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ABSTRACT 

 

 Compound semiconductors are the basis of modern optoelectronics due to their 

intrinsically superior optical and electronic properties compared with elemental semiconductors. 

However, their applications remain limited due to a prohibitive substrate cost. This limitation has 

driven the development of epitaxial lift-off (ELO) technology that separates the thin-film epitaxial 

layer from the substrate by selectively removing a sacrificial layer between them. However, ELO 

has its own limitations including a long process time, complicated transfer to a secondary, low cost 

host substrate, and wafer surface degradation which prevents wafer recycling. 

In this thesis, we address all of these limitations by developing a new, non-destructive ELO 

(ND-ELO) process. When combined with adhesive-free cold-weld bonding of the wafer directly 

to a plastic substrate, ND-ELO provides an approximately 100 times reduction in process time, 

and a considerably simplified transfer process compared with conventional ELO. Furthermore, it 

allows indefinite wafer reuse by employing the epitaxial protection layers, eliminating surface 

degradation of the parent wafer encountered in conventional ELO. We demonstrate the feasibility 

and generality of this process by applying it to optoelectronic devices including photovoltaic cells, 

LEDs, MESFETs and photodetectors on two compound semiconductor systems, InP and GaAs. 

Furthermore, we present an approach that can achieve an estimated cost of only 3% that of 

conventional GaAs solar cells using an accelerated ND-ELO wafer recycling process, and 

integrated with lightweight, thermoformed plastic, truncated mini-compound parabolic 

concentrators (CPC) that avoid the need for active solar tracking. Using solar cell/CPC assemblies, 
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without daily solar tracking, the annual energy harvesting is increased by 2.8 times compared with 

planar solar cells. This represents a drastic cost reduction in both the module and balance of 

systems costs compared with heavy, rigid conventional modules and trackers that are subject to 

wind loading damage and high installation costs.  The demonstration of cost-efficient and high 

performance compound semiconductor-based flexible thin-film optoelectronics is a critical step 

toward allowing their widespread deployment in mainstream state-of-the-art applications 

including wearable, flexible and conformal devices. 
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Chapter I 

Introduction 

 

Group III-V compound semiconductors consist of group III (Ga, In, Al, etc.) and V (N, As, P Sb, 

etc.) elements of the periodic table bonded predominantly by covalent and partly ionic forces 

mostly into a zinc-blend structure.  Compound semiconductors provide the unique benefit of 

bandgap tuning by forming binary, ternary, quaternary or quinternary alloys.  Furthermore, their 

intrinsic properties of high carrier mobility and capability of engineering to a direct or indirect 

bandgap make them attractive for many applications.  Due to their superior intrinsic properties 

over elemental semiconductors, compound semiconductors are widely used, especially for 

optoelectronic devices such as lasers, LEDs, solar cells, photodectors, high frequency electronics, 

etc., which deal with the interaction between electronic and optical process usually accompanied 

by an energy conversion. This chapter introduces III-V compound semiconductor technology and 

outlines this thesis. 

 

1.1 Overview of III-V compound semiconductors 

1.1.1 Bonding in compound semiconductors 

The attractive and repulsive forces that  exist between atoms is determined by their 

interatomic distance.1 At very small distances between two atoms, a repulsive interaction is 
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dominant, therefore the atoms push each other away. At large interatomic distances, attractive 

forces are dominant, hence the atoms are drawn to each other. The balance of forces between 

atoms results in an equilibrium atomic spacing (equal to lattice constant, a) which is slightly 

modified by lattice vibrations at room temperature due to thermal energy.1  Figure 1.1 shows the 

interatomic forces in a solid.2  

 

 

Fig 1.1: Interatomic forces. Balance of Coulombic and repulsive interaction depending on atomic 

separation. Reproduced from ref 2. 

 

The binding energy E, the minimum energy to break the bond, is affected by the type of 

bonding.  Bonding can be classified into four groups depending on the dominant attractive force. 

First, van der Waals bonding is created by the formation of dipoles arising from the relative 

distributions of atoms and the electrons. A second group is metallic bonding in which the 

conduction electrons are shared by many positively charged ions. Third, ionic bonding is the result 

of the attraction between positively and negatively charged ions. Lastly, covalent bonding 

involves the sharing of electrons between neighboring atoms to reduce the potential energy of a 

system by forming closed outer shells.  The bonding in elemental semiconductors (e.g. Si and Ge) 
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is purely covalent. On the other hand, there is a small degree of charge transfer between group III 

and V atoms due to the difference of electronegativity between the two atoms, therefore the 

bonding in compound semiconductors has partial ionic content along with predominantly 

covalent forces.3   

1.1.2 Crystalline structure of compound semiconductors 

A crystal is characterized by having a periodic arrangement of atoms.4  The smallest space-

filling unit that contains the different elements which comprise the crystal is called a primitive 

unit cell.  Silicon, which is the most intensively investigated elemental semiconductor, is 

crystallized into a diamond structure, thus each atom is surrounded by four nearest equivalent 

atoms, and the shared valence electrons form a complete outer atomic shell.3  In a compound 

semiconductor, atoms are often crystallized in a zinc-blend structure (Fig. 1.2) which allows them 

to share the electrons with four nearest neighbor atoms similar to elemental semiconductors.  A 

zinc-blende structure belongs to the tetrahedral configuration. It is two face-centered cubic (fcc) 

structures interpenetrate by one-quarter of a lattice constant. Hence, it is identical to a diamond 

structure except that there are two rather that one atom in the lattice, forming its basis. The bonds 

between the nearest group III and V elements and between the nearest equivalent atoms in zinc-

blende structures are in the [111] and [110] directions, respectively.3 The periodic arrangement 

of atoms determines the band structure and crystal potential of materials, which affects their 

electrical and optical properties. 
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Fig 1.2: Zinc-blende crystal structure, consisting of two face-centered cubic (fcc) structures 

interpenetrated by one-quarter the lattice constant, a. Reproduced from reference 3. 

 

Depending on the combination of elements in the alloy, the energy band gap can be 

engineered to meet high performance electronic and optoelectronic device requirements. 

Compound semiconductors alloys can be binary (GaAs, InP etc.), ternary (AlGaAs, InGaAs, 

GaAsP etc.), quaternary (InGaAsP, AlGaInP etc.) or quinternary (InGaAlAsP etc.) compounds 

by randomly mixing the group III or V lattice sites with various elements. Figure 1.3 shows lattice 

constants and energy bandgaps of several semiconductor alloys. In general, the lattice constant 

follows a linear relationship with composition; however, the energy bandgap does not exhibit a 

perfect linear dependence on the composition due to bandgap bowing caused by alloy disorder.1 

The alloy semiconductors are widely used for the applications to optoelectronic devices such as 

light emitting diodes that cover a wide range of the emission spectrum, and sources and detectors 

for optical communication.  
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Fig 1.3: Lattice constants and energy bandgaps of semiconductors. Achievable bandgaps and 

lattice constants of III-V compound semiconductors at room temperature by various alloy 

formations. Reproduced from reference 3. 

 

1.1.3 Built-in strain in compound semiconductors 

One major limitation for energy bandgap engineering is lattice matching between the epi-

layers and the substrate. To overcome this limitation, Matthews and Blakeslee investigated lattice-

mismatched growth which results in built-in strain to the lattice mismatched layer when the 

thickness is less than a critical value.5 The growth of this strained crystalline epitaxial layer 

growth is called pseudomorphic. Strain can be either tensile or compressive depending on the 

difference of the lattice constant between the epitaxial layer and the substrate.3 The strain energy 

is affected by the thickness of the mismatched film; as it gets thicker, the strain increases. When 

the thickness of the strained film exceeds the critical thickness, dislocations are formed that relax 

the strain energy. The built-in strain is useful to modify the energy gaps of optoelectronic devices 

such as lasers or modulators that contain quantum wells. Furthermore, fully strain-relaxed 

pseudomorphic layers can be employed as growth buffer layers to create an effective interface 

with modified lattice constants. 
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1.2 Crystal growth methods 

Crystal growth can be divided into two categories: bulk crystal growth for substrate 

preparation, and epitaxy of thin films on top of a crystalline substrate.  

