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ABSTRACT

Experimental and Numerical Investigation of the Damage Response of Ceramic
Matrix Composites

by

Pascal Meyer

Chair: Anthony M. Waas

Ceramic matrix composites (CMCs) are of interest in the aerospace industry due

to their ability to retain high stiffness at elevated temperatures. CMC materials are

slated to replace metal alloys currently used in the combustion section of aerospace jet

engines, leading to weight savings due to the lower density, and system efficiency due

to eliminating complex cooling systems which are not required for CMC components.

In this work monotonic tensile tests at room and high temperature are conducted.

Three different composite layups are investigated.

Mechanics based numerical models based on finite element analyses are developed to

predict the damage behavior of CMCs. The energy based crack band model imple-

mented in Abaqus’ user subroutines is used to enforce mesh objectivity. Crack den-

sities are predicted with microstructural FEM models including hundreds of fibers.

Geometrical inhomogeneities are included in the model in order to represent the mi-

crostructure accurately. Crack-paths and stress-strain responses are compared to

experimental results. In order to measure full-field strain at elevated temperatures

(excess of 2000F), a novel digital image correlation based technique was developed.
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Component level numerical predictions are developed using a multiscale approach

referred to as the integrated finite element method (IFEM). In the IFEM, a repre-

sentative volume element, which includes nonlinear response due to constituent level

damage, is embedded within Abaqus user subroutine UMAT. This allows the user to

capture the influence of constituent stress-strain relation at the RVE level. This RVE

level (subscale) analysis is also conducted using the finite element method. Abaqus is

used to calculate the response of a coupon or component level model using the IFEM

approach. Energy based fracture mechanics models are implemented in the consti-

tutive relations of the RVE model. Damage of each constituent within the RVE is

predicted and volume averaged stresses of the RVE are calculated and returned to the

Abaqus model. Macroscopic crack paths are predicted and compared to experimental

results. In support of IFEM, micromechanics based models are developed to study

the effect of fiber packing and other geometrical features on the transverse response

of CMC plies.

Experiments on CMCs at elevated temperature revealed the existence of fiber debond-

ing and subsequent sliding and pullout of the fibers. A numerical model is developed

to predict the fiber debonding using discrete cohesive zone elements (DCZM). A

surface to surface contact model based on Coulomb friction is used to describe the

frictional behavior between the fiber and coating material.
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CHAPTER I

Introduction

1.1 Ceramic Matrix Composites - Introduction

Ceramic Matrix Composites (CMCs) have been in existence for nearly four decades.

Initial reinforced ceramics appeared in the early 1960’s (Popper (1960)). Research on

manufacturing of stronger ceramics intensified in the 1970’s (Mehan (1978), Forrest

et al. (1972)). However, they have just recently found their application in gas turbine

engines. Ceramic materials usually display superior stiffness and higher stability at

elevated temperatures when compared to metals. However, monolithic ceramics ex-

perience a very low toughness which eliminates this material from use in high strain

applications. Typically, a single crack grows instantaneously through a component

when the critical stress is reached. This is shown schematically in figure 1.1a. Adding

fiber reinforcements, which have a high melting point, low density, high modulus and

high strength, to a monolithic ceramic material does not increase the stiffness or

toughness (figure 1.1b) of a ceramic material due to the similarity in elastic prop-

erties of the fibers. To increase the toughness and therefore increase the usability

of ceramic materials, a compliant interface between the fiber and matrix is added.

The interface material tends to have a noticeable volume fraction in the range of

6-10 %. A crack front deflects at or is arrested by the compliant fiber coating and

crack saturation sets in before ultimate fracture of the component. This leads to a
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stress-strain response which is comparable to metals as shown in figure 1.1c. However,

CMCs experience a lower macroscopic strain to failure than metals. Many reinforce-

ments have been tested, such as fibers, whiskers or particles. Typical reinforcement

materials include carbon, silicon carbide (SiC), titanium diboride, silicon nitride and

alumina. Continuous-fiber-reinforced CMCs show a preferable failure behavior com-

pared to discontinuous reinforcements. The major difference between the two is that

the continuous-fiber-reinforced CMCs do not fail catastrophically which make them

more desirable for component manufacturing. The ratio of elastic modulus of the

reinforcement material to the matrix is commonly low and can frequently be equal

to unity. Of particular importance to the technology of toughened ceramics has been

the development of high-temperature silicon carbide reinforcements. Although other

reinforcement materials are available, such as glass and carbon fiber, metal whiskers,

and alumina-based products, this work focuses on SiC-based products due to their

utilization in high-temperature applications. SiC offers a unique combination of prop-

erties such as creep resistance, low porosity, low density, high thermal conductivity

and low thermal expansion (Corman and Luthra (2005)).
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Figure 1.1: Fracture behavior of a) pure ceramic material b) fiber reinforced ceramic
c) coated fiber reinforced ceramic
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Typically, a fiber coating is applied in CMCs to prevent chemical attack of the

fiber during processing. The coating also provides a weak interface between the fiber

and the matrix which enhances the toughness and improves the failure behavior.

Boron Nitride (BN) coatings are most widely used and applied by chemical vapor

deposition (CVD). Unfortunately, BN is susceptible to degradation by contact with

molten silicon which necessitates an additional coating with Silicon Carbide or Silicon

Nitride to protect the BN-layer. An important consideration when using a BN coating

is its degradation due to oxidation in the presence of matrix cracks. Especially in

environments at high temperature with a high water vapor content in the air, as can

be found in the hot sections of gas turbines, oxidation must be considered. Typically,

a silicon-doped BN coating is applied which forms a boron silicon oxidation product

that greatly slows the oxide volatilization.

1.1.1 Manufacturing Procedures - Review

Traditionally, there are a number of different methods to manufacture ceramic

matrix composites, such as chemical vapor, liquid phase infiltration, hot press sin-

tering techniques, polymer infiltration, and pyrolysis (PIP). This thesis is focused on

silicon melt-infiltrated ceramic matrix composites (MI-CMCs). This type of CMC

consists of three major components, the reinforcing fibers, the fiber coating, and the

silicon carbide matrix. Corman et al. (2003) provides an overview of the possible

processes. Typically, the SiC fibers are first coated with the BN-based fiber-matrix

interphase and a protective overcoat, and then formed into unidirectional prepreg

sheets via wet drum winding. The prepreg sheets are then laid-out in the directions

needed, comparable to the manufacturing process of polymer matrix composites. At

this stage the matrix consist of powders which are then burned out and parts are con-

verted to free carbon which maintains the preform shape. In a final step the preform

is densified. Liquid silicon, at temperatures above its melting point of 1414◦ C, wets
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the surface of the prepreg. Capillary forces drive the liquid silicon into the porous

prepreg where it reacts with the free carbon to form a continuous silicon carbide

(SiC) phase. Commonly, some residual free silicon is left in the SiC matrix. This

process requires the porosity of the preform to be within a tight range. Large pores

simplify the infiltration process but may result in an incomplete chemical reaction

leaving higher amounts of free silicon and carbon. Pore density below a particular

limit may result in a complete reaction but could result in an incomplete infiltration

of the prepreg.

SiC Fiber 
BN-Coating 

Application 

Tape 

Laying 

Fiber 

Braiding 

Drum 

Winding 

Composite 

Layup 

Polymer 

Burnout 

Melt-

Infiltration 

Figure 1.2: Schematic representation of the melt infiltration process used for manu-
facturing SiC/SiC ceramic matrix composites

1.2 Common Failure Mechanisms in Ceramic Matrix Com-

posites

Ceramic Matrix Composites have been studied for decades. These composites are

most commonly reinforced with Silicon Carbide (SiC) fibers. Fiber coatings, such as

Carbon (C) or Boron-Nitride (Bn), are typically used to protect the fibers, to ensure

bonding, and induce ductility. Such composites usually exhibit non-linearity in the

stress-strain response before fracture due to accumulation of matrix cracks. Non-

linearity manifests in reduced Young’s modulus (E) with increasing tensile strain.

Understanding and predicting the onset of matrix cracking, especially in the vicinity

of geometrical stress risers such as holes and notches is imperative for the design of
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components. Models representing matrix cracking have been developed in the past.

Budiansky et al. (1986) studied the critical conditions for onset of widespread matrix

cracking analytically based on fracture mechanics. Marshall et al. (1985) used a stress

intensity factor based approach to analyze fracture in brittle fiber-matrix composites.

Short and long cracks were distinguished. Beyerle et al. (1992) conducted research on

mechanical characteristics of a unidirectional fiber-reinforced calcium aluminosilicate

matrix composite. They found that the model was adequate to predict initial ma-

trix cracking and the ultimate strength of the composite. However, deficiencies were

noted in the ability to predict the evolution of matrix cracks, and associated changes

in the modulus. However, comparison with experiment, especially with regard to

matrix cracking, has led to contradictory conclusions (McCartney (1987)). The ap-

parent discrepancies arise either from widely differing choices of the properties of the

composite constituents (fiber, matrix, interface), in situ properties in the composite,

or from differing assumptions about the flaw distributions in the matrix. In addi-

tion these models, which analyze failure mechanisms in isolation, are not capable of

capturing interaction among mechanisms, which is key to understanding the overall

deformation response and failure of CMC’s.

1.2.1 Common Damage Models for CMCs

Classic one dimensional models are typically based on the so-called steady state

cracking condition. In this condition a long matrix crack extends from a free edge

of a unidirectional composite. The crack bridges the fiber and is perpendicular to

the loading direction. Aveston and Kelly (1973) introduced simple ideas to predict

crack spacing and stress-strain responses in fibrous composites. The authors devel-

oped analytical solution for the stress-strain response assuming the fiber-matrix bond

remains intact after the matrix has cracked.

Commonly, damage modeling in unidirectional CMCs address fiber/matrix debonding
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and fiber sliding. Many modified shear lag theories have been reported in the liter-

ature (Evans and Zok (1994); Hutchinson and Jensen (1990); Sauder et al. (2010)).

Two characterizations of interface friction are generally used to handle the interac-

tion between the fiber/matrix during fiber-pullout: Coulomb friction and constant

friction stress models. Lissart and Lamon (1997) included a probabilistic-statistical

approach for modeling matrix and fiber damage and failure. The authors used the

two parameter Weibull equation in an attempt to recognize the statistical nature of

brittle failure in the matrix and fiber material. Charalambides and Evans (1989) in-

vestigated the mechanics of debonding of brittle-matrix composites including residual

stresses due to manufacturing processes. They found that subsequent to fiber fail-

ure some crack closure along the fiber occurs and therefore fiber-pullout affects the

mechanical properties of the composite.

1.3 Multi-Scale Modeling

The term multi-scale modeling has been widely used in the literature (Efendiev

and Hou (2009)). It can be divided into three main techniques, e.g. hierarchical,

synergistic, and concurrent. For the scope of this work multi-scale modeling is under-

stood to be the concurrent information exchange between multiple scales. In terms of

fiber reinforced composites generally two scales of interest exist. A macroscopic scale

which entails the prediction of damage of coupons, structural parts, or components

which are on the order of 1 m scale. Information on this scale, usually displacement or

strain fields, are transferred to a smaller scale (this is the RVE scale which is usually

several mm’s) through localization techniques. Material softening or degradation at

the macro scale is informed by the RVE scale, denoted as microscopic scale. At the

RVE scale, e.g. fiber-matrix scale, a number of different analytical, semi-analytical

or numerical models can be used to predict damage. Different damage models are

used to predict material behaviors. Homogenization techniques are used to update,
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e.g. stress fields or stiffness tensor, which are passed to the macroscopic scale. Many

theories have been developed over the last decade and published in review papers and

books [Kwon et al. (2008)].

Ghosh et al. (1995) introduced a multiscale finite element method using Voronoi cells

(VCFEM) to find homogenized material coefficients. Periodic boundary conditions

were used on the base cell. The mesh generation relies on the Dirichlet tessellation.

Multi-sided convex Voronoi polygons form a network to discretize a microstructural

material element. Each polygon contains a single inclusion at most. Multiple formula-

tions have been developed for, e.g. linear elastic problems Ghosh and Mukhopadhyay

(1993), micropolar thermo-elasticity problems Ghosh and Liu (1995), and elastic plas-

tic problems Moorthy et al. (1994). Bacarreza et al. ((2012) developed a progressive

damage multi-scale model for woven composites. A semi-analytical homogenization

method, equivalent to the generalized method of cells, is used to derive effective prop-

erties of the composite. The authors differentiate between matrix damage, which is

assumed to be isotropic, and damage in the yarn assumed to be anisotropic.

Non-local theories are widely used in multi-scale methodologies. Generally, homog-

enization is accomplished by solving the fine-scale boundary value problem (BVP).

Fish et al. (1999) derived a homogenization technique based on double-scale asymp-

totic expansions. The authors introduced closed-form expressions to relate local phase

fields to the macroscopic strain and damage. Fish and Yu (2002) further expanded

the theory to fatigue damage predictions of composite materials. Recently, (Zhang

et al. (2015)) have developed a two-scale model, referred to as the NCYL model for

studying fiber reinforced composites. A main advantage of this model is the use of

an analytical closed-form solution for the subscale problem which leads to a distinct

computational advantage.
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1.4 Thesis Objective and Organization

The objective of this thesis is to investigate in-plane damage and failure of lam-

inated ceramic matrix composites. Laminated CMCs exhibit large strain to failure

compared to the bulk strain to failure of the constituents. The predominant damage

mechanism that leads to strain accumulation in this type of material is microcracking

of the matrix. In this work three main objectives were addressed. These are the

development of a high temperature DIC setup, micromechanics based finite element

model, and multi-scale finite element model. The following four chapters and appen-

dices are a discussion of the achievements toward this development.

Chapter II marks the progress toward the development of a very high temperature

Digital Image Correlation (DIC) setup. Single edge notch tensile specimens are tested

in a temperature range from room temperature to 1316◦ C. Blue light illumination in

conjunction with a naturally emerging laser speckle pattern are used to solve multiple

problems generally associated with elevated temperature DIC measurements. Crack

paths and stress-strain response of these specimens are discussed in detail.

In an attempt to further understand the influence of microcracking of the matrix

material, chapter III introduces an energy based damage model. Multiple FEM mod-

els including a large number of explicitly modeled fibers are created to predict crack

paths in the microstructure under transverse tension conditions. It is shown that

sufficiently large models can be used to predict crack densities. Influences of mi-

crostructural details such as fiber packing and interface thicknesses are investigated.

Most important is the development of tools for predictions of parts and components.

FEM is well suited for this type of work. However, damage in laminated composites

is highly dependent on microstructural details. Current computational facilities do

not allow to explicitly model fibers within component level models. Chapter IV intro-

duces a concurrent multi-scale framework that is based on two finite element models.

The commercial finite element suite Abaqus is used to solve FEM equations for the
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macroscopic (coupon level) model. More advanced material models are needed to

accurately capture matrix cracking on the microstructure scale. Therefore, a second

finite element code has been implemented using Fortran and included in Abaqus’ user

material subroutines. It predicts the response of a RVE under multi-axial loading con-

ditions. An energy based damage methodology has been included in the constitutive

equations which ensures mesh objectivity within the microscale model. The combined

approach is referred to as IFEM.

At elevated temperatures SiC/SiC CMCs show a significant amount of fiber-pullout.

This phenomenon is discussed in chapter V. Two-, and three-dimensional finite ele-

ment models are used to study the mechanisms involved in the fiber-pullout process.

Discrete Cohesive Zone (DCZM) elements are used to simulate the initial bonding

behavior between the fiber and coating. Fiber pullout lengths are determined from

post experimental scanning electron microscopy (SEM). The finite element models

recognize a random fiber orientation and variations in fiber diameters. Surface to

surface contact formulation is used in order to capture frictional behaviors and inves-

tigate the influence of friction parameters.

The last chapter discusses final conclusions and gives a short introduction to future

work. A comparison is made to connect the work presented in all previous chapters

and link the different methodologies. Suggestions are given for improvements which

could be pursued in the future.
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CHAPTER II

Experimental Investigation of Ceramic Matrix

Composites

2.1 Introduction

With the demand for faster but at the same time more efficient air transportation,

new materials will have to be introduced into future propulsion systems. In an effort

to make aerospace engines more efficient, the temperatures of the turbine sections

will be raised to a level which exceeds the limit of current metallic materials. New

materials will have to be tested and validated at very high temperatures that surpass

1300◦C. New techniques that allow the observation of material behavior and damage

evolution at these elevated temperatures need to be developed. Strain measurements

using extensometers can be applied at very-high temperatures but only provide a

single value averaged over the volume of material that is local to the extensometer.

Especially for non-metallic composite materials, such as ceramic matrix composites

(Gowayed et al. (2011)), this technique will not capture the damage initiation and

will subsequently lead to inaccurate proportional limits with no meaning in terms of

damage initiation. Digital Image Correlation (DIC), principally developed by Sutton

et al. (1983), is a good tool to measure full-field displacement maps and in theory

has no limitation at very high temperatures provided the image quality and speckle
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contrast are sufficient. DIC, as used in experimental strain analysis, is an optical

method to measure deformation on an object surface by correlating images of that

surface, which contains a speckle pattern, that are supposed to represent the defor-

mation of that surface. This technique has been proven for applications at slightly

elevated temperatures but faces several issues at very high temperatures that have to

be considered in order to measure displacement fields. Black-body radiation emanat-

ing from the heated sample makes it impossible with standard lighting and camera

equipment to image the surface of the test specimen. Speckle patterns, usually in

form of paint, that are applied to the surface tends to de-bond within a short amount

of time at very-high temperatures. It also requires additional steps to be carried out

before testing and results might be error-prone due to poor adhesion between the

paint and sample. Precautions have to be in place to account for heat haze. Liu et al.

(1998) used aluminum-oxide and boron nitride ceramic coatings to create a speckle

pattern on the sample surface. The maximum temperature that was demonstrated to

achieve good DIC results was 704◦C. Novac and Zok (2011) employed a CO2 Laser to

locally heat up a test specimen. An air knife was positioned to blow across the sample

surface in an effort to minimize thermal turbulence. A speckle pattern, using alumina

or zirconia paints, was applied with an airbrush. They showed analytically that blue

light illumination and filtering systems could provide contrast at temperatures up to

1700◦C. Vest et al. (2009) showed that blue light illumination could be used for DIC

measurements up to 1000◦C. The authors measured Youngs modulus and coefficient

of thermal expansion for RR1000 samples. However, the reference image was updated

frequently during the cross-correlation which may introduce strain errors. Lyons et al.

(1996) demonstrated DIC at temperatures up to 650◦C. The specimens were heated

in a box furnace equipped with a window. Boron nitride- and aluminum oxide-based

ceramic coatings were used to create the speckle pattern. The present work describes

a simple, yet effective setup for room and high-temperature DIC measurements which
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employs the technique of blue light illumination with an appropriate bandpass filter

used in combination with a two zone furnace for accurate and stable temperature

control over a large volume of the tested sample. It is shown that this technique can

be used to detect the onset of damage, appearing as regions of high strain gradients.

The surface strain concentrations can result from interior damage that manifests as

high strain fields on the surface, or because of cracks occurring on the surface. Final

determination requires post-experiment inspections to ascertain the origin of surface

strain gradients. The experimental focus of this thesis was monotonic uni-axial ten-

sile tests on a variety of lay-ups and geometries. In this chapter, geometric effects

are studied and comparisons between room and elevated temperature are presented.

Tensile tests on single edge notch specimens were conducted to study the effects of

stress concentrations on failure mechanisms. The notched specimens give the oppor-

tunity to study crack initiation carefully since the initiation site is predetermined.

Smooth bar specimens were tested to determine failure mechanisms based purely on

material inhomogeneities. Parts of this chapter have been published in Meyer and

Waas (2015).

2.2 Experimental Method

The thermo-mechanical testing was performed on a hydraulic test frame capable

of controlling the displacement of both the bottom and top grip of the uniaxial tensile

test sample. This configuration is preferable since the specimen center, when aligned

correctly, will show less rigid body movement relative to the camera which will allow

for a lower correlation error when performing DIC on recorded images. Figure 2.1

shows the load frame and camera set-up. Hydraulic grips with 25.4mm (1 inch) wide

smooth wedges were employed and a grip pressure of 4448.2 N (1000 lbf) was used

to clamp the specimens. Aluminum mesh was used between the smooth grip surfaces

and the rough specimen surface to ensure uniform loading. Heating was accomplished
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with a 3.5 inch tall two-zone hot rail furnace with horizontal sliding action supplied

by Amteco Incorporated. A viewing port, specially manufactured for visualizing very-

high temperature surfaces was incorporated in the center of the furnace. The viewing

port consisted of an alumina housing and a window holder with a thin sapphire glass

window about 3 inches away from the specimen surface with a viewing port opening

of 25.4mm x 50.8mm. It should be mentioned that the sapphire glass window has

to be of high quality otherwise an uneven refractive index could induce errors on the

measured displacement fields. Figure 2.2 visualizes the path of the light from the

Laser to the specimen from which it reflects back to the camera. This setup ensures

easy specimen access and temperature control over a large volume due to the two

heating zones. The small window, good insulation properties of the viewing port,

and insulation of all gaps minimized turbulent air caused by temperature differences.

