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ABSTRACT 

 

 Inflammation is a complex biological response to stress triggered by 

microbial infections. Although inflammation drives microbial clearance, if 

uncontrolled it leads to cellular damage and cell death. Previous studies have 

demonstrated that endoplasmic reticulum (ER) and mitochondrial stress programs 

can contribute to immunity by mediating production of inflammatory cytokines; 

however, the regulatory mechanisms are unclear. By utilizing Brucella abortus 

cattle vaccine strain RB51, we elucidated how ER and mitochondrial stress 

mediate inflammatory responses and the eventual fate of infected cells. Our initial 

findings revealed that RB51-induced programmed cell death (PCD), mediated by 

caspase-2-induced mitochondrial damage, led to activation of proapoptotic 

caspase-3 and -8. Notably, this caspase-2 mediated PCD was accompanied by 

the production of proinflammatory cytokines, TNFα and IL-1β, a phenomenon 

associated with pyroptosis, not PCD. These observations led us to further 

investigate how caspase-2 could regulate inflammation and proinflammatory cell 

death. As early as 2 hours post infection, RB51 triggered activation of ER stress 

sensor, IRE1, leading to increased ROS levels in the mitochondrial network. This 

sharp increase in mitochondrial ROS elicited the recruitment of inflammasome 

component NLRP3 and caspase-2 to the mitochondrial network, which triggered 

mitochondrial damage. Damage promoted release of mitochondrial danger signals 
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into the cytosol and the activation of the NLRP3-ASC-caspase-1 inflammasome, 

which processes the inflammatory cytokine, IL-1β. Damaged mitochondria are 

usually tagged for removal by a mitochondria-specific form of autophagy called 

mitophagy. We observed that killed RB51 activated a second ER stress sensor, 

PERK, which suppressed IL-1β production. Upon PERK activation, the 

downstream transcription factor ATF4 initiated transcription of Parkin, a key 

regulator of mitophagy, which decreased mitochondrial damage signals and 

activation of the inflammasome. We have discovered that the partnership between 

the ER and mitochondria is essential for mediating inflammatory responses and 

determining cell fate. By fine-tuning the immune response via selective activation 

of ER stress sensors, we have laid the groundwork for therapeutic targeting of 

these regulators in inflammatory diseases associated with cellular stress. 
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Chapter 1 

 

Endoplasmic reticulum and mitochondria: key regulators of cell fate and 

immunity 

 

Introduction 

Exposure to microbial pathogens triggers contextual signals that result in 

host immune responses, defining the outcome of infection. Activation of cellular 

stress programs by infection can trigger the secretion of microbicidal effectors and 

inflammatory mediators. These cellular stress responses protect the cell against 

unfavorable conditions by minimizing damage and maintaining host tissue 

integrity. If cellular stress remains unresolved, these stress programs can initiate 

cell death, thus limiting microbial spread and replication. Two essential organelles, 

the endoplasmic reticulum (ER) and the mitochondrial network, are key platforms 

for sensing and signaling cellular stress. Unresolved or prolonged ER and 

mitochondrial stress are implicated in many inflammatory or degenerative 

diseases. Although key proteins in these stress pathways have been well 

characterized, their crosstalk with innate immune signaling and their role in the 

regulation of host defense are less clear. Recent studies, highlighted in this 

introductory chapter, emphasize the emerging importance of ER and mitochondrial 

stress in infection-induced inflammation.  
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Endoplasmic Reticulum: central hub for signaling integration  

The endoplasmic reticulum (ER) is a dynamic organelle involved in lipid 

production, protein translational modification and protein folding. Stress stimuli 

such as nutrient deprivation or infection can perturb normal ER function and lead 

to an accumulation of misfolded proteins within the ER, triggering the Unfolded 

Protein Response (UPR) [1]. UPR activation begins with dissociation of the ER 

stress chaperone BiP (GRP78) from three UPR stress sensors: ATF6, IRE1, and 

PERK (Fig. 1.1). The unfolded proteins sequester BiP, allowing for the three stress 

sensors to activate signaling pathways aimed at relieving ER stress [2]. These 

three UPR sensors separately regulate the expression of chaperones, cytokines, 

cell death components, as well as translational attenuation. Malfunctions in the ER 

stress response caused by aging, mutations, or environmental factors (e.g., 

infection) can result in various pathologies such as inflammatory and 

neurodegenerative disorders.  
UPR, the stress signaling headquarters 

ATF6: an ER-responsive transcription factor 

 Activating transcription factor 6 (ATF6) is localized to the ER during 

unstressed conditions. Under stress conditions, BiP dissociation allows transport 

of ATF6 to the Golgi apparatus where it is processed by site 1 and 2 proteases 

(S1P and S2P) [3, 4]. Upon cleavage, ATF6 translocates to the nucleus resulting 

in the increased expression of endoplasmic reticulum associated protein 

degradation (ERAD) encoding genes as well as XBP1, a downstream target of 



Figure 1.1: Schematic of ER stress sensors ATF6, IRE1, and PERK.

Accumulation of misfolded or unfolded protein aggregates in the ER lumen, leads

to activation of three ER transmembrane proteins, PERK, IRE1, and ATF6. BiP,

an ER chaperone, normally is bound to the stress sensors and keeps them

inactive. Accumulation of misfolded proteins triggers BiP dissociation from them

to assist with protein folding thus triggering activation of the 3 stress pathways.

Upon activation, PERK phosphorylates eIF2α which inhibits global protein

synthesis and reduces the protein load in the ER lumen. ATF4 expression

increases upon eIF2α phosphorylation and translocates to the nucleus allowing

for transcription of UPR target genes. These genes include CHOP, a

proapoptotic transcription factor that results in cell death if ER stress conditions

persist, and GADD34, which acts as a negative regulator of the PERK pathway

by dephosphorylating eIF2α. Active IRE1 splices XBP1, a mRNA encoding a

transcription factor that can lead to upregulation of ER chaperones and other

UPR target genes. ATF6 activation leads to its translocation to the Golgi where it

is sequentially cleaved by site 1 and site 2 proteases. This leads to the release of

the N-terminal ATF6 fragment which translocates to the nucleus and activates

UPR target genes. In addition to UPR target genes, these three sensor can also

increase expression of proinflammatory cytokines (e.g. IL-6 and TNF) as well as

autophagy proteins – both of which contribute to infection resolution.

3
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IRE1 [5]. The leucine-zipper domain of ATF6 allows for interaction with the ER 

stress response element (ERSE) located in the promoter of UPR-responsive 

genes.  

IRE1: Regulator of mRNA and protein degradation 

 Upon BiP dissociation, Inositol-requiring Enzyme 1 (IRE1), located in the 

ER membrane, dimerizes and autotransphosphorylates, activating its kinase and 

endoribonuclease domains. The endoribonuclease domain splices an unusual 

cytoplasmic mRNA encoding X-box binding protein 1 (XBP1). This allows for 

translation of an active XBP1 transcription factor that upregulates UPR-related 

genes, e.g., that mediate the ER associated degradation pathway (ERAD) [6, 7]. 

Additionally, XBP1 also promotes ER membrane expansion by increasing 

expression of genes involved in phospholipid biosynthesis, thus relieving stress. 

Parallel to ERAD, IRE1 also triggers regulated IRE1-dependent decay, (RIDD) [8], 

a process that specifically degrades mRNAs encoding ER-localized proteins, 

which prevents protein delivery to the stressed ER. Basal RIDD is necessary for 

ER homeostatic maintenance; however, increased RIDD activity during stress 

conditions can induce pro-apoptotic pathways.  

PERK: Suppressor of global translation 

 Protein kinase RNA-like ER kinase (PERK) autophosphorylates its 

cytoplasmic kinase domain when BiP dissociates. After activation, PERK 

phosphorylates eukaryotic translation-initiation factor 2 alpha (eIF2α), preventing 

the exchange of GDP for GTP that is necessary for eIF2α activation [9]. Preventing 
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eIF2α activation reduces global translation, allowing a subset of genes involved in 

ER stress response, autophagy, apoptosis, amino acid metabolism, and 

antioxidant responses to be preferentially regulated. A downstream target of 

eIF2α, activating transcription factor 4 (ATF4), mediates transcriptional induction 

of these genes [10]. Sustained PERK signaling upregulates the pro-apoptotic 

transcription factor C/EBP-homologous protein (CHOP). CHOP facilitates the 

decrease in expression of B-cell lymphoma 2 (Bcl-2), a protein that interacts with 

proapoptotic proteins (e.g., Bax and Bak), thus preventing cell death [11].  

The transcriptional program controlled by these three stress sensors results 

in upregulation of stress chaperone proteins to aid in folding proteins, as well as to 

trigger protein and mRNA degradation to prevent further accumulation of misfolded 

proteins. The initial program triggered by these three sensors is pro-survival; 

however, if the stress is not resolved, these sensors can initiate a pro-apoptotic 

program leading to cell death. Recent advances have shown that, in addition to 

regulating cell survival, ER stress can promote innate immune responses to 

combat microbial infections. 

The ER integrates stress programs with host defense 

 Recent evidence has revealed that ER stress is involved in inflammatory 

responses that aid in infection resolution, as well as tissue damage [12, 13]. All 

three ER stress sensors (IRE1, ATF6, and PERK) can participate in upregulating 

inflammatory processes. The UPR sensors enhance activation of NF-κB, a 

transcription factor that regulates expression of proinflammatory cytokines, via 

different mechanisms. Toll-like receptor activation of XBP1 increases transcription 
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of proinflammatory cytokines IL-6, TNFα, and IFNβ in response to LPS treatment 

[13]. Notably, transcription of the proinflammatory cytokine IL-1β is not dependent 

upon the IRE1-XBP1 axis. In contrast to IRE1, PERK increases cytokine levels by 

suppressing translation of IκB thus allowing NF-κB to translocate to the nucleus 

and induce transcription of proinflammatory cytokines [14]. Additionally, PERK-

induced CHOP increases transcription of another proinflammatory cytokine, IL-23. 

Similar to IRE1 and PERK, ATF6 can also enhance NF-κB activation, although the 

mechanism is not currently known [15].  

Although ER stress-induced inflammation can be protective and aids in the 

clearance of microbial pathogens, it can also be detrimental to the host and 

exacerbate some inflammatory diseases. For instance, ER stress can contribute 

to the progression of Type 2 diabetes by suppressing insulin receptor signaling 

[16]. ER stress can also induce cell death in intestinal epithelial cells, Paneth cells, 

and goblet cells, thus increasing inflammation in inflammatory bowel diseases 

(IBDs), such as Crohn’s disease and ulcerative colitis [17, 18]. Furthermore, ER 

stress-induced inflammation has been implicated in the progression of cystic 

fibrosis and cigarette smoke-induced chronic obstructive pulmonary disease [19], 

both of which are chronic inflammatory airway diseases. There is evidence 

supporting the notion that ER stress-induced inflammation can promote the 

pathogenesis of some chronic diseases such as Type 1 and 2 diabetes, heart 

disease, Alzheimer’s disease, and Parkinson’s disease [20]. Although ER stress 

can aid in the progression of inflammation, ER stress has also been linked to 

autophagy, a cellular process that dampens inflammatory responses [21].  Thus, 
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further study of ER stress to tease out the complex mechanisms that link this 

program to inflammation is warranted. 

Restoration of homeostasis via autophagy or apoptosis 

 The ER stress response is a major pivot point that determines whether a 

cell will survive or die in response to stress. During ER stress, the UPR program 

promotes restoration of ER homeostasis. If homeostasis cannot be restored, 

chronic UPR stress signaling eventually results in programmed cell death, in the 

form of apoptosis. To delay apoptosis, the UPR can trigger autophagy, a pro-

survival dynamic process where cellular components are sequestered by double-

membrane autophagosomes for lysosomal degradation (Fig. 1.2). These cellular 

components can include proteins, damaged organelles, and microbial pathogens. 

Efficient sequestration and clearance of damaged cellular or non-self components 

are crucial for cell survival as well as function. 

Initiation of autophagy begins with the formation of the phagophore, a 

process mediated by the UNC51-like kinase (ULK1) and Beclin-1 initiation 

complex. The interaction between Beclin-1 and Bcl-2, an anti-apoptotic factor, 

prevents assembly of the phagophore, thus inhibiting autophagy [22]. Once 

initiation occurs, the Atg5-Atg12-Atg16L complex and LC3-II promote elongation 

and engulf the designated cargo. This new structure is called the autophagosome, 

which subsequently fuses with the lysosome, leading to degradation of the interior 

cargo.  



Figure 1.2: Illustration of the steps of autophagy. Activation of ULK1

and Beclin-1 complexes in response to certain signals initiates isolation

membrane and the formation of phagophore. The Atg protein complex and

LC3 promote the elongation and capture of cytosolic cargos (e.g. protein

and organelles), leading to the formation of autophagosome.

Subsequently, lysosome fuses with the autophagosome leading to

degradation of the cytosolic cargo. Pro-apoptotic BCL-2 inhibits autophagy

by interacting with Beclin-1. UPR sensors can trigger autophagy by

promoting activation of the initiation and elongation complexes. IRE1

triggers autophagy by activating JNK thus leading to phosphorylation and

dissociation of Bcl-2 from Beclin-1. Moreover, PERK and IRE1 mediate

Beclin-1 and ULK1 transcription whereas ATF6 triggers phosphorylation of

Beclin-1 thus triggering Beclin-1 dissociation from Bcl-2. PERK promotes

elongation of the phagophore by inducing upregulation of Atg proteins and

triggering LC3 conversion. This schematic was adapted from Kang et al.

Cell Death Differ, 2011. 18(4):571-80.

8
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The three UPR sensors regulate many of the autophagic proteins through 

different mechanisms. Activation of the PERK-eIF2α axis induces Atg12 

upregulation, conversion of LC3-I to LC3-II, and subsequently facilitates 

autophagosome formation [23]. Moreover, PERK-induced ATF4 and CHOP 

regulate LC3, Atg5, and ULK1 transcription, further demonstrating a role for PERK 

in autophagy initiation and elongation [24]. IRE1 recruits tumor-necrosis factor 

receptor associated factor 2 (TRAF2), thus triggering JNK activation. JNK 

phosphorylates Bcl-2, which promotes its dissociation from Beclin-1 and leads to 

subsequent autophagy induction [25, 26]. Besides regulating activation, IRE1 can 

also modulate Beclin-1 expression through XBP1. Lastly, recent evidence has 

uncovered a role for ATF6 in autophagy induction through death-associated 

protein kinase 1 (DAPK1). DAPK1 promotes autophagy by phosphorylating Beclin-

1, dissociating it from autophagy negative regulator Bcl-2 [27]. These data 

demonstrate an intricate redundancy in ER stress-induced autophagy. Autophagy 

occurs throughout the life of a cell, working to maintain or restore metabolic 

homeostasis, and may be a critical determinant in ER stress-induced cell survival 

or death.  

 If restoration of homeostasis is not achieved, IRE1-induced JNK activation 

triggers activation of the proapoptotic protein BIM while deactivating the 

antiapoptotic protein Bcl-2 [26], thus committing the cell to apoptosis. 

Phosphorylation of Bcl-2 triggers dissociation from BAX and BAK, two proapoptotic 

proteins. Upon release and activation, BAX and BAK form an oligomeric pore in 

the outer mitochondrial membrane, facilitating the release of cytochrome c into the 
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cytosol and activation of proapoptotic caspases [28]. Similar to IRE1, CHOP-

induced apoptosis involves interaction with members of the Bcl-2 family of 

proteins. One such interaction involves transcriptional downregulation of Bcl-2, 

thus preventing the expression of apoptosis repressors. CHOP can also induce 

the transcription of BIM, which plays a role in mitochondrial-mediated apoptosis. 

BIM serves as a death ligand and specifically interacts with certain antiapoptotic 

Bcl-2 protein members, which leads to apoptosis induction [26].   

A second mechanism of ER stress-induced apoptosis involves calcium 

signaling.  ER stress is accompanied by alterations in calcium levels due to calcium 

leakage or efflux from the ER [29]. CHOP-dependent activation of the ER oxidase 

1α triggers ER calcium release by activating the ER calcium channel IP3R [30]. 

Cytoplasmic calcium activates the calcium-sensing enzyme CaMKII, which in turn 

triggers downstream signaling. Moreover, excess cytosolic calcium is absorbed 

into the matrix of mitochondria, leading to changes in membrane potential, as well 

as promoting the transfer of cardiolipin from the inner to outer mitochondrial 

membrane (a signal for targeted insertion of proapoptotic Bcl-2–family proteins Bid 

and Bax into membranes) [31]. Besides affecting mitochondria, ER-induced 

calcium release alters phospholipid scramblases that transfer phosphatidylserine, 

a lipid that serves as a signal for clearance of apoptotic cells by phagocytosis, to 

the outer leaflet of the plasma membrane. 

 Together, these studies illustrate that the ER can recruit mitochondria to aid 

in its apoptotic program. This is not surprising because (a) the ER and 

mitochondria share close contacts throughout the cytosol [32], and (b) many 
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apoptotic proteins between the ER and mitochondria overlap [33]. Due to the close 

proximity of these two organelles, crosstalk is quite frequent and can influence the 

stress level within each organelle. Communication between the ER and 

mitochondria takes place at specialized contact sites called mitochondrial 

associated membranes (MAMs) [33]. At the MAMs, calcium is released from the 

ER through the IP3R channel and is taken up by the calcium channel VDAC located 

on the outer mitochondrial membrane [34, 35]. Calcium transfer [36] between 

these two organelles is important for cell metabolism and intracellular calcium 

signaling. Any alterations in calcium transfer (mitochondrial calcium overload, 

deficiency in ER calcium leakage, etc.) can have profound effects on the cell and 

can trigger cell death or autophagy [37]. Thus, the integration of mitochondrial 

signaling pathways appears to contribute to ER-mediated cell fate decisions. 

Mitochondria: converting signaling into action 

 Cells activate multiple mechanisms to re-establish homeostasis and to 

repair stress-induced molecular damage. Mitochondria are involved in the 

response of cells to a wide number of perturbations including, but not limited to, 

oxidative stress and pathogen invasion. Furthermore, mitochondria can be both 

the substrate of autophagic degradation (mitophagy [38]) or spared by the 

autophagic machinery to ensure energy production during stress. Similar to the 

ER, mitochondria are particularly sensitive to endogenous stress and are another 

major sensor of environmental stress. During mitochondrial stress, the 

mitochondrial membrane depolarizes, reactive oxygen species (ROS) production 

increases, and mitochondrial contents can be released into the cytosol to act as 
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danger signals. Several human diseases, including neurodegenerative diseases 

and cancer, are associated with mitochondrial dysfunction and increased ROS 

damage [39-42]. To promote survival under such conditions, mitophagy prevents 

the accumulation of nonfunctional and damaged mitochondria that contribute to 

human pathologies.  

Cell fate hinges on mitochondrial membrane integrity 

Mitochondria are the main site of ATP production and are sensitive to 

conditions that might disturb membrane potential. In healthy mitochondria, a high 

proton gradient, or membrane potential (Δѱm), exists across the mitochondrial 

inner membrane due to protons pumped into the intermembrane space by the 

respiratory chain protein complexes located in the inner membrane [43]. The 

proton pumping occurs as a result of the electron transport chain (ETC), which 

provides free energy for transferring protons against their electrochemical 

gradient. In addition to proton pumping, the ETC also mediates ATP production 

and oxygen consumption in mitochondria, a process called oxidative 

phosphorylation [44]. Defective oxidative phosphorylation reduces metabolic 

capacity, which is a sign of mitochondrial stress. Perturbations in oxidative 

phosphorylation can lead to reduced ATP production, depolarization of the inner 

membrane, and excessive reactive oxygen species (ROS) production [44].  

Inner mitochondrial membrane depolarization induces opening of the 

mitochondrial permeability transition pore (MPTP) [45]. This pore is a protein 

complex consisting of VDAC, cyclophilin D (CypD), and adenine nucleotide 

translocase that, when opened, allows small hydrophilic molecules (e.g., calcium 
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ions and ATP) to cross the mitochondrial membrane in response to membrane 

depolarization. The influx of calcium ions causes mitochondrial swelling, and 

eventually the outer membrane ruptures, allowing mitochondrial contents to leak 

into the cytosol [46, 47]. Alternatively, release of mitochondrial contents can be 

induced upon pore formation in the outer membrane. 

Proapoptotic Bid mediates oligomerization of two pore forming proteins, 

BAK and BAX, in the outer mitochondrial membrane [28]. Activation of Bid can be 

triggered by several host proteases, including caspase-8, cathepsin, and calpain, 

with caspases predominantly cleaving Bid during apoptosis. Release of 

mitochondrial intermembrane space (IMS) proteins into the cytosol generally 

triggers cell death (Fig. 1.3) [47]. IMS proteins (e.g., cytochrome c, SMAC, OMI, 

APAF-1) can activate proapoptotic proteins in the cytosol leading to apoptosis. 

Notably, cytochrome c release drives the assembly of the apoptosome [48, 49], a 

multiprotein complex that cleaves and activates procaspase-9. Upon activation, 

caspase-9 cleaves procaspase-3, resulting in the execution of apoptotic cell death 

[48, 49]. These observations indicate that proper regulation of mitochondrial 

membrane potential is critical for viability of the cell as well as the organism as a 

whole. 

Mitochondria, one platform for inflammasome assembly  

 Besides triggering cell death, outer membrane rupture can also trigger 

inflammation due to the release of mtROS and mtDNA. These two mtDAMPs can 

activate inflammasomes, large immune signaling machines that are responsive to 

microbial pathogens and endogenous stressors [50, 51] and that activate the 



Figure 1.3: Mechanisms of mitochondrial outer membrane

permeabilization. During homeostasis, mitochondria maintain high

membrane potential (Δѱm), have an intact outer membrane, and IMS

proteins (e.g. cytochrome c) are retained. In the presence of an apoptotic

signal, Δѱm drops significantly, leading to the release of IMS proteins by:

(A) sustained opening of the mitochondrial permeability transition pore

(MPTP), (B) Bid-mediated oligomerization of Bak and Bax on the outer

mitochondrial membrane or (C) rupture of the outer mitochondrial

membrane. Once cytochrome c is released into the cytosol, it interacts with

Apaf-1 and caspase-9 to form the apoptosome, a multiprotein complex that

activates caspase-3 and induces apoptosis (programmed cell death). This

schematic was adapted from Bronner et al. EMBO J, 2014. 33(19):2137-9.
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potent proinflammatory cytokines, interleukin-1β (IL-1β) and IL-18 [51]. Canonical 

inflammasomes are multiprotein complexes that consist of an inflammasome 

sensor, the adaptor protein ASC, and caspase-1. Once formed, the inflammasome 

triggers caspase-1 induced proteolytic processing of proIL-1β and proIL-18. 

Microbial infections and some environmental stress conditions can trigger 

activation of the inflammasome [52, 53]. The NLRP3 inflammasome sensor is 

unusual because its activation is associated with diverse stress conditions, such 

as excessive mtROS, lysosomal damage, ER stress, or mitochondrial damage [54, 

55], although whether these stresses employ a common ligand to activate NLRP3 

is a question that is actively debated.  

