) and the

constants r, R, ω and k. We also recall the overdetermined system of equations for

a multi-index transportation polytope of the form Ax = b, where A has columns

a1, . . . , an as described in Section 1.1, along with the subspace L that describes a

linearly independent set of equations. The matrix Q : Rk1+...+kν → Rk1+...+kν will be

the orthogonal projection onto L. To prove Theorem I.3, we write the volume as

vol(P ) =
1

(2π)k1+k2+k3+k4−3

∫
L

F (t)dt for some F : Rk1+...+kν−ν+1 → R.

We then partition L into L = X1 ∪X2 ∪X3, and show that

∣∣∣∣∣∣
∫

X2∪X3

F (t)dt

∣∣∣∣∣∣ ,
∫

X2∪X3

e−q(t)dt�
∫
L

e−q(t)dt.

The proof then diverges from the pattern followed by the proofs of I.1 and I.2, as X1 is

further partitioned and additional analytic results are required. To prove Theorem I.3

we use a concept called concentration of measure to show that the integral of e−q(t)

near the subspace of L spanned by the eigenvectors of q(t) whose eigenvalues are
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Θ(k2) is negligible as well.

5.1 Concentration of the Gaussian Integral

The main crux of the proof that improves on [BH10]’s proof for ν ≥ 5 is certain

concentration of measure arguments. The main result of this section is:

Theorem V.1. Let q(t) : Rk1+k2+k3+k4 → R satisfy the conditions of Theorem II.1 for

ν = 4. Then for all 0 < ε < 1/2 and all σ > 0, there exist constants γ = γ(R,ω) > 0

and N = N(ω,R/r, ε) such that if k ≥ N ,

∫
t∈L
q(t)<σ

q(t)≥rk2+ε||t||2

e−q(t)dt ≥
(

1− 3 exp

(
− ω7r

384R
k1−ε

)) ∫
t∈L
q(t)<σ

e−q(t)dt.

The theorem essentially says that the measure of e−q(t) is concentrated around the

subspace of L spanned by the eigenvector whose eigenvalues are Θ(k3). To show this,

we require several results on concentration of measure on the sphere. For notation,

we will let Sd−1 denote the unit sphere in Rd.

Lemma V.2. Let µ be the rotationally invariant Borel probability measure on Sd−1.

Let H ⊂ Rd be a hyperplane passing through the origin. For γ < 1, let X ⊂ Sd−1 be

defined by

X =
{
x ∈ Sd−1 : dist(x,H) < γ

}
,

where dist(x,H) is the shortest Euclidean distance between x and any point in H.

Then

µ(X) ≥ 1− exp

(
−γ

2

2
d

)
.

This is Corollary 2.2 of [MS86]. The lemma says if you take any hyperplane slice

of the sphere, almost all of the sphere’s measure is close to the hyperplane. We use

this to prove the following:
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Lemma V.3. For some 0 < κ < 1, let Y ⊂ Sd−1 be defined as

Y =
{
x = (ξ1, . . . , ξd) ∈ Sd−1 : ξ2

1 + ξ2
2 + ξ2

3 ≤ κ2
}
.

Then

µ(Y ) ≥ 1− 3 exp

(
−1

6
dκ2

)
.

Proof. Define the subsets of the sphere

Hr =

{
x = (ξ1, . . . , ξd) ∈ Sd−1 : |ξr| ≤

1√
3
κ

}
.

By Lemma V.2, for µ the rotationally invariant Borel measure probability measure,

we get

µ (Hr) ≥ 1− exp

(
−1

6
dκ2

)
.

Therefore, by a simple union bound we can bound the measure of the intersection by

µ (H1 ∩H2 ∩H3) ≥ 1− 3 exp

(
−1

6
dκ2

)
. (5.1)

Moreover, H1 ∩H2 ∩H3 ⊂ Y , since if x = (ξj) is contained in the intersection, then

ξ2
1 + ξ2

2 + ξ2
3 ≤ 3

1

3
κ2 = κ2,

which is exactly what is required for x ∈ Y . Hence by (5.1),

µ (Y ) ≥ 1− 3 exp

(
−1

6
dκ2

)
.

We are now ready to prove Theorem V.1. To do so, we perform a change of

coordinates to turn the integral of e−q(t) over the region q(t) < σ into an integral over
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a sphere of e−||u||
2
. We calculate explicitly where the set

{
t : q(t) < σ, q(t) ≥ rk2+ε||t||2

}
is mapped to under this change of coordinates, and show it contains a set of the form

Y as in Lemma V.3.