Box Furnace 

System 

CCD Camera with 

Blue Light Filter 

Laser Beam Expander 

Optical Fiber 

Figure 2.1: Experimental setup

Each heating zone was individually controlled using feedback from a type-R ther-

mocouple. The thermocouples were placed about 2.5 mm above and below the center

of the sample at a distance of about one tenth of a millimeter away from the spec-

13



imen surface. Heating of the sample was split into three steps. First, the sample

was heated to 538◦C (1000 F) at a ramp rate of 34◦C (60 F) per minute. A five

minute dwell time at 537.7◦C (1000 F) was included to allow the temperature to fully

stabilize. Second, the temperature was ramped up to 1093◦C (2000 F) at 28◦C (50

F) per minute followed by a five minute dwell time. Finally, the specimen was heated

to 1316◦C (2400 F) at 17◦C (30 F) per minute. To allow the specimen to be in a

thermally equilibrated state, a dwell time of fifteen minutes at 1316◦C (2400 F) fol-

lowed the last ramp-up. This heating procedure was used to ensure an even heating

of the sample. The specimen was then loaded to failure in a displacement controlled

test. The displacement rate was set to 0.16 millimeter per minute. Compressed air

in combination with air amplifiers were used during heat-up to avoid overheating of

the grips. It was turned off for the duration of the testing procedure to avoid any

air circulation around the furnace. Turbulent air caused by temperature differences

leads to local changes of the refractive index and subsequently to a higher DIC corre-

lation error. The specimen was illuminated with a blue light laser with a wavelength

of 447.5 nm. The laser has a nominal output energy of 300 mW as reported by the

supplier. An optical multimode fiber in combination with a large beam expander was

used to simplify the setup and expand the beam from initially 1 mm diameter to

approximately 40mm. The laser beam expander was mounted slightly above the lens

camera assembly. Images for digital image correlation were acquired using LaVisions

Imager E-Lite 5M with 2448 × 2048 pixel resolution. One 2x magnifying lens and a

200mm focal length Nikor lens were connected to the camera. Best depth of field for

the measurements was achieved with the F stop set to 8.
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Figure 2.2: Schematic view of the experimental setup

This camera-lens combination yielded a field of view of 12mm x 10mm providing

a final resolution of 205 pixels/mm .The camera assembly was mounted on a precision

alignment stage which allowed for easy adjustments. In order to minimize vibrations,

the camera setup was mounted on an optical table. A blue light band-pass filter, with

a center wavelength of 450 nm and a bandwidth of 80 nm, was built into the system.

Images were post-processed with LaVisions DIC correlation software DaVis. This

software is based on a Fourier-transform cross-correlation algorithm to determine the

relative displacement of sub regions of the images. Several subset sizes were tested

for the given images out of which the finial subset size of 35 pixels with a step size of

9 pixels was chosen. The proposed method will not use any artificial speckle pattern

but rather rely on the natural surface roughness (deviation from flatness) to generate

speckles. The tested samples contain a sufficiently rough surface as a result of the

manufacturing process. That is, the typical wave-length of surface roughness undu-

lations are much larger than the wave length of the illumination source. As a result,

the image of the surface on the image plane, due to diffuse reflectance at the surface,
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results in a speckle pattern due to destructive interference as schematically illustrated

in Figure 2.3. This phenomenon is well known and is described for example, in, Vest

(1979), and used by many, for example in studies that use holographic interferome-

try to measure out-of-plane displacements, Fago and Waas (1998) . Each point on

the object surface scatters some light to the observer. Due to the laser lights high

coherence, the light scattered by one object point interferes with the light scattered

by each of the other object points. The interference is observed as a random speckle

pattern of bright and dark regions. The randomness is dictated by the local surface

height of the object surface. The typical speckle size can be calculated as,

bs = 1.22
λz

D
(2.1)

where D is the diameter of the lens pupil and the image is formed at a distance z

from the lens. The wavelength of the laser light is denoted by λ. The formula shows

that the speckle size can be influenced by choosing the appropriate aperture stops

[16]. Here a lens with a focal length of 200mm and an f-stop of 8 is used resulting in

a lens pupil diameter of 25mm. The camera was placed 2m apart from the specimen

surface giving an average speckle diameter of 44 ➭m.

Figure 2.3: Diffuse reflectance on surface features larger than the wavelength of the
coherent illuminating source

Reliable DIC calculations require a suitable carrier of surface deformations. In
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the past [Chen et al. (2012); Pan et al. (2011)], researchers have used artificial high-

temperature speckle patterns that require additional work in advance of the actual

experiment. Figure 2.4 depicts the surface of a single notch SiC/SiC specimen at room

temperature and at 1316◦C (2400F) with the laser speckle technique discussed here.

No additional surface treatment was carried out. A surface pattern from the specimen

manufacturing process is noticeable. The edges of the notch were highlighted in white

for better visibility. It can be observed that images with sufficient grayscale intensity

can be obtained and no significant difference between room temperature and 1316◦C

is visible

1 mm 

Figure 2.4: a) Speckle pattern at room temperature b) speckle pattern at 1316◦C

The surface of the CMC specimens is covered with a layer of SiC matrix. The

roughness visible in Figure 2.4 is a remnant of the manufacturing process and should

not be confused with woven CMCs. Figure 2.5 shows an example of a magnified

region of Figure 2.4. A uniform speckle size is created when the laser beam interferes

with microscopic elements on the specimen surface.
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Figure 2.5: Typical speckle image on CMC surface (Average speckle diameter is
44 ➭m)

DIC systems are excellent tools for surface displacement measurements. However,

small errors in the displacement field are typically found with every DIC system.

Different methods have been used in the past to quantify the error associated with

a particular DIC system. In this work the root mean square error, as presented in

Rajan et al. (2012), is used. The RMS error can be calculated for static image pairs

as

vRMS =

√

√

√

√

1

n

n
∑

j=1

(vj)2 (2.2)

where vj is the displacement at every data point. Figure 2.6 shows the effects of tem-

perature on the RMS error. The error displayed is the average error of 10 consecutive

images taken under a zero load condition. The displacement errors obtained at room

temperature (0.0032) agrees with results found in other studies Rajan et al. (2012).

The RMS displacement error increases at elevated temperatures to approximately

0.013 pixels.
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Figure 2.6: RMS Error for laser DIC at room temperature and elevated temperature

In addition to the RMS error calculations a rigid body motion test was conducted

on a CMC specimen. The displacement rate was chosen to be 1.2 mm/min. A mil-

limeter scale was attached to the back surface of the specimen. The CMC specimen

surface covered the lower two-thirds of the field of view and the upper third was re-

served for the millimeter scale as shown in figure 2.7. DIC calculations were conducted

on the CMC surface. The calculated displacement was verified against the displace-

ment measured based on the attached scale. The comparison of both measurements

of the displacement-time response is shown in figure 2.8.

Figure 2.7: Reference image for rigid body displacement test to verify laser DIC
displacement error
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Figure 2.8: Displacement vs. time comparison of a rigid body motion test on a CMC
specimen between DIC and measured displacement

2.2.1 Laser Speckle Technique Validation

Awander et al. (2000) used a digital laser speckle correlation technique (LSCT)

to build an optical strain gage. Limitations of the DIC technique have been studied

in the past. Bornert et al. (2008) investigated the performance and has provided

practical rules for users. It was shown that this technique could be used to resolve

strains on the order of 20 microstrains. The range of values for Youngs modulus for

6061-T6 aluminum are well established and tabulated for a wide temperature range.

Hence, the measurement of Youngs modulus for this material was chosen in order

to establish the validity of the proposed method. A single strain gage was attached

on the back surface of a room temperature smooth bar sample to record the strain

component in the load direction (ǫyy). The optical setup was focused on the same

area on the front surface. The laser DIC strain values in load direction were averaged

over a small area comparable to the area of the strain gage. In addition, a second
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test was carried out with a commonly used paint speckle pattern. Figure 2.9 shows

the comparison between the three strain measurements. Youngs modulus is extracted

from the stress-strain curve and reported in Table 2.1. Both speckle techniques are

in excellent agreement and match with the well-established strain gauge stress-strain

curve.

Figure 2.9: Stress - strain results (strain gage, DIC) on 6061 alluminum at room
temperature )

Table 2.1: Comparison for Young’s modulus of aluminum at room temperature

Method Young’s Modulus E [GPa]

Literature 68.6

Strain Gage 67.9

Laser Speckle DIC 68.1

Paint Speckle DIC 68.1

To establish that the proposed method is well suited for elevated temperature,
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Youngs modulus was measured for 6061-T6 Aluminum at 500 Fahrenheit (260◦C).

Artificial speckle patterns for high temperature application often suffer from degrada-

tion, such as chipping or oxidation [Grant et al. (2009); Sutton et al. (2009)], within

a short period of time and the application is time consuming. Figure 2.10 shows the

stress-strain curve for the tested aluminum sample and Youngs modulus for this test

is reported in table 2.2. The measured value is in agreement with values reported in

the literature (Boyer (2002)).

Figure 2.10: Stress - strain response of 6061 alluminum at 500 F measured with laser
DIC setup

Table 2.2: Young’s modulus for aluminum at 500 F

Method Young’s Modulus E [GPa]

Literature 68.6

Strain Gage 67.9
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2.3 Ambient Temperature Testing

Although CMCs are intended for very high temperatures in excess of 1316◦C,

initial studies were conducted at room temperature in order to establish baseline

data. The experimental setup was identical to the high temperature setup with the

exception that the furnace was removed. Single edge notch monotonic tensile tests

were conducted on the Shore Western load frame displayed in figure 2.1. A blue light

laser was used for illumination of the sample and speckle pattern creation. The blue

light bandpass filter was built in the camera-lens setup. The CMC test samples were

gripped directly between the hydraulic wedge grips. All tests were conducted with a

loading rate of 0.15mm (0.0001) per minute. In the following discussions a crack is

defined as a visible local increase in strain as seen in the DIC data.

2.3.1 [0/90]2s Laminate

Dog-bone shaped single edge notch cross-ply [0/90]2S CMC samples were tested at

room-temperature. The specimens were 152.4mm (6 in) in length with a grip section

width of 12.7mm (0.5 in). The gage section width was tapered down to 10.16mm (0.4

in) with a gage section length of 76.2mm (3 in) as shown in Figure 2.11. The tested

notch geometry is given in Figure 2.12. The notch tip consisted of a single curved

surface with a radius of 0.03mm (0.012 in) and a notch depth of 0.91mm (0.036 in).

Figure 2.11: CMC tensile sample dimensions

All tested samples had a thickness of 2.03mm (0.08). The surface fiber direction

was lined up with the tensile direction. One inch wide hydraulic wedge grips with

23



serrated surfaces were used to clamp the gauge section of the specimens. A grip

pressure of 800 psi was used to ensure slip-free displacement conditions while not

introducing any damage to the specimen. Specimen designations consist of four main

groups, e.g. 1999-01-0001-TD9. The second last group stands for the panel number

and the designation TD implies a tensile dogbone with the corresponding specimen

number.

R0.03048 mm 

0.91 mm 

0.61 mm 

x 

y 

X0 X1 

Figure 2.12: Schematic representation of the single edge notch dimensions

Strain measurements based on the DIC results are inherently difficult on materials

which experience small surface displacements as is the case for CMCs. The correlation

error of the system was measured by taking static consecutive images of a CMC

specimen without applied loading. The images were then correlated and displacement

and strain fields calculated. In theory, all surface displacement fields are equal to zero.

However, 2D-DIC is subject to multiple errors that originate from various sources, e.g.

vibrations, non-perpendicular camera alignment, etc. (Bruck et al. (1989); Pankow

et al. (2010); Vendroux and Knauss (1998)). The noise level of the used system was

determined to be on the order of 200µǫ. The expected strain for SiC/SiC CMCs is

in the range of 1000 − 2000µǫ resulting in a noise/strain ratio of 1
5
− 1

10
. The used
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furnace did not permit the use of an extensometer to measure surface strains. Selected

stress-strain responses based on DIC strain measurements are shown in figure 2.41.

Figure 2.14 shows the DIC results of three experiments with the corresponding crack

propagation carried out on [0/90]2s laminates. Specimens TD6 and TD7 failed at a

maximum net-section stress of 286MPa and 289MPa, respectively. Specimen TD1

failed prematurely at 251MPa. The limited number of specimens does not allow for a

statistical analysis at this point. The crack propagation in all three tests was similar.

A single crack initiated at the notch and progressively propagated outward. The field

of view (FOV) was not sufficient enough for a detailed analysis of the crack initiation

around the notch. Typically, two initial cracks are observed in close proximity of the

notch when small fields of view are used (Tracy (2014)). Both cracks develop initially

until one propagates faster and overtakes the other one. The faster growing crack

usually determines the ultimate fracture path. The initial cracks usually appear to

be aligned with the direction that is perpendicular to the the maximum principle

strain directions.

The [0/90]2s laminates display a lower crack density on the surface, as visualized with

DIC, compared to the [90/0]2s laminates discussed in section 2.3.2. It is expected

that the density of transverse cracks in the 90-layers is higher compared to 0-layers.

Hence more cracks will be visible on specimens with the weaker 90-layer on the outside

surface.
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Figure 2.13: Stress-displacement response of [0/90]2s CMC tensile tests at ambient
temperature; A = 100MPa, B = 150MPa, C = 225MPa, D = Ultimate Stress
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Figure 2.14: DIC full-field surface strain maps of cross-ply CMC tensile tests at
room-temperature
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2.3.2 [90/0]2s Laminate

In this section results for the eight layer cross-ply [90/0]2s laminates tested at

ambient temperature are reported. Three tests were carried out and the stress-

displacement response is shown in figure 2.15. These laminates exhibit a more diverse

crack propagation compared to the [0/90]2s lay-up as shown in figure 2.16. No dam-

age was observed at 100MPa corresponding to point A in figure 2.15. Two strain

concentrations can be seen at point B corresponding to 150MPa slightly off-set from

the notch tip in all three experiments. This matches well with the DIC results of

the [0/90]2s-specimens. However, multiple cracks developed in these specimens be-

fore the ultimate strength is reached. Crack initiation and a higher crack density

are expected to be found in the 90-layers of the composite as will be confirmed in

section III with a micro-scale finite element approach. The field of view for specimen

2098-01-6100-TD4 was reduced to half the size compared to the other two tests. This

was done to capture more details of the crack initiation in the vicinity of the notch.

At this magnification, three cracks can be identified around the notch tip. Two cracks

span the entire field of view. A fourth crack is evident approximately 2mm to the

left of the center line of the notch. This specimen fractured at a lower net-section

stress of 245MPa compared to the other two specimens. Specimen 2098-01-6102-TD4

and 2098-01-6102-TD5 exhibit a slight non-linear stress response before fracturing at

281MPa and 277MPa, respectively. The onset of non-linearity corresponds to the

occurrence of additional cracks to the left of the notch center line, indicated at point

C of figure 2.15. In order for new cracks to appear away from an existing crack, fibers

in the zero layers have to bridge the existing crack and hence transfer load across

the crack surface. Further investigation is needed to clarify the exact location of the

observed cracks with respect to the specimen thickness. The final fracture surface of

all tested specimens was found to be perpendicular to the loading direction in the

plane of the notch. Point D in figure 2.16 shows the last image before final fracture.
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Figure 2.15: Stress-displacement response of [90/0]2s CMC tensile tests at ambient
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Figure 2.16: DIC full-field surface strain maps of [90/0]s CMC tensile tests at room-
temperature
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2.3.3 [+45/-45]2s Laminate

In addition to the cross-ply laminates discussed in sections 2.3.1 and 2.3.2, three

experiments at ambient temperature on 8-layer [+45/-45]2s laminates were carried

out. The damage propagation is depicted in figure 2.18. The field of view of the third

test was reduced to half the size of the previous two experiments in order to achieve a

higher resolution of the crack initiation in the vicinity of the notch. Crack initiation is

observed at the notch tip. This behavior is similar to the damage initiation exhibited

by the [0/90]2s and [90/0]2s laminates. However, strain concentrations occur at the

notch tip as depicted at point B in figure 2.17. A single crack forms perpendicular to

the loading direction (x-direction) and spans the entire width before additional cracks

can be observed on both sides of the existing crack. Point C in figure 2.17 represents

the damage stage before any non-linear stress response can be observed. Point C cor-

responds to a net-section stress of 215MPa for specimen 2098-01-1345-TD5, 200MPa

for specimen 2098-01-1345-TD2 and 195MPa for specimen 1999-01-0001-TD1. In

contrast to the [0/90]2s composite specimens the [+45/-45]2s specimens exhibit a

crack-band type behavior and extended non-linear stress-response. Point D in fig-

ure 2.17 represents the last captured image (ultimate strength) before the specimens

fractured catastrophically. Additional cracks have formed in between existing cracks.

This observation can be explained by fibers bridging matrix crack surfaces and thus

transferring load across the crack. The crack density and extend of non-linear stress

response is higher compared to the [90/0]2s specimens. The final fracture surface of

all three specimens extended from the notch tip perpendicular (in y-direction) across

the width of the sample. Post-failure analysis of the fracture surface revealed no

fiber-pull out was present. It was found that the crack was tilted by approximately

10 degrees with respect to the z-axis of the specimen(through thickness direction).

29



0

50

100

150

200

250

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

S
tr

es
s 

[M
P

a
] 

Cross-Head Displacement [mm] 

2098-01-1345-TD5

2098-01-1345-TD2

2098-01-1344-TD1A 

B 

D = Ultimate Stress 

C 
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Figure 2.18: DIC full-field surface strain maps of [+45/-45]s CMC tensile tests at
room-temperature
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2.4 Elevated Temperature Testing

Monotonic tensile tests were conducted on Ceramic-Matrix-Composite (CMC)

specimens,Corman and Luthra (2005), with the following dimensions at 1093◦C (2000

F), 1204◦C (2200 F), and 1316◦C (2400 F): total length of 152.4mm (6), gage length

of 76.2mm (3), gage width of 10.16mm (0.4), and a thickness of 2.032mm (0.08). A

notch with a radius of 0.3048mm (0.012) and a depth of 0.9144mm (0.036) was cut on

one side. The notch corresponded to a stress concentration factor of 3.6, as computed

with a three dimensional linear elastic homogenous finite element simulation. The

experiments were conducted in a displacement controlled mode. The bottom grip

was displaced at a constant rate of 0.15mm (0.0001) per minute. The grip section

of the specimen and an additional 12.7mm (0.5) were outside the furnace. Two

thermocouples, as described in section 2.2, were used to ensure a constant temperature

in the vicinity of the notch. After positioning the equipment in place and completing

the heating cycle, the temperature of the sample was equilibrated over a period of

15 minutes. Subsequently, the bottom grip was closed. It had been kept in the

open position during the heating cycle to avoid loading of the sample due to thermal

expansion. All air amplifiers, which were used for grip cooling during heat-up cycle,

were turned off in order to minimize air movement in front of the furnace, in an effort

to reduce the occurrence of schlieren (Settles (2001)). Light deviations (differences in

the optical pathlength) caused by schlieren in the line of sight between the furnace

and camera would increase the error of the DIC calculation.

In order to study the effects of temperature on the elastic and fracture properties

three tests on single edge notch tensile specimens ([0/90]2s, [90/0]2s, [+45/ − 45]2s)

were conducted at 1093◦C (2000 F), 1204◦C (2200 F), and 1316◦C (2400 F) each.

The specimen and notch dimensions were equal to those discussed in chapter 2.3.1.
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2.4.1 [0/90]2s Laminate Tested at 1093◦C

Three single edge notch [0/90]2s CMC laminates were subjected to monotonic ten-

sile loading at 1093◦C (2000 F). Figure 2.20 displays the crack propagation at four

stress levels. Point A represents a net-section stress of 100MPa, point B = 150MPa,

point C = 250MPa for specimens 1999-01-0001-TD2 & 1999-01-0001-TD4. Point C

= 225MPa for specimen 1999-01-0001-TD5 due to premature fracture of this sample

at 236MPa. The maximum load as well as the crack path are comparable to the room

temperature tests. A detailed discussion of the temperature dependence on the ulti-

mate strength is given in the conclusions section (chapter 2.5). Specimens TD2 and

TD4 failed at a net-section stress of 286MPa and 291MPa, respectively. In addition,

both samples showed extensive fiber-pullout in a post-fracture analysis of the crack

surface. Specimen 1999-01-0001-TD5 failed prematurely, compared to the other two

samples, at 236MPa. The post failure observation of the crack surface of this sample

did not reveal any evidence of fiber pull-out. This phenomenon will be discussed

further in chapter 5.2. Damage evolution, as observed by the DIC strain contour

plots shown in figure 2.20, is comparable in all three specimens. Initial damage is

visible slightly offset from the notch tip at a stress of 150MPa (Point B). Specimen

1999-01-0001-TD2 and 1999-01-0001-TD4 developed a crack that spans the width of

the sample before catastrophic fracture occured. It is assumed that a macroscopic

matrix crack develops and fibers are bridging the crack surfaces and transfer load

through the sample.

Due to the small number of specimens, no statistical analysis can be conducted. It

is assumed that the first two tests represent the mean failure load for this particu-

lar temperature and specimen geometry. However, test results of a minimum of 15

samples is suggested in order to establish a value for the standard deviation.
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Figure 2.19: Stress-displacement response of [0/90]2s CMC tensile tests at 1093◦C
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Figure 2.20: DIC Results of [0/90]2s CMC tensile tests at 1093◦C (2000 F)

33



2.4.2 [0/90]2s Laminate Tested at 1204◦C

Figure 2.22 compares the damage evolution of three [0/90]2s specimens tested

at 1204◦C (2200 F). Point A shows the axial strain field at a stress of 100MPa.

Strain localization indicating damage is not observed in the vicinity of the notch.

At a stress of 150MPa specimens 1999-01-0001-TD11 and 1999-01-0001-TD10 have

a clear indication of localized damage at the notch tip. No damage can be observed

in the DIC results for specimen 1999-01-0001-TD11 at this load. All three specimens

exhibit high strains at the notch tip at a stress level of 200MPa. Damage appears

to be more localized in specimen 1999-01-0001-TD11. The width, expansion in x-

direction, of the strain localization in specimen 1999-01-0001-TD3 is larger. This

might be an indication of two separate macroscopic cracks evolving simultaneously.

Further indication of this phenomenon can be seen in the strain contour plot at point

D. It appears that two cracks originally initiated slightly off-set of the notch tip and

joined approximately 3.4mm in y-direction away from the notch tip. Specimen 1999-

01-0001-TD11 exhibited the smallest ultimate strength of 230MPa. It also showed

the shortest visible crack length of all three tested specimens at the ultimate strength.

The scatter of the three tested specimens was small compared to the series of test

conducted at room temperature and 1093◦C. Further discussion of the reduction in

ultimate strength is given in the conclusion section.

