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CHAPTER 1  
Introduction 

1.1 Background 

Transcranial magnetic stimulation (TMS) is a method that is used for the 

treatment of neurological disorders and to study brain function that involves the 

stimulation of neuronal tissue.  In TMS, one or more coils placed near the scalp produce 

magnetic fields that induce electric fields and eddy-currents in the conductive brain 

tissue. When the spatial gradient of the electric field aligns with a nerve fiber, an action 

potential is generated [1, 2]. As a result, TMS enables neuroscientists to create causal 

links between stimulated cortical regions and observable behaviors. Furthermore, TMS is 

used by clinicians to activate regions of the brain for depression therapy. In this work, we 

have come up with new TMS coil designs and developed computational electromagnetic 

(CEM) tools for better analyzing the fields generated during TMS.  More specifically, a 

framework for uncertainty quantification of TMS, real-time analysis of fields induced 

during TMS and a new volume-surface integral equation formulation for determining 

electric fields generated during TMS have been developed.  Furthermore, it will be 

shown that the new volume-surface integral equation is not only applicable to TMS but it 

can also be used for analysis of fields generated inside negative permittivity scatterers.  

1.2 TMS Coil Designs 

Electric fields generated by current TMS coils decay and diffuse rapidly as they 

penetrate into the brain. As a result, they stimulate relatively large regions of tissue near 
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the brain’s surface.  Many TMS applications require stimulation of specific target regions 

deep in the brain while minimizing stimulation elsewhere. Creating TMS coils that 

produce electric fields that are both sharply focused and stimulate regions deep inside the 

brain has been a constant research goal [3-15].   

Recently, multi-channel TMS arrays composed of many independently driven 

coils have been shown to deliver a more concentrated and deeply penetrating field than 

single coils.  In chapter 2, we propose a systematic, genetic algorithm-based technique for 

synthesizing multi-channel arrays that minimize the volume of the excited region 

required to achieve a prescribed penetration depth. Numerical results show that the 

performance of the arrays designed via the proposed technique is vastly superior to that 

of existing TMS coil designs. Because multi-channel arrays are costly to build, we also 

propose a method to convert the multi-channel arrays into single-channel ones that can be 

driven by a one current source, without materially deteriorating performance. 

1.3 Uncertainty Quantification of TMS 

The electric field distribution generated during TMS is highly sensitive to 

uncertainty in the TMS setup (e.g. location and orientation of the coil relative to targeted 

cortical site) and uncertainty related to patient-to-patient differences (e.g. size and 

conductivity of individual tissue layers of the head). To ensure that the electric field 

distribution inside a targeted cortical region is above a given threshold, the dependency 

between electric fields and uncertainty in the TMS procedure should be accurately 

quantified.  

In chapter 3, a computational framework for statistically characterizing the region 

stimulated by TMS is presented. For example, given probability density functions (pdfs) 

of the above uncertain parameters, the framework can be used to compute both the 

probability that a cortical region of interest is being stimulated and pdfs for the depth and 

volume of the stimulated region. To collect this information efficiently, the framework 

uses a high dimensional model representation (HDMR) technique that generates 

parameterized surrogate models for the electric field. Next, these surrogate models are 
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used in lieu of a more computationally expensive quasi-static Finite-difference 

electromagnetic simulator while gathering statistics of the stimulated region using a 

traditional Monte-Carlo method. The HDMR technique generates the surrogate models 

using a series of iteratively constructed component functions. The component functions 

pertinent to the most strongly interacting uncertain parameters are approximated 

via/using a multi-element probabilistic collocation method. The accuracy of proposed 

framework is demonstrated through the statistical characterization of the stimulated 

region for a TMS treatment of depression on concentric spheres and MRI-derived human 

head models. 

1.4 Fast direct solver for TMS 

Many TMS applications require precise target identification and coil placement.  

Modern ‘neuro-navigated’ stereotactic TMS systems use structural MRI images and 

cameras to identify the optimum coil position for TMS treatment [16, 17].   Coil 

positioning systems identify the location on the scalp directly over the targeted cortical 

site as the optimum coil placement site because commercial TMS coils (i.e. Magstim BC-

70) in the absence of the head generate electric fields, or equivalently primary fields, that 

are strongly concentrated near the coil center.  Unfortunately, the primary electric fields 

generated by the coil induce charges on boundaries between tissue layers.  These charges 

generate significant “secondary” electric fields inside the head, and thus, potentially 

change the optimum coil placement site [18-20].  Given a model of the coil, a conductive 

head model and the position where the coil is located relative to the head, the total 

electric field generated (i.e. primary plus secondary electric field)  can be accurately 

determined by using the finite difference (FD) [21-23]  method.  In FD, partial 

differential equations of electromagnetism are approximated by finite-differences to 

generate a sparse linear systems of equations in field-related quantities [22].  The solution 

of these systems of equations via iterative or direct solution techniques currently used 

require minutes, and thus, are virtually ruled out for real-time applications.   
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By leveraging the multifrontal approach, geometric bisection, and compressibility 

using hierarchical matrices, we constructed a fast direct solver for sparse matrices derived 

from a quasi-static finite-difference model of the fields induced during TMS. After a 

single factorization step, the solver is able to compute the solution of the electric field 

inside the head in seconds.  It is thus more effective than iterative solvers, which are 

typically used, in frameworks that require solutions for multiple excitations. More 

importantly, the fast-direct solver can be used for real-time applications. We describe 

implementation of the solver and compare its performance when analyzing fields inside a 

realistic MRI derived human head model with other techniques in chapter 4.   

1.5 New integral equation formulation for TMS 

The human head is highly heterogenous, and at the range of frequencies of TMS 

(1-10KHz), it has conductivities between 0.01-1.8 S/m that result in an effective 

permitivities as large as 107 times the free space permittivity. As a result, integral 

equation-based tools for analyzing TMS fields must be able to analyze fields inside 

highly-heterogenous media having arbitrarily high permitivities, and be low-frequency 

stable.  Existing integral equation methods (i.e. Volume integral equations (VIEs), and 

volume-surface integral equations (VSIEs)) for analysis of fields generated inside highly-

heterogenous objects suffer from one or both of the following: 

high-contrast (HC) breakdown: when applied to scatterers with electric 

permittivities that are vastly different from those of the surrounding medium their 

discretization results in ill-conditioned systems of equations [24].  

low-frequency (LF) breakdown: when the mesh that discretizes the 

scatterer contains elements with dimensions that are much smaller than the 

wavelength, discretization of the VSIE again results in ill-conditioned systems of 

equations. Ill-conditioned systems are ill-suited for solution by iterative methods 

as they converge slowly.   

Consequently, integral equation-based tools cannot be used for TMS.  In chapter 5, a new 

set of internally combined VSIEs (ICVSIEs) that do not exhibit either of the two ill-
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conditioning phenomena, thus, enabling their use for TMS, is introduced. In Chapter 6, 

numerical examples demonstrating the usefulness of the ICVSIE for modeling TMS 

phenomena and analysis of other 3D objects are shown. The ICVSIE is not only 

applicable to high-contrast objects, but it is also useful for analysis of negative 

permittivity media. In Appendix A, results demonstrating its usefulness for analysis of 

scattering by highly-heterogenous plasmas is demonstrated.   
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CHAPTER 2  
Numerical Analysis and Design of Single-Source Multi-Coil 

TMS for Deep and Focused Brain Stimulation 

Many TMS applications call for large electric fields that are sharply focused on 

target regions deep in the brain [15, 25]. Unfortunately, present TMS coils generate rather 

diffuse fields that decay rapidly with distance from the scalp; these fields often excite 

tissue well outside the target region and/or fail to reach it altogether [26]. This chapter 

proposes a methodology for designing a new class of single-feed TMS coil arrays that 

significantly outperform present coils.  

TMS coils capable of producing sharply focused fields that deeply penetrate the 

brain have been a long elusive research goal. To produce more focused excitations than 

achievable with a single circular loop [27], Ueno proposed the ‘Figure-8’ coil, which 

consists of two co-planar circular coils with currents flowing in opposite directions (Figs. 

2.1(a-b)) [3]. Others enhanced his design by varying the loop radii, the loop inclination 

angle, and the number and orientation of the windings [4-6, 14, 15]. When compared to a 

single circular coil, the Figure-8 coil generates fields that are strongly concentrated near 

the coil center and thus produces a more compact excitation. Unfortunately, when using a 

Figure-8 coil to excite matter deep in the brain, large electric fields normal to the scalp 

are generated. These fields lead to charge buildup on the scalp surface and often cause 

painful muscle contractions [7]. To penetrate the brain more deeply than achievable with 

a Figure-8 coil, Roth et al. proposed the ‘H-coil’, which consists of a closed network of 

wires that run tangential to the scalp with feedback paths removed from the head (Fig. 

2.1c) [8]. In contrast to a circular or Figure-8 coil, the H-coil induces electric fields that 

are mostly tangential to the scalp; hence it minimizes charge buildup on the air-scalp 
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interface and can be used to drive fields deeper into the brain. Unfortunately, the H-coil 

produces a rather uniform field across the scalp and results in little or no improvement in 

field focus over a Figure-8 coil. The literature abounds with studies of single-channel 

coils that represent various degrees of compromise between the Figure-8 and H-coils in 

terms of focus and penetration depth [9-15]. 

 

 

Figure 2.1 Popular TMS coils: (a) Figure-8 coil, (b) Magstim BC-70 (commercial 

figure-8 coil), (c) Hesed-coil, and (d) Square Multi-channel array. 

 

To bypass the limitations of single-channel coils, array configurations are called 

for. Multi-channel TMS arrays composed of many independently driven coils have been 

shown to deliver a more concentrated and deeply penetrating field than single coils (Fig. 

2.1d) [28]. That said, multi-channel arrays have never enjoyed the popularity of single-

channel coils. We attribute this to two factors: 

Lack of robust array optimizers: The total field induced in the head by a non-

uniformly fed coil array is the superposition of the fields produced by the individual 

coils. As the latter are linearly proportional to their driving currents, the design of a 

multichannel coil array invariably involves a search for combinations of coil currents that 

result in electric fields that “optimally” stimulate the brain. To find optimal driving 

currents, Ruohonen et al. [28] suggested a technique that minimizes the difference 

between the total field and a desired field distribution. In [29], a Genetic Algorithm (GA), 
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viz. a robust search scheme that mimics natural evolution, was used to minimize total 

power dissipated in the head while maximizing the magnetic field at a target point and 

minimizing it at nearby locations. Other studies evaluated fields due to a small set of 

predetermined currents and ranked coil designs accordingly [30]. All these methods 

explicitly or implicitly require specification of a desired ideal field distribution that may 

be unrealizable, are somewhat limited in their ability to incorporate supplementary design 

constraints, and oftentimes assume idealized head models. For the use of coil arrays for 

TMS to become more widespread there needs to be a procedure that, given an array 

topology and a realistic model of the human head, can automatically and robustly find 

driving currents that achieve optimal trade-offs between penetration depth and 

compactness of excitation.  

Difficulty of realizing multi-channel feeds: In previous studies, numerous planar 

and conformal array configurations have been considered. Planar arrays consisted of 

circular coils arranged on a rectangular or hexagonal grid [29]. Han et al [31] proposed 

using two parallel but mutually shifted arrays. They showed that the use of shifted arrays 

can improve field focus without decreasing coil radii, which is beneficial since arrays 

with elements with larger radii are easier to build. Conformal arrays have been designed 

by tilting the outer coils of a flat hexagonal arrangement [29] and by using loosely 

packed elements [30]. Unfortunately, each coil of the arrays requires an independent and 

expensive driver. The complexity and cost of present multi-channel feeds restricts the use 

of TMS coil arrays among researchers and clinicians. 

Here, we suggest a two-pronged approach at eliminating the weaknesses of 

present methods for designing and implementing TMS coil arrays. First, we propose a 

GA-based optimization strategy that, for a given array configuration, robustly determines 

sets of driving currents that achieve Pareto-optimal trade-offs between field penetration 

depth and volume of excitation. The scheme seeks optimal combinations of fields 

produced by individual coils that are evaluated using a finite difference technique suited 

for modeling both idealized and realistic head models. Second, we propose a simple but 

effective scheme for converting a multi-channel array produced by the above optimizer 

into a single-channel configuration that performs (nearly) as well as the multi-channel 

design from which it originates. The transformation from multi- to single-channel arrays 
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is achieved by interconnecting and scaling the individual coils that make up the original 

multi-channel array. We demonstrate the above two-pronged approach by synthesizing 

single-channel rectangular arrays consisting of variable-radius circular coils (Figs. 2.2(b-

c)) capable of producing highly focused fields. For example, the optimized single-

channel array produces fields that penetrate 2.4 cm into the head while exciting 2.6 times 

less volume than a Figure-8 coil. When exciting 0.3% of the head’s volume, the 

optimized array’s fields reach 2.7 cm into the head while those of the Figure-8 coil do not 

penetrate deeper than 1.5 cm. 

 

 

Figure 2.2 Conversion from a multi-channel array, driven with ...., to a single-channel 

array: (a) The initial multi-channel configuration.  (b) New equivalent design 

consisting of multiple coils each containing multiple circular windings and an inner 

winding and with each element driven with an identical current . scI .  (c) Final design 

with all the coil elements connected in series by a feed-network that during operation 

negligibly contributes to the stimulating field; this is done by placing elements, which 

have currents of opposing polarities close to each other. 

2.1 Formulation 

2.1.1 Design of Pareto-Optimal Multi-Channel Arrays 

2.1.1.1 Problem Definition 

We consider a multi-channel array composed of cN . single-turn coils with fixed 

orientation, shape, dimension, and position relative to the head H. We assume that the 
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coils are driven by currents . ( ) ( )I It p t . where  1 2, , ,I
cNI I I  is a vector of current 

amplitudes and ( )p t  is a known unit pulse, i.e. max| ( ) | 1p t  . The head H is defined by its 

electric conductivity specified on a dense Cartesian grid. We develop a procedure for 

finding sets of driving currents .  1 2, , ,I
cNI I I . that realize “Pareto-optimal trade-offs” 

between field penetration depth and excited volume. We first explain this concept.  

The effects of TMS fields on the brain are complex, and highly dependent on the 

magnitude and timing of the TMS pulse [4]. Although small fields can potentially cause 

neurons to depolarize, we assume that neuronal activity occurs when the electric field 

magnitude exceeds an excitation threshold TE . Throughout this chapter, we use 

150 V/mTE  [32]; we note that all procedures however remain valid for other threshold 

values as well. To characterize a current vector I  in terms of its effectiveness at 

stimulating a target located d  below the scalp surface, we define  

  
ˆTrue | ( , ) |

,
ˆFalse | ( , ) |

E z I
I

E z I

T

T

d E
B d

d E


 


, (2.1) 

  
  | ( , )|

1
r E r I

I r

TH E

v d
  

  . (2.2) 

The Boolean penetration  ,IB d  indicates whether the target is excited and  Iv  

is the volume of excited tissue. Here | ( , ) |E r I  is the maximum of the magnitude of the 

electric field produced at r H for the duration of ( )p t , and ˆr ρ zz  ; ẑ  is the unit 

vector along the z-axis and ρ ρ̂ is a vector perpendicular to the z-axis, which is kept 

constant. This axis runs normal to the scalp surface; 0z   on the scalp surface and 0z   

inside H. The location of the 0z   point on the scalp surface is application dependent. 

Next, we define opt ( )I d  as 

 

 

 

opt

opt

opt

( ) arg min

subject to:

ˆ( ), True,  and

| ( , ( )) | .

I

I I

I z

E r I r

Nc

M

d v

B d d

d E H





 


  

. (2.3) 
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Among all currents that generate fields that penetrate a distance d below the scalp 

surface, opt ( )I d  excites the smallest volume. The second of the constraints ensures that 

field magnitudes never exceed 
ME , a threshold beyond which painful muscle twitching 

may occur; we often use 450 V/mME   [7]. To find opt ( )I d , we carry out an optimization 

procedure (detailed below) that starts from 0d  , and slowly increments d  until 

.
maxd d . where (2.3) has no solution, meaning that no currents can be found that produce 

a large enough field d below the scalp surface without exceeding the maximum 

magnitude 
M

E elsewhere in H. The (Pareto) function  opt min( ) ( )Iv d v d , 
max0 d d   

provides the smallest excitation volume possible for a given target depth d; its inverse 

max ( )d v  yields the largest depth that can be reached for a given excitation volume. The set 

of currents opt ( )I d  is termed Pareto-optimal, as they represent excitations that optimally 

trade-off penetration depth versus excitation volume.  

Sections 3.2.1.2 and 3.2.1.3 below describe methods for solving optimization 

problem (2.3) for a given d, and for rapidly evaluating | ( , ) |E r I . 

2.1.1.2 Genetic Algorithm for Finding opt ( )I d   

To find opt ( )I d , we execute a simple, single-objective GA made out of various 

functions from Matlab’s GA toolbox [33]. Briefly, GAs generate solutions to 

optimization problems by mimicking natural evolution [34]. When compared to gradient-

based optimization schemes, they are well-suited for solving optimization problems 

involving highly multimodal cost functions. Our experience indicates that (2.3)  falls in 

this category. To this end, GAs consider not one, but successive “populations of 

candidate designs” that, on average, exhibit improved characteristics. In our problem, the 

optimization parameters are scaled currents , 1,...,i cI i N  assigned integer values between 

-999 and 999. These scaled currents or “genes” are arranged in a “chromosome” 

describing a scaled candidate design as  1 2, , ,I
cNI I I . An initial population of popN  

candidate designs  pop1 2, ,...,I I I
N

 is assembled by randomly selecting the value of each 

gene in every chromosome uniformly from the above range. Next, the (maximum in 
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time) magnitudes of the field ˆ( , )E z I
jd  is computed for all candidate designs, and 

unscaled currents are computed as 

 
ˆ| ( , ) |

I
I =

E z I

j
j T

j

E

d
, (2.4) 

thereby guaranteeing that the fields of the unscaled candidate design reach the target 

depth d, i.e. ˆ| ( , ) |E z I =
j

Td E . Next, for each member of the population, we compute the 

cost function 

 

( ) if max ( , )

( )
1 if max ( , )

r

r

r

I E r I

r E r I

M

M

j j

H

j

H

H

v E

C j
d E







 


 





, (2.5) 

and rank all candidate designs according to their cost function value. Finally, a 

new generation of candidate designs is generated by executing three operations. First, the 

elite popN N  candidate designs with the lowest cost function values are automatically 

carried over to the next generation. Next, pop eliteN N  additional designs are generated by 

mating old candidate designs by recombining their genes. The  participation of old 

candidate designs in the mating process is governed by a process known as roulette wheel 

selection, designed to ensure that the “fittest” among the old candidates designs produce 

more offspring than average candidate designs. Assuming that old candidate designs  I
i  

and  I
j  are selected for mating, their offspring is (1 )I I I

child i j      ;   is randomly 

selected in the range 0 1   and .    rounds to the nearest integer. Finally, all 

chromosomes representing new candidate designs are subject to mutation, that is, small 

perturbations designed to maintain genetic diversity. 

The process of generating new populations from old ones is repeated until no 

appreciable improvements in the lowest value of the cost function recorded are made. 

The unscaled candidate design with the lowest cost value encountered during the GA run 

is returned as opt ( )I d . 
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2.1.1.3 Fast Computation of Fields Due to Prescribed Coil 

Currents 

Execution of the GA often requires hundreds of thousands of evaluations of 

electric fields ( , )E r I  throughout H excited by magnetic fields produced by prescribed 

coil currents I . This section therefore describes a technique for computing these fields 

rapidly.  

Let ( , )E ri t  denote the electric field at position r H  when coil i supports current 

( )p t ; all other coils are assumed inactive. For typical ( )p t , see [35]. All fields 

( , ),  1,...,E ri ct i N  are computed prior to starting the optimization process using the quasi-

static finite difference method for typical TMS pulses with maximum frequency in the 1-

10 kHz range proposed by Cerri [36]. The method assumes that inductive coupling 

involving eddy-currents generated inside the brain can be neglected; it also neglects 

displacement currents because inside brain tissue they are much smaller than the 

conduction currents generated by typical TMS pulses. Using this method we first 

calculate the magnetic field ( , )B ri t  using the Biot-Savart law as  

 ( ) = ( ) ( )B r L ri ip t , (2.6) 

where 

 0

3

Coil i

( )ˆ( ) = ( ) d
4 ( )

r r
L r t

r r

i
i i

i

s
s s

s









 . (2.7) 

Here 0  is the free-space permeability, s  is a length coordinate that varies in the 

interval  0 is C   with iC  the circumference of coil i, ( )ri s  denotes a position vector on 

coil i, and ˆ ( )ti s is the unit vector tangential to coil i at ( )ri s . Throughout the head H and 

its surroundings, the electric field ( , )E ri t  satisfies  

 
C S S

d dp(t)
( , ) d = - ( , ) d - ( ) d

d d
E r l B r s L r si i it t

t t
      ,  (2.8) 

 
cS

σ( ) ( , ) d = 0r E r, si t  , (2.9) 
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where σ( )r  denotes the conductivity at r , C  is an arbitrary contour enclosing a surface 

S , and 
cS  is an arbitrary closed surface. Jumps in the electric field across boundaries 

(enforced by (9)) result in charges and hence they are (implicitly) accounted for by the 

model. To solve eqns. (2.7)-(2.9) for ( , )E ri t , we again follow Cerri [36] and use a 

quadrature rule to calculate the magnetic field ( , )B ri t  throughout a rectangular domain 

that contains the coil and head. Then, we solve for the electric field by approximating the 

brain by a collection of homogenous (i.e. constant σ( )r ) conductive cubic cells. We 

consider as unknowns the components of . ( , )E ri t . normal to, and sampled at, the centers 

of cell facets. To solve for these unknowns, we apply (2.8) on cell faces and use magnetic 

fields computed using (2.8) to evaluate its right hand side. Eqn. (2.9) is applied on a cubic 

volume centered about each node. The resulting sparse system of equations for the 

sampled component values of ( , )E ri t  is solved by an iterative least squares (LSQR) 

procedure [37]. The LSQR procedure is terminated when the sampled component field 

values result in a relative residual norm error that is less than . 610 .. 