Proof. Let D be the unique symmetric positive semidefinite square root of B, so

that q|L(t) = 1
2
〈t, QBQt〉 = 1

2
〈QDQt,QDQt〉. Picking an orthonormal basis of

eigenvectors of QDQ, we can assume without loss of generality that QDQ is diagonal.

The diagonal entries are the square roots of the eigenvalues calculated in Theorem II.1.

We will denote the non-zero eigenvalues of QBQ corresponding to eigenvectors in L

as λ1 < λ2 < . . . < λk1+k2+k3+k4−3.

For notational simplicity we omit the t ∈ L subscript on all integrals - it is

assumed for the remainder of the proof. We also identify L with Rk1+k2+k3+k4−3 in

the natural way, by matching non-zero coordinates in order. We perform the change

of coordinates u = Dt, making q(t) = ||u||2 and

∫
q(t)<σ

e−q(t)dt =
1

detD

∫
||u||2<σ

e−||u||
2

du.

Define the functions a(t) and b(t) by

a(t) =

√√√√k1+k2+k3+k4−3∑
j=4

τ 2
j , and b(t) =

√√√√ 3∑
j=1

τ 2
j .

These functions define the square of the distance from t to the subspaces spanned

by the eigenvectors of QBQ whose eigenvalues are Θ(k3) and the three eigenvectors
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whose eigenvalues are Θ(k2). Then

q(t) ≥ rω3k3a2(t) +
rω3

12
k2b2(t), and ||t||2 = a2(t) + b2(t). (5.2)

If

rω3k3a2(t) + rω3

12
k2b2(t)

a2(t) + b2(t)
≥ rk2+ε,

we get q(t) ≥ rk2+ε||t||2. For u = (η1, η2, . . . , ηk1+k2+k3+k4−3), we define the auxiliary

functions

ã(u) =

√√√√k1+k2+k3+k4−3∑
j=4

η2
j

λj
, and b̃(u) =

√√√√ 3∑
j=1

η2
j

λj
.

Then for u = Dt, we have ã(u) = a(t) and b̃(u) = b(t). Let

W =

{
u ∈ L : ||u||2 < σ and

(
rω3k3 − rk2+ε

)
ã2(u) ≥

(
rk2+ε − rω3

12
k2

)
b̃2(u)

}
.

By (5.2) we get that if u ∈ W , then t = D−1u satisfies q(t) ≥ rk2+ε||t||2, and hence

∫
||u||2<σ
u∈W

e−||u||
2

du

/ ∫
||u||2<σ

e−||u||
2

du) ≤
∫

q(t)<σ
q(t)≥rk2+ε||t||2

e−q(t)dt

/ ∫
q(t)<σ

e−q(t)dt. (5.3)

As W is conical -that is if u ∈ W , αu ∈ W for all α > 0 - and the integrals on the

left hand side of (5.3) are symmetric under rotations, we let W1 = W ∩Sk1+k2+k3+k4−4

and get that

µ(W1) ≤


∫

q(t)<σ
q(t)≥rk2+ε||t||2

e−q(t)dt

 /

 ∫
q(t)<σ

e−q(t)dt

 , (5.4)

where µ is the rotationally invariant Borel probability measure on Sk1+k2+k3+k4−4. By
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the bounds on the eigenvalues λj given in Theorem II.1, we get that

ã2(u) ≥ a2(u)

4Rk3
and b̃2(u) ≤ 12b2(u)

rω3k2
.

Therefore, letting

W2 =

{
u ∈ Sk1+k2+k3+k4−4 :

rω3k3 − rk2+ε

4Rk3
a2(u) ≥ 12rk2+ε − rω3k2

rω3k2
b2(u)

}
,

we have W2 ⊂ W1 and by (5.4),

µ(W2) ≤


∫

q(t)<σ
q(t)≥rk2+ε||t||2

e−q(t)dt

 /

 ∫
q(t)<σ

e−q(t)dt

 . (5.5)

For u ∈ W2, a2(u) + b2(u) = 1 by (5.2), so we can rewrite W2 as

W2 =

{
u ∈ Sk1+k2+k3+k4−4 : b2(u) ≤ ω6r2 − ω3r2kε−1

ω6r2 − ω3r2kε−1 + 48Rrkε − 4Rrω3

}
. (5.6)

There exists a constant N = N(ω,R/r, ε) such that for all k ≥ N , the numerator and

denominator are dominated by the ω6r2/2 and 48Rrkε . In particular, the numerator

is at least ω6r2/2 and the denominator is no more than 96Rrkε. For k ≥ N , we let

W3 =

{
u ∈ Sk1+k2+k3+k4−4 : b2(u) ≤ ω6r

192R
k−ε
}
.