Post-fracture investigation of the fracture surface revealed a large amount of fiber-

pullout in all three specimens. This will be further discussed in chapter V.
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Figure 2.21: Stress-displacement response of [0/90]2s CMC tensile tests at 1204◦C
(2200 F); A = 100MPa, B = 150MPa, C = Ultimate Stress
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Figure 2.22: DIC Results of [0/90]2s CMC tensile tests at 1204◦C (2200 F)
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2.4.3 [0/90]2s Laminate Tested at 1316◦C

Experimental results of three single edge notch specimens tested at 1316◦C (2400

F) are presented in figure 2.24. The ultimate crack path and ultimate load are al-

most identical to the results found at 1204◦C (2200 F). However, the observable crack

extension in y-direction just before fracture, point D, is shorter compared with the

results at ambient temperature, 1093◦C, and 1204◦C. Initial damage is observable

at point A (100MPa) for specimens 1999-01-0001-TD9 and 1999-01-0003-TD9. No

significant crack growth was observed at point C of figure 2.24 (C = 225MPa for spec-

imen 1999-01-0001-TD9 and C = 180MPa for specimens 1999-01-0003-TD9 & 2098-

01-6100-TD1,). The average ultimate strength of the three specimens was decreased

compared with measurements at 1204◦C. Specimen 1999-01-0001-TD9 sustained a

significantly higher ultimate strength of 240MPa, 32MPa higher, when compared

with specimen 1999-01-0003-TD9 and 27MPa above the ultimate strength sustained

by specimen 1999-01-0001-TD8.

Post-failure investigation under a light microscope revealed that fiber pull-out was

present in two specimens in the damage evolution process. No fiber-pullout was ob-

served for specimen 1999-01-0001-TD8. Initial steps toward a deeper understanding

of the influence of fiber-pullout on the stress-strain response of CMCs is discussed in

chapter V.
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Figure 2.23: Stress-displacement response of [0/90]2s CMC tensile tests at 1316◦C
(2400 F); A = 100MPa, B = 150MPa, C = 225MPa for specimen 1999-01-0001-
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Figure 2.24: DIC Results of [0/90]2s CMC tensile tests at 1316◦C (2400 F)
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2.4.4 [90/0]2s Laminate Tested at 1093◦C

Two [90/0]2s composite samples were tested at a temperature of 1093◦C. Lon-

gitudinal strain (ǫxx) maps depict the damage development for both tests at four

stress levels in figure 2.26. A higher magnification of 2x was used during the second

experiment (specimen 2098-01-6101-TD3) in order to resolve the strain field in the

vicinity of the notch in more detail. Both specimens did not show signs of damage

at a net-section stress of 100MPa, corresponding to point A in figure 2.25. A strain

concentration at the notch tip is observable on specimen 2098-01-6101-TD3 at a net-

section stress of 150MPa (point B). Specimen 2098-01-6100-TD2 did not show signs

of damage at this stress level. A single crack can be observed on both specimens at

point C corresponding to a stress of 200MPa. Specimen 2098-01-6100-TD2 fractured

at a net-section stress of 221MPa. Specimen 2098-01-6101-TD3 failed catastroph-

ically at 233MPa. The longitudinal strain fields just before fracture are shown at

point D in figure 2.26. In contrast to the specimens tested at ambient temperature

both samples tested at 1093◦C showed only a single crack at the ultimate strength.

The crack in both samples developed at an angle of approximately 5◦ to the y-axis.

The difference in damage and fracture behavior of the elevated temperature speci-

mens is expected to be influenced by the degradation of the fiber coating material. It

is expected that the elastic stiffness has reduced significantly, limiting the ability of

the fiber coating to transfer shear stresses from the fiber to the matrix. As a result,

the stress level in the matrix material will not reach critical values away from the

notch and existing crack. Further research is required to examine the temperature

dependent elastic and fracture properties of the fiber coating material. Post-failure

examination of the fracture surfaces did not show fiber-pullout at this temperature.
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Figure 2.25: Stress-displacement response of [90/0]2s CMC tensile tests at 1093◦C
(2000 F); A = 100MPa, B = 150MPa, C = 200MPa, D = Ultimate Stress
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Figure 2.26: DIC full-field strain maps of [90/0]2s CMC tensile tests at 1093◦C (2000
F)
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2.4.5 [90/0]2s Laminate Tested at 1204◦C

Two [90/0]2s cross-ply specimens were tested at 1204◦C (2000 F). Figure 2.28

shows the longitudinal strain field, ǫxx. The test setup for specimen 2098-01-6100-

TD5 was extended by an additional 2x magnifying lens compared to the setup used

for specimen 2098-01-6101-TD2. This yielded a smaller field of view and hence a

higher resolution of the strain field of the notch region. As was observed in previous

experiments on the same composite lay-up at lower temperatures, damage is not

observable at a net-section stress of 100MPa. First indications of strain concentration

are visible at point B of figure 2.28 corresponding to a stress level of 150MPa. A

single crack is present at a stress level of 200MPa. This is consistent with the findings

discussed in section 2.4.4. The damage mode at elevated temperature changes from a

crack-band type behavior at room temperature to the development of a single fracture

site at elevated temperatures above 1093◦C. Further experimental studies should

be carried out at temperatures below 1093◦C to determine the critical temperature

range at which a shift in the damage mode can be observed. Crack propagation in

both tested specimens occurred at an angle of 4◦ and 5◦ with respect to the y-axis,

respectively. This is consistent with the specimens tested at 1093◦C. The crack

observed in specimen 2098-01-6100-TD5 appears to turn back to a perpendicular

growth path with respect to the loading axis (x-axis). Images D in figure 2.28 show

the strain field at the respective ultimate strength. Specimen 2098-01-6101-TD2

fractured at 208MPa, 15MPa lower than the fracture stress of 223MPa of specimen

2098-01-6100-TD5. No non-linear stress response was observed which is consistent

with the lack of toughening due to distributed damage. This suggests that the fibers

and matrix are carrying load as separate entities without a composite action. Post-

experiment examination of the fracture surfaces did not reveal any signs of fiber-

pullout supporting the finding that there is little to no load transfer through the BN

coating.
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Figure 2.27: Stress-displacement response of [90/0]2s CMC tensile tests at 1204◦C
(2200 F); A = 100MPa, B = 150MPa, C = 200MPa, D = Ultimate Stress
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Figure 2.28: DIC full-field strain maps of [90/0]2s CMC tensile tests at 1204◦C (2200
F)
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2.4.6 [90/0]2s Laminate Tested at 1316◦C

Three [90/0]2s specimens were tested at 1316◦C, the maximum temperature used

in this series of experiments. As before, two tests were conducted with a camera-

lens setup that yielded a field of view (fov) of approximately 12mm x 10mm. An

additional 2x magnifying lens was added to the optical setup before conducting the

third experiment. This yielded a field of view of approximately 6mm x 6mm. DIC

results at four stress levels are shown in figure 2.30 for the three tested specimens.

Point A represents the strain field at a net-section stress of 100MPa. A strain local-

ization at the notch tip is visible on specimen 2098-01-6101-TD4 at this stress state.

However, no strain localization is visible for both specimen 2098-01-6100-TD3 and

2098-01-6100-TD1, respectively. Subsequently, the strain concentration at the notch

tip of specimen 2098-01-6101-TD4 remains unchanged up to a net-section stress of

190MPa. At this stress signs of localized damage are noticeable on all specimens.

The extend and location of damage is consistent in all tests. However, crack growth

continues in specimen 2098-01-6101-TD4 as can be seen at point D in figure 2.30.

At this point the crack extends approximately 9mm in length across the specimen

width. The crack is angled with respect to the loading axis comparable to the angle

observed at test temperatures of 1093◦C and 1204◦C. This specimen exhibits the

highest ultimate strength out of the three tested samples of 211MPa. Progressive

crack growth cannot be observed and the crack length remains constrained to the

vicinity of the notch in specimens 2098-01-6100-TD3 and 2098-01-6100-TD1, respec-

tively. Specimen 2098-01-6100-TD1 exhibits the lowest stress at fracture of 194MPa,

17MPa lower compared to the first tested specimen. A comparison of all fracture

stresses at all temperatures and laminates is given in the conclusion section of this

chapter.
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Figure 2.29: Stress-displacement response of [90/0]2s CMC tensile tests at 1316◦C
(2400 F); A = 100MPa, B = 150MPa, C = 190MPa, D = Ultimate Stress
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Figure 2.30: DIC full-field strain maps of [90/0]2s CMC tensile tests at 1316◦C (2400
F)
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2.4.7 [+45/− 45]2s Laminate Tested at 1093◦C

In addition to the experimental study at elevated temperature on cross-ply speci-

mens a test series of eight layer off-axis [+45/− 45]2s specimens was also conducted.

Three samples were exposed to a temperature of 1093◦C and then subsequently sub-

jected to monotonic tensile load. Figure 2.32 shows the development of the axial strain

field, ǫxx, with increasing load for all three specimens. The field of view for speci-

mens 2098-01-1345-TD1 and 2098-01-1345-TD4 was approximately 12mm x 10mm

whereas an additional magnifying lens was added to the optical setup for specimen

2098-01-1344-TD2. The field of view was reduced to 6mm x 6mm whilst maintain-

ing a resolution of 5 megapixels. The stress-displacement response is shown in figure

2.31. Four points of interest are marked and the corresponding axial strain contour

plots are shown in figure 2.32. Specimens 2098-01-1345-TD1 and 2098-01-1345-TD4

exhibit strain localization at point B (150MPa net-section stress). The crack tip

extends 1.5mm in y-direction from the notch tip. No damage is recognizable at this

stress state in specimen 2098-01-1344-TD2. At a net-section stress of 185MPa the

crack tip in specimen 2098-01-1345-TD1 has propagated approximately 5mm outward

from the notch tip. At the same stress level the cracks in specimens 2098-01-1345-

TD4 and 2098-01-1344-TD2 had propagated through the entire width of the sample.

At the ultimate load, specimen 2098-01-1345-TD4 shows signs of additional cracks to

the left of the existing center crack. At point D, e.g. ultimate strength, the center

crack extends perpendicular to the loading direction through the entire width of all

three samples.

The higher resolution of the third specimen reveals that damage appears to have

initiated at the notch tip. This differs from the observation of damage initiation in

both [0/90]2s and [90/0]2s specimens. This phenomenon will be verified with a finite

element prediction in chapter IV that is based on modeling microstructural features

and includes an energy based damage methodology.
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Figure 2.31: Stress-displacement response of [+45/-45]2s CMC tensile tests at 1093◦C
(2000 F); A = 100MPa, B = 150MPa, C = 185MPa, D = Ultimate Stress
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Figure 2.32: DIC full-field strain maps of [+45/-45]2s CMC tensile tests at 1093◦C
(2000 F)
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2.4.8 [+45/− 45]2s Laminate Tested at 1204◦C

A series of three tests were performed to study the crack propagation of [+45/−

45]2s laminate at an elevated temperature of 1204◦C (2200 F). The field of view

for the first two specimens was approximately 12mm x 10mm. The third test was

conducted with an additional 2x magnifying lens built into the optical setup. As

was observed at a temperature of 1093◦C no damage or strain localization could

be seen at a net-section stress of 100MPa, point A in figure 2.34. Damage was

visible at point B in all three samples at a stress level of 150MPa. The single crack in

sample 2098-01-1345-TD3 extended the furthest with a length of approximately 7mm.

The crack length measured 2.2mm and 0.9mm in sample 2098-01-1327-TD5 and in

sample 2098-01-1327-TD2, respectively. The strain contour plot of the last recorded

image before catastrophic fracture is shown at point D in figure 2.34. The crack

length in specimens 2098-01-1345-TD3 measured 8.9mm. Specimen 2098-01-1327-

TD5 exhibited a smaller crack length of 3.2mm. The crack length in specimen 2098-

01-1327-TD2 at the ultimate load could not be determined due to the crack extending

past the field of view. At this temperature, the crack path was perpendicular to the

loading direction as was seen in previous tests at 1093◦C for the same composite

lay-up. The average ultimate strength of the three tested samples was 183.6MPa,

13MPa lower compared to the average stress measured at 1093◦C. A more detailed

discussion on the ultimate strength evolution with respect to temperature is given in

the conclusion section of this chapter (2.5).

Post fracture examination of the crack surface under a light microscope revealed no

signs of fiber-pullout.
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Figure 2.33: Stress-displacement response of [+45/-45]2s CMC tensile tests at 1204◦C
(2200 F); A = 100MPa, B = 150MPa, C = 175MPa, D = Ultimate Stress
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Figure 2.34: DIC full-field strain maps of [+45/-45]2s CMC tensile tests at 1204◦C
(2200 F)
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2.4.9 [+45/− 45]2s Laminate Tested at 1316◦C

In this chapter the stress response and damage propagation of [+45/− 45]2s lam-

inates at 1316◦C subjected to monotonic tensile loading are discussed. The opti-

cal setup for the third test (specimen 2098-01-1327-TD1) was changed to achieve a

smaller field of view compared to the other two specimens. An additional 2x mag-

nifying lens was added to achieve a field of view of 6mm x 6mm. The axial strain

contour plots, ǫxx, are given in figure 2.36. At point A, representing a net-section

stress of 100MPa, no damage was observable. The damage evolution in specimens

2098-01-1327-TD4 and 2098-01-1327-TD1 was comparable to the crack propagation of

the samples tested at 1204◦C and discussed in section 2.4.8. Specimen 2098-01-1327-

TD3 sustained the highest fracture stress of 175MPa. Crack initiation was detected

at 132MPa net-section stress. The crack advanced instantaneously to a length of

3.1mm and remained constant up to the ultimate strength. Specimen 2098-01-1327-

TD1 exhibited the lowest ultimate strength of 164MPa. The strain contour plot at

point C in figure 2.35 shows the crack advancement at a stress of C = 170MPa for

specimens 2098-01-1327- TD3 and 2098-01-1327-TD4 and C = 160MPa for specimen

2098-01-1327-TD1. The crack in specimen 2098-01-1327-TD1 extends past the field

of view and appeared instantaneously at a stress of 140MPa. Overall, crack evolution

growth speeds appear to be increased at this temperature. More specimens should

be tested in the future to verify this finding. The fracture surfaces of all three speci-

mens were found to be perpendicular to the loading direction. The average ultimate

strength was calculated as 170MPa. It was lower compared to the average stress of

the experiments conducted at 1204◦C.

Post fracture examination of the crack surface under a light microscope revealed no

sign of fiber-pullout.
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Figure 2.35: Stress-displacement response of [+45/-45]2s CMC tensile tests at 1316◦C
(2400 F); A = 100MPa, B = 150MPa, C = 170MPa for specimens 2098-01-1327-
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Figure 2.36: DIC full-field strain maps of [+45/-45]2s CMC tensile tests at 1316◦C
(2400 F)
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2.5 Conclusions

An experimental setup for monotonic tensile tests at ambient and elevated tem-

perature was discussed in this chapter. A low intensity blue light laser in combination

with a blue light filter was used to illuminate the specimen surface and create a non-

contact speckle pattern. This setup results in reduced setup time, elimination of the

most common problems associated with high temperature DIC, and increased fidelity.

Single edge notch CMC specimens with three composite lay-ups ([0/90]2s, [90/0]2s,

[+45/ − 45]2s) were tested at various temperatures. Figure 2.37 gives an overview

of the ultimate net-section stress sustained by the [0/90]2s specimens at the tested

temperatures. A minimal reduction in the average stress was calculated between

ambient temperature (278MPa) and 1093◦C (271MPa). However, the difference lies

within the range of scatter. A significant decrease in sustained net-section stress was

observed between 1093◦C (2000 F) and 1204◦C (2200 F), from 271MPa to 233MPa.

The scatter of the three tested specimens at 1204◦C was smaller compared with the

test series at other temperatures. A further average ultimate strength reduction to

220MPa was observed at a test temperature of 1316◦C.
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Figure 2.37: Comparison of ultimate net-section stress for [0/90]2s laminates
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Future research is required to investigate the physical and chemical changes oc-

curring at the material level that leads to an explanation of the strength reduction

between 1093◦C and 1204◦C. It is assumed that the interface material (BN) response

plays a significant role. It should be noted that one specimen each at room tem-

perature and 1093◦C failed at a much lower stress compared to the two other tests,

carried out under nominally identical conditions. However, due to limited number of

available specimens no statistical analysis can be provided in this study.
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Figure 2.38: Comparison of ultimate net-section strength for [90/0]2s laminates

A clear strength reduction between the ambient temperature experiments and

elevated temperature tests is visible in the experimental results of the [90/0]2s lami-

nates, as shown in figure 2.38. The average ultimate strength reduces from 267MPa

at room temperature to 227MPa at 1093◦C. The average stress was calculated as

215MPa and 204MPa at a temperature of 1204◦C and 1316◦C, respectively. How-

ever, the strength variation between the elevated temperature experiments falls within

the range of scatter.

Figure 2.39 shows the ultimate strength of all experiments conducted on [+45/−45]2s

specimens. The average ultimate strength reduced from 220MPa at room temper-
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ature to 196MPa at 1093◦C. A further reduction to an average stress level was

observed from 183MPa to 169MPa at 1204◦C and 1316◦C respectively. The trend

seems to indicate a reduction of strength with increased temperature. However, as

discussed before the variation of the elevated temperature experiments fall within the

range of scatter. More experimental results at each temperature are required.
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Figure 2.39: Comparison of ultimate net-section strength for [+45/−45]2s laminates

A comparison of the average strength of each composite lay-up at all tested tem-

peratures is given in figure 2.40. Each bar represents 3 experiments with the exception

of two tests with [90/0]2s specimens where only two experiments were conducted at

1093◦C and 1204◦C. Error bars indicate the scatter of each test series. At room

temperature, the average stress for both [0/90]2s and [90/0]2s laminates match per-

fectly. The stress was calculated as 278MPa and 276MPa, respectively. However

the strength of the [90/0]2s laminates decreased to 227MPa at 1093◦C whereas the

strength of the [0/90]2s laminates remained almost unchanged at 271MPa. A drop

was noticeable for the [0/90]2s laminates between 1093◦C and 1204◦C from 271MPa

to 233MPa. The results showed a minimal reduction of the average ultimate strength

at 1316◦C to 220MPa.
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The lowest average ultimate strength at room temperature of 220MPa was measured

for the [+45/−45]2s laminates. It reduced to 196MPa at 1093◦C, 183MPa at 1204◦C,

and 169MPa at 1316◦C.
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Figure 2.40: Comparison of the average ultimate net-section stress at all temperatures
for all tested laminates

DIC results of the [90/0]2s and [+45/ − 45]2s laminates showed the formation of

crack bands at ambient temperature. However, at elevated temperature only single

cracks were observed. In order for crack bands to form, the load that is carried across

a crack surface by the fibers needs to be transferred back into the matrix material.

In theory this is achieved through shear stresses along the fiber-matrix interface.

However, it is likely that the fiber coating material degrades at elevated temperatures

and is therefore unable to carry these loads. This phenomenon is likely causing a lack

of load transfer from the fibers back into the matrix away from the existing crack

surface. The stress level in the matrix does not reach critical values and therefore no

new damage sites occur.

DIC results at all tested temperatures revealed that damage of the CMC speci-

mens occurred progressively. Initially, strain concentrations can be observed in the

vicinity of the notch with further propagation outward until catastrophic fracture of

53



the sample. This behavior is beneficial for the design of components as no instanta-

neous catastrophic failure occurs. Damage can be detected before the load carrying

capability of a component vanishes. Tests with a reduced field of view showed that

for the tested notch geometry two cracks occur slightly off-set of the notch tip for the

cross-ply specimens. Finite element simulations as further discussed in chapter IV

show that the crack direction appears to be aligned perpendicular to the maximum

principle strain direction. The cracks turn perpendicular to the loading direction

within a characteristic distance away from the notch. Ultimately, one single crack

overtakes the other one which then defines the final fracture path. It is likely that

damage initiates at the matrix rich regions between the inner 90◦ plies as shown in

Figure 2.42. Upon increased loading these cracks increase in size and spread into the

adjacent 0◦ plies. This theory is supported by the numerical predictions discussed

in chapter III. Off-axis [+45/ − 45]2s specimens exhibited a single crack originating

from the notch tip.

Average Strain 

1mm 

x 

y 

Figure 2.41: Stress-strain response for cross-ply specimens at various temperatures

Selected stress-strain curves at various temperatures of the cross-ply laminates are

shown in Figure 2.41. Due to the elevated noise level at temperatures above 1204◦C

strain measurements based on DIC can contain large outliers.
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Table 2.3: Comparison for Young’s modulus of [0/90]2s specimens at room tempera-
ture, 1204◦C, 11316◦C

Room Temperature 1204◦C 1316◦C

Young’s Modulus [MPa] 248.3 231.1 204.6

These outliers can be filtered out in most cases and valuable strain data can be

computed. CMC materials have the advantage of retaining a high elastic modulus

at very high temperatures. Young’s modulus calculated from the stress-strain data

is shown in figure 2.41 and is given in table 2.3. A slight material softening can

be observed with Young’s modulus ranging from 290MPa at room temperature to

210MPa at 1316◦C. This corresponds to a 30% loss of elastic stiffness in the tested

temperature domain.
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Figure 2.42: Schematic crack propagation in a [0/90]S single edge notch monotonic tensile test
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CHAPTER III

Numerical Model of Micromechnical Failure

Mechanisms

3.1 Introduction

In this chapter a crack band failure scheme is introduced for modeling damage on

a microstructural scale. Detailed models including fiber-, interface- and matrix ma-

terials are developed and crack paths are predicted. It is shown that the component

failure behavior is influenced by controlling features at the fiber/matrix level. Trans-

verse cracking of 90◦ laminae as well as cracking of multi-layer models are shown and

discussed. In this thesis the term Representative Volume Element (RVE) is used to

describe the smallest entity of the composite selected to represent the correct physics

of damage evolution. Thus, the size of the RVE has to be chosen such that multiple

damage and failure modes and their interactions are captured.