ROS produced by mitochondria can activate the NLRP3 inflammasome, a 

process that occurs at MAMs [55], possibly concomitant with the cytosolic release 

of mtDNA [46, 47]. Mitochondria are thought to be important for NLRP3 

inflammasome activation in response to various noninfectious agents, including 

uric acid and silica [56]. MtROS production induced by specifically inhibiting 

Complexes I and III (protein complexes of the ETC) leads to NLRP3 inflammasome 

activation [57]. Increased ROS levels increase the association of NLRP3 with 

thioredoxin-interacting protein (TXNIP) [58]. Typically, TXNIP is constitutively 

bound to the oxidoreductase thioredoxin 1 (TRX1). Upon an increase in mtROS 

concentration, this complex dissociates and TXNIP binds to and activates NLRP3 

once it translocates to the mitochondria [59, 60]. These observations suggest that 

mitochondrial-associated TXNIP might aid in the release of mitochondrial contents, 

thus increasing the chances for inflammasome activation. Permeabilization of the 
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outer mitochondrial membrane not only leads to the release of cytochrome c, but 

also mtDNA into the cytosol. During mitochondrial stress, ROS levels rapidly 

increase, leading to oxidation of proteins and mtDNA. Studies have shown that 

oxidized mtDNA directly binds to NLRP3 leading to inflammasome formation and 

activation [61, 62]. Additionally, macrophages lacking mtDNA were severely 

deficient in IL-1β production when treated with LPS and ATP, potent 

inflammasome stimuli [62]. Studies have suggested that mtDNA may also trigger 

activation of the AIM2 inflammasome. AIM2 is a large cytosolic protein that senses 

and binds to dsDNA [63, 64]. Upon binding, a conformational change is induced 

promoting oligomerization of the AIM2 inflammasome. Transfection of mtDNA into 

macrophages leads to AIM2 activation and IL-1β production [62], and the 

introduction of DNase I into the cytosol prevented IL-1β production in 

macrophages. These data show that mitochondrial contents can serve as 

important mediators of inflammation. In addition to providing inflammasome-

activating ligands, mitochondria can also act as a platform where inflammasome 

complexes can oligomerize. In untreated macrophages, NLRP3 resides in the 

cytosol in an inactive state. Danger signals induce NLRP3 oligomerization and 

recruitment to mitochondria by interaction with the mitochondria-associated 

adaptor protein MAVS [65]. Mitochondria-associated NLRP3 then promotes 

recruitment of the cytosolic adaptor protein ASC and caspase-1, leading to 

cleavage of pro-IL-1β to its active, secreted form [66]. 

Although many pathophysiological conditions and chemically unrelated 

stimuli (e.g., ROS, toxins, uric acid, etc.) activate the NLRP3 inflammasome, few 
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studies have highlighted a direct interaction between NLRP3 and these molecular 

entities. Therefore, it is unclear how these different stimuli all lead to same 

outcome, NLRP3 activation. A recent study uncovered that many NLRP3 

activators (e.g., bacterial pore-forming toxins, nigericin, ATP, and particulate 

matter) cause mitochondrial perturbation and increased ROS production, but 

neither were required for NLRP3 activation [67]. Instead, it was suggested that the 

common activity induced by all NLRP3 agonists is K⁺ efflux. Notably, reduction of 

intracellular K⁺ concentration was sufficient to activate NLRP3. These results were 

the first to demonstrate that K+ efflux may be a common mechanism that drives 

NLRP3 activation during diverse stress conditions. These findings contrast with 

previous work that demonstrates a role for mitochondria in inflammasome 

activation in response to LPS + ATP treatment. These observations would suggest 

that at least two pathways for NLRP3 inflammasome activation (mitochondria-

dependent and mitochondria-independent) might exist, perhaps acting in a cell 

and/or stimulus-specific manner.   

Mitophagy maintains the integrity of the mitochondrial network 

When dysfunction occurs within mitochondria, dysfunctional or damaged 

mitochondria can be removed without comprising the entire mitochondrial network. 

Low ATP production, enhanced ROS generation, or calcium imbalance serve as 

signs of dysfunctional or damaged mitochondria, thus leading to induction of a 

mitochondrial specific form of autophagy called mitophagy (Fig. 1.4). Healthy 

mitochondria can divide into functional progeny that can reintegrate into the 

mitochondrial network by fusion. In contrast, dysfunctional mitochondria are 



Figure 1.4: Mitophagy, the labelling and removal of damaged

mitochondria. When mitochondria are damaged and lose membrane

potential, the kinase PTEN-induced putative kinase protein 1 (PINK1)

accumulates and recruits the E3 ubiquitin ligase Parkin to the damaged

mitochondrion. Parkin ubiquitylates mitochondrial proteins (e.g. VDAC,

MFN1 and 2) and causes mitochondria to fragment and be captured by the

phagophore that then fuse with lysosomes. This schematic was adapted

from Popovic et al. Nat Med, 2014. 20(11):1242-53.
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specifically separated from the network and destined for mitophagic degradation 

[40]. Intact mitochondria are constantly importing the kinase PINK1 into the matrix 

where it is cleaved by the protease PARL [38]. PINK1 accumulation on the outer 

mitochondrial membrane serves as a flag for mitochondrial dysfunction [68]. If the 

Δѱm decreases, PINK1 accumulates on the outer membrane leading to the 

recruitment of the ubiquitin ligase Parkin, which ubiquitinates mitochondrial outer 

membrane proteins such as MFN1 and MFN2 (mitofusin 1 and 2, regulators of 

mitochondrial fusion). By favoring proteasomal degradation of MFN1 and MFN2, 

Parkin suppresses mitochondrial fusion and promotes fragmentation of the 

network [69]. Mitochondrial fragmentation allows for the capture of 

damaged/dysfunctional mitochondria by autophagosomes. A recent study 

revealed that the ER stress sensor PERK can regulate Parkin-mediated 

mitophagy. Parkin expression increased during ER stress in a manner dependent 

on the PERK/ATF4 branch of the UPR [70]. Upon induction, ATF4 bound to a 

CREB/ATF site within the Parkin promoter triggering parkin transcription. Although 

Parkin protects cells from ER stress-induced cell death via the removal of 

damaged mitochondria, it does not reduce the level of ER stress within the cell. 

These observations support the notion that crosstalk between the ER and 

mitochondria is critical to maintaining cell survival under stress.  

Maintaining integrity of mitochondria is crucial for cell viability because 

mitochondria are critical regulators of cell death and are responsible for a variety 

of metabolic functions. Mitochondrial dysfunction is a key feature of 

neurodegeneration. Mutations in mitochondrial DNA and oxidative stress both 
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contribute to aging, which is the greatest risk factor for neurodegenerative 

diseases such as Alzheimer’s and Parkinson’s disease. In Alzheimer’s disease, 

mitochondrial ROS generation and inhibition of energy metabolism increase 

amyloid-β peptide levels, the primary component of senile plaques [39, 42, 71]. 

For Parkinson’s disease, defects in mitochondrial associated pathways and 

proteins contribute to the progression of the disease. Decreased activity or 

mutations in genes for Complex I (a major contributor member of the ETC) can 

cause Parkinson’s disease [41]. Additionally, mutations in the mitophagy regulator 

Parkin increases cell death and progression of Parkinson’s disease [72, 73]. These 

observations indicate that maintaining integrity of the mitochondrial network is not 

only important on a cellular basis but on an organismal basis as well. 

Conclusions 

Recent findings highlight the contribution of the mitochondria and ER to 

regulation of inflammation and disease progression. The pathways and players of 

the mitochondria and ER overlap and are complementary. Furthermore, 

mitochondria are tethered to the ER, providing the conditions for constant 

communication between the two organelles [74-76]. ER-mitochondrial crosstalk is 

important for initiating cell death during certain stress contexts; therefore, it is 

reasonable to propose that this crosstalk may contribute to initiation of 

inflammatory responses. Elucidating the context and mechanisms by which ER-

mitochondrial crosstalk controls inflammation may aid in identifying targets that 

modulate many inflammatory and neurodegenerative diseases.  
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 To investigate if ER-mitochondrial crosstalk is essential in mediating 

inflammation, I utilized the Gram-negative bacterium, Brucella abortus RB51, an 

attenuated cattle vaccine strain. Typically, virulent Brucella strains (e.g. S2308, 

16M) acquire ER membrane when generating the Brucella containing vacuole, an 

intracellular environment that is conducive for microbial replication [77–79]. 

Attenuated strains like RB51, are unable to create the BCV; however, these strains 

can still traffic to the ER [80, 81] (Fig. 1.5). Attenuation is due to multiple mutations 

in the RB51 genome, including a mutation that prevents addition of the O antigen 

during Brucella lipopolysaccharide (LPS) biosynthesis [82]. Attenuated Brucella 

species have been shown to trigger ER and mitochondrial stress during infection 

as well as eliciting proinflammatory responses [83–87]. Therefore, RB51 served 

as a tool for elucidating the role of ER and mitochondrial stress in inflammation 

regulation.  The following chapters will demonstrate that ER stress can modulate 

inflammation and cell death via two stress sensors. Chapter 2 highlights the 

consequences of uninhibited inflammation - cell death. Damaged mitochondria 

release apoptotic molecules thus triggering an unique type of cell death that is 

reminiscent of both apoptosis (silent) and pyroptosis (inflammatory). In chapter 3, 

I discuss how IRE1 drives mitochondrial damage, leading to the release of 

mitochondrial danger signals required for NLRP3 inflammasome activation. 

Chapter 4 reveals that PERK suppresses NLRP3 inflammasome activation 

through Parkin-dependent mitophagy, and that induction of mitophagy leads to the 

removal of dysfunctional mitochondria, thus preventing the release of 

mitochondrial derived danger signals. Overall, these findings highlight 



Figure 1.5: Brucella interacts with the ER. After entry, virulent

intracellular Brucella resides within a vacuole (BCV) that interacts with early

endosomes. These early BCVs avoid further interactions with the endocytic

pathway and are in close contact with, the ER within the first hours after

infection (A). Vacuoles containing a attenuated strains fail to sustain

interactions with the ER (B) and ultimately fuse with lysosomes. This

schematic was adapted from Celli et al. J Exp Med, 2003. 198(4): p. 545-56.
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mechanisms by which context-dependent ER stress signals are relayed to 

mitochondria to promote or suppress inflammation, supporting the idea that the ER 

acts as a critical hub for integrating cellular stress and innate immune signaling.      
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Caspase-2 mediates a Brucella abortus RB51-induced hybrid cell death 

having features of apoptosis and pyroptosis 

(Published: Bronner DN et al (2013) Front Cell Infect Microbiol. doi: 

10.3389/fcimb.2013.00083) 

 

Abstract 

Programmed cell death (PCD) can play a crucial role in tuning the immune 

response to microbial infection. Although PCD can occur in different forms, all are 

mediated by a family of proteases called caspases. Caspase-2 is the most 

conserved caspase; however its function in cell death is ill-defined. Previously we 

demonstrated that live attenuated cattle vaccine strain Brucella abortus RB51 

induces caspase-2-mediated PCD of infected macrophages. However, the 

mechanism of caspase-2-mediated cell death pathway remained unclear. In this 

study, we found that caspase-2 mediated proinflammatory cell death of RB51-

infected macrophages and regulated many genes in different PCD pathways. We 

show that the activation of proapoptotic caspases-3 and -8 was dependent upon 

caspase-2. Caspase-2 regulated mitochondrial cytochrome c release and TNFα 

production, both of which are known to activate caspase-3 and caspase-8, 

respectively. In addition to TNFα, RB51-induced caspase-1 and IL-1β production 
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was also driven by caspase-2-mediated mitochondrial dysfunction. Interestingly, 

pore formation, a phenomenon commonly associated with caspase-1-mediated 

pyroptosis, occurred; however it did not contribute to RB51-induced 

proinflammatory cell death. Our data suggest that caspase-2 acts as an initiator 

caspase that mediates a novel RB51-induced hybrid cell death that simulates but 

differs from typical apoptosis and pyroptosis. The initiator role of the caspase-2-

mediated cell death was also conserved in cellular stress-induced cell death of 

macrophages treated with etoposide, naphthalene, or anti-Fas. Caspase-2 also 

regulated caspase-3 and -8 activation, as well as cell death in macrophages 

treated with each of the three reagents. Taken together, our data has 

demonstrated that caspase-2 can play an important role in mediating a 

proinflammatory response and a hybrid cell death that demonstrates features of 

both apoptosis and pyroptosis.  

Introduction 

Programmed cell death (PCD) is a crucial process initiated by the host in 

response to cellular stress and microbial infections. PCD can occur in a variety of 

ways [1]. Apoptosis, pyroptosis, and necroptosis are three pathways of PCD that 

can occur during microbial infections with substantially different outcomes. 

Apoptosis is a silent programmed cell death due to a lack of cytokine secretion [2]. 

Although the plasma membrane remains intact, apoptotic bodies can bleb off and 

be phagocytosed by other phagocytic cells in the surrounding area. Pyroptosis or 

“death by fire,” is inflammatory programmed cell death mediated by caspase-1 [3]. 

Caspase-1 processes proinflammatory cytokines (IL-1β and IL-18), and secretion 
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of these cytokines requires pore formation in the plasma membrane, which leads 

to cell swelling and eventually lysis. Necroptosis is a newly identified type of PCD 

that includes a proinflammatory response as well as loss of plasma membrane 

integrity [4]. In contrast to apoptosis and pyroptosis, serine/threonine kinases, 

RIP1 and RIP3, mediate necroptosis. In addition, necroptosis leads to the release 

of intracellular contents; mostly damage associated molecular patterns (DAMPs).  

Many microbes can induce cell death during infection and dissemination [5]. 

Avirulent Mycobacterium induces apoptosis in macrophages [6]. Neighboring 

uninfected macrophages, upon phagocytosis, killed Mycobacterium in apoptotic 

bodies released by Mycobacterium-infected macrophages. In addition, apoptotic 

blebs from bacterially infected cells induce a TH17 response. In contrast, Shigella 

and Salmonella-induced pyroptosis leads to the release and exposure of bacteria 

to reactive oxygen species (ROS) and neutrophils [7-9]. In addition to bacterial 

pathogens, parasitic and viral pathogens such as Trypanosoma cruzi and Vaccinia 

virus also have the ability to induce apoptosis and necroptosis respectively [10, 

11]. The outcomes of necroptosis are an increase in cytokine secretion and 

leukocyte infiltration as well as ROS production. As illustrated from previous 

studies, PCD can play an important role in controlling microbial infections. 

Meanwhile, many pathogens can inhibit these PCD pathways in various 

approaches. For example, virulent wild type Brucella strains typically inhibit PCD 

of infected macrophages [12-14]. Elucidating the PCD mechanism induced or 

inhibited by such pathogens is critical to uncovering mechanisms of pathogenesis, 

as well as protective immunity.  
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The main executors of the PCD process are caspases, which are divided 

into two groups: initiators and effectors. Initiator caspases activate effector 

caspases via cleavage whereas effector caspases initiate cell death by cleaving 

various downstream apoptotic proteins. C. elegans has a single caspase, Ced-3, 

that mediates all cell death. Of 13 caspases existing in mammalian systems, 

caspase-2 has the highest sequence homology with Ced-3 [15, 16]. Caspase-2 

plays important biological roles from oocyte development to aging control, and in 

intermediary development stages including DNA damage repair, tumor prevention, 

and infection control [17-20]. Caspase-2 can play different roles due to its unique 

domain structure, which resembles an initiator and effector caspase. It contains a 

caspase activation and recruitment domain (CARD) which is required for auto-

activation and binding to other molecules. Caspase-2 also contains a cleavage site 

[21] which resembles that of the effector caspase-3 [22]. These factors make the 

classification of caspase-2 difficult. Caspase-2-deficient mice develop without an 

overt phenotype although only mild apoptotic defects in oocyte and neuron 

developments were exhibited, suggesting that the function of caspase-2 is largely 

redundant for cellular homeostasis during development [23]. Caspase-2 has been 

shown to be instrumental in bacterial infections. Caspase-2 played a role in both 

caspase-1-dependent and -independent apoptosis of macrophages infected with 

Salmonella [24]. The various and often controversial roles of caspase-2 in different 

organisms and experimental conditions have been documented and discussed 

[25, 26].  The role of caspase-2 in regulating cell death and the exact mechanism 

remain unclear. 
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We previously demonstrated that rough attenuated Brucella abortus strain 

RB51 induces caspase-2-mediated apoptotic and necrotic cell death [13]. As a 

licensed cattle vaccine strain, RB51 is able to induce IFNγ and CD8+ T cell 

mediated cytotoxicity in mice [27]. Unlike its virulent counterparts, RB51 does not 

replicate in macrophages and induces robust caspase-2-mediated apoptotic and 

necrotic cell death [13]. In addition, RB51 induces cell death in dendritic cells [14]. 

However, the caspase-2-mediated RB51-induced cell death pathway is largely 

unknown. Previously, we showed that caspase-2 activation as well as decrease of 

the mitochondrial membrane potential occurred in dying macrophages infected 

with RB51 [13]. These characteristics would suggest that apoptosis via the 

mitochondria-driven intrinsic pathway was the cell death mechanism. We also 

showed that rough attenuated B. suis strain VTRS1 induces caspase-2-mediated 

proinflammatory cell death [12]. It is likely that RB51 also induces proinflammatory 

response that differs inherently from non-proinflammatory apoptosis. How RB51 

induces cell death remains unclear.      

Here we investigated which PCD mechanism was responsible for RB51-

induced cell death in macrophages. We found that RB51-infected macrophages 

exhibited mitochondrial dysfunction, activation of the caspase cascade (caspase-

3 and caspase-8), IL-1β and TNFα secretion, and pore formation in the plasma 

membrane – all of which were dependent upon caspase-2. In addition to infection, 

we found that caspase-2 also mediated cell death as well as caspase-3 and -8 

activation in macrophages treated with etoposide, naphthalene, and anti-Fas. 
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These results illustrate that RB51-induced caspase-2-mediated macrophage cell 

death is unique in that it exhibits characteristics of both apoptosis and pyroptosis.   

Results 

Caspase-2 mediates RB51-induced cell death via the extrinsic apoptosis pathway 

Our previous experiments using a chemical inhibitor and siRNA 

demonstrated that caspase-2 mediates RB51-induced macrophage cell death [13]. 

To confirm the caspase-2 mediated cell death, wild type (WT) and caspase-2 

deficient (casp2-/-) bone-marrow derived macrophages (BMDMs) were infected 

with RB51, and cell death was assessed by Annexin V/propidium iodide (PI) 

staining and lactate dehydrogenase (LDH) release. Cell death was abolished in 

casp2-/- BMDM (Fig. A1A-B) which confirms that caspase-2 is required for RB51 

induced cell death. We assessed if there was any difference in RB51 intracellular 

behavior by measuring CFU throughout infection. We found that casp2-/- BMDM 

were able to kill RB51 just as efficiently as WT BMDM (Fig. A1C). Therefore, any 

differences in initiating cell death were not due to lack of infectivity or bacterial 

killing in casp2-/- BMDMs.  

Since caspase-2 is required for RB51 induced cell death, we assessed 

which PCD pathway caspase-2 was mediating RB51-induced cell death. Inhibition 

of caspase-3 and/or caspase-8 activity led to a decrease in cell death; however, it 

was not as significant as caspase-2 deficiency (Table 2.1). Inhibition of caspase-3 

or -8 in RB51-infected macrophages resulted in 57.3 ± 2.1% and 65.7 ± 3.7% cell 

death, respectively (P-value <0.001) (Table 2.1). Inhibition of both caspase-3 and 



Table 2.1: Cell death measurements in casp2 deficient and caspase-3 and -

8 inhibited macrophages. Percent ± SD of n≥3 independent experiments. Cells

were counted in randomly selected fields of 100 cells. All conditions except

untreated where in the presence of RB51 (MOI 200).

37
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-8 led to only 36.3 ± 2.5% cell death, suggesting the two types of inhibitions are 

synergistic. These data suggest that RB51-induced cell death may involve the 

apoptotic pathways associated with caspase-3 and caspase-8.  

Classically, caspase-3 and caspase-8 are linked to intrinsic (intracellular 

signal driven) and extrinsic (death receptor driven) apoptotic pathways 

respectively [2]. Both pathways are linked to caspase-2 by mediating mitochondrial 

cytochrome c release and caspase-8 activation [28, 29]. To assess if caspase-2 

regulated these pathways during RB51 infection, we investigated caspase-3 and 

caspase-8 activation in WT and casp2-/- BMDMs by measuring cleavage. The 

cleavage of both caspase-3 and caspase-8 was abolished in RB51-infected casp2-

/- BMDMs (Fig. 2.1A). Inhibition of caspase-3 and -8 did not affect caspase-2 

activation (Fig. A2A-B). Previous studies illustrated that both the intrinsic and 

extrinsic cell death pathways can propagate signaling by inducing mitochondrial 

dysfunction, which eventually leads to cell death. Therefore, we investigated if 

caspase-2 mediated mitochondrial dysfunction in RB51-infected macrophages. 

Previously we observed that in RB51-infected macrophages, mitochondrial 

membrane potential decreased over time, suggesting that mitochondrial 

cytochrome c release (a marker of mitochondrial dysfunction) occurs. We found 

that in WT BMDMs, cytochrome c release increased throughout infection, however 

in casp2-/- BMDMs cytochrome c release was abolished (Fig. 2.1A).  

To assess if mitochondrial dysfunction contributed to RB51-induced cell 

death, the cytochrome c release was blocked with cyclosporin A (CsA) in RB51-

infected RAW264.7 (murine) macrophages. CsA prevents opening of the 



Figure 2.1: Caspase-2 drives both the intrinsic and extrinsic cell death

pathways. (A) caspase-3 and -8 cleavage (activation) as well as cytochrome c

(cyto c) release in RB51-infected WT and casp2-/- BMDMs. β-actin serves as a

loading control. UT and ET represent untreated and etoposide (25 µM, 6hr

treatment) respectively. Immunoblots are representatives of n≥3 independent

experiments. (B) LDH release in RB51-infected RAW264.7 macrophages in the

presence of cyclosporin A (CsA; inhibitor of mitochondrial permeability transition

pore, 10 μM) and Anti-TNFα (10 µg/mL). Error bars represent mean ± SD of n≥3

independent experiments. **p < 0.001 and ***p < 0.0001, Student’s t-test. n.s. =

not significant. Immunoblots are representatives of n≥3 independent

experiments.

93
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mitochondrial permeability transition pore (MPTP), a pore responsible for the 

release of mitochondrial contents such as cytochrome c [30]. In the presence of 

CsA, cell death was significantly reduced (p<0.0001) in RB51-infected 

macrophages (Fig. 2.1B). Seeing that mitochondrial dysfunction occurs and both 

caspase-3 and caspase-8 are activated, we explored if RB51-induced cell death 

was acting through the extrinsic pathway. Extrinsic or death receptor mediated cell 

death can be activated by Fas ligand (FasL) and TNFα. Since live attenuated B. 

suis strain VTRS1 induces a proinflammatory response [12], we investigated if 

TNFα played a role in mediating RB51-induced cell death. We treated RAW264.7 

macrophages with anti-TNFα and assessed cell death via LDH release. Anti-TNFα 

treatment led to a decrease in LDH release when compared to untreated RB51-

infected RAW264.7 macrophages (Fig. 2.1B, 85.5±5.1% vs. 21.4±6.5% 

respectively). These observations suggest that caspase-2 drives the extrinsic cell 

death pathway in RB51-infected macrophages.  

Caspase-2 regulates caspase-1 activation and IL-1β production in RB51-infected 

macrophages  

Studies have illustrated that a proinflammatory response can be the trigger 

or product of cell death [2, 3]. Since TNFα played a role in RB51-induced cell 

death, we assessed if caspase-2 mediated TNFα production. Over time, TNFα 

levels increased in RB51-infected WT BMDMs. However, in casp2-/- BMDMs, 

TNFα was reduced to untreated levels (Fig. 2.2A). In addition, CsA treatment led 

to a decrease in TNFα production. 