Then W3 ⊂ W2, and hence

µ(W3) ≤


∫

q(t)<σ
q(t)≥rk2+ε||t||2

e−q(t)dt

 /

 ∫
q(t)<σ

e−q(t)dt

 . (5.7)
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Applying Lemma V.3 to W3 and noting the dimension is at least as large as ωk

completes the proof.

5.2 Integral Representation of Measuring Volume

We use two results of [BH10] to express the volume of P as an integral of a function

F (t). We will show that for multi-index transportation polytopes P satisfying the

conditions of Theorem I.3, the volume satisfies (recall s(t) from the statement of

Theorem I.3):

vol(P ) = det(s|L)1/2 eg(z)

(2π)k1+k2+k3+k4−3

∫
L

e−i〈t,b〉
n∏
j=1

1

1− iζj 〈aj, t〉
dt. (5.8)

Before we prove this, we recall the concept of an exponential random variable. We

say x is an exponential random variable with Ex = ζ if the density function ψ of x is

ψ(τ) =
1

ζ
e−ζτ for τ ≥ 0.

The first theorem we need to prove (5.8) is the following:

Theorem V.4. Let P ⊂ Rn be the intersection of an affine subspace with the non-

negative orthant Rn
+. Suppose that P is bounded and has a non-empty interior. Then

the strictly concave function

g(x) = n+
n∑
j=1

ln ξj for x = (ξ1, . . . , ξn)

attains its unique maximum on P at a point z = (ζ1, . . . , ζn) where ζj > 0 for j =

1, . . . , n. Let x1, . . . , xn be independent exponential random variables with Exj = ζj

for j = 1, . . . , n. Let X = (x1, . . . , xn). Then the density of X is constant on P and

for every x ∈ P , is equal to e−g(z).
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This is Theorem 7 of [BH10]. We combine this with:

Lemma V.5. Let x1, . . . , xn be independent exponential random variables such that

Exj = ζj for j = 1, . . . , n. Let a1, . . . , an ∈ Rd be vectors which span Rd, and let

Y = x1a1 + . . .+ xnan. Then the density of Y at b ∈ Rd
+ is equal to

1

(2π)d

∫
Rd

e−i〈t,b〉
n∏
j=1

1

1− iζj 〈aj, t〉
dt.

This is Lemma 8 of [BH10]. Identify L with Rk1+k2+k3+k4−3 by matching nonzero

coordinates in order. Let Y = QAX for X = (x1, . . . , xn) as in Theorem V.4. Then

Theorem V.4 says that

vol(P ) = ef(z) det
(
QA(QA)t

)1/2
Pr(Y = Qb).

We combine this with Lemma V.5, noting that det(s|L) = det ((QA)(QA)t). We

also use the fact that the columns of QA are Qa1, . . . , Qan, and that for t ∈ L,

〈Qaj, t〉 = 〈aj, t〉 and 〈Qb, t〉 = 〈b, t〉 to replace Qa1, . . . , Qan, Qb in the integrand

with a1, . . . , an, b. This proves Equation (5.8).

5.3 A Bound on F (t) Away from the Origin

The main result of this section is the following:

Lemma V.6. Let

F (t) = e−i〈t,b〉
n∏
j=1

1

1− iζj 〈aj, t〉
.

Let 0 < ρ < 1. Then if

k ≥ 192R

ω3r
,
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we have ∫
t∈L
||t||≥ρ

|F (t)| dt ≤ exp

(
− ω3r

384R
k2ρ2

)
.

We will use this lemma to show that for some ρ > 0,

∫
||t||≥ρ

|F (t)|dt�
∫
L

e−q(t)dt.

For ||t|| < ρ we will express F (t) = e−q(t)+if(t)+h(t) for f(t) a cubic polynomial and

h(t) a small error function, and show that the effects of f(t) and h(t) on the integral

of F (t) are negligible. We reconstruct the proof of Lemma V.6 which is broken into

pieces in [BH10].