3.2 Analytical Crack Density Formulations

Traditionally, two groups of analytical modeling approaches can be identified.

Strength based models assume that a crack forms when the local stress (or strain)

reaches a particular critical value in a ply. Energy based models generally assume the

existence of a flaw and that the flaw growth initiates when the energy release rate is
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greater or equal to the fracture toughness which is assumed to be a material property.

A summary of the most common models can be found in Talreja and Singh (2012).

A classic model was developed by Garret and Bailey (1977). They applied the shear

lag analysis to cross-ply laminates. They considered the model shown in Fig. 3.1.

Figure 3.1: Shear Lag Model

The load shed by the transverse (90◦) plies in the crack plane and transferred back

to the transverse plies over the distance y is given as,

F = 2t0w∆σ0[1− e−βy] (3.1)

where β2 is the shear lag parameter,

β2 = G90
xzo[

1

E90
x0

+
1

λE0
x0

] (3.2)

where λ = t0
t90

is the ply thickness ratio. The transverse ply will fail in tension when

F = 2t90wσtu (3.3)

where σtu is the failure stress of a ply in transverse tension and w is the specimen
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width. Assuming that the first crack will form in the middle of the specimen length

at ∆σ0 = t90
t0
σtu. Next, the cracking process will cause second and third cracks to

form simultaneously above and below the first crack. From Eq. 3.1 and Eq. 3.3 with

y = l where 2l is the crack spacing, ∆σ0 will be

∆σ0 =
1

λ

σtu
1− e−βl

(3.4)

These cracks will perturb the force transferred such that the new cracking process

will occur at.

∆σ0 =
1

λ

σtu
1 + e−βl − 2e−βl/2

(3.5)

Similarly the (N + 2)th crack formation will occur when,

∆σ0 =
1

λ

σtu

1 + e−
βl
N − 2e−

βl
2N

(3.6)

The cracking sequence assumed in this model is shown in figure 3.2.

Figure 3.2: Shear Lag Cracking Sequence

This model predicts the general trends but underestimates the average crack spac-
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ing. Furthermore, the model assumes uniform crack spacing.

Laws and Dvorak (1988) predicted progressive ply cracking using an energy based

analysis. The authors calculated the released energy during cracking as,

∆Γ =
2t290whEc

βt0E0
x0E

90
x0

(

σ90
xxR +

E90
x0

E0
x0

σc

)2 [

tanh
βl1
2t90

+ tanh
βl2
2t90

− tanh
βl

2t90

]

(3.7)

where β is the shear lag parameter. A new crack will form if

t90hEc

βt0E0
x0E

90
x0

(

σ90
xxR +

E90
x0

E0
x0

σc

)2 [

tanh
βl1
2t90

+ tanh
βl2
2t90

− tanh
βl

2t90

]

≥ γ (3.8)

Equation 3.8 yields the first-ply fracture stress for the limiting case liml→∞

σfpf
c =

(

βE0
x0Ecγ

t90hE90
x0

)1/2

−
Ec

E90
x0

σ90
xxR (3.9)

Laws & Dvorak regard the first ply fracture stress as experimentally measurable and

therefore determined the shear lag parameter from equation 3.9.

z 

x 

l
1
 l

2
 2l 

Figure 3.3: Laws & Dvorak progressive failure; New crack occurs inbetween two
existing cracks

Once the shear lag parameter is known the critical applied stress that causes

cracking at a new location can be determined from equation 3.8. Assuming that two

cracks already exist in the material, the onset stress for additional cracking can be
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calculated as

σc(ρc) =

2l
∫

0

p(x)σc(x)dx (3.10)

Assuming that the next crack occurs midway between two existing cracks as shown

in figure 3.3

p(x) = δ(x− l) (3.11)

the solution to equation 3.10 can be found as

E[σc(ρc)] =

(

σfpf +
Ec

E90
x0

σ90
xxR

)[

2 tanh
β

2ρc
− tanh

β

ρc

]

−1/2

−
Ec

E90
x0

σ90
xxR (3.12)

Nairn (1989) used the variational approach for cracked cross-ply laminates in con-

junction with the energy release rate criterion to predict crack densities in cracked

cross-ply laminates. He considered sections of the [0◦m/90
◦

n]S and the [90◦m/0
◦

n]S lam-

inates as shown in Fig. 3.4. The load, σ0, is an axial load applied parallel to the

fibers.

Figure 3.4: Model details used to analyze [0◦m/90
◦

n]S and [90◦m/0
◦

n]S composites (Nairn
(1989))
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Nairn’s fracture criterion for [0n/90m] laminates is,

Gm =

(

σ2
c

E2
2

E2
c

+
∆αT 2

C2
00

)

t90C22[2χ(ρ/2)− χ(ρ)] (3.13)

with,

χ(ρn) = 2α1α2(α
2
1 + α2

2

cosh(2α1ρn)− cos(2α2ρn)

α1sin(2α2ρn) + α2sinh(2α1ρn)
(3.14)

where ρn = ln/t90 is the normalized crack spacing. In equation 3.13 Gm is the

matrix fracture toughness which he suggested could be determined through fitting

experimental data for ply cracking. The material parameters are calculated as

α = q
1

4 cos( θ
2
)

β = q
1

4 sin( θ
2
)

q = C00

C22

p = C02−C11

C22

θ = tan−1
(√

4q
p2

− 1
)

C00 =
(

1
E2

)

+
(

1
λE1

)

C11 =
1
3

(

1
GT

+ 1
λGA

)

C02 =
νT
ET

(

λ+ 2
3

)

− νA
3EA

λ

C22 = (λ+ 1)(3λ2 + 12λ+ 8)

(3.15)

This formulation can be adjusted for a probabilistic crack formation. Fig. 3.5 shows

the formation of new microcracks. For cracking in [90m/0n] laminates, the expressions

for energy release rate remain the same except that the constant C22 is now given by

C22 = (λ+ 1)(3 + 12λ+ 8λ2).
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Figure 3.5: The formation of a new microcrack 2δ dimensionless units above the
bottom microcrack of a pair of microcracks separated by 2ρ dimensionless units Nairn
(1989)

Nairn’s predictions showed good agreement with experiments when the critical en-

ergy release rate for matrix cracking was deduced from test data rather than evaluated

independently.

3.3 Post-Peak Strain Softening Formulation - Crack Band

As could be seen in chapter 2.3, SiC/SiC ceramic matrix composites show large

deviation from linear stress-strain relation in the performed monotonic tensile tests.

This strain-softening is the result of formation of micro-cracks in the matrix material.

Many techniques have been used by authors in the past to estimate microcracking.

The smeared crack approach has been used by Heinrich and Waas (2013) to predict

cracking of polymer matrix composites with various lay-ups. Pineda et al. (2013) used

the crack band method in a multi-scale scheme based on the generalized method of

cells. In the context of this work, the same differentiation between damage and failure

as defined by Pineda et al. (2013) is used. Damage denotes the release of energy due to

microcracking. It is the regime between the critical strain ǫcr and the maximum strain

ǫf . Microcracking starts at ǫcr and a clean separation of surfaces occurs at ǫf . Failure

denotes the post-peak regime after all energy has been released resulting in a total

loss of secant stiffness. This regime occurs for ǫ > ǫcr. Loss of positive-definiteness

of the tangent stiffness tensor leads to a material instability, which manifests as

a localization of damage into the smallest length scale in the continuum problem
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[Baz̆ant and Cedolin (1991)]. In order to satisfy numerical stability the failure secant

stiffness is set to Esecant = 0.0001.

In this chapter, we restrict attention to Mode I cracks, i. e.,cracks (straight or curved)

which have no shear stress at their front. This does not detract much from practical

usefulness since cracks in CMCs seem to propagate in most situations along the

direction that are perpendicular to the maximum principle strain direction in which

Mode I prevails at the front. In finite element analysis damage initiation, e.g. entering

the traction-separation law, is based on a simple but physical criterion:

ǫ
′

ǫcr
= 1 (3.16)

where ǫ
′

is the maximum principle strain, ǫcr is the strain to initiate damage in the

material and assumed to be a material parameter. The crack-band failure method

falls into the category of smeared failure approaches. Cracks are not explicitly mod-

eled inside an element but rather incorporated in the element constitutive law. After

damage has been initiated, the stiffness perpendicular to the crack, e.g. in maximum

principle strain direction, is reduced according to a traction separation law. The

stiffness in the local crack direction is assumed to be unaffected. As a result a pre-

viously isotropic element becomes orthotropic after damage initiation. Once a crack

has been initiated, the crack band orientation is fixed. The crack normal is aligned

with the maximum principle strain direction. In most numerical applications, the

secant stiffness in maximum principle direction is chosen such that the traction will

follow the curve of the traction separation law shown in figure 3.6b. In this work a

triangular traction-separation law is employed. The area under the curve corresponds

to the mode I fracture toughness (GIC) of the material. Objectivity with respect to

the discretization size of the microscale model is achieved through introduction of a

characteristic element length as further discussed in chapter 3.3.1. It is assumed that
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the total element strain can be written as

ǫ = ǫcont + ǫcr (3.17)

where ǫcont represents the continuum strain of the element and ǫcr represents the

additional ”effective” strain due to cracking. The strain is a result of the crack

opening normalizde by the length, residing within the element and normal to the

crack plane. This is shown schematically in figure 3.6a. One can rewrite equation

3.17 for an isotropic material in the principal frame as,
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(3.18)

It is assumed that the continuum part and the crack part are in an iso-stress state

and can be thought of as two springs in series. This leads to the condition

σnn = σ11 (3.19)

h 

Crack 

(a) (b)

Figure 3.6: a) Characteristic element length b) crack-band traction separation law
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The crack strain can be calculated from the traction-separation law (Figure 3.6b),

ǫcrnn = ǫF +
σ11
Cf

(3.20)

Substituting equation 3.20 into equation 3.18 leads to
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(3.21)

Next, the element continuum stress-strain curve can be combined with the traction-

effective strain law as shown in figure 3.7. σ11 and ǫ11 are written in the local crack

coordinate system. E denotes the undamaged Young’s modulus in the principle frame.

A fracture variable D is introduced which corresponds to zero if damage has not

initiated. D equals to one if ǫ11 exceeds ǫf . When ǫ11 > ǫf the element has failed

catastrophically and no load can be transferred normal to the crack direction.

E 

+ = 
E 

Figure 3.7: Joining Element Continuum Stress-Strain law with Traction-Separation
law
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The total stress-strain law in the principal frame can be rewritten as,
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(3.22)

The damage parameter D can be determined from the stress-strain relation in Figure

3.7.

Et =
σ0
cr

ǫ0 − ǫf
(3.23)

and

(1−D)E =
Et (ǫ11 − ǫf )

ǫ11
(3.24)

Using equations 3.23 and 3.24 the failure parameter D can be calculated as

D = 1−
σ0
cr

ǫf − ǫ0E

(

ǫf
ǫ11

− 1

)

(3.25)

It is assumed that only the normal and shear directions at the crack interface are

traction free. Therefore, the entries S11, S55, and S66 of the compliance matrix in the

principle frame are affected and will be degraded.
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(3.26)

Finally, the degraded compliance matrix has to be transformed back into the global
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x-,y-,z-coordinate system.

[S] = [T ]−1[S][T T ]−1 (3.27)

3.3.1 Characteristic Length Scale

Baz̆ant (1983) introduced a characteristic length based on material elastic and

fracture properties. Independent of the element size the released energy due to dam-

age in a particular finite element needs to be preserved. Satisfying the restriction

of the mesh size guaranties a mesh objective simulation as will be shown in chapter

3.3.2. As can be seen in figure 3.7 the strain softening modulus Et must be negative.

Therefore, the following equation holds true

1

Et

=
1

E
+

1

Cf

≤ 0 (3.28)

Cf can be replaced by σ0
cr/ǫf and thus equation 3.28 can be rewritten as

1

E
−

2GIC

hσ2
cr

≤ 0 (3.29)

This condition leads to a maximum characteristic finite element length of

h ≤
2EGIC

σ2
cr

(3.30)

As Baz̆ant (1983) noted h should be smaller but at least half of that value in practical

FEM problems. The limiting case is given by E−1
t = 0 which corresponds to a sudden

drop in the stress-strain response.

3.3.2 Objectivity with Respect to Discretization Size

Smeared crack damage models were developed with the intention of introducing

mesh independence into finite element damage evolution methods. As mentioned
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above, section 3.3.1, the characteristic length, h is introduced to effectively scale the

dissipated energy. Four mesh sizes were studied for two different models in order

to establish mesh objectivity. Model A has square dimensions with a side length of

0.001 mm. Displacement boundary conditions were used with simple supports on the

left edge and an applied monotonic tensile displacement of 0.0015 mm on the right

edge as shown in Figure 3.8.

Figure 3.8: Boundary conditions for square mesh objectivity study; Red element was
given a 10 % lower strain to failure value

The discretization size of the model ranged from: 25 elements x 25 elements, 35

elements x 35 elements, 45 elements x 45 elements, and 65 elements x 65 elements.

The bottom left corner was also restricted to move in vertical direction to avoid rigid

body movement. In order to not trigger failure based on numerical inaccuracies the

center element in all models was assigned a 10 % lower strain to failure value compared

to all other elements. It should be mentioned that a material inhomogeneity is not

required for models with stress gradients caused by geometrical features, such as fibers

or notches. Table 3.1 gives an overview of the elastic and fracture properties.
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Figure 3.9: Crack path of square model for four distinct mesh sizes
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Figure 3.10: Load P vs. Displacement of square model for four distinct mesh sizes

As can be seen in Figure 3.9 the crack path is identical in all four meshes. The

crack width can not be identical due to the intrinsic property of smeared crack schemes

to localize failure within an element. The resulting load P in x-direction is plotted
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against the applied displacement in Figure 3.10. A marginal difference between the

discretization sizes due to more refined stress gradients is to be expected. It is evident

that the post-peak dissipated energy does not depend on the level of model refinement.

Table 3.1: Material properties used in mesh objectivity study

Property Value

E (N/mm2) 3700
ν 0.35
ǫcr 0.01216
GIC (N/mm) 0.075

A second dogbone shape model was created to further examine mesh objectivity

for other geometrical shapes. The mesh sizes were chosen to be: 25 elements x 85

elements, 35 elements x 95 elements, 45 elements x 105 elements, and 75 elements x

135 elements. Displacement boundary conditions were used with simple supports on

the left edge and an applied monotonic tensile displacement of 0.004 mm on the right

edge as shown in figure 3.11.

Figure 3.11: Boundary conditions for dogbone shape mesh objectivity study; Red
element was given a 10 % lower strain to failure value

Material properties are given in table 3.1. As before, a 10 % lower strain to failure

value was assigned to the center element. The left bottom corner was restricted

from movement in the vertical direction to avoid rigid body movement. The crack

propagation was not further controlled and followed the direction perpendicular to
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the maximum principle strain direction. The crack paths are given in figure 3.12. As

can be seen in figure 3.13, the Load versus Displacement response of the four meshes

match each other and therefore objectivity with respect to the discretization size is

demonstrated.

Figure 3.12: Crack path of dogbone shape model of four distinct mesh sizes
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Figure 3.13: Load P vs. displacement of dogbone shape model of four distinct mesh
sizes

3.4 Crack Band for Interlaminar Failure

Several methods have been developed in recent years to predict interlaminar fail-

ure. Xie and Waas (2006) developed the discrete cohesive zone model (DCZM) within
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a finite element environment, based on prior work by Song and Waas (1993). The

authors implemented a special element and showed that crack initiation and growth

could be captured. DCZM elements, in general, are mixed-mode elements. However,

the use of DCZM elements require that the the crack path be known a-priori and

is modeled explicitly. Heinrich and Waas (2013) used the smeared crack approach

(SCA) to describe post-peak softening in composite materials. They compared nu-

merical predictions to a linear elastic fracture mechanics analysis. The crack-band

model used in this work is related to the SCA. However, the crack-band model is

currently only implemented for mode I fracture. Hence, the technique in the current

form can only be used to model normal crack opening as is present in a typical double

cantilever beam test as described next.

3.4.1 Double Cantilever Beam Simulation

Heinrich and Waas (2013) compared finite element predictions of a double can-

tilever beam (DCB) to the analytical linear elastic fracture mechanics (LEFM) so-

lution. The crack-band method, in a slightly modified form, will be used to predict

the mode I fracture of the same model. It is assumed that the thickness of the in-

terlaminar layer is very small (≤ 10 ∗ tbeam) compared to the beam thickness. Hence,

if a crack occurs in the the adhesive layer it is assumed that the compliance in all

directions is affected as shown in equation 3.31,
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(3.31)
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No rotation of the compliance matrix is required in this case since there is no di-

rectional dependence. For this discussion and better comparability to the LEFM

solution, a maximum principle stress criterion is used. A summary of the model ge-

ometry is given in figure 3.14. Elastic and fracture material properties are given in

table 3.2.

Table 3.2: Material properties used in mesh objectivity study

Beam

Young’s Modulus E 70 GPa

Poisson’s ratio ν 0.3

Adhesive

Mode I Energy Release Rate GIC 7.48 (N/mm)

Critical Stress 503 MPa

L = 100 mm 

a = 30 mm 

F, d 

h = 5 mm 

t = 0.1 mm 

Figure 3.14: DCB Specimen Geometry

Analytically, the applied force at the ends of the beam can be calculated as

F =

√

GICEIb

a2
(3.32)

where GIC is the fracture toughness, E is Young’s Modulus, I is the area moment of

inertia, b is the beam width, and a is the crack length. The crack length of the FEM
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predictions can be computed as

a =
3

√

3δEI

F
(3.33)

A comparison of the analytical and numerical solution is given in figure 3.15. The

FEM predictions show initially higher loads. Both curves approach each other for

increasing crack lengths. These results confirm that the crack-band method is well

suited for mode I dominant interlaminar fracture problems. Future work should

include a multitude of comparisons.

Figure 3.15: Load vs. Displacement comparison of LEFM solution and crack band
of a DCB test
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3.5 Transverse Cracking of CMCs under Tensile Loading

In the past, a single fiber surrounded by matrix material with a fiber volume

fraction matching that of the lamina was often used (Berger et al. (2005), Mahmoodia

and Aghdamb (2011)). Structured RUCs with 2-4 fibers in a hexagonal or square

array were investigated by Shoukry et al. (2007). The representative unit cell plays a

central role in the mechanics and physics of random heterogeneous materials with a

view to predicting their effective properties, damage initiation and crack propagation.

Many researchers have investigated the effects of the size of the RUC (Dal Corso

and Deseri (2013), Gusev (1997), Soni et al. (2014), Drugan and Willis (1996)).

Kanit et al. (2003) showed that a bias in the estimation of the effective properties is

observed for too small volumes for all types of boundary conditions. Totry et al. (2008)

predicted the mechanical response of a composite lamina made up of PEEK matrix

unidirectionally reinforced with 60 vol% C fibers subjected to transverse compression

and longitudinal shear using computational micromechanics. The authors showed

that the failure locus given by the envelope of the loading curves under different

biaxial loading conditions was in excellent agreement with the experimental results.

Heinrich et al. (2012) investigated the influence of fiber packing and RVE size on the

residual stresses created during the curing process of the epoxy matrix material. They

concluded that at least 25 fibers should be used for the numerical damage and failure

predictions. It was found that average values can be used for stiffness predictions.

In the present work, the crack band method is used to investigate the behavior of

a ceramic matrix composite representative volume element (RVE) under monotonic

transverse tensile loading. The RVE size is chosen such that at least 40 fibers are

modeled.
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3.6 Random Fiber Orientation within RUC

Fiber volume fractions in CMCs tend to be in the range between 15−30%. These

low volume fractions result in large variations in distribution of fibers within a lamina.

These geometrical inhomogeneities affect the performance of the composite material.

Fiber clustering can serve as local stress risers which might lead to pre-mature matrix

cracking. In addition, non-uniform fiber coatings, resulting from poor control dur-

ing the manufacturing process, affect the stress and strain fields in the surrounding

matrix material. In order to investigate the influence of geometric inhomogeneities,

micromechnics models were developed and the Crack-Band methodology was used to

identify microstructural features that support pre-mature matrix damage.

This subsection is divided into two parts. Chapter 3.6.1 shows the influence of fiber-

coating packing on damage propagation under transverse loading conditions. Multiple

randomly generated microstrucres are compared and features that cause local dam-

age are identified. Chapter 3.6.3 uses a large scale model to predict the behavior

of cross-ply laminates. It captures multiple transverse cracks and shows differences

between [0/90]2S and [90/0]2S laminates. A four layer model is used to predict crack

spacing and a comparison is drawn with analytical models.

3.6.1 Influence of Fiber-Interface Packing on Crack Initiation

In order to model realistic features a model based on the real microstructure is

needed. Automated model generation based on micrographs is inherently difficult

for CMCs due to the low contrast between the main constituent materials. In this

work a Matlab script was developed to manually fit circles to fibers and interfaces of

a micrograph. The total size of the micrograph and the locations of the fiber- and

interface coordinates within the micrograph was stored in a text file. This information

was then used in a python script that automatically generated an Abaqus model. This

technique allowed a simple solution for generating realistic models.
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Figure 3.16: Micrograph of CMCmicrostructure (White particles are artificial speckle
pattern and not part of the CMC material)

In addition, a second Matlab script was developed to randomly re-orient the fibers

within the RVE. Following, each micrograph model and it’s random variations will

be denoted as representative volume elements (RVE’s). The Matlab script allows the

definition of minimum fiber distances and included a code to simulate fiber clustering.

Randomly placed artificial fibers, which are not included in the FEM model, are

inserted during the randomization process. The space occupied by these fibers cannot

be taken by real fibers and therefore clustering occurs. If the minimum distance

between fibers was set to be larger than zero, no fibers were allowed to interfere with

each other. Coatings on the other hand were always allowed to interfere with each

other. This is often observed in CMCs, as can be seen in Figure 3.16. White particles

were added to the surface for DIC measurement purposes and are not part of the

CMC material. Large variations in coating thickness and random orientation of the

fibers within the transverse ply can be observed. Figure 3.17 shows an overlay of the

Abaqus model over the micrograph.
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CMC Micrograph Abaqus Model 

CMC Micrograph Abaqus Model 

Good Match between 

Micrograph and Model 

Figure 3.17: Model and Microstructure Overlay (Matrix has been removed from the
model for better visibility)

The matrix material has been removed from the model plot to allow the observa-

tion of the fiber and interface locations of the model compared to the microstructure.