Let ( , , )E r It  denote the total electric field due to currents ( )I t . Clearly, ( , , )E r It  

can be computed by linear superposition of the fields ( , )E ri t  as 

 
1

( , , ) ( , )E r I E r
cN

i i

i

t I t


 . (2.10) 

In what follows, let max( ) = ( , )E r E ri i t  denote max( , )E ri t , where maxt  maximizes | ( ) |p t t   

for the duration of the TMS pulse. As each coil is excited by the same pulse shape, maxt  

does not depend on i. The well-defined field max( , ) = ( , , )E r I E r Ii t  therefore can be 

computed as  

 
1

( , ) ( )E r I E r
cN

i i

i

I


 . (2.11) 

Since the fields ( )E ri are precomputed prior to executing the GA, (2.11) can be evaluated 

for many different I  at minimal computational cost. 
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2.1.2 Conversion of Multi-Channel Array to Single-Channel Array 

The above procedure yields a set of Pareto-optimal driving currents 

opt opt opt opt

1 2( ) { ( ), ( ),..., ( )}I
cNd I d I d I d  for penetration depths 

max0 d d  . In principle, these 

currents can be stored in a look-up table and fed into the array’s cN  coils by means of 

separate tunable drivers (Fig. 2.2a). While costly and bulky, such a feed would permit on-

the-fly array reconfiguration to reach varying targets using Pareto-optimal, minimum 

volume excitations.  

If no reconfiguration is required, that is, if the array targets a fixed penetration 

depth *d , then the multi-channel array can be converted into a single-channel (sc) array 

that is much cheaper to construct. The single-channel array is fed a current 

*max{| |, 1,..., } 0sc i cI I i N    where * opt *( )i iI I d  and   is typically chosen in the range 

0.05 0.2   (See Section 3.3.3). To simplify the discussion, we assume that the single-

turn coils in the multi-channel array are circular with radius r ; the proposed procedure is 

easily generalized to other coil shapes as well. The conversion procedure involves two 

steps. 

First, each single-turn coil in the multi-channel array is replaced by a multi-turn 

coil (Fig. 2.2b). Specifically, single-turn coil i is replaced by a multi-turn coil with 1in   

windings: in  windings of the original coil and a single, concentrically positioned coil of 

radius ir r , with 

 
*

i
i

sc

I
n

I

 
  
  

, (2.12) 

 2 * 2| |i i sc ir r I I n r  . (2.13) 

The large and small coils are connected and their windings have identical polarity. 

The total magnetic dipole moment of a single-turn coil traversed by current *

iI  is identical 

to that of composite coil i traversed by scI . Beyond a certain distance from the coil, the 

fields generated by a composite coil therefore will closely match those of its single-turn 

counterpart; hence, the composite coils will stimulate a region closely matching that of its 

parent design.  
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Second, all multi-turn coils connected in series using a carefully designed feed-

network that negligibly contributes to the stimulating field (Fig. 2.2c). This is achieved 

by arranging the feed in such a way that each current introduced by the feed network 

during operation is neighbored by a current of opposing polarity to allow feed network 

field cancellation.  

2.2 Results  

Even though the proposed technique can be applied to any multi-channel array 

configuration, here we limit ourselves to planar and densely packed square arrays of 

c cN N circular coils with radius r  and array area 24 cA r N  positioned 

symmetrically w.r.t. and 1 cm removed from the head (Fig. 2.3a). Each time we consider 

one of 24 arrays resulting from all the possible combinations of 16,  36,  64,  and 100cN  , 

and 4,  6,  8,  10,  r   14,  and 18 mm . The max ( )d v  Pareto curves for each design are 

compared to a similar ‘ max

8 ( )Fd v ’ Pareto curves for the Figure-8 coil. The max

8 ( )Fd v  curve 

and its inverse min

8 ( )Fv d  where generated by brute-force search, that is by varying a Figure-

8’s loop current and radii (allowed range: 15 to 30 mm), the angle between its loops 

(allowed range: 0 to 180 degrees), and the height of its vertex above the head (allowed 

range: 1 to 3 cm) (Fig. 2.3b). Note that to generate max

8 ( )Fd v  Pareto curves, we analyzed 

Figure-8 coils with different sizes and shapes, and positioned at various positions relative 

to the head; in contrast, to generate  max ( )d v  Pareto curves for multi-channel designs we 

only vary the amplitudes of the driving currents fed into the coils.  
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Figure 2.3 Three-sphere head model. (a) The array is placed 10 mm above the scalp 

and centered about the target column (z-axis). (b) The vertex of the figure-8 coil is on 

the target column at a height that varies between the 10 mm to 30 mm above the 

head; to find max

8 ( )Fd v  we allow both the radius (r) and angle (θ) to vary between 15mm 

to 30 mm and 0 to 180 degrees. Three-sphere head model. (a) The array is placed 10 

mm above the scalp and centered about the target column (z-axis). (b) The vertex of 

the figure-8 coil is on the target column at a height that varies between the 10 mm to 

30 mm above the head; to find max

8 ( )Fd v  we allow both the radius (r) and angle (θ) to 

vary between 15mm to 30 mm and 0 to 180 degrees. 

 

Sections 2.3.1 and 2.3.2 demonstrate the applicability of the proposed method to 

the design of multi-channel arrays residing above a three (concentric) spherical head 

model [38] and a model constructed by segmentation of in vivo MRI data [14]. 
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2.2.1 Multi-Channel Designs For Three-Sphere Head Model 

We consider the ‘Three-sphere’ conductive model for the head proposed by Rush 

and Driscoll [38], commonly used to benchmark TMS coils. The model is defined by 3 

concentric spheres with radii of 80, 85, and 92 mm. The inner sphere and the two shells 

that cover it model brain, skull, and skin tissue (Figs. 2.3(a-b)) and have conductivities of 

0.45 S/m, 0.05, and 0.45 S/m. We approximate the Three-sphere head by 62 62 62   

homogenous cubic voxels each having an edge length of 3mm; each voxel is assigned a 

conductivity corresponding to that of the Three-sphere head at the voxel center. 

Figs. 3.4(a-f) show max ( )d v  for 4,  6,  8,  10,  14,r   and 18 mm together with 

max

8 ( )Fd v ; each subplot shows Pareto curves for 16, 36, 64,  and 100cN  . The optimized 

multi-channel arrays always outperform optimized Figure-8 coils, that is, all max ( )d v  

curves reside above the max

8 ( )Fd v  curve. This means that for a given excitation volume, 

multi-channel arrays always produce fields that reach deeper into the head than those of 

the Figure-8 coil. Equivalently, for a given penetration depth, the multi-channel arrays 

excite less volume. (Note: for two of twenty-four arrays ( 16cN   ; 4,  6 mmr  ), the safety 

limit of 450 V/mME   is encountered when the penetration depth is less than 30 mm, a 

depth achievable by the Figure-8 coils)  Table 2.1 lists the minimum 

min ( 15, 18,..., 30 mm)v d   for all ( , )cN r  combinations considered, along with min

8 ( )Fv d . 

Fig. 2.4 and Table 2.1 reveal that multi-channel arrays can significantly outperform 

Figure-8 coils. For example, fields produced by an array consisting of  64cN   coils with 

14 mmr  can penetrate 30 mmd  deep into the head while exciting four times less 

volume than a Figure-8 coil.  
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Figure 2.4 Largest depth that can be reached for a given excitation volume by multi-

channel arrays ( max
( )d v ) and figure-8 coils ( max

8 ( )Fd v ).  (a-f) Each have individual 

curves for each array with different number of coils cN  and each individual panel has 

results for arrays with coils of radius 4,  6,  8,  10,  14,  and 18 mmr  , respectively. 

 

Array Figure 8 

r  cN  Depth Excited Volume Depth Excited Volume 

6mm 100 15mm 0.25% 15mm 0.44% 

8mm 100 18mm 0.37% 18mm 0.74% 

10mm 100 21mm 0. 45% 21mm 1.17% 

10mm 100 24mm 0. 58% 24mm 1.88% 

10mm 100 27mm 0. 73% 27mm 2.75% 

14mm 64 30mm 0. 98% 30mm 3. 97% 

Table 2.1 Smallest volume min ( )v d  of all array configurations considered and min

8 ( )Fv d  

for three-sphere head 

 

Figs. 2.4(a-f) also show that for given v, maxd  increases with cN  while keeping r  

fixed, and (mostly) with r  while keeping cN  constant. Note that increasing cN  and r  

also increases A . Thus, it is unclear from Fig. 2.4, which of these parameters was the 
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most responsible for these gains. In order to elucidate this question, figs. 2.5(a-f) show 

Pareto curves for arrays with different r  and 
cN  but the same A  for each subplot. 

Specifically, they show max ( )d v  for arrays with 2 2 2 248 ,  64 ,  80 ,  96 ,A  

2 2 2120 ,  and 160  mm  together with max

8 ( )Fd v ; The plots indicate that increasing A  greatly 

increases max ( )d v , whereas decreasing r  and increasing 
cN  while keeping A  constant 

only marginally increases max ( )d v .  In general, a bigger array is able to reach deeper into 

the head than a smaller one. Note: max ( )d v  for array ( 36, 14 )cN r mm   and 

( 100, 14 )cN r mm   are almost identical, and thus, increasing A  beyond a size 

comparable to the head surface seems to have marginal effects on max ( )d v ; this is because 

as A  increases some of the coils are far away from the head and hence do not generate 

strong enough fields to greatly affect the stimulated region. 

 

 

Figure 2.5 Largest depth that can be reached for a given excitation volume by multi-

channel arrays ( max ( )d v  ) and figure-8 coils ( max

8 ( )Fd v ). (a-f) Each have individual 

curves for each array with different cN  and r  but the same A and each individual has 

arrays with 2 2 2 248 ,  64 ,  80 ,  96 ,A  2 2 2
120 ,  and 160  mm , respectively. 
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To aid in the visualization of how the use of array coils is beneficial, fig. 2.6 

shows the magnitude of the electric field distribution maps opt| ( , ( 24 mm)) |E r I d  for an 

array (with 100cN   and 10 mmr  ) compared to the electric fields generated by the 

optimal Figure-8 coil along the coronal and medial planes (orthogonal longitudinal planes 

intersecting on the 0z   axis). As evidenced by fig 2.6, the electric fields generated by 

the multi-channel array produce a far more compact excitation than the Figure-8 coil; in 

fact, for this particular case, the excited volume minv for the array was 3.24 times smaller 

than min

8Fv  .  

 

 

Figure 2.6 (a) The magnitude of the electric field | ( ) |E r produced inside the stimulated 

volume by a coil array with 100 coils of 10 mm radius and driven with currents 

optimized for a penetration depth of 24 mm  (i.e., driven with opt ( 24 mm)I d  ).  (b) 

The magnitude of the electric field | ( ) |E r  produced inside the stimulated volume by a 

figure-8 coil of 25 mm radius also optimized for a penetration depth of 24 mm. 
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We next focus on the currents opt ( )I d  required by multi-channel arrays for 

varying ( , )cN r . Specifically, we study the norm of the driving current optˆ ( )I d  and the 

average current avgI  defined as 

 opt optmax( )ˆ ( ) ( )
I

I
i

i

I

dp t
d I d

dt

 . (2.14) 

 

optˆ ( )
ˆ

I

avg

c

d
I

N
 . (2.15) 

Figs. 2.7(a-f) show opt ( )I d  for 4,  6,  8,  10,  14,r   and 18 mm; each subplot shows 

curves for 16, 36,cN   64,  and 100 . Commercial TMS Figure-8 coils typically consist of 

two coils side by side each with 8 12  windings, and require currents of 0.342 kA/μs  [39] 

to induce electric fields of about 300 V / m  in the cortex.  As expected, opt ( )I d  increases 

with cN . However, this increase is only marginal and in most cases accompanied by a 

reduction in avgI . For example, an array with 36cN   and 10 mmr   requires 

opt ( 24 mm 80)  kA/μsI d   while one with 100cN   and 10 mmr   requires 

opt ( 24 mm) 501  kA/μsI d   , less than a two-fold increase, but avgI  was reduced by a 

factor of 0.68. In addition, opt ( )I d  greatly decreases with r . For example, an array 

with 36cN   and 4 mmr   requires opt ( 24 mm) 670 kA/μsI d    while an array with 

36cN   and . 6 mmr  .requires opt ( 24 mm) 110 kA/μsI d   . This is a six-fold decrease 

in opt ( )I d  and since cN  is the same for both arrays there is also a six-fold decrease in 

avgI . Increasing A  increases max ( )d v  while (almost always) decreasing opt ( )I d  and avgI .  
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Figure 2.7 Total current required by each array driven with currents optimized for 

each penetration depth opt ( )I d penetration depth (i.e., opt ( )I d ), (a-f) Each have 

individual curves for each array with different number of coils cN  and each 

individual panel has results for arrays with coils of radius 

4,  6,  8,  10,  14,  and 18 mmr  , respectively. 

 

We next address feasibility of the proposed designs.  TMS coils having a radius of 

12.5 mm driven by currents much greater than the ones we require have previously been 

fabricated [40].  We believe that using the same procedures as in [40], all of the arrays 

consisting of circular coils having 10,  14,  and 18 mmr   can be constructed; that said, 

building arrays consisting of coils having 4,  6, and 8 mmr  remains a difficult 

proposition.  If two arrays have the same area the one consisting of smaller coils only 

marginally outperforms the one with larger coils.  In practice, this obviates the need to 

build coils of radius less than 10mm, which has been proven challenging in the past [40].  

To analyze the mechanical robustness of the proposed designs, we used Comsol [41] to 
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compute the von Mises stresses [42] in all coils, and determined that they are lower than 

the tensile strength of N-10 gauge copper wire [43].  

2.2.2 Multi-Channel Designs For MRI-Derived Head Model 

We consider a ‘MRI-derived’ conductivity model of the human head (Figs. 2.8a-

f) created by segmenting a high resolution MRI image and assigning electrical 

conductivity values to each tissue type using data from literature [44] and given in Table 

2.2. 

Tissue Type Conductivity (S/m) 

Scalp 0.33 

Skull 0.0042 

Cerebrospinal Fluid 1.79 

Gray Matter 0.33 

White Matter 0.14 

Table 2.2 Tissue Conductivity values 

The MRI image consists of 256 256 124   homogenous cubic voxels each having 

an edge length of 1.2 mm and was obtained by scanning a single male subject in a 3T GE 

Signa scanner (Waukesha, WI) using an IR-prepped, 3D, SPGR pulse sequence 

(TR=9.03, TE = 1.84, TI = 500 ms, FOV = 24 cm, slice thickness = 1.2 mm). First, the 

image is segmented into gray matter, white matter, and ventricular CSF by the SPM5 

segmentation toolbox (http://www.fil.ion.ucl.ac.uk/spm). Next, remaining unclassified 

tissue is further partitioned into another three types, namely bone, muscle, and CSF, by 

FAST, a component of FSL’s image analysis package (http://www.fmrib.ox.ac.uk/fsl/). 

Each voxel is assigned a single conductivity corresponding to the average of the 

conductivities inside it.  The resulting conductivity maps are sub-sampled to 

128 128 62  voxels with an edge length of 2.4 mm by averaging the conductivity values 

of each 2 2 2   block of voxels of the original image. The subsampling speeds up the 

computation of the optimum driving currents via the GA without deteriorating the quality 

of the final results. As shown in Figs. 2.8 (a-f), the coil is positioned such that its normal 

at the center of the coil crosses through the motor cortex.  
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Figure 2.8 Conductivity model of the head derived from an MRI image.  The field of 

view was 231 261 219 mm  .  The conductivity of tissue ranged from 33.9  10  to 

1.67 S/m.  The array was placed 10 mm above the head. 

 

First, we investigate the fields generated by the arrays, when driven with the 

opt ( )I d  obtained for the Three-sphere head, inside the MRI-derived head. Specifically, we 

consider the arrays that can excite each depth d into the head while exciting a minv volume 

that is smaller than all other ( , )cN r configurations. We analyzed the fields generated by 

each array inside the MRI-derived model, while exciting it’s respective d , and generate a 

( )d v  curves.  Figs. 2.9(a-b) show ( )d v  and the same curve for the figure-8 coils max

8 ( )Fd v . 

For completeness, we also show the ( )d v  curve that results when using the same opt ( )I d  

currents in arrays operating in free-space. (Note: that the max

8 ( )Fd v  curve becomes flat at 

depth of 27 mm for the MRI-derived head, and 21 mm for free-space, this is because the 

safety limit of 450 V/m is encountered and this is the maximum depth achievable by the 

Figure-8 coils.)  Although the multi-channel arrays optimized for operation near a Three-

sphere head model continue to outperform Figure-8 coils when operating near the MRI-

derived head, the gains are significantly reduced. The same observation holds true when 

the coils operate in free-space. This is not surprising because the excited region inside the 

MRI-derived head is known to significantly differ from that of the Three-sphere head 
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even if the same TMS coil is used [44]. The multi-channel arrays optimized for operation 

near a Three-sphere head thus are suboptimal for targeting inside a realistic head model.  

 

 

Figure 2.9 Penetration depth achieved as a function of excitation volume ( ( )d v  ) by 

the multi-channel arrays and figure-8 coils for targeting inside the three-sphere head.  

(a) Results obtained for targeting inside the MRI-derived head. (b) Results obtained 

for targeting inside free-space region.  Note that in both cases, achieving a penetration 

depth beyond 27 and 21 mm, respectively, required exceeding the safety threshold. 

 

We therefore derived a new set of opt ( )I d  for each of the arrays assuming they 

operate near the MRI-derived head model. Figs. 2.10(a-f) and 2.11(a-f) show max ( )d v  for 

4,  6,  8,  10,  14,  and 18 mmr  , together with max

8 ( )Fd v , for the MRI-derived head in the 

same way as Figs. 2.4(a-f) and 3.5(a-f). Again, the optimized multi-channel arrays always 

outperform optimized Figure-8 coils. Notably, the realized gains greatly exceed those 

observed when the arrays driven by the Three-sphere head opt ( )I d  where used inside the 

MRI-derived head. Table 2.3 lists the minimum min ( 15, 18,..., 30 mm)v d   for all ( , )cN r  

combinations considered, along with min

8 ( )Fv d . Table 2.2 reveals that multi-channel arrays 

can significantly outperform Figure-8 coils at targeting inside the MRI-derived head. For 

example, fields produced by an array consisting of  100cN   coils with 8 mmr   can 

penetrate 24 mm into the head while exciting 3.0 times less volume than a Figure-8 coil. 

Also, when exciting 0.3% of the head’s volume the optimized array’s fields reach 2.7 cm 

into the head while those of the Figure-8 coil do not penetrate deeper than 1.5 cm. 
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Figure 2.10 Largest depth that can be reached for a given excitation volume by multi-

channel arrays ( max ( )d v  ) and figure-8 coils ( max

8 ( )Fd v ).  (a-f) Each have individual 

curves for each array with different number of coils cN  and each individual panel has 

results for arrays with coils of radius 4,  6,  8,  10,  14,  and 18 mmr  , respectively. 
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Figure 2.11 Largest depth that can be reached for a given excitation volume by multi-

channel arrays ( max ( )d v  ) and figure-8 coils ( max

8 ( )Fd v ). (a-f) Each have individual 

curves for each array with different cN  and r  but the same A and each individual has 

arrays with 2 2 2 248 ,  64 ,  80 ,  96 ,A  2 2 2120 ,  and 160  mm , respectively. 

 

 

Array Figure 8 

r  cN  Depth Excited Volume Depth Excited Volume 

14mm 100 15mm 0.10% 15mm 0. 30% 

8mm 64 18mm 0. 13% 18mm 0. 38% 

8mm 100 21mm 0. 17% 21mm 0. 46% 

8mm 100 24mm 0. 18% 24mm 0.55% 

8mm 100 27mm 0. 19% 27mm 0.78% 

10mm 100 30mm 0.27% 30mm -- 

Table 2.3 min ( )v d  of all array configurations considered and min

8 ( )Fv d  for MRI-derived 

head 
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As was observed for the Three-sphere head, max ( )d v  increases with 
cN  while 

keeping r  fixed, and (mostly) with r  while keeping cN  constant. Also, max ( )d v  increases 

with A , whereas decreasing r  and increasing cN  while keeping A  constant only 

marginally increases max ( )d v . Generally speaking, larger area arrays are capable of 

generating fields deeper into the head than smaller ones, and if two arrays have the same 

physical dimensions the one consisting of smaller coils marginally outperforms the one 

with larger ones.  

Figs. 2.12(a-f) show opt ( )I d  for  4,  6,  8,  10,  14,  and 18 mmr   for multi-channel 

coils operating in the presence of the MRI-derived head in the same way as Figs. 2.7(a-f) 

for the Three-sphere head, each subplot showing the currents corresponding to the 

Pareto-optimal arrays for 16, 36, 64,  and 100cN  . Consistent with the results for the 

Three-sphere head,  increasing cN  marginally increases opt ( )I d  while reducing avgI . For 

example, an array with 36cN   and 10 mmr   requires opt ( 24 mm 70)  kA/μsI d    while 

an array with 100cN   and 10r mm  requires 1.6 times more current, or 

opt ( 24 mm) 110 kA/μsI d   ; however, avgI  was reduced by a factor of 0.56. opt ( )I d  

greatly decreases with r . For example, an array with 36cN   and 4 mmr   requires 

opt ( 24 mm) 390 kA/μsI d    while an array with 36cN   and 8 mmr  requires 

opt ( 24 mm 70)  kA/μsI d   ; this is times 5.57 less opt ( )I d  and since cN  is the same for 

both arrays avgI  is also 5.57 less.  
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Figure 2.12 Total current required by each array driven with currents optimized for 

each penetration depth opt ( )I d penetration depth (i.e., opt ( )I d ), (a-f) Each have 

individual curves for each array with different number of coils cN  and each 

individual panel has results for arrays with coils of radius 

4,  6,  8,  10,  14,  and 18 mmr  , respectively.Single Channel Conversion 

 

Next, we investigate effects of converting multi-channel arrays designed for 

operation near the MRI-derived head into single-channel. We consider single-channel 

designs that are driven by an scI  equal to   times the maximum of the coil driving 

currents of the initial multi-channel array. For all ( , )cN r  combinations considered we 

convert multi-channel arrays along the Pareto curve max ( )d v  for 3 / 40,  1/10,  and 1/ 5    

(See Section 3.3.2).  