1.2.1 Bulk crystalline substrate growth 

For crystalline substrate preparation, two kinds of bulk crystal growth techniques can be 

employed. Fig 1.4 shows a schematic of Czochralski (Cz) growth. Cz growth is used to create a 

single crystalline ingot by using a seed crystal dipped in a molten compound material, usually in a 

pyrolytic boron nitride (PBN) crucible under a pressurized vessel, and slowly pulled while being 

rotated at the same time.3 The Cz growth method provides a high quality crystal and enables doping 

and orientation control; however, it requires very accurate control of temperature and ambient 

pressure to precisely control the ingot diameter and maintain a uniform stoichiometry.3  

 

 

Fig 1.4: Schematic of Czochralski process. Ingots of crystalline semiconductor, such as Si, GaAs 

and InP are grown using the Czochralski process. Reproduced from reference 3. 
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Fig 1.5 shows a schematic of horizontal Bridgeman and gradient-freeze growths, which 

can also be used for preparation of single crystalline ingots. Both processes are furnace growth 

techniques where a seed crystal placed in a quartz boat that is heated in a sealed quartz tube. The 

material is crystallized by slowly lowering the boat temperature from the seeded end by either 

moving the hot zone of the furnace along the tube or slowly removing the boat from the hot zone.3 

This method is relatively inexpensive and especially useful to grow phosphorus-containing 

compound semiconductors which require a high group V overpressure. However, ingot size and 

shape control is limited by the boat geometry, and the contact with crucible during growth may 

cause dopant incorporation and stress at the interface between the boat and the crystal.3 

 

 

Fig 1.5: Schematic of horizontal bridgeman and gradient-freeze growths. Crystal growth by 

slowly lowering the boat temperature from the end with the seed by (a) moving the hot zone of 

furnace along the tube (horizontal bridgeman growth) or (b) slowly pulling out the boat (gradient-

freeze growth). Reproduced from reference 3. 
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1.2.2 Epitaxy  

Various epitaxial growth techniques have been developed to grow a crystalline thin film 

layer on top of the bulk substrate. The first demonstration of compound semiconductor epitaxy 

was by liquid phase epitaxy (LPE).1 Fig 1.6(a) shows a schematic of LPE growth that occurs from 

a molten mixture of the constituent elements.3 LPE provides high quality materials at a relatively 

low cost; however, it is difficult to grow abrupt junctions and immiscible alloys by LPE growth.3 

In contrast, vapor phase epitaxy (VPE) is a crystal growth process performed under a gaseous 

environment (Fig 1.6(b)). The crystal formation in VPE results from the chemical reaction of the 

supplied gases and the heated substrate.3 VPE allows growth of extremely high purity materials.3 

Metal organic chemical vapor deposition (MOCVD) is a similar growth technique to VPE where 

the growth takes place via chemical reaction between precursors and the heated substrate. It 

enables the growth of high quality heterostructures with atomically abrupt interfaces.3 
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(a) 

 

(b) 

 

Fig 1.6: Schematic of LPE and VPE growths (a) The heterostructure can be grown by contacting 

the substrate with different melts using slider (LPE). (b) The crystal growth occurs in vertical or 

horizontal reactor via chemical reaction of the supplied gases with the heated substrate (VPE). 

Reproduced from reference 3. 

 

Lastly, molecular beam epitaxy (MBE) can be employed as a growth process for almost 

every kind of compound semiconductor alloy. Fig 1.7(a) shows a schematic of an MBE chamber. 

Thin film growth occurs in MBE via reaction between thermally evaporated molecular beams of 

the constituent elements and a substrate surface6. MBE growth is carried out under an ultra-high 

vacuum with a cryogenically cooled shroud. The process is far from thermodynamic equilibrium, 
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and is governed mainly by the kinetics of the surface processes occurring when the impinging 

beam reacts with the outermost atomic layers of the substrate crystal6. This is distinguished from 

LPE and VPE that are at or near thermodynamic equilibrium, and are controlled by diffusion 

occurring in the crystallizing phase surrounding the substrate.6 In this thesis work, we employed 

gas source MBE (GSMBE) for the epi-layer growth which has been developed for epitaxy of 

ternary and quaternary compound semiconductors on InP substrates using metaloganic group V 

sources (e.g. AsH3 and PH3).
7  

 

 

Fig 1.7: Schematic of MBE chamber. Reproduced from reference 3. 
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1.3 Application of compound semiconductors to optoelectronic devices 

Compound semiconductors are widely used for a variety of optoelectronic devices due to 

their unique properties of high carrier mobility and tunable bandgaps. Here, we introduce several 

major applications of compound semiconductors. 

1.3.1 Photovoltaic cells 

Photovoltaic cells are a promising application for compound semiconductors. According 

to detailed balanced theory, GaAs has nearly the ideal bandgap energy (1.43 eV) to achieve the 

highest power conversion efficiency which approaches the thermodynamic limit.8  GaAs is a direct 

bandgap semiconductor, therefore it requires a relatively thin active layer (~few microns) to 

achieve the full absorption of the solar spectrum within the bandgap range compared with an 

indirect bandgap semiconductor such as Si, which requires an active layer hundreds of microns 

thick to fully absorb the solar spectrum near its band edge at 1.1 eV. Furthermore, lattice matched, 

wide bandgap compound semiconductors such as InGaP and AlGaInP can be employed as window 

and back surface field (BSF) layers what prevent non-radiative recombination of the 

photogenerated carriers near the surface or at an interface. Moreover, the combination of bandgap 

tuning and metamorphic growth allows the production of multi-junction solar cells that enable the 

minimization of thermalization losses using a stack of single junctions, carefully matching the 

photogenerated current density between each cell. Multi-junction solar cells are especially suitable 

for space or concentrated photovoltaic applications. To date, four-junction compound 

semiconductor solar cells provide the highest power conversion efficiency (44.7% under 297 suns) 

among all solar cell technologies.9 
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1.3.2 Photodiodes 

Compound semiconductors are widely used for photodetector applications. Photodetectors 

can be classified into three categories: photoconductors, pin photodiodes and avalanche 

photodiodes.1  Photoconductors and avalanche photodiodes have internal gain, and pin 

photodiodes have a wide bandwidth without internal gain.  Compound semiconductor-based 

photodiodes are mainly used for fiber optic communication systems to receive transmitted optical 

pulses and convert them into electronic pulses with a minimal loss of signal.  Especially, InGaAs 

photodetectors grown on lattice matched InP substrates are widely used to cover the infrared 

wavelength range where optical glass fibers have minimum loss and dispersion. Furthermore, they 

provide high speed, reliability and sensitivity, low noise and wide bandwidth which are the figures 

of merit for photodiodes in optical communication systems. The photodetector can also be used 

for wavelength division multiplexing (WDM) or focal plane arrays (FPA) in imaging applications. 

1.3.3 Light emitting diodes 

Compound semiconductors are also intensively used for light emitting diode (LED) 

applications due to their capability of bandgap tuning to reach the desired emission spectrum by 

appropriately composition. The LED is an optoelectronic device that emits photons with energy 

corresponding to the bandgap of the active layer by radiative recombination of the injected carriers. 

In general, p-n junctions or double heterostructures are employed. LEDs are spontaneous emission 

sources.  Until the 1980s, GaP-based LEDs were used for visible light emission from isoelectronic 

traps.1 However, recent development of nitrogen-based wide bandgap compound semiconductors 

enable the emission of blue light; hence expanding the applications of LEDs to displays, indicator 

lamps and quasi-white lighting sources, etc. Furthermore, LEDs can be employed as a source in 

fiber optic communication links by designing the structure to emit infrared light. 
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1.3.4 Lasers 

Unlike LEDs, lasers (light amplification by stimulated emission of radiation) are a 

stimulated rather than a spontaneous emission source.1 Stimulated emission relies on population 

inversion; therefore, lasing requires gain and feedback by a combination of electrical and optical 

confinement within the active region. Gain occurs when the number of emitted photons are greater 

than the number lost to absorption. To enhance amplification, an optical feedback system, such as 

a Fabry-Perot cavity, is employed to make photons pass through the gain medium multiple times. 

Lasers can be demonstrated by making a diode with a quantum well using a heterostructure 

between compound semiconductors of different composition. Emission wavelength is controlled 

by tuning the width and depth of the quantum well. Furthermore, to efficiently capture injected 

carriers in the quantum wells, and to enhance the overlap between the optical mode and gain 

medium, single quantum well lasers can be modified into a multiple quantum well (MQW) 

structures or graded-index separate confinement heterostructures (GRINSCH).1 Moreover, 

epitaxy of compound semiconductors enables the demonstration of vertical-cavity surface emitting 

lasers (VCSELs) by cladding the active region with distributed Bragg reflectors (DBRs) 

consisting of alternating compound semiconductor layers with different refractive indices. 

VCSELs are a top emission device, therefore coupling to optical fibers is convenient compared 

with edge emitting lasers. 

1.3.5 Field effect transistors 

Superior carrier mobilities of compound semiconductors compared with elemental 

semiconductors such as Si, enables the demonstration of the high speed field effect transistors. 