Figure 2.2: Caspase-2 drives proinflammatory responses in RB51-infected

macrophages. (A) TNFα and (B) IL-1β levels in WT, casp2-/-, CsA (cyclosporin

A, inhibitor of mitochondrial permeability transition pore, 10 μM) and Z-WEHD-

FMK (caspase-1 inhibitor, 20 µM) treated BMDMs. Error bars represent mean ±

SD of n≥3 independent experiments. ‡,*p < 0.01 and ‡‡‡, ***p < 0.0001,

Student’s t-test. (*,***) and (‡, ‡‡‡) represent comparison to untreated and WT +

RB51 respectively. (C) caspase-1 cleavage (activation) in RB51-infected WT

and casp2-/- BMDMs. UT represents untreated (negative control). Immunoblots

are representatives of n≥3 independent experiments.

14
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Another cytokine associated with proinflammatory cell death is IL-1β. 

During pyroptosis, caspase-1 processes IL-1β and aids in its secretion. 

Interestingly, caspase-2 contains a CARD domain and has been shown to mediate 

caspase-1 activation during Salmonella infections [24]. Similar to TNFα, IL-1β 

levels increased above untreated levels starting at 6 h.p.i. however, in casp2-/- and 

caspase-1 inhibited BMDMs, IL-1β production was abolished (Fig. 2.2B). In the 

presence of CsA, IL-1β levels were significantly reduced in RB51-infected 

macrophages. A decrease in IL-1β levels in casp2-/- BMDMs suggested that either 

caspase-2 regulates caspase-1 activation or caspase-2 is directly responsible for 

the processing of IL-1β. To evaluate these two possibilities, caspase-1 cleavage 

in RB51-infected WT and casp2-/- BMDMs was measured. RB51 induced caspase-

1 cleavage in WT BMDMs starting at 6 h.p.i.; however, cleaved caspase-1 was 

absent in casp2-/- BMDMs (Fig. 2.2C). These data suggest that caspase-2, via 

mitochondrial dysfunction, mediates caspase-1 activation and IL-1β production in 

RB51-infected macrophages.  

Pore formation is not required for RB51-induced cell death 

Caspase-1 activation and IL-1β production are key indicators of pyroptosis. 

During pyroptosis, pores form in the plasma membrane, leading to a change in 

ionic gradient and water influx. The consequence of the pores is cell swelling, due 

to water influx, and eventually cell lysis. Salmonella enterica serovar Typhimurium 

SL1344 is a pathogen known for inducing pyroptosis in macrophages [31]. We 

hypothesized that RB51 induced pore formation in macrophages. To test this, 

RB51-infected RAW264.7 macrophages were stained with two membrane 
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impermeant dyes, ethidium bromide (EtBr, 394 Da) and the larger sized ethidium 

homodimer-2 (EthD2, 1293 Da). Uptake of EtBr and EthD2 would represent 

discrete pore formation and loss of plasma membrane integrity respectively. 

Gliotoxin (apoptosis inducer) treated RAW264.7 macrophages excluded both 

impermeant dyes (Fig. 2.3A), indicative of an intact plasma membrane. In RB51-

infected WT BMDMs, uptake of EtBr began at 1 h.p.i. and increased throughout 

infection (Fig. 2.3A). Uptake of EthD2 was significantly less than EtBr and did not 

occur until 6 h.p.i. in RB51-infected macrophages (Fig. 2.3A). Since pore formation 

has been shown to be dependent upon caspase-1, it was not surprising to see that 

uptake of both EtBr and EthD2 were abolished in RB51-infected casp2-/- and 

caspase-1 inhibited WT BMDMs (Fig. 2.4A and Fig. A3).  

We further assessed if pore formation in RB51-infected macrophages 

contributed to RB51-induced cell death. RB51-infected macrophages were treated 

with glycine, a cytoprotective agent. Glycine prevents cell death by stabilizing the 

ion gradient [32]. Glycine treatment decreased SL1344-induced macrophage cell 

death however, no effect was seen with RB51 (Fig. 2.3B). These findings 

demonstrate that although pore formation occurs in RB51-infected macrophages, 

it is not the cause of the RB51-induced macrophage cell death.  

Caspase-2 mediates cell death in other contexts 

Since caspase-2 can regulate cell death in the context of a Brucella 

infection, we investigated if caspase-2 also plays a critical role in the presence of 

different cell death chemical inducers – etoposide, naphthalene, anti-Fas, and 

gliotoxin. Etoposide and naphthalene are DNA damaging agents that trigger 



Figure 2.3: Pore formation does not contribute to RB51-induced cell death.

(A) WT and casp2-/- BMDMs treated with Gliotoxin (10 µM, 6 hr treatment) or

infected with RB51 were stained with the membrane permeable dye Hoechst

33342 (blue) and the membrane impermeant dyes (red), EtBr (MW 394) or EthD2

(MW 1293). Adherent cells were visualized by fluorescence microscopy (100x).

Images are representatives of n≥3 independent experiments. (B) LDH release in

RB51 and SL1344-infected RAW264.7 macrophages in the absence or presence

of glycine (5mM). Error bars represent mean ± SD of n≥3 independent

experiments. **p < 0.001 and ***p < 0.0001, Student’s t-test. n.s. = not significant.

44
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mitochondrial ROS production, inducing cell death via the intrinsic pathway [33-

36]. Treatment with anti-Fas antibody mimics activation of death receptor signaling 

by Fas ligand through the extrinsic pathway. [37]. Gliotoxin mediates Bak activation 

leading to cytochrome c release from the mitochondria and cell death [38]. To 

assess the role of caspase-2 in the presence of these chemical inducers, we first 

assessed caspase-2 activation. In macrophages treated with etoposide, 

naphthalene, and anti-Fas, caspase-2 was activated. However, gliotoxin did not 

induce caspase-2 activation (Fig. 2.4A). Next, we investigated if caspase-2 

mediated cell death in the presence of these inducers via Annexin V/PI staining. 

All four chemicals induced cell death after 6 hr of treatment. The caspase-2 

deficiency led to a significant decrease in cell death in etoposide, naphthalene, 

and anti-Fas treated but not gliotoxin treated macrophages (Fig. 2.4B).  

Knowing the mechanism by which these chemical inducers mediate cell 

death, we assessed whether caspase-3 and -8 activation occurred and whether 

caspase-2 mediated their activation as seen in RB51-infected macrophages. 

Caspase-3 was activated in etoposide, naphthalene, anti-Fas, and gliotoxin 

treated WT BMDMs (Fig. 2.4C). Caspase-3 activation was abolished in casp2-/- 

BMDMs treated with etoposide, naphthalene, and anti-Fas but not gliotoxin. 

Caspase-8 activation was observed in etoposide, naphthalene, and anti-Fas 

treatment yet absent during gliotoxin treatment (Fig. 2.4C). Similar to caspase-3, 

caspase-8 activation was abolished in etoposide, naphthalene, anti-Fas treated 

casp2-/- BMDMs. These data indicate that caspase-2 can exhibit a crucial role in 

mediating cell death initiated by other stimuli besides microbial infection.  



Figure 2.4: Caspase-2 can also mediate caspase-3 and -8 activation in

other contexts. (A) Caspase-2 cleavage (activation) in RB51-infected

RAW264.7 macrophages. UT, ET, NT, α-Fas, and GT represent untreated,

etoposide (25 µM, 6hr treatment), Naphthalene (100 µM, 6hr treatment), Anti-Fas

(1 µg/mL, 6h4 treatment), and Gliotoxin (10 µM, 6hr treatment) respectively. (B)

ET, NT, α-Fas, GT treated WT and casp2-/- BMDMs were stained with Annexin

V/propidium iodide (PI). Adherent cells were visualized by fluorescence

microscopy (100x). Cells were counted in randomly selected fields of 100 cells.

Images are representatives of n≥3 independent experiments. (C) Caspase-3 and

-8 cleavage (activation) in ET, NT, α-Fas, GT treated WT and casp2-/- BMDMs.

Immunoblots are representatives of n≥3 independent experiments.

64
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Conclusions 

Here we report that RB51-induced cell death is driven by the caspase-

2/mitochondrial axis. Our results demonstrated that RB51-infected macrophages 

induce the caspase-2 activation, and the activated caspase-2 mediates caspase-

1, -3 and -8 activations, and TNFα and IL-1β secretions. Mitochondrial release of 

cytochrome c was associated with caspase-3 activation and contributed to RB51-

induced cell death. Although pores formed in the plasma membrane upon 

infection, they did not contribute to cell death. In addition to cell death, we showed 

that the RB51-induced proinflammatory response was mediated by caspase-2 and 

mitochondrial dysfunction. In addition to microbial infections, caspase-2 also 

demonstrated a contributing role in mediating cell death with different cell death 

inducers.  

Rough Brucella species are known to induce cell death as well as a robust 

immune response. Here we show that proinflammatory cytokine TNFα plays a role 

in RB51-induced macrophage cell death; however, in the case of CA180, another 

B. abortus rough strain, this is not the case [39]. Although both RB51 and CA180 

belong to the same genus and share a rough LPS phenotype, there are striking 

differences in their LPS. Both RB51 and CA180 lack an O-antigen on their LPS 

however, CA180 has a truncated core polysaccharide due to a mutation in the 

phosphomannomutase gene [40]. Phosphomannomutase is needed to the 

elongation of the polysaccharide core. The polysaccharide core has been shown 

to elicit cytokine production, any changes (e.g. shortening) can decrease cytokine 
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production [41, 42]. Therefore, unlike RB51, CA180 may not elicit strong TNFα 

production, which may explain the differences in TNFα dependent cell death.  

Although caspase-2 has been linked to many different cellular processes, 

caspase-2 is still considered primarily a proapoptotic caspase. Here we show that 

caspase-2 can mediate IL-1β production, as well as caspase-1 activation. In 

addition to Brucella infection, caspase-2 has also been shown to regulate caspase-

1 activation in Salmonella infected macrophages. We speculate that caspase-2 

might regulate caspase-1 by interacting with the inflammasome complexes 

responsible for caspase-1 activation or by inducing an inflammasome trigger (e.g. 

ER stress, mitochondrial DNA release, or ROS production). Caspase-1 interacts 

with different inflammasome proteins and accessory proteins via its CARD domain. 

Inflammatory caspases (caspase-1, -4, -5, -11) interact with inflammasome and 

accessory proteins via their CARD domain. Caspase-2 also contains a CARD 

domain. Further investigation into whether caspase-2 can interact with different 

inflammasome components is needed. Another possible mechanism for caspase-

2 regulation of caspase-1 activation is through mitochondrial dysfunction. As seen 

with CsA treatment, there was a sharp decrease in IL-1β production suggesting 

that the mitochondria can aid in inflammasome activation during RB51 infection. 

Recent studies have linked NLRP3 and AIM2 activation to mitochondrial 

dysfunction [43-45]. It is possible that caspase-2-induced mitochondrial 

dysfunction leads to release of mitochondrial danger associated molecular 

patterns (DAMPs). Mitochondrial DAMPs (e.g. mtDNA or cardiolipin exposure) can 

lead to NLRP3 and AIM2 inflammasome activation [44]. Caspase-2 has been 
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linked to mediating mitochondrial dysfunction – caspase-2 cleaves Bid leading to 

mitochondrial outer membrane pore formation and eventually release of 

mitochondrial content (e.g. cytochrome c). Whether caspase-2-mediated release 

of mitochondrial DAMPs is the mechanism by which the inflammasome and 

caspase-1 activation occurs remains to be elucidated.  

The caspase-2-mediated cell death pathway seen in RB51-infected 

macrophages differs from classical apoptosis, pyroptosis, and necroptosis (Table 

2). RB51-induced cell death is not mediated by caspase-1. Our data suggest that 

RIP1 and RIP3 (mediators of necroptosis) are not active because both caspase-2 

and -8 activated by RB51 infection can cleave RIP1 and RIP3 – the cleavage of 

these two prevents necroptosis from occurring [46, 47]. In addition, RB51-infected 

macrophages secrete proinflammatory cytokines starting at 6 h.p.i., a 

characteristic absent in apoptosis. Caspase-1 is active and contributes to IL-1β 

production. However, unlike the phenomenon seen in pyroptosis, neither caspase-

1 nor the pore in the plasma membrane contributes to cell death. Our data suggest 

that RB51-induced caspase-2-mediated cell death does not fall into any of the 

three classical programmed cell death pathways. Owing to the common feature of 

caspase-mediated proinflammatory cell death between caspase-1-mediated 

pyroptosis and caspase-2-mediated cell death, previously we tentatively labeled 

the caspase-2-mediated proinflammatory cell death as “caspase-2-mediated 

pyroptosis” [12]. Considering that current study also clearly shows that caspase-2 

also mediates apoptosis-like features (e.g., caspase-3 and -8 activation and loss 

of mitochondrial membrane potential) (Table 2.2), caspase-2 appears to mediate 



Table 2.2: Comparison of caspase-2-mediated cell death to classical

apoptosis and pyroptosis. +: occurs, -: does not occur, +/-: may occur but

not required, ? = unknown.
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a hybrid cell death that includes partial features of both apoptosis and pyroptosis. 

Although distinct, caspase-2-mediated cell death and necroptosis appear to share 

some similarities as well (Table 4.2).  

Our studies on the relationship between caspase-2 and cell death induced 

by different cell death inducers further illustrate the critical role and the mechanism 

of caspase-2 in triggering PCD. Both etoposide and naphthalene are DNA damage 

inducers, a stimulus known for activating caspase-2. Interestingly, both etoposide 

and naphthalene induced caspase-8 activation. Previous studies have illustrated 

a connection between DNA damage, caspase-8, and caspase-2. Both caspase-2 

and caspase-8 can be activated by p53 [48, 49]; this suggests that upon etoposide 

and naphthalene treatment, p53 activates caspase-2 leading to caspase-8 

activation. Anti-Fas works through the extrinsic pathway and leads to cell death via 

caspase-8 dependent activation of caspase-3. Seeing that caspase-2 aided in 

caspase-8 activation (outside of DNA damage) clearly suggests that caspase-2 

can act as an initiator caspase to mediate activation of other caspases. Whether 

caspase-2 mediates caspase-8 activation directly or indirectly remains unclear. 

Gliotoxin induced cell death via the intrinsic pathway. Only caspase-3 was 

activated in gliotoxin-treated macrophages. Cytochrome c can aid in caspase-2 

activation however [50], in the context of gliotoxin intoxication this was not the case 

because caspase-2 activation did not occur. Gliotoxin acts on Bak and its 

downstream target t-Bid (a known target cleaved by caspase-2, [28]); therefore, it 

is possible that gliotoxin short-circuits the classical intrinsic pathway and does not 

require signaling components upstream of the mitochondria. In the case of 
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etoposide and naphthalene, the data suggest that caspase-2 regulates caspase-3 

activation via the mitochondria. Caspase-3 is activated via the apoptosome, a 

multiprotein complex dependent upon cytochrome c release. Caspase-2 was 

previously reported to act upstream of caspase-8 during ceramide-induced 

mitochondrial apoptosis in T cells [29]. It appears that the caspase-2 regulation of 

caspase-3 and -8 can occur in different cell types with different treatments, so this 

type of regulation is neither cell specific nor context specific. These observations 

suggest that caspase-2 can play a critical role in initiating programmed cell death. 

The caspase-2-mediated cell death pathway is likely critical to microbial 

pathogenesis and host immunity. In the context of RB51, cell death and the 

proinflammatory response may have synergistic effects on host immune 

responses. Cell death may result in the exposure of RB51 to a more hostile 

extracellular environment (as seen in pyroptosis and necroptosis). In addition, 

neighboring macrophages and dendritic cells may recognize processed RB51 

antigens leading to cross priming of CD8+ T cells (important for RB51-induced 

protective immunity). We recently showed that RB51 induced cell death in bone 

marrow derived dendritic cells and aided in maturation as well as priming of T cells 

– all of which were dependent upon caspase-2 [14]. These observations 

demonstrate the importance for caspase-2, as well as cell death, in initiating the 

immune response. Utilizing this programmed cell death pathway may ensure that 

the host triggers a potent immune response. Prevention of this pathway may aid 

in enhancing survival of virulent Brucella in macrophages. Our previous work 
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suggested prevention – virulent strain B. abortus S2308 did not induce caspase-2 

activation nor cytochrome c release in infected macrophages [13].  

Caspase-2 is also implicated in other processes (cancer regulation and 

metabolism) and may take on a regulatory role in these processes as well. We 

have made an original observation that caspase-2 plays a non-redundant role in 

triggering the proinflammatory cell death of RB51-infected macrophages and in 

macrophages treated with various drugs. After the evolution of complex caspase-

cascade cell death signaling pathways in advanced animals, it is suggestive that 

the protein functions of the highly conserved caspase-2 have been preserved 

during evolution and serve as safeguards to regulate various cell death pathways. 

It is likely that intracellular pathogens with similar lifestyles to Brucella (e.g., 

Salmonella, Mycobacterium, Listeria, and Legionella) may utilize caspase-2 during 

infection. Further understanding of caspase-2-mediated pyroptosis can aid in 

supplying a blueprint for effective brucellosis vaccines (both animals & humans) 

as well as effective therapeutics against cancers and other diseases.  

Materials and Methods 

Mice 

The caspase-2 knockout (Casp2KO) mice were originally generated by Junying 

Yuan and kindly provided by Dr. Brian Herman of the University of Texas Health 

Science Center at San Antonio with Dr. Yuan's consent [23]. The deletion 

inactivates both the long and short form of caspase-2. The mice were backcrossed 

with C57BL/6 once in the Unit for Laboratory Animal Medicine at the University of 
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Michigan Medical School, and then used as founders. Casp2KO and wild type 

C57BL/6 (Jackson) mice with similar ages were applied in the experiments. The 

University Committee on Use and Care of Animals (UCUCA) at the University of 

Michigan approved the protocol (#09695) to use mice for studies described here. 

Bacterial strains and reagents 

RAW264.7 macrophages and bone marrow derived macrophages (BMDMs) were 

infected with Brucella abortus strain RB51 (from Dr. G. Schurig, Virginia 

Polytechnic Institute and State University) and Salmonella typhimurium SL1344 

(from Mary O’Riordan, University of Michigan). The following inhibitors and 

inducers were used: cyclosporin A (Sigma-Aldrich), etoposide (Sigma-Aldrich), 

naphthalene (Sigma-Aldrich), Anti-Fas (BioVision), gliotoxin (-Aldrich), glycine 

(Sigma-Aldrich), Z-WEHD-FMK (Caspase-1 inhibitor, R&D Systems), Z-DEVD-

FMK (Caspase-3 inhibitor, R&D Systems), Z-IETD-FMK (Caspase-8 inhibitor, 

R&D Systems), and anti-TNFα (mouse specific, BioVision). 

The following antibodies were used: anti-cytochrome c (cat#:4272S, Cell 

Signaling), anti-caspase-3 (cat#: 9662S, Cell Signaling), anti-caspase-8 (cat#: 

4927S, Cell Signaling), anti-caspase-2 (cat#: 3027-100, BioVision), anti-caspase-

1 (cat#: sc-514, Santa Cruz), and anti-actin (cat#: MS1295P1, Thermo Scientific).  

Cell culture and infection 

BMDMs were isolated from WT and casp2-/- mice on a C57BL/6 background. 

Isolated BMDMs were differentiated in DMEM (GIBCO) supplemented with 20% 

heat-inactivated FBS (GIBCO), 1% L-glutamine (200 mM), 1% sodium pyruvate 
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(100 mM), 0.1% β-mercaptoethanol (55 mM) , and 30% L-929 fibroblast 

conditioned medium. BMDMs were cultured in non-TC treated plates, fed fresh 

media on day 3, and harvested on day 6. BMDMs were maintained at 37°C under 

5% CO2.  

Four million RAW264.7 macrophages and BMDMs were seeded in 6 well plates 

18 hr prior to infection. The following day, where indicated cells were pretreated 

with cyclosporin A (10 μM), Z-WEHD-FMK (20 μM), Z-DEVD-FMK (20 μM), Z-

IETD-FMK (20 μM) and Anti-TNFα (10 μg/mL) for 1 hr prior to infection. Untreated 

and pretreated cells were infected with RB51 (MOI 200) or SL1344 (MOI 25) for 

30 min, after which the inoculum was removed and cells were washed with PBS. 

Medium containing 50 µg/ml of gentamicin was added to kill extracellular bacteria. 

To synchronize infection, cells were spun at 1200 rpm for 3 min after adding 

inoculum. Cells were treated with etoposide (25 μM), naphthalene (100 μM), anti-

Fas (1 μg/mL), and gliotoxin (10 μM) for 6 hr. At the indicated times, cells were 

lysed in buffer containing 1% NP-40 on ice for 15 min and spun at 13,000 rpm for 

15 min to pellet the insoluble fraction. Soluble fractions were used for immunoblot 

assays.  

Immunoblot Assay 

Cytosolic extracts collected at various time points (1, 6, and 24h pi) were separated 

by SDS-PAGE, transferred to PVDF membranes (Millipore), blocked with 5% milk 

in TBS-Tween20 (TBS-T), and incubated overnight at 4°C with primary antibodies 

stated above. Membranes were washed with TBS-T and incubated with secondary 

HRP conjugated to either goat anti-rabbit IgG (cat#: 12-348, Millipore) or goat anti-
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mouse IgG (cat#: 1034-05, Southern Biotech) at room temperature for 1 hr. Bands 

were visualized using the ECL Western Blotting Substrate Kit (Pierce). 

Immunoblots in the figures are representative of n≥3 independent experiments. 

Cytokine Detection 

Culture supernatants were collected at different time points (1, 6, and 24h pi) from 

macrophages infected as described above. IL-1β and TNFα levels were 

determined by sandwich enzyme-linked immunosorbent assay (ELISA) according 

to manufacturer’s instructions (BioLegend). A minimum of three technical 

replicates per experiment and three experimental replicates were analyzed for 

each condition. 

Cell Death Assay 

RAW264.7 macrophages were seeded in 6 well plates at a concentration 9.6 X 104 

per well and infected with RB51 as stated above. Cells were stained with Annexin 

V and propidium iodide (PI) using the Annexin V-FLUOS staining kit (Roche 

Diagnostics Corporation). Cells were washed with PBS and incubated with the 

fluorescent dyes for 15 min in the dark at room temperature. Fluorescence was 

observed with a Nikon TK-2000-S microscope and photographed with a RT Slide 

Spot digital camera and QCapture Pro software. Uninfected macrophages served 

as negative controls. 

Ethidium bromide (EtBr) and Ethidium homodimer-2 (EthD2) staining 

Macrophages were grown in 6-well plates and infected as described above. At 

different time points post infection, cells were washed with PBS (GIBCO) and 
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stained with Hoechst 33342 (5 μg/mL) and either EtBr or EthD2 (25 μg/mL) 

according to the manufacturer’s instructions. Cell were analyzed with a Nikon TK-

2000-s microscope and photographed with a RT slide spot digital camera and 

QCapture Pro Software. 

Lactate dehydrogenase (LDH) Release Assay 

Macrophages were seeded in 96-well plates and infected with RB51 or SL1344 as 

stated above. Supernatants were analyzed for the presence of LDH enzyme using 

the CytoTox-ONE™ Homogeneous Membrane Integrity Assay (Promega) as 

directed by the manufacturer’s instructions. Percentage of LDH release was 

calculated as 100 X [(Experimental LDH Release - Culture Medium 

Background)/(Maximum LDH Release – Culture Medium Background)]. 