A good match between the model and the micrograph is apparent. A second model

was created with the same technique. These two models will be used as the baseline

models in the following comparisons. The volume fractions of the two baseline models

as well as the randomly created models range between, 19-21 vol % fibers, 9-10 vol %

interface, and 70-73 vol % matrix. Random models were created and the crack-band

user subroutines were used in Abaqus to predict the damage behavior of each RVE.

Plane strain elements (CPE in Abaqus) were used. On average, the models consisted

of 90,000 degrees of freedom. In this study, the RVE does not represent a repeating

unit of the microstructure. Hence, simple transverse tension boundary conditions

were chosen over periodic boundary conditions. A positive transverse displacement,
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ux, was applied on the edge X1 of all models as shown in figure 3.18. Edges Y0 and

Y1 are traction free and Corner X0-Y0 was constrained in y-direction to avoid rigid

body movement. Ultimate load, post-peak behavior, and crack paths are dependent

on the location of the fibers as can be seen from Figures 3.23 and 3.24, respectively.

y 

x 

Figure 3.18: Boundary conditions of microstructure models

Further investigation of the crack initiation sites revealed that damage in all RVE’s

initiated around fiber clusters with thick coatings. Typically, damage initiates at

the top or bottom of the matrix surrounding a fiber. The BN coating is compliant

compared to the fiber and matrix. The elastic and fracture constituent properties are

given in table 3.3. Figures 3.19 - 3.21 depict damage in three different RVE’s. The

Table 3.3: Constituent elastic and fracture properties

Material
Young’s Modulus

(MPa)
Poisson’s Ratio

ν
Critical Stress
σcr (MPa)

Fracture Toughness
GIC (N/mm)

Matrix 340000 0.14 200 0.05
Coating 10000 0.19 200 0.05
Fiber 380000 0.14 2600 0.005

crack path has been rendered with a black line for better visibility. Upon damage

initiation a redistribution of the current stress field occurs which can lead to new
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damage initiation sites.

1 2 

3 4 

Crack Initiation  

Figure 3.19: Crack paths of random RVE-1 microstructure model
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3 4 

Crack 

Initiation  

Figure 3.20: Crack paths of random RVE-2 microstructure model

1 2 

3 4 

Figure 3.21: Crack paths of random RVE-3 microstructure model
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By evaluating the strain-field at various times of the simulation it is visible that

the crack opening in certain areas of the model begin to close during the simulation

due to new cracks appearing in other locations of the model. This can be explained by

the redistribution of load transfer throughout the model and is very consistent with

experimental results (Tracy (2014)). Drastic reductions in the post-peak stress-strain

response can usually be associated with sudden crack-growth or further crack opening

of an existing crack. Once a single crack has developed from the top to bottom of a

RVE and all elements within the crack have exhausted their load carrying capability

it is expected that the reaction force of the RVE’s reduces to zero. However, if the

ultimate crack path is not perpendicular to the load direction or two cracks developed

in the model, it is possible that a small residual stress can be observed as seen for

RVE’s 2 and 3, respectively. Nine representative RVE’s and two baseline models based

on micrographs are discussed in this chapter. Noticeable in all RVE’s is the crack

deflection when the crack tip reaches a fiber or fiber bundle. The local orientation

of the crack tip changes and subsequently the crack deviates around the obstacle

(fiber). All crack predictions showed a similar initiation behavior. Multiple cracks

occur and grow initially until two or more cracks join to form a macro-crack which

then defines the final crack path. Figure 3.24 shows the stress-strain response of the

RVE’s. All models deviate from linearity before the peak stress is reached. Load

drops in the stress-strain response are associated with additional crack growth. The

post-peak response of all RVE’s is characterized by stepwise stress degradation due to

crack growth and arrestment in the vicinity of fibers in the crack path. A significant

scatter in the peak stress and post-peak behavior can be observed. Baseline model 1

sustained an ultimate load of 89.1MPa whereas baseline model 2 peaked at 84.2MPa.

The maximum stress of 92.14MPa was achieved in RVE 9. The lower bound is

represented by RVE 6 where the peak stress was computed at 79.29MPa and is 15%

lower compared to RVE 9. The average ultimate stress of all RVE’s was 87.15MPa
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with a standard deviation of 4.22MPa. The strain at peak stress ranges from ǫ =

0.0006 to ǫ = 0.0011 with an average strain at ultimate load of ǫ = 0.0008 and a

standard deviation of ǫ = 0.00001. Damage initiates in all RVE’s before a deviation

from linearity is observed in the stress-strain response and therefore a definition of a

proportional limit in terms of damage initiation becomes difficult. The arrangement

of fibers within a lamina has a profound impact on the overall performance of the

composite as can be seen from this study. Crack initiation as well as propagation are

significantly controlled by fiber-fiber distances and coating thickness. A more specific

manufacturing process, aimed at eliminating features that lead to increased crack

growth, could improve the overall performance of parts and components significantly.
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Figure 3.22: Finite element models with randomly located fibers
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Figure 3.23: Ultimate Damage path of randomly generated representative volume
elements (RVE’s)
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Figure 3.24: Stress-Strain response of randomly generated microstructure models

3.6.2 FEM Crack Density Prediction

Most analytical crack density theories introduced in chapter 3.2 assume a double

ninety-lamina in between two single zero-layers or vise versa. Crack density is defined

as the inverse of crack spacing and indicates how many cracks are present per unit

length. Although some of those models are capable of both [0/90]s and [90/0]s lami-

nates only cross-ply laminates with two inner 90-degree layers are discussed here. In

an effort to compare crack density predictions a two-dimensional plane strain element

model (CPE4 in Abaqus) that has a four layer cross-ply configuration was created.

Each transverse ply contains 578 fibers at random locations. Fiber diameters are

constant at 10 ➭m. The model includes fiber clusters as well as touching fibers and

coatings as shown in figure 3.25.
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Figure 3.25: Four layer cross-ply laminate model
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The crack band theory is used to dictate the damage behavior of the model. All

input parameters are given in table 3.4. Fiber damage in the zero plies is activated,

however the simulation is aimed toward the investigation of transverse cracks in the

transverse plies. Results of the numerical finite element predictions are displayed in

Table 3.4: Constituent elastic and fracture properties for crack spacing analysis

Material
Young’s Modulus

(MPa)
Poisson’s Ratio

ν
Critical Stress
σcr (MPa)

Fracture Toughness
GIC (N/mm)

Matrix 340000 0.14 200 0.05
Coating 10000 0.19 200 0.05
Fiber 380000 0.14 2600 0.005

figure 3.26. In order to compare crack densities of the FEM simulation to analytical

models, a definition of ”cracks” is needed. The crack band theory uses a damage

parameter D as an indication of the amount of energy dissipated by each element,

where D = 0 indicates an undamaged element. In this work it is assumed that a

physical crack has occurred in every element which exceeded D = 0.99. Elements,

that are shown in red in figure 3.26 have exceeded this threshold. It can be seen

that six discrete cracks were predicted for this laminate. The cracks inititate within

the ninety-plies and eventually grow through the matrix rich region between the two

layers. Furthermore, it can be observed that cracks meander around fibers in the

transverse plies.
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Figure 3.26: [0/90]s model details and crack density predictions of finite element
model
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Figure 3.27 shows a comparison of the crack density predicted by the finite element

model, Nairn, and Laws and Dvorak model. The input parameters for the Laws and

Dvorak model and Nairn model are given in table 3.5 and 3.6, respectively. The

first ply fracture stress is an input parameter to the Laws and Dvorak model and

chosen to match the first ply fracture stress predicted by the finite element model. In

Laws and Dvorak’s model it is used to calculate the shear lag parameter β. Nairn’s

analytical model can be used to calculate the first ply fracture stress as seen in figure

3.27 for crack density equal to zero. This model underpredicts the first ply fracture

stress for the input parameters given in table 3.6 as σfpf = 180MPa. The finite

element predictions are in good agreement with the Laws and Dvorak analytical

model. Equation 3.12 was used to calculate the crack density. It is assumed that no

residual thermal stresses are present in the composite. Fiber failure in the zero plies

occurs at a crack density of approximately 2.5 cracks/mm in the numerical model

which terminates the development of transverse cracks in the inner ninety laminae.

All three models show similar behavior during initial crack development. Cracks

develop rapidly at an almost constant stress level. This observation is plausible for

brittle materials. Cracks occur in multiple locations simultaneously. More energy is

needed to force further cracking in between existing cracks which is seen in figure 3.27

as a reduced slope.
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Table 3.5: Input properties for Laws & Dvorak analytical crack density model

Laws & Dvorak

First Ply Failure Stress σfpf 194 GPa

Fracture Toughness GC 0.05 N/mm

Composite Modulus EC 290 GPa

Axial Ply Modulus E0 327 GPa

Transverse Modulus Et 216 GPa

Longitudinal Ply Thickness b 0.25 mm

Double Transverse Ply Thickness b 0.25 mm

Table 3.6: Input properties for Nairn’s analytical crack density model

Nairn

Matrix Fracture Toughness GC 0.05 N/mm

Composite Modulus EC 290 GPa

Axial Ply Modulus E0 327 GPa

Transverse Modulus Et 216 GPa

Transverse Shear Modulus Gt 90 GPa

Axial Shear Modulus Ga 90 GPa

Transverse Poisson’s Ratio νt 0.14

Axial Poisson’s Ratio νa 0.14

Longitudinal Ply Thickness b 0.25 mm

Double Transverse Ply Thickness b 0.25 mm
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Figure 3.27: Comparison of FEM crack density prediction with analytical solutions

3.6.3 Microscale Modeling of a CMC Laminate

In order to predict the non-linear behavior of brittle laminated composites accu-

rately, multiple dominant cracks must be captured. During initial loading a large

number of microcracks form in the matrix. On further loading, microcracks join to

form macrocracks. Some microcracks deflect along fiber/matrix interfaces or get ar-

rested. This cracking behavior usually leads to the non-linear stress-strain relation

observed in experiments of CMC specimens. At some loading level, matrix cracking

reached saturation after which only the fibers are carrying the load. Zok and Spearing

(1992) developed a model to describe the evolution of matrix cracks in unidirectional

continuous fiber, brittle matrix composites. The authors used the steady state strain

energy release rate available for crack extensions in terms of the constituent proper-

ties, the applied stress and the distances to the neighboring cracks. Li et al. (2014)

showed that the classical Budiansky-Hutchinson-Evans shear lag model could be used

to determine the micro-stress field of damaged composites. They calculated the crack
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spacing in SiC/CAS composites and showed that crack saturation occurs at a partic-

ular stress level. Capturing the matrix crack spacing correctly requires a large scale

model including hundreds of fibers.

Figure 3.28: Large micromechanics model ([0/90]2s) and boundary conditions

Fig.3.28 shows the finite element model used in this study. It represents an 8-layer

[0/90]2s lay-up. Each 90◦ layer consisted of 578 fibers and every 0◦ layer consisted of

8 fibers. The overall fiber volume fraction was 21 % and the interface volume fraction

was 5 %. Two dimensional plane strain elements in Abaqus were used to discretize the

model resulting in 1,011,274 degrees of freedom. Nodes on the left edge were assigned

with a zero displacement in the horizontal direction. The node located at the left

bottom corner was also constrained from movement in the vertical direction to avoid

rigid body movements. Nodes on the right-hand vertical edge were subjected to a

displacement of 0.2mm. The All fibers were randomly located within each layer and

fiber clustering, touching fibers, eccentric coatings, and varying coating thicknesses

were modeled (figure 3.29). These details naturally lead to non-uniform stress and

strain fields in the model which determine crack initiation and growth. Modeling a

large number of fibers is essential for capturing crack growth as cracks tend to get

arrested when they are intercepted by a fiber. Crack arresting contributes to the

material ability to redistribute stress fields which leads to new crack initiation sites.

Increasing stress in one location of a lamina or laminate automatically leads to a

relaxation in another region. Crack closing can be observed as a result and is shown

in Figure 3.31. It shows an enlarged region of the inner transverse ply. Results at
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increasing time (load) of the same region are shown. Crack-closure at one location

can be observed due to increased crack-opening of a nearby crack.

Figure 3.29: Details of the large micromechanics model ([0/90]2s)

Figure 3.30 depicts the maximum principle strain plot of the last increment of the

simulation. Multiple cracks with a crack spacing of approximately 600 ➭m are evident

in the two inner transverse plies. A higher crack density, e.g. lower crack spacing

can be observed in the outer transverse plies. It is approximately 1/4 times the crack

spacing of the inner transverse plies. Due to the nature of a 2-dimensional simulation

cracks are inhibited from growing around fibers in the zero plies. The crack growth

is instead deflected in the load direction. As can be seen in figure 3.30 multiple lon-

gitudinal cracks can be seen along fibers in the zero plies. This phenomenon is also

evident in real materials, however, in an increasing load environment these cracks

generally tend to grow transverse to the zero fibers. After the crack has completely

traversed perpendicular through the zero ply fiber pull-out releases additional energy.

This phenomenon is further discussed in chapter V. More energy can be released
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through frictional sliding which leads to an apparent toughening effect of the CMC

material. Future work should include fiber pull-out in the zero plies in addition to

the crack band method. The stress-strain response of the the model prediction is

compared to the stress-strain response of an eight ply [0/90]2s smooth bar specimen

tested in monotonic tension, shown in figure 3.31. The specimen was heat treated

prior to the experiment to reduce the impact of residual stresses on the experimental

results. The deviation from linearity in the stress-strain response is captured accu-

rately.

Experimental results of a heat-treated CMC smooth bar tensile test shown in figure

3.31 were supplied by the specimen manufacturer. Details of the heat-treatment are

proprietary and can not be given here. The predicted response of the FEM model,

shown in red, in the strain range between ǫ = 0.0007 − 0.0025 matches well with

the experimental results (black). In the strain regime ǫ ≥ 0.0025, it is assumed

that the load carrying capability of the transverse plies has decreased significantly.

Damage and fiber-pullout in the longitudinal plies controls the specimen response. It

is therefore expected that the model predictions will deviate from the experimental

results.
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Figure 3.30: Maximum principle strain results showing cracks in a 8-Layer finite
element model
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3.7 Conclusions

The energy based crack band method was introduced in this chapter. It was shown

that this method can provide mesh independent results assuming the characteristic

length of the elements is smaller than the maximum length defined by the mate-

rial properties. Mesh independence was established by using a square and dogbone

shaped model. The influence of fiber packing was investigated by creating a model

based on a micrograph of the CMC microstructure. It was found that the ultimate

load varied significantly. It is expected that good control of fiber placement within a

lamina can yield an improvement of the ultimate load that can be sustained by the

material.

Furthermore crack density studies were carried out on symmetric four ply [0/90]s

laminates. It could be shown that the crack band methodology is suitable to predict

crack spacing. An eight layer large scale model with over one million degrees of free-

dom was created to predict the damage behavior of a smooth bar CMC specimen.

Damage initiated between the inner transverse plies. A characteristic crack spacing

was observed in the simulation. Due to more complex damage modes of the zero-plies

only the damage initiation and early post-peak stiffness can be predicted accurately.

Further work is required to include mode-II crack growth in the coating material and

subsequent fiber-coating debonding. Furthermore, fiber-pullout models in the zero-

plies are required to capture the correct damage modes in the longitudinal plies after

matrix crack saturation has set in.

The crack-band model can be used in the future to identify if a randomly generated

RVE is suitable to examine e.g. transverse damage behavior in a multi-scale method-

ology. Furthermore, a quick measure of the geometric properties of each RVE would

be needed to assess the suitability. Similarities between RVE’s could be identified

and objectively evaluated. Two possible methods are further discussed in appendix

A. For transverse plies, the stress-strain response from detailed transverse tension
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models could be used in the future to replace the time consuming concurrent multi-

scale scheme, as discussed in chapter IV. Results from multiple random RVEs could

be used to randomize the microstructure of a component.
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CHAPTER IV

Integrated Finite Element Method Multi-Scale

Modeling

4.1 Introduction

The deformation response, subsequent damage development and failure of multi-

constituent materials such as ceramic matrix composites is dependent on microstruc-

tural details such as variations in fiber packing arrangement, properties at fiber-matrix

interfaces, and interactions between neighboring fibers. This dependency of failure

modes on the microstructure is well known for composite materials which led to

the development of numerous homogenized theories. Kanoute et al. (2009) reviewed

various multi-scale methods for mechanical and thermomechanical responses of com-

posites. Heinrich and Waas (2013) utilized the smeared crack approach to describe

the post-peak softening in laminated materials. They predicted the cracking behav-

ior of an open hole tensile specimen and recorded crack directions for various fiber

angles. Accurate numerical predictions for layered, fiber reinforced materials are in-

herently difficult due to the intricate mechanisms that tie global component failure

to microstructural degradation. Modeling strategies based on homogenized material

properties neglect the importance of the physical behavior at the microstructural

level, and thus homogenized models fail to predict critical parameters accurately that
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are observed experimentally, e.g. maximum load, strain to failure, crack spacing and

other salient features. Often times the material direction is used as the failure di-

rection. This might lead to erroneous crack paths for materials with similar fiber

and matrix properties such as CMCs. Hence, multi-scale methods have become the

focus of many research papers in recent years. These models dehomogenize the strain

and stress state for each constituent. Typically, a Representative Unit Cell (RUC)

that preserves the microstructural dimensions is identified. Yuan and Fish (2008)

developed a computational homogenization approach for linear and nonlinear solid

mechanics problems. In this work two commercial solvers were bridged by a python

code. The authors showed that linear problems could be accurately modeled. Key

et al. (2004) used multicontinuum technology in a multi-scale simulation to analyze

the separation of rib to skin interfaces. Multicontinuum theory decomposes the stress

and strain field for each constituent using volume averages. This method is numeri-

cally fast with the cost of inaccuracy particularly for shear components. Aboudi et al.

(2001) introduced the generalized method of cells (GMC), a semi-analytical method,

which discretised the microsctructure with rectangular subcells. Pineda et al. (2013)

achieved mesh objectivity with a thermodynamics based approach within GMC as

well as High-Fidelity Generalized Method of Cells (HFGM). Multi-scaling methods

often suffer from lower computational efficiency compared to homogenized models.

This disadvantage can usually be overcome by using the multi-scale method in areas

where microstructural failure is to be expected, e.g. at stress concentrators (notches,

etc.). Homogenized element stress-strain relation can be utilized in regions of low fail-

ure probability. In recent years significant improvements have been made in terms of

fidelity and computational efficiency (Feyel and Chaboche (2000); Ladevze and Nouy

(2003); Michel et al. (1999); Smit et al. (1998)). Recently, Zhang et al. (2015) have

introduced a 2-scale method in which the subscale RVE is a concentric cylinder model

and the stress and strain fields are provided by a closed form solution, leading to sig-
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nificant computational savings.

In this chapter the commercial Finite Element software suite Abaqus is used to gen-

erate lamina-level models. A second Integrated Finite Element Method (IFEM) has

been developed and fully integrated with the main Abaqus solver through a user ma-

terial subroutine, denoted as UMAT. IFEM calculates the reaction of a microstruc-

tural model to an imposed displacement field. The microstructural model consists

of a Representative Volume Element (RVE) which includes all constituents of the

real material, e.g. fiber, matrix, and fiber/matrix interfaces, details of packing, non-

uniformities in properties etc. The energy based Crack Band Theory (CBT), first

introduced by Baz̆ant (1983), is implemented within IFEMs constitutive laws to pre-

dict micro-cracking in all constituents that are included in the mircomechanics model.

Figure 4.1 displays a flow chart of the integration of IFEM within Abaqus FEM suite.

IFEM is called at every Gauss point of a large scale model, e.g. tensile coupon or com-

ponent. The current strain state is applied on a subcell model and the corresponding

stress field is calculated. A damage check for every element within the subcell is car-

ried out. If damage has occurred in one or more elements the stress and strain fields

within the subcell are re-equilibrated. Hence, the communication between the micro-

and macro-scale is achieved through the exchange of strain, stress, and stiffness ten-

sors. Important failure parameters, e.g. crack path, proportional limit, etc. are part

of the solution and predicted with a high level of accuracy. Numerical predictions

are validated against experimental results. An overview if the IFEM is schematically

shown in figure 4.1.

103



Component Prediction 

Macroscopic FEM Model 

 (Abaqus, Ansys, etc.) 

UMAT 

Microscopic Model 

Experimentally measured 

Constituent Material Properties 

Solve Unit Cell FEM 

problem (Calculate 

Displ., Strains, etc.) 

Apply Displacement 

Field on Unit Cell 

with PBCs 

Check for 

Constituent failure 

Recalculate 

Homogenized 

Stiffness & Stress  

Update Stresses  

& Jacobian 

Figure 4.1: Flow chart of IFEM implemented using Abaqus

4.2 Representative Unit Cell Modeling in a Multi-Scale Frame-

work

Most commercially available finite element suites offer the user to implement cus-

tom constitutive material laws. In this work Abaqus has been chosen to solve the

macroscopic scale (e.g. lamina level) finite element problem. User material sub-

routines, called UMAT (Abaqus User Manual Abaqus (2008)), are readily accessible

through the computer language Fortran. The UMAT subroutine is called at each in-

tegration point of the Abaqus macroscopic model for each element within an element

set that has been defined with a user material. In a multi-scale scheme information
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are exchanged between multiple length and/or time scales. Here the focus lies on

a concurrent technique that exchanges essential stiffness, stress, and strain informa-

tion between a lamina-level simulation and a microstructure level simulation. This

technique employs FEM at both the Fiber/Matrix scale and the macroscopic, e.g.

lamina level scale. It is often referred to as FEM2. The constitutive response at

the coarse scale is purely dictated by what is computed at the Fiber/Matrix level

model. Localization techniques, as discussed below and referenced in equation 4.12

are employed for transforming displacement fields from a global state to a local state.