Among various compound semiconductor transistors, high electron mobility transistors (HEMTs) 

have a similar device structure with metal oxide semiconductor field effect transistors (MOSFETs) 



14 

 

except that they employ a wide bandgap semiconductor spacer layer instead of a gate oxide. 

HEMTs can operate at very high frequencies through reducing the scattering of channel electrons 

caused by the ionized impurities in a lightly doped channel layer. Therefore, carrier mobility can 

be further improved. Moreover, metal semiconductor field effect transistors (MESFETs) and 

junction field effect transistors (JFETs) have been demonstrated by using Schottky barrier or p+/n 

junction gates. Compound semiconductor-based transistors are an important element in 

optoelectronic integrated circuits (OEIC) when coupled with photonic devices. An OEIC on a 

single substrate enabled by monolithic growth, provides the potential to demonstrate high-speed, 

highly-sensitive, reliable and compact devices.1  

 

1.4 Technology challenges 

As described above, compound semiconductors provide many benefits over elemental 

semiconductors for numerous applications; however, these applications are mainly limited by the 

cost and quality of the starting substrates. High quality substrates are only available for few 

materials such as GaAs and InP, whereas only small and costly GaN and GaSb substrates are 

commercially available. Even for GaAs and InP which are produced by relatively mature bulk 

crystal growth technologies, the cost is much higher than for Si substrates Therefore, their 

applications are limited to only few special uses such as lasers, LEDs and space-borne solar cells. 

The best available commercial price for a 6” GaAs substrate is ~$150, approximately 100 times 

more expensive compared with the same volume of Si wafers. Therefore, it is essential to 

overcome the device production cost barrier caused by expensive substrates to allow compound 

semiconductor devices to leverage their applications into mainstream commercial technology. 
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The common drawback of single crystalline semiconductor technology, including both 

elemental and compound semiconductors, is that their application is mostly limited into 2 

dimensional devices on a bulky, brittle and rigid substrates. This is due to the post-processing of 

bulk crystalline substrate growth which includes diffusion, implantation or epitaxy to form an 

active device region. However, to fulfill the requirements of current state-of-art applications, such 

as wearability, conformity or light-weight devices, it is necessary to implement thin-film devices 

onto lightweight, flexible, or stretchable platforms.   

 

1.5 Thesis overview 

This thesis is focused on addressing the potential solutions for two major technological 

challenges confronting compound semiconductors:  

1. Production cost reduction by recycling the parent wafer multiple times 

2. Demonstration of lightweight and flexible thin-film devices on a plastic substrates 

Substrate recycling is a promising solution to dramatically reduce the device production 

cost by reducing the expensive wafer cost. This can be achieved by epitaxial lift-off (ELO) 

techniques that separate the active thin-film layer from the substrate by selectively etching a 

sacrificial layer of different composition inserted between the substrate and active device region. 

Therefore, the remaining parent substrate can be reused after the lift-off process. Furthermore, the 

ELO process creates a thin-film crystalline device; hence, the transfer of a thin-film active region 

to a lightweight and flexible platform such as plastic or metal foil can be realized. However, wafer 

recycling using conventional ELO processes has been limited since wet-etching the sacrificial 

layer leaves a degraded surface which prevents single crystalline epitaxy on its surface. Therefore, 
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chemo-mechanical polishing (CMP) processes generally are used after the ELO process, which 

restricts the number of wafer recycles, and incurs the cost of the CMP process itself. Furthermore, 

transfer of the thin-film device active region onto a flexible plastic substrate usually requires 

multiple steps that include use of adhesives. To overcome these issues, in this dissertation we 

demonstrate using epitaxial protection layers to preserve the surface quality during the ELO and 

cold-welding processes to simplify the thin film transfer process.  

In Chapter 2, we review thin-film technologies based on compound semiconductors, 

including ELO processes and cold-welding methods. In chapter 3, we introduce a cold-welding 

process and epitaxial protection layers which are employed for wafer bonding and substrate 

recycling. In Chapter 4, we demonstrate multiple growths of InP/ITO Schottky barrier thin-film 

solar cells from a single wafer via the combination of ELO, epitaxial protection layer and cold-

welding processes. In Chapter 5, a thin-film InGaAs pin photodiode on a flexible substrate with 

nearly 100% external quantum efficiency (EQE) and 100% array fabrication yield is demonstrated 

via ELO and cold-weld bonding from the InP substrate. In Chapter 6, we demonstrate non-

destructive recycling of a GaAs substrate in the fabrication of various thin-film optoelectronic 

devices including pn junction GaAs solar cells, LEDs and MESFETs without performance 

degradation from run to run. In Chapter 7, we describe a method that dramatically reduces solar 

module production cost compared with conventional substrate-based and ELO-processed GaAs 

solar cells by integrating the non-destructive ELO (ND-ELO) processed thin-film GaAs solar 

cells with plastic-based, low-cost thermoformed non-tracking mini-compound parabolic 

concentrators (CPCs). In Chapter 8, a variety of applications using the ND-ELO process are 

described including multifunctional thin-film solar cell arrays embedded with an ultra-high 

frequency (UHF) antenna and an RF choke on a flexible substrate, and a kirigami-based solar 
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concentration/tracking system. In Chapter 9, we summarize the results and provide suggestions 

of future work to further expand the applications of thin-film and flexible compound 

semiconductor technologies. 
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Chapter II 

Lift-Off Technologies for Advanced Optoelectronics 

 

The development of various lift-off technologies enables the production of single crystalline thin-

film optoelectronics by transplanting the active epitaxial device region from the bulk, rigid 

substrate to inexpensive, flexible and lightweight foils. Lift-off technologies present two major 

advancements for optoelectronic applications: cost reduction via wafer recycling, and improved 

performance in some devices via light trapping/photon recycling. Among various approache to 

achieving thin-film optoelectronics, of particular promise is epitaxial lift-off (ELO), a technology 

that creates single crystalline thin-film optoelectronics by selectively removing sacrificial layer 

between the substrate and the device epitaxial layers. Considerable efforts have been focused on 

the development of the ELO process. As a result, the conventional ELO process has been 

improved by the introduction of non-destructive ELO (ND-ELO), weight-induced ELO (WI-

ELO), surface tension assisted ELO (STA-ELO), and multi-epitaxial layer release processes, etc., 

to establish a thin-film optoelectronics technology that overcomes many cost and technical 

barriers. Furthermore, other lift-off technologies, such as controlled spalling, cleavage of lateral 

epitaxial films for transfer (CLEFT), and exfoliation have also been demonstrated. Based on 

recent developments in lift-off technologies, various thin-film optoelectronic devices such as 

photovoltaic cells, photodiodes, lasers, and LEDs have been demonstrated with superior 
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performance over substrate-based, bulky devices. The advance of lift-off technologies is a critical 

step towards moving thin-film optoelectronic devices into mainstream commercial applications.  

 

2.1 Introduction 

Thin-film optoelectronics generally refer to the technology based on semiconductor 

devices with very thin active layers (typically the range of a few nm to tenths of �m) on arbitrary 

substrates created by deposition or spin-casting processes. Unique features of these thin-film 

devices can be utilized for various device applications that are impossible or difficult to achieve 

by conventional bulk and rigid substrate-based technologies. Therefore, a wide variety of 

materials systems based on amorphous or polycrystalline semiconductors such as organic 

molecules, metal-oxides, amorphous-Si, copper indium gallium selenide (CIGS), copper zinc tin 

sulfide (CZTS) and perovskites, etc. are intensively investigated for numerous device applications. 

However, single crystalline semiconductor based thin-film technologies are still in their infancy 

due to immature fabrication processes and costly device production in spite of their superior 

properties. As the need for single crystalline semiconductor-based high performance thin-film 

optoelectronics is growing, various lift-off technologies have been developed, including epitaxial 

lift-off (ELO)1,2, controlled spalling3, cleavage of lateral epitaxial films for transfer (CLEFT)4, 

and exfoliation5. The development of lift-off technologies provides potential solutions for 

overcoming the main bottleneck in many optoelectronic device fields: high device production 

cost and limited rigid, and bulky structures. Among the various lift-off technologies, ELO has 

received the most attention due to its capability for wafer recycling and for creating high 

performance optoelectronic devices on flexible and lightweight substrates.1,2 Intensive efforts to 

improve the conventional ELO process have resulted in significant advances in the technology, 
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such as non-destructive ELO6, weight-induced ELO7 and multi-layer release processes8. 

Advanced ELO techniques combined with unique features of thin-film technology, for example 

light trapping9 and photon recycling,10,11 leads to extremely high performance optoelectronic 

devices on conformal substrates. The following sections are focused on reviewing the traditional 

and advanced ELO technologies, and other lift-off and bonding technologies are also introduced 

as possible candidates to realize advanced thin-film optoelectronics. 