Fig. 2.13 shows the ( )scd v  relationship of the resulting single-channel arrays 

alongside the max ( )d v  of the multi-channel arrays they derive from, and max

8 ( )Fd v . The 

( )scd v  and max ( )d v  curves nearly overlap, implying that the single-channel conversion 
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does not deteriorate the array performance. For example, for the multi-channel array with 

min ( 24 mm) 0.18%v d   , the corresponding single-channel design with 1/10   excites  

0.21%v   or 2.62 times less volume than the optimized Figure-8 to reach the same depth. 

 

 

Figure 2.13 Largest depth that can be reached for a given excitation volume by multi-

channel arrays ( max ( )d v  ), single-channel arrays ( ( )scd v ) and figure-8 coils ( max

8 ( )Fd v ) 

 

It would be advantageous to have a single-channel design that uses only a single 

sized loop. We therefore created a new set of designs with 1/100, 3 /100, and 5 /100   

and excluded the internal loop. Fig. 2.14 shows the resulting ( )scd v  curves. As expected, 

the performance of these simplified single-channel arrays degrades with increasing . 

However, only minor losses in performance are seen with =3 /100 . For example we can 

reach 24mmd   by exciting 0.265% of the head, still 2.08 times less volume than the 

Figure-8 coil excites to reach the same depth.  
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Figure 2.14 Largest depth that can be reached for a given excitation volume by multi-

channel arrays ( max ( )d v  ), single-cannel arrays without inner loop ( ( )scd v ) and figure-

8 coils ( max

8 ( )Fd v ) 

 

To verify the feasibility of the multi-channel arrays, we computed their 

resistances and inductances, and determined them to be comparable to those of typical 

commercial figure-8 coils.   

 

2.3 Conclusions 

We have presented and computationally verified a new approach for designing 

TMS coil arrays. First, we proposed a GA-based optimization strategy that leverages a 

finite difference solver to  robustly determine sets of array driving currents that achieve 

Pareto-optimal trade-offs between field penetration depth and compactness of excitation. 

These multi-channel arrays can be reconfigured to stimulate a prescribed target in the 

brain while minimally exciting extraneous tissue. Second, we developed a simple 

procedure for converting multi-channel arrays into a single-channel configurations that 

are aimed at specific targets in the brain but otherwise operate very much like the multi-

channel arrays from which they derive. The transformation from multi- to single-channel 

arrays is achieved by interconnecting and scaling the individual coils that make up the 
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original multi-channel array. Finally, we applied the proposed technique to the design of 

arrays composed of variable-radius circular coils that significantly outperform Figure-8 

coils. The proposed technique yields TMS coil arrays that provide practitioners far 

greater control of the excited region than existing systems. Future designs that use spiral 

coils, which can be easily built on printed circuit boards, are under development.  
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CHAPTER 3   
Uncertainty Quantification in Transcranial Magnetic 

Stimulation via High Dimensional Model Representation 

Technique 

3.1 Introduction 

During TMS, one or more coils located near the scalp are used to modulate brain 

function in targeted cortical regions. These coils produce magnetic (H) fields, electric (E) 

fields and eddy currents inside the conductive brain tissue. If the E-field inside a bent 

region of a neuron exceeds a threshold, the neuron will depolarize its membrane leading 

to an action potential, thus affecting brain function [1, 2]. To achieve this effect, TMS 

practitioners try to ensure that the E-field distribution inside a specific targeted cortical 

region exceeds this stimulation threshold. Although several procedures have been 

developed to optimally position the TMS coil over the desired cortical targets, these 

procedures all contain varying amounts of uncertainty, and the E-field distribution 

generated during TMS is highly sensitive to this uncertainty. To date, there are no 

adequate methods to estimate how the uncertainty in TMS setup (e.g. coil position and 

orientation) and the uncertainty due to individual differences in brain anatomy (e.g. 

conductive properties of underlying neural tissue and the size of brain) result in the 

uncertainty in the E-field. To ensure the E-field distribution inside a targeted cortical 

region above a given threshold, the dependency between E-fields and uncertainty should 

be accurately quantified by computational frameworks. These frameworks should be 

capable of providing the statistics of E-fields, given the uncertain quantities, as well as 

aiding the TMS practitioner to assess the sensitivity of E-fields to each uncertain 
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quantity. To this end, an efficient computational framework possessing these capabilities 

is proposed in this study.  

Uncertain quantities in the TMS setup include the position [45] and the 

orientation [20] of TMS coils relative to targeted cortical region. TMS practitioners aim 

to position the coils on the scalp directly above the targeted cortical regions as the coils 

generate E-fields that are strongly concentrated along the centers of coils. That said, TMS 

coils oftentimes are not aligned just above the targeted cortical regions. For example, in 

depression therapy, the coils are typically placed 5-5.5 cm anterior of the location on the 

scalp where the coils induce a motor response in the hand (‘5 cm rule’) [46, 47]. 

However, MRI experiments have shown that when the coils are situated at the fixed 

location, they are not positioned directly above the targeted cortical region in 32 out of 

100 instances [16]. In other TMS procedures, the practitioners often place the coils using 

international ten twenty electrode system [48], by which the locations on the scalp 

directly above cortical regions are determined using a number of cranial landmarks. 

Again, MRI experiments have shown that the coils are not positioned directly above the 

targeted cortical region in 10 out of 100 instances [49]. Aside from the errors in 

positioning coils due to the misidentification of the ideal coil position, TMS practitioners 

are known to have a precision in coil placement of 5mm [50, 51]. Therefore, a total of 

2 cm  deviation from the ideal position of the coil is expected during TMS [50, 51].  

Variability in individual brain anatomy is another source of uncertainty. During 

TMS, the TMS coils are often oriented in such a way that the E-fields generated directly 

under the center of the coils point nearly perpendicular to the gyral folding patterns of the 

boundary between cerebrospinal fluid (CSF) and gray matter (GM) [52]. However, the 

specific gyral folding patterns at the targeted cortical regions vary between patients. 

Consequently, optimum orientation of TMS coils cannot be determined unless the 

practitioner has the MRI images that clearly depict the gyral structure directly under the 

coil. Thus, the orientation of coils relative to the underlying tissue is not prescribed for 

most TMS procedures and varies between TMS practitioners [50]. Note that the 

uncertainty in position and the orientation of TMS coils can be significantly reduced 

using novel ‘neuro-navigated’ TMS coil positioning systems that use MRI images of the 
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brain and robotic arms [53, 54]. However, such systems are costly and are not employed 

outside of research settings.  

Other sources of brain anatomy differences include brain size [55] and the values 

of tissue conductivities [56]. There exists a 10% variation of brain size between 

individuals [57] and this results in a variation of the scalp-to-cortex distance [58]. For 

each millimeter increment of scalp-to-cortex distance, the TMS coil current has to be 

increased by three percent to induce the same level of brain stimulation [59]. Individual 

brain tissues are highly inhomogeneous and the values of tissue conductivities within the 

tissues can exhibit variations from 10% to 25% around their average values [60]. Unlike 

the uncertainty in position and orientation of coils (i.e. TMS setup), the uncertainty in 

brain size and the values of tissue conductivities cannot be reduced by procedural 

refinements. 

Traditionally, the uncertainties –hereafter called random variables– in 

electromagnetic (EM) simulations are often quantified through Monte Carlo (MC) 

methods. The MC methods require the evaluation of observables (e.g. E-fields induced 

inside targeted cortical regions in TMS simulations) using deterministic EM simulators 

for many random realizations of EM system and its excitation (i.e. random values of 

tissue conductivities, random positions of coils in TMS simulations). These random 

realizations are assigned through the assumed/known probability density functions (pdfs) 

of random variables. The classical MC methods can be quite simply implemented and can 

easily provide the statistics (e.g. mean and standard deviation) of observables. However, 

as they usually converge very slowly [61], and only provide reasonably accurate 

statistical data of observables upon the execution of a large number of deterministic EM 

simulations, which is often impractical as each deterministic simulation requires 

significant CPU time. Recently, the classical MC method was applied to uncertainty 

quantification in TMS [56]; the researchers have quantified the effects of uncertainty in 

values of tissue conductivities on E-fields and currents induced on a MRI-derived head 

model. However, the accuracy of the statistics of E-fields and currents presented in paper 

could be improved by using more deterministic EM simulations.  

To tackle with the abovementioned limitation of the MC methods, the methods 

leveraging generalized polynomial chaos (gPC) expansions, especially the ones based on 
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probabilistic collocation (PC), have been rapidly gaining traction within computational 

EM community. The PC methods (and related stochastic collocation methods) have 

recently been applied to uncertainty quantification in electromagnetic compatibility and 

interference [62-64], channel modeling [65-68], periodic structure [69], and EM 

dosimetry [70] simulations. Using the entire-domain orthogonal polynomials, the PC 

methods generate approximate but accurate surrogate models of observables, which are 

then used to obtain the means and standard deviations of observables or probed via 

classical MC methods to extract their pdfs. The PC methods obtain the coefficients of 

gPC expansions via efficient multidimensional integration rules. They are non-intrusive; 

they can use existing deterministic EM simulators to obtain the observable values at 

collocation/integration points dictated by the multidimensional integration rules. These 

methods converge rapidly for the observables that vary smoothly across the domain of 

random variables, i.e. random domain [71]. However, they tend to be inefficient and 

inaccurate for the observables that vary rapidly throughout the random domain [72]. To 

address this shortcoming, a multi-element probabilistic collocation (ME-PC) method has 

been developed as an h-adaptive refinement extension to PC methods [72]. This method 

achieves its accuracy and efficiency by adaptively and recursively dividing the random 

domain into subdomains and generating separate local gPC expansion for each 

subdomain. That said, the ME-PC generated surrogate models often lack accuracy when 

the number of random variables is large [73]. To address this concern, the ME-PC 

method has been used in conjunction with high dimensional model representation 

(HDMR) expansions for surrogate model generation [73].  

This chapter elucidates a computational framework for uncertainty quantification 

in TMS simulations. The computational framework leverages the HDMR expansions to 

generate the surrogate models of observables via finite sums of component functions that 

represent individual and combined contributions of random variables to the observables 

[74]. The HDMR expansions are constructed iteratively by including the component 

functions pertinent to the “most important” random variables, reducing the cost of 

surrogate model generation dramatically [75-83]. The component functions included in 

HDMR expansions are approximated by the ME-PC method, which effectively tailors the 

collocation/integration points used for polynomial approximations to the component 
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functions. The observable values at collocation/integration points identified by the ME-

PC method are computed using a quasi-static finite difference (FD) solver. Upon the 

generation of accurate surrogate models, the classical MC method is used to compute the 

statistics of observables while accounting for the pdfs of random variables. The accuracy 

and efficiency of the proposed computational framework are demonstrated via its 

applications to statistical characterization of E-fields induced inside a three-sphere head 

model and a cortical region of a MRI-derived head model targeted during TMS therapy.  

3.2 Formulation 

Let dof dof11 2, ,..., ,x
N N

x x x x
     denote an dofN -dimensional random vector defined 

over a random domain dof

1

N i

i
D D


 ; each element of x , i.e. ix , dof1, ,i N , is a random 

variable that parameterizes one uncertain quantity in the TMS setup or one uncertain 

quantity related to patient-to-patient differences. Each random variable, ix , dof1, ,i N , 

is assumed to be mutually independent and distributed with a known/assumed pdf,  iw  , 

across a finite one dimensional random domain ,i i iD a b    . Let  xV  represent an 

observable (e.g., the E-field on a single point in targeted cortical region) which is 

typically a complicated function of x  and can only be evaluated by a deterministic 

simulator. 

The proposed computational framework leverages the HDMR technique to obtain 

statistics of  xV . Specifically, the HDMR technique is used to generate approximate but 

accurate surrogate model of  xV . To do that, the technique decomposes dofN -variate 

observable,  xV , into lower dimensional component functions and approximates each 

component function via the ME-PC method described in [72, 84, 85]. While iteratively 

constructing the HDMR expansion, the technique automatically selects the component 

functions pertinent to most significant random variables and thereby reduces the cost of 

surrogate model generation substantially [75-83]. Upon the generation of an accurate 
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surrogate model, the MC method that accounts for the distributions  iw  , 
dof1, ,i N , is 

used to probe the surrogate model and to obtain the statistics of  xV . 

3.2.1 The HDMR Technique: 

The HDMR expansion approximates to  xV  in terms of component functions as  

    u

u

u

x xV V


 , (3.1) 

where 
dof{1, , }N  is the set of random variable indices, u  is a subset of  , i.e. 

u , and u denotes the cardinality of subset u . u
x is a u -dimensional random vector 

and  u

u xV  represents the component functions defined over D . For example, for u  , 

    0

u

u xV V x V

   is the zeroth-order component function which is constant over D . 

For {1}u  ,    1

1

u

u xV V x  is the first-order component function that represents the 

individual contribution of 1x  to  xV , and for {1,2,4}u  ,    1 2 4

124 , ,u

u xV V x x x  is the 

third-order component function that describes the combined contribution of 1x , 2x , and 

4x  to  xV . The HDMR expansion in (3.1) can be perhaps best described by an example. 

Assume that dof 3N   and {1,2,3} . All possible subsets of  , u , their cardinalities u , 

and all component functions  u

u xV  corresponding to these possible subsets are 
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 (3.2) 

Using the component functions in (3.2), the HDMR expansion can be constructed 

as  
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             

 

1 2 3 1 2 1 3 2 3

0 1 2 3 12 13 23

1 2 3

123

, , ,

, , .

xV V V x V x V x V x x V x x V x x

V x x x

      


 (3.3) 

The advantage of such construction can be illustrated by selecting an observable 

that consists of a constant term and monomials, i.e.,        
2 2 2

1 2 31xV x x x     (Note: 

the indices of random variables are written inside the parentheses while their powers are 

intentionally left outside the parentheses to avoid confusion). The component functions 

0V ,  1

1V x ,  2

2V x , and  3

3V x  in (3.3) are equally significant and needed to approximate 

 xV  while the remaining ones in (3.3) are redundant. Just like in this example, many 

physical observables in real-world can be approximated by low order component 

functions [73]. And this fact renders the HDMR expansion highly suitable for surrogate 

model generation of  xV  in high-dimensional random domains as only the surrogate 

models in low dimensional random domains are constructed. Depending on the way of 

obtaining component functions  u

u xV , u , two different types of HDMR techniques 

are proposed in literature: the analysis of variance HDMR and CUT-HDMR. The former 

is not suitable for surrogate model generation in high-dimensional random domains (see 

the discussion in [75]) and hence is out of the scope of this paper. The latter, CUT-

HDMR technique, obtains  u

u xV , u , using the observable values on lines, planes, 

and hyperplanes, i.e. cuts, passing through a reference point, x , in D , i.e.  

      
\ u

u u v

u v
x x x

v u

x x xV V V




  , (3.4) 

where \ u
x x x  indicates that the random variables with indices that do not belong to 

subset u  are set to their corresponding values at reference point x . Typically, x  is set to 

the mass center of D , i.e., dof dof dof1 1 1[ , , ] [( ) / 2, ,( ) / 2]x
N N N

x x a b a b    . For the above 

given example,  u

u xV , u , obtained by CUT-HDMR technique are 
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 (3.5) 

In CUT-HDMR technique, the surrogate model of  xV can be generated by interpolating 

 u

u xV , u , either directly from the component function with the highest cardinality 

or recursively starting from the component function with the lowest cardinality. The 

former strategy is efficient if significant/redundant component functions are known a 

priori. However, as that information is not available for many physical observables, the 

latter strategy is often employed. In latter strategy, the observable value on reference 

point x  (for 0u  ) is computed first and then the observable values on lines (for 1u  ), 

planes (for 2u  ), and hyperplanes (for 3u  ) passing through x  are interpolated 

consecutively using the ME-PC method. While in principle any multivariate interpolator 

could be used to interpolate observable values, the ME-PC method is especially useful as 

it effectively tailors the polynomial bases on cuts by adaptively and recursively dividing 

the cut into small elements and generating separate low order gPC polynomial 

approximation to  xV  on each small element. While obtaining the coefficients of each 

low order gPC expansion on each small element, the method uses the quasi-static FD 

simulator to obtain  xV  on collocation/integration points dictated by the selected 

multidimensional integration rule. The reader is referred to [72, 84, 85] for details of the 

ME-PC method. 
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3.2.2 The Iterative HDMR Technique: 

The efficiency of HDMR technique directly depends on the number of component 

functions in HDMR expansion as the total number of possible component functions 

scales with 
dof dof0

!/ ( !( )!)
u

j
N j N j


  (i.e. increases rapidly with increasing

dofN ). This 

high cost of HDMR technique for large 
dofN  is substantially reduced by integrating an 

iterative scheme to the technique, which automatically selects random variables that 

significantly contribute to  xV  and iteratively includes the higher-order component 

functions pertinent to these variables in the HDMR expansion. The iterative scheme starts 

by computing the weights associated with the first-order component functions as [75] 

   0 ; 1u

u u x uV VE   
 

. (3.6) 

The weights 
u  are measures of the contributions of first-order component functions’ 

means, i.e. ( ) ( )[ ]u u u

u ux x xV V dE   , to the mean of  xV  computed via constant zeroth-

order component function (Note: in case 
0V  is equal to zero, the weights are directly set 

to ( )[ ]u

u xVE ). If 
u  is larger than a prescribed tolerance 1 , then the component function 

is assumed to contribute significantly to  xV . The indices of random variables pertinent 

to these significant component functions are stored in the index set  . The second-order 

component functions involving these significant random variables are marked as 

candidates for constructing the HDMR expansion at the second level; they are only added 

to the expansion if their weights are larger than 1 . This scheme is repeated in an iterative 

manner for all levels. For example, assume that the indices of the significant random 

variables are found to be {1,2,4} . Then, the second-order component functions with 

indices {1,2}, {1,4}, and {2,4}  are considered to be included in the HDMR expansion at 

the second level. At the end of second level, assume that any of second-order component 

functions with indices {1,2}, {1,4}, and {2,4}  is found to be insignificant. Then none of 

third order component functions is considered to be included in the HDMR expansion 

since all second order component functions with indices that are the subsets of the index 

set of a candidate third-order component function should be identified as significant. On 
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the other hand, assume that second-order component functions with indices {1,2}, {1,4}, 

and {2,4}  are all found to be significant. Then, the third order component function with 

index {1,2,4}  is considered to be included in the HDMR expansion at the third level. Note 

that at the higher levels, the weights of the component functions  u

uV x , 2u   are 

computed by [75] 

    
1

; 2u v

u u vv u
x x uV VE E

 
    
    . (3.7) 

To provide an additional stopping criterion, the decay rate of relative difference between 

observable means computed at two consecutive levels is defined as [75] 

      
1 1

v v v

v v vv u v u v u
x x xV V VE E E

    
      
        . (3.8) 

If   is smaller than a prescribed tolerance 2 , then the HDMR expansion is assumed to 

have converged. Once the iterative construction is completed, the component functions 

identified as insignificant are also included in the expansion to increase the accuracy of 

surrogate model since they are already computed during iterative procedure. Upon 

accurate generation of surrogate model of  xV , the statistical moments of surrogate 

model of  xV , an approximation to those of  xV , can be obtained from its MC 

samples. In addition, when  iw  , dof1, ,i N , represent uniform distributions, the mean 

of  xV  can directly be computed by [75] 

    u

u

u

x xV VE E


       . (3.9) 

Similarly, the variance of  xV  can be calculated using [75] 

    var var u

u

u

x xV V


       , (3.10) 

where 2 2( ) ( )) ( )var[ ] [( ] ( [ ])u u u

u u ux x xV V VE E  . 
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3.2.3 The Quasi-Static FD Simulator 

To approximate each component function, the observable values at 

integration/collocation points required by the ME-PC method are computed using a 

quasi-static FD simulator. This simulator outputs the magnitudes of E-fields induced at 

obsN  points rn
, 

obs1, ,n N , selected on the head model (i.e. 

       
2 2 2

r r r rn x n y n z nE E E E   ). The E-fields are generated by TMS coils driven 

with a time varying current  p t  with maximum frequency in the 1-10 kHz range. 

Therefore, the electric and magnetic fields induced at rn
 are actually time varying. 

However, because of the frequency range of  p t , the following quasi-static assumptions 

are valid: (i) inductive coupling involving Eddy and displacement currents generated 

inside the brain are neglected, and (ii) the time variation of B- and E- fields is 

proportional to the current pulse and its time derivative, respectively, i.e. 

     ,B r B rn nt p t , and      ,E r E rn nt dp t dt . Consequently, the quasi-static FD 

simulator determines the E-field per unit  dp t dt  (i.e.  E rn ) generated during TMS 

(see [36] for more information about quasi-static FD simulator). 

3.3 Numerical results and discussion 

This section illustrates the application of the proposed computational framework to the 

calculation of means and standard deviations of TMS-induced E-fields inside three-

sphere and realistic MRI-derived head models. Unless specified otherwise, an iterative 

HDMR technique with 4

1 10   and 16

2 10   is used to construct the HDMR expansions 

that define  xV 's surrogate models. Also, the random variables are assumed uniformly 

distributed within specified ranges and the means and standard deviations (i.e., square 

roots of the variance) of  xV  are computed using (3.9) and (3.10). The observables are 

the magnitudes of E-fields,    ,x r xn nV E , obs1, ,n N , computed at obsN  points 

selected in the head models. The average error in the surrogate models of the E-fields’ 

magnitudes is computed using 
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       obs
2160 160 2s

1 1 1
obs

1
x x x

N

n i n i n in i i
err V V V

N   
      (3.11) 

where xi
 is the randomly chosen evaluation point and  s

xn iV  is the approximate 

observable value at xi
 probed from the surrogate model of the E-field’s magnitude at the 

thn  point selected in the head model. In what follows, x  with dot(s) represents a random 

vector of random variables with indices belonging to dof{1, , }u N ; the random 

variables with indices not belonging to u  are set to their corresponding mean values.  

 

3.3.1 Three-Sphere Head Model 

The proposed method is applied to statistically characterize E-field magnitudes 

inside a three-sphere head model formed by three concentric spheres with radii of 8.0 , 

8.5 , and 9.2 cm and centered about the origin of global coordinate system Fig. 3.1(a). 