Proof. We have

|F (t)| ≤

(
n∏
j=1

1

1 + ζ2
j 〈aj, t〉

2

)1/2

.

Letting ξj = ζ2
j 〈aj, t〉

2, we get
n∑
j=1

ξj = 2q(t),

so in particular by Theorem II.1,

n∑
j=1

ξj ≥
rω3

6
k2||t||2.

We also have that 0 ≤ ξj ≤ 4R||t||2 for j = 1, . . . , n. Fix ||t||2. The minimum of the

log-concave function
n∏
j=1

(1 + ξj)

on the polytope with constraints

0 ≤ ξj ≤ 4R||t||2 and
n∑
j=1

ξj ≥
rω3

6
k2||t||2

81



must occur on a vertex of the polytope, where every ξj is either 0 or 4R||t||2 such

that the sum of the coordinates is as small as possible satisfying the last constraint.

Therefore, |F (t)| is bounded from above when we replace every ζ2
j 〈aj, t〉

2 with either

a 0 or a 4R||t||2 as well. To satisfy the last constraint at least

ω3r

24R
k2

of the ξjs must be non-zero. Hence,

|F (t)| ≤ (1 + ||t||2)−ω
3rk2/(48R).

We then find a bound on

∫
||t||≥ρ

(1 + ||t||2)−ω
3rk2/(48R).

Let Sk1+k2+k3+k4−4 ⊂ L be the unit sphere. As the integrand is rotationally invariant,

we can rewrite the integral in polar coordinates as

∫
||t||≥ρ

(1 + ||t||2)−ω
3rk2/(48R)dt =

∣∣Sk1+k2+k3+k4−4
∣∣ ∞∫
ρ

(1 + s2)−ω
3rk2/(48R)sk1+k2+k3+k4−4ds.

Using that for any m a positive number, sm = ssm−1 ≤ s(1 + s2)(m−1)/2 we rewrite

this as

∫
||t||≥ρ

(1+||t||2)−ω
3rk2/(48R)dt ≤

∣∣Sk1+k2+k3+k4−4
∣∣ ∞∫
ρ

(1+s2)−ω
3rk2/(48R)+(k1+k2+k3+k4−4)/2sds.

We use the bound (k1 + k2 + k3 + k4 − 4)/2 ≤ 2k along with the hypothesis bound
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on k and perform integration by substitution to get

∫
||t||≥ρ

(1 + ||t||2)−ω
3rk2/(48R)dt ≤

∣∣Sk1+k2+k3+k4−4
∣∣ 24R(1 + ρ2)−ω

3rk2/(96R)+1

ω3r
k−2.

Noting that the Lebesgue measure of the sphere Sn−1 in Rn is (2π)n/2/Γ(n/2), and

that in this case we have

ωk ≤ n ≤ 4k,

we get ∫
||t||≥ρ

|F (t)|dt ≤ (2π)2k(1 + ρ2)−ω
3rk2/(96R)+1

ω3rΓ(ωk/2)
k−2.

The remainder of the proof is simplifying the terms. We use the bound

Γ(ωk/2) ≤
(
ωk

2

)ωk/2

as long as ωk ≥ 2 to write everything in exponentials as

∫
||t||≥ρ

|F (t)|dt ≤

exp

(
2k ln(2π)−

(
ω3rk2

96R
+ 1

)
ln(1 + ρ2)− ωk

2
ln

(
ωk

2

)
− ln(ω3r)− 2 ln(k)

)
.

As long as k ≥ 2
ω

(2π)4/ω, we get 2k ln(2π) ≤ ωk
2

ln
(
ωk
2

)
, and we can simplify this to

be ∫
||t||≥ρ

|F (t)|dt ≤ exp

(
−
(
ω3rk2

96R
+ 1

)
ln(1 + ρ2)

)
.

As long as ρ2 ≤ 1, we get ln(1 + ρ2) ≥ ρ2

2
. Furthermore, by

k ≥ 192R

ω3r
,
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we get that

1 ≤ ω3rk2

192R

which completes the proof.

5.4 The Proof Of Theorem I.3

Before we begin the proof of Theorem I.3 we require one more technical lemma:

Lemma V.7. Let q : Rd → R be a positive definite quadratic form, and let κ ≥ 3 be

a number. Then ∫
q(t)≥κd

e−q(t)dt ≤ e−κd/2
∫
Rd

e−q(t)dt.