 

2.2 Epitaxial Lift-Off (ELO) 

2.2.1 History of ELO 

The first demonstration of the ELO process was in 1978 by Konagai et al., using liquid 

phase epitaxy (LPE) to fabricate thin-film GaAs solar cells1. The process was named “peeled film 

technology (PFT)”, but is equivalent in almost all respects to conventional ELO. The PFT process 

employed a 5 μm thick Ga0.3Al0.7As sacrificial layer to separate the 30 μm thick n-GaAs active 

device region from the wafer by selective etching. Thin-film GaAs solar cells were demonstrated 

using this method, and showed a power conversion efficiency (PCE) of 13.5% under 1 sun 

illumination. Furthermore, “multi-peeled film technology” was introduced at the same time as a 

means to create numerous GaAs thin-films from a AlGaAs/GaAs multi-layer stack. Recently, the 

multi-PFT has been employed to compare the dependence of the etch rate of a sacrificial layer on 

the Al fraction12 and to create multiple optoelectronic devices from a single GaAs substrate.8  

Almost a decade later, Yablonovitch et al., improved the PFT process by employing 

sufficiently thin sacrificial and active layers (100 nm thick and 3  μm thick, respectively) to 

efficiently curl the thin-film active region using black wax as a handle to transfer the epitaxy from 

the parent substrate to a secondary, final substrate.2 Furthermore, it was claimed that the ELO 
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process was limited by the out-diffusion of dissolved H2 gas from the etching zone. Therefore, 

the thinner active layers with a strained handle improves the out-diffusion of the process reaction 

product by introducing tension near the edge where the thin-film is curled. Later, this process was 

re-named epitaxial lift-off (ELO) by Yablonovitch et al., in a report where van der Waals bonding 

was employed to transfer the lifted-off thin films onto arbitrary substrates13. However, both PFT 

and ELO utilize the extreme etching selectivity (>107) between the sacrificial and active layers to 

create a thin-film crystalline structure. 

In the mid-1990s, researchers at Radboud University systematically investigated 

Al(Ga)As sacrificial layer etching and the parameters that affect the lift-off speed. They 

developed weight-induced ELO (WI-ELO) to accelerate the ELO speed. A very high efficiency 

single junction thin-film GaAs solar cell (PCE of 26.1%) was achieved using an WI-ELO process 

which broke the approximately 20 year old single junction GaAs solar cell efficiency record.14 A 

new record efficiency has NOW been achieved by Alta Devices (PCE = 28.8%) using the same 

process with improved photon recycling, pushing  Alta’s cell toward the thermodynamic 

efficiency limit.15,16  

Multiple recycling of a parent substrate was demonstrated by combining the ELO process 

with chemo-mechanical polishing (CMP), further showing the potential for production cost 

reduction. However, the practical application of wafer recycling is still limited due to the 

prohibitive CMP process cost, and the restricted number of wafer recycles due to wafer 

thinning.17,18 To alleviate the limitations for wafer reuse, we introduce in this thesis the non-

destructive ELO (ND-ELO) process for an indefinite number of growths on both InP and GaAs 

substrates by use of an epitaxial protection layers. 6,19 Epitaxial protection layers eliminate the 

need for CMP by preserving the surface quality and removing layers with a simple non-
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destructive chemical etching processes after the completion of ELO. Therefore, significant cost 

reduction can be achieved. We describe this universal method to create multiple batches of various 

thin-film InP and GaAs optoelectronic devices without systematic performance degradation by 

combining ND-ELO and cold-welding techniques to allow adhesive-free bonding to plastic foil 

substrates. Furthermore, surface and growth quality before and after wafer reuse have been 

comprehensively investigated using numerous analysis methods to determine the effectiveness of 

the method. 

2.2.2 AlAs sacrificial layer etching chemistry 

The ELO process leaves a degraded surface; therefore, it prevents the subsequent epitaxial 

growth on the original wafer. To recover the surface quality for substrate reuse, it is essential to 

understand the chemical reactions between the AlAs sacrificial layer and the HF etchant, and the 

etching productions. Initially, Yablonovitch et al. proposed a diffusion limited model to explain 

chemical reactions:20 

2AlAs + 6H+ → 2As + 2Al3+ + 3H2 

This model assumed that the out-diffused H2 gas through the etch zone between epi and 

substrate limits the lateral etch rate. In contrast, Voncken et al. proposed a different chemical 

reaction between AlAs and HF based on the measurements by the following analysis techniques: 

powder X-ray diffraction, gas chromatography and nuclear magnetic resonance (NMR), etc.21 X-

ray powder diffraction analysis of solid product from the AlAs and HF reaction confirmed the 

presence of aluminum fluoride. To investigate the aqueous reaction product, aluminum and 

fluorine NMR were employed, and they revealed the presence of dissolved aluminum compounds, 

[AlFn∙(H2O)6-n]
(3-n)+ with n = 0, 1, 2, 3 and [Al (H2O)6]

3+ (Fig. 2.1(a) and (b)). For the investigation 
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of gaseous reaction products during HF etching of AlAs, gas chromatograpy/mass spectroscopy 

(GC/MS) measurements were employed. Figure 2.1(c) shows the peaks of ionized forms of AsH3 

(AsH�
	, AsH


	, AsH+, and As+) and arsenic dimers and trimers which are matched with a spectrum 

of arsine gas from the MOVPE reactor (Fig. 2.1(d)). In contrast, analysis of the etching reaction 

gas using GC/thermal conductivity detector (TCD), which is suitable for hydrogen detection, 

showed only 0.007 mole of hydrogen gas production per one mole of AlAs. The detected 

hydrogen gas is possibly contributed by either the background concentration or decomposition of 

AsH3, which indicates that H2 is neither a major etch reaction product nor the limiting factor for 

lateral etching in ELO process. 

 

 

Fig. 2.1: Chemical reaction product from AlAs and HF solution reaction. (a) Aluminum NMR and 

(b) Fluorine NMR on the reaction products in solution. The wide peak of fig. (a) and peak at 79.6 

ppm in fig. (b) are attributed to an [AlFn∙(H2O)6-n]
(3-n)+ and AlF2+, respectively. Mass spectrum (c) 

for the gaseous reaction products and (d) for arsine. Reproduced from ref. 23.  
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  This proposed reaction mechanism for etching AlAs with dissociated and undissociated 

HF is shown in Fig 2.2, and expressed by: 

AlAs + 3HF + 6H2O → AsH3 + [AlFn∙(H2O)6-n]
(3-n)+ + (3-n)F- + nH2O 

 

 

Fig. 2.2: Schematic of chemical reaction mechanism between AlAs and (a) dissociated HF or (b) 

undissociated HF. Reproduced from ref. 23.  

 

 As described above, this reaction model suggests that etch reaction production is the arsine 

and oxygen-related arsenic compounds, and the out-diffusion of hydrogen through the narrow 

etch opening does not limit the lateral etching rate. Moreover, it is found that the formation of an 

arsenic solid, or As2O3, is the source of substrate contamination after the ELO process, which 

prevents the direct recycling of substrate.22 

a 

b 
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2.2.3 Etch rate control factors 

For practical purposes, it is essential to achieve a reasonably high etch process speed. 

According to the diffusion limit model20, when the diffusion flux of gaseous reaction product 

from the etch interface is assumed to be the same with the etching flux, the maximum lateral etch 

rate is given by, 

��� =  
1

3����/2

��
�

                                               (2.1) 

where N and n are the molar concentrations of AlAs and dissolved H2, respectively, D is the 

diffusion constant of gaseous reaction product, R is the radius of curvature of the film, and t is the 

thickness of the AlAs sacrificial layer. This model predicts the maximum lateral etch rate of 

approximately 3 μm/h  at room temperature with a 5 cm curvature radius and 5 nm thick 

sacrificial layer; however, Voncken et al. claimed that the out-diffusion of gas reaction products 

may not be the limiting factor by experimentally showing a maximum etch rate of 3 mm/h using 

the WI-ELO process that can control the radius of the film curvature near the etch interface.23 

Therefore, instead of the diffusion limited model, a reaction-rate limited model has been 

proposed based on the measurement of the sacrificial layer etch rate dependence on the Al 

fraction,12 HF concentration20 and the strain on the layers.24 Eventually, a diffusion and reaction 

rate limit model (DR model) described by Niftrik et al. by combining the both models, suggests 

the etch rate is determined by both the diffusion of HF and its reaction at the etch interface.25 

According to the DR model, the etch rate Ve in mm/h is given by25 

�� =  
[!"]