From innermost to outermost, the layers in head model represent the brain, the skull, and 

the skin tissues Fig. 3.1(a). The head model is excited by a Figure-8 coil [3] centered at 

 0,0,10.2 cm  that consists of two filamentary circular loops with radii of 2.3 cm ; each 

loop is positioned perpendicular to the z - axis and driven with a current varying at a rate 

of 1.368 A/ns . 
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Figure 3.1 (a) Three-sphere head model with the Figure-8 coil positioned 1 cm above 

the head and centered about the z-axis. (b) The statistics of E-fields’ magnitudes are 

obtained on a Cartesian grid (indicated with red points on a green square plane in top 

view). 

Five parameters characterize the uncertainty in the head model and TMS setup 

( dof 5N  ): the conductivity of the brain brain , the conductivity of the skull skull , the 

conductivity of the skin skin , the position of Figure-8 coil along the x - direction xC , and 

the position of the Figure-8 coil along the y - direction yC  (i.e., 

brain skull skin, , , ,x x yC C      ). All five random variables are assumed to be uniformly 

distributed in ranges ,i ia b   , 1, ,5i  ; ia  and ib  are given in Table 3.1. (Note: the 

means of the random variables pertinent to the tissues’ conductivities in Table 3.1, i.e. 

ix , 1, ,3i  , correspond to the values of tissues’ conductivities of the three-sphere 

model in [38]). The observables are the magnitudes of E-fields computed at 121 points 

( obs 121N  ) selected on a Cartesian grid that is centered at  0,0,0.65  and positioned 

perpendicular to the z-axis; the points are situated 0.3 cm  apart from each other [Fig. 

3.1(b)]. Surrogate models of all observables  x
s

nV , 1, ,121n   are obtained using the 

proposed method, requiring 680 deterministic FD simulations and 42.16 10err   . Using 
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the surrogate models, the means and standard deviations of  xnV , 1, ,121n  , are 

computed [Figs. 3.2 (a)-(b)]. To separately assess the sensitivity of the E-field 

magnitudes to uncertain quantities in TMS setup and uncertain quantities related to brain 

anatomy, two types of data are extracted from the surrogate models. First, the random 

variables are restricted to the coil parameters, i.e. ,x x yC C    , and the means and 

standard deviations of  xnV  are computed [Figs. 3.2 (c)-(d)]. Second, the random 

variables are limited to the tissue conductivities, i.e.  brain skull skin, ,x    , and the means 

and standard deviations of  xnV  are computed [Figs. 3.2(e)-(f)].  

 ia  ib  ix  

1i  , 
brain   S/m  0.3825  0.5175  0.4500  

2i  , skull   S/m  0.0425  0.0575  0.0500  

3i  , skin   S/m  0.3825  0.5175  0.4500  

4i  , 
xC   cm  1.0  1.0  0.0  

5i  , yC   cm  1.0  1.0  0.0  

Table 3.1 The Values of ia , ib , and ix , 1, ,5i  (for the Three-Sphere Head Model 

Scenario) 

 

Figure 3.2 The statistical moments of the E-fields’ magnitudes on points selected on a 

Cartesian grid: (a) the means and (b) standard deviations of  xnV , (c) the means and 
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(d) standard deviations of  xnV , and (e) the means and (f) standard deviations of 

 xnV . 

Several observations about the results in Figs. 3.2(a)-(f) are in order:  

The results in Figs. 3.2(a)-(b) appear very similar to those in Figs. 3.2(b)-(d), 

respectively. This implies that uncertainty in the coil position significantly affects the 

induced E-fields.  

In Figs. 3.2(a) and (c), the means of the E-fields on points near the center of the 

grid, i.e. right below the coil, are larger than those on points near to the (left and right) 

edges of the grid. This is not surprising since points right below the coil are closer to the 

coil than the points near the edges of grid. In Figs. 3.2(b) and (d), the standard deviations 

of the E-fields on points near the (left and right) edges of the grid are larger than those on 

points closer to the center since the distance from the center of the coil to the edges of the 

grid exhibits a larger variation than that of points near the center of the grid. 

The maximum standard deviation of  xnV  [Fig. 3.2(f)] is 80 times smaller than 

the minimum standard deviation of  xnV  [Fig. 3.2(b)]. Hence, it is concluded that 

uncertainty in values of tissue conductivities do not significantly affect the induced E-

fields. 

3.3.2 MRI-Derived Realistic Head Model 

Next, the proposed computational framework is used to estimate the statistics of 

E-field magnitudes induced inside MRI-derived realistic head models, each of which 

contains skin, skull, CSF, GM, and white matter (WM) tissues [Fig. 3.3]. The head 

models were derived from an MRI image of a male subject’s head obtained using a 3T 

GE Signa scanner (Waukesha, WI) that generated an IR-prepped, 3D, SPGR pulse 

sequence (TR=9.03, TE = 1.84, TI = 500 ms, FOV = 24 cm, slice thickness = 1.2 mm, 

number of voxels = 256 256 124  ). The MRI image was segmented into GM, WM, and 

ventricular CSF using the SPM5 segmentation toolbox available in [49]. The remaining 

unclassified tissue was further partitioned into bone, muscle, and CSF, using FAST 

component of the image analysis package available in [50] [Fig. 3.3]. The head models 

are obtained by (i) shrinking the GM and WM tissues in size by a shrink factor sf , (ii) 
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adding CSF to the displaced volume, (iii) assigning conductivities to the segmented 

images of skin 
skin , skull 

skull , CSF 
CSF , GM 

GM , and WM 
WM , respectively, (iv) 

and assigning a conductivity to each voxel equal to the average conductivities of tissues 

inside it [Fig. 3.3]. For each head model, a global Talairach coordinate system is defined 

[86]. The model is excited by a (simulated) Medtronic MC-B70 Figure-8 coil (P/N 9790) 

[45] [Fig. 3.4] consisting of two spiral wings, each of which has 10 wire turns and 

inner/outer radii of 12 mm/ 54 mm , and is driven by a current varying at a rate of 

0.171A/ns . The left and right windings are bent by angles of 18.5° and 16°, respectively, 

and positioned 5 mm  away from one another (measured at the center of the coil) [Fig. 

3.4]. The coil is centered at coil cen
ˆ ˆr x y rx yC C    , where 

xC  and yC  represent the coil 

position along x - and y - directions defined along orthonormal vectors x̂  and ŷ , 

respectively; 
cenr  is defined as the origin of the local coordinate system (i.e., the nominal 

position of the coil center in the global Talairach coordinate system) [Fig. 3.5]. The coil 

is rotated by angle   defined between the line joining the centers of the wings and the x̂  

unit vector [Fig. 5]; the line joining the centers of the wings is parallel to the x̂  and ŷ  

unit vectors when 0    and 90   , respectively [Fig. 3.5]. (Note: parameters for 

variations of specific gyral folding patterns between individuals’ brains are not available 

and, thus, the effects of uncertainty in the gyral folds on the TMS-induced E-fields are 

not quantified in this study.) 
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Figure 3.3 Realistic head model generation procedure: (i) Conductivity values are 

assigned to the segmented images of the skin (green) CSF (yellow), skull (gray), WM 

(red), and GM (blue). (ii) The WM and GM are shrunk and the displaced volume is 

replaced with CSF. (iii) The images are combined to generate an MRI-derived head 

model. 

 

Figure 3.4 The configuration of Medtronic MC-B70 Figure-8 coil (P/N 9790). 
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Figure 3.5 The coil is positioned along x  and y  directions defined along x̂  and ŷ  

unit vectors in local coordinate system. The coil is rotated with   angle defined 

between the line connecting the centers of wings (indicated with dotted red line) and 

x̂  unit vector.  

 

Nine parameters characterize the uncertainty in the head model and TMS setup 

(
dof 9N  ): skin skull CSF WM GM, , , , , , , ,x x ysf C C         . All random variables are assumed 

uniformly distributed in ranges ,i ia b   , 1, ,9i  ; ia  and ib  are given in Table 3.2. 

(Note: the means of random variables pertinent to the tissues’ conductivities in Table 3.2, 

i.e. ix , 1, ,5i  , correspond to the values of these tissues’ conductivities in [18].) The 

observables are the magnitudes of the E-fields at the centers of voxels which have GM 

inside and are inside a hexahedral region (with dimensions of 4.56 5.16 8.28 cm  ) 

centered at  3.66,3.72,0.9 cm  (in the Talairach coordinate system) [Fig. 3.6]. The total 

number of voxels inside the hexahedral region that sit in the GM is obs 24,642N  . The 

surrogate models of all observables  x
s

nV , 1, ,24,642n   are obtained using the 

proposed method, required 1,416  deterministic simulations and 23.32 10err   . Using 

the surrogate models, the means and standard deviations of  xnV , 1, , 24,642n   are 

computed [Figs. 3.7(a)-(b)].  

 ia  ib  ix  

1i  , skin   S/m  0.3952  0.5348  0.4650  

2i  , skull   S/m  0.0085  0.0115  0.0100  

3i  , CSF   S/m  1.3073 1.7687  1.5380  
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4i  , 
WM   S/m  0.1131 0.1530  0.1331 

5i  , 
GM   S/m  0.3400  0.4600  0.4000  

6i  , sf  0.0  0.1  0.05  

7i  , 
xC   cm  1.0  1.0  0.0  

8i  , yC   cm  1.0  1.0  0.0  

9i  ,      0  90  45  

Table 3.2 The Values of ia , ib , and ix , 1, ,9i  (for the MRI-Derived Head Model 

Scenario) 

 

Figure 3.6 The statistics of E-fields’ magnitudes are obtained at centers of voxels 

inside a targeted hexahedral region (indicated as the red region in an MRI-derived 

head model); each voxel has GM inside. The red dot on targeted region indicates 

targeted point.  

1) Combined Effects of Uncertain Quantities to the E-fields: To separately 

observe the combined effects of random variables pertinent to the TMS setup and the 

combined effects of random variables related to brain anatomy on E-fields’ magnitudes, 

two types of data are extracted from the surrogate models. First, the random variables are 

restricted to the coil parameters, i.e. , ,x x yC C     , and the means and standard 

deviations of  xnV  are computed [Figs. 3.7(c)-(d)]. Second, the random variables are 

limited to the quantities related to brain anatomy, i.e.  skin skull CSF WM GM, , , , ,x sf     , 

and the means and standard deviations of  xnV  are computed [Figs. 3.7(e)-(f)]. (Note: 

the random variables in each case are indicated in Table 3.3).  
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Figure 3.7 The statistical moments of the E-fields’ magnitudes at centers of voxels: 

(a) the means and (b) standard deviations of  xnV , (c) the means and (d) standard 

deviations of  xnV , and (e) the means and (f) standard deviations of  xnV . The red 

dot indicates the targeted point.   

 Description Ratio 

 skin skull CSF WM GM, , , , , , , ,x x ysf C C         All parameters 0.40  

, ,x x yC C      Coil parameters 0.27  

 skin skull CSF WM GM, , , , ,x sf      Head parameters 0.29  

Table 3.3 The Random Variables, Their Descriptions, and the Ratios of the Standard 

Deviations of Induced E-fields to the Means of Induced E-fields in Three Cases. 

Several observations about the results in Fig. 3.7 are in order:  

1. In Figs. 3.7(a), (c), and (e), the maxima of the means of the induced E-fields occur 

directly under the coil wings. The means of  xnV  diffuse rapidly [Fig. 3.7(e)]. On 

the other hand, as the changes in coil parameters directly affect the location and 

bounds of the stimulated region, the means of  xnV  and  xnV  [Figs. 3.7(a) and 

(c)] diffuse slowly compared those of  xnV  [Fig. 3.7(e)]. In other words, the E-
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field plot in Fig. 3.7(e) has a sharper color gradient from red to dark blue 

compared to the plots in Figs. 3.7 (a) and (c). 

In Figs. 3.7(b), (d), and (f), the maxima of the standard deviations of  xnV , 

 xnV , and  xnV  are 29 V/m , 22 V/m , and 22 V/m , respectively. Therefore, the induced 

E-fields appear sensitive to uncertain quantities in the TMS setup and uncertain quantities 

related to brain anatomy. 

To separately and quantitatively assess the combined effects of all random 

variables, x , the random variables pertinent to the TMS setup, x , and the random 

variables related to brain anatomy, x , on the magnitude of E-field at the targeted point 

(indicated in Fig. 3.7), the ratios of the standard deviations of E-fields to their means are 

computed for these three cases and presented in Table 3.3. Needless to say, the 

uncertainty in TMS setup and the uncertainty related to brain anatomy have equal impact 

on the E-fields induced on targeted point. And uncertainty in TMS setup and uncertainty 

related to brain anatomy collectively change the E-field at the targeted point by 40%. 

2) Individual and Combined Effects of Uncertain Quantities to the E-fields: To 

observe the individual and combined effects of uncertain quantities in TMS setup and 

uncertain quantities related to brain anatomy on the induced E-fields, four types of data 

are extracted from the surrogate models. The random variables are restricted to the 

positions of coil along x - and y - directions, i.e. ,x x yC C    , orientation of coil, i.e. 

 x  , the shrink factor, i.e.  x sf , and the tissue conductivities, i.e. 

 skin skull CSF WM GM, , , ,x      , and the standard deviations of  xnV  [Fig. 3.8(a)],  xnV  

[Fig. 3.8(b)],  xnV  [Fig. 3.8(c)], and  xnV  [Fig. 3.8(d)], are computed, respectively. 

(Note: the random variables in each case are indicated in Table 3.4).  
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Figure 3.8 The standard deviations of (a)  xnV , (b)  xnV , (c)  xnV , and (d)  xnV . 

The red dot indicates the targeted point. 

Random Vector Description Ratio 

,x x yC C     Coil position 0.13  

 x   Coil orientation 0.22  

 x sf  Shrink factor 0.28  

 skin skull CSF WM GM, , , ,x       Tissue conductivities 0.01  

Table 3.4 The Random Variables, Their Descriptions, and the Ratios of the Standard 

Deviations of Induced E-fields to the Means of Induced E-fields in Four Cases. 

Several observations about the results in Fig. 3.8 are in order:  

1. In Fig. 8(a), the standard deviations of E-fields induced on the region right below 

the center of the coil (i.e. the region around the targeted point) are smaller than 

the standard deviations of those induced in other regions. This is because the 

proximity of this region to the coil doesn’t change significantly compared to those 

of nearby regions when the position of the coil is changed (just like in three-

sphere head model). In Fig. 3.8(b), the standard deviations of the E-fields induced 

on the targeted point do not change much because this point is the center of 

rotation of the coil. On the other hand, as expected, the standard deviations of E-

fields induced on regions surrounding this point change significantly. Note that 

the standard deviations of  xnV  on the regions surrounding the targeted point 

[Fig. 3.8(b)] are considerably larger than those of  xnV  on the same regions [Fig. 

3.8(a)].  
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In Fig. 3.8(c), the standard deviations of induced E-fields at the targeted point and 

its surrounding region are large. This is not surprising as the magnitudes of induced E-

fields directly under the coil decrease significantly when the brain is shrunk, i.e. the 

scalp-to-cortex distance is increased. Like in the three-sphere head model example, it is 

apparent from Fig. 3.8(d) that uncertainty in the values of tissue conductivities does not 

significantly affect the induced E-fields 

To quantitatively and separately assess the combined effect of the random 

variables pertinent to positions of coils, x , the individual effect of random variable 

related to orientation of coil, x , the individual effect of random variable related to shrink 

factor, x , and the combined effect of random variables related to tissue conductivities, 

x , on the magnitude of E-field at the targeted point (indicated in Fig3..8), the ratios of 

the standard deviations of E-fields to the means of E-fields are computed for these four 

cases and presented in Table IV. Apparently, the uncertainty in coil orientation and the 

uncertainty in the scalp-to-cortex distance have significant impact on the E-fields induced 

on targeted point. 

 Fig. 3.8 showed the statistics of the induced E-fields on the surface of 

targeted cortical region. To observe the statistics of induced E-fields inside cortical 

region, a coronal slice passing through the cortical region is selected [Fig. 3.9(a)]. The 

standard deviations of  xnV  [Fig. 3.9(b)],  xnV  [Fig. 3.9(c)], and  xnV  [Fig. 3.9(d)] on 

the coronal slice are computed. Not surprisingly, the standard deviations of induced E-

fields on the surface of cortical region are larger than those inside the cortical region 

[Figs. 3.9(b)-(d)].  
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Figure 3.9 (a) The coronal slice (depicted by the purple transparent plane) passing 

through the cortical region. The standard deviations of (b)  xnV , (c)  xnV , and (d) 

 xnV .  

In addition, E-field distributions in the stimulated region, assumed to be the 

region inside which the magnitudes of E-fields are larger than half of the maximum E-

field’s magnitude, are observed when each of the random variables xC , yC ,  , and sf  is 

set to end points on its corresponding one dimensional random domain while all 

remaining random variables are set to their mean values [Figs. 3.10(a)-(h)]. Specifically, 

the E-field distribution in the stimulated region are shown for 1.0 cmxC    [Fig. 3.10(a)], 

1.0 cmxC   [Fig. 3.10(b)], 1.0 cmyC    [Fig. 3.10(c)], 1.0 cmyC   [Fig. 3.10(d)], 0    

[Fig. 3.10(e)], 90    [Fig. 3.10(f)], 0.0sf   [Fig. 3.10(g)], and 0.1sf   [Fig. 3.10(h)]. 
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Figure 3.10 The E-field distribution on stimulated region when (a) 1.0 cmxC   , (b) 

1.0 cmxC  , (c) 1.0 cmyC   , (d) 1.0 cmyC  , (e) 0   , (f) 90   ,(g) 0.0sf  , and 

(h) 0.1sf  . The red dot indicates the targeted point. 

 

Several observations about the results in Fig. 3.10 are in order: 

1. Figs. 3.10(a)-(d) show that a change in coil position results in a shift of the 

location of the stimulated region.  

2. Figs. 3.10(e)-(f) demonstrate that a change in the orientation of the coil results in 

a rotation of the elliptical stimulated region around the targeted point.  

3. Figs. 3.10(g)-(h) show that the maximum E-field magnitude is reduced by a factor 

of 2.28 when the scalp-to-cortex distance increases, yet the shape and location of 

the stimulated region remains nearly the same. For that reason, a TMS practitioner 

should adjust the driver currents of the coil for different brain sizes as pointed out 

in [59]. 
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4. Although the target point is stimulated in all cases, the stimulated region 

surrounding the target point changes significantly from case to case [Figs. 10(a)-

(h)].  

3.4 Conclusion 

A computational framework is proposed for uncertainty quantification in TMS. 

The framework leverages surrogate models of E-fields induced during TMS by iteratively 

constructing HDMR component functions pertinent to the most significant random 

variables. Each component function in the HDMR expansions is approximated by the 

ME-PC method, which effectively tailors the polynomial bases on the support of the 

component function. The observable values on integration/collocation points identified 

by the ME-PC method are computed via a quasi-static FD solver. The proposed 

computational framework is highly efficient and accurate compared to traditional MC 

methods.  

The application of the proposed framework to realistic MRI-derived head models 

showed that differences in tissue conductivities have a small effect on E-field 

magnitudes, while the coil position and orientation, and brain size have significant effects 

on the magnitude of the E-field. Quantitatively, 2 cm uncertainty in the positions of a coil 

along the x  and y  directions results in 13% change in the induced E-fields at the 

targeted point while 90  uncertainty in the coil orientation results in 22% change in the 

induced E-fields at the targeted point. In addition, an uncertainty of 10% of the brain 

volume results in a 28% change in the induced. E-fields at the targeted point. It has been 

recognized that an increasing scalp-to-cortex distance reduces the strength of the E-field 

at the cortex [58, 59], and the results presented here show how this effect extends across 

the underlying cortex. Assuming that the electric field is oriented along the axon on a 

bend [1], the results clearly show the significant advantage of stimulation at gyral crests 

compared to sulci. Thus, when MRI-guided neuronavigation is available [87], 

practitioners consider the potential advantage derived from stimulating at the crest of a 

gyrus to obtain maximal stimulation. In standard clinical use without neuronavigation, 
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referenced either to scalp-based landmarks or motor cortex, variations in induced E-fields 

due to the gyral anatomy may affect treatment response. This effect may be somewhat 

mitigated by the spread of the E-field, with a full width half maximum in the range of 2 – 

3 cm, but with gyral dimensions in a similar size range, individual differences in gyral 

anatomy will affect the strength of the neural response. 

Significant amounts of deviation were found in the E-field magnitude associated 

with coil placement, evaluating the effects over 2 cm in each direction of a two-

dimensional plane of TMS coil. This may be considered a conservative estimate of the 

range of difference between scalp location and intended cortical target, and the results 

demonstrate the wide extent of cortex which might be affected with this level of 

uncertainty in positioning, covering the better part of the dorsal-lateral prefrontal cortex. 

Certainly, it is possible to reduce this uncertainty within an individual patient by 

developing reliable coil placement procedures combined with neuronavigation. However, 

with current estimates of inaccuracy between the scalp location and desired cortical 

target, the simulations give a precise quantification of the effect of this inaccuracy on 

cortical targeting. The quantified inaccuracy may reduce the response rates of the 

therapy.  

The present work has developed an efficient computational framework enabling 

the accurate estimation of uncertainty in the E-field strength with TMS as commonly 

practiced for neuropsychiatric treatment. However, the computational framework should 

have other implications for the field of TMS research and practice. For instance, 

practitioners often need to adjust coil position to minimize painful scalp stimulation. A 

precise derivation of the range in which acceptable levels of stimulation occur would 

permit adjustment of coil position without sacrificing potential therapeutic effects. A 

relatively simple extension of the technique can incorporate the effect of the level of 

TMS intensity, as this variable is often altered during treatment without a good 

understanding of how the underlying E-field is affected. The specific network 

architecture of the patient probably influences the response rates of TMS therapy. In the 

future, uncertainty quantification techniques could be applied to analyze how uncertainty 

in the topology of a neuronal network results in uncertainty in the outcome of the TMS 
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procedure. Furthermore, experimental setups can use this framework to incorporate 

observed error in coil placement into the estimate of E-field strength at the cortex.  
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CHAPTER 4  
Fast Finite-Difference Direct Solver for Real-Time Simulation 

of Transcranial Magnetic Stimulation 

4.1 Introduction 

Many TMS applications require precise target identification and coil placement.  