Statistical Analysis  

All p values were generated between identified samples using unpaired two-tailed 

Student’s t-tests and represent analysis of ≥3 replicates per condition. ‡,*p<0.01 

‡‡,**p<0.001 and ‡‡‡,***p<0.0001. 
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Chapter 3 

ER stress activates the inflammasome via NLRP3-caspse-2 driven 

mitochondrial damage 

Abstract 

Endoplasmic reticulum (ER) stress is observed in many human diseases, often 

associated with inflammation. ER stress can trigger inflammation through NLRP3, 

which may stimulate inflammasome formation by association with damaged 

mitochondria. How ER stress triggers mitochondrial dysfunction and 

inflammasome activation is ill defined. Here we use an infection model to show 

that the IRE1ER stress sensor regulates mitochondrial dysfunction through an 

NLRP3-mediated feed-forward loop, independently of ASC. IRE1 activation 

increased mitochondrial reactive oxygen species, promoting NLRP3 association 

with mitochondria. NLRP3 was required for ER stress-induced cleavage of 

caspase-2 and Bid, and subsequent release of mitochondrial contents.  Caspase-

2 and Bid were necessary for activation of the canonical inflammasome by 

infection-associated or sterile ER stress. These data identify an NLRP3-caspase-

2 dependent mechanism that relays ER stress to the mitochondria to promote 

inflammation, integrating cellular stress and innate immunity.   
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Introduction 

Cellular stress provokes release of molecular danger signals that stimulate 

inflammatory signaling [1, 2], but the mechanisms linking stress with release of 

danger associated molecular patterns (DAMPs) are not fully defined.  Such 

mechanisms are highly relevant to human health as molecular stress and 

inflammation increase with age and are associated with many acute and chronic 

diseases [3-6]. Mitochondria can act as platforms to nucleate signaling by large 

molecular complexes, like the NLRP3 inflammasome, and drive inflammation 

through release of mitochondrial DAMPs in response to diverse stressors [7]. How 

such different stressors as infection, glucose deprivation, oxidative stress, or 

disruption of calcium homeostasis trigger these inflammatory events is not fully 

understood. The endoplasmic reticulum (ER) is a large endomembrane 

compartment that is highly sensitive to perturbation and is central to the function 

of many organelle networks, suggesting that ER may act as a relay station 

between stressors and the mitochondria, linking stress and inflammatory signaling.   

Three ER-resident unfolded protein sensors ATF6, IRE1 (IRE1), and PERK 

control the ER stress response, an adaptive program that defines the fate of the 

stressed cell [8]. Toll-like receptors (TLR), which primarily recognize microbial 

ligands like lipopolysaccharide (LPS), selectively stimulate ER stress sensors [9], 

and LPS-primed macrophages react to ER stress by activating the NLRP3 

inflammasome [10]. Microbial infection represents a useful model for investigating 

ER stress and inflammation because infection is often associated with ER stress, 

and animals deficient in components of the IRE1 signaling pathway are more 
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susceptible to bacterial infection than controls [9, 11-13]. Brucella abortus strain 

RB51 is an attenuated bacterial vaccine strain that infects macrophages, causes 

ER stress, and provokes a robust immune response without the complex effects 

of intracellular replication [14]. We therefore used RB51 as a probe to elucidate 

ER stress-dependent immune signaling. Virulent B. abortus mediates 

inflammasome activation through NLRP3 [15], a sensor responsive to diverse 

cellular stresses, suggesting that B. abortus strains could be appropriate for 

studying the interplay between ER stress and NLRP3-dependent immune 

signaling [4]. NLRP3-deficient animals exhibit increased susceptibility and 

decreased survival during infection by some microbial pathogens [16]. Notably, 

NLRP3 in a resting state is associated with ER, but upon stimulation moves to ER-

mitochondrial junctions [17]. These data led us to hypothesize that ER stress 

sensors could modulate NLRP3-dependent crosstalk between ER and 

mitochondria leading to inflammasome activation.   

Results 

RB51-induced inflammasome activation requires IRE1 and TXNIP 

 TLR ligands (e.g., LPS) activate IRE1, but not ATF6 or PERK, activating 

transcription of proinflammatory cytokines [9]. To determine if IRE1 was stimulated 

during RB51 infection, we investigated splicing of xbp1 transcript, a direct target of 

the endonuclease domain of activated IRE1 [8]. Tunicamycin (TM), an inhibitor of 

protein glycosylation [8, 18], served as a positive control for ER stress assays. 

Robust splicing of xbp1 was seen in tunicamycin-treated bone marrow derived 

macrophages (BMDM) as well RB51-infected BMDM at 8h post-infection (pi) (Fig. 
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3.1A). ER stress signaling can lead to cell death in some contexts, so we measured 

release of the large cytosolic lactate dehydrogenase complex as a measure of cell 

death and found that the majority of infected cells remained viable by 8h post 

infection (Fig A4A). Thus, infection by RB51 stimulated IRE1 activation, as 

previously observed for other microbial ligands [9].   

Recent studies revealed that ER stress induced by metabolic perturbation 

could mediate inflammasome activation [19]. In addition, RB51 stimulates robust 

IL-1β production at both low and high multiplicity of infection (Fig. A4B). We 

therefore tested whether ER stress was also required for RB51-induced IL-1β 

production. We infected BMDM with RB51 in the presence of 4µ8C, an inhibitor of 

the IRE1 endonuclease [20]. Treatment with 4µ8C led to a decrease in caspase-1 

cleavage, but not in bacterial uptake. (Fig. 3.1B and Fig. A5). Treatment with 

tauroursodeoxycholic acid (TUDCA), a molecular chaperone that alleviates ER 

stress, or 4µ8C, led to a significant decrease in IL-1β production in RB51-infected 

BMDM, but not BMDM treated with LPS+ATP (L+A), our positive control condition 

for inflammasome activation assays (Fig. 3.1C). IRE1 inhibition had no effect on 

L+A-induced caspase-1 cleavage and IL-1β production. These data suggest that 

unlike RB51, L+A does not rely on IRE1 to induce IL-1β production. Knockdown of 

IRE1 (IRE1KD, Fig. A6A and B) similarly resulted in decreased IL-1β production 

and caspase-1 cleavage.  

To determine whether IRE1 plays a role in modulating inflammation in vivo, 

we treated C57BL/6 mice with either 5% DMSO (vehicle control) or 4µ8C and 

infected the animals intraperitoneally with 108 CFU of RB51. Consistent with our 



Figure 3.1: IRE1 via TXNIP modulates RB51-induced inflammasome

activation. (A) xbp1 splicing, in RB51-infected BMDM. qRT-PCR samples were

treated with PstI to distinguish between spliced (184 bp) and unspliced variants

(119 bp following PstI digestion). (B) Caspase-1 cleavage in RB51-infected

BMDM in absence or presence of 4µ8c. (C) IL-1β ELISA analysis of

supernatants from RB51-infected BMDM treated with or without TUDCA

(chemical chaperone, 300 µM) and 4µ8c (IRE1 inhibitor, 50 µM). Error bars

represent mean ± SD of n≥3 independent experiments. *** represent p-value

<0.0001, n.s. = not significant. (D) Serum IL-1β levels in mice treated with 5%

DMSO (control, n = 15) or 4µ8c (n = 15) and infected with RB51 (i.p., CFU 1 x

108). (E) qPCR analysis of IL-1β transcript levels RB51-infected BMDM in

absence or presence of 4µ8c. IL-1β ELISA analysis of supernatants from RB51-

infected BMDM transfected with (F) non-target and xbp1 siRNA or (G) non-

target and TXNIP siRNA. (H) CM-H2DCFGA was used to measure ROS levels

during RB51 infection in presence of 4µ8c or TXNIP siRNA. UNT, TM, and L+A

represent untreated, tunicamycin (10 µg/mL, positive control for ER stress

activation) and LPS+ATP (200 ng/mL and 1mM respectively; positive control for

inflammasome activation).
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in vitro findings, 4µ8C-treated mice showed significantly decreased serum IL-1β, 

as well as increased bacterial burden in the spleen (Fig. 3.1D and Fig. A7). These 

data point to IRE1 as an important regulator of ER stress-induced inflammasome 

activation during infection.  

Previous studies have identified multiple targets for the IRE1 endonuclease, 

including xbp1 and miR-17, a negative regulator of thioredoxin-interacting protein 

(TXNIP) translation. The XBP1 transcription factor selectively enhances 

transcription of pro-inflammatory cytokine genes. IRE1-dependent miR-17 

degradation increases TXNIP protein, which shuttles to the mitochondria and binds 

thioredoxin-2, raising levels of mitochondrial ROS. To assess if xbp1 or TXNIP 

control IRE1-driven IL-1β production, we transfected BMDM with xbp1 or txnip 

specific siRNA and measured IL-1β levels. Transient knockdown of XBP1 had no 

effect on RB51-induced IL-1β production, and IL1b as well as NLRP3 transcription 

was unchanged with 4µ8C treatment (Fig. 3.1E-F and Fig. A8). Transient 

knockdown of TXNIP led to a significant decrease in IL-1β and ROS levels in 

RB51-infected BMDM. These data suggest that following RB51 infection IRE1 is 

not involved in IL-1β priming, but acts through TXNIP to induce IL-1βproduction.  

ER stress-induced mitochondrial dysfunction aids in inflammasome activation 

ER stress drives mitochondria to release mtDAMPs, which can activate the 

inflammasome [17, 21, 22]. Concomitant with the mtDAMPs release, mitochondrial 

ROS (mtROS) can increase sharply. Previous studies have shown that TXNIP 

increases overall levels of ROS in mitochondria [23]. Moreover, we observed an 

increase in ROS levels over time in RB51-infected BMDM, a phenotype dependent 
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upon IRE1 and TXNIP (Fig. 3.1H). To determine if mtROS was involved in IRE1-

induced IL-1β production, we infected BMDM derived from transgenic mice that 

express a catalase targeted to mitochondria (mCAT), thus preventing ROS 

accumulation in the mitochondrial network [24]. Both ROS and IL-1β levels 

significantly decreased in infected mCAT BMDM when compared to infected WT 

BMDM (Fig. 3.2A and B). The absence of ROS had no effect on L+A-induced IL-

1β production, consistent with previous work that demonstrated mitochondrial 

function is not essential for activation of the NLRP3 inflammasome [25]. Studies 

have reported that mtROS mediates release of mitochondrial contents into the 

cytosol. Since we observed an increase in ROS levels upon RB51 infection, we 

hypothesized that infected BMDM would release mitochondrial contents into the 

cytosol. We therefore infected BMDM with RB51 and measured cytochrome c and 

mtDNA release in comparison to tunicamycin treatment, which is known to induce 

ER stress and mitochondrial dysfunction. TM-treated and RB51-infected 

macrophages released cytochrome c and mtDNA into the cytosol, a process 

blocked by IRE1 inhibition or knockdown (Fig.3.2C and Fig. A9A and B). Since the 

presence of transfected mtDNA in the cytosol can stimulate IL-1β production [21, 

26], we investigated whether release of mitochondrial components during RB51 

infection contributed to IL-1β production by treating BMDM with cyclosporin A 

(CsA), which prevents opening of the mitochondrial permeability transition pore 

[27]. We infected BMDM with RB51 or L+A in the presence or absence of CsA, 

and measured IL-1β production by ELISA. CsA treatment significantly decreased 

IL-1β levels in RB51-infected macrophages, even though bacterial uptake was 



Figure 3.2: ER stress-induced mitochondrial dysfunction drives IL-1β

production. (A) CM-H2DCFGA was used to measure ROS levels in WT and

mitochondrial-specific catalase (mCAT) BMDM infected with RB51.

Rotenone serves as a positive control for ROS induction. (B) IL-1β levels in

RB51-infected WT and mCAT BMDM. (C) qPCR analysis of mitochondrial

DNA (mtDNA) release into cytosol during RB51 BMDM infection. (D) IL-1β

levels in RB51-infected BMDM with or without cyclosporin A (CsA, 10 μM).

Error bars in (A - D) represent mean ±SD of n≥3 independent experiments.

*** represent p-value <0.0001, n.s. = not significant. UNT, TM, and L+A

represent untreated and tunicamycin (10 µg/mL, positive control for ER

stress activation), and LPS+ATP (200 ng/mL and 1mM respectively; positive

control for inflammasome activation).
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unaffected (Fig. A10). CsA treatment did not affect IL-1β production in L+A treated 

BMDM, suggesting that our L+A treatment protocol, which results in little mtDNA 

release, induces IL-1β production independently of mitochondrial damage (Fig. 

3.2D). These data indicate that RB51 infection damages mitochondria via a IRE1-

dependent mechanism.  

NLRP3 mediates IRE1-induced mitochondrial stress in an ASC-independent 

manner  

We reasoned that NLRP3 would be the most likely sensor to respond to the 

infection-induced ER stress signal [10, 19, 28]. Upon activation, NLRP3 can 

translocate from the ER to the mitochondria [17]. NLRP3 is also reported to trigger 

mitochondrial dysfunction and IL-1β production in the presence of oxidized mtDNA 

[21, 26].  In macrophages infected with virulent B. abortus, both NLRP3 and the 

cytosolic DNA sensor AIM2 were required for IL-1β production [15]. Moreover, the 

AIM2 inflammasome was shown to regulate IL-1β production when stimulated by 

mtDNA transfected into the cell [21]. Since RB51 induced mtDNA release, we first 

assessed if AIM2 was required for RB51-induced IL-1β production by measuring 

IL-1β levels in supernatants of RB51-infected WT and Aim2-/- BMDM. We found 

that AIM2 did not contribute to IL-1β production induced by RB51 infection or by 

LPS+ATP, which depends on NLRP3 (Fig. A11).  

To determine if NLRP3 was involved in controlling the release of 

mitochondrial contents during RB51 infection, we first assessed if NLRP3 was 

recruited to mitochondria. In RB51-infected WT BMDM, NLRP3 was recruited to 

the mitochondrial fraction at 4h p.i., a time point that corresponds with cytochrome 
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c and mtDNA release (Fig. 3.3A and B). NLRP3 recruitment to the mitochondria 

was abolished in mCAT and TXNIP KD BMDM. NLRP3-deficient macrophages did 

not release mtDNA nor cytochrome c into the cytosol upon RB51 infection or 

treatment with the ER stress inducer tunicamycin (Fig. 3.3C and Fig. A12A). In 

addition, NLRP3 deficiency abolished RB51-induced IL-1β production and 

caspase-1 cleavage, but did not affect overall caspase-1 levels (Fig. 3.3D and Fig. 

A12B). Since NLRP3 appeared to be a key component of RB51-induced 

inflammasome activation, we investigated whether ASC or caspase-1, other key 

components of the canonical inflammasome, were also crucial to inducing 

mitochondrial damage. Asc-/- and YVAD-CHO (caspase-1 inhibitor)-treated BMDM 

were not required for mtDNA and cytochrome c release into the cytosol upon 

infection (Fig. 3.3C and Fig. A12C). However, ASC and caspase-1 were necessary 

for IL-1β production during RB51 infection (Fig. 3.3D). The inability to produce IL-

1β in YVAD-CHO-treated macrophages was not due to a decrease in bacterial 

uptake (Fig. A13). Together, these results show that during RB51-induced 

inflammasome activation, NLRP3 has a critical role upstream of the mitochondria, 

independent of ASC and caspase-1, in mediating release of mitochondrial 

contents.  

NLRP3 drives mitochondrial dysfunction through caspase-2  

During ER stress, we considered that NLRP3 might facilitate mitochondrial 

dysfunction through the cysteine protease caspase-2. Caspase-2 can cause 

mitochondrial dysfunction leading to cytochrome c release [29]. Moreover, 

caspase-2 is activated by ER stress or RB51 infection [30-32], and regulates 



Figure 3.3: NLRP3 is required for RB51-induced release of mitochondrial

contents. Immunoblot of NLRP3 at the mitochondrial fraction of (A) WT and

mCAT BMDM and (B) non-target (NT) and TXNIP KD BMDM. (C) Quantitative

PCR of mtDNA in cytosolic extracts from RB51-infected WT and nlrp3-/-, asc-/-,

and Z-YVAD-CHO (caspase-1 inhibitor, 2 µM) treated BMDM. (D) IL-1β levels in

RB51-infected WT and nlrp3-/-, asc-/-, and Z-YVAD-CHO (caspase-1 inhibitor, 2

µM) inhibited BMDM. Error bars represent mean ± SD of n≥3 independent

experiments. *, **, and *** represent p-values of <0.05, <0.001, and <0.0001

respectively. n.s. = not significant. UNT, TM, and LPS+ATP represent untreated,

tunicamycin (positive control for ER stress induction, 10 µg/mL), and LPS+ATP

(positive control for inflammasome activation, 200 ng/mL and 1mM) respectively.

Immunoblots in (A) and (B) are representative of n≥3 independent experiments

that were performed and imaged in parallel with identical parameters using a

LiCor Odyssey imaging system.
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caspase-1 activation [33, 34]. We reasoned that, under conditions of ER stress, 

NLRP3 might be inducing activation of caspase-2 leading to release of mtDNA and 

cytochrome c into the cytosol.  We probed lysates of control, 4µ8C-treated, as well 

as IRE1KD infected macrophages, for the full-length or cleaved active form of 

caspase-2 (Fig. 3.4A and Fig. A14A). IRE1 was required for caspase-2 cleavage 

during RB51 infection, but not for caspase-2 cleavage triggered by the positive 

control genotoxic agent, etoposide (ET), [29]. These data suggest that unlike ET, 

RB51-induced caspase-2 activation is dependent upon IRE1.  

To determine whether NLRP3 acted upstream or downstream of caspase-

2, C57BL/6 and Nlrp3-/- BMDM were infected with RB51, and lysates probed for 

cleaved caspase-2 (Fig. 3.4B). Caspase-2 cleavage was nearly absent in infected 

nlrp3-/- macrophages.  In contrast, caspase-2 cleavage appeared independent of 

ASC, as well as caspase-1, essential components for activation of the canonical 

inflammasome (Fig. A14B). In addition, caspase-2 is recruited to mitochondria in 

an IRE1 and NLRP3-dependent matter (Fig. 3.4C and D). We next assessed 

mitochondrial dysfunction in caspase-2 deficient BMDM and found that infected 

casp2-/- BMDM released significantly less mtDNA and cytochrome c into the 

cytosol (Fig. 3.4E and Fig. A14C). Moreover, caspase-2 deficiency abolished IL-

1β production and caspase-1 activation without affecting bacterial uptake (Fig. 

3.4F, Fig. A14D and E). Although these caspase-2 deficient BMDM were infected 

to similar levels as WT, it is possible that these BMDM were deficient in 

transcription of IL1b. We performed quantitative RT-PCR analysis to measure IL1b 

transcript levels in WT and casp2-/- BMDM. In the absence of caspase-2, infected 



Figure 3.4: NLRP3 and caspase-2 are required for ER stress-induced

inflammasome activation. Immunoblot analysis of caspase-2 in (A) with or

without 4µ8c (IRE1 inhibitor, 50 µM) and (B) RB51-infected WT and nlrp3-/-

BMDM. Immunoblot analysis of caspase-2 in the mitochondrial fraction (C) with

or without 4µ8c (IRE1 inhibitor, 50 µM) and (D) RB51-infected WT and nlrp3-/-

BMDM – ETǂ identifies duplicate lanes of the same sample. (E) qPCR analysis

of mtDNA in cytosolic fractions of infected WT and casp2-/- BMDM. IL-1β levels

in (F) WT and casp2-/- RB51-infected (i.p., CFU 1 x 108) BMDM and (G) WT (n =

15) and casp2-/- mice (n = 15). Data in (G) were pooled from 2 independent

experiments. (H) qPCR analysis of IL-1β transcript levels in WT and casp2-/-

RB51-infected BMDM. Error bars represent mean ± SD of n≥3 independent

experiments. *, **, and *** represent p-values of <0.05, <0.001, and <0.0001

respectively. n.s. = not significant. UNT, ET, TM, and L+A represent untreated,

etoposide (positive control for caspase-2 activation and Bid truncation, 25 µM),

tunicamycin (positive control for ER stress induction, 10 µg/mL), and LPS+ATP

(positive control for inflammasome activation, 200 ng/mL and 1mM

respectively). Immunoblots in (A-D) are representative of n≥3 independent

experiments that were performed and imaged in parallel with identical

parameters using a LiCor Odyssey imaging system. Full length caspase-2 and

TOM20 (mitochondrial specific outer membrane protein) serve as loading

controls.
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BMDM still produced similar levels of IL1b to WT BMDM (Fig. 3.4G) suggesting 

that the defect in IL-1β production is not in priming but in activating the 

inflammasome. Similar to our in vitro data, casp2-/- mice exhibited low serum IL-1β 

levels and higher bacterial burden in the spleen (Fig. 3.4H). These data suggest 

that NLRP3 can mediate RB51-induced mitochondrial damage and inflammasome 

activation by a caspase-2-dependent mechanism.  

NLRP3 and caspase-2 induce mitochondrial damage via Bid truncation 

We next aimed to elucidate the mechanism by which NLRP3 and caspase-

2 could regulate mitochondrial dysfunction. NLRP3 and caspase-2 could lead to 

activation of Bid, which damages mitochondria by licensing pore formation of Bax 

and Bak, pro-apoptotic factors of the Bcl-2 family [35]. Caspase-2 can truncate Bid 

(tBid), leading to activation [35]. To determine if Bid was involved in RB51-induced 

mitochondrial damage, we infected 4µ8C-treated or IRE1KD macrophages with 

RB51 and probed for the presence of tBid. Etoposide served as a positive control 

condition for Bid truncation. Total Bid levels remained constant under all 

conditions, but Bid truncation was diminished in 4µ8C-treated and IRE1KD 

macrophages (Fig. 3.5A and Fig. A15A), implicating Bid in RB51-induced 

mitochondrial dysfunction. ET induces mitochondrial dysfunction but does not 

induce ER stress [36, 37]. Therefore, it was not surprising to see that IRE1 

inhibition had no effect on Bid truncation in ET-treated BMDM. To determine the 

role of NLRP3 and caspase-2 in this process, C57BL/6, Nlrp3-/-, and Casp2-/- 

BMDM were infected with RB51 to assay Bid truncation, which was markedly 

decreased in the absence of NLRP3 and caspase-2 (Fig. 3.5B and Fig. A15B). 



Figure 3.5: NLRP3 controls mitochondrial dysfunction by a Bid dependent

mechanism. Bid truncation in RB51-infected (A) with or without 4µ8c (IRE1

inhibitor, 50 µM) and (B) WT and nlrp3-/- BMDM – ETǂ identifies duplicate lanes

of the same sample. (C) Quantitation of mtDNA in cytosolic extracts from RB51-

infected WT and bid-/- BMDM. (D) ELISA of IL-1β levels in supernatants from

RB51-infected WT and bid-/- BMDM. (E) Immunoblot analysis of caspase-1 in WT

and bid-/- BMDM infected with RB51. (f) Serum IL-1β levels in WT (n = 29) and

bid-/- (n = 30) mice RB51-infected (i.p. CFU 1 x 108) mice. The data in (F) were

pooled from 2 independent experiments. Error bars represent mean ± SD of n≥3

independent experiments. * and *** represent p-values of <0.05 and <0.0001

respectively. n.s. = not significant. UNT, ET, TM, and L+A represent untreated,

etoposide (positive control for Bid truncation, 25 µM), tunicamycin (positive

control for ER stress induction, 10 µg/mL), and LPS+ATP (positive control for

inflammasome activation, 200 ng/mL and 1mM) respectively. Immunoblots in (A),

(B), and (E) are representative of n≥3 independent experiments that were

performed and imaged in parallel with identical parameters using a LiCor

Odyssey imaging system. Full length (FL) caspase-1 and Bid serve as loading

controls.
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Infected Bid-/- BMDM released significantly less mtDNA into the cytosol than 

wildtype controls, confirming that Bid is required for mitochondrial damage, even 

though Bid-deficiency did not affect bacterial uptake (Fig. 3.5C and Fig. A15C). 

Bid-/- BMDM infected with RB51 also exhibited diminished secretion of IL-1β and 

caspase-1 cleavage (Fig. 3.5D and E). Consistent with our in vitro results, RB51-

infected Bid-/- mice showed a significant decrease in serum IL-1β, as well as an 

increase in bacterial burden in the spleen, compared to wildtype controls (Fig. 3.5F 

and Fig. A16). Thus, during RB51 infection, NLRP3 and caspase-2 trigger 

mitochondrial damage through Bid, leading to inflammasome activation. 