�$ +  �&
                                               (2.2) 
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where [HF] is the HF concentration in M, �$  is the diffusion, and �&  is the reaction-related 

resistance in h∙mol/mm, respectively. The model predicts a linear dependence of etch rate on the 

HF concentration; its validity was experimentally confirmed for [HF] < 15 mol/Kg (Fig. 2.3). The 

deviation from the model at higher [HF] is possibly due to the limited dissolution of the aluminum 

fluoride products at high concentrations. 

 

 

Fig. 2.3: Lateral etch rate depending on HF concentration. Solid line indicates the fitting of 

experimental data based on DR model. Reproduced from ref. 24.  

 

 The diffusion limited resistance Rd can be expressed as 

�$ =  
�√�ℎ3[)*)+]

√2�,
-.

/0,2
34                                               (2.3) 

where R is the radius of curvature, h is the thickness of the sacrificial layer, [AlAs] is the molar 

concentration of solid AlAs in sacrificial layer (AlxGa(1-x)As or AlAs(1-y)Py), Do is the diffusion 

coefficient, Ea,d is the activation energy for the HF diffusion, and T is the process temperature. To 

study the diffusion limited etch mechanism, the sacrificial layer thickness-dependent etch rate 
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were examined by the multiple release layer etch method shown in Fig. 2.4(a). Figure 2.4(b) 

shows a strain dependent etch rate. The AlAs1-yPy sacrificial layer with y = 0.02, which minimizes 

strain, improves the etching rate by ~30% compared with the same thickness of sacrificial layer 

without phosphorus (Fig. 2.4(b)). Figure 2.4(c) shows the lateral etch rate dependence on the 

AlAs0.98P0.02 sacrificial layer thickness. The maximum etch rate was achieved with a ~10 nm thick 

sacrificial layer. 

 

                  (a) 

 

              (b)      (c) 

 

Fig. 2.4: Multi release layer etch test (a) Schematic of multi release layer etch method (left) and 

cross-sectional scanning electron microscope (SEM) image of sample (right). (b) Lateral etch rate 

depending on the strain of sacrificial layer. The strain was controlled by varying P composition. 

(c) Lateral etch rate depending on the sacrificial layer thickness. Reproduced from refs. 20 and 24.  
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The effect of the radius of curvature, R, on lateral etch rate was studied by using the WI-

ELO process in Fig 2.5(a).26 Fig 2.5(b) shows the lateral etch rate dependence on the curvature 

near the etch interface. The larger bending curvature assists the diffusion of HF by increasing the 

opening near the etch interface, and the experimental results confirm the dependency of etch rate 

on R. 

(a)                                                            (b) 

  

Fig. 2.5: Weight induced epitaxial lift-off (WI-ELO) process (a) Schematic illustration of WI-

ELO process (b) Lateral etch rate depending on the curvature near the etch interface. Reproduced 

from ref. 7 and 26. 

 

The reaction limited resistance Rr can be expressed as 

�& =  
1
)

-.
/0,5
34                                               (2.4) 

where A is the Arrhenius constant and 7,& is the activation energy associated with the reaction 

barrier. The reaction limited etch rate can be confirmed by the dependence on Al fraction in the 

Al(1-x)GaxAs sacrificial layer (when x is < 0.4) and the dependence on the etch process temperature. 

Figure 2.6 shows the lateral etch rate dependence on the Al composition of the AlGaAs sacrificial 

layer.  
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Fig. 2.6: Lateral etch rate depending on the Al composition of AlGaAs sacrificial layer. 

Reproduced from ref. 20.  

 

Since both the reaction and diffusion process is affected by temperature, the DR model 

can be reduced to: 

�� =  ��,8-./0
34                                              (2.5) 

 Figure 2.7 shows the etch rate depending on the process temperature for a sacrificial layer 

thickness of 10 nm. A lateral etch rate of > 40 mm/h is achievable at T = 70 ℃. 

 

 

Fig. 2.7: Lateral etch rate depending on the process temperature. Reproduced from ref. 24. 
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Based on systematic research of the key parameters for lateral etch rate described above, 

an advanced WI-ELO process was developed that employed a guiding cylinder instead of applying 

a weight to the flexible carrier (Fig. 2.8(a)).26 Previous WI-ELO process had the disadvantage that 

the flexible carrier bends too greatly, thus it resulted in cracking of the thin-film (Fig. 2.5(a)). In 

contrast, the advanced WI-ELO process can apply a constant radius of curvature near the etch 

interface by using a guiding cylinder with fixed radius. This process generally provides lateral etch 

rates exceeding 30 mm/h without creating cracks in the lifted-off epitaxial thin-film (Fig. 2.8(b)). 

 

 

Fig. 2.8: Advanced WI-ELO process. (a) Schematic illustration of ELO set-up with a guiding 

cylinder that applies a stabilized radius of curvature near the etch interface. (b) Photograph of 

lifted-off 2” GaAs thin-film on a flexible plastic carrier via WI-ELO process. Reproduced from 

ref. 26. 

 

2.3 Overview of thin-film bonding technology 

Bonding is a process that joins two separate materials together into a single body. Thin-

film bonding is an essential process to fabricate thin-film optoelectronic devices on a host substrate. 

However, conventional fusion-process based bonding technologies are difficult to employ for thin-
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film lift-off processes mainly due to their high processing temperature exceeding the glass 

transition temperatures of the host substrate, or creating a strain to the thin-film due to mismatch 

of thermal expansion coefficients. In this section, we introduce various bonding technologies that 

can be employed for thin-film active layer transfer from the original parent substrate onto the 

permanent or temporary host substrate. 

2.3.1 Cold-weld bonding 

Cold-welding is the bonding process that forms an intimate metallic junction by bringing 

two clean metal surfaces into contact with an application of pressure.27,28 This process is one of 

the oldest bonding techniques that was used by Mycenaean civilization mostly for decoration of 

metal products since the 2nd or 1st millennium B.C.29 Figure 2.9 shows a photograph of a bronze 

dagger blade with cold-welded Au and Ag decoration from Mycena, Greece.30 This ancient process 

used a shock pressure via hammering to join a malleable metal to a hard metal by reconstructing 

the interface by forming a metallic bond between them.  

 

 

Fig. 2.9: Photograph of ancient cold-welding processed decoration. Cold-welded Au and Ag onto 

bronze blade. Reproduced from ref. 30.  
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More recent research showed that two interfaces can form an intimate metallic bond when 

the spacing between atomically flat surfaces falls below a critical thickness (Fig. 2.10).31  For Ni 

(100), it is shown that two surfaces cannot be held apart when the interfacial separation is below 

1.9 Å, which is slightly larger than bulk interatomic spacing.31  Bonding can be achieved within 

100 fs under ambient conditions by applying considerable pressure across the two interfaces to 

overcome surface imperfections such as oxide films and desorbed contaminants.31  Ferguson et al. 

demonstrated the cold-welding of Au-Au interface using very low force (on the order of �N) 

applied by elastomeric supports in the presence of air, humidity and volatile organic 

contaminants.28 

 

 

Fig. 2.10: Schematic of cold-welding process. When the interfacial separation is below the critical 

thickness, two metallic surface can collapse together. Reproduced from ref. 31.  

 

 The cold-weld bonding technique is especially helpful when it is combined with an ELO 

process by eliminating additional thin-film transferring processes. Thin-film optoelectronic 

devices such as solar cells, photodiodes and LEDs usually require a rear-side metal contact which 
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can be used as a bonding interface to directly transfer the thin-film to the permanent host substrate 

such as a plastic substrate coated with metal.  

2.3.2 Van der Waals bonding 

 Van der Waals bonding can be achieved between two surfaces by using attractive 

intermolecular forces that are relatively weak compared to covalent or metallic bonds.  

Yablonovitch et al., demonstrated van der Waals bonding of ELO processed thin-film GaAs epi-

layers onto arbitrary substrates.13 Figure 2.11(a) and (b) show a schematic of the bonding process 

and cross-sectional transmission electron microscope image of a bonded interface.  A de-ionized 

water droplet left after rinsing pulls the lifted-off thin-film down onto the substrate by natural 

intermolecular surface forces. Then, the trapped wafer is squeezed out by applying pressure (~1.5×

10� dynes/mm2). Subsequently, the thin-film is baked under vacuum at 250 ℃ to dehydrate the 

dust particles.  