Modern ‘neuro-navigated’ stereotactic TMS systems use structural MRI images and 

cameras to identify the optimum coil position for TMS [16, 17].  The optimum coil 

position is assumed to be on the scalp directly over the targeted cortical site because 

commercial TMS coils (i.e. Magstim BC-70) in the absence of the head generate electric 

fields, i.e.  Primary fields that are strongly concentrated near the coil center. 

Unfortunately, the primary electric fields generated by the coil induce charges on 

boundaries between tissue layers.  These charges generate significant “secondary” 

electric fields inside the head [88]2, and thus, potentially change the optimum coil 

placement site [18-20].   

Fortunately, if an MRI derived conductivity model of the patient’s head and a 

model for the coil is available, the total electric field generated (i.e. primary plus 

secondary electric field)  can be accurately determined by using the finite difference (FD) 

[21-23]  method.  In FD, partial differential equations of electromagnetism are 

approximated by finite-differences to generate a sparse linear systems of equations in 

field-related quantities [22].  The solution of these systems of equations via iterative or 

direct solution techniques currently used require minutes and,  thus, are virtually ruled 

out for real-time applications like stereotactic TMS systems.  We have developed a fast-

direct solver that can solve the FD system of equations in seconds and can be used for 

real-time applications. 
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Iterative solution techniques (e.g. conjugate-gradient or quasi-minimal residual 

techniques [22]) work by repeatedly refining an initial guess of an unknown vector 

quantity until convergence occurs.   There is little computational overhead associated 

with these techniques and, thus, they are often used.  For TMS specific FD equations 

these linear systems involve an excess of N=107 unknowns and using an optimized 

iterative solver it can take well over 2 minutes to compute the secondary fields.  

Moreover, the iterative procedure needs to be repeated for each different coil 

configuration considered. 

In contrast, for direct solution methods the system of equations is first factored 

into a form that can be used to rapidly solve for the secondary fields for each coil 

configuration [89]. Unfortunately, the memory requirements for storing the factorized 

system of equations usually scales nonlinearly in the number of unknowns, and thus, 

direct solvers are not used to solve TMS specific FD equations [90].   

In this chapter, we propose a fast-direct solver for TMS specific FD equations that 

exploits the hierarchal low-rank nature of judiciously chosen blocks of the inverse of the 

FD system matrix and scale (quasi-) linearly in both memory and time.  The solver 

evaluates the secondary field for a given primary field roughly two orders of magnitude 

faster than preconditioned iterative solvers.  Interestingly, the solver permits a rapid 

update of the inverse of the system matrix if the head model changes by a small number 

of voxels; this feature extends the use of the solver beyond real-time positioning and 

closed-loop optimization to studies that aim to investigate effects of brain lesions on 

TMS fields like [91].  The solver draws on the multifrontal approach of Duff and Reid 

[92] and on compression by hierarchical matrices [93].  Furthermore, it is conceptually 

similar to those in [94-97] but has been designed to emphasize versatility of the domain 

division technique (which serves the factorization, pre- and post-processing steps) and 

ease of implementation (without affecting asymptotic complexity).  

The rest of this chapter is organized as follows.  Section 4.2 describes a simple 

FD scheme for analyzing TMS phenomena and the proposed FD matrix factorization and 

solution processes.  Section 4.3 describes numerical results that benchmark the proposed 

fast direct solver versus other solvers and illustrate how it can be used for coil placement. 

Section 4.4 summarizes our achievements and describes avenues for future research. 
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4.2 Formulation  

This section details the proposed fast-direct solver for TMS.  First, we outline a 

FD approach, which yields a linear system of equations: 

 Mx b , (4.1) 

where the unknown vector x  is the scalar potential (a quantity from, which the 

secondary field is easily determined) at selected points and b  is constructed from the 

primary field.  Then, we will describe the multifrontal [92] and -matrix compression 

[93] approach used for computing and compressing the inverse of M  (i.e. the LU-

factorization of 1
M

 )  in  2logO N N  time, and using  logO N N  memory, where N is 

the number of unknown variables.   

In the multifrontal method inverses of small dense matrices and partial updates 

are used to construct an LU-factorization of 1
M

 .  First, we will describe a process we 

used to partition the domain into several sub-domains called ‘Domain Decomposition’.  

Then, we will explain how we determine the LU-factorization of  1
M

  by using the 

inverses of the small sub-matrices corresponding to the interactions between elements on 

the same sub-domain and partial updates.  Finally, we explain how we lower the time and 

memory requirements of the multi-frontal approach by using an -matrix [93] format (a 

data sparse representation) to store the matrices.  The asymptotic complexity estimates 

and technical details of the implementation are discussed at the very end of this section. 

4.2.1 Finite Difference (FD) Scheme 

This solver computes the total electric field ( )E r,t generated at positions r  inside 

the head when the TMS coil is driven by a current ( ; ) ( ) ( )I r I rt p t , where ( )p t  is a unit 

pulse. In general, ( ; )E r t  is composed of a vector ( ; )A r t  and a scalar potential ( ; )r t  

contribution as:   

 (( ; ) ; ) ( ; )A rE r r
d

tt
dt

t  . (4.2) 
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For the range of frequencies of typical TMS pulses (1-10 kHz) and the range of 

conductivities of the head (0.01-1.6 S/m) the following quasi-stationary assumptions are 

valid [98]: (i) the coils are solely responsible for the vector potential contribution of the 

electric field, (ii) delay effects are negligible (iii) displacement currents are negligible .  

Correspondingly, the primary electric field is  

 

   

 
0

, ( )

'
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4 '

pE r A r

I r
r

r r
coil

d
t p t
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



 
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

∮
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where 7

0 4 1 /0 H m     is permeability of free space.  The secondary electric field is 

 , ( ; )E r rs t t  . And gauss’s law is: 

 ( ) ( ; ) 0r E r t 
.
, (4.4) 

or equivalently, 

 

( ) ( ; )

( ) ( ; ) ( ) ( ) ( )

r r

r A r r r

t

d d
t p t

dt dt

 

  

 

    
, (4.5) 

where. ( ; ) ( ( ) / ) ( )r rt dp t dt  .  Thus,  ,sE r t can be easily determined by solving 

 ( ) ( ) ( ) ( )r r r A r      . (4.6) 

Here the scalar potential ( )r  is determined using a standard 2nd order FD method 

for an inhomogeneous Poisson equation [99].  Briefly, a hexahedral region containing the 

brain is partitioned into a regular Cartesian mesh Ω  consisting of 

0 0 0( 1) ( 1) ( 1)x y zN N N      homogenous conductive (i.e. constant σ( )r ) x y z    

voxels, where voxel ( , , )    is assigned a conductivity , ,    equal to that at its center.  

The unknown vector x  is a collection of scalar potential ( )r  values at each internal 

node of the Cartesian mesh.  Each row of the system matrix M  is a discrete 

approximation to: 
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 ( ) ( ) ( ) ( )r r s r A r s
V V

d d  
 

   
.
, (4.7) 

where V  a hexahedral region having dimensions x y z   and centered about a node 

of the Cartesian mesh with V as its boundary and sd  is oriented by outward-pointing 

normal vectors.  Because ( )r  is known to decay rapidly with increasing distance from 

the head, on the boundary nodes of the Cartesian mesh a zero Dirichlet boundary 

condition is assumed [98].   

The matrix is M  ordered according to a global index vector 

 0 0 01 2, , ,p
x y zN N N

p p p , where the scalar 0 0 0( 1) ( 1)x x yN N N
p
     

is the index of the column, or 

row, corresponding to the scalar potential at position on the internal node ( , , )   , or the 

equation arising from applying (4.7) on the hexahedral region centered about the node 

( , , )   .  (Note: For the remaining sub-sections, we will mainly deal with the lattice of 

nodes of the Cartesian mesh and refer to the different rows and columns of M  by their 

associated node and not their index (i.e. we will use ( , , )    instead of 0 0 0( 1) ( 1)x x yN N N
p
     

 

to refer to column and rows of the matrix).) 

 

4.2.2 Multi Frontal Approach 

4.2.2.1 Domain Decomposition 

Domain decomposition utilizes a procedure called geometric bisection where a 

Cartesian lattice is partitioned into two Cartesian sub-lattices along the longest edge and 

on its center.  In other words, if 0 0 0 0max{ , , }x y zN N N N  , then the lattice is separated into 

two lattices by a plane oriented perpendicular to the  -direction and situated on the 

center of the domain.  The domain decomposition can be applied to a mesh having 

arbitrary dimensions, however, for clarity we will assume 

that 0 0 0 2 2 2x y z

a b cN N P P PN     , where , , ,P a b c .   

Let 0

1Ω  denote the lattice of nodes of the Cartesian mesh. Ω . First, 0

1Ω  is split into 

1

1Ω  and 1

2Ω  by geometric bisection.  Then, as depicted in Fig. 4.1, the procedure is 
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repeated hierarchically until each sub-lattice has dimensions P P P  . In other words, at 

each level each sub-lattice Ωk

j   , where k  is the level and j  the lattice index, is split into 

1

2 1Ωk

j



   and 1

2Ωk

j

  each with dimensions / 2k k k k

x y z

kN N N NN  nodes by geometric 

bisection.  

 

 

Figure 4.1 Domain decomposition of a 2 2 2P P P   domain by geometric bisections. 

 

The domain decomposition is shown schematically as a binary tree (Ω)T  in Fig. 

4.2.  Each vertex of (Ω)T  correspond to a Ωk

j  sub-lattice and each edge to inheritance 

relations.  The geometric bisection is applied for K a b c    levels and (Ω)T  has a depth 

of 1K  . The k -th level has ( ) 2knd k   sub-lattices and there are a total of 

(1) (2) ... ( )nd nd nd K   1 2 ...2 K    sub-lattices. 

 

 

Figure 4.2 Tree representation ( )T   of the domain decomposition of a 2 2 2P P P  . 

There is a vertex for each subdomain and edges represent inheritance relations.  At 

the k -th level there are ( ) 2knd k  vertices and the depth is 1 4K   . 

 

The LU- factorization utilizes subsets of the sub-lattices called clusters shown in 

Fig. 4.3. For the thK  level each cluster is identical to its sub-lattice.  For levels k K , 
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cluster Γ j

k  consists of the boundaries of the two adjacent 1

2 1Ωk

j



  and 1

2Ωk

j

 sub-lattices.  In 

other words,  j-th cluster Γk

j   at level k  is  

 
1 1

2 1 2

Ω for 
Γ

bnd(Ω ) bnd(Ω ) for 

K

jk

j k k

j j

k K

k K 



 
 

 

, (4.8) 

where ( )k

jbnd   is the set of boundary nodes of Ωk

j . We further partition each 

cluster into two sets one containing ‘cluster boundary’ nodes, i.e. Γ | ( )j b j

k kbnd  , and 

‘cluster internal’ nodes Γ | Γ Γ |K K K

j j bji  .   

 

 

Figure 4.3 Depiction of a generic cluster ΓK

j .  The inner and boundary nodes of a 

cluster lie on the red and blue regions, respectively. 

4.2.2.2 LU-Factorization 

 

The strategy of the LU-factorization is to rearrange the matrix M  into a product 

of block-diagonal, lower-triangular, and upper-triangular matrices whose inverses can be 

computed using small matrices, which are determined using algorithm 4.1.  The product 

of  1
M

  with a vector by using the small matrices is outlined in algorithm 4.2.  First we 

describe how the small matrices whose inverses we need to compute are determined.  

Then, how the individual small matrix blocks can be assembled to generate a factorized 

version of 1
M

 .   
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Algorithm 4.1: Computation of the Schur complements 

1: input M  

2:  for 1,2, , ( )j nd K  

3: ib ibA M
K

j

K

j  , bi biA M
K

j

K

j  , 1 1( ) ( )ii iiA M j

K K

j

   

4: ( ) -1

bb bi ii ibS A A A A
K KK K

j j j j j

K   

5: end 

6: for 1, 2, ,1k K K    

7: for 1,2, , ( )j nd k  

8: 

1

2 1 2 1 2

2

1 1

1 1 1

2 1 2

(Γ | Γ | )

(Γ | Γ | )

S

A

M

M S

M

j j b j b

j b j b

k k k

k k kk
jj

K

j K

K

k

k
 



 



 



 
  









 

9: compute 1( )iiA
k

j

  

10: ( ) -1

bb bi ii ibS A A A A
k k k k

j j j j j

k     

11: end 

12: end 

13: 1 1 1 1 1 1 1

0 0 0 0 0( ) ( ( ) )-1

bb bi ii ibA A A AS
    

14: return 1( )iiA
k

j

 , ibA j

k , biA j

k  and 1 1

0( )S
  
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Algorithm 4.2: Multiply with 1
M

  

For notational brevity, for any generic matrix C  where there is an equation and 

variable associated with each node of the Cartesian lattice 0

1Ω  (e.g. M ), we denote  C j

k  

the sub-block of the matrix C  corresponding to the rows and columns associated with the 

cluster k

j .  Furthermore, C j

k  can be split into four parts by distinguishing between inner 

and boundary cluster nodes, that is, 

  Γ   Γ  
ii ib

bi bb

C C
C C

C C

j j

j j j

j j

k k

k k k

k k

 
     

 
, (4.9) 

where iiC j

k , ibC j

k , biC j

k  and bbC j

k  denote the sub-blocks (Γ | Γ | )C j i j

k k

i  , (Γ | Γ | )C j i j

k k

b , 

(Γ | Γ | )C j b j

k k

i  and (Γ | Γ | )C j b j

k k

b , respectively.  For example,   

1: input b , 1( )iiA
k

j

 ,
ibA j

k ,
biA j

k  and 1 1

0( )S
  

2:  x b  

3:  for 1, 2, ,1k K K    

4:  for 1,2, , ( )j nd k  

5:  1( )b b bi ii ix x A A xj j j j

k k k

j

k k    (forward-substitution) 

6:  end 

7:  end 

8:  0 0 1 0

1 1 1( )b bx S x
  

9:  for 1,2, ,k K  

10:  for 1,2, , ( )j nd k  

11: 1( ) )(i ii i ib bx A x A x
k k k k

j

k

j j j j

   (backward -substitution) 

12: return x  
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 

 

            

            

ii ib i

bi bb b

i

b

0

M M x0 0
Mx

M M x

0

b

b

K K K

K K K

j j j

j j j

j

K

K

j

  
  

        
         

         
  
  

 
 
  

    
  
 
 

, (4.10) 

where denote the non-zero blocks of matrix M  .  

In Fig.4.4 all the clusters Γ j

k   are shown for a domain, the regions of each cluster 

with internal lattice points are colored red and the regions for boundary points blue.  For 

all of the clusters, the inner points (i.e. red regions) are completely enclosed by the 

boundary points.  Since, the non-zero entries of the matrix M  correspond to 

“interactions” between directly neighboring points, the rows and columns of  M  

corresponding to Γ |j

k

i   have non zero entries only on iiM j

k , ibM j

k , biM j

k . Consequently, 

shur-complements can be used to lower the computational cost of computing 1
M

  to that 

of computing ( ) -1

iiA
k

j , biA
k

j  and  ibA j

k  at each level and a matrix 0 1

1( )S
 , where  

 

1

2 1 2 1 2

2

1 1

1 1 1

2 1 2

(Γ | Γ | )

(Γ | Γ | )

S M

M SA

M

j j b j b

k
j b j b jj

K

j

k k k

k k k
k K

k K

  

  

 



 
   









, (4.11) 

 ( ) -1

bb bi ii ibS A A A A
k k k k

j j j j j

k  , (4.12) 

and 1,2,...,k K  and 1,2,..., ( )j nd k .   The A
k

j s and S
k

j s are defined recursively starting 

from A M
K K

j j  and  ( ) -1

bb bi ii ibS M M M M
K K K K

j j j j j

K    each time decreasing the level by 1 

and ending at the 1k   level. Furthermore, at each level, A
k

j  must be computed before S
k

j . 

The procedure for computing the matrices ( ) -1

iiA
k

j , biA
k

j , ibA j

k  and 0 1

1( )S
  is outlined in 

Algorithm 4.1.   
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Figure 4.4 Clusters for a 2 2 2P P P   domain.  The inner and boundary nodes of a 

cluster lie on the red and blue regions, respectively. 

 

The matrices ( ) -1

iiA
k

j , 
biA

k

j , 
ibA j

k  and 0 1

1( )S
  are Shur-complements and they make 

solution of internal points of each cluster independent of the solution of the rest of the 

domain.  Thus, they enable determination of x  applying ( ) -1

iiA
k

j , biA
k

j , ibA j

k  and 0 1

1( )S
  to 

b , as in algorithm 4.2.  In algorithm 4.2, the back-substitutions and forward-substitution 

correspond to the following product 

    
1 11-1 T

M U P D P L
   , (4.13) 

where,  

 

 

 

 

 

       

       

     

(

       

( )

)

-1

bi ii

-1

ii ib

I 0 0 0

I 0
L 0 0

A A I

0 0 0 I

I 0 0 0

I A A
0 0

0 I

0 0 0 I

U

k

k kj

j

k

j

j

k

j j

k

 
 

  
   

  
 
 

 
 

  
   

  
 
 

, (4.14)  

  
1 2 ( )

1 2 ( )..

...

.

L L L L

U U U U

k k k k

k k k

nd k

n

k

kd




, (4.15) 

 
1 2

1 2

...

...

L L L L

U U U U

K

K


, (4.16)  
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1

1

K

1

D

D

0

0 0

0 D0 0

0 0 S

 
 
 
 
  
 

, (4.17) 

 
1

( )

ii

ii

A 0 0

0D 0

0 0 And

k

k

k

k

 
 

  
 
 

 , (4.18) 

 

 1,2,...,k K  and 1,2,..., ( )j nd k , and P  is a permutation matrix that arranges the 

variables by listing only internal nodes of each cluster starting from the k K level.  The 

the forward substitution computes the inverse of L  and the back substitution computes 

the inverse of U . Each step of the back and forward algorithm represent a product with 

each of the following matrices: 

 
       

       

1 1 11 1

1 1 11

2

1 1

.... ,

....

L L L L

U U U U

K

K K

  

   





 , (4.19) 

 

  where, 

 
       

       

1 1 1 1

1 2 ( )

1 1 1 1

1 2 ( )

...

...

L L L L

U U U U

k k k k

k k k

n

k

d K

nd K

   

   

 

 

, (4.20) 

and 

  

 

 

 

 

 

1

1

       

( )

       

    

(

 

)

 

-1

bi ii

-1

ii ib

I 0 0

I
L

-A A I

0 0 I

I

I - A A
U

I

0 0 I

0

0
0 0

0

0 0

0 0
0

0

k

k k

j j

j

k

j

k

k j j





 
 

  
   

  
 
 

 
 

  
   

  
 
 

 . (4.21) 



 

74 

 

From (4.21) it is clear that only matrices  
1

1

0S


,  
1

iiA
k

j



, 
biA

k

j , and 
ibA

k

j  are 

necessary for computing -1
M .  These matrices can be easily determined using dense 

matrix algebra.  However, in the next section we will introduce -matrix algebra, which, 

can be used to rapidly compute and compress them. 

4.2.3 Compression by -matrices 

In the previous section an algorithm for computing and storing the LU-

factorization of M  in an efficient way was described. However, computing  
1

1

1
S



, 

 
1

iiA
k

j



, biA
k

j , and ibA
k

j  using dense matrix algebra requires excessive computational 

resources.  Fortunately, each of these matrices can be compressed using the -matrix 

format introduced by Hackbusch [93].  This approach has already been effectively used 

in other direct solvers and block-diagonal preconditioners [97, 100-105] as it can lower 

the orders of the matrix-matrix and matrix-vector multiplication complexities and the 

storage requirements of a n-by-n matrix from 3( )O n , 2( )O n  and 2( )O n  down to 

2( log )O n n , ( log )O n n  and ( log )O n n , respectively [106].  In general, the formal 

structure of the -matrix approximation to a given matrix depends highly on the type of 

matrix being compressed. Here, only the construction of -matrices out of the dense 

matrices arising from the LU factorization of M  are explained. For a more general theory 

of -matrices, as well as, more detailed explanations of the method consult [93, 106, 

107]. 

An -matrix approximation to a given (full) matrix is obtained by hierarchically 

partitioning the matrix and at each level replacing certain blocks of the (full) matrix with 

a compressed format called the ‘Rk-format’.  In the ‘Rk-format’ a m n  matrix D  with 

maximum singular value max   and r  singular values greater than max ,  is stored to a 

precision of   as  [93] 

 D u vm n m r r n   , (4.22) 

where u  and v  are m r  and r n  matrices, respectively. If the value / ( )r mn m n  , 

then storing matrices u  and v  instead of storing the block D  in the full matrix format 
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(column by column) reduces the number of elements to be stored from m n  down to 

( )m n r  . To assess the level of compression that is achieved the compression ratio 

 
cmpr

full

n
cr

n
  , (4.23) 

where   cmprn  and fulln  is the number entries in the compressed format and in the 

full format, respectively, is used. Compression is only achieved if 1cr  , and we would 

like 1cr  , furthermore, storing D  in the  Rk-format results in a compression ratio of 

( ) /cr m n r mn  . Thus, storing D  in the Rk-format is only guaranteed to result in 

compression when max( , ) / 2r m n .  For the matrices we consider here, the value of the 

rank is not known a priori, however, an upper bound k  for it is known.  Thus, the actual 

rank is determined during run-time by using a rank revealing factorization (e.g. Singular 

Value Decomposition).   

Let C  be one of  
1

1

0
S



,  
1

iiA
k

j



, biA
k

j , or ibA
k

j  and have associated cluster k

j .  

For FD matrices arising from Poisson kernels (i.e. M ) and their inverses, the rank of sub-

blocks of the matrices representing interactions between two clusters of nodes decreases 

with relative distance between the clusters [106, 107].  Consequently, the ‘admissible’ 

blocks of C  (i.e. sub-blocks of C  that can be compressed), correspond to interactions 

between two distant sub-clusters of k

j .  To extract the admissible blocks of C  we 

specify a condition for admissibility as follows:  Let t i  and t j  be detached sub-clusters 

k

j  (i.e. , , 0t t t t
k

i j j i j   ), let ( )tidiam  denote the largest physical distance between 

any two distinct cluster points in t i  and  ,t ti jsepar  the minimum physical distance 

between one point in t i  and another in t j ,   then, we say that the corresponding matrix 

block is admissible if 

     ,   ( ) 2 ,1 2 1 2t t t tmin diam diam separ  , (4.24) 

where the value of   is a small number close to one that defines the admissibility, e.g. 