This is Lemma 9 of [BH10]. We are now ready to prove Theorem I.3. The outline

of the proof is as follows: we construct sets X1, X2, X3 ⊂ L such that

∫
X2∪X3

|F (t)|dt,
∫

X2∪X3

e−q(t)dt�
∫
L

e−q(t)dt.

We then show that ∣∣∣∣∣∣
∫
X1

F (t)− e−q(t)dt

∣∣∣∣∣∣�
∫
L

e−q(t)dt

through a sequence of dividing X1 into smaller parts to complete the proof.

Proof. First, we observe by Corollary II.5 and Equation (5.8) that it suffices to show

∣∣∣∣∣∣
∫
L

F (t)dt−
∫
L

e−q(t)dt

∣∣∣∣∣∣ ≤ Γk−.2.

Let

X3 =

{
t ∈ L : ||t||2 ≥ 384R

ω3r

(
8k−1 ln(k) + 2k−1 ln(R)

)}
.
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As long as

384R

ω3r

(
8k−1 ln(k) + 2k−1 ln(R)

)
≤ 1,

which is a weaker condition than the hypothesis, we can apply Lemma V.6 and

Corollary II.5 to get

∫
X3

|F (t)|dt ≤ exp (−4k ln(k))

∫
L

e−q(t)dt. (5.9)

This gives us that
∫
X3
F (t)dt is negligible compared to

∫
L e
−q(t)dt.

For the middle and inside regions, we can use the Taylor polynomial estimate

∣∣∣∣ln(1 + ξ)− ξ +
ξ2

2
− ξ3

3

∣∣∣∣ ≤ |ξ|42
for all complex |ξ| ≤ 1/2

to write

ln(1− iζj 〈aj, t〉) = −iζj 〈aj, t〉+
1

2
ζ2
j 〈aj, t〉

2 +
i

3
ζ3
j 〈aj, t〉

3 + hj(t)ζ
4
j 〈aj, t〉

4

where |hj(t)| ≤ 1/2 for j = 1, . . . , n. Since

∑
j

ζjaj = b,

we have

F (t) = e−q(t)−if(t)+h(t), where

q(t) =
1

2

∑
m1,...,mν

ζ2
m1...mν

+ (τm11 + τm22 + . . .+ τmνν)
2 ,

f(t) =
1

3

∑
m1,...,mν

ζ3
m1,...,mν

(τm11 + τm22 + . . .+ τmνν)
3 ,
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is a cubic polynomial of the form in Section 2.4, and

|h(t)| ≤ 1

2

∑
m1...mν

ζ4
m1...mν

(τm11 + τm22 + . . .+ τmνν)
4 . (5.10)

This holds as long as |ζj 〈aj, t〉| ≤ 1/2 for j = 1, . . . , n. As each aj is a binary vector

with at most four 1’s, this holds as long as

||t||2 ≤ 1

64R
.

By hypothesis for all t /∈ X3 this holds.

As long as k ≥ R, which always holds by hypothesis, for t /∈ X3 we can weaken

the condition on t to be

||t||2 ≤ 3840R

ω3r

ln(k)

k
.

We let

X2 =

{
t ∈ L : ||t||2 ≤ 3840R

ω3r

ln(k)

k
and q(t) ≥ 16k

}
.

We observe that for t ∈ L with q(t) < 16k, by Theorem II.1 we have

||t||2 ≤ 192

rω3k
. (5.11)

This is strictly smaller than 3840R
ω3r

ln(k)
k

as long as R ≥ 1, ω < 1 and k ≥ 2, so the three

sets X3, X2, and

X1 = {t ∈ L : q(t) ≤ 16k} (5.12)

cover L completely, and X1 and X3 have an empty intersection.

For t ∈ X2, we have (τm11 + τm22 + τm33 + τm44)2 ≤ 16||t||2. Bounding one

(τm11 + τm22 + τm33 + τm44)2 in each summand of h(t) and leaving the other, this gives
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us

|h(t)| ≤ 61440R2

ω3r

ln(k)

k
q(t).

By hypothesis of the theorem, we have for t ∈ X2 that

|F (t)| = e−q(t)+h(t) ≤ e−
3
4
q(t).

Hence, ∣∣∣∣∣∣
∫
X2

F (t)dt

∣∣∣∣∣∣ ≤
∫

q(t)>16k

e−3q(t)/4dt.