 

(a)          (b) 

  

Fig. 2.11: Van der Waals bonding process. (a) Schematic illustration of van der waals bonding of 

ELO processed film to the arbitrary substrate. (b) Cross-sectional transmission electron 

microscope image of bonded interface. Reproduced from ref. 13.  
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Van der Waals bonding is a simple, adhesive free, low-temperature electrostatic process like 

cold-welding; however, this process is generally employed after the ELO process to bond the 

already lifted-off thin-film onto the permanent substrate. Therefore, it requires an additional 

processing step to attach a handle to the epi-layer that holds the thin-film during the ELO process, 

usually using black wax, which is a mixture of hydrocarbons. Moreover, there is a risk of film 

damage during post fabrication processing such as plasma etching, due to the relatively weak 

bonding between the lifted-off film and the substrate. 

2.3.3 Additional bonding and transferring techniques 

 Yoon et al., demonstrated bonding of ELO processed thin-film epi-layers onto a partially 

cured polyimide-coated substrate via transfer printing.8 Transfer printing is enabled by using the 

kinetically controlled adhesion of thin-film layers to an elastomeric stamp.32 The bonding between 

thin-film and stamp is dominated by van der Waals interactions, and it is rate-sensitive adhesion 

owing to the viscoelastic behavior of the elastomer stamp.32 Therefore, sufficiently high peel 

velocity (> 10 cm/s) results in separation of the thin-film from the substrate and adhererence to the 

stamp. In contrast, enough slow peel velocity (~1 mm/s) allows the thin-film to adhere to the host 

substrate and become separated from the stamp. Figure 2.12 shows a schematic illustration of the 

transfer printing process. Transfer printing includes spin coating and photolithography to form a 

small photoresist structure to tether the undercut etched thin-film onto the donor substrate to hold 

the lifted-off film in position. A polydimenthylsiloxane (PDMS) stamp is used to lift-off and 

transfer print the thin-film epi-layer onto a substrate coated with partially cured polyimide, 

followed by baking.  
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Fig. 2.12: Schematic illustration of transfer printing process.35 The elastomeric stamp is used to 

pick up the lifted-off thin-film layers and transfer them to the host substrate. Reproduced from ref. 

32.  

 

Moreover, transferring using sticky tape was demonstrated by Lee et al.33, and Cheng et 

al.34 Thermally releasable tape was used as a temporary carrier33, and Kapton tape that is durable 

to vacuum processes was employed as a permanent host substrate34. 

 Most bonding processes of a thin-film onto a permanent substrate described above except 

the cold-welding process require some form of transfer process. Black wax (Apiezon W) can be 

employed as a handle layer during the ELO process since tension can be induced by annealing to 

create curvature near the etch interface that assists in HF diffusion into the gap between epi and 

substrate. Thermal release tape can also be used as a temporary handle to support the thin-film and 

is then removed after bonding the epi-layer onto the host substrate by weakening the adhesion with 

the application of heat.33  
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2.4 Advantage of thin-film optoelectronic devices  

2.4.1 Light trapping 

The original concept of light trapping was proposed for Si photodetectors to increase its 

response speed while maintaining high EQE in the NIR range via total internal reflection.9,36 

Subsequently, light trapping structures with a textured back-side mirror was employed for Si 

photovoltaic cells to overcome weak absorption of light.37 The ideal light trapping structure with 

sufficiently textured surface and a perfect rear-side mirror provides a degree of intensity 

enhancement of 2n2 via total internal reflection.9 In other words, a light ray in thin-film with 

refractive index of n = 3.5 can make ~25 passes within the absorbing layer using a light trapping 

structure before escaping. Therefore, the maximum effective absorption enhancement factor of 

light trapping is ~4n2 by considering an angular average of the longer path length of oblique rays.9 

Figure 2.13 shows a schematic illustration of the light trapping structure that increases the number 

and length of absorption paths using total internal reflection compared to a film without a rear-

side mirror or textured surface. A similar concept using integrated back side metal mirrors instead 

of a textured surface has been widely employed for various thin-film solar cell technologies 

including organic solar cells, and solar cells with a low absorption coefficient or short 

photogenerated carrier lifetime to enhance light absorption by increasing the optical path.  
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Fig. 2.13: The schematic illustration of light absorption in thin-film. (a) The light trapping 

structure using textured surface. (b) The thin-film without light trapping structure. Reproduced 

from ref. 9. 

 

However, the light trapping concept for compound semiconductor-based photovoltaic 

cells was paid relatively small attention compared with Si-based photovoltaic cells because their 

absorption coefficient is sufficiently high to fully cover the solar spectrum below the band edge 

using a thin active layer (few μm). Furthermore, application of a rear-surface mirror in compound 

semiconductor devices faces structural limitations since the device is usually grown on a 

crystalline wafer. However, the ELO process enables replacing a bulk substrate with a reflector-

coated epitaxial layer by transferring only a thin active region onto it. A light trapping structure 

with back-side mirror doubles the optical path by reflecting the incident photon back into the 

absorbing region; therefore, the active layer thickness can be reduced by half, which reduces the 

consumption of costly materials and growth time without performance loss.14,26 The high 

refractive indices of compound semiconductors create a narrow escape cone near the surface for 

trapped or internally generated photons, therefore light trapping effects can be enhanced.11 

There is a synergy especially for photovoltaic cells both with improvement in absorption, 

and also in open circuit voltage (Voc) when light trapping is combined with photon recycling 

which will be discussed in the following section.38 The light trapping structure effectively 
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confines internally generated photons via a radiative recombination process within the active 

device region, which eventually results in photon recycling. Moreover, the thin active region 

achieved by light trapping reduces bulk recombination losses. However, rear surface 

recombination is increased when generation near the surface becomes significant. Therefore, it is 

important to have a back surface field (BSF) layer with a high quality interface. Furthermore, bulk 

resistivity losses can be reduced since the photogenerated carrier density increases by using a 

reflective back side mirror, which in turn increases the conductivity. 

Light trapping using a rear-side metal mirror is also effective for photodiode applications 

as originally suggested. The rear-side mirror that doubles the absorption path is especially useful 

for the NIR/IR range detection where the penetration depth is longer than the visible spectrum 

range. Therefore, the relatively thinner active layer in a photodetector can be employed, combined 

with a rear-side mirror to achieve enhanced absorption. The thinner active region also provides a 

fast response speed which is a figure of merit of a photodiode. 

 Furthermore, combination of a light trapping structure using a rear-side mirror with 

surface texturing enhances the external quantum efficiency (EQE) of LEDs by preventing the 

absorption loss of internally generated photons through the substrate.39  

     2.4.2 Photon recycling 

Photon recycling is the self-absorption process of internally generated photons. This effect 

is especially advantageous for III-V photovoltaic cells that have a very high internal quantum 

efficiency to improve the power conversion efficiency (PCE) by increasing Voc. Since 1950s, 

numerous researchers have described the effects of self-absorption of spontaneously emitted 

photons on the measured values of the minority carrier lifetime and diffusion length in GaAs 
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compared with absolute values.10,40,41 The photoluminescence lifetime of a GaAs/AlGaAs double-

heterojunction structure (=>?) can be written as:10 
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+  
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A=&

+  
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                                              (2.6) 

 where =@& is the carrier lifetime due to nonradiative recombination processes, =& is the 

radiative lifetime, =B is the surface recombination lifetime, and A is a photon recycling factor. 

This model is used to explain why the carrier lifetime ( =>? ) extracted from transient 

photoluminescence (TRPL) is longer than calculation. Moreover, the photon recycling model 

predicts the dependence of A  on active region thickness due to self-absorption. TRPL 

measurements confirm the increased lifetime as active layer thickness increases, and the PL 

radiative lifetime approaches the radiative lifetime when d was sufficiently thin (Fig. 2.14).   

 

 

Fig. 2.14: Recombination lifetime vs. active layer thickness. The dots represents experimental 

data, and the dashed curve is the theoretical values. Reproduced from ref. 10. 

 

Photon recycling was designed into GaAs-based semiconductor lasers to reduce a 

threshold current density in 1974 by Stern et al.42 In their system, reabsorption of spontaneously 
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emitted photon with energy exceeding the bandgap decreased the externally supplied current 

density required to reach a given gain at room temperature. Later, Ahrenkiel et al. confirmed 

photon recycling by showing that the bulk minority-carrier lifetime in 1×1017 cm-3 doped GaAs 

provides ~5 times longer radiative lifetime than the calculation.43 This effect was only detected 

for a sample with a high quality AlGaAs/GaAs interface grown at > 740 ℃.  

In 1991, Lush et al. proposed the thin-film approach for III-V photovoltaic cells to 

improve efficiency by combining light trapping and photon recycling using a back-side mirror 

(Fig. 2.15).44  

 

 

Fig. 2.15: GaAs solar cell structure for enhanced photon recycling. Reproduced from ref. 44. 