3 / 2  [106].  The admissibility condition of (4.24) ensures that the two clusters are 

separated by at least a fraction   of the diameter of the smaller of the two clusters.  
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The -matrix structure of C  is created by recursively bisecting the cluster using 

a block cluster tree  Ω ΩT   in a similar way as was done with the lattice tree  ΩT . At 

each level admissible blocks are stored in the Rk-format and inadmissible blocks are 

further bisected.  We repeat the procedure recursively until each block is not admissible, 

smaller than 196 196  or too small to achieve a 0.95cr  ; we store the remaining sub-

blocks as full matrices.   Each matrix is compressed to a precision 
max/M   , where 

M  and 
max are the maximum singular values of the matrix M  and the matrix being 

compressed, respectively, and   is an input threshold value parameter to the algorithm. 

4.2.4 Assymptotic Complexity estimates -matrices 

For the -matrices we consider, the computational resources (i.e. computational 

complexity) required to perform most linear algebra operations (e.g. matrix-matrix 

addition or multiplication) scale almost linearly with size. More precisely, if ( )P n  is a 

function that for a n n  -matrix counts memory requirements to store it  or the number 

of operations required to compute a matrix-vector multiplication or  a matrix  inversion, 

then ( )P n  is  2logO n n  or  2

2logO n n  or  2

2  logO n n , respectively [106], where 

  O  denotes asymptotic complexity.  

The overall asymptotic complexity of the factorization and solution steps 

(Algorithms 4.1 and 4.2) can be obtained by counting operations at each level of the 

process.  At each level the number of nodes in each Ωk

j lattice is roughly / 2kN  nodes.  

Since the cluster points k

j  lie on facets of 1

2 1Ωk

j



  and 1

2Ωk

j

  , it has roughly 2/3 2 /36 / 2 kn N  

nodes.  Correspondingly, the number operations that are performed on each of the -

matrices associated with each cluster is  2 /32/3 2/3α

2/ 2 logkO N N , where  α is 1 or 2.   

Furthermore, there are ( ) 2knd k   clusters at each level. Thus, the number of operations 

required to perform algorithms 4.1 and 4.2 is:  
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1

2/3
α

2

2/3 2/3

2 /3

α

2

2/3

1 2 ) ...
2

log

2 ))

1
(

2

( log )

1
(K

K

O N N

O N N

  
    

  
      



, (4.25) 

where α= 1 for the solution time and α= 2 for the factorization time.  (Note: we used 

3

2log ( / )K N P   to simplify (4.25).) 

Similarly the total memory required scales as the total storage to store individual -

matrix times the number of -matrices.  Thus, the total memory required 

is 2( log )O N N . 

4.2.5 Implementation Details 

The solver has two main independent parts: a library of subroutines for 

hierarchical matrices and our implementation of the multifrontal method. The 

hierarchical matrix library contains subroutines for linear algebra operations on -

matrices (and other data-sparse structures) [93].  Most of the subroutines use BLAS and 

LAPACK for basic linear algebra operations.  Our multifrontal method library is capable 

of decomposing a hexagonal computational domain of an arbitrary size. Depending on 

the problem size, the bisecting process is stopped for 4P   or 8P  . The factorization 

(Algorithm 1) computes and stores matrices 
iiA  (in the compressed format), 

ibA  and 
biA  

(in the MKL’s coordinate format). To reduce the computational overhead and to increase 

the execution speed, matrix blocks smaller than 196 196  and blocks with compression 

ratios more than 0.95 are treated as full matrices regardless of whether they are 

admissible or not; required operations on these blocks are performed by BLAS/LAPACK 

subroutines.  Other than 1

1S  the intermediate Schur complements are not necessary for the 

final solution step and they are not stored.   
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4.3 Application of the Fast Direct Solver to TMS  

In this section, we demonstrate the robustness of the proposed solver in terms of 

memory and speed and show that it compares favorably to a commercial multi-frontal 

direct solver (PARDISO).  We also demonstrate an application for real-time coil 

positioning during TMS.   All runs are run on our cluster consisting of 66 nodes each 

with a quad-core AMD Opteron 2220 SE processor and 16 GB of physical RAM per 

computer node. 

4.3.1 Benchmark Tests 

 

Here we investigate how the fast direct solver parameters (e.g. P ) affect solution 

accuracy, time, and memory.  Furthermore, we also compare the proposed solver to 

PARDISO, a commercial sparse direct solver and part of Intel’s MKL library [108].   To 

do this we consider the electric field generated inside homogenous (i.e. when ( ) 1r  S/m 

hexahedral domains Ωr  ) of varying sizes.  We choose forcing vectors b  generated 

using a uniform random number generator.  We determine the solution x  using the fast 

direct solver and the ‘exact’ reference solution refx  by using PARDISO with double 

precision.   All of the runs in this section are done on a single cluster node.  

First, we varied the threshold value   and analyzed a domain with 643 unknowns. 

Table 4.1 lists the memory used and CPU runtime by the fast direct solver when run with 

different thresholds.  Since computational resources are expected to have a logarithmic 

dependence with respect to precision   , which is directly related to  , we used the 

following regression function    2

0δ y c log δy    ,where c  is a positive factor, to 

interpolate each of the computational resources measured as a function of  δ .  The values 

of 0y  for the memory, factorization and solution runtimes are 2786 MB, 1239 seconds 

and 1.14 seconds, respectively. The values of 0y
 
are important because they are lower 

bounds for the resources required to obtain a factorization with a threshold less than 1.  

By decreasing δ  from 310  to 610  the solution runtime is increased by 7%, and the 

factorization runtime by 25%.   Thus, by increasing the accuracy of the compression from 
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310  to 610  not many more computational resources are necessary. Consequently, we use 

610   for subsequent numerical experiments. 

 

Threshold Residuum Error Storage (MB) cr Factorization (sec) Solution (sec) 

1E-2 1.08E-03 1.18E-01 2832 0.46 1289 1.16 

1E-3 1.36E-04 9.97E-03 2891 0.47 1354 1.19 

1E-4 1.05E-05 4.64E-04 2964 0.48 1438 1.22 

1E-5 1.03E-06 1.68E-05 3038 0.49 1562 1.36 

1E-6 1.13E-07 9.98E-07 3121 0.50 1703 1.27 

Table 4.1 Performance of the fast direct solver in dependence on the level of accuracy 

for a domain of size 64x64x64. 

Secondly, to determine the asymptotic memory and speed costs of the fast direct 

solver, we varied the number of unknowns N  by factorizing matrices arising from 

different domain sizes while keeping all other solver parameters constant.   To determine 

minimal, or optimized, storage, we replace the strong admissibility criterion with a 

compressibility criterion, that is, we compute each sub-matrix in full format and Rk-

format and choose the format that uses the least memory (i.e. we store as full if 

max( , ) / 2r m n  otherwise we store it in the Rk-format). Fig. 4.5 shows the total memory 

required to store the factorized matrix by the fast direct solver for domains of varying 

sizes along with the ‘optimized storage’. As expected, the memory of the factorized 

matrix depends almost linearly on  N .  The direct solver only requires 1.2 – 1.5 times the 

minimal storage.  Thus, the admissibility criterion of the fast direct solver is able to 

achieve an almost ideal compression.   
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Figure 4.5 Storage memory for the factorized matrix 



 

80 

 

Fig. 4.6 shows the total factorization and solution run times for domains of 

varying sizes along with curves for the predicted solution and factorization run times.  To 

generate the predicted run time curves, we formed two curves by fitting the data to the 

asymptotic run time of the different steps, that is, 2logN N c   for factorization and 

logN N c   for solution ( c  is just some arbitrary constant).   There is mostly good 

agreement with the expected asymptotic behavior.  Note: the last point on the solution 

time is much greater than the other solution.  However, this is not because the algorithm 

does not scale it is because there is not enough physical memory and some swapping 

occurs this, in turn, slows down computations.  
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Figure 4.6 Performance of the fast direct solver on a single CPU. Factorization time 

(squares) and solution time (triangles). Lines show the expected asymptotic behavior. 

 

Lastly, we compare the fast direct solver with PARDISO, a commercial multi-

frontal direct solver. Fig. 4.7 shows the ratio of memory used to store the factorized 

inverse matrix by the fast-direct solver versus PARDISO for varying domain sizes.  A 

ratio of near 1 means that most of the sub-matrices are being stored in the full matrix 

format by the fast direct solver and smaller ratios mean that more of the sub-matrices are 

being stored in the Rk-format.  As expected, the compression ratio decreases with 

increasing domain sizes.  Fig. 4.8 shows the rank distribution of  
1

1

1 (7688 7688)
A ii




 matrix for 

a domain of size128 64 64  . This sub-matrix represents the diagonal sub-block of a 

fairly large cluster and the compression is effective, that is, many of the square off-
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diagonal blocks have a vector length between 200 to 1000 unknowns and the ranks vary 

from 5 to 24.   
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Figure 4.7 Compression ratio of the factorized LU decomposition as a function of the 

domain size. 

 

Figure 4.8 (a) Compression ratio and (b) rank distribution of matrix Aii-1 of the node 

T10 for the air-filled domain of size 128x64x64, P=4 and threshold 10-6. The largest 

rank is 24. The red blocks in the rank distribution represent matrices in the full format 

 

Table 4.2 lists the total factorization and solution run times and total memory 

required to run fast direct solver and PARDISO for domains of varying sizes.  For small 

domains (i.e. 332N   unknowns) PARDISO performs better than the fast direct solver.  
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However, for large domains (i.e. 332N   unknowns) the fast direct solver has a faster 

solution time and for 372N   it uses less memory. The smallest domain size where the 

fast direct solver starts to require less total factorization run time was not observed 

because we could not factorize a big enough matrix using PARDISO using a single node. 

size N Storage (MB) Factorization (sec) Solution (sec) 

Pardiso FDS Pardiso FDS Pardiso FDS 

323 32768 157 283 8 53 0.1 0.1 

643 262144  2900 3313 549 1683 1.3 1.2 

723 373248  4700 4693 1106 3142 2.2 1.9 

813 531441  8152 6929 2330 5669 4.1 3.2 

903 729000  12500 9550 4630 8658 7.2 4.7 

Table 4.2 Performance comparison between the sparse direct solver Pardiso and the 

fast direct solver (threshold 1E-6). 

Fig. 4.9 shows the residual error 
2 2

/b Mx br   and relative solution error 

2 2
/ref refx x xe  

 
for varying domain sizes.  For domains smaller than 4  ~10N  the 

computed residual and solution errors are nearly equal to the double-precision error ( 

nearly 1610 ).  This is because for small domains most of the sub-matrices are stored in 

full format, and thus, there is little loss of accuracy associated with the compression.  

However, for domains with more than 410  unknowns a significant number of sub-

matrices become compressible and, as expected, there is a sharp increase in the error 

from the double precision accuracy to slightly below the threshold value  .   This is 

because at 410  unknowns most of the matrices are being stored to    accuracy.  Beyond 

410  unknowns the error increases slightly at a constant rate because the error is 

hierarchically amplified.  However, the errors are below the threshold value for the 

domain sizes we need to analyze, that is, for 610N   unknowns with 610  , 610r  and 

810e  .  Furthermore, from the results of this test we expect this method to be stable for 

much bigger domains. 
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Figure 4.9 Relative residual error and solution error. 

4.3.2 TMS Simulation Example 

We consider a ‘MRI-derived’ conductivity model of the human head [Figs. 4.10a-

c] generated by segmenting a high resolution MRI image and assigning electrical 

conductivity values to each tissue type using data from literature [109].  The MRI image 

consists of 256 256 198   homogenous cubic voxels each having an edge length of 1.2 

mm and was obtained by scanning a single male subject in a 3T GE Signa scanner 

(Waukesha, WI) using an IR-prepped, 3D, SPGR pulse sequence (TR=9.03, TE = 1.84, 

TI = 500 ms, FOV = 24 cm, slice thickness = 1.2 mm).  First, the image is segmented into 

gray matter, white matter, and ventricular CSF by the SPM5 segmentation toolbox  

(http://www.fil.ion.ucl.ac.uk/spm).  Next, remaining unclassified tissue is further 

partitioned into another three types, namely bone, muscle, and CSF, by FAST, a 

component of FSL’s image analysis package (http://www.fmrib.ox.ac.uk/fsl/).  Each 

voxel is assigned a conductivity between 53.9 10 1.67   S/m corresponding to the 

average conductivity of voxel tissue.  The resulting conductivity maps are sub-sampled to 

128 128 99  voxels with an edge length of 2.4 mm by averaging the conductivity values 

of each 2 2 2   block of voxels of the original image.  To allow for the scalar potential to 

decay, the computational domain is then padded by placing the brain centered about the 

mesh and increasing the domain to 158 158 129   voxels by adding air.  Air is non-

conductive, however, (4.7) is only valid when the conductivity is non-zero.  To maintain 

a hexagonal computational domain, we assume air has a small conductivity air , which is 

several orders of magnitude smaller than the minimum value of conductivity in the head; 

this replacement has negligible effects on the final value obtained for ( )r  using our FD 
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method.  We place a figure-8 coil, consisting of two flat circular coils each with a 

diameter of 72 mm and centered 7 mm above the head as shown in Fig. 4.10.   

 

 

Figure 4.10 Localization and orientation of the figure-8 coil above the head. Coil 

diameter, coil separation and distance from the head displayed. The dashed line 

shows position of the axial plane in the results 

 

The system was solved to obtain   both using an iterative solver and the 

proposed direct method. To compute the total electric field the gradient of   is 

determined by using a central difference and the vector potential is calculated directly 

using (4.3). 

Each simulation was run on multiple cluster nodes a total of 32 CPUs and 20 GB 

of memory where used. To distribute the memory among each of the cluster nodes we 

assigned each to each processor of the node one sub-domain 4Ω j .  The observed speedup 

obtained from this simple parallelization is 2.5 times for the factorization and about 5 

times for the solution. A greater speedup can be obtained for this class of problems by 

using dynamic allocation of resources and a parallel implementation of the -matrix 

algebra. The interested reader can find more details about the dynamic allocation in 

[110]. 

To compare the performance of the fast direct solver against an iterative method, 

we used a block-diagonally preconditioned quasi-minimal residual (MINRES) method 

again with 32CPUs. We split the domain by assigning each processor a subdomain of 

size  32 32 50  .  We use a preconditioner composed of the inverse of diagonal blocks of 

 M  each corresponding to one of the  32 32 50   sub-domains using PARDISO.  To both 
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minimize run-time and accurately determine the electric field we chose .0  0 1air  ; this 

choice of   air  results in 100 iterations to achieve residual of 410 , and a relative electric 

field error of 1%, which is in the order of what we would expect from the FD method 

[36].   Even by optimizing iterative solver parameters to minimize the solution time, the 

preconditioned iterative solver has a run time of 72 seconds.  In contrast, the fast direct 

solver is runs in less than 4 seconds. 
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Figure 4.11 Convergence of the iterative solver with a block-diagonal preconditioner.  

In Figs. 4.12d-f, the spatial distribution of the total electric field inside the head 

computed by the direct solver is shown. More importantly, in Figs. 4.12g-i the relative 

error achieved by the direct solver when compared with an ‘exact’ solution obtained by 

letting the iterative solver converge to a residual error of 121  0 is shown. Through the head 

the head the error is around 51  0 , however, near the nasal area the error is around 31  0 ;  

this is because the nasal area has low-average conductivity and the field varies rapidly 

near it.  Fortunately, the incident field on the nasal area is small relative to other regions 

and it is not of interest for TMS.   
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Figure 4.12 Conductivity: (a) transverse plane (b) coronal plane (c) sagittal plane. 

Magnitude of the total electric field inside the head normalized with respect to the 

highest value in the head: (d) transverse plane (e) coronal plane (f) sagittal plane. 

Absolute error of the total electric field inside the head: (g) transverse plane (h) 

coronal plane (i) sagittal plane 

4.3.3 Real Time Coil Positioning 

We illustrate how the fast direct solver can be used to find the optimum coil 

position during TMS.  For the results that follow we use the same MRI derived brain and 

coil as in section 2.3.2.  We compute the electric field generated by the coil when placed 

at different positions relative to the head and determine its effectiveness at targeting a 

single voxel each time. The target voxel is located on the left dorsal prefrontal cortex, 24 

mm below the scalp; this region is often targeted during treatments of depression. 

Initially, we place the center of the coil 4.8 mm from a point on the scalp that is closest to 

the target point. Then, we vary its position displacing it by varying azimuthal angles Φ  
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and Θ  relative to the line connecting the target voxel and the initial position, and varying 

the radius r so that the vertex is always 4.8 mm detached from the scalp [Fig. 4.13].  

 

RL

theta

phi

 

Figure 4.13 Electric field distribution in the axial plane crossing the target point 

(31 mm below the top of the head). The white circles represent a projection of the 

figure-8 coil into the plane 

 

We initially position the coil at locations corresponding to all possible 

combination of the following angles   10 , 8 , ...,10        and Θ 10 , 8 , ...,10      .  Then, 

to obtain a better estimate of we further refined our search by positioning the coil at all 

possible combinations of angles   6 ,7 , ...,10    degrees and Θ 0 ,1 , ..., 5    .  From these 

results, we determined the distance between the maximum of the electric field inside the 

brain and the target voxel.  We found that the maximum Electric field inside the brain 

occurs in regions near the skull nearest to the coil, and since, the target is deep inside the 

brain the maximum cannot occur on it.  The optimal coil position minimizes the distance 

between the actual maximum and the target.  Fig. 4.14 shows the distance between the 

maximum of electric field and the target voxel for all of the different coil positions tested.  

The optimal coil position is not directly above the target, as a coil positioning device 

relying on the primary field would indicate, but displaced by about 4 pixels (that is, at 

  4   and Θ 4 degrees); this is because the secondary electric field significantly affects 

the total field generated.  We note that the maximum is less sensitive changes in Θ  than 

  , this is because the electric field of the coil is more sharp in the    direction (cf. Fig. 

4.14).   
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Figure 4.14 Distance between the electric field maxima and the single target for 

different coil locations. The local directions are defined in Fig. 4.10. 

 

To produce these results, the electric field generated during TMS for 217 different 

coil positions had to be determined. An iterative solver would have taken about 137 

seconds for each coil position and a total of 29,737 seconds to create these results while 

the direct solver we initially factorized the system in 7997 seconds, then, computed the 

results for each positions at a rate of 2.2 seconds taking up a total time of 477.4 (less than 

8 minutes).  In a real time positioning applications the solver could be used in the 

following way: First, the patient comes in and an MRI image of his brain is collected.  

Second, a conductivity model of his head and a TMS FD system of equations are created.  

Then, the system is factorized. Finally, on a second visit, the factorized system can be 

used to deteremine the optimum coil position for targeting specific regions of the head. 

4.3.4 Concluding Remarks 

A novel fast direct solver for analyzing TMS phenomena was developed. The 

solver exploits the hierarchical low-rank nature of sub-blocks of the factorization of the 

FD matrix pertinent to TMS. The CPU and memory requirements of the proposed solver 

scale almost linearly in the number of unknowns describing electric fields. Our numerical 

experiments indicate that the proposed solver’s solution step executes faster than that of 

existing sparse direct solvers for 5  4 10N    and is roughly 25 times faster than a 

preconditioned iterative solver for a typical TMS problem involving 7~10N  unknowns. 

The lower solution time can enable the construction of the frameless stereotactic TMS 
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systems that account for secondary electric fields when estimating the ideal coil position, 

thereby significantly improving the targeting accuracy of current TMS systems. Future 

research will be oriented on the improvement of the code parallelization and on 

utilization of GPUs that could facilitate the computation of the electric fields in a fraction 

of a second.  



 

90 

 

CHAPTER 5  
Low-frequency Stable Internally Combined Volume-Surface 

Integral Equation for High-Contrast Scatterers 

5.1 Introduction 

Many electromagnetic applications call for the analysis of scattering by 

inhomogeneous dielectric scatterers. To this end, volume integral equations (VIEs) [111] 

and volume surface integral equations (VSIEs) [112] are often used. Unfortunately, VIEs 

suffer from high-contrast (HC) breakdown: when applied to scatterers with electric 

permittivities that are vastly different from those of the surrounding medium their 

discretization results in ill-conditioned systems of equations [24, 113]. Ill-conditioning 

often slows the convergence of iterative solvers, which severely limits the utility of the 

VIEs in modeling electromagnetic phenomena pertinent to many biological and 

geophysical applications.  

Some VSIEs do not suffer from a HC breakdown. However, VSIEs suffer from a 

low-frequency (LF) breakdown: when the mesh that discretizes the scatterer contains 

elements with dimensions that are much smaller than the wavelength, discretization of 

the VSIE again results in ill-conditioned systems of equations. In this paper, a new 

internally combined VSIE (ICVSIE) equation that does not suffer from either HC or LF 

breakdown is introduced [114].  

VSIEs eliminate the HC breakdown of the VIE by lowering the maximum 

contrast of the dielectric scatterer through the use of surface integral equations. First, the 

scatterer is subdivided into subscatterers each having a small (controlled) ratio of 

maximum to minimum permittivity.  Next, each subscatterer is wrapped in equivalent 
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electric and magnetic surface currents, and interactions between subscatterers are 

modeled using surface integral equations in terms of these currents; this procedure also 

allows for an artificial increase in the effective permittivity of the “background medium” 

in which the polarization currents of each subscatterer radiate.  Finally, the surface and 

volume currents are determined by numerically solving a system of Volume-Surface 

Integral Equations (VSIE) consisting of coupled discrete Combined Field Integral 

Equations (CFIEs) and a VIE.  Previously, a Poggio-Miller-Chew-Harrington-Wu-Tsai 

Combined Field Integral Equation (PMCHWT-CFIE) [115] and a VIE was used to 

construct a VSIE system of equations [112].  While the resulting VSIE is more accurate 

than the standard VIE when applied to high-contrast scatterers [112], our numerical 

results show that it suffers from both  HC and  LF breakdown. VSIEs can also be 

formulated using a Muller CFIE [116] on the surface and a VIE. Our numerical results 

show that the resulting VSIE does not suffer from HC breakdown, however, it still suffers 

from a LF breakdown. In fact, here it is shown that all VSIE formulations suffer from a 

LF breakdown due to coupling of the surface currents with the VIE. Furthermore, a 

method is proposed to make Muller VSIEs LF stable. 