Back-transformation is achieved through a homogenization step according to equa-

tion 4.11. The concurrent information exchange between the scales is shown figure

4.2.

Macroscale 
Localization 

Homogenization 

Microscale 

Figure 4.2: Multi-Scale information exchange between scales

A homogenized strain field from the component FEM model at the macroscale is

passed to the user defined material definition and applied on the boundaries of the

RVE at the microscale. This process is denoted as the localization step. The RVE

problem is solved and subsequently the volume averaged stress and stiffness tensors

are calculated and passed back to Abaqus. This step is denoted as the homoge-

nization step. Multi-scale methodologies attempt to find an optimum between the
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computational effort and accuracy of the predictions. Theoretically, each RVE can

consist of an unlimited number of constituent materials, fibers, etc. The complexity

of each RVE should be chosen wisely and typically requires user experience to find the

ideal RVEs. In order to keep computational costs at a minimum in the current study

the number of fibers is limited to three in the RVE microscale model. In this work

three phase (fiber/interface/matrix) RVEs are used. It is assumed that the bonding

properties between the fiber/coating and coating/matrix are perfect, e.g. nodes are

shared between these constituents. No limitation exists for volume fractions of the

included materials. A major advantage of multi-scale models is the ability to ran-

domize the microstructure by using RVE with varying geometrical features. Figure

4.3 depicts six example RVE. Fiber touching and clustering as well as differences in

fiber-diameter can be simulated. Elastic properties of the RVEs are similar but dif-

ferences exist in terms of the RVE strengths. Fiber clusters amplify the local stress

field and are sites for damage initiation. These phenomena are commonly found in

low volume fraction composites such as CMCs.

4.3 IFEM Equations

Two versions of IFEM have been developed. 3D-IFEM uses a linear 8-noded

element formulation as can be found in Chandrupatla and Belegundu (2002) . As

is well known three dimensional finite element codes deliver a higher accuracy over

two dimensional codes. However, they suffer from higher computational effort due to

more degrees of freedom in the model. Hence, a two dimensional generalized plane

strain finite element code, denoted as 2D-IFEM, has also been developed to reduce

the required simulation time while maintaining a good level of accuracy. This version

is based on a linear 4-noded element formulation. In the following, the equations for

the three dimensional formulation are presented. The geometry of each element is

described by cartesian coordinates (Xi, Yi, Zi) of the nodes. Each node i has three
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displacement degrees of freedom (ui, vi, wi) and the nodal degree of freedom vector q

can be written as

{q}T = {u1, v1, w1, u2, v2, w2, ..., ..., ..., u8, v8, w8} (4.1)

The corresponding nodal force vector is

{f}T = {fx1, fy1, fz1, fx2, fy2, fz2, ..., ..., ..., fx8, fy8, fz8} (4.2)

The displacement components at any point (X,Y,Z) can be interpolated by the nodal

displacements

{u} = [N ]{q} (4.3)

where

[N ] =























N1 0 0 N2 0 0 ... ... ... N8 0 0

0 N1 0 0 N2 0 ... ... ... 0 N8 0

0 0 N1 0 0 N2 ... ... ... 0 0 N8























(4.4)

is the matrix of shape functions. The eight shape functions can be written as

Ni =
1

8
(1 + ξξi)(1 + ζζi)(1 + ηηi) (4.5)

The isoparametric transformation is given by

x = N1x1 +N2x2 + ...+N8x8

y = N1y1 +N2y2 + ...+N8y8

z = N1z1 +N2z2 + ...+N8z8

(4.6)
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Next, the Jacobian matrix of the derivative transformation from real coordinates

(X,Y,Y) to isoparametric coordinates can be written as

J =













∂x
∂ξ

∂y
∂ξ

∂z
∂ξ

∂x
∂η

∂y
∂η

∂z
∂η

∂x
∂ζ

∂y
∂ζ

∂z
∂ζ













(4.7)

The stresses and strains are then given by,

σ = [σx, σy, σz, τxy, τxz, τyz]
T

ǫ = [ǫx, ǫy, ǫz, γxy, γxz, γyz]
T

(4.8)

The linear strain-displacement realtions are given by

ǫ =

[

∂u

∂x
,
∂v

∂y
,
∂w

∂z
,
∂u

∂y
+
∂v

∂x
,
∂u

∂z
+
∂w

∂x
,
∂v

∂z
+
∂w

∂y

]

(4.9)

Finally, a matrix relating the element strains and nodal displacements can be derived

{ǫ} = [B]{q} (4.10)

At the end of each RVE calculation, the current stress and stiffness tensors of the

RVE are required to complete the information exchange between the two scales. These

quantities are passed back to the macroscale. In the present work, volume averaged

stresses are used to calculate the homogenized stress field. Each component within

an element of the RVE is integrated over the element volume and finally averaged

with the total RVE volume as shown in equation 4.11.

σV
ij =

1

V

∫

σe
ij dV (4.11)

Implementing an FEM code in Fortran was essential for a highly efficient multi-scale
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framework. It allows the macroscopic model to be run in a cluster environment and

hence solving multiple material integration points simultaneously.

4.3.1 RVE Characteristics

The objective of multi-scale analyses is to decompose a general homogenized

stress- and strain field of a lamina-level model into constituent stress- and strain

states. Post-peak softening is based on these decomposed stresses and strains and

therefore failure is dependent on geometrical features and constituent material re-

sponse withing the RVE. Theoretically, there are no geometrical limitations on the

RVE. However, as stated earlier, the choice of RVE size and features are predicated on

experimental observations that provide qualitative and quantitative insight on dam-

age and failure mechanisms. In this research the maximum number of fibers per RVE

was limited to three. This number of fibers resulted in a runtime of several hours

using 12 processors within a cluster environment. However, future work will focus

on the influence of detail within a subcell on the runtime and accuracy of numerical

predictions. Furthermore, the discretization size should be selected to arrive at a

minimum number of degrees of freedom within the RVE. Further restrictions might

be imposed by the failure models used within the sub-scale. The crack-band method

for example requires a minimum characteristic element length as further discussed in

section 3.3.1. Often overlooked is the importance of microstructural details on the

failure mechanisms in numerical models. Detailed views of microstructures of com-

posite materials reveal a random organization of fibers. Perfectly hexagonal packed

RVE’s, as they are often used in numerical models due to the simple architecture,

can merely be an approximation. Many different deviations of the perfect packing are

found in real materials, e.g. fiber touching, varying fiber diameter, etc. Multi-scale

methods are well suited to implement a random microstructure by using several RVE’s

with varying architectures randomly distributed throughout the macroscopic model.
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Hence, each element within the macroscopic model will use a RVE that slightly differs

from the neighboring RVE’s. Figure 4.3 shows examples of six geometrically differ-

ent three dimensional three phase (fiber,matrix,interface) RVE’s. It should be noted

for completeness that material properties (critical stress, toughness, etc.) can also

exhibit spatial variations in a deterministic or random manner. Uniform properties

are assumed in this study preliminary study, and other cases will be addressed in the

future.

Figure 4.3: Selection of 3D-IFEM subcells with varying geometrical features

The choice of the three phase RVE’s, including fiber, interface and, matrix, created

to represent the microstructure of Ceramic Matrix Composites (CMCs) is based on

observations from experiment, however, the appraoch developed here is not limited

to these types of materials. Two phase (Polymer Matrix Composites) or one phase

material (pure matrix) RVE’s for example are possible and can be used. The objective

here is to demonstrate that RVE features are an integral part of developing physics

based multi-scale strategies that fall within the realm of predictive science.
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4.3.2 Dehomogenization of Displacement Field with Periodic Boundary

Conditions (Localization)

One essential step in multi-scale simulations is the transformation from the ho-

mogenized strain field to a local strain field. This step is denoted as the localization

step. Load has to be transferred at each material point of the component level

model to the microscopic RVE. In this work Periodic Boundary Conditions (PBCs)

are used to convert the homogenized strain state at each integration point of the

macroscale model into a displacement field that is applied on the boundaries of the

RVE. PBCs enforce displacement continuity on all outer surface nodes of the RVE

(Heinrich et al. (2012); Xia et al. (2003)) with the assumption that the RVE is part

of a infinite continuum. Equations 4.12 represent the three dimensional formulation.

These equations can be easily simplified to two dimensions. For compactness only

the three dimensional periodic boundary conditions are explicitly discussed here.

u1(L1, x2, x3)− u1(0, x2, x3) = ǫ11L1

u2(L1, x2, x3)− u2(0, x2, x3) = 2ǫ12L1

u3(L1, x2, x3)− u3(0, x2, x3) = 2ǫ13L1

u1(x1, L2, x3)− u1(x1, 0, x3) = 2ǫ21L2

u2(x1, L2, x3)− u2(x1, 0, x3) = ǫ22L2

u3(x1, L2, x3)− u3(x1, 0, x3) = 2ǫ23L2

u1(x1, x2, L3)− u1(x1, x2, 0) = 2ǫ31L3

u2(x1, x2, L3)− u2(x1, x2, 0) = 2ǫ32L3

u3(x1, x2, L3)− u3(x1, x2, 0) = ǫ33L3

(4.12)

where ǫij are the macroscopic strain quantities which are passed down from Abaqus

at each integration point of the component level model. L1, L2, and L3 are the

corresponding side lengths of the RVE in x-, and y-, and z-directions. Using the
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PBC approach in the localization step poses the requirement of mesh equality on

opposite surfaces of RVE. Each node on one boundary surface must have a partnering

node with the same in-plane coordinates on the opposite boundary surface. The

PBC constraints are implemented using the Penalty Approach (PA) (Chandrupatla

and Belegundu (2002)). Compared with the elimination approach the PA offers the

simplicity of implementation with only a minor set back in terms of time required to

solve the FEM problem.

β1Q1 + β2Q2 = β0 (4.13)

where Q1 and Q2 are the degrees of freedom (DOF) to be coupled and β0 the applied

distance between Q1 and Q2. β1 and β2 are integer parameters with a value of 1 and

-1, respectively.

y
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x
L2

L3

L1

(a)

y

z

x

2 12

2 13

2 23

(b)

Figure 4.4: Periodic boundary conditions a) undeformed state b) deformed state

4.4 Prediction of Elastic Properties of Fiber-Reinforced Com-

posites

In the past, theoretical derivations of elastic properties of fiber-reinforced com-

posites have been developed (Hashin and Rosen (1964), Hill (1964)) where the rule

of mixtures represents the most basic model to predict elastic properties, however
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it lacks accuracy for transverse properties. In this work the well known and widely

accepted concentric cylinder model (CCM) is used for a comparison of the elastic lam-

ina properties. The CCM equations can be found in the appendix. In the following

equations, it is assumed that the fiber direction is denoted as the local 1-direction.

Hence, directions 2 and 3 are transverse to the fiber. A standalone version of IFEM

has been developed to predict the elastic properties of fiber reinforced composites.

An orthotropic material model is assumed and all nine homogenized constants are

calculated.
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(4.14)

Three IFEM calculations with varying boundary conditions in form of displace-

ment fields are necessary in order to calculate all entries of the stiffness matrix C

(equation 4.15). Entries in the first column (C11,C21,C31) and the shear entry C44 are

calculated by applying the global strain field as follows,
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(4.15)

where the strain field ǫ is converted to a displacement field using periodic boundary
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conditions as described above (section 4.3.2). In order to calculate the remaining

entries of the stiffness matrix C two additional global strain fields are applied in

separate IFEM calculations.
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All nine elastic properties can be readily calculated by inverting the resulting

stiffness matrix C to arrive at the compliance matrix S for orthotropic materials

which is commonly written as,

S =
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Elastic constituent (matrix, fiber, interface) input properties are assumed to be

isotropic and are given in table 4.1 A limited number of experimentally determined

Table 4.1: Elastic constituent input properties

Material Young’s Modulus E [ N
mm2 ] Poisson’s Ratio ν

Matrix 340000 0.14
Fiber 380000 0.14

Interface 10000 0.19

elastic lamina constants can be found in Dunn (2010). Transversely isotropic con-
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stants based on the CCM model are shown in column two of table 4.2. It can be

seen that a good match is achieved between IFEM and CCM predictions and the

experimentally measured Young’s modulus in the fiber direction.

Table 4.2: Comparison of elastic lamina properties

Property Experimental CCM IFEM

E11[GPa] 318 329 332
E22[GPa] 257 195 254
E33[GPa] n/a n/a 254

ν12 n/a 0.14 0.14
ν13 n/a n/a 0.14
ν23 n/a n/a 0.107

G12[GPa] n/a 107 111
G23[GPa] n/a 75 91
G13[GPa] n/a n/a 111

4.4.1 Influence of Volume Fractions on Composite Properties

Perfect control of constituent volume fractions within CMCs is inherently difficult

especially for the fiber coating material. A numerical volumetric parameter study has

been conducted to study the effects of varying constituent volume fractions on the

composite properties. A five fiber RVE was used in this study as shown in Figure 4.6.

A constant fiber volume fraction of 21% was used. The coating volume fraction varies

from 7 - 11% leading to a matrix volume fraction within the range of 68 - 72%. All

engineering constants show a linear dependence on the coating volume fraction except

for ν12. The constituent material properties are given in table 4.3. Young’s modulus

of the fiber was 380GPa, Young’s modulus of the matrix was 340GPa. Uncertainty

exists with respect to the elastic stiffness of the coating. However, experiments suggest

that it is an order of magnitude lower than the fiber and matrix stiffness and lies

within the range of 4GPa to 12GPa. In this study it was chosen to be 10GPa. As

expected from a simple rule of mixture analysis, an increased coating volume fraction

decreases the composite stiffness. The longitudinal modulus decreases from 325MPa
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at vc = 7% to 310MPa at vc = 11%. The transverse modulus varies within the range

of 219MPa to 191MPa. The shear modulus decreases from 101MPa to 92MPa. ν23

increases from 0.208 to 0.228. ν12 remains constant for the range of coating and

matrix volume fractions studied here.
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Table 4.3: Constituent input properties for varying coating & matrix volume fraction

Material Young’s Modulus E [MPa] [ N
mm2 ] Poisson’s Ratio ν Volume Fraction %

Matrix 340000 0.14 68 - 72 vol%
Fiber 380000 0.14 21

Coating 10000 0.19 7 - 11 vol%

Change of Composite Moduli 

0

50

100

150

200

250

300

350

6 7 8 9 10 11 12

C
o

m
p

o
si

te
 M

o
d

u
lu

s 
[G

P
a
] 

Coating Volume Fraction [%] 

E11

E22

G12

(a)

0

0.05

0.1

0.15

0.2

0.25

6 7 8 9 10 11 12

C
o

m
p

o
si

te
 P

o
is

so
n

's
 R

a
ti

o
 

Coating Volume Fraction [%] 

nu12

nu23

Change of Composite Poisson’s Ratio 

(b)

Figure 4.5: Change of a) composite moduli b) composite Poisson’s ratios with varying
coating & matrix volume fractions
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4.4.2 Influence of Constituent Elastic Properties on Composite Proper-

ties

In-situ constituent properties are generally intrinsically difficult to measure ex-

perimentally. A numerical study can be used to determine the effects of varying

elastic composite properties. In this chapter the focus lies on Young’s modulus for

the three main constituents, e.g. fiber, fiber-coating, and matrix. Table 4.4 shows the

input parameters used in the parameter study with varying coating Young’s modulus.

Transversely isotropic composite properties are assumed, e.g. E22 = E33, G12 = G13,

and ν12 = ν13. In CMC materials, there is a uncertainty in the coating properties.

Figure 4.7 shows the influence on the lamina elastic properties with a change of the

coating Young’s modulus. As could be expected, based on a simple rule of mixture

estimation, the lamina Young’s modulus in fiber direction E11 is not affected since

the stiffness of the fiber and matrix are orders of magnitudes larger compared to the

coating. The transverse stiffness ranges between 150 GPa to 230 GPa with a change

of the coating modulus between 1 GPa to 12 GPa. Transverse to the fiber the load can

only be transferred between the matrix and the fiber through the coating. Hence, the

transverse lamina stiffness E22 is more affected with a change of the coating stiffness.

The shear moduli G12 and G23 change only slightly and range between 80 GPa to 90

GPa and 90 GPa to 100 GPa, respectively. Poisson’s Ratio ν12 remains constant as

can be seen from Figure 4.7b. However, ν23 ranges from 0.35 to 0.21 for the tested

range of the coating stiffness.

Next, the influence of the fiber stiffness on the lamina properties are investigated.

Young’s modulus of the fiber was varied between 340 GPa and 400 GPa. Figure 4.8a

depicts the change of lamina moduli. E11 changes slightly between 325 GPa and 335

GPa. Due to the low fiber volume fraction the influence of the fiber is small since the

matrix has a comparable stiffness. The contribution of the fiber stiffness to the com-

posite stiffness transverse to the fiber direction ,E22, is negligible since the compliant
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coating does not transfer much load to the fibers. The shear moduli G12 and G23 are

not affected due to the same reason. Figure 4.8b depicts the change of Poisson’s ratio

with a change in fiber Young’s modulus. ν12 remains constant and ν23 shows minimal

changes.

Figure 4.6: Five fiber RVE used for volumetric & constituent property parameter
studies

119



Table 4.4: Constituent input properties for varying coating Young’s modulus

Material Young’s Modulus E [MPa] [ N
mm2 ] Poisson’s Ratio ν Volume Fraction %

Matrix 340000 0.14 75
Fiber 380000 0.14 20

Coating variable 0.19 5
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Figure 4.7: Change of a) composite moduli b) composite Poisson’s ratios with varying
coating modulus
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Table 4.5: Constituent input properties for varying fiber Young’s modulus

Material Young’s Modulus E [MPa] [ N
mm2 ] Poisson’s Ratio ν Volume Fraction %

Matrix 340000 0.14 75
Fiber variable 0.14 20

Coating 10000 0.19 5
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Figure 4.8: Change of a) composite moduli b) composite Poisson’s ratios with varying
fiber modulus
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Table 4.6: Constituent input properties for varying matrix Young’s modulus

Material Young’s Modulus E [MPa] [ N
mm2 ] Poisson’s Ratio ν Volume Fraction %

Matrix variable 0.14 75
Fiber 380000 0.14 20

Coating 10000 0.19 5
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Figure 4.9: Change of a) composite Moduli b) composite Poisson’s ratios with varying
matrix modulus
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4.5 Post-Peak Softening Implementation within IFEM

In this chapter the energy based crack band method is introduced on an elemental

basis of the IFEM calculations. Damage and failure, as introduced in 3.3, are modeled

for each constituent material separately. In addition to the elastic properties fracture

properties, such as fracture toughness GIC and material strength σcr, have to be

supplied by the user for each constituent. The damage history for each element within

the subcell model is stored in the user defined state variable space for all integration

points of the macroscopic model. This ensures consistent progressive failure within

the overall IFEM.

4.5.1 Implementation of Crack Band Failure Scheme within IFEM at the

microscale

The post-peak strain softening model used within IFEM at the microscale is sim-

ilar to the formulation covered in section 3.3 with the exception of the crack ori-

entation. A maximum principle strain criterion is employed to predict the onset of

damage.

ǫ
′

ǫcr
= 1 (4.18)

It is assumed that once damage has initiated within a subcell the compliance of

the element is degraded isotropically. There is no preferred crack direction within

elements of the RVE, however the macroscopic response e.g. homogenized compliance

of a subcell, remains orthotropic. This method yields an increased computational

efficiency which is of great importance to multi-scale modeling approaches. The use

of the crack band method results in mesh objective predictions within the RVE’s.

However, the component level simulation remains mesh dependent. This needs to be

taken into account when choosing a discretization size of the global model. Equations
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3.26 are changed as follows,
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4.5.2 Numerical Calculation of Jacobian Matrix for Implicit Simulations

All numerical predictions in this work were carried out with an implicit solution

methodology in Abaqus. Due to the nature of the backward Euler scheme used in

Abaqus implicit simulations a Jacobian matrix δ∆σ
δ∆ǫ

has to be supplied at the end

of the user defined material law (Abaqus (2008)). In implicit FEM calculations it

is used to find the next converged solution. In case of the undamaged subcell the

Jacobian matrix is constant and calculated only once in advance of the actual multi-

scale simulation. It is stored in a fortran compiled file and can be called at any time

during the IFEM simulation. In case of damage in the subcell model a new Jacobian

matrix should be calculated to guarantee fast convergence of the macroscopic model.

It should be noted that a constant Jacobian matrix might lead to convergence but at

the cost of loosing a quadratic convergence rate during the Newton-Raphson scheme

used in the Abaqus FEM solution process. Stein and Sagar (2008) showed that

fewer numbers of equilibrium iterations are needed at each increment to arrive at the

desired solution accuracy. Since IFEM leads to a numerical material law for composite

materials, the Jacobian matrix, denoted in Abaqus UMATs as DDSDDE, must be

124



determined numerically. The procedure is as described in section 4.4.
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Three separate IFEM calculations on the damaged subcells have to be carried out

with three global strain vectors, Eq. 4.20, applied on the boundaries of the damaged

subcell separately and the corresponding stress state is determined. Equations 4.21

depict the calculation of the first column of the Jacobian matrix as well as the entry

S1212.
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(4.21)

This scheme requires additional numerical effort on the micro-scale model but ulti-

mately leads to a reduction of time required to solve the macroscopic finite element

problem due to better convergence.
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4.6 Single Edge Notch Uniaxial Monotonic Tensile Simula-

tion

In this section a single edge notch model is simulated and the stress-strain response

and crack paths are predicted for three different lay-ups. The notch dimensions are

presented in Figure 4.10. A notch width of 0.18mm with a notch radius of 0.09mm

is used. The notch depth was approximately 1/15th of the specimen gauge section

width. Figure 4.11 shows the boundary conditions and loading on the model. The

edges X0 and X1 are subjected to a displacement in negative and positive x-direction,

respectively. The corner A at X0 is prevented from moving in y- and z-direction to

avoid rigid body movement. All models are meshed with three dimensional 8-noded

elements (C3D8R). Important to note here is that like any real specimen no strict

symmetry in geometry with respect to the center line of the notch exists which leads

to unsymmetrical failure as described below. In addition, the microstructure was

randomized by using six geometrically unique RVEs which are randomly distributed

throughout the model. The RVEs include 1-, 2-, or 3-fibers each. One RVE was mod-

eled with touching fibers. Although the RVEs result in comparable elastic composite

properties, e.g. pre-peak behavior, differences exist for the post-peak regime. RVEs

with clustering fibers exhibit higher stress concentrations and tend to initiate damage

at a lower stress state compared to other RVEs. The constituent elastic and fracture

properties are given in table 4.7. A maximum principle strain criterion was used for

each constituent (equation 4.18).