NLRP3 and caspase-2 are required for inflammasome activation in response to 

UPR-inducing chemicals 

Our data thus far identified the IRE1-NLRP3-caspase2-Bid axis as a 

mechanism for relaying infection-induced ER stress signals to the mitochondria, 

leading to inflammasome activation. We considered the possibility that this 

pathway might be important for infection-induced inflammasome activation, but not 

in the general ER stress response. We therefore tested whether IRE1, NLRP3, 

caspase-2 and Bid were required for inflammasome activation in response to 

thapsigargin (TG), tunicamycin (TM), and brefeldin A (BFA), three chemical 

inducers of ER stress that act by distinct mechanisms. The sesquiterpene lactone, 

thapsigargin, is a selective inhibitor of Ca2+ uptake from the cytosol by ER Ca2+ 

ATPases [38], which results in net loss of ER luminal Ca2+ and ER stress. 

Tunicamycin, a nucleoside antibiotic, inhibits N-glycosylation of proteins in the 

Golgi apparatus resulting in ER stress [39]. Brefeldin A, a fungal lactone antibiotic, 
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induces disassembly as well as collapse of the Golgi into the ER leading to a 

backup of Golgi protein in the ER and ER stress [40].  Treatment of WT BMDM 

with TG, TM, or BFA resulted in weak IL-1β production, but robust caspase-1 

cleavage, suggesting that minimal priming was occurring during TG, TM, and BFA 

treatment in contrast to L+A treatment (Fig. 3.6A and B). Priming to stimulate IL1b 

transcription, and inflammasome activation are the two signals required for robust 

IL-1β secretion [41]. We assessed proIL-1β production by immunoblot and found 

that unlike LPS, TM and BFA induced weak proIL-1β production whereas TG did 

not trigger any detectable proIL-1β production (Fig. A17A). These data suggest 

that ER stress can serve as the second signal for inducing inflammasome 

activation, but is a weak inducer of the first signal (priming) that regulates 

transcription of IL1b. When we assessed inflammasome activation, we found that 

similar to our infection model, caspase-1 cleavage was abrogated in 4µ8C-treated 

BMDM in the presence of TG and TM (Fig.3.6B). Although BFA did trigger IRE1 

activation (Fig. A17B), IRE1 was not required for BFA-induced inflammasome 

activation, as previously reported by Tschopp and colleagues [10], perhaps due to 

the more extensive perturbations induced by BFA, compared to TG or TM. In TM 

and TG-treated BMDM deficient in NLRP3, caspase-2, and Bid, caspase-1 

cleavage was virtually absent (Fig. 3.6C-E).  Although caspase-2 and Bid were 

critical for sterile ER stress-induced inflammasome activation, neither was required 

for inflammasome activation by L+A (Fig. 3.6D and E). Taken together, our data 

support the IRE1-NLRP3-caspase2-Bid axis as a key mechanism by which general 

ER stress drives mitochondrial damage and inflammasome activation. 



Figure 3.6: NLRP3 and caspase-2 are required for caspase-1 activation

during ER stress. (A) ELISA analysis of IL-1β levels in supernatants from

BMDM treated with L+A (LPS+ATP, 200 ng/mL and 1mM respectively; positive

control for inflammasome activation), or the ER stressors BFA (brefeldin A, 20

µM), TM (tunicamycin, 10 µg/mL), and TG (thapsigargin, 10 µM). Error bars

represent mean ± SD of n≥3 independent experiments. ** and *** represent p-

values of <0.001 and <0.0001 respectively. n.s. = not significant. Immunoblot

analysis of caspase-1 in (B) BMDM in the absence or presence of 4µ8c (IRE1

inhibitor, 50 µM), (C) WT and nlrp3-/- BMDM – L+Aǂ identifies duplicate lanes of

the same sample, (D) WT and casp2-/- BMDM, and (E) WT and bid-/- BMDM.

Immunoblots in (B-E) are representative of n≥3 independent experiments that

were performed and imaged in parallel with identical parameters using a LiCor

Odyssey imaging system. Full length (FL) caspase-1 serves as a loading

control.
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Conclusions 

 ER stress is increasingly implicated in human disease, including infection, 

Alzheimer’s Disease and diabetes [42]. More recent studies, have demonstrated a 

connection between ER stress and the inflammasome, although the mechanisms 

that control signaling have not been fully elucidated [10, 19, 28]. Our results reveal 

that activation of the IRE1 ER stress sensor leads to NLRP3-mediated crosstalk 

between ER and mitochondria, resulting in release of mitochondrial contents 

through activation of the caspase-2/Bid axis (Fig. 3.7A). Notably, the requirement 

of NLRP3 in ER stress-induced mitochondrial damage was independent of ASC 

and caspase-1, suggesting that this is not a function of the canonical 

inflammasome. Our data place NLRP3 upstream of caspase-2 in the ER-

mitochondrial signaling pathway, and provide a mechanism by which NLRP3 can 

facilitate mitochondrial damage to activate the inflammasome. Whether NLRP3 or 

additional inflammasome regulators act as downstream sensors of mitochondrial 

damage in ER stress conditions remains to be determined, although AIM2 was not 

required.  

The role of mitochondria in activating inflammasomes has been somewhat 

controversial. Previously, K+ efflux was proposed as a common mechanism by 

which diverse stresses that increase membrane permeability, e.g., bacterial toxins 

or LPS+ATP, activate the NLRP3 inflammasome without requiring mitochondrial 

damage [25, 43].  However, other studies have reported that mitochondrial 

damage was critical for inflammasome activation by LPS+ATP or by cytosolic DNA 

[26, 44, 45].  In the conditions we used, NLRP3-dependent inflammasome 



Figure 3.7: Working model of IRE1-induced inflammasome activation.

Upon IRE1 activation, TXNIP translocates to the mitochondria and increases

ROS levels. The increase in ROS levels, recruits NLRP3 and caspase-2 to

the mitochondria and triggers Bid truncation. The processing of Bid is

required for mtDNA and cytochrome c release, indicative of mitochondrial

damage. Release of mtDAMPs aids in activation of the NLRP3-ASC-

caspase-1 inflammasome. Blockade of ROS, caspase-2, Bid, or mtDAMPs

release will lead to decreased NLRP3-dependent inflammasome activation

and IL-1β production. (B) Oligomerization of NLRP3 oligomerization

(cytosolic vs. mitochondrial anchored) depends upon the magnitude of ER

stress. Regardless of location, NLRP3 aids in IL-1β processing.
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activation by LPS+ATP was essentially independent of IRE1, caspase-2, Bid, or 

mitochondrial content release.  However, ER stress-induced inflammasome 

activation both provoked and required mitochondrial damage.  To reconcile our 

results with previously published reports, we propose that NLRP3-dependent 

oligomerization, necessary for inflammasome activation, may exhibit distinct 

signaling requirements depending on the types or magnitude of stress (Fig. 3.7B).  

For example, a stress that initiates strong K+ efflux, such as pore formation by 

bacterial toxins or pannexin-1, might not require mitochondrial damage and would 

not be blocked by cyclosporin A.  Stress that triggers weaker K+ efflux might be 

more dependent on mitochondrial danger signals.  Notably, protocol-specific 

conditions may be critical in defining the reliance of inflammasome activation on 

K+ efflux vs. mitochondrial damage [21, 26, 46].  In fact, we found that differing 

times and concentrations of LPS+ATP treatments resulted in substantially different 

levels of mtDNA release (Fig. A18), perhaps providing an explanation for why 

conflicting results have been reported.  Therefore, the molecular context of cellular 

stress will likely be critical in defining the key principles that govern inflammasome 

activation.     

Microbial infection imposes complex stress conditions upon infected cells 

that are not fully defined for most microbes, but may include K+ efflux, nutrient 

deprivation, cytoskeletal perturbations and ROS.   Microbes or microbial ligands 

activate IRE1 through TLR signaling [9], and in vivo data clearly show that XBP1, 

a component of the IRE1 signaling pathway, and NLRP3 can mediate resistance 

to microbial infection [9, 16]. These observations are consistent with the idea that 
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activation of ER stress machinery influences the outcome of infection by tuning 

inflammatory responses.  Importantly, a recent study demonstrated that IRE1 was 

required for optimal secretion of pro-inflammatory cytokines, including IL-1β, in a 

mouse model of inflammatory arthritis [47]. Cellular stress in the form of ER 

perturbation and mitochondrial dysfunction may provide critical contextual danger 

signals that together with microbial ligands provoke robust immunity. Because ER 

stress and mitochondrial dysfunction are also associated with Type 2 diabetes, 

obesity, Crohn’s disease and cancer [48, 49], it will be of interest to determine 

whether the NLRP3-caspase-2 regulatory axis is more broadly involved in sterile 

inflammatory diseases.  

NLRP3 has emerged as a critical regulator of the inflammasome in 

response to ER stress and IRE1 activation. How IRE1 leads to NLRP3-dependent 

stimulation of caspase-2 is still unclear.  NLRP3 binds to the signaling adaptor, 

TXNIP, whose levels are controlled by activated IRE1 [19, 28, 50], suggesting that 

interaction as a possible interface that may lead to recruitment and cleavage of 

caspase-2.  Alternatively, NLRP3 may interact with an accessory protein similar to 

ASC that recruits caspase-2 through its CARD domain. IRE1 itself was reported to 

modulate caspase-2 total protein levels by controlling degradation of regulatory 

microRNAs in BFA, TG, or TM-treated murine embryonic fibroblasts [32]. However, 

a recent report indicated that overall caspase-2 levels did not change in response 

to ER stress induced in human leukemia- and lymphoma-derived cell lines [51], 

which is in agreement with our data in macrophages showing that caspase-2 

cleavage is the key event induced by ER stressors. Our results emphasize the 
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requirement for caspase-2 and mitochondrial damage in triggering caspase-1 

activation specifically in conditions for ER stress since mitochondrial damage is 

not absolutely required for other triggers of the NLRP3 inflammasome [25].  

Determining specific mechanisms by which ER stress tunes the inflammatory 

response will lay the groundwork for better design of therapeutic approaches for 

diseases of inflammation and immunity. 

Materials and Methods 

Mice 

Humane animal care at the University of Michigan is provided by the Unit for Lab 

Animal Medicine, which is accredited by the American Association for 

Accreditation of Laboratory Animal Care and the Department of Health and Human 

Services. This study was carried out in strict accordance with the 

recommendations in the Guide for the Care and Use of Laboratory Animals of the 

National Institutes of Health. The protocol was approved by the Committee on the 

Care and Use of Animals (UCUCA) of the University of Michigan. 

Bid WT (n = 29), bid-/-[52] (n = 30), DMSO treated  (n = 15),4µ8c treated (n = 15), 

casp2 WT (n = 15) and casp2-/- (n = 15) C57BL/6 mice (8 -12 weeks) were injected 

intraperitoneally (i.p.) with Brucella abortus RB51 vaccine strain (1 x 108 CFU) in 

200 µl of phosphate-buffered saline (PBS). Mice were matched by sex and age. 

Mice were treated with DMSO (5% in PBS) and 4µ8c (25mg/kg) daily in 200 µl of 

PBS. Blood was collected by saphenous vein on day -1, 1, and 3 days post 

infection (p.i.). Serum was extracted from blood by centrifugation for 3 min at 
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10,000 rpm and used for assessing IL-1β production by ELISA.  At day 3 p.i., 

spleens were removed from euthanized mice, homogenized in 1 ml 0.2% NP-40, 

and serial dilutions plated onto Brucella agar plates to enumerate CFU.  

Cell culture and infection 

BMDM were isolated from WT, casp2-/-, asc-/-, nlrp3-/-, bid-/- and aim2-/- mice. 

Casp2-/- with corresponding WT were purchased from Jackson Laboratories (stock 

#007899) [53]. Nlrp3-/- [54] and asc-/- [55] were maintained by the Nuñez 

laboratory. Bid-/- [52] and corresponding WT mice were maintained by the Yin 

laboratory. Aim2-/- [56] and corresponding WT mice were maintained by the 

Fitzgerald laboratory.  

Isolated BMDM were differentiated in DMEM (GIBCO) supplemented with 20% 

heat-inactivated FBS (Invitrogen), 1% L-glutamine (2 mM), 1% sodium pyruvate (1 

mM), 0.1% β-mercaptoethanol (55 µM), and 30% L-929 conditioned medium. 

BMDM were cultured in non-TC treated plates at 37°C in 5% CO2, fed fresh media 

on day 3, and harvested on day 6. Four million RAW264.7 macrophages or BMDM 

were seeded in 6 well plates 18 hr prior to infection. The LPS+ATP samples were 

pretreated with LPS (200 ng/mL) overnight. The following day, where indicated, 

cells were pretreated with cyclosporin A (10 μM), TUDCA (300 μM), 4μ8c (50 μM), 

and Y-VAD-CHO (2 μM) for 1 hr prior to infection. Untreated and pretreated cells 

were infected with RB51 (MOI 200) for 30 min, after which the inoculum was 

removed and cells were washed with PBS. Medium containing 50 µg/ml of 

gentamicin was added to kill extracellular bacteria. To synchronize infection, cells 

were spun at 1200 rpm for 3 min after adding inoculum. Cells were treated with 
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etoposide (25 μM), thapsigargin (10 μM), tunicamycin (10 μg/mL), brefeldin A (20 

μM), or ATP (1mM) for 4 hr. At the indicated times, cells were lysed in buffer 

containing 1% NP-40 on ice for 15 min and spun at 16,000 x g for 15 min to pellet 

the insoluble fraction. Soluble fractions were used for immunoblot assays. The 

insoluble fraction was resuspended in mitochondrial suspension buffer (10mM 

TrisHCl pH 6.7, 0.15 mM MgCl2, 0.25 sucrose, 1 mM PMSF, 1 mM DTT) and 

centrifuged at 11,000 x g for 15 minutes at 4ºC to pellet the isolated mitochondria. 

Purity of isolated mitochondria was assessed by immunoblotting for calreticulin - 

ER marker, TOM20- mitochondrial marker, Lamin B1 - nuclear marker, and Actin 

- cytosolic marker (Fig. A19).  

Bacterial strains and reagents 

 Brucella abortus strain RB51 was obtained from Dr. G. Schurig (Virginia 

Polytechnic Institute and State University). Reagents were obtained from the 

following vendors: cyclosporin A (Sigma-Aldrich), thapsigargin (Fisher), 

tunicamycin (Sigma-Aldrich), etoposide (Sigma-Aldrich), brefeldin A (Sigma-

Aldrich), TUDCA (Calbiochem), 4μ8c (Axon), ATP (Sigma-Aldrich), and Y-VAD-

CHO (Santa Cruz). Antibodies were obtained from the following vendors: anti-

PERK (cat#: 3192S, Cell Signaling), anti-p-PERK (cat#: sc-32577, Santa Cruz), 

anti-ATF6 (cat#: sc-22799, Santa Cruz), anti-IRE1 (cat#: 3294S, Cell Signaling), 

anti-NLRP3 (cat.# MAB7578, Fisher), anti-cytochrome c (cat#:4272S, Cell 

Signaling), anti-caspase-2 (cat#: 3027-100, BioVision), anti-caspase-1 (cat#: sc-

514, Santa Cruz), anti-Bid (cat#: 2003S, Cell Signaling), anti-Calreticulin (cat.# 
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2891, Cell Signaling), anti-TOM20 (cat.# sc-11415, Santa Cruz), anti-Actin (cat#: 

MS1295P1, Thermo Scientific), and anti-Lamin-b1 (cat#: sc-20682, Santa Cruz). 

Lentivirus production and knockdown of IRE1 

HEK293T cells were grown in DMEM with 10% fetal bovine serum (Invitrogen). 

Lentivirus particles were produced by transfecting the cells with the TRC shRNA 

encoding plasmid (pLKO.1) along with the packaging plasmids (pVSV-G, pGAG-

PAL) obtained from the University of Michigan Vector Core. The medium was 

changed after 24 hr, and virus particles collected at 48 hr.  Virus-containing 

medium was concentrated 10-fold by centrifugation (24000 rpm) for 2 hr at 4°C. 

Concentrated virus was used to transduce RAW264.7 cells seeded in 60-mm 

dishes. The medium was changed 24 hr post transduction and cells were left to 

grow for an additional 24 hr. Transduced cells were selected with puromycin (4 

μg/mL). The mouse specific IRE1 shRNA plasmid with antisense sequence of (5’-

TTTCTCTATCAATTCACGAGC-3’) was purchased from Open Biosystems. The 

non-targeted control shRNA plasmid was purchased from Sigma-Aldrich.  

siRNA knockdown of TXNIP and xbp1 

Immortalized BMDM were transfected with specific Dharmacon siGENOME TXNIP 

siRNA (cat# M-040441-01-0005), xbp1 (cat.# M-040825-00-0005) or non-target 

siRNA (cat.# D-001206-13-20) using DharmaFECT 4 transfection reagent 

according to the manufacturer’s protocol. Knockdown efficiency was assessed via 

immunoblot using anti-TXNIP (cat.# NBP1-54578, Novus Biologicals) and anti-

xbp1 (cat.# ab37152, Abcam) antibodies.  
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ROS measurements  

BMDM were plated in a 96 well plate with black slides and clear bottom. At 

designated time points, BMDM were washed with PBS and then incubated with 

CM-H2DCFDA (Invitrogen) at a final concentration of 2.5 µM in Ringer buffer (155 

mM NaCl, 5 mM KCl, 1 mM MgCl2 6H2O, 2 mM NaH2PO4 H2O, 10 mM HEPES, 10 

mM glucose). Cell were incubated for 30 min at 37ºC, washed three times with 

cold PBS, and incubated for an additional 15 min at 37ºC in warm media for 

recovery. After recovery, cells were washed one more time with PBS. Florescence 

was measured at excitation/emission 485nm/525nm.  

Immunoblot Assay 

Cytosolic extracts collected at indicated time points (2, 4, and 8 hr pi) were 

separated by SDS-PAGE, transferred to nitrocellulose membranes (Millipore), 

blocked with 5% nonfat dry milk in TBS-0.1% Tween20 (TBS-T), and incubated 

overnight at 4°C with primary antibodies specified above. Membranes were 

washed with TBS-T and incubated with secondary IRDye 680LT Goat anti-rabbit 

or IRDye 680LT Goat anti-mouse (1:20,000) at room temperature for 1 hr. Bands 

were visualized using the Li-Cor Odyssey Infrared Imaging System. Immunoblots 

shown in the figures are representative of n≥3 independent experiments. All 

immunoblots shown within an individual panel were analyzed in parallel with 

identical parameters using the Li-Cor System. 
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Cytokine Analysis 

Culture supernatants were collected at indicated time points from macrophages 

infected as described. IL-1β levels were determined by sandwich enzyme-linked 

immunosorbent assay (ELISA) according to the manufacturer’s instructions 

(BioLegend). A minimum of 3 technical replicates per experiment and 3 

experimental replicates were analyzed for each condition. 

Xbp1 splicing assay 

Total RNA (2 µg) extracted from samples was prepared using the RNeasy Mini Kit 

(Qiagen) and used for cDNA synthesis. Primers encompassing the spliced 

sequences in xbp1 mRNA (forward 5’-GAACCAGGAGTTAAGAACACG-3’ and 

reverse 5’-AGGCAACAGTGTCAGAGTCC-3’) were used for PCR amplification 

with GoTaq polymerase (Invitrogen). The thermal cycling profile consisted of 30 

cycles at 94°C for 1 min, 60°C for 1 min, and 72°C for 1 min.  PCR products were 

incubated with PstI (Invitrogen) at 37°C overnight. PstI digested products were 

separated by electrophoresis through a 2.5% agarose gel.  

Mitochondrial DNA (mtDNA) release assay 

DNA was isolated from 200 µL of the cytosolic fraction using a DNeasy Blood & 

Tissue Kit (Qiagen). Quantitative PCR was employed to measure mtDNA using 

Brilliant II SYBR Green with Low ROX (Agilent Technologies) on a Stratagene 

MX300 QPCR System. The copy number of mtDNA encoding cytochrome c 

oxidase I was normalized to nuclear DNA encoding 18S ribosomal RNA. The 

following primers were used:  cytochrome c oxidase I (forward 5’-
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GCCCCAGATATAGCATTCCC-3’ and reverse 5’-GTTCATCCTGTTCCTGCTCC-

3’) and 18S rRNA (forward 5’-TAGAGGGACAAGTGGCGTTC-3’ and reverse 5’-

CGCTGAGCCAGTCAGTGT-3’).  

Lactate dehydrogenase (LDH) Release Assay 

Macrophages were seeded in 96-well plates and infected with RB51 as stated 

above. Supernatants were analyzed for the presence of LDH enzyme using the 

CytoTox-ONE™ Homogeneous Membrane Integrity Assay (Promega) as directed 

by the manufacturer’s instructions. Percentage of LDH release was calculated as 

100 X [(Experimental LDH Release - Culture Medium Background)/(Maximum 

LDH Release – Culture Medium Background)]. 

Statistical Analysis  

All p values were generated between identified samples using unpaired two-tailed 

Student’s t-tests and represent analysis of ≥3 replicates per condition. Asterisks 

denote the following p values: *p<0.05, **p<0.001 and ***p<0.0001. 
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Chapter 4 

PERK suppresses inflammasome activity via Parkin-dependent mitophagy 

 

Abstract 

Controlling the extent of inflammatory signaling is critical for effective immune 

responses to infection, while minimizing host damage. Previously, we found that 

infection-induced activation of the endoplasmic reticulum stress sensor, IRE1, led 

to mitochondrial damage and triggered the NLRP3-dependent inflammasome. The 

mechanisms that downregulate IRE1-induced inflammasome activation are poorly 

defined. Here we show that PERK, a second ER stress sensor, dampens IRE1-

induced IL-1β production in vitro and in vivo. Microbial activation of the PERK 

signaling pathway induced transcription of parkin, which encodes an E3 ubiquitin 

ligase that regulates mitophagy. Parkin recruitment to mitochondria promoted 

fragmentation of the mitochondrial network, as well as a decrease in IL-1β 

production. Inhibition of PERK or mitochondrial fission increased IL-1β production 

induced by infection-associated ER stress. These data provide evidence that 

PERK-dependent mitophagy can play a suppressive role in regulating 

inflammatory responses to infection.  

Introduction 

Endoplasmic reticulum (ER) and mitochondrial stress programs can 

contribute to progression of degenerative and inflammatory diseases [1-4]. 
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Previous work has implicated ER stress in triggering inflammatory responses 

during infection. Recognition of microbes by Toll-like receptors (TLR) stimulates 

the ER stress sensor, IRE1, increasing transcription of proinflammatory cytokines 

IL-6 and TNFα [5]. Previously, we discovered that IRE1 induces IL-1β production 

by increasing mitochondrial reactive oxygen species (mtROS). The rapid increase 

in mtROS recruited NLRP3 and caspase-2 to the mitochondria, facilitating damage 

and release of mitochondrial contents into the cytosol. The newly released 

mitochondrial danger associated molecular patterns (mtDAMPs) activated the 

inflammasome, a multiprotein complex that processes the proinflammatory 

cytokine, IL-1β [6, 7]. Although IRE1 acts as the initiator of this ER stress-induced 

process, mechanisms for modulating this potential inflammatory signaling pathway 

are poorly defined. Previous studies identified autophagy as a key mechanism that 

could suppress inflammation by eliminating signaling molecules that trigger 

inflammasome activation [7-9]. Damaged mitochondria are removed by 

mitophagy, a mitochondrial-specific form of autophagy. Our previous studies 

indicated that infection-induced ER stress causes mitochondrial damage, leading 

us to hypothesize that mitophagy might be employed to downregulate that 

inflammatory process.   