 

According to the photon recycling model, when the dark current is dominated by 

recombination within the base layer of solar cell, the saturation current density(J0) of a thin-film 

cell is approximated by:44 
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where W is width of the base layer, �G is the base doping concentration, �F is the intrinsic carrier 

density, and S is the back-surface recombination velocity. Photon recycling factors of ~10 leads 

to D8 = 2 ×10-21 A/cm2, based on a simplified relationship between Voc and D8 given by:  

�,K ≈
MN
E

ln (
DBK

D8
)                                              (2.8) 

Using a reasonably high  DBK = 29 mA/cm2, Voc = ~1.15 V for thin-film GaAs solar cell is 

expected. Base on the thin-film approach, the enhanced photon recycling achieved by a light 

trapping structure was experimentally demonstrated by Lundstrom et al. using the substrate etch 

removal method.45 This structure enables the reflection of spontaneously emitted photons into the 

active layer that was not considered in earlier calculations10. Therefore, the extremely long carrier 

lifetime (~1μs) in moderately doped GaAs thin-films via photon recycling and light trapping was 

achieved, showing the potential of a high efficiency GaAs solar cell using thin-film solar cell 

designs (Fig. 2.16(a) and (b)). 

 

(a)                  (b) 

  

Fig. 2.16: Effect of substrate removal on minority carrier lifetime. (a) TRPL measurement on 

GaAs/AlGaAs thin film with and without substrate. (b) Inverse decay constant extracted from 

TRPL measurement dependence on active layer thickness. Reproduced from ref. 45. 
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Alta Devices employed photon recycling combined with light trapping by using the ELO 

process. Their solar cell provided a very high efficiency (28.8 %). The short circuit current density 

(Jsc) was similar between thin-film and substrate-based cells, however, there was a significant 

improvement in Voc using a thin-film solar cell design with a back-side reflector as predicted. The 

probability of radiatively recombined photons within the GaAs active cell region escaping the 

front surface before reabsorption is only 1~2%, and over 96 % of internal luminescence can be 

re-absorbed using the back side mirror with high reflectance (Fig 2.17).11  

 

 

Fig. 2.17: Diagram of current at the operating point of photovoltaic cell (a) with a perfect mirror 

and (b) with an absorbing substrate. Both cells provide a comparable current, however, the 

significant incensement of internal luminescence via perfect mirror results in the improved Voc. 

Reproduced from ref. 11.  

 

Indeed, Alta Devices’ GaAs thin-film solar cell showed a very low saturation current 

density of 6 ×10-21 A/cm2, approximated by a two diode model. Estimated Voc = 1.107 V based 

on Equation 2.8 matched with the measured value (Voc = 1.107 V) by the National Renewable 

Energy Laboratory (NREL).  Figure 2.18(a) and (b) shows the dark current density characteristic 

of the thin-film GaAs solar cell and its fit using the double diode model. 
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Fig. 2.18: Dark current density of Alta Devices’ thin-film GaAs solar cells (a) measured by NREL 

and (b) fitted by double diode model. Reproduced from ref. 15. 

 

Photon recycling can be further improved by combining a narrow band angle restrictor, 

such as a dielectric multilayer46 or a double array of cone-like structures47 on the cell. A double 

array of cone-like structures provides high transmission for normally incident light, but has a high 

reflectivity at oblique angles at the wavelength range of radiative recombination (Fig 2.19(a)-

(d)).47 Recently, there was an effort to enhance the photon recycling in thin-film multi-junction 

solar cells by confining the internal luminescence within the sub-cells using a low refractive index 

material such as an air gap between the cells instead of luminescence coupling into the adjacent 

cell.48  
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(a)            (b) 

           

(c)             (d) 

           

Fig. 2.19: Schematic illustration for a coupler structure enhancing photon recycling (a) Dielectric 

coupler consists of a double array of cone-like structures. The cone-like structures have a light 

trapping, randomizing back reflector. (b) Illustration of rays in a dielectric coupler structure in fig 

2.19(a). (c) Schematic of a metal array coupler combined with GaAs solar cells. (d) Illustration of 

rays in metal array coupler structure in fig 2.19(c). Reproduced from ref. 47.  

 

2.5 Advanced thin-film optoelectronic devices 

2.5.1 Photovoltaic cells 

Initially, the ELO process was developed to reduce the production cost of photovoltaic 

cells by recycling the wafer. The first ELO processed device was ~30 μm thick n-AlGaAs/p-GaAs 

hetrojunction thin-film solar cells with PCE of 13.5 % under the 1 sun illumination, and PCE = 
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9.4 % under the 109 suns concentrated condition.1 The second ELO processed photovoltaic cells 

were demonstrated almost two decades after in 1996 by Lee at al. and Hageman at al. (Fig. 2.20(a)-

(d)) However, their cells were small (1 mm × 1 mm size, Lee at al.49) or showed poor performance 

(PCE = 9.9 %, Hageman et al.50) due to an immature fabrication processes.  

 

 

Fig. 2.20: ELO processed GaAs thin-film solar cells. (a) ELO process using black wax. 

Photovoltaic cells were first fabricated, then transferred onto glass substrate. (b) J-V characteristic 

under 1 sun (simultated AM1.0) illumination. (c) Schematic of WI-ELO process, and device 

structure for it. (d)  J-V characteristic comparison between ELO cell and substrate cell under 1 sun 

illumination. Inset: Summary of device performances. Reproduced from ref. 49 and 50.  
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It took another decade to achieve PCE comparable to substrate-based GaAs solar cells. 

Eventually, the record efficiency of 26.1 % for a single junction GaAs solar cell was achieved 

using the ELO process by Bauhuis et al. in 2009.14 The PCE of ELO-processed GaAs solar cells 

was further improved by Alta Devices (PCE = 28.8 %, in 201115), and, remains the record 

efficiency among all single junction photovoltaic material systems to date, including mono-

crystalline Si solar cells.51 Figure 2.21 shows a J-V and EQE characteristic of Alta Devices’ GaAs 

thin-film solar cells.15 

 

 

Fig. 2.21: Characteristic of Alta Devices’ GaAs thin film solar cell certified by NREL (a) J-V 

characteristic under simulated AM1.5G 1 sun illumination. Inset: Photograph of device. (b) EQE 

of solar cell. Reproduced from ref. 15.  

 

The improved performance of thin-film GaAs solar cells is mainly maintained by the high 

open circuit voltage (Voc) compared to substrate-based solar cells, enabled by a rear-surface mirror 



48 

 

with high reflectivity immediately underneath the active solar cell region. The back-surface mirror 

provides two very important benefits of light trapping and photon recycling which was discussed 

above. As a result of these advantageous effects, the Voc of the best thin-film GaAs solar cell 

reaches 1.11 eV which is considerably higher than that of the best substrate-based GaAs solar cells 

(Voc = 1.03 eV) with similar structure. Furthermore, the ELO-processed thin-film GaAs solar cells 

provide numerous advantages over substrate-based solar cells such as lightweight, flexibility, 

reduced use of active materials and decreased growth time (only requiring a half thickness of 

absorption layer compared to bulk solar cells by having a mirror on the bottom of cell), effective 

heat management, and potential for wafer recycling, etc. 

Moreover, ELO techniques can also be applied for multi-junction solar cell fabrication. 

The multi-junction solar cells are especially attractive for concentrated photovoltaic and space-

borne applications mainly due to their high PCE. Recently, double and triple junction solar cells 

have been demonstrated using the ELO process (Fig. 2.22).52,53 The quadruple junction solar cell 

was also demonstrated by mechanically stacking the lattice mismatched sub-cells and employing 

an index matched interlayer between sub-cells.54 Furthermore, there have been attempts to improve 

the performance of multi-junction solar cells by converting luminescence coupling into a photon 

recycling effect.48,55 This is possible by inserting a wavelength selection mirror between each sub-

cell to confine the radiatively recombined photons inside each sub-cell region instead of being 

coupled to adjacent cells by using ELO.48,55  
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Fig. 2.22: Picture of ELO processed InGaP/GaAs double junction photovoltaic cells from 4 inch 

substrate. Reproduced from ref. 52.  

 

2.5.2 Photodiodes 

The working principle of photodiodes is similar to photovoltaic cells; however, it is 

designed to detect the optical signal instead of harvesting energy, therefore, it operates under 

reverse bias. The first demonstration of an ELO-processed photodetector was bottom illuminated 

InP/InGaAs p-i-n photodiode on a sapphire substrate in 1989 by Schumacher et al.56 The devices 

were fabricated on top of the InP substrate, then the fabricated devices were transferred to a 

sapphire substrate. The ELO processed InGaAs p-i-n photodiode had a bandwidth of 13.5 GHz 

with a 90 % internal quantum efficiency at a wavelength of 1.3 μm. The device was a bottom 

illumination structure. Figure 2.23(a) and (b) show a schematic of device structure and measured 

pulse response of an ELO processed InGaAs p-i-n photodiode. 
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Fig. 2.23: ELO processed InGaAs p-i-n photodiode. (a) Schematic cross-section of fabricated 

device structure and (b) Pulse response of InGaAs p-i-n photodiode. Measurement shows 46 ps 

FWHM, and THE estimated intrinsic impulse response was 23 ps FWHM.  Reproduced from ref. 