 The proposed ICVSIE also uses equivalent electric and magnetic surface currents 

to artificially increase the permittivity of the background medium in which volume 

polarization currents radiate. A modern discretization of the Muller CFIE [117], which in 

itself does not suffer from HC or LF breakdowns, is coupled with the VIE. To ensure that 

the formulation does not suffer from LF breakdown due to coupling of the surface 

currents with the VIE, contributions due to the surface currents exterior to the scatterer 

and propagating in the “background medium” are added to the VIE. The resulting 

formulation does not suffer from either a HC or LF breakdown. While we focus on 2-D 

time harmonic TEz implementations, extension of the method to 3-D is straightforward.  

This chapter is organized as follows. Section 5.2 introduces notation and presents 

relevant background material relating to the construction of VIE, VSIE, and ICVSIE. 

Section 5.3 presents numerical results that demonstrate the effectiveness of the proposed 

formulation. Section 5.4 summarizes our conclusions and avenues for future research. 
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5.2 Formulation  

5.2.1 Background 

Consider an infinite 2-D inhomogeneous dielectric cylinder that resides in a 

homogenous medium with permittivity 
b  and permeability 

b ,  The cylinder is invariant 

along the ẑ -axis, has permittivity  ρ  (where ˆ ˆx yρ x y ), which is different from that 

of its surrounding medium on a cross-section Ω  with boundary Ω on the x - y plane 

[Fig.5.1a]. 

 

Figure 5.1  (a) Inhomogeneous dielectric body Ω  with electric permittivity  ρ , 

surrounded by a medium with electrical permittivity b , and illuminated a time-

harmonic electric field  inc
E ρ . (b) Equivalent scenario where the  whole space is 

replaced by surface currents  s
J ρ  and  s

M ρ  propagating in a medium with electric 

permittivity b .  (c) Equivalent scenario where the inhomogeneous dielectric body Ω  

is replaced by polarization volumetric current density  v
J ρ , and the background 

permittivity is artificially raised to eff  by introducing surface currents  s
ρJ  and 

 s
ρM .   

The cylinder is illuminated by zTE  electric and magnetic fields  

     ˆ ˆinc
ρ ρE x yρ

inc inc

x yE E   and     ˆinc
H zρ ρ

inc

zH , respectively. Interaction of these 

fields with the cylinder produces scattered electric and magnetic fields  scat
E ρ  and 

 scat
H ρ  [Fig.5.1a]. (Note: a time dependence j te   is assumed and suppressed). To 
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determine the total electric and magnetic fields      inc scat
ρ ρ E ρE E   and 

     inc scat
ρ ρ H ρH H  , volume and surface equivalence principles are invoked to 

construct equivalent ‘exterior’ [Fig. 5.1b] and ‘interior’ [Fig. 5.1c] scenarios. The 

equivalent exterior scenario consists of incident fields and electric    ˆs
ρ HJ n ρ   and 

magnetic    ˆs
M ρ n E ρ    surface currents  on Ω  radiating in a homogenous medium 

with permittivity 
b  and permeability 

b . These currents together with the incident fields 

generate   E ρ  and  H ρ  exterior to Ω  and zero fields elsewhere.  The interior problem 

consists of surface currents  s
ρJ  and  s

ρM  on Ω  and a volumetric polarization 

current   ( ) ( ) ( ) /J ρ Eρ ρ
v eff

eff E effjk    in Ω  radiating in a homogenous medium with 

permittivity eff  and permeability b ; here   ( ) ( ) / 1ρ ρ ef

eff

E f     is the electric 

contrast. These currents generate  E ρ  and  H ρ  inside Ω  and zero fields elsewhere.   

By judiciously combining interior and exterior electric and magnetic field integral 

operators, a VSIE system of equations for  s
J ρ ,  s

M ρ  and  v
J ρ  can be derived. The 

VSIE  
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(5.1) 

consists of three equations: 1) intα  times an interior surface EFIE plus αext  times 

an  exterior surface EFIE; 2) int  times an interior surface MFIE plus  ext  times an 

exterior surface MFIE; and 3) a VIE equation for  E ρ  inside the scatterer. In (5.1),  
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and  is the identity operator. In the above equations, l l lk     and /l l l    are 

the wavenumber and characteristic impedance of a medium with permittivity l  and 

permeability l ; both ( )

Ω

l

 and ( )

Ω

l are magnetic field integral operators; ( )

Ω

l

 and ( )

Ω

l  are 

surface and volume electric field integral operators, each of which is composed of 

smoothing ( ( )

Ω

ls


 or ( )

Ω

s l ) and singular ( ( )

Ω

lh


 or ( )

Ω

h l ) terms;  2

0H ( ) is the zeroth-order 

Hankel function of the second kind, and . .p v  indicates principal value.  Parameters αext , 

αint
, βext

, and βint
 in principle can be chosen arbitrarily. In practice they are carefully 

chosen to ensure that the 2 2  top-left diagonal sub-block of the matrix that arises upon 

discretization of (5.1) is ‘well-conditioned’ under various conditions.  In [112], αext , βext , 

αint and βint  are all set to one (known as the PMCHWT-CFIE); this choice leads to a 

resonance-free VSIE system of equations, which unfortunately suffers from HC and LF 

breakdown. The HC breakdown can be removed by choosingαint eff ,  βint b , 

αext b  , and  βext b  (known as the Muller-CFIE).  

Independent of the choice of αext , αint , βext  and βint , (5.1) always suffers from a 

LF breakdown. This is because as 0 :  ( ) ( )Ω

s eff

eff O  ,  ( ) (1/ )Ω

h eff

eff O  , 

( ) (1)Ω

eff O  and ( () ) ) 1( ( )Ω

eff

E

eff O , and thus, as 0 , the singular surface term 

( )

Ω

h eff

eff  in the third row of (5.1) becomes dominant.  In the exterior problem [Fig.5.1b] 

the electric field generated by the surface currents inside Ω  is  inc
ρE .  To remove the 

LF breakdown from  (5.1),    inc
E ρ  is added to the third row of (5.1). The final ICVSIE 

system of equations is  
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  (5.5) 

If int eff  , and ext b    (i.e. as in the Muller-CFIE), then as 0  the 

operators: ( ) ( ) ( )Ω Ω

s b s eff

b b eff eff O      ,  ( ) ( ) )( (1)Ω

e eff

E

ff

eff O  , 

( ) ( ) ( )Ω Ω

h b h eff

b b eff eff O       and  ( ) ( ) (1)Ω Ω

b eff

b eff O    ; thus, the smoothing and 

hyper-singular terms of the surface electric field operators both scale as   and (5.2) does 

not suffer from a LF breakdown. Note: for a given mesh density the surface currents 

resulting from solving a Muller-CFIE are known to be less accurate than those 

determined from solving a PMCHWT-CFIE. To achieve an ICVSIE that is both accurate 

and stable, it would be advantageous to construct a Calderon preconditioned PMCHWT-

ICVSIE, using a CFIE analogous to the one described in [118].   

5.2.2 Discrete Formulation 

To solve the ICVSIE we approximate Ω  with a mesh of triangles and Ω  with 

the edges on the surface of the discrete scatterer.  (NOTE: From a numerical standpoint it 

has been found that there is no significant difference when we solve for  D ρ , or  E ρ , 

however, in a proper discretization of  E ρ  there are boundary integrals on the surfaces 

of all elements of the mesh, which increases the setup cost in a numerical approximation 

of (5.5); thus, we span  D ρ  in the discrete formulation.) First, we approximate the 

surface electric current density  s
J ρ , surface magnetic current density    s

M ρ , and the 

volumetric electric flux  D ρ  as  
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where ( )it ρ  is a triangle basis function [119],
 

( )ρiRWG  is Rao-Wilton-Glisson basis 

function [120], 
sN  are the number of nodes on the boundary of the discrete scatterer, 

and vN  are the number of edges of the discrete scatterer.  Then, we test (5.5), using the 

Galerkin testing method and  n̂ ρt ,  ρt , and ( )ρRWG , respectively.  This results in: 
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Where,  
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      ii i iii
t ,ˆ ˆinc inc

E n nρ E ρ   ,  

      i iii
ˆt ,inc inc

H nρ ρH  ,  

      ii
,inc inc

vE ρ ρERWG  ,  

and 

        ,ρ ρ ρA B A B rρ d  .  

We store (5.9) in full-format and compute the self-terms using the singularity-

subtraction technique previously described in [121].  The performance of the ICVSIE is 

compared with that of the VIE (i.e.    ( ) ( )( ) inc

Ω E Eρ ρ
b

E

b   )  and various VSIE 

formulations [Table I].  The latter are constructed by choosing popular combinations of  

αext , αint , βext , βint , ext , int , and min( ( ))ρeff  , and choosing either ( )E ρ  or the electric 

flux      D ρ ρEρ  as the volumetric source unknown [Table 5.1]. 

 

Equation (αext ,αint ,βext ,βint ,
extξ ,

intξ ) 
J

v  field 

associated 

unknown 

HC 

Breakdown 

LF 

Breakdown 

VIE [24] 
(N/A, N/A, N/A, 

N/A,N/A,1) 
D  Yes No 

PMCHWT VSIE-E 

[112] 
(1,1,1,1,0 ,1) E  Yes Yes 

PMCHWT VSIE-D (1,1,1,1,0 ,1) D  Yes Yes 

Muller VSIE-E ( b , eff , b , b ,0,1) E  No Yes 

Muller VSIE-D ( b , eff , b , b ,0,1) D  No Yes 

ICVSIE ( b , eff , b , b , b , eff ) D  No No 

Table 5.1 Integral equation Formulations 
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5.3 Results and Discussions  

This section, presents examples that demonstrate the effectiveness of the proposed 

method for the analysis of both electrically small and large strongly-inhomogeneous 

highly-heterogeneous objects.   

All numerical experiments below involve a four layer circular cylinder that has a 

total radius r  and layer radii / 4r , / 2r , 3 / 4r  and r . The cylinder is approximated by a 

mesh consisting of 1208 triangles, 1850 edges, and a maximum edge length of 0.12r . 

The cylinder resides in a free space background medium with permittivity 0b   and 

permeability 0b  . For iterative convergence and accuracy tests, it is assumed that the 

cylinder is illuminated by a uniform TEz plane-wave propagating along the  x̂  direction 

and a Transpose Free Quasi-minimal Residual (TFQMR) method [122] is used to solve 

each system of equations to a residual error of 510 .    

LF Breakdown: Consider layered cylinders with total radius of 

4 5 9

010 ,10 ,...,10r     having layers (inner to outer) with electric permittivities of 

4

03 10  , 4

010  , 4

02 10   and  4

04 10  . The condition number (i.e. the ratio of the 

maximum singular value to the minimum singular value) of the VIE, VSIEs, and ICVSIE 

systems of equations for each cylinder are shown in Fig. 5.2a.  The condition numbers of 

the VIE and the ICVSIE are relatively constant functions of r , while the condition 

numbers of all the VSIEs are inversely proportional to r .  In contrast to all VSIE 

formulations, the proposed ICVSIE does not exhibit any LF breakdown.  
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Figure 5.2 (a) Condition number of systems of equations as a function of electrical 

size  (b) number of iterations for TFQMR procedure to reach a RRE of 
510

 as a 

function of electrical size  (c) The relative L2 norm error of the electric field inside the 

scatterer as a function of electrical size. 

The effectiveness of TFQMR for solving the discretized VIE, VSIEs, and ICVSIE 

systems of equations is compared. For each cylinder, discretized VIE, VSIEs, and 

ICVSIE systems of equations are solved using TFQMR. The total number of iterations 

required to converge are given in Fig. 5.2b. The number of iterations for the VIE and the 

ICVSIE are relatively constant functions of r , while the number of iterations for all other 

formulations increase with decreasing r . The PMCHWT VSIEs requires the most 

iterations and for 8

010r   and 9

010r   TFQMR does not converge. For all r , the 

ICVSIE requires the least number of iterations and for the smallest 9

010r   the ICVSIE 

requires more than 3.5 times less iterations than all other methods. Fig. 5.2b demonstrates 

the clear benefit of using the ICVSIE as opposed to the VIE or any other VSIE for 

electrically small and high-permittivity scatterers.  

The relative L2 norm error of the electric field inside each of the scatters is shown 

in Fig.5.2c. As the electrical size of the cylinder decreases the PMCHWT VSIEs become 
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less accurate and for cylinders with 5

010r   the relative L2 norm error is above 10% 

and it is not shown.  All of the other formulations exhibit similar and nearly constant 

relative L2 norm error ranging from 1.3% and 2.8%.  The VIE, Muller VSIEs and ICVSIE 

are suitable for accurately analyzing electrically small and high-contrast scatterers.  

HC breakdown: Next the dependence of the condition number of the discretized 

VIE, VSIEs, and ICVSIE systems of equations on the maximum permittivity is studied. 

Consider four concentric layer cylinders each with total radius a0 m x/ 4   and having 

layers (inner to outer) with electric permittivity 
max3 / 4 , 

max / 2 , 
max / 4  and 

max , where  

6

max 0 0 04 ,4 10 ,...,4 10      .  The condition number of the VIE, VSIEs, and ICVSIE 

systems of equations for each cylinder are shown in Fig.5.3a.  The condition number of 

the VIE, and PMCHWT VSIEs [112] grows linearly with r . The condition number of 

both the Muller VSIE and ICVSIE are relatively constant as a function of 
max . All the 

Muller VSIE formulations and the proposed ICVSIE do not exhibit any HC breakdown. 

The average condition number of the ICVSIE is 13.5, which is significantly lower than 

the 73.6 (and 48.1) of the Muller VSIE with D  (and E ) as volumetric unknown. 

 

 Figure 5.3 (a) Condition number of systems of equations as a function of maximum 

electric permittivity (b) number of iterations for TFQMR procedure to reach a RRE of 
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510

 as a function of maximum electric permittivity (c) The relative L2 norm error of 

the electric field inside the scatterer as a function of maximum electric permittivity. 

The effectiveness of TFQMR for solving the discretized VIE, VSIEs, and ICVSIE 

systems of equations is compared. For each cylinder, discretized VIE, VSIEs, and 

ICVSIE systems of equations are solved using TFQMR and the total number of iterations 

required to converge are shown in Fig. 5.3b. The number of iterations for the Muller 

VSIEs and the ICVSIE are relatively constant functions of 
max , while the number of 

iterations for all other formulations increase with increasing 
max . Again for all 

max , the 

ICVSIE requires the least number of iterations. Fig. 5.3b demonstrates the clear benefit of 

using the ICVSIE as opposed to the VIE or any other VSIE for high-permittivity 

scatterers.  

The relative L2 norm error of the electric field inside each of the scatters for each 

formulation is shown in Fig. 5.3c. The error decreases slightly as 
max  increases. For 

small 
max  all formulations give a similar error. Overall the PMCHWT VSIE-E is slightly 

more accurate than all the other formulations. For example, for 6

max 04 10    the 

PMCHWT VSIE-E achieves an error of 1.2% and the ICVSIE an error of 1.6%.  The 

VIE, VSIEs and ICVSIE are all suitable for accurately analyzing high-contrast scatterers.  

5.4 Conclusions 

We presented and computationally verified a novel approach for computing 

electromagnetic fields inside heterogeneous high-contrast scatterers.  Unlike previous 

VIE and VSIE approaches, our method does not suffer from high-contrast or low-

frequency breakdown. While the method as presented is suitable only for weakly 

inhomogeneous cylinders, it can be extended to strongly inhomogeneous scatterers by 

introducing additional surface variables on interfaces between volumes with vastly 

different permittivities. An extension of such a scheme in 3-D is shown in chapter 6. 
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CHAPTER 6  
3D Internally Combined Volume-Surface Integral Equation 

6.1 Introduction 

In the previous chapters the ICVSIE was introduced and it was shown that the 

ICVSIE is low-frequency stable for the analysis of scattering by high-contrast and 

negative permittivity infinitely long cylinders.  In this chapter, the ICVSIE is shown to 

exhibit the same properties for general 3D structures. More importantly, it is used to 

determine the electric fields generated during TMS.   

This chapter is organized as follows. Section 6.2 introduces notation and presents 

relevant background material relating to the construction of VIE, VSIE, and ICVSIE. 

Section 6.3 presents numerical results that demonstrate the effectiveness of the proposed 

formulation. Section 6.4 summarizes our conclusions and avenues for future research. 

6.2 Formulation  

6.2.1 Background 

Consider an inhomogeneous dielectric object that resides in a homogenous 

background medium with permittivity b  and permeability b . The inhomogeneous object 

has permittivity   r , ˆ ˆ ˆy zx  x yr z , and resides in a domain Ω  with boundary Ω  and 

outward pointing normal n̂  [Fig. 6.1a]. (Note: Through this chapter, a time dependence 

j te   is assumed and suppressed.)  
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Figure 6.1 (a) Scattering scenario (b) equivalent exterior scenario (c) equivalent 

interior scenario. 

 

Whenever the object is illuminated by incident time-harmonic electric and 

magnetic fields ( )inc
E r  and ( )inc

H r , respectively.  The dielectric object generates 

scattered electric and magnetic fields ( )scat
E r  and ( )scat

H r  [Fig. 6.1a]. The total electric 

and magnetic fields are inc scat( ) ( ) ( ) E r E r E r  and       inc scat
r rH H H r .  To determine 

( )E r  and ( )H r , volume and surface equivalence principles are invoked to construct 

equivalent ‘exterior’ [Fig. 6.1b] and ‘interior’ [Fig. 6.1c] scenarios. The equivalent 

exterior scenario consists of incident fields and electric    ˆ s
rJ n H r  and  magnetic 

   ˆ s
M r n E r  surface currents  on Ω  radiating in a homogenous medium with 

permittivity b  and permeability b . These currents together with the incident fields 

generate   E r  and  H r  exterior to Ω  and zero fields elsewhere. The exterior electric 

field integral equation (EFIE) and magnetic field integral equation (MFIE) and VIE can 

be derived by evaluating the electric and magnetic fields on the surface and the electric 

field inside the scatterer 

 ( ) ( )( )
[ ]( ) [ ](ˆ ˆ ˆ) ( )

2

b

b

b       
s

s s c

Ω

in

Ωn
M r

J M r r Ωn n E rr  , (6.1) 

 ( ) ( )( )
[ ]( ) [ ](

1
ˆ ( )ˆ

2
ˆ )

b

b b


       

s
s s

Ω Ω

incJ r
M J r Ωn r n rH rn  , (6.2) 

 ( ) ( )[ ]( ) [ ]( ) ( )b b

b    incs s

Ω Ωr EJ M r r r Ω  , (6.3) 

where 



 

104 

 

 
 

 
 

 
 

( )

( )

exp exp
[ ]( ) ( )

4 4

exp
[ ]( ) . .

4

l ll

l

l

ll

jk jk
jk d d

jk

jk
p v d

 





 





   
   

 

 
 







 



Ω

Ω Ω

Ω

Ω

r r' r r'
r r' r' r'F F ' r'

r r' r r'

r r'
r r' r'

r r
F

'

F

F

,    (6.4) 

 

 
 

 
 

 
 

2( )

( )

exp exp
[ ]( ) ( )

4 4

exp
[ ]( )

4

l ll

l

ll l

l

jk jk
k d d

jkjk
d

 

 

   
   

 

 
 



 



Ω

Ω Ω

Ω

Ω

r r' r r'
r r' r' r' r'

r r' r r'

r r'

F F ' F

F Fr r' r'
r r'

 , (6.5) 

l l lk     is the wavenumber, /l l l    denotes the characteristic impedance of the 

medium with permittivity l  and permeability 
l , ( )l

Ω is the surface electric field integral 

operator, ( )l

Ω  is the surface magnetic field integral operator, 
( )l

Ω is the volume electric 

field integral operator, 
( )l

Ω  is the volume magnetic field integral operator, and . .p v  

indicates the principal value of the integral. In the ‘interior’ scenario, surface currents 

( ) s
J r  and ( ) s

M r  on Ω  and volumetric polarization current 

( )( ) ( ) ( ) /v eff

eff D effjk  J r r E r
 in Ω  radiate in a homogenous background medium with 

permittivity eff
 and permeability b , where 

 ( ) ( ) ( ) / 1/ ( )ef

eff

f

D    r rr
 is the electric 

contrast. These currents generate ( )E r  and ( )H r  inside Ω  and zero fields elsewhere. The 

interior EFIE and MFIE and the volume integral equation can be derived by evaluating 

the fields generated on the surface of the object and inside the object as  
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Combining (6.1)-(6.3) with (6.6)-(6.8) yields the following 3-D ICVSIE system of equations:  
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Eqn. is obtained by (i) adding αext
 times exterior EFIE (Eqn. (6.1)) to αint

 times interior 

EFIE (Eqn. (6.6)), (ii) adding 
ext  times exterior MFIE (Eqn. (6.2)) to 

int  interior MFIE  (Eqn.  

(6.7)), and (iii) adding 
ext  times exterior volume integral equation (Eqn. (6.3)) to  

int  interior 

volume integral (Eqn. (6.8)). 

  

6.2.2 Discrete Formulation 

To solve the 3-D ICVSIE system of equations, Ω  is discretized with a mesh of hexahedrons 

while Ω  is discretized with a mesh of rectangles. Then, ( )s
J r ,   ( )s

M r , and ( )D r  are 

approximated as  
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jD Br
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  (6.12) 

where ( )jR r  is a roofttop basis function [123], ( )jBr r  is a brick basis function [123], sN  

is the number of edges on the boundary of the mesh, and vN  is the number of rectangles of the 

mesh. Then, we test the surface integral equations in Eqn. (6.9) with ( )iR r   basis functions and 

the volume integral equation with ( )iBr r . The testing yields  
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      ii
Br ,inc inc

v rE E r  ,  

and 

        , d r r rA B rB A r .  

The matrix is compressed leveraging fast convolutions via FFTs [124] and self-terms are 

calculated using the singularity-subtraction technique previously described in [121].  The 

performance of the ICVSIE is compared with that of the VIE (i.e. 