Here we show that the ER stress sensor PERK can modulate IRE1-induced 

inflammasome activity.  We provide evidence that inflammasome activity is 

suppressed by PERK-dependent mitophagy.  These data reveal a novel regulatory 

role for PERK during infection and inflammation, and demonstrate that ER stress 

sensors can fine-tune inflammatory output during infection. 
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Results 

Microbial viability affects IL-1β processing but not priming 

Previously, we showed that IRE1 is critical in triggering inflammasome 

activation and IL-1β production during infection by the live attenuated cattle 

vaccine Brucella abortus strain RB51. Treatment of bone marrow derived 

macrophages (BMDM) with heat-killed (HK) RB51 resulted in significantly less IL-

1β secretion compared to live RB51 (Fig. 4.1A). To determine whether HK RB51 

stimulated less cytokine transcription (priming) or less cytokine translation, we 

measured proIL-1β protein production by immunoblot and found that HK-infected 

and Live-infected BMDM expressed similar levels of proIL-1β (Fig. 4.1B). Taken 

together, these observations suggested that the absence of IL-1β might be due to 

decreased activity of the inflammasome, leading to less processing of proIL-1β. 

We first tested whether HK could activate IRE1 similarly to live RB51 by measuring 

splicing of xbp1 transcript, a direct downstream target of IRE1, in Live and HK-

infected BMDM. Xbp1 splicing was comparable in both Live and HK-infected 

BMDM at 8h post infection (pi) (Fig. A20A). These data indicate that the effect of 

HK treatment on inflammasome activation was likely occurring downstream of 

IRE1.   

With no difference in IRE1 activation, we investigated whether activation of 

the other two ER stress sensors, ATF6 and PERK, differed between Live and HK-

infected BMDM. ATF6 cleavage, indicative of activation, occurred in both Live and 

HK-infected BMDM (Fig. A20B). Notably, HK RB51 triggered PERK activation, as 

assessed by phosphorylation (Fig. 4.2A). To determine if PERK could serve as a 



Fig 4.1: IL-1β processing, not priming, depends upon microbial viability.

(A) IL-1β ELISA analysis of supernatants from Live and HK RB51-infected

BMDM. Error bars represent mean ± SD of n≥3 independent experiments. ***

represent p-value <0.0001, n.s. = not significant. (B) Immunoblot of proIL-1β

in Live and HK RB51-infected (MOI 20) BMDMs. Immunoblots in (B) are

representative of n≥3 independent experiments performed and imaged using

a LiCor Odyssey imaging system.

102



Fig. 4.2: PERK suppresses IRE1-induced inflammasome activation. (A)

PERK phosphorylation in Live and HK RB51-infected (MOI 20) BMDM. PERK

and TM served as the loading and positive controls respectively. (B) IL-1β ELISA

analysis of supernatants from Live and HK RB51-infected BMDM in the

presence of GSK-PERK (GSK2606414 specific PERK inhibitor, 5 μM) and ATF4

siRNA. Error bars represent mean ± SD of n≥3 independent experiments. ***

represent p-value <0.0001, n.s. = not significant. (C) Caspase-1 cleavage in Live

and HK RB51-infected (MOI 20) BMDMs in absence or presence of

GSK2606414. (D) Serum IL-1β levels in mice treated with 5% DMSO (control, n

= 12) or GSK2606414 (n = 12) and infected with HK RB51 (i.p., CFU equivalent

1 x 108). Data in (D) were pooled from 2 independent experiments. Immunoblots

in (A) and (C) are representative of n≥3 independent experiments performed and

imaged using a LiCor Odyssey imaging system.
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switch to negatively regulate IL-1β production, we utilized two approaches: a 

PERK-specific inhibitor (GSK-PERK2606414 or GSK-PERK, locks PERK in an 

inactive state) and siRNA knockdown of ATF4, a transcription factor that is 

preferentially translated when the PERK signaling pathway is activated. L+A 

(LPS+ATP) served as a positive control for inflammasome activation and triggers 

IL-1β production independently of ER stress. GSK-PERK treatment as well as 

ATF4 knockdown (KD) had no effect on L+A and Live-induced IL-1β production 

and caspase-1 cleavage (activation) in BMDM, conditions where there is no PERK 

activation (Fig. 4.2B and C). In contrast, GSK-PERK and ATF4 KD led to a 

significant increase in IL-1β production and sustained caspase-1 cleavage in HK-

infected BMDM. Consistent with our in vitro findings, GSK-PERK-treated mice 

injected with HK RB51 showed a significant increase in serum IL-1β compared to 

control-treated mice (Fig. 4.2D). These data point to PERK as a possible 

suppressor of IRE1-induced inflammasome activation during infection. 

PERK minimizes induction of IRE1-mediated mitochondrial dysfunction 

 In Live-infected BMDM, mitochondrial damage was essential for 

inflammasome activation, a process initiated by IRE1. With IRE1 activation, but a 

lack of IL-1β production in HK-infected BMDM, we hypothesized that PERK might 

interfere with IRE1-induced mitochondrial damage. The mitochondrial membrane 

potential (Δѱm) is a key indicator of mitochondrial health or damage [10]. Normal 

and healthy mitochondria have a high Δѱm, whereas damaged mitochondria have 

low Δѱm. We measured Δѱm with JC-1, a mitochondrial probe whose red 

fluorescence decreases as Δѱm dissipates [11]. Treatment with carbonyl cyanide 
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m-chlorophenyl hydrazine (CCCP, a mitochondrial proton gradient uncoupler) or 

Live RB51 caused the Δѱm to drop significantly (Fig. 4.3A). In HK-infected BMDM, 

the Δѱm decreased at 2h pi but increased after 4h pi – when we observe robust 

activation of PERK. Only in the presence of the PERK inhibition did Δѱm levels 

decrease persistently in HK-infected BMDM. With a sharp decrease in Δѱm, 

mitochondria release mtDNA into the cytosol and mtROS accumulates. We 

measured mtDNA cytosolic release by qPCR and found that Live-infected BMDM 

contained substantial amounts of cytosolic mtDNA (Fig. 4.3B). HK-infected BMDM 

initially released mtDNA into the cytosol, however after 4h p.i., this release was 

abrogated, a phenotype seen with caspase-1 activation. Release of mtDNA 

increased throughout HK infection in GSK-PERK-treated or ATF KD BMDM (Fig. 

A21A). ROS levels were relatively low in HK-infected and TM-treated BMDM, 

consistent with low levels of mtDNA release, but increased upon GSK-PERK 

treatment or ATF4 KD (Fig. 4.3C and Fig. A21B). In contrast, ROS levels were 

high in Live-infected BMDM and were unaffected by PERK inhibition or ATF4 KD. 

Together, these results indicate that PERK signaling can interfere with IRE1-driven 

mitochondrial damage.  

PERK induces mitochondrial fragmentation via mitophagy 

 Autophagy can suppress proinflammatory responses by eliminating 

damaged organelles and pathogens [7, 8]. Previous studies reported that PERK 

coordinates the transcription of the gene encoding Beclin-1, an initiator of 

autophagy [12]. Moreover, PERK signaling may enhance conversion of LC3, a 

process required for autophagosome formation [13]. These observations led us to 



Fig. 4.3: PERK inhibits IRE1-driven mitochondrial damage. (A) Fluorescence

images and quantification of JC-1 staining of BMDMs treated with CCCP

(mitochondrial uncoupler, 20 μM) or infected with Live and HK RB51 (MOI 20).

The ratio of JC-1 red/green fluorescence represents the mitochondrial membrane

potential (Δѱm). (B) qPCR analysis of mitochondrial DNA (mtDNA) release into

cytosol during Live and HK RB51 BMDM infection in the absence or presence of

GSK2606414. (C) CM-H2DCFDA was used to measure ROS levels with or

without GSK2606414 in Live and HK-RB51 infected BMDM. Tunicamycin (TM)

serves as a positive control for ROS induction.
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hypothesize that PERK could be preventing release of mtDAMPs by autophagic 

removal of damaged mitochondria, thus inhibiting inflammasome activation. We 

therefore tested if autophagy was involved in controlling IL-1β production in HK-

infected macrophages, using Beclin-1+/- and Lc3b-/- BMDM. Neither Beclin-1 

haploinsufficiency nor LC3 deficiency had any effect on L+A-induced and Live-

induced IL-1β production in BMDM (Fig. 4.4A). Deficiency in LC3, but not Beclin-

1, led to an increase in IL-1β levels in HK-infected BMDM. These data establish 

that beclin-1-dependent autophagy is not involved in PERK-mediated suppression 

of IL-1β, but implicate LC3 in this process.  

We reasoned that removal of damaged mitochondria via mitophagy could 

be the mechanism of PERK-mediated suppression of the inflammasome. When 

mitochondria are damaged, PINK1 accumulates on the outer mitochondrial 

membrane serving as a tag. PINK accumulation recruits the E3 ubiquitin ligase, 

Parkin, to the mitochondrial network resulting in ubiquitination of mitochondrial 

proteins. This triggers fragmentation and eventual capture of damaged 

mitochondria by LC3+ autophagosomes. A recent study reported that PERK can 

control mitophagy by regulating transcription of parkin in an ATF4-dependent 

manner. Since we observed an increase in IL-1β production in LC3 deficient HK-

infected BMDM, we next assessed the induction of mitophagy by probing PINK1 

accumulation, as well as LC3 and PARKIN recruitment to the mitochondrial fraction 

by immunoblot. CCCP is a potent inducer of mitophagy and served as a positive 

control. PINK1 accumulated in the mitochondrial fraction of Live-infected, HK-

infected, and CCCP-treated BMDM, consistent with mitochondrial damage (Fig. 



Fig. 4.4: PERK drives removal of damaged mitochondria via mitophagy. (A)

IL-1β levels in Beclin-1+/- and LC3B-/- BMDM infected with Live and HK-RB51. (B)

Immunoblot of mitophagy markers PINK1, LC3-II, and PARKIN in the

mitochondrial fraction of CCCP and Live/HK-infected BMDM. TOM20 serves as

loading control and mitochondrial marker. (C) 3-D reconstruction and

quantification of the mitochondrial network labeled with TOM20 (mitochondrial

marker, outer membrane protein) with or without GSK2606414 in CCCP and

Live/HK-infected BMDM. Colors represent the size of the fragments within the

network. Error bars in (A and C) represent mean ±SD of n≥3 independent

experiments. ** and *** represent p-values <0.001 and <0.0001 respectively. n.s. =

not significant. UNT, CCCP, and L+A represent untreated and Carbonyl cyanide

m-chlorophenyl hydrazine (20 µM, positive control for mitophagy induction), and

LPS+ATP (200 ng/mL and 1mM respectively; positive control for inflammasome

activation).
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4.4B). Notably, PINK1 accumulation began to decrease after 4h p.i. only in HK-

infected cells, suggesting the possibility that damaged mitochondria were being 

removed and degraded in HK-infected BMDM. Additionally, we observed PARKIN 

and LC3 mitochondrial recruitment only in HK-infected BMDM, but not Live-

infected BMDM. This result further indicated that mitochondrial damage occurs 

early in HK infection.  

Next, we assessed if PERK contributed to mitophagy induction in HK-

infected BMDM. GSK-PERK treatment or ATF4 KD abolished PARKIN and LC3 

recruitment in HK-infected BMDM (Fig. 4.4B and Fig. A21C). PINK1 levels 

increased in HK-infected BMDM treated with GSK-PERK, suggesting that removal 

of damaged mitochondria was inhibited, consistent with increased inflammasome 

activity and IL-1β levels.  

Upon induction of mitophagy, the mitochondrial network fragments, allowing 

for damaged mitochondria to be separated from the network to maintain network 

integrity [14]. To quantify mitochondrial fragmentation, we measured length and 

volume of the mitochondrial network by confocal immunofluorescence imaging and 

deconvolution of the TOM20 outer mitochondrial membrane protein. We observed 

that CCCP treatment and HK infection led to a significantly fragmented phenotype, 

as well as a decrease in isosurface volume and length of the mitochondrial network 

(Fig. 4.4C). Although Live infection induced damage, the mitochondrial network 

did not fragment further, consistent with our observations that mitophagy does not 

occur in Live-infected BMDM. GSK-PERK treatment or ATF4 KD in HK-infected 

BMDM yielded a largely intact mitochondrial network, with increased volume and 
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length (Fig. 4.4C and Fig. A21D). These data demonstrate that PERK signaling 

can serve as a trigger for mitophagy.  

PERK prevents inflammasome activation by Parkin-dependent mitophagy 

 Fragmentation of the mitochondrial network allows for capture of damaged 

mitochondria and is dependent upon Parkin, which is transcriptionally regulated by 

the PERK signaling pathway during ER stress conditions [15]. We observed that 

HK induced Parkin transcription, whereas in Live-infected BMDM, Parkin transcript 

levels were similar to UNT levels (Fig. 4.5A). Additionally, HK-induced Parkin 

transcription was abrogated by PERK inhibition. These observations led us to 

hypothesize that Parkin-driven mitophagy was the critical mechanism for PERK-

mediated inflammasome suppression in HK-infected BMDM. To test this idea, we 

infected Parkin-/- BMDM or BMDM treated with Mdivi-1, a mitochondrial fission 

inhibitor [16], with HK and measured IL-1β levels. Parkin deficiency resulted in a 

significant increase in IL-1β production in HK-infected but not Live-infected or 

LPS+ATP treated BMDM (Fig, 4.5B). Similar to Parkin deficiency, Mdivi-1 

treatment also increased IL-1β levels, suggesting that fragmentation was essential 

in inflammasome suppression in HK-treated BMDM. HK did not induce 

mitochondrial fragmentation in Parkin-/- nor Mdivi-1 treated BMDM (Fig. 4.5C). 

Although IL-1β levels increased in HK-infected LC3b-/- BMDM, the mitochondrial 

network was still able to fragment, further supporting that the autophagic capture 

of damaged mitochondria aids in removing mtDAMPs, suppressing inflammasome 

activation and IL-1β production (Fig. A22). These results demonstrate that PERK 

suppresses inflammasome activation through PARKIN-mediated mitophagy. 



Fig. 4.5: PERK-induced mitophagy is mediated by Parkin. (A) qPCR analysis

of PARKIN transcription during Live and HK RB51 BMDM infection in the absence

or presence of GSK2606414. Tunicamycin (TM) serves as a positive control for

PARKIN induction. (B) IL-1β ELISA analysis of supernatants from Live and HK

RB51-infected WT, Parkin-/-, and Mdivi-1 (mitochondrial fission inhibitor, 20 μM)

treated BMDM. Error bars represent mean ± SD of n≥3 independent experiments.

*** represents p-values of <0.0001, n.s. = not significant. L+A (LPS+ATP, 200

ng/mL and 1mM respectively) serves as a positive control for inflammasome

activation. (C) 3-D reconstruction and quantification of the mitochondrial network

labeled with TOM20 (mitochondrial marker, outer membrane protein) of CCCP

treated and Live/HK-infected WT, Parkin-/-, and Mdivi-1 BMDM. Colors represent

the size of the fragments within the network. Error bars in (A - C) represent mean

±SD of n≥3 independent experiments. ** and *** represent p-values <0.001 and

<0.0001 respectively. n.s. = not significant.

111



112 
 

Parkin-dependent mitophagy decreases RSV-induced inflammation in vivo 

Mitophagy may be important in controlling NLRP3 inflammasome activation 

and promoting cell survival during infection.  However, HK RB51 is not a useful 

model to study the role of mitophagy in infection since there are no live bacteria. 

Viral pathogens can hijack this mitophagic process to aid in viral replication by 

dampening innate immune responses and preventing apoptosis [17-21]. 

Respiratory syncytial virus (RSV), a single stranded RNA (- ssRNA) virus, is a 

major cause of lower respiratory tract infections and pneumonia symptoms in 

infants and children [22]. Previous studies have found that RSV proteins colocalize 

with the mitochondrial network [23, 24]. As seen with Live RB51, IRE1 and ROS 

are important for RSV-induced NLRP3-mediated IL-1β production [25]. Moreover, 

LC3b deficiency led to elevated IL-1β levels and lung pathology in RSV-infected 

mice. These observations suggest that mitophagy can aid in decreasing 

inflammasome activation and IL-1β production during RSV infection.  

IRE1 is activated during RSV infection, however it is not known if PERK 

activation occurs as seen in HK-infected BMDM. We were able to observe 

phosphorylation of PERK and induction of CHOP, a downstream transcriptional 

target of PERK, in RSV-infected BMDM (Fig. 4.6A). To assess if mitophagy was 

occurring, we probed for PINK1 and Parkin/LC3 as markers of mitophagy in RSV-

infected BMDM. PINK1 tagging of damaged mitochondria occurred early, and 

removal of mitochondria began at 4 hr post infection in RSV-infected BMDM (Fig. 

4.6B). Similar to HK-infected BMDM, GSK-PERK treatment led to increased PINK1 

accumulation but decreased Parkin and LC3 recruitment in RSV-infected BMDM. 



Fig. 4.6: PERK and Parkin mediate RSV-induced mitophagy. (A) PERK

phosphorylation and CHOP induction in RSV-infected (MOI 1) BMDM. PERK and

TM served as the loading and positive controls respectively. (B) Immunoblot of

mitophagy markers PINK1, LC3-II, and PARKIN in the mitochondrial fraction of

CCCP and RSV-infected BMDM. TOM20 serves as loading control and

mitochondrial marker. C) 3-D reconstruction and quantification of the mitochondrial

network labeled with TOM20 (mitochondrial marker, outer membrane protein) of

CCCP treated and RSV-infected WT, Parkin-/-, and GSK2606414-treated BMDM.

Colors represent the size of the fragments within the network. Error bars in (A - C)

represent mean ±SD of n≥3 independent experiments. ** and *** represent p-

values <0.001 and <0.0001 respectively. n.s. = not significant.
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We observed mitochondrial fragmentation in RSV-infected BMDM – a phenotype 

that decreased in GSK-PERK treated and Parkin deficient BMDM (Fig. 4.6C). 

Moreover, parkin transcription decreased in GSK-PERK-treated RSV-infected 

BMDM (Fig. A23). Parkin deficiency exerted a greater effect on fragmentation than 

PERK inhibition, suggesting that another inducer of Parkin is involved in RSV-

induced mitophagy. Since we observed mitophagy in RSV-infected BMDM, we 

assessed whether mitophagy was important in regulating inflammasome 

activation. GSK-PERK treatment and Parkin deficiency led to increased IL-1β 

production and caspase-1 activation in vitro (Fig. 4.7A and Fig. A24A-B). 

Consistent with our in vitro data, we observed increased IL-1β production in RSV-

infected mice treated with GSK-PERK (Fig. 4.7B). Taken together, our data identify 

Parkin-dependent mitophagy as a mechanism by which PERK can suppress ER-

stress induced inflammasome activation.  

Conclusions 

Recent studies have demonstrated that ER stress can trigger mitochondrial 

dysfunction, as well as aid in autophagy, a process known for preventing 

accumulation of damaged mitochondria [26]. There is significant evidence showing 

that mitochondrial dysfunction promotes the progression of neurodegenerative and 

inflammatory diseases [4, 27, 28]. Although PERK can mediate an antioxidant 

response [12, 29] and promote autophagy, it has not been linked to inflammasome 

regulation. In this study, we provide evidence for a model where PERK acts as a 

suppressor of inflammasome activation by driving Parkin-dependent mitophagy 

during infection (Fig. 4.8). When mitochondrial damage occurs, whether microbial 



Fig. 4.7: Mitophagy decreases RSV-induced inflammation in vitro and in vivo.

(A) IL-1β ELISA analysis of supernatants from RSV-infected GSK2606414-treated

(specific PERK inhibitor, 5 μM) and Parkin-/- BMDM. Error bars represent mean ±
SD of n≥3 independent experiments. *** represent p-value <0.0001, n.s. = not

significant. (B) Lung IL-1β levels in mice treated with 5% DMSO (control n = 5) or

GSK2606414 (n = 5) and infected with RSV.
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Fig. 4.8: PERK drives Parkin-mediated mitophagy to suppress the

inflammasome. IRE1-induced mitochondrial damage and ROS production

triggers PINK1 accumulation on the outer membrane of mitochondria. Upon

PERK activation, ATF4 translocates to the nucleus and initiates Parkin

transcription. Parkin is recruited to damaged mitochondria tagged with PINK1

and ubiquitinates outer membrane proteins. Ubiquitination of mitochondrial

proteins triggers fragmentation and allows for capture of dysfunctional

mitochondria by the isolation membrane. Once captured, the autophagosome

fuses with the lysosome and degrades the damaged mitochondria.
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or chemically induced, PINK1 accumulates on the surface serving as a tag for 

dysfunctional mitochondria. If PERK is activated, it signals ATF4-dependent parkin 

transcription. Parkin is recruited to mitochondria, initiating fragmentation of the 

network and allowing the capture of damaged mitochondria by autophagosomes. 

The removal of damaged mitochondria would lead to the observed decrease in 

mtDAMPs, preventing oligomerization or activation of the inflammasome on the 

mitochondrial surface and the lack of sustained caspase-1 activation. We 

previously demonstrated that NLRP3 and caspase-2 are recruited to the 

mitochondrial network; therefore, it is possible that NLRP3 and caspase-2 are 

being captured and degraded along with damaged mitochondria. Caspase-2 

activation, similar to caspase-1, is not sustained during HK infection – an 

observation that supports the hypothesis of caspase-2 being captured with 

damaged mitochondria. Furthermore, we demonstrated that this PERK-dependent 

inflammasome suppression pathway can be triggered by microbial infections in 

vitro and in vivo. Our studies have uncovered a novel role for PERK in controlling 

inflammasome activity during infection.  

Previous studies that implicated mitophagy in inflammasome activation 

demonstrated that LC3b deficiency increased IL-1β production and caspase-1 

activation upon treatment with LPS+ATP and viral infections [7]. Since LC3b is 

involved in both autophagy and mitophagy, it remained unclear which pathway was 

involved. Our study now demonstrates that Parkin-mediated mitophagy, distinct 

from the beclin-1 autophagy pathway, can suppress IL-1β production during 

microbial infection. Similar to LC3b deficiency, we showed that Parkin deficiency 
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increased IL-1β production and caspase-1 activation. Inhibition of PERK or ATF4 

KD led to higher levels of cytosolic mtDNA, suggesting that damaged mitochondria 

were accumulating within the cell. More damaged mitochondria in the cell and 

increased mtDNA levels are consistent with the sustained inflammasome 

activation we observed.  

Activation of PERK by chemical inducers (e.g. tunicamycin) leads to 

increased transcription of parkin by ATF4 [15]. ATF4 induction is controlled by the 

alpha subunit of eukaryotic initiation factor 2 (eIF2α). Upon phosphorylation, eIF2α 

reduces general translation while facilitating the preferential translation of ATF4. 

This eIF2α-ATF4 pathway can be triggered by several kinases in different stress 

conditions: PERK (ER stress), GCN2 (amino acid deficiency), HRI (heavy metals), 

and protein kinase R (PKR, viral infection). We found that in HK-infected BMDM, 

ATF4-induced parkin transcription was solely dependent upon PERK whereas in 

RSV-infected BMDM it was only partially dependent upon PERK. Reports show 

that RSV can activate PKR leading to phosphorylation of eIF2α [30, 31]. In 

addition, PKR can induce autophagy leading to viral degradation during infection 

[32]. These observations suggest the possibility that in BMDM, RSV activates both 

PERK and PKR thus triggering ATF4-dependent parkin transcription. If this is 

occurring, both PERK and PKR may act to control inflammasome output with the 

right contextual signals.  