Performing the change of variables u =
√

3/4t, we get

∣∣∣∣∣∣
∫
X2

F (t)dt

∣∣∣∣∣∣ ≤
(

4

3

)2k ∫
q(t)>12k

e−q(t)dt.

By Lemma V.7, and noting that dim (L) ≤ 4k, we get

∣∣∣∣∣∣
∫
X2

F (t)dt

∣∣∣∣∣∣ ≤ e−6k+2 ln(4/3)k

∫
L

e−q(t)dt, (5.13)

which is negligible as 6 > 2 ln(4/3). Similarly,

∫
X2∪X3

e−q(t)dt ≤
∫

q(t)>16k

e−q(t)dt ≤ e−8k

∫
L

e−q(t)dt. (5.14)

Letting X1 be as defined in (5.12), we split it further into two regions:

V1 =
{
t ∈ X1 : q(t) ≥ rk2.5||t||2

}
, and

V2 =
{
t ∈ X1 : q(t) ≤ rk2.5||t||2

}
.
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For t ∈ V2, we use (5.11) to derive a similar bound on h to the one in X2:

|h(t)| ≤ 3072R

rω3k
q(t).

Hence, ∣∣∣∣∣∣
∫
V2

F (t)dt

∣∣∣∣∣∣ ≤
∫
V2

e−(1−3072R/(rω3k))q(t)dt.

Performing the change of variables t 7→
√

1− 3072R/(rω3k), and assuming this is

positive to ensure this is well-defined, we get

∣∣∣∣∣∣
∫
V2

F (t)dt

∣∣∣∣∣∣ ≤
(

1− 3072R

rω3k

)−2k ∫
q(t)≤rk2.5||t||2

e−q(t)dt.

The Jacobian (1 − 3072R
rω3k

)−2k is bounded from above by e6148R/(rω3). Then applying

Theorem V.1 gives us

∣∣∣∣∣∣
∫
V2

F (t)dt

∣∣∣∣∣∣ ≤ 3 exp

(
6148R

rω3
− ω7r

384R
k.5
)∫
L

e−q(t)dt. (5.15)

Similarly, ∣∣∣∣∣∣
∫
V2

e−q(t)dt

∣∣∣∣∣∣ ≤ 3 exp

(
− ω7r

384R
k.5
)∫
L

e−q(t)dt. (5.16)

For t ∈ V1, we use 16k ≥ q(t) ≥ rk2.5||t||2 to get

||t||2 ≤ 16

rk1.5
.

Combining this with |h(t)| ≤ 16R||t||2q(t) and q(t) < 16k yields

|h(t)| ≤ 256R

rk.5
. (5.17)

88



We split V1 into two further regions: Let W1,W2 ⊂ V1 be the sets

W1 =

{
t ∈ V1 : ||t||∞ ≥

1

k1.4

}
,

and

W2 = V1 \W1.

By (5.17), ∣∣∣∣∣∣
∫
W1

F (t)dt

∣∣∣∣∣∣ ≤ exp

(
256R

r
k−.5

)∫
W1

e−q(t)dt

and applying Lemma II.6 we get

∣∣∣∣∣∣
∫
W1

F (t)dt

∣∣∣∣∣∣ ≤ 4k exp

(
256R

r
k−.5 − ω15r2

512R
k.2
)∫
L

e−q(t)dt. (5.18)

Similarly, by Lemma II.6,

∣∣∣∣∣∣
∫
W1

e−q(t)dt

∣∣∣∣∣∣ ≤ 4k exp

(
−ω

15r2

512R
k.2
)∫
L

e−q(t)dt. (5.19)

Lastly, for t ∈ W2, we have by bounding the summands in f(t) that

|f(t)| ≤ R3/2

3
k−.2 (5.20)

Therefore, by (5.20) and (5.17), along with Holder’s inequality,

∣∣∣∣∣∣
∫
W2

F (t)− e−q(t)dt

∣∣∣∣∣∣ ≤∣∣∣∣exp

(
256R

r
k−.5 + i

R3/2

3
k−.2

)
− 1

∣∣∣∣ ∫
L

e−q(t)dt.

(5.21)

Combining (5.9), (5.13), (5.14), (5.15), (5.16), (5.18), (5.19), and (5.21) completes
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the proof. The k−.2 term in (5.21) is the dominant term as k goes to infinity and the

other terms are held constant, and doubling it gives the example value of Γ given in

Theorem I.3.
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