   ( ( ))/ )( b

D

b   inc

Ω D r rE )   

6.3 Results and Discussions  

6.3.1 High-Contrast/Low-Frequency Layered Sphere 

In the following section we consider scattering by dielectric four concentric layer 

spheres each with radius r , layer radii / 4r , / 2r , 3 / 4r  and r  and electric permittivity 

inner to outer of 
max / 4 , 

max / 2 , 
max3 / 4  and 

max . Each sphere resides in a free-space 

background medium with 
0b   and 

0b   and is illuminated by a time-harmonic 3 kHz  

x̂ -polarized plane-wave propagating along the ẑ  direction. The ICVSIE is discretized 

with 
max / 4eff  . 

Accuracy: Consider layered spheres with 4 7

max 0{10,10 ,10 }  , and 

max1/ (10 ) mr  . Each sphere is approximated by a mesh consisting of 64 64 64  square 

voxels each with dimensions / 32 / 32 / 32r r r  . The electric field are computed using 

the VIE, ICVSIE, and a Mie series solution. The magnitudes of the electric field 

components along lines crossing the center of the sphere are shown in fig. 6.2.  There is 

good agreement between the analytical and both the VIE and ICVSIE solutions for the 

4

max 0{10,10 }   cases. However, for the case where 7

max 010   only the ICVSIE accurate.  

The ICVSIE is more accurate than the VIE for high permitivities. 
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Figure 6.2 Electric field along lines crossing the center of the four layer sphere: 

(a)
max 010   (b) 4

max 010   (c) 7

max 010  . 

Condition Number: Consider layered spheres with 2 7

max 0{10,10 ,...,10 }  , and 

max1/ (10 ) mr  . Each sphere is approximated by a mesh consisting of 16 16 16  square 

voxels each with dimensions / 8 / 8 / 8r r r  . The condition number of the matrix arising 

from the discretization of VIE and ICVSIE for each sphere are computed and shown in 

figure 6.3. The condition number of the ICVSIE is constant with respect to increasing 

permittivity, whereas the VIE condition number increases linearly with increasing 

permittivity. For electrically small spheres the ICVSIE is stable with respect to increasing 

permittivity. Thus making it suitable for analysis of TMS fields. 
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 Figure 6.3 Condition number as a function of maximum electric permittivity. 

6.3.2 MRI Derived Head Model 

We approximate the head by a ‘MRI-derived’ conductivity head model as 

described in section 2.3.2. The head model has 128 128 62  voxels with an edge length 

of 2.4 mm. First, the head model is excited by a Figure-8 coil consisting of two 

filamentary wire circular loops with radius of 3cm side by side. The coil is placed 1cm 

above the head as shown in Fig. 6.4 and is driven by a time-harmonic current with 

frequency of 3kHz and having a magnitude of 9.072 Ak . 

 

Figure 6.4 TMS setup 
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The electric field generated inside the MRI derived brain is determined by solving 

ICVSIE and VIE systems of equations using a Transpose Free Quasi-minimal Residual 

(TFQMR) method [122].  The TFQMR method is run till a residual error of 410  is 

reached or the method stagnates.  The iterative convergence is shown in Fig. 6.5.  For 

TMS scenarios the VIE system of equations is ill-conditioned and it did not converge.  

Contrastingly, the ICVSIE converged after 212 iterations. In conclusion, unlike the VIE, 

the ICVSIE can be used in conjunction with iterative solvers for determining fields 

generated during TMS.  

 

Figure 6.5 Relative Residual history for the VIE and ICVSIE 

The total electric field computed using the ICVSIE and the incident field on 

selected planes are shown in Fig. 6.6.  As expected the total field is a distorted version of 

the incident electric field.   
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Figure 6.6 Electric field (V/m) generated during TMS scenario on various planes: (a) 

incident field on the scalp (b) total field on the scalp (c) incident field on a coronal 

plane crossing the center of the coil (d) total field on a coronal plane crossing the 

center of the coil (e) incident field on a sagittal plane crossing the center of the coil (f) 

total field on a sagittal plane crossing the center of the coil  

Second, A BC-70 coil is placed by a (simulated) Medtronic MC-B70 Figure-8 

coil (P/N 9790) [45] [Fig. 3.4] consisting of two spiral wings, each of which has 10 wire 

turns and inner/outer radii of 12 mm/ 54 mm , and is driven by a time-harmonic current 

with frequency of 3kHz and having a magnitude of 9.072 Ak . The left and right windings 

are bent by angles of 18.5° and 16°, respectively, and positioned 5 mm  away from one 

another (measured at the center of the coil). The coil is centered as shown in Fig. 6.7.  
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Figure 6.7 TMS setup: (a) side view (b) front view (c) top view 

 

The electric field generated inside the MRI derived brain is determined by solving 

ICVSIE and VIE systems of equations using a Transpose Free Quasi-minimal Residual 

(TFQMR) method [122].  The TFQMR method is run till a residual error of 410  is 

reached or the method stagnates.  The iterative convergence is shown in Fig. 6.8.  For 

TMS scenarios the VIE system of equations is ill-conditioned and it did not converge.  

Contrastingly, the ICVSIE converged after 179 iterations. In conclusion, unlike the VIE, 

the ICVSIE can be used in conjunction with iterative solvers for determining fields 

generated during TMS.  

 

Figure 6.8 Relative Residual history for the VIE and ICVSIE 



 

113 

 

The electric field computed using the ICVSIE along selected planes are shown in 

Fig. 6.9.  The overall shape of the field and magnitudes match those expected for this 

TMS scenario.  

 

Figure 6.9 Electric field generated during TMS on various planes: (a) transverse plane 

(b) coronal plane (c) sagittal plane 

 

6.4 Conclusions 

We presented and computationally verified a 3D implementation of the ICVSIE.  

Unlike other integral equation approaches for analyzing electromagnetic fields generated 

inside heterogeneous high-contrast scatterers, our method does not suffer from high-

contrast or low-frequency breakdown.  



 

114 

 

CHAPTER 7  
Conclusions and Future Work 

Advances in computation technology enable the use of computational/numerical 

techniques for the development of new technologies and scientific discovery.  Thus far, 

high-fidelity numerical models have only been developed for use in a handful of research 

areas.  In this research we have developed and applied new numerical techniques to 

improve Transcranial magnetic stimulation (TMS) systems.   

7.1  Summary 

This thesis presented several Electromagnetics (CEM) tools for the design of next 

generation Transcranial magnetic stimulation (TMS) systems. The contibutions of this 

thesis are the following: 

TMS coil design: We developed a systematic, multi-objective Pareto genetic 

algorithm based technique for synthesizing multi-channel arrays that minimize the 

volume of the stimulated region required to reach a prescribed penetration depth. 

Numerical data shows that the arrays designed via the proposed technique are vastly 

superior to that of existing TMS coils. Furthermore, we devised a method to convert the 

multi-channel arrays into single-channel ones without materially deteriorating their 

performance.  

Uncertainty Quantification of TMS: We have developed a framework that 

leverages a high dimensional model representation (HDMR) for statistically 

characterizing the region stimulated by TMS. First, we generate parameterized surrogate 

models for the electric field. Next, we use the surrogate models in lieu of the 
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electromagnetic simulator to obtain the statistics of the stimulated regions via Monte-

Carlo. The framework was then used to analyze the uncertainty of the electric field 

generated during TMS treatments of depression. 

Fast direct solver for TMS: By leveraging the multi-frontal approach, geometric 

bisection and compressibility using hierarchical matrices, we constructed a fast direct 

solver determining the electric fields generated during TMS using an FD method.  After a 

single factorization step the solver is able to solve the FD system of equation in seconds, 

and thus, enabling its use in real-time TMS applications.  

Internally Combined Volume Surface Integral Equation (ICVSIE): A novel 

ICVSIE approach for analyzing scattering by highly heterogenous objects was 

introduced.  The ICVSIE can be used to analyse scattering from objects with arbitrarily 

large and negative permitivities (appendix A).  It is also low-frequency stable enabling its 

use for analysis of TMS fields. 

We have developed CEM tools, which enable neuroscientists to better predict the 

stimulated region during TMS, as well as, design TMS systems producing highly 

localized stimulation. This will broaden TMS’ research and therapeutic appeal. 

7.2 Future Work 

The coil design methodologies and computational techniques introduced in this 

work vastly differ from the ones previously used for computer aided design and analysis 

of TMS.  Correrspondingly, all of the techniques remain in their infancy and several 

ongoing efferts are being made to further advance them.  

TMS coil design: The algorithm described in chapter 2 for synthesizing single-

channel TMS coil arrays has been numerically shown to come up with designs that are 

vastily superior to currently used TMS coils.  However, experimental validation of our 

results remains to be done. Currently, prototypes of the coils are being built and the 

magnetic fields they generate during operation are being measured using a technique 

described in [125].   
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Uncertainty Quantification of TMS: A framework for quantifying uncertatinty of 

the electric field generated during TMS resulting from uncertainty in the TMS procedure 

was developed in this work. The framework was applied to analyze the uncertainty of the 

electric field generated during TMS depression therapy.  However, further refinements to 

the framework and experiments remain to be done.  The framework needs to include 

uncertainty quantification of other parameters that are of interest to neuroscientists (e.g. 

the location/volume/depth of the stimulated region during TMS). Since the level of TMS 

intensity is often altered during the TMS procedure and it is not understood how this affects 

the electric field generated in underlying tissue, the framework is being used to study the 

effects of the level of TMS intensity on the TMS procedure.  In the future, this technique 

could be hybridized with the one introduced in chapter 2 to come up with coil designs 

that exhibit optimal trade-offs between penetration depth, volume of excitation, and 

variance of the electric field as a function of uncertainty in the TMS procedure.  

Fast direct solver for TMS: In chapter 4, a fast direct solver for the FD linear 

systems of equations, which after a single factorization step it’s able to solve the linear 

system of equation in seconds, and thus, enabling its use in real-time applications was 

introduced. Future research will be oriented on the improvement of the code 

parallelization and on utilization of GPUs that could facilitate the computation of the 

electric fields in a fraction of a second.   

New integral equation formulation for TMS: In chapters 5 and 6 and Appendix A, the 

Internally Combined Volume-Surface Integral Equation (ICVSIE) integral equation was 

presented and it was shown that the discretization of the ICVSIE yields matrices with 

condition numbers that are unaffected by the materials maximum permittivity, electric 

size, or sign of the pemittivity.  Currently an implementation based on triangle and 

tetrahedral elements of the ICVSIE method for analysis of 3D structures is being 

developed.   

7.3 Contributions 

This research resulted in the following contributions: 
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APPENDIX A  
Internally Combined Volume-Surface Integral Equation for 

Plasma Scatterers 

A.1 Introduction 

Plasmas exhibit electromagnetic (EM) properties that lend themselves to 

applications ranging from microelectronic device manufacturing to lighting and military 

stealth systems. Plasmas encountered in many real-world applications are highly 

heterogeneous and have negative permittivity [126, 127]. To facilitate the development of 

new technologies that leverage plasmas, fast and accurate EM solvers are called for. 

Unfortunately, the application of standard differential and volume integral equation (VIE) 

techniques to the electromagnetic analysis of media with negative permittivities results in 

ill-conditioned systems of equations that converge slowly [128]. Here we propose the use 

of an Internally combined volume-surface integral equation (ICVSIE) technique to 

alleviate this problem [129, 130].  

Previously, a ray tracing solver was used to analyze radiation from antennas on 

plasma-engulfed re-entry vehicles [126, 127]. Although this solver was shown to be 

effective for analyzing scattering by plasmas with interfaces between positive and 

negative permittivity media, it does not allow modeling of plasmas with rapid spatial 

permittivity variations, thereby restricting its usefulness to the analysis of non-turbulent 

plasmas.  

Recently, it was shown that the application of surface combined field integral 

equations (CFIEs) to the analysis of scattering by homogenous negative permittivity 

media residing in a positive permittivity background medium results in well-conditioned 

systems of equations [131]. Unfortunately, surface CFIEs are not suited for analyzing EM 
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scattering by highly heterogeneous media. While VIEs are better fit for this task, they are 

not effective when used to analyze scattering from objects containing interfaces between 

positive and negative permittivity media [132].  

Here an ICVSIE approach is proposed for analyzing scattering by highly 

heterogeneous negative permittivity media. In the ICVSIE, regions with negative 

permittivities are wrapped into equivalent electric and magnetic surface currents, and 

surface equivalence principles are invoked to artificially change the sign of the 

permittivity of the “background medium” in which the volume polarization currents of 

the negative permittivity medium radiate. Next, the surface and volume currents are 

computed by solving a VSIE system composed of coupled surface CFIEs and new VIEs. 

The new VIEs are constructed by adding contributions due to the surface currents 

exterior to the scatterer and propagating in the “background medium”. The proposed 

scheme leverages a Muller-CFIE [116], which is well-conditioned when applied to 

homogenous negative permittivity media and it is applied to the analysis of time-

harmonic 2-D TEz scattering phenomena. That said, its extension to 3-D is 

straightforward. 

 It’s worthwhile to note here that standard VSIE schemes are well suited for 

analyizing scattering by negative permitivity media.  However, VSIEs suffer from a low-

frequency (LF) breakdown: when the mesh that discretizes the scatterer contains 

elements with dimensions that are much smaller than the wavelength, discretization of 

the VSIE again results in ill-conditioned systems of equations. Contrastingly, the ICVSIE 

does not suffer from a LF breakdown and our results show that it outperforms a Muller-

VSIE for analyzing negative permitivity media. (Note: throughout this Letter, a time 

dependence j te   is assumed and suppressed, where 2 f  , t  denotes time, and f  is the 

frequency of analysis) 

A.2 Formulation  
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Details of the derivation of VSIEs, and the ICVSIE and definitions for the 

notation are included in section 5.2.1. The general ICVSIE system of equations is the 

following: 
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, (A.1) 

where αint eff ,  βint b , αext b  ,  βext b  , int eff   and 
ext b   .   Here eff    is 

chosen to match the sign of the permittivity of the scatterer.  All of the ICVSIE results are 

compared with results obtained via a VIE and a Muller VSIE-D (i.e. (A.1) with αint eff , 

 βint b , αext b  ,  βext b  , 
int eff   and 0ext  ).  

To solve the ICVSIE, VIE and the Muller VSIE-D,   is approximated with a 

mesh of triangles. The surface electric and magnetic currents  S
J ρ  and    S

M ρ , and the 

electric flux ( )D ρ  are approximated using triangle  ρt ,  n̂ ρt , and Rao-Wilton-Glisson 

 ρRWG  basis functions, respectively. The solutions are obtained using a transpose-free 

quasi-minimal residual (TFQMR) iterative solver. Matrix-vector multiplications at each 

iteration of TFQMR are accelerated via the adaptive integral method (AIM) [133].  

A.3 Results and Discussions  

This section presents numerical results that demonstrate the effectiveness of the 

proposed ICVSIE when analyzing scattering from heterogeneous cylinders with negative 

permittivity that reside in free-space with permittivity 
0b   and permeability 

0b  . In 

all examples considered, a circular cylinder with diameter d  is illuminated by a TEz 

plane-wave propagating along the ˆx  direction. Unless noted otherwise, the cylinder 

consists of four homogenous concentric layers with diameters / 4d , / 2d , 3 / 4d , and d , 



 

122 

 

and permittivities 5

0( 1 10 )i   , 5

0( 2 10 )i   , 5

0( 4 10 )i   , and 5

0( 3 10 )i   , respectively. 

The quantities   S
J ,   S

M , and  D  are obtained by iteratively solving the ICVSIE and the 

Muller VSIE-D with 5

0( 2 10 )eff i    , as well as the VIE. L2 error norms of the obtained 

quantities are computed using the Bessel series solution as a reference.  

First, the accuracy and convergence of the ICVSIE, Muller VSIE-D and VIE 

solutions are investigated for increasing mesh densities. For this purpose, the cylinder 

with 
0 / 2d   is discretized using five uniform meshes with 

tN  = 310, 1240, 4960, 

19840, and 79360 triangles corresponding to maximum edge lengths of 
00.03 , 

00.015 , 

00.0075 , and 
00.00375 , and 

00.001875 , respectively. The L2 norm errors of   S
J ,   S

M , 

and  D  obtained by the proposed ICVSIE formulation are listed in Table A.1. As 

expected, all L2 error norms decrease with increasing mesh density. The number of 

iterations required for the relative residual error (RRE) of the ICVSIE, Muller VSIE-D 

and VIE solutions to reach to 310  and 810  are tabulated and shown in Table A.2 and Fig. 

A.1 respectively. As the mesh density changes from low to high, the number of iterations 

required to reach an RRE of 310  changes from 33 to 48 and from 60 to 276 for the 

ICVSIE and the Muller VSIE-D, respectively. For meshes comprising more than 4960 

triangles, the iterative solution of the VIE failed to converge to an RRE of 310  in 10,000 

iterations. Furthermore, the number of iterations increases with 
tN  for the Muller VSIE-

D and VIE systems’ solutions. On the other hand, while 
tN  increases, the number of 

iterations for the ICVSIE changes only negligibly. 

tN  

Quantity 
310 1240 4960 19840 79360 

S
M  0.0877 0. 0449 0. 0230 0. 0125 0.0081 

S
J  0.0526 0. 0268 0. 0133 0. 0066 0.0044 

D  0.1251 0.0613 0.0309 0. 0169 0.0111 

Table A.1 L2 Norm errors of quantities obtained by ICVSIE system 

tN  

System 
310 1240 4960 19840 79360 

ICVSIE 33 38 39 42 48 

Muller 

VSIE-D 
60 86 111 169 276 

VIE 250 884 5468 >10,000 >10,000 
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Table A.2 Number of iterations required for RRE of systems’ solution to reach to 310  

while the mesh density changes 

 

Figure A.1 Analysis with different mesh densities. Number of iterations versus RREs 

of (a) ICVSIE, (b) Muller VSIE-D, and (c) VIE systems’ solutions to reach to 810 . 

Next, the convergence of the ICVSIE, Muller VSIE-D and VIE solutions are 

investigated for increasing scatterer size. To this end, the diameter of the cylinder is 

increased from 
0 / 4d   to 

04d   by a factor of 2 for a total of five times. Each cylinder 

is discretized such that the maximum edge length is around 
00.06 . The resulting five 

meshes consist of tN  = 310 (
0 / 4d  ), 1240, 4960, 19840, and 79360 (

04d  ) triangles. 

The number of iterations required for the RRE of the ICVSIE, Muller VSIE-D and VIE 

solutions to reach to 310  and 810  are tabulated and shown in Table A.3 and Fig. A.2, 

respectively. As the cylinder diameter changes from 
0 / 4 to 

04 , the number of iterations 

required to reach an RRE of 310  changes from 22 to 389 and from 51 to 1355 for the 

ICVSIE, Muller VSIE-D, respectively. For cylinders with diameters larger than 0 , the 

iterative solution of the VIE system failed to converge to an RRE of 310  after 10,000 

iterations. As the diameter of the cylinder increases, the number of iteration increases for 

both the ICVSIE and Muller VSIE-D systems’ solutions, yet the number of iterations 
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required to reach to RRE of 810  for the solution of ICVSIE system is five times less than 

that for the solution of Muller VSIE-D system.  

 

Figure A.2 Analysis with different cylinder diameters. Number of iterations versus 

RREs of (a) ICVSIE, (b) Muller VSIE-D, and (c) VIE systems’ solutions.  

Diameter 

System 
0 / 4  

0 / 2   
0  

02   
04  

ICVSIE 22 39 59 120 389 

Muller VSIE-

D 
51 86 158 424 1355 

VIE 186 884 7727 >10,000 >10,000 

Table A.3 Number of iterations required for RRE of systems’ solution to reach to 310  

while the diameter of cylinder changes 

Moreover, the bistatic radar cross sections (RCSs) of cylinders obtained by 

iteratively solving the ICVSIE, Muller VSIE-D and the VIE systems and compared with 

the exact ones computed by the Bessel series solution [Fig. A.3]; the numerical results are 

in good agreement with the analytical solution. Note that RCSs obtained by VIE scheme 

for the cylinders with diameters larger than 0  were not included in Fig. A.4(d) and (e) as 

the solution of VIE system failed to converge to RRE of 310  for those cylinders.  
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Figure A.3 Analysis with different cylinder diameters. The bistatic RCS of the 

cylinder with (a) 
0 4d  , (b) 

0 2d  , (c) 
0d  , (d) 

02d  , and (e) 
04d   obtained by 

Bessel series (Exact) solution, ICVSIE, Muller VSIE-D, and VIE systems’ solutions.  

Finally, the convergence of the iterative solutions of the ICVSIE, Muller VSIE-D 

and VIE solutions is examined as the number of cylinder layers is increased from two to 

sixteen by a factor of two for a total of four times. The total cylinder diameter is kept 

constant at  
0 / 2d  . Each cylinder  consists of layerN  layers with thickness layerd N  and is 

meshed such that the maximum edge length and total number of triangles are 
00.0075  

and 18,240, respectively. For each cylinder, the permittivities of the layers from 

innermost to outermost are 5 5

0 layer 0( 1 10 )  (innermost layer), ,( 10 )i N i        (outermost layer) . The 

number of iterations required for the RRE of the ICVSIE, Muller VISE-D and VIE 

solutions to reach to 310  and 810  are tabulated and shown in Table A.4 and Fig. A.4  

respectively. As the number of layers increases, the number of iterations required to reach 

an RRE of 310  changes from 35 to 72 and from 35 to 885 for the ICVSIE and Muller-

VSIE-D, respectively. The VIE solution failed to converge to an RRE of 310  in 10,000 

iterations for cylinders with two to eight layers and it converges after 9,748 for cylinders 

with sixteen layers.  As the number of layers increases, the number of iterations increases 

for both the ICVSIE and Muller VSIE-D. That said, the number of iterations required for 

the solution of ICVSIE system is smaller than that for solving the Muller VSIE-D.  
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Figure A.4 Analysis with different numbers of layers. Number of iterations versus 

RREs of (a) ICVSIE, (b) Muller VSIE-D, and (c) VIE systems’ solutions. 

 

Number of layers 

System 
2 4 8 

16 

ICVSIE 35 42 52 72 

Muller VSIE-D 35 628 687 885 

VIE >>10,000 >>10,000 >>10,000 99,748 

Table A.4 Number of iterations required for RRE of systems’ solution to reach to 310  

while the number of layers changes   

A.4 Conclusions 

A well-conditioned ICVSIE formulation for analyzing scattering from highly-

heterogeneous and negative permittivity plasmas was proposed. The numerical results 

showed the accuracy and rapid convergence of the proposed ICVSIE scheme.  
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