Additional evidence has surfaced showing that microbial infections can 

selectively activate UPR sensors [5]. Most studies indicate that IRE1 is important 

for triggering inflammatory responses, whereas PERK is critical for suppressing 
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global translation and triggering cell death. Our work shows that selective 

activation of ER stress sensors may allow the ER to control the amplitude and 

kinetics of the  inflammatory response. The observation that PERK was able to 

prevent IRE1-induced mitochondrial damage in microbial infections highlights the 

fact that ER stress signaling is not limited to initiating inflammation. Viral pathogens 

are known for exploiting autophagy to increase their chances for replication and 

preventing cell death [19-21, 33].  RSV might selectively activate PERK as a 

means of suppressing inflammation and increasing pathogenesis. Understanding 

the mechanism of selective activation of ER stress sensors may lead to better 

therapeutic strategies for diseases that involve ER stress and mitochondrial 

dysfunction.   

Materials and Methods 

Mice 

Humane animal care at the University of Michigan is provided by the Unit for Lab 

Animal Medicine, which is accredited by the American Association for 

Accreditation of Laboratory Animal Care and the Department of Health and Human 

Services. This study was carried out in strict accordance with the 

recommendations in the Guide for the Care and Use of Laboratory Animals of the 

National Institutes of Health. The protocol was approved by the Committee on the 

Care and Use of Animals (UCUCA) of the University of Michigan. 

C57BL/6 5% DMSO treated (n = 12), GSK-PERK2606414 treated (n = 12) mice (8 

-12 weeks) were injected intraperitoneally (i.p.) with Brucella abortus RB51 vaccine 

strain (1 x 108 CFU) in 200 µl of phosphate-buffered saline (PBS). Mice were 
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matched by sex and age. Mice were treated with DMSO (5% in PBS) and GSK-

PERK2606414 (50mg/kg) daily in 200 µl of PBS. Blood was collected by 

saphenous vein on day -1, 1, and 3 days post infection (p.i.). Serum was extracted 

from blood by centrifugation for 3 min at 10,000 rpm and used for assessing IL-1β 

production by ELISA. At day 3 p.i., spleens were removed from euthanized mice, 

homogenized in 1 ml 0.2% NP-40, and serial dilutions plated onto Brucella agar 

plates to enumerate CFU. 

Cell culture and infection 

BMDMs were isolated from WT C57BL/6 mice and were differentiated in DMEM 

(GIBCO) supplemented with 20% heat-inactivated FBS (Invitrogen), 1% L-

glutamine (2 mM), 1% sodium pyruvate (1 mM), 0.1% β-mercaptoethanol (55 µM), 

30% L-929 conditioned medium, and J2 recombinant retrovirus. BMDMs were 

cultured in non-TC treated plates at 37°C in 5% CO2, fed fresh media on day 3, 

and harvested on day 6. Four million BMDMs were seeded in 6 well plates 18 hr 

prior to infection. The LPS+ATP samples were pretreated with LPS (200 ng/mL) 

overnight. The following day, where indicated, cells were pretreated with GSK-

PERK2606414 (PERK specific inhibitor, 5 μM) and Mdivi-1 (mitochondrial fission, 

20 μM) for 1 hr prior to infection. Untreated and pretreated cells were infected with 

Live and HK RB51 (MOI 20) for 30 min or after which the inoculum was removed 

and cells were washed with PBS. Medium containing 50 µg/ml of gentamicin was 

added to kill extracellular bacteria. To synchronize infection, cells were spun at 

1200 rpm for 3 min after adding inoculum. Cells were treated with tunicamycin (10 

μg/mL), Carbonyl cyanide m-chlorophenyl hydrazine (CCCP, 20 μM), or ATP 
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(1mM) for 4 hr. At the indicated times, cells were lysed in RIPA buffer on ice for 15 

min and spun at 16,000 x g for 15 min to pellet debris. For mitochondrial fractions, 

cells were lysed in buffer 1% NP-40 on ice for 15 min and spun at 16,000 x g for 

15 min to pellet the insoluble fraction. The insoluble fraction was resuspend in 

mitochondrial suspension buffer (10mM TrisHCl pH 6.7, 0.15 mM MgCl2, 0.25 

sucrose, 1 mM PMSF, 1 mM DTT) and centrifuged at 11,000 x g for 15 minutes at 

4ºC to pellet the isolated mitochondria.  

Respiratory Syncytial Virus (RSV) 

All RSV experiments utilized antigenic subgroup A, Line 19 strain RSV obtained 

from Dr. N. Lukacs (University of Michigan). The strain was originally isolated from 

a sick infant in the University of Michigan Health System. Cells were pretreated 

with GSK-PERK2606414 (PERK specific inhibitor, 5 μM) for 1 hr prior to RSV 

infection (MOI 1). At the indicated times, cells were lysed in RIPA buffer on ice for 

15 min and spun at 16,000 x g for 15 min to pellet debris. For mitochondrial 

fractions, cells were lysed in buffer 1% NP-40 on ice for 15 min and spun at 16,000 

x g for 15 min to pellet the insoluble fraction. The insoluble fraction was resuspend 

in mitochondrial suspension buffer (10mM TrisHCl pH 6.7, 0.15 mM MgCl2, 0.25 

sucrose, 1 mM PMSF, 1 mM DTT) and centrifuged at 11,000 x g for 15 minutes at 

4ºC to pellet the isolated mitochondria. 

Bacterial strains and reagents 

Brucella abortus strain RB51 was obtained from Dr. G. Schurig (Virginia 

Polytechnic Institute and State University). Aliquots of RB51 were subjected to 

heat killing by incubating at 70ºC in a water bath for 60 min. HK bacterial 
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preparations were confirmed to be nonviable by plating aliquots on Brucella agar 

plates and confirming lack of growth following 4 days of incubation. Reagents were 

obtained from the following vendors: tunicamycin (Sigma-Aldrich), CCCP (Sigma-

Aldrich), Mdivi-1 (Fisher), and ATP (Sigma-Aldrich). Antibodies were obtained from 

the following vendors: anti-PERK (cat#: 3192S, Cell Signaling), anti-p-PERK (cat#: 

sc-32577, Santa Cruz), anti-ATF6 (cat#: sc-22799, Santa Cruz), anti-caspase-1 

(cat#: sc-514, Santa Cruz), PINK1 (cat#: BC100-494, Novus Biologicals), LC3B 

(cat#: NB100-2331, MBL), PARKIN (cat#: 4211, Cell Signaling), and anti-TOM20 

(cat.# sc-11415, Santa Cruz). 

siRNA knockdown of ATF4 

Immortalized BMDMs were transfected with specific Dharmacon siGENOME ATF4 

siRNA (cat# M-042737-01-0005) or non-target siRNA (cat.# D-001206-13-20) 

using DharmaFECT 4 transfection reagent according to the manufacturer’s 

protocol. Knockdown efficiency was assessed via immunoblot using anti-ATF4 

(cat.# sc-200) antibodies (Fig. A25). 

ROS measurements  

BMDMs were plated in a 96 well plate with black slides and clear bottom. At 

designated time points, BMDMs were washed with PBS and then incubated with 

CM-H2DCFDA (Invitrogen) at a final concentration of 2.5 µM in Ringer buffer (155 

mM NaCl, 5 mM KCl, 1 mM MgCl2 6H2O, 2 mM NaH2PO4 H2O, 10 mM HEPES, 

10 mM glucose). Cell were incubated for 30 min at 37ºC, washed three times with 

cold PBS, and incubated for an additional 15 min at 37ºC in warm media for 
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recovery. After recovery, cells were washed one more time with PBS. Florescence 

was measured at excitation/emission 485nm/525nm.  

Immunoblot Assay 

Whole cell and mitochondrial extracts collected at indicated time points (2, 4, and 

8 hr pi) were separated by SDS-PAGE, transferred to nitrocellulose membranes 

(Millipore), blocked with 5% nonfat dry milk in TBS-0.1% Tween20 (TBS-T), and 

incubated overnight at 4°C with primary antibodies specified above. Membranes 

were washed with TBS-T and incubated with secondary IRDye 680LT Goat anti-

rabbit or IRDye 680LT Goat anti-mouse (1:20,000) at room temperature for 1 hr. 

Bands were visualized using the Li-Cor Odyssey Infrared Imaging System. 

Immunoblots shown in the figures are representative of n≥3 independent 

experiments. All immunoblots shown within an individual panel were analyzed in 

parallel with identical parameters using the Li-Cor System. 

Cytokine Analysis 

Culture supernatants were collected at indicated time points from macrophages 

infected as described. IL-1β levels were determined by sandwich enzyme-linked 

immunosorbent assay (ELISA) according to the manufacturer’s instructions 

(BioLegend). A minimum of 3 technical replicates per experiment and 3 

experimental replicates were analyzed for each condition. 

Xbp1 splicing assay 

Total RNA (2 µg) extracted from samples was prepared using the RNeasy Mini Kit 

(Qiagen) and used for cDNA synthesis. Primers encompassing the spliced 

sequences in xbp1 mRNA (forward 5’-GAACCAGGAGTTAAGAACACG-3’ and 



412  
 

reverse 5’-AGGCAACAGTGTCAGAGTCC-3’) were used for PCR amplification 

with GoTaq polymerase (Invitrogen). The thermal cycling profile consisted of 30 

cycles at 94°C for 1 min, 60°C for 1 min, and 72°C for 1 min. PCR products were 

incubated with PstI (Invitrogen) at 37°C overnight. PstI digested products were 

separated by electrophoresis through a 2.5% agarose gel. 

Mitochondrial DNA (mtDNA) release assay 

DNA was isolated from 200 µL of the cytosolic fraction using a DNeasy Blood & 

Tissue Kit (Qiagen). Quantitative PCR was employed to measure mtDNA using 

Brilliant II SYBR Green with Low ROX (Agilent Technologies) on a Stratagene 

MX300 QPCR System. The copy number of mtDNA encoding cytochrome c 

oxidase I was normalized to nuclear DNA encoding 18S ribosomal RNA. The 

following primers were used:  cytochrome c oxidase I (forward 5’-

GCCCCAGATATAGCATTCCC-3’ and reverse 5’-GTTCATCCTGTTCCTGCTCC-

3’) and 18S rRNA (forward 5’-TAGAGGGACAAGTGGCGTTC-3’ and reverse 5’-

CGCTGAGCCAGTCAGTGT-3’). 

JC-1 staining for mitochondrial membrane potential (Δѱm) 

Four million BMDMs were seeded into a 96-well black plate. Cells were treated 

with 5 µl of JC-1 staining solution (Life Technologies) then treated with CCCP or 

infected with Live and HK RB51. Fluorescence of JC-1 in treated cells  was 

measured at various time points using the following excitation and emission 

wavelengths: 560nm/595nm (aggregates) and 485nm/535nm (monomers). 

For fluorescence microscopy, 3 x 105 cells were seeded in a 60 mm glass-bottom 

dish. Cells were treated with 100 µl of JC-1 staining then treated with the conditions 
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stated above. Healthy mitochondria were detected with fluorescence settings 

designed to detect Texas Red (excitation/emission: 590/610nm).  

Parkin qPCR 

RNA was isolated from treated BMDM using a RNeasy Midi Kit (Qiagen). cDNA 

was synthesized from the extracted RNA using the SuperScript III First-Strand 

Synthesis System (Life Technologies). Quantitative PCR was employed to 

measure PARKIN transcript levels using Brilliant II SYBR Green with Low ROX 

(Agilent Technologies) on a Stratagene MX300 QPCR System. The copy number 

of PARKIN was normalized to Actin. The following primers were used:  PARKIN 

(forward 5’-AAACCGGATGAGTGGTGAGT-3’ and reverse 5’-

AGCTACCGACGTGTCCTTGT-3’). 

Confocal microscopy and 3-D reconstruction of mitochondrial network 

BMDM were seeded onto square coverslips in 6 well plates at a density of 3×105 

per well the night before infection. The day of infection, host cells were treated with 

CCCP (positive control of fragmentation) or infected with Live and HK RB51 as 

stated above. Coverslips were rinsed using DPBS (+ calcium and magnesium) and 

fixed in 4% paraformaldehyde. After fixation, coverslips were rinsed three times in 

TBS+0.1% Triton-X 100 and stained with the mitochondrial marker TOM20 (1:350) 

for 45 minutes, stained with secondary Cy3 (1:100) for 45 minutes, and 

counterstained with DAPI (1:1000) for 15 minutes.  Coverslips were mounted onto 

slides using Prolong Gold Anti-Fade (Invitrogen). Cells were imaged at the 

Microscopy and Image Analysis (MIL) core at the University of Michigan Medical 

School using an Nikon A-1 inverted fluorescence microscope. Images were 
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collected using the Nikon Elements software with diode lasers 405 (DAPI) and 561 

(Cy3) with a Z-stack step size of 0.200 µm. Z-stacks of images were combined 

using Metamorph to obtained a single image. The stacked images was processed 

using a deconvolution algorithm followed by 3-D reconstruction using the Huygens 

Essentials software. A region of interest (ROI) was drawn around a cell to obtain 

the isosurface volume and length of the mitochondrial network.  Sample size of 

each condition consist of n = 25 cells.  

Statistical Analysis  

All p values were generated between identified samples using unpaired two-tailed 

Student’s t-tests and represent analysis of ≥3 replicates per condition. Asterisks 

denote the following p values: *p<0.05, **p<0.001 and ***p<0.0001. 
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Chapter 5 

Perspective 

Overview 

ER and mitochondrial crosstalk: a regulator of inflammasome activation 

Inflammation is a double-edged sword, because it aids in resolution of 

infection but overexuberant inflammation can cause severe damage to the host.  

Individually, the ER and mitochondria have been shown to cooperate in triggering 

inflammation – the ER stress sensor IRE1 drives cytokine upregulation, while 

mitochondrial DAMPs activate the inflammasome. Although crosstalk frequently 

occurs between these two organelles, it was unclear whether ER-mitochondrial 

crosstalk was important for modulating an inflammatory response. Using the 

attenuated cattle vaccine strain of Brucella abortus RB51 as a model pathogen, I 

discovered that selective activation of host ER stress pathways can have different 

and profound effects on mitochondria leading to infection-associated 

proinflammatory signaling, inflammasome suppression, or cell death. Triggering 

the inflammasome by infection-induced ER stress required signaling through the 

IRE1-NLRP3-caspase-2-Bid axis upstream of the mitochondria. Suppression of 

the inflammasome could be mediated by PERK-induced mitophagy. If PERK was 

not activated then IRE1-mediated inflammation eventually resulted in a unique 

form of cell death with characteristics of both apoptosis (silent cell death) and 

pyroptosis (inflammatory cell death).  
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Novel roles for non-inflammatory proteins 

This thesis work has also uncovered surprising roles for proteins that did 

not have well-established functions in inflammation. Caspase-2 was classified as 

an apoptotic caspase with ties to metabolism, mitochondrial damage, and ER 

stress [1]. A previous study reported that caspase-2 could mediate caspase-1 

activation during a Salmonella macrophage infection [2]. No other study has been 

published to confirm this finding, and the mechanism by which caspase-2 

regulated caspase-1 was not identified. Here I show that caspase-2 does regulate 

caspase-1 activation by inducing mitochondrial damage, leading to inflammasome 

activation. Additionally, NLRP3 can regulate caspase-2 activation in response to 

ER stress. Classically, no other caspase besides caspase-1 is known to interact 

with NLRP3 – the interaction between NLRP3 and caspase-1 is mediated by ASC 

with contains both a CARD (caspase-1 interacting domain) and PYD domain 

(NLRP3 interacting domain). Although caspase-2 contains a CARD domain similar 

to caspase-1 [1], no reports have ever linked NLRP3 and caspase-2 together 

especially during inflammatory contexts, and it is intriguing to speculate that 

NLRP3 may interact with caspase-2 in a complex that is analogous to, but distinct 

from the canonical inflammasome.  

Similar to caspase-2, PERK had not previously been linked to control of 

inflammation. PERK is best known for its involvement in ER stress-induced cell 

death and upregulation of antioxidant capacity.  A previous study linked PERK to 

mitophagy, but in a non-infectious context. I discovered that specific microbial 

signals could activate PERK, which suppressed IL-1β production by triggering 
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removal of damaged mitochondria and mtDAMPs, ligands that stimulate 

inflammasome activation. My data are consistent with a suppressive role for PERK 

signaling during the inflammatory response to microbial infections both in vitro and 

in vivo. Since PERK suppresses inflammation, this UPR sensor may be useful as 

a therapeutic target for inflammatory diseases. By triggering PERK activation, one 

could reduce inflammation and pathology, thus increasing the health of patients 

who suffer from mitochondrial dysfunction-mediated diseases such as heart 

disease, Alzheimer’s, and diabetes.  My thesis research supports a role for ER as 

a critical hub for integrating cellular stress and innate immune signaling. 

Additionally, this work highlights the importance of maintaining the integrity of the 

mitochondrial network for minimizing inflammation. Even though we now have 

models that better define the regulatory role of ER-mitochondrial crosstalk in 

immune regulation, there are still questions that remain to be investigated. 

Broader impact of these pathways in infectious and non-infectious conditions 

 Although I used an attenuated vaccine strain to elucidate the regulatory 

mechanisms on inflammation licensed by the ER and mitochondria, I was able to 

demonstrate that these pathways occur during other infectious and non-infectious 

contexts. I found that in contexts where ER stress is triggered by chemical inducers 

(Chapter 3), IRE1 was essential for triggering inflammasome activation in a 

NLRP3/caspase-2/Bid dependent manner. Furthermore, Parkin-dependent 

mitophagy suppressed RSV- and HK RB51-induced IL-1β production (Chapter 4). 

The similarity of these pathways in different contexts aligns with previous work 

demonstrating that numerous stimuli (e.g. infection, irritants, injury, etc.) can elicit 
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cellular stress; therefore, it is not surprising that these pathways are crucial in 

different contexts. My thesis work highlights the potential role for ER-mitochondrial 

crosstalk in the broader context of clinically relevant infections and chronic 

inflammation. While some of the proteins described here were implicated in various 

inflammatory diseases, their connection to disease was previously unclear; my 

thesis research provides a framework and specific mechanisms by which cellular 

stress programs control inflammation. 

 Future Areas of Investigation 

What is the fate of the damaged mitochondria captured during mitophagy? 

 Captured cargo from autophagy and autophagy related processes are 

degraded and recycled for use by the cell [3]. In Chapter 3, I showed that damaged 

mitochondria fragment from the network and are captured in HK-infected BMDM. 

I have preliminary data that show these mitochondrial fragments are tagged by 

LC3 and released by the cell, suggesting that they are not autonomous but are 

surrounded by an autophagic membrane (Fig. A26). It is unclear if these fragments 

are intact mitochondria or mitochondrially derived vesicles (MDVs) [4]. Previous 

studies have illustrated that both mitochondria and MDVs can be released by cells. 

Released mitochondria are intact (lack signs of damage) and trigger inflammatory 

responses [5]. MDVs are cargo‐selective vesicles that bud off mitochondria in a 

Parkin-dependent manner [4, 6]. These MDVs are enriched for oxidized 

mitochondrial proteins and form in response to mitochondrial stress. The cargo 

(e.g. TOM20 positive or negative) and structure (single or double-membrane) of 

these MDVs can vary. I speculate that the observed extracellular mitochondrial 
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fragments are MDVs because these fragments are dependent upon Parkin and 

are associated with LC3. Intact mitochondria, when released, are not surrounded 

by a plasma membrane [5]. Although I have observed TOM20 positive fragments, 

it is unclear if other types of MDVs are being released by HK-infected BMDM. 

Immunostaining for mitochondrial proteins (PDH –matrix and Complex III – inner 

membrane) that have been identified in MDVs will further characterize the particles 

released by HK-infected BMDM. Additionally, I could probe for other proteins that 

I showed in Chapter 3 (e.g., caspase-2, NLRP3, Bid, etc.) to determine if they 

associate with these extracellular mitochondria. These vesicles/fragments may be 

carrying non-mitochondrial proteins that can trigger other cellular processes such 

as cell death or inflammation. Determining the molecular characteristics of MDVs 

will elucidate the as yet unknown function of extracellular mitochondrial fragments 

in the context of infection and inflammation. 

Currently, it remains unclear if these mitochondrial fragments would be 

perceived as pro-inflammatory or anti-inflammatory signals. It is known that 

apoptotic bodies when engulfed by a neighboring cell can be anti-inflammatory [7]. 

Since these mitochondrial fragments appear to be surrounded by an autophagic 

membrane, it is quite possible that, if sensed by recipient cells, they would not 

trigger the production of pro-inflammatory cytokines. Mitochondrial DAMPs can be 

detected in the bloodstream of patients suffering from systemic inflammatory 

response syndrome (SIRS), Acute Respiratory Distress Syndrome (ARDS), and 

acute lung injury (ALI) [8, 9]. These observations suggest that mitochondria 

contribute to immune responses and that these mtDAMPs are underappreciated 
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signaling molecules that may influence the course of disease. The genesis and 

regulation of mitochondrial vesicle formation has not been fully explored. 

Therefore, it is of interest to elucidate mechanisms of formation and extracellular 

release of these mitochondrial DAMPs/vesicles. Further investigation into the 

mechanisms and impact of these mitochondrial fragments may shed light on how 

cellular stress pathways exert long-range influence on other cells and organs 

during an inflammatory response. 

Why does mtROS increase when ROS-detoxifying mechanisms exist? 

 The mitochondrial network is the major production site of ROS, and 

excessive ROS production can be very toxic for the cell. Recent studies have 

illustrated that a NAD+ dependent deacetylase, Sirtuin-3 (Sirt3), can aid in 

detoxifying mtROS. Sirt3 localizes primarily in mitochondria and deacetylates 

several mitochondrial targets, including acetyl-CoA synthase 2, succinate 

dehydrogenase, manganese superoxide dismutase (MnSOD), and isocitrate 

dehydrogenase 2 [10]. Deacetylation of these targets allows Sirt3 to regulate 

oxidative phosphorylation and prevent oxidative damage. Recently, it was reported 

that DNA damage could trigger proteasomal degradation of Sirt3 leading to 

increased ROS production [11].  

In Chapter 3, the observation of a rapid and steady increase in ROS in Live-

infected BMDM suggested that there might be a deficiency in Sirt3. In Live-infected 

BMDM, I observed a significant decrease in Sirt3 activity and protein levels 

suggesting that Sirt3 was being inactivated or degraded (Fig. A27). There is little 

evidence to support Sirt3 degradation, especially during ER stress conditions. 
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These observations suggest that ER stress not only aids in the release of 

mitochondrial contents but can also regulate mitochondrial protein function. 

Degradation of Sirt3 could be viewed as a release on the inflammatory brake – by 

removing the brake, the cell can ramp up inflammation quickly and increase the 

chances of clearing the infection. My preliminary data show that Sirt3 degradation 

occurs during other types of microbial infections (Salmonella and MRSA, data not 

shown), suggesting that this degradation phenotype is not Brucella-specific but 

rather a broader phenomenon associated with infection. Degradation of Sirt3 could 

be mediated by (a) the mitochondrial localized proteasome, Lon [12, 13], or (b) 

exported from the mitochondria and degraded by the cytosolic ubiquitin-

proteasome system [14]. Sirt3 binds to heat shock protein 60 (HSP60), an 

interaction that may be critical for maintaining the presence of Sirt3 in the 

mitochondrial matrix [15]. During ER stress, there may be signals that destroy the 

Sirt3-HSP60 interaction thus leading to Sirt3 degradation. Currently, I am 

investigating whether Sirt3 degradation is mediated by the cytosolic ubiquitin-

proteasome system and what triggers Sirt3 degradation (e.g., TLR signaling, 

TXNIP translocation to mitochondria, calcium flux). Further investigation into what 

signals Sirt3 degradation is important because deficiency or mutations in SIRT3 

lead to increased inflammation in mice [16]. These data suggest that SIRT3 can 

regulate inflammatory outputs in response to infection and/or cellular stress. 