By introducing a characteristic element length to the microscale constituent model

it was shown in chapter 3.3.2 that mesh objectivity is preserved. However, the cur-

rent multi-scale model does not transfer the mesh objectivity across scales. A mesh

convergence study is therefore necessary. Three mesh renditions of the same single

edge notch model are compared as depicted in figure 4.12. Mesh I consists of 37140
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degrees of freedom (dof), mesh II consisted of 110260 dofs, and mesh III consisted

of 269835 dofs. All models were run in a cluster environment on a single node with

12 processors. Due to the increased number of integration points, the model runtime

increased from 1042min for the coarse mesh to 3105min for mesh III, an increase of

297%. The memory usage rose from 689 Mb to 4638 Mb representing an increase of

673%.

Table 4.7: Constituent elastic and fracture properties used in single edge notch finite
element simulations

Material
Young’s Modulus

(MPa)
Poisson’s Ratio

ν
Critical Strain
ǫcr (MPa)

Fracture Toughness
GIC (N/mm)

Matrix 340000 0.14 0.001 0.05

Coating 10000 0.19 0.04 0.05

Fiber 380000 0.14 0.012 0.005
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Figure 4.10: Notch dimensions of single edge notch tensile simulation
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model 

X0 

x 

y 

X1 

A 

Figure 4.11: Boundary conditions of a [0/90]2s single edge notch tensile multi-scale
simulation

128



(a)

(b)

(c)

Figure 4.12: Three meshes of the single edge notch finite element model for mesh
convergence study a) coarse mesh b) fine mesh c) fine structured mesh. A field of
view was restricted to the area around the notch in order to resolve mesh details
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Figure 4.13 shows the stress-strain response of a single edge notch specimen at

room temperature and results from IFEM predictions with three discretization sizes.

The experiments were conducted on ”as received” specimens. It is assumed that

residual stresses from the manufacturing process were present in the specimen. A

disparity between the IFEM predictions and the experimental results is therefore ex-

pected.

As mentioned above, mesh objectivity is not transferred between the macroscopic and

microscopic scale. The introduction of a characteristic element length into the crack-

band formulation guarantees mesh independence of the IFEM-RVE models provided

that the maximum characteristic element length is smaller than the critical length as

described in chapter 3.3.1 . However, the ultimate load and post-peak behavior of the

macroscopic response will depend on the discretization size used on the macroscopic

scale model. Larger elements and therefore larger volumes will increase the apparent

dissipated energy. This dispute is suggested to be addressed in future work. The

pre-peak elastic composite stiffness is not affected by the mesh size as can be seen

from figure 4.13. The stress reported here is the net section stress, e.g. reaction

force/net section area. The reported strain is the average measure of the surface

strain field in the tensile direction (ǫxx) comparable to the area used in figure 2.41.

The ultimate net section stress decreases by 2% from 240MPa predicted with mesh I

to 230MPa as predicted by the discretization size used in mesh III. Mesh convergence

has been achieved with mesh II since the ultimate load does not change significantly

between mesh II and mesh III. Minor differences in the predicted strain to failure are

observable and can be attributed to the location change of the measured strain values

due to the discretization size of the elements. The initial elastic stiffness is in good

agreement with the experiment. Both, the ultimate load and strain to failure match

with the experimental results. The strain to failure of the matrix was increased in

this study to account for residual stresses which effect the experimentally measured
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stress-strain response. A deviation from linearity can be observed before the ultimate

load is reached for both, the IFEM prediction and experimental results. Damage ini-

tiation can be observed before the onset of non-linearity in the stress-strain response.

Damage initiation observations based on the DIC results tend to be subjective due

to the resolution restrictions and are regarded as approximate measures. Localized

damage, in form of microcracks, might occur before it can be detected with the DIC

system. Damage onset during the IFEM multi-scale simulation is easily measurable

and corresponds to the first element that exceeds the critical strain within an IFEM

RVE. Damage initiation is predicted at 47MPa, 48MPa, and 48MPa for mesh I,

mesh II, and mesh III, respectively. Initially cracking can be observed in two distinct

regions slightly offset of the notch-tip. These cracks evolve under further increased

loading until one crack dominates. The angle spanned between the simultaneously

occurring cracks is determined by the composite layup. It is larger for unidirectional

laminates and smaller for cross-ply composite lay-ups. Upon increased growth of the

dominant crack the stress field around this crack intensifies and simultaneously de-

creases around the second crack. This leads to a reduction of the crack opening of the

less dominant crack as was shown experimentally by Tracy (2014). The phenomenon

of a single dominant crack advancing can only be observed numerically if antisymme-

try is introduced in the finite element model. In the IFEM multi-scale methodology

this is achieved through the use of multiple geometrically different RVEs and a non-

symmetric mesh, as mentioned above. A material property based randomization is

introduced in chapter 4.7.1. Figure 4.13 shows the crack development at three stress

levels, e.g. 150MPa, 250MPa, and at the ultimate stress of each simulation. The

crack path is similar for the three mesh sizes investigated in this chapter. The crack

width is determined by the element width. Smaller elements will result in smaller

crack width as can be observed in the illustrations of the crack paths in figure 4.13.

Due to the small element size of the models only the specimen edges are shown. In
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order to resolve the crack details, the field of view of the plots was restricted to the

area within the vicinity of the notch.

The response of single edge notch tensile models is investigated for four composite

lay-ups. Input properties for the IFEM model as well as the used subcell were iden-

tical throughout the models and are given in table 4.7. Only the element directional

assignments of the layers were set to create the following laminates: [0/0]s,[+45/-45]s,

[90/0]s, and [0/90]s. Mesh III, as discussed above, was chosen for this study. Fig-

ure 4.14 depicts the stress-strain response and crack paths on the surface for [0/0]s,

[+45/-45]s, and [0/90]s laminates. The elastic stiffness of the [0/0]s laminate is pre-

dicted as 290GPa. Elastic stiffnesses for the [90/0]s and [0/90]s lay-ups are identical

as expected based on the principles of the lamination theory and were predicted as

290GPa. Young’s modulus of the [+45/-45]s laminate was predicted to be lower com-

pared to the other three laminates as 290GPa. Longitudinal strain, ǫxx, calculated

as total displacement / the length of the specimen, is used for this comparison.

Laminate [0/0]s sustained the highest fracture stress of 330MPa. A noticeable non-

linear stress-strain response before fracture can be seen in figure 4.14 for this lam-

inate. Non-linearity corresponds to fibers bridging existing matrix cracks. Hence,

matrix cracks in all four layers can develop before fracture of the fibers occurs. This

leads to a larger combined crack opening and hence a non-linear stress-strain be-

havior. The fiber strength is an order of magnitude larger compared to the matrix

strength. Hence, it is expected to observe higher ultimate stresses for laminates that

contain high amounts of fibers that are oriented with the loading direction. The

weakest laminate in this comparison is the [+45/-45]s lay-up which matches with the

experimental observations discussed in chapter II. The ultimate stress was predicted

as 170MPa. The crack path of this prediction is given at lower stresses compared

to the other three laminates, due to the comparably low ultimate stress. Point A in

figure 4.14 represents a composite stress of 100MPa. Crack growth of the [+45/-45]s
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laminates differs from the one observed for the other three laminates. A single crack

initiates at the notch tip. This observation matches with the experimental results

discussed in chapter II. On further loading splitting at the crack tip is observed be-

fore a single crack advances. The crack grows under a 45◦-angle for approximately

1.5mm before turning perpendicular to the loading direction. The numerical predic-

tion showed two cracks before catastrophic fracture. Multiple cracks were observed

in the experimental study in section 2.3.2. It is expected that a randomization of the

microstructure will improve the model prediction. This will be further investigated

in ongoing research.

Despite identical elastic responses of the [90/0]s and [0/90]s lay-ups, the ultimate

crack paths and ultimate stress vary. Both models predict two sites of damage ini-

tiation slightly off-set of the notch tip and comparable crack propagation at point

B (250MPa). A single crack advances on the surface of the [0/90]s laminate before

turning perpendicular to the loading direction. A single crack occurs at the notch

tip, in-between the two existing cracks, of the [90/0]s model. It advances to a length

of approximately 0.9mm before splitting of the crack tip into two distinct cracks oc-

curs. Figure 4.15 shows the propagation of damage in the outer-most layer of both

[90/0]s and [0/90]s laminates in more detail. Damage initiates for both laminates well

below any non-linearity in the stress-strain response can be detected. The damage

initiates at two locations in the vicinity of the notch tip. The stress-strain response

and crack propagation are similar in both laminates at a stress of 250MPa. However

the ultimate stress of the [90/0]s laminate was predicted to be higher. The post-peak

crack path clearly shows that multiple cracks form in the outer 90-degree layer of the

[90/0]s laminate (Points I and J). A second crack initiates at the opposite side of the

notch and grows parallel to the existing crack until it ultimately joins with the second

crack at the notch tip. The damage propagation in the [0/90]s laminate is predicted

as a single crack, which originated at the notch.
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Figure 4.13: Stress-Strain response and crack paths of a cross-ply [0/90]s single edge
notch monotonic tensile specimen - Experimental results compared with IFEM sim-
ulation (three discretization sizes)
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Figure 4.14: Stress-Strain responses and crack paths of the single edge notch mono-
tonic tensile simulation - Comparison of four lay-ups [0/0]s,[+45/-45]s, [90/0]s, and
[0/90]s
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Figure 4.15: Stress-Strain responses and crack paths of the single edge notch mono-
tonic tensile simulation - Comparison of [90/0]s and [0/90]s laminates
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4.7 Smooth-Bar Uniaxial Monotonic Tensile Simulation

In this section 3D-IFEM will be used to analyze the failure of an eight layer

([0/90]2S) cross-ply smooth bar ceramic matrix composite specimen. The specimen

dimensions are: 152.4mm long, 10.16mm wide at the gage section, and 12.7mm wide

at the grip section. Figure 4.16 depicts the boundary conditions. The left vertical edge

was simply supported with a displacement restriction in x-direction. The right edge

was displaced in x-direction by 0.1mm. Each layer was modeled with one element

through the thickness resulting in 400000 degrees of freedom. Orientations were

assigned to each layer of the macroscopic model. Six randomly distributed subcells

containing 1-, 2-, and 3-fibers each were used in order to accurately represent the

real microstructure. Two of these subcells contained touching fibers, a phenomenon

which is often observed in this type of CMCs.

125.4 mm 

y 

x 

101.6 mm 

Figure 4.16: Simulation details of CMC smooth bar tension model

The stress-strain responses for both the numerical prediction and experimental

result are shown in Figure 4.17. The strain corresponds to the accumulated strain

over the gage section and was measured using a 1 inch extensometer. It can be seen
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that the onset of non-linearity in the simulation appears to be more abrupt. This

might be a result of small residual stresses still present in the real specimen. In

an effort to minimize the effects of residual stresses in the experiment, specimens

were heat treated before testing. The initial response and beginning of the post-

peak stiffness predicted with 3D-IFEM is in good agreement with the experimental

results, shown in figure 4.17. At a strain of 0.2% the prediction deviates from the

experimentally measured response. The ongoing softening can likely be attributed to

fiber-pullout. This effect is currently not modeled within the IFEM framework. A

further discussion of this phenomenon is presented in chapter V.
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Figure 4.17: Stress-Strain response of a [0/90]2s smooth bar tensile specimen

No distinctive strain localizations are observed at the lamina level due to the lack

of geometric stress concentrations. Generally impurities can be found in ceramic ma-
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terials resulting in local changes of the matrix strength or fracture toughness.

In an attempt to investigate the propagation of damage within each lamina the dam-

age parameter Dlamina is introduced. Dlamina = 0 if no damage has occurred and

Dlamina = 1 if an element has entered the post-peak regime. Figure 4.18 shows the

development of damage in a [0/90]2s specimen in both 90◦ and 0◦ lamina with blue

elements representing Dlamina = 0 and red elements representing Dlamina = 1. Dam-

age initiates in the 90◦-layers first before it spreads into the 0◦-layers. Damage is also

distributed throughout the 90◦-layers whereas distinctive crack-bands form in the 0◦-

layers. This phenomenon can be explained with a shear-lag type analysis as discussed

in chapter 3.2. Stresses in the immediate vicinity of a matrix crack in a 0◦-layer are

below the matrix strength. Stresses build up to a critical value within a characteristic

length at which a new crack can form. This characteristic length diminishes with an

increased loading of the specimen resulting in damage accumulating in-between the

existing cracks.
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Figure 4.18: Damage propagation in 0◦-layer & 90◦-layer of a smooth bar [0/90]2s
tensile simulation
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4.7.1 Modeling of Material Inhomogeneities

In the absence of geometrical stress risers such as notches it is important to include

randomness in numerical models as shown in chapter 4.7. Material inhomogeneities

are present in every specimen and this needs to be captured in multi-scale models. As

shown before randomness can be included by using a fixed number of geometrically

different subcells. In order to increase computational efficiency, a distribution of the

material strength can be used instead of geometrical random subcells. One subcell

with a small number of elements can be chosen and used throughout the macroscopic

model optimizing the computational costs. In this chapter a two-parameter Weibull

probability distribution is used to assign varying values of matrix strength to every

element of the macroscopic model.

f = 1− e

(

σ
σ0

)n

(4.22)

where n is the Weibull modulus and σ0 is the center strength. Generally, the pa-

rameters of the Weibull-Strength distribution are difficult to measure experimentally.

Therefore it must be shown that variations of the shape parameter n will not impact

the FEM predictions significantly. Three simulations, similar to the smooth bar sim-

ulation in chapter 4.7, were carried out. One single fiber subcell was used and the

Weibull modulus was chosen as n = 15 , n = 20, and n = 30. The distributions are

shown in figure 4.19. An increase in the Weibull modulus leads to a more narrow

strength distribution with an increase in probability for a particular strength. The

smallest critical stress increases from σcr = 160MPa for n = 15 to σcr = 175MPa for

n = 30. The maximum critical stress decreases from σcr = 220MPa for n = 15 to

σcr = 210MPa for n = 30. Variations in the mean strength σ0 will affect the onset of

damage and therefore will shift the stress-strain response along the ordinate without

affecting the shape. The following simulations were carried out with σ0 = 200MPa.
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Figure 4.20 shows the stress-strain response as predicted by the IFEM models. No

significant difference can be observed. The minimum strength for a Weibull modulus

of n = 15 is lower compared to n = 30 however, the effect is minimal due to an in-

crease in the number of elements with the lowest strength for n = 30. As can be seen

from these results, a Weibull strength distribution is a viable tool to model material

inhomogeneities. It is useful for numerical predictions that lack physical stress risers.

Optimizations with respect to the model run-time can be achieved by choosing a RVE

with a minimum number of features (elements) that captures the expected material

non-linear response correctly. This technique does not address the damage behavior

in the zero plies at strains larger than ǫ = 0.0025 as discussed in chapter 4.7. It is

assumed that fiber pull-out occurs which leads to strain softening in the stress-strain

response (figure 4.20). Future work will include a combination of material strength

variation and a distribution of geometrically different RVE’s.
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Figure 4.19: Weibull matrix strength distribution a) n=15 b) n=20 b) n=30
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Figure 4.20: Effect of Weibull matrix strength distribution on the stress-strain re-
sponse of CMC smooth bar FEM simulation

4.8 Conclusions

Finite element predictions of coupon level models were discussed in this chapter

and a multi-scale method was introduced. A dehomogenization technique of a global

strain field is used to transfer information at every integration point of a part level

model (global model) to the microscopic model. Volume averaged stresses are used to

homogenize the stress-field in the representative volume element (RVE). The homog-

enized stress field is passed back up to the global scale model. The stiffness tensor

for each RVE is re-calculated upon damage initiation to retain a quadratic conver-

gence with the Abaqus implicit solving scheme. It was shown that crack paths and
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stress-strain responses of single edge notch specimens and smooth bar specimens can

be predicted accurately. The energy based crack band method has been implemented

in the constitutive equations of a finite element model to predict constituent damage

within the RVE. Single edge notch predictions showed matrix damage initiated at

two locations slightly off-set of the notch tip. Both cracks grow until fiber damage

occurs and one crack overtakes the other and subsequently determines the final crack

path. Damage of cross-ply smooth bar specimens was shown to exhibit matrix crack

bands which lead to a non-linear strain softening stress-strain response. The ultimate

strain to failure is determined by fiber fracture in the zero plies.

It was shown that the damage initiation and growth in the 0-plies is captured inad-

equately. Matrix cracks were shown to grow perpendicular to the fibers in mode I.

However, if a crack tip encounters a fiber in a longitudinal ply, the crack tip deviates

from pure mode I growth. If the crack propagates in the coating material along a

fiber, the fracture mode changes to mixed mode behavior, e.g. mode I and mode II.

A mixed mode damage initiation criterion, e.g. in equation 4.23, should therefore be

considered for the coating material in the future.

(

ǫ11
ǫcr11

)2

+

(

ǫ12
ǫcr12

)2

= 1 (4.23)

Furthermore, an energetic mixed mode powerlaw should be used for the damage

propagation in the coating as shown in equation 4.24.

(

GI

GIC

)n

+

(

GII

GIIC

)m

= 1 (4.24)

where n and m are experimentally determined parameters (Johnson and Mangalgiri

(1985)).
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CHAPTER V

Fiber Pull-Out Simulations

5.1 Introduction

The enhanced toughness of CMCs has led to more versatile engineering composite

properties and has had a profound impact on their usefulness in industrial applica-

tions. Increased toughness is a result of the ability of the fibers to release energy

through debonding and sliding. Propagating matrix cracks must be deviated along

a fiber, rather than introducing premature fiber rupture, in order to increase the

overall performance of the composite. This requires that an upper bound is placed

on the interface toughness between the fiber/matrix or fiber/coating. Fiber debond-

ing occurs at both the crack front and in the crack wave as shown in figure 5.1.

Pure matrix cracks are mode I dominated whereas fiber debonding occurs in mixed

mode. Many analytical models have been developed over the years to describe the

mechanisms during fiber-pullout (Hutchinson and Jensen (1990)). Analytical mod-

els usually assume either a constant friction stress or Coulomb friction to predict

interfacial sliding. Evans (1988) reviews damage behaviors of CMCs and gives an

overview of damage parameters associated with mode I, mode II and mixed mode I-II

damage behaviors. Evans (1988) states that the debond resistance of a bimaterial

interface is characterized by two parameters: the critical strain energy release rate

GIC and the phase angle of loading ψi. The extent of debonding is influenced by
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the residual stress field. Residual radial tension tends to increase debonding whereas

residual radial compression reduces the extent of the debonded interface. Sigl and

Evans (1989) studied the effects of residual stresses in detail on a simple composite

cylinder model. It was suggested that an optimum residual strain exists to maximize

the matrix cracking stress. Thouless and Evans (1988) used a statistical analysis of

the location of fiber failure to establish the influence of pull-out on the mechanical

properties of the composite. Fiber debonding effects were neglected and the findings

were limited to CMCs that exhibit low interfacial bonding.

Crack 

Opening

Debonded

Fiber

Fiber 

Break

Figure 5.1: Schematic illustrating crack opening, fiber debonding, and fiber pullout
at the crack front and in the crack wave

Experimental measurements of interfacial properties are inherently difficult. Two

approaches have been developed to determine the constant sliding stress τ : Fiber-

pushout tests and crack opening hysteresis tests. Marshall and Oliver (1987) used the

indentation method to investigate properties of the fiber/matrix interface in SiC/glass

ceramic composites. A nano-indenter pushes into a single fiber. The total displace-

ment, a combination of the sliding displacement and indentation, and reaction force

were measured. The frictional stress fell within the range of 2.8 - 3.5MPa.

In the previous chapters, the effect of fiber-pullout in longitudinal plies was discussed.
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The present chapter focuses on experimental observations of post-failure fiber pullout

and addresses finite element modeling techniques that are able to capture interface

debonding through cohesive elements. After initial debonding has occurred between

two constituent materials Abaqus surface to surface contact formulation is used to

simulate frictional effects. The Coulomb friction model is employed to describe the

tangential sliding behavior. It is characterized by the friction coefficient µ

5.2 Experimental Measurements of Fiber-Pullout

The experimental procedures for high temperature testing of CMCs was discussed

in chapter II. It was mentioned that the tested cross ply [0/90]2s CMC samples

exhibited fiber-pullout at elevated temperatures. However, no significant pullout was

observed at room temperature. Furthermore, no difference of the pullout length at

the tested temperatures of 1093◦C, 1204◦C, and 1316◦C was noticeable. Figure 5.2

depicts the CMC specimen after the pullout test had been completed. The specimen

has separated into two pieces and no fibers are bridging the crack surface. Two

images at magnifications of 100x and 500x show the fiber pullout in the plies lined

up with the tension direction. It is apparent that a variation in pullout length exist.