What role does calcium play in inflammation modulation? 

 Close interactions between the endoplasmic reticulum (ER) and 

mitochondria are essential for rapid and sustained Ca2+ uptake by mitochondria 
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[17]. VDAC, located in the outer mitochondrial membrane, is responsible for the 

rapid transfer of Ca2+ at mitochondrial-associated membranes (MAMs) or contact 

sites between ER and mitochondria. Increasing mitochondrial Ca2+ concentration 

activates dehydrogenases, thus increasing the electron flux and ATP production. 

Under homeostatic conditions, inositol 1,4,5 trisphosphate receptor (IP3R, located 

in the ER membrane) allows for regulated calcium transfer to the mitochondria. 

Interestingly, IP3R also inhibits autophagy by forming protein complexes with 

Beclin-1 and Bcl-2 [18]. If calcium transfer is inhibited, Ca2+-dependent stimulation 

of aerobic metabolism triggers autophagy due to the disruption of the Bcl-2/Beclin-

1/IP3R interaction. Preventing mitochondrial calcium uptake or massive calcium 

overload can trigger apoptosis. In healthy mitochondria, VDAC interacts with Bax 

and Bak to prevent the formation of Bak/Bax pores – pores that aid in the release 

of mitochondrial contents into the cytosol. Following an apoptotic stimulus, BID, a 

death agonist, is cleaved and binds to the outer mitochondrial membrane (OMM), 

where it activates Bax and Bak. Activated Bax and Bak promote OMM 

permeabilization and increase calcium leakage from the ER by interacting with 

IP3R [19]. This leads to the release of caspase cofactors into the cytosol thus 

triggering apoptosis. In addition to the release of proapoptotic factors, 

mitochondrial danger signals (mtDAMPs) are also released into the cytosol thus 

leading to inflammation, in particular inflammasome activation.  

 There are stark differences between the inflammatory response from Live 

RB51 and HK-infected BMDM. Live infection triggers excessive mitochondrial 

damage and pyroptosis (Chapters 2 and 3), whereas HK infection triggers 
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mitophagy (Chapter 4) and does not induce cell death [20]. Early in infection, both 

Live and HK-infected BMDM look similar; however, at 4h p.i. they begin to diverge. 

During the first two hours of infection by both Live and HK, there may be an influx 

of calcium from the ER into mitochondria, thus triggering a decrease in membrane 

potential and the stabilization of PINK1 on the outer membrane. Since at 4h p.i., 

Live-infected BMDM cleave Bid leading to outer mitochondrial membrane 

permeabilization, I hypothesize that mitochondrial damage possibly increases 

calcium efflux from the ER. This would increase mitochondrial calcium uptake and 

exacerbate mitochondrial damage. In HK-infected BMDM at 4h p.i., PERK is 

activated and induces Parkin upregulation. Parkin is recruited to the mitochondrial 

network and begins to ubiquitinate mitochondrial proteins, like VDAC, on the outer 

mitochondrial membrane, which would likely prevent further uptake of calcium into 

the mitochondria. To test this hypothesis, we can now take advantage of available 

mitochondria-specific calcium probes, including fusion proteins that carried 

calcium-sensitive photoproteins and GFP-based protein constructs engineered to 

change fluorescence properties following Ca2+ binding. With these tools, we will 

be able to measure changes in calcium concentration within the ER lumen and 

mitochondrial matrix, as well as more rigorously assess if differences in calcium 

flux are the key to modulating ER stress-induced inflammation.  

What feature of HK RB51 is essential for PERK activation? 

 Very little is known about the exact mechanism of ER stress activation by 

microbial ligands. Recent evidence has shown that activation sensitivity differs 

between UPR sensors [21]. In Chapter 3, I observed that HK, but not Live, 
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triggered PERK activation. HK bacteria could be viewed as a collection of microbial 

ligands. It is quite possible that our heat treatment changes protein structure, thus 

presenting ligands/epitopes that the cell would not normally see. To investigate 

whether microbial viability was the key to triggering PERK activation, I heat 

inactivated a variety of Gram-positive and -negative bacteria and measuring CHOP 

(a downstream target of PERK) induction. Only HK RB51 and the positive control 

tunicamycin (ER stress inducer) triggered CHOP induction – even at high MOI 

neither Salmonella (SL1344), Listeria (10403S) MRSA (USA300), nor E. coli 

(HB101) could trigger the PERK pathway (Fig. A28). Notably, all of the HK bacteria 

could trigger robust xbp1 splicing, indicating activation of the IRE1 ER stress 

sensor (data not shown). These data suggest that there is another factor 

responsible for triggering PERK activation. 

 Brucella abortus RB51 contains a Type 4 secretion system (T4SS) [22, 23], 

and heat killing RB51 would prevent the secretion of effector proteins into 

macrophages, because the bacteria are not metabolically active. If Live RB51 is 

actively suppressing PERK through an effector protein, then Live RB51 lacking a 

functional T4SS should trigger PERK activation. Infecting BMDM with Live 

RB51ΔvirB (T4SS) stimulated more PERK phosphorylation than wildtype Live 

RB51, but less than HK (Fig. A28). This is an interesting observation because 

virulent Brucella strains do induce PERK activation and contain a T4SS [24]. RB51 

is an attenuated laboratory strain derived from the virulent S2308 strain that was 

grown and passaged in media containing the antibiotic Rifampin [25]. Rifampin 

binds to the β subunit of the DNA-dependent RNA polymerase, and growth in 
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rifampin yields rough Brucella abortus colonies (deficient O antigen). Rifampin 

treatment also induced additional missense mutations (526 amino acids affected 

in total) in RB51 [25]. These observations suggest that an effector protein secreted 

through the T4SS is defective in PERK activation by Live RB51 due to mutations 

that alter expression or function of the effector protein. A recent study reported that 

four Brucella effector proteins (BspA, BspB, BspD, and BspK) localized to the ER 

[23]. With these newly identified ER-localized effector proteins, we can detect 

mutations in these proteins by comparing the sequence of RB51 to its parent 

strain, S2308.  If there are any differences in sequence, we can then investigate 

whether the mutated effector protein in RB51 is responsible for the lack of PERK 

activation during Live infection. Additionally, by infecting macrophages with WT 

RB51 and RB51+WTeffector we could do a co-immunoprecipitation assay to 

assess interaction between the effector and PERK. If there are differences that 

interrupt interaction, then we would demonstrate that bacterial effector proteins 

can modulate ER stress sensors.  

Conclusions and Significance of Thesis 

This thesis addresses an open question in the innate immunity field of how 

cellular stress can lead to control of inflammation, specifically the inflammasome. 

My data show that the partnership between the ER and mitochondria is essential 

for fine-tuning the immune response during infection. ER stress sensors can either 

induce mitochondrial damage to trigger an immune response or remove fragments 

of the mitochondrial network to dampen an immune response. Since ER 

components can trigger or suppress inflammation depending on the context, it 
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might be possible to customize immune responses – either increase inflammation 

to shorten time for microbial clearance (trigger IRE1) or dampen an immune 

response during disease to decrease tissue damage (trigger PERK). Researchers 

are now discovering that many pathogens can exploit these cellular stress 

programs to increase their survival and dampen the immune response – thus 

providing a strong rationale for a better mechanistic understanding of these stress 

pathways and their influence on immune responses.  Furthermore, these three ER 

stress sensors have been implicated in promoting insulin secretion, differentiation, 

lipid biosynthesis, and neurite outgrowth. By selectively activating or deactivating 

these stress programs using small molecule compounds, it may be possible to 

modulate cellular function and treat disease where these functions are altered. The 

results described in this thesis are relevant to understanding how ER stress might 

influence many diseases. Overall, the molecular context of cellular stress is critical 

in defining the pathways that govern cellular function, infection and inflammation.  
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Appendix 

 

Purpose 

The following section contains figures supplemental to the main chapter 

discussions. Figures A1-A3 were supplemental material published in the Frontiers 

of Cellular and Infection Microbiology and are referenced in Chapter 2. Figures A4-

A19 were included as supplemental material in the submitted IRE1 manuscript and 

are referenced in Chapter 3. Figures A20-A25 are supplemental data for the PERK 

data and are referenced in Chapter 4. Figures A26-A28 represent data that do not 

form a complete scientific story and are referenced in Chapter 5 as ideas that 

should be investigated further.  



Figure A1: Caspase-2 mediates RB51-induced macrophage cell death. (A)

Annexin V/propidium iodide (PI) staining of RB51-infected WT and casp2-/-

BMDMs at 100X magnification. Images are representatives of n≥3 independent

experiments. (B) LDH release in Live RB51-infected WT and casp2-/- BMDMs.

Cells were counted in randomly selected fields of 100 cells. (C) CFU analysis

of RB51 in WT and casp2-/- BMDMs, Error bars represent mean ± SD of n≥3

independent experiments. **p < 0.001 and ***p < 0.0001, Student’s t-test. n.s.

= not significant.
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Figure A2: Caspase-3 and -8 are involved in RB51-induced cell death. (A)

Caspase-2 cleavage (activation) in Live RB51-infected RAW264.7 macrophages

with or without Z-DEVD-FMK (20 µM, Caspase-3 inhibitor). (B) Caspase-2

cleavage (activation) in Live RB51-infected RAW264.7 macrophages with or

without Z-IETD-FMK (20 µM, Caspase-8 inhibitor). UNT and ET represent

untreated and etoposide (25 µM, 6hr treatment) respectively. Immunoblots are

representatives of n≥3 independent experiments.
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Figure A3: Caspase-1 aids in RB51-induced pore formation. RB51-infected

RAW264.7 macrophages treated with Z-YVAD-FMK (20 µM, caspase-1 inhibitor)

were stained with the membrane permeable dye Hoechst 33342 (blue) and the

membrane impermeant dyes (red), EtBr (MW 394) or EthD2 (MW 1293).

Adherent cells were visualized by fluorescence microscopy (100x). Images are

representatives of n≥3 independent experiments.
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Figure A4: RB51 infection does induce IL-1β production but no cell

death. (A) LDH release of RB51-infected (MOI 200) BMDMs. Lysed (Triton-

X100 treated) and untreated (UNT) cells served as positive and negative

controls respectively. (B) IL-1β levels in macrophages treated with LPS+ATP

(200 ng/mL and 1mM respectively) or infected with RB51-infected at MOI

200 or 20. Error bars represent mean ± SD of n≥3 independent experiments.

*** represent p-value <0.0001 respectively. n.s. = not significant.
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Figure A5: Chemical inhibitors do not affect bacterial uptake. BMDMs

were pretreated with TUDCA (chemical chaperone, 300 µM) or 4µ8c (IRE1

inhibitor, 50 µM) for one (1) hour prior to infection. These pretreated

BMDMs were then infected with RB51 (MOI 200). One (1) h.p.i BMDMs

were lysed to enumerate intracellular CFU. Error bars represent mean ±

SD of n≥3 independent experiments. n.s. = not significant. The inset

demonstrates the efficacy of 4µ8c inhibiting IRE1-induced xbp1 splicing in

TM (tunicamycin, 10 µg/mL) treated and RB51-infected BMDM.
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Figure A6: IRE1 is required for RB51-induced inflammasome activation.

(A) IL-1β levels and (B) caspase-1 cleavage in RB51-infected non-target (NT)

and IRE1KD RAW264.7 macrophages. UNT, L+A, and ET represent

untreated, LPS+ATP (positive control for IL-1β 200 ng/mL and 1 mM), and

etoposide (positive control for caspase-2 activation and Bid truncation, 25 µM)

respectively. Error bars represent mean ± SD of n≥3 independent experiments.

*** represent p-value <0.0001, n.s. = not significant. Immunoblots in (B) are

representative of n≥3 independent experiments that were performed and

imaged in parallel with identical parameters using a LiCor Odyssey imaging

system. Full length caspase-1serve as loading controls.
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Figure A7: IRE1 inhibition decreases bacterial killing in vivo. Mice were

intraperitoneally (i.p.) injected with Brucella abortus RB51 (CFU 1 x 108). Mice

were treated with 5% DMSO (n = 10) or 4µ8c (n = 10) on day 0 – 3 post

infection. The spleens were collected 3 days post infection and bacterial

numbers (CFU/mL) were measured. The data were pooled from 2 separate

experiments. *** represent p-value <0.0001.

315



Fig. A8: IRE1 inhibition does not affect priming. qPCR analysis of 

NLRP3 transcript levels RB51-infected BMDMs in absence or 

presence of 4µ8c. 

154



Figure A9: IRE1 is required for RB51-induced cytochrome c release.

Immunoblot analysis of cytochrome c (cyto c) in cytosolic extracts from RB51-

infected BMDMs in (A) non-target or IRE1 KD RAW264.7 macrophages or in

(B) the absence or presence of 4µ8c (IRE1 inhibitor, 50 µM) – TMǂ denotes

the same control TM-treated sample. The blots were probed with anti-actin

antibody as a loading control. Immunoblots are representative of n≥3

independent experiments that were performed and imaged in parallel with

identical parameters using a LiCor Odyssey imaging system. UNT and TM

represent untreated and tunicamycin (10 µg/mL, positive control for ER stress

activation respectively.
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Figure A10: Cyclosporin A treatment has no effect on bacterial uptake.

BMDMs were pretreated with cyclosporin A (CsA, inhibitor of MPTP

opening 10 μM) for one (1) hour prior to infection. These pretreated BMDMs

were then infected with RB51 (MOI 200). One (1) h.p.i BMDMs were lysed

to enumerate intracellular CFU. Error bars represent mean ± SD of n≥3

independent experiments. n.s. = not significant
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Figure A11: AIM2 is not required for ER stress-induced IL-1β

production. ELISA analysis of IL-1β levels in the supernatant of WT and

aim2-/- RB51-infected BMDMs. Error bars represent mean ± SD of n≥3

independent experiments. n.s. = not significant. UNT (untreated) and

LPS+ATP (trigger of IL-1β production, 200ng/mL and 1mM) respectively.
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Figure A12: NLRP3, not ASC or caspase-1, is essential for RB51-induced

mitochondrial dysfunction. (A) Immunoblot analysis of cytochrome c (cyto c)

in cytosolic extracts from RB51-infected WT and nlrp3-/- BMDMs – TMǂ

indicates duplicate lanes of the same sample. (B) Immunoblot analysis of

caspase-1 in RB51-infected WT and nlrp3-/- BMDMs – L+Aǂ indicates

duplicate lanes of the same sample. (C) Immunoblot of cytochrome c in WT,

asc-/-, and Y-VAD-CHO (caspase-1 inhibitor, 2 µM) treated BMDMs. Actin and

full length (FL) caspase-1 serve as a loading control. The cleaved active form

(Cl) was detected on the same blot as FL.
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Figure A13: Inhibition of caspase-1 has no effect on bacterial

uptake. BMDMs were pretreated with Z-YVAD-CHO (caspase-1

inhibitor, 2 µM) for one (1) hour prior to infection. These pretreated

BMDMs were then infected with RB51 (MOI 200). One (1) h.p.i BMDMs

were lysed to enumerate intracellular CFU. Error bars represent mean ±

SD of n≥3 independent experiments. n.s. = not significant
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Figure A14: Caspase-2 triggers mitochondrial damage via IRE1 and

NLRP3. Caspase-2 activation in (A) non-target (NT) and IRE1 KD or (B) WT,

asc-/-, and Y-VAD-CHO (caspase-1 inhibitor, 2 µM) treated BMDMs. (C)

cytochrome c release in WT and casp2-/- BMDMs infected with RB51. (D)

Bacterial uptake in WT and casp2-/- BMDMs 1 hour post infection. (E)

Immunoblot of caspase-1 cleavage (activation) in WT and casp2-/- BMDMs

infected RB51. UNT, ET, and L+A represent untreated, etoposide (inducer of

caspase-2 activation, 25 µM), and LPS+ATP (trigger of IL-1β production,

200ng/mL and 1mM) respectively. (F) qPCR analysis of NLRP3 transcript

levels RB51-infected WT and casp2-/- BMDMs. Immunoblots are

representative of n≥3 independent experiments that were performed and

imaged in parallel with identical parameters using a LiCor Odyssey imaging

system. Actin and full length (FL) caspase-2 serve as loading controls.
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Figure A15: ER stress-induced caspase-2 mediates Bid truncation.

Immunoblot analysis of Bid truncation in (A) non-target and IRE1KD

RAW264.7 macrophages or (B) WT and casp2-/- BMDMs infected with RB51

– ETǂ identifies duplicate lanes of the same sample. UNT and ET represent

untreated and etoposide (inducer of caspase-2 activation, 25 µM)

respectively. (C) Bacterial uptake in WT and bid-/- BMDMs 1 hour post

infection. Immunoblots are representative of n≥3 independent experiments

that were performed and imaged in parallel with identical parameters using a

LiCor Odyssey imaging system. Full length (FL) Bid serves as loading

controls.

116



Figure A16: Bid is required for bacterial killing in vivo. WT (n=29)

and bid-/- (n = 30) mice were intraperitoneally (i.p.) injected with Brucella

abortus RB51 (CFU 1 x 108). The spleens were collected 3 days post

infection and bacterial numbers (CFU/mL) were measured. The data was

pooled from 2 separate experiments. *** represent p-value <0.0001.
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Figure A17: ER stress triggers weak priming of proIL-1β. (A) ProIL-1β

and (B) xbp1 splicing in BMDMs after 4 hour treatment with LPS, as well as

ER stress inducers thapsigargin (TG, 10 µM), tunicamycin (10 µg/mL), and

brefeldin A (BFA, 20 µM). CHOP serves as a marker of ER stress and actin

serves as a loading control. Immunoblots in (A) are representative of n≥3

independent experiments that were performed and imaged in parallel with

identical parameters using a LiCor Odyssey imaging system.
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Figure A18: Amount of stress determines route of inflammasome

activation. (A) Amount of mtDNA released into the cytosol when treated

with two different L+A treatment protocols. (B) Immunoblot of proIL-1β

protein levels in cell treated with LPS (200 ng/ml) overnight (o/n) or for 4 hrs

prior to ATP treatment.
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Figure A19: Purity of mitochondrial fraction. Whole Cell lysate (WCL),

cytosolic fraction (CF), and mitochondrial fraction (mtF) are assessed for the

presence of different cellular markers: Calreticulin (ER marker), TOM20

(mitochondrial marker), Lamin B1 (nuclear marker), and Actin (cytosolic

marker).
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Figure A20: Both Live and HK RB51 induce IRE1 and ATF6 activation.

(A) xbp1 splicing, in Live and HK RB51-infected (MOI 20) BMDM. qRT-PCR

samples were treated with PstI to distinguish between spliced (184 bp) and

unspliced variants (119 bp following PstI digestion). (B) Immunoblot of ATF6

cleavage in Live and HK RB51-infected BMDM. UNT and TM represent

untreated and tunicamycin (10 µg/mL, positive control for ER stress

activation).
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Figure A21: Deficiency in ATF4 leads to increased mitochondrial damage.

(A) Amount of mtDNA released into the cytosol by Live and HK-infected BMDM

in the presence of non-target or ATF4 specific siRNA. (B) CM-H2DCFDA was

used to measure ROS levels in non-target or ATF4 siRNA treated BMDM

infected with Live and HK-RB51. (C) Immunoblot of mitophagy markers PINK1,

LC3-II, and Parkin in the mitochondrial fraction of CCCP and Live/HK-infected

BMDM in the presence of non-target or ATF4 siRNA. (D) 3-D reconstruction and

quantification of the mitochondrial network labeled with TOM20 (mitochondrial

marker, outer membrane protein) with or without ATF4 siRNA in CCCP and

Live/HK-infected BMDM. Colors represent the size of the fragments within the

network. Error bars in (A, B, and D) represent mean ±SD of n≥3 independent

experiments. ** and *** represent p-values <0.001 and <0.0001 respectively.

n.s. = not significant. UNT, CCCP, and TM represent untreated and Carbonyl

cyanide m-chlorophenyl hydrazine (20 µM, positive control for mitophagy

induction), and tunicamycin (10 µg/mL, positive control for ER stress-induced

mitochondrial damage).
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Figure A22: LC3b deficiency does not prevent mitochondrial fragmentation.

3-D reconstruction and quantification of the mitochondrial network labeled with

TOM20 (mitochondrial marker, outer membrane protein) in CCCP and Live/HK-

infected WT or lc3b-/- BMDM. Colors represent the size of the fragments within

the network. Error bars in represent mean ±SD of n≥3 independent experiments

where n.s. = not significant. UNT and CCCP, represent untreated and Carbonyl

cyanide m-chlorophenyl hydrazine (20 µM, positive control for mitophagy

induction).
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Figure A23: PERK inhibition decreases Parkin transcription in

RSV-infected BMDM. qPCR analysis of Parkin transcription during

RSV BMDM infection (MOI 1) in the absence or presence of GSK-

PERK (GSK2606414, 5 μM). Tunicamycin (TM) serves as a positive

control for PARKIN induction. Error bars represent mean ± SD of n≥3

independent experiments. ** represents p-values of <0.001, n.s. = not

significant.
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Figure A24: PERK and Parkin suppress RSV-induced caspase-1

activation. Caspase-1 cleavage during RSV (MOI 1) infection (A) in absence

or presence of GSK-PERK (5 μM) or (B) WT and parkin-/- BMDM.

Immunoblots in (A) and (B) are representative of n≥3 independent

experiments performed and imaged using a LiCor Odyssey imaging system.

UNT and L+A represent untreated and LPS+ATP (200 ng/mL and 1mM

respectively; positive control for inflammasome activation).
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Figure A25: ATF4 knockdown efficiency in BMDM. Non-target and ATF4

siRNA BMDM were treated with TM to induce ATF4. Knockdown of ATF4 was

assessed during each experiment and percent of knockdown efficiency was

normalized to Actin. Immunoblot is representative of n≥3 independent

experiments performed and imaged using a LiCor Odyssey imaging system.

171



Figure A26: HK-infected BMDM release mitochondria into media.

(A) BMDM were immunostained with TOM20 (mitochondrial marker)

and DAPI (nuclear marker). Cells were counterstained with Phallodin to

determine the outline of the cell (denoted by white dashed line). (B)

Extracellular mitochondrial fragments from CCCP treated and HK-

infected (MOI 20) BMDM were stained with TOM20 and LC3 (autophagy

marker). (All images in A-C are representative of n≥3 independent

experiments.
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Figure A27: Live RB51 induces Sirt3 degradation. (A) Lysates of Live-

infected BMDM were used to measure Sirt3 activity via fluorescence.

Percent activity was determined by comparing infection fluorescence values

to untreated fluorescence values. (B) Immunoblot of Sirt3 in L+A treated or

Live infected BMDM in the presence or absence of Epoximicin (proteasome

inhibitor, 5 µM) or 4u8c (IRE1 specific inhibitor, 50 µM. Immunoblots are

representative of n≥2 independent experiments performed and imaged in

parallel with identical parameters using a LiCor Odyssey imaging system.
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Figure A28: Secretion system not viability mediates PERK

activation. (A) Immunoblot of CHOP in the presence of Brucella (RB51),

E. coli (HB101), Listeria(10403S), Salmonella (SL1344), and MRSA

(US300). Tunicamycin (TM) serves as a positive control for CHOP

induction. (B) PERK phosphorylation in RB51ΔvirB-infected (Type 4

secretion system mutant, MOI 20) BMDM. PERK and TM served as the

loading and positive controls respectively. Immunoblots are

representative of n≥3 independent experiments performed and imaged in

parallel with identical parameters using a LiCor Odyssey imaging system.
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