The existence of fiber pullout clearly shows that the shear resistance of the coating

material degrades at elevated temperature. The SEM images show that the coating

remains attached to the matrix and fibers pull out of the coating. It is assumed

that matrix cracking typically occurs in mode I until the crack tip reaches the fiber

coating. If the crack is deflected along the fiber, mode II dominates.
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No Coating on 

Fibers 

Figure 5.2: Investigation of fiber pullout of a CMC specimen tested at 1315◦, the top
picture shows the surface of the CMC specimen after fracture, bottom left SEM image
taken at 100x magnification, bottom right SEM image taken at 500x magnification

Fiber pull-out resistance was measured after a monotonic tensile test had been

conducted and the specimen had fractured catastrophically. The temperature was

held constant at the same level of the tensile test until the fiber pullout resistance

test was completed. The load cell data and cross head displacement were recorded

for the duration of the test. In addition, images of the separation were recorded at

a frame rate of 2 images/sec. The displacement rate during the pullout test was set

to 0.254 mm/min. It is assumed that the fibers fractured at various locations inside

the composite during the monotonic tension test. Hence, the fiber pullout test can

be used to calculate the sliding resistance stress only.
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Figure 5.3: SEM micrograph used to measure fiber lengths of a specimen that was
tested at 1315◦

In order to measure the variations of the fiber pullout length, SEM images with

a 100x magnification were taken perpendicular to the crack surface. Six images were

taken to cover the entire specimen width. The images were taken with a slight overlap

and eventually stitched to form a complete image of the the crack surface. Figure 5.3

illustrates an SEM image of the left edge of the crack surface. The fiber lengths of all

fibers contained in the outer layer were measured. The histogram of the fiber pullout

lengths is shown in figure 5.4. The histogram bin width was set to 0.05mm. It can

be observed that the majority of fibers exhibit short pullout lengths within the range

of 0.1 - 0.25mm. Larger fiber pullout lengths above 1mm were measured, however

the contribution to the load transfer is small due to the low number of fibers.
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Figure 5.4: Histogram of the fiber pullout length for a single layer

5.3 Fiber-Pullout Micromechanics within the Finite Element

Method

Fiber pull-out simulations were carried out in the finite element suite Abaqus.

Three dimensional elements (C3D8) were used to model the constituent materials,

e.g. fiber, matrix, and coating. User defined discrete cohesive zone elements (DCZM)

were inserted between the nodes of the fiber and the coating material. The idea of

DCZM elements is to treat the cohesive zone between two materials as a discrete

spring foundation as shown in figure 5.5. In this study 1D-DCZM elements connect

two initially coincidental node pairs, one node for each material. The DCZM elements

adopted in this study differ from those reported in Xie et al. (2006). In this work it
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is assumed that no rotations occur between the fiber and coating surface. Only the

relative perpendicular displacement determines the crack opening. Additional stresses

due to the Poisson’s expansion of the fiber are small compared to the cohesive-, and

constant friction stress as was shown by Marshall and Oliver (1987).

Fiber 

Coating 

y 

x 

Figure 5.5: Two DCZM interface elements connecting two node pairs in the cohesive
region between the fiber and coating material

In the present study a triangular cohesive law is used as shown in figure 5.6. The

critical opening δcr can be calculated as,

δcr =
Fcr

Ki

(5.1)

where Ki is the initial stiffness which is selected to be large compared to the fiber

stiffness. When the cohesive force Fcr and the fracture toughness gIC are known the

maximum crack opening δm can be calculated as,

δm =
2gIC
Fcr

(5.2)
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The post-peak tangent stiffness can be calculated as,

Ky = −
Fcr

δm − δcr
(5.3)

The DCZM element stiffness vanishes (Ky = 0) for δ ≥ δcr. After the DCZM elements

have failed completely only frictional forces based on the Abaqus contact formulation

act between the fiber and coating surfaces.

Ky 

Fcr 

δcr δm 

Ki gIC 

δ 

F 

Figure 5.6: Triangular cohesive zone law for DCZM elements

The DCZM elements require the existence of initially coincidental nodes connect-

ing the two bridging materials (fiber/coating). In order to create these node pairs

on a cylindrical surface, a dummy material is introduced during the mesh creation as

depicted in figure 5.7. The dummy material is meshed with a single element through

the thickness. Due to the intricate geometries of the models a bottom-up mesh tech-

nique is used to create the finite element mesh in Abaqus. Subsequently a Matlab

script was developed to collapse the dummy elements to zero thickness elements and

to assign the DCZM elements to the coincidental node pairs. The volume fraction

of the coating material had been reduced to account for the dummy material. Sub-
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sequent to collapsing of the dummy element the original coating volume fraction is

re-established. It is assumed based on the experimental findings that the bonding

between the coating and the matrix is perfect. Debonding or frictional effects are not

modeled between these two constituents.

Fiber 

Matrix 
Coating 

Dummy 

Figure 5.7: Strategy for creating DCZM elements within the 3D-FEM pullout model;
Shown is a single fiber with a dummy material between the fiber and coating material

In order to achieve a good representation of the CMC microstructure, multiple

fibers with varying length are included in the model based on the experimental find-

ings discussed in chapter 5.2. The fiber lengths are: L1 = 40 ➭m, L2 = 60 ➭m,L3 =

80 ➭m, L4 = 100 ➭m, L5 = 120 ➭m, L6 = 140 ➭m. Variations of the fiber diameters

are typical for CMC materials and therefore should be part of the model. In the

current work two fiber diameters were chosen: D1 = 8 ➭m, D2 = 10 ➭m. The fibers

are located randomly within the model. The model consisted of 153789 degrees of

freedom. The modeling strategy to capture the non-linearity present during fiber

pullout is characterized by three main features:

1. Three dimensional C3D8 elements with linear elastic stress-strain response for

the matrix, fiber, and coating
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2. One dimensional DCZM elements modeling the cohesive zone between the fiber

and coating

3. Abaqus frictional contact surface elements between fiber and coating surfaces

Figure 5.8a depicts the entire model with randomly placed fibers. Two 8 m diameter

fibers and one 10 m diameter fiber form a small cluster in the vicinity of the left

corner. The matrix material has been removed in figure 5.8b to visualize the FEM

discretization of the coating material. In figure 5.8c both the matrix and coating

material have been removed. The number of nodes on the fiber surfaces matches the

number of nodes on the inner coating surfaces. DCZM elements have been inserted

here. The nodes on the outer coating surfaces are shared with the matrix material.

The bottom of the matrix block was restricted from movement in the fiber direction

while the top surface nodes of the fibers subjected to a displacement of 150 m which

ensured a complete pullout of all fibers. A small lateral compressive displacement was

applied on the vertical matrix surfaces prior to fiber pullout displacement to establish

a normal force between the fiber and coating surface. A normal force is required in

the frictional contact formulation utilized in this model.

Fibers and Coating Fibers Complete Model 

a) b) c) 

Figure 5.8: Fiber-pullout model, a) whole model b) Fiber with Coating c) Fibers
only
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5.4 Fiber-Pullout Results and Discussion

Fiber pullout simulations were carried out with Abaqus’ implicit solver. Figure

5.9 shows the development of the pullout curve and the corresponding stress state

of the fibers and the matrix for one particular case with the following properties:

initial stiffness K = 500000 N/mm, fracture toughness GIC = 0.5 J/m, critical force

Fc = 8e-8 N, and the friction coefficient ν = 0.3. The peak load is reached when

the smallest fiber has completely debonded and only frictional resistance contributes

to the energy dissipation for that particular fiber (38MPa). The stress in that fiber

continuously reduces to zero as the material remaining in the matrix block shortens.
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Figure 5.9: Fiber pullout response as predicted by the finite element model

A bump in the stress-displacement response was observed when the disbond length

reached the length of the shortest fiber (40 ➭m). As before the stress in that fiber

tends to zero at this point. Multiple further dips can be observed each corresponding

to a fiber being pulled out of the matrix block. A parameter study was conducted

to investigate the impact of each model input parameter with the exception of the
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initial DCZM stiffness. It was chosen to be larger than the highest stiffness of the

constituents. Figure 5.10 shows the stress-pullout length response of all models. The

first four models show the influence of the critical force Fc. The baseline model

was run with Fc = 4e-8 N. All subsequent models will be compared to the baseline

model. The critical force was doubled in the second model with no noticeable effects

on the stress-pullout-length response. Increasing Fc by an order of magnitude to Fc

= 4e-7 N resulted in a slight increase of the peak stress from 38MPa to 40.5MPa.

Further increase of the critical load to Fc = 4e-6 N resulted in a drastic increase in

the peak-stress to 60MPa.
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Figure 5.10: Input parameter study of fiber pullout response as predicted by the
finite element model

The effect of critical load is therefore non-linear as shown in table 5.1. Next,

the influence of the friction coefficient was investigated with constant values for K =
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Table 5.1: Dependence of the pullout strength on the critical Load Fc

Critical Load Fc Peak Stress [MPa]

4e-8 38
8e-8 38
4e-7 40.5
4e-6 60

500000 N/mm, GIC = 0.5 J/m, and Fc = 4e-8 N. The purple stress-pullout length

response shows a decrease in peak-load to 37MPa with ν = 0.2. The peak-load is

further reduced to 13MPa with a smaller friction coefficient of ν = 0.1 represented

by the grey stress-pullout length response. Furthermore, the influence of the critical

enegery release rate GIC was studied. The last two responses shown in yellow and

orange, respectively in figure 5.10, represent predictions with GIC = 0.1 and GIC

= 0.05. A change of the critical energy release rate did not have an effect on the

stress-pullout length response as the last three responses are coincidental.

5.5 Conclusions

A first step toward understanding the effects of fiber pullout on the mechanical

behavior of CMCs was discussed in this chapter. Full three-dimensional finite element

model with multiple fibers at various lengths was used to investigate the influence of

critical fracture parameters. The fiber diameters and lengths were based on test data.

Discrete cohesive zone elements were employed to capture the released energy during

fiber-interface debonding. In order to capture the released energy during the pullout

process due to friction Abaqus’ frictional contact model was used. The two critical

parameters were determined through a parameter study. The friction coefficient and

the critical load to fracture need to be carefully determined through experimental

testing such as fiber-pushout tests. The energy release rate did not effect the stress-

pullout length response.

Future work should reflect a statistical variation of the critical load Fc along the
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fiber length. This would represent impurities and variations in the bonding quality

between the fiber and the coating.
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CHAPTER VI

Concluding Remarks

6.1 Conclusions

In this dissertation the response of melt infiltrated SiC/SiC ceramic matrix com-

posites with continuous fibers was studied. A novel experimental setup was developed

that utilizes a low power blue light laser for both the illumination of the specimen sur-

faces and the creation of a suitable speckle pattern for DIC analysis. Multiple lay-ups

were investigated and the crack propagation of single edge notch tensile samples was

investigated at four different temperatures. It was shown that the high-temperature

DIC method can be used to detect crack initiation before a non-linearity in the stress-

strain response occurs. This emphasizes the need of optical non-contact measurements

to determine the damage state of the material.

The microstructural response and damage behavior was investigated in Chapter III.

Small RVE sized models based on micrographs of the CMCmaterial were used to iden-

tify geometrical stress risers within the microstructure. A micromechanics model, the

energy based crack-band formulation, was used to predict the post-peak response of

each constituent. Based on the numerical predictions, fiber clusters with thicker than

average fiber coatings have been found to increase the local stress field. Hundreds of

fibers were explicitly modeled in large finite element models in order to investigate the

crack propagation within the microstructure. The model was large enough to capture
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multiple macro-cracks. The FEM predictions revealed that small microcracks initiate

throughout the structure and join up on continued loading to form the macroscopic

cracks. The model predicted the arrest and deviation of crack tips at fiber interfaces.

The response of coupon level notched and un-notched specimens was studied in chap-

ter IV. Two finite element simulations were interlinked to concurrently predict the

response of a macroscopic model based on the response of a microstructural RVE.

The RVE finite element code was developed in Fortran and entirely integrated in

Abaqus’ user defined material subroutines. It was shown that a high level of fidelity

was achieved with a moderate computational effort. Stress-strain responses as well

as details of the crack propagation were captured and compared to experimental re-

sults. Mesh objectivity was achieved on the RVE model through the incorporation

of a characteristic element length into the fracture mechanics mathematical model.

Finite element models without geometrical stress risers, such as smooth bar tensile

specimens, require the incorporation of a minimum level of randomness. Two meth-

ods were investigated, e.g. geometry and material property based randomization.

Geometrical randomization of the microstructure, which is found extensively in low

volume fraction composites (e.g. CMC), was simulated through the use of multiple

geometrically distinct subcells. Material property based randomization was achieved

through the introduction of statistically varying critical stresses. A two parameter

Weibull distribution was employed and it was shown that the shape factor n is a

non-critical parameter and therefore does not need to be determined experimentally.

The onset of non-linearity was predicted accurately. Discrepancies were found for the

post-knee behavior.

Fiber-pullout was observed experimentally in [0/90]2s specimens. Fiber pullout is

likely to have a major impact on the stress-strain response of the material after crack

saturation in the matrix developed. In order to understand the impact of critical

parameters associated with fiber-pullout, a finite element model was developed. Dis-

160



crete cohesive zone elements were used to describe the crack development along the

fiber-coating interface. Frictional sliding was utilized to predict the released energy

during the pullout process. It was established that the friction coefficient is among the

critical parameters. Results and observations can be used in the future to incorporate

fiber-pullout in a multi-scale fracture mechanics code.

6.2 Future Work

Experimental testing is essential to determining the post-peak stress-strain re-

sponse of ceramic matrix composites (CMC). In the previous work single edge notch

monotonic tensile tests were conducted on symmetric cross-ply [0/90]2s laminates.

One main focus of future work should be the role of damage propagation in the zero

layers in a composite after crack saturation in the ninety layers has occurred. The oc-

currence of crack growth along the interface in longitudinal layers has been proposed.

However, experimental verification is needed. Multiple other layups, e.g. [90/0]2s ,

[+45/−45]2s , etc. , should be investigated in the future to further strengthen the un-

derstanding of damage behavior and validate numerical models. Enhanced toughness

of CMCs results from the ability of the fibers to bridge matrix cracks traversing the

composites before fiber breakage occurs. The extent of fiber debonding and subse-

quent energy dissipation through frictional sliding determines the toughness enhance-

ment of the composite. But how this toughness increase depends on the constituent

parameters such as elastic properties of the matrix, coating, and fiber, coating thick-

ness and fracture toughness, residual stresses due to the manufacturing process, has

not yet been established. The existence of residual compressive stresses acting across

the fiber interfaces needed for frictional sliding has not been shown experimentally.

It is assumed that fiber pull-out occurs in the wake of a matrix crack. Understand-

ing the debonding mechanics of the matrix/coating and coating/fiber interfaces is

essential. Fiber-pushout tests could be developed to determine fracture properties
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that are needed for analytical or numerical predictions. Unidrectional CMC coupons,

subjected to transverse tension, could be used to investigate crack propagation an as

a validation of the numerical predictions. Digital Image Correlation (DIC) on small

fields of view on the order of a few hundred microns could reveal crack paths and

crack propagation. Influences of geometrical obstacles, e.g. fiber clusters or residual

silicon pockets, could be studied. CMCs have the advantage of small degradation

of material properties at elevated temperatures. A DIC system for very high tem-

peratures has been developed in this work. It was shown that it delivers the ability

of measuring full-field strain maps at temperatures of 2400 F. Temperature depen-

dent properties can be studied for various composite layups. The systems should be

extended for smaller fields of view to observe the influence of temperature on crack

initiation and propagation. Other specimen geometries, e.g. c-shaped specimens,

should be investigated to further broaden the knowledge of crack development along

interfaces. CMCs will eventually be introduced to components that are subject to

high cycle fatigue loading. Typically, strain-controlled experiments are conducted to

determine S-N curves. Full field strain measurements for these experiments are prone

to a number of challenges especially at elevated temperatures. Oxidation might affect

the image and speckle quality. Image recording devices, for DIC analysis, must to

be coupled with the applied loading and therefore new recording systems need to be

developed. Automatic detection of damage initiation and propagation are essential

to the practicality of DIC analysis.

Previous studies have focused on three main areas: macroscopic damage evolution,

microscopic crack propagation, and fiber debonding. A multi-scale code has been

developed and shown to predict realistic results of monotonic tensile coupons with

various layups. Single edge notch and smooth bar tensile coupon geometries were

studied. Future work should incorporate temperature dependent constituent mate-

rial models. Incorporation of residual stresses due to crystallization and expansion
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during cool down could be included. The macroscopic scale, e.g. component level,

in this particular multi-scale methodology is informed by a finite element model that

predicts constituent level damage. In general, representative volume elements (RVE)

are chosen such that correct damage mechanics are captured. Studies on the influence

of the size of the RVEs should be conducted in the future to establish a methodology

to quickly determine the required RVE size for a particular macroscopic problem. The

current multi-scale code preserves the released energy in post-peak response regardless

of the discretization size used for the RVE model. This is achieved by incorporating

a characteristic length of every element within the RVE in the post-peak damage

formulation (crack-band). This idea needs to be developed further to ensure mesh

objectivity is carried up to the macroscopic scale. One proposed method would be to

introduce a second characteristic length based on the element size of the macroscopic

model. The RVE size could be scaled to that length or the energy release rate of

the elements within the RVE could be adjusted accordingly. Typically, multi-scale

models increase the accuracy of the material models significantly but increase the

required computational cost.

Future research could entail the development of methods that are able to predict the

response variables, e.g. stress and stiffness, based on a surrogate model such as the

Kriging method. These models can interpolate a limited set of numerical models or

experimental data and rapidly predict the response in any other design point. A

careful study to determine the required number of training sets should be conducted

in order to minimize the error. The micromechnics models developed in the previous

studies have predicted crack spacing in transverse plies accurately. However, they lack

the ability to capture damage mechanics in the longitudinal plies correctly. Based on

the experiments suggested earlier, analytical or numerical models focused on fiber-

debonding and fiber/interface frictional sliding during pull-out should be developed

and incorporated in the micromechanics models. The question if and how cracks
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propagate along fibers has not been resolved. Two dimensional models would serve

as a starting point to investigate the transition from mode I dominated matrix cracks

to mode II and mixed mode damage along the fiber. Ultimately, three-dimensional

models must be developed that include multiple fibers and have the ability to predict

the onset of damage in the matrix, further release of energy through fiber/interface

debonding (e.g. cohesive elements), predict fiber cracking and finally fiber-pullout me-

chanics. After establishing the model ability to capture these mechanisms, it should

be extended and included in the multi-scale methodology. In order to validate these

models, experimental results from fiber-pullout or pushout tests are required. De-

veloping component level models subjected to cyclic thermal and mechanical loading

is essential for the design process. High cycle fatigue models should be introduced

into the multi-scale and micromechanics methods. Simple material models could be

based on the classical S-N curves. More advanced models that can predict crack

propagation of pre-existing cracks could be based on cycles of crack-opening (COD)

rather than stress cycles. High cycle fatigue formulation could be implemented in the

crack-band method. Further research could entail the influence of oxidation on the

crack development. All numerical models should encompass a study of the influence

of material impurities in the composite. Residual carbon or silicon in the matrix,

variations in the fiber diameter or variations in the coating thickness might induce

weak material points prone to early initiation of damage.
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APPENDIX A

Determination of Randomness Parameters

A.1 Probability Density Function

In multi-scale or micromechnics finite element models it would be helpful to

quickly probe randomly generated subcells in order to establish if realistic damage

behavior can be expected. Two different methods will be discussed here which need

to be tested and verified in future research. One possible measure of randomness

could be the probability of fiber to fiber distances within a subcell model. Figure

A.1a shows a baseline subcell which is based on a micrograph of a CMC microstruc-

ture. A randomly generated model is shown in figure A.1a. Although both appear

to be similar each subcell will exhibit different damage evolution when subjected to

a e.g. transverse load. Subcells with random fiber locations could potentially show

non-physical behavior due to various reasons. Damage models, especially at low vol-

ume fractions, are sensitive to the location of the constituents as discussed in chapter

3.6.
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(a) (b)

Figure A.1: a) Baseline RVE b) randomly generated RVE

A Matlab script has been developed to automatically determine the distances be-

tween fibers. Every distance is only considered once as shown in Figure A.2. The fiber

distances are then binned and plotted as a probability density function (PDF). Cal-

culation of the mean square error between two PDFs could then be used to establish

an error measure as shown in figure A.3.

2 1 

Figure A.2: Fiber distance calculation for probability density function
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Error > Limit Error < Limit 

Figure A.3: Probability density functions of a baseline RVE and a randomly gener-
ated RVE

A.2 Mean Intercept Length Tensor

Another approach to measure the properties of a subcell with random fiber loca-

tions is the mean intercept length tensor. The intercept length between fibers and

radial lines emanating from the center outward is normalized by the total length

of the radial line. This concept is schematically shown in figure A.4. The data is

then plotted in polar coordinates. For a perfect geometrically isotropic subcell the

resulting shape will be circular. Any non-circularity indicates a bias in one or more

directions.
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Figure A.4: Schematic Drawing of the Mean Intercept Length

Conic sections can then be fitted to the data with a least square fit. Equations

A.1 represent a conic section in Cartesian coordinates.

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (A.1)

Equation A.1 can be soved for the coordinate y,

y1,2 = −
(Bx+ E)

2C
±

√

(Bx+ E)2

4C2
−
Ax2 +Dx+ F

C
(A.2)

All solutions to equation A.2 need to be real which poses a restriction on the variable

x,

x1,2 = −
(BE +−4DC)

2(B2 − 4CA)
±

√

((BE − 4CD)

2(B2 − 4AC)

)2

−
E2 − 4CF

B2 − 4AC
(A.3)

The coefficients A, B, C, D, E, and F can be determined from the least squares fit

of the measured mean intercept lengths. Figure fig:SchematicMeanInterceptExample

shows the raw data of a base subcell (thin black line) and a randomly generated subcell

(thin red line) which are displayed in figure A.1. In addition, the Conic Sections of

both subcells are plotted (bold black and red lines). A possible error measure could

be the mean square error between the conic sections. This method could possibly

be used to compare the geometry of subcells and confirm that a randomly generated
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subcell will exibit comparable damage characteristics. Further work has to be done

to establish the maximum error.

Figure A.5: Example of mean intercept length of a base RVE and a random subcell
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