56.  

 

To further improve the performance of a photodetector using a resonant cavity, Yang et al. 

demonstrated the fabrication of an InGaAs p-i-n photodiode on top of an AlAs/GaAs distributed 

Bragg reflector (DBR) with maximum reflectivity at 1.3 μm.57 However, their demonstration was 

limited to the fabrication and dark current measurement of a photodiode without characterizing the 

EQE and response speed even though those parameters are benefitted by employing a resonant 

cavity structure. The measured dark current was 4.4 nA at -0.5 V with a very small breakdown 

voltage (approximately -1 V).  

For the GaAs-based photodetector, Au/GaAs Schottky photodiode was transferred to a 

glass substrate via ELO by Kobayashi et al.58 An external quantum efficiency over 70% was 

demonstrated at a wavelength of 780 nm, which is 1.6 times higher than that of a conventional 

substrate-based photodiode (Fig. 2.24). Enhanced absorption was achieved by substrate-side 

illumination through the glass and light trapping using Au front contact mirror.  
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Fig. 2.24: Comparison of spectral response between substrate-based and ELO processed 

photodiode.  Insets show a schematic of both device structure. Reproduced from ref. 58.  

 

Recently, we demonstrated an InGaAs p-i-n photodiode both on Si and plastic substrates 

with almost a 100 % EQE at 1.3 μm wavelength with broad detection range from 1 μm to 1.6 μm 

by combining ELO and cold-welding processes. The light trapping structure using a rear-side 

mirror enables a thin active layer, therefore the response speed of the photodetector was maintained 

while the absorption improved. Furthermore, the detector was fabricated on a flexible platform, 

therefore it was able to curve into a cylindrical shape to achieve a 360° field of view. 

2.3.3 Light emitting diodes 

Although, compound semiconductors can provide an internal quantum efficiency over 99%, 

light emitting diodes usually suffer from a low external quantum efficiency due to the high 

refractive index contrast between the device and air. According to Snell’s law, the escape cone of 

the semiconductor with refractive index of 3.5 is only ~16 °  which indicates only ~2% of 

radiatively recombined photons can be outcoupled into free space. Schnitzer et al. demonstrated a 

potential solution to improve the EQE of compound semiconductor-based LEDs using the ELO 
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process and surface texturing.39 The ELO process enables the lifted-off thin-film to be mounted 

on the reflector. This minimizes the optical loss of internally generated photons through the 

substrate by trapping within the active device region till they escape through the surface (Fig 2.25). 

Furthermore, surface texturing provides angular randomization by scattering to improve 

outcoupling. Combining these methods, the EQE of GaAs LEDs was improved from 9% to 30%.  

 

  

Fig. 2.25: The illustration of rays in thin-film light emitting structures (a) with planar surface and 

(b) with textured surface. The EQE is enhanced in thin-film structures with rear-side reflectors by 

self-absorption and re-emission processes, and further improvement can be achieved using angular 

randomization by strong surface scattering via a textured surface. Reproduced from ref. 39.  

 

A GaAs/AlGaAs heterostructure nonresonant cavity LEDs (NRCLEDs) with 31% external 

quantum efficiency were demonstrated by outcoupling of lateral waveguide modes by Windisch 

et al.59 Furthermore, Corbett et al. demonstrated resonant cavity LEDs (RCLEDs) with a narrow 

spectral width of 9 meV using two-metal mirrors and InP/InGaAs p-i-n structure via an ELO 

process.60 The ELO process eliminates the necessity of complex and time-consuming growth of 

thick DBR stacks for RCLEDs by transferring the thin-film device onto a dielectric mirror.This 

structure also behaved as a detector under reverse bias. 
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2.5.4 Lasers 

There are relatively small numbers of demonstrations for thin-film lasers using the ELO 

process. The first demonstration was the double heterostructure GaAs/AlGaAs thin film diode 

lasers on a glass substrate by Yablonovitch et al.61 Van der Waals forces were employed to bond 

a thin-film onto the glass substrate. The laser showed almost identical threshold current density 

(~1000 A/cm2) before and after the process. In 1991, a GaAs/AlGaAs graded-index separate-

confinement heterostrucure (GRIN-SCH) single-quantum-well (SQW) laser diode on a Si 

substrate was demonstrated using ELO and the wedge-cleaving processes by Pollentier et al.62 

Figure 2.24(a)-(c) show a schematic illustration of the wedge-induced facet cleaving (WFC) 

process, device structure, and SEM image of a noncleaved wedge. Their structure contains an 

AlGaAs layer with Al composition exceeding 40% by using moat etch protection during ELO. The 

wedge-cleaving process used to form the facet initiates the cleavage using reactive ion etching 

(RIE) by slightly bending the thin-film. A threshold current of 640 A/cm2 with the 15% /facet EQE 

was achieved, which is comparable to that of the reference device (460 A/cm2). Figure 2.26(d) and 

(e) shows the spectral responses of WFC-ELO processed lasers at a pulsed input current of 225 

mA, and output power-current (P-I) characteristic of WFC-ELO processed and conventional lasers. 
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Fig. 2.26: Wedge-induced facet cleaving ELO (WFC-ELO) process for thin-film laser fabrication. 

(a) Schematic illustration of WFC process. Thin-film is patterned using photolithographic 

technique, then the facet is form initiate from the wedge by bending the flexible carrier. (b) 

Schematic of broad-area laser structure. (c) SEM image of noncleaved wedge. (d) Spectral 

response of WFC-ELO process laser at pulsed input current 225 mA. (e)  P-I characteristic of a 

WFC-ELO processed and conventional lasers. Reproduced from ref. 62.  

 

The lift-off process was also used to fabricate a rolled-up thin-film tubular structure to form 

ring resonators and lasers (Fig. 2.27).63 The lifted-off film can be rolled by inserting the InGaAs 

strained layer between the AlAs sacrificial layer and the active device region. The diameter of 

rolled semiconductor tubes can be controlled in the range of tens of nm to tens of μm by using the 
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strain of an InGaAs layer which is determined by composition and thickness. The lifted-off thin-

film is generally rolled along the <100> planes due to their small Young’s modulus. Using this 

method, optically pumped micro-scale lasers with very low threshold powers (~4μW ) were 

demonstrated based on InGaAs/GaAs quantum dot tubes. However, the electrically injected tube 

laser has not been demonstrated due to the difficulty of defining the p-n junction in the rolled-up 

tube structure.  

 

(a)                            (b) 

                

(c)                            (d) 

       

Fig. 2.27: Schematic and image of lift-off process of rolled-up quantum dot microtube. (a) The 

growth structure of InGaAs/GaAs quantum dot heterostructure for lift-off process. (b) Schematic 

illustration of fabrication process for microtube ring resonators. (c) The schematic of an etched U-

shaped mesa (d) Scanning electron microscopy image of lifted-off rolled up microtube. 

Reproduced from ref. 63.  
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2.5.5 Transistors 

ELO-processed transistors provide a potential for hybrid or monolithic integration of 

optoelectronic and RF circuits with Si-based very large scale integrated (VLSI) circuits. Therefore, 

various transistors have been demonstrated by ELO including high electron mobility field-effect 

transistors (HEMTs)64,65, metal semiconductor field-effect transistors (MESFETs) 66,67 and 

heterojuction bipolar transistors (HBTs).68  

At high frequency HEMTs into the millimeter wave range enables their use in commercial 

applications such as cell phones and radar equipment. The GaAs/AlGaAs heterostrucutre 

commonly used for HEMTs combined with the ELO process allows HEMTs created on host 

substrates such as Si and glass. Figure 2.28 shows DC and RF performance of wafer and ELO 

processed HEMTs.64 The ELO processed HEMTs showed 15~20% degradation in electron 

mobility and maximum frequency fmax possibly due to the inhomogeneous stress in the bonded 

film which creates the spatial variations in the bandgap, or piezoelectric charges that scatter 

electrons. However, the ELO processed HEMTs exhibit stable or better (12~20 %) unit current 

gain cut-off frequency, fT, while having similar DC and RF characteristics compared with those 

directly fabricated on a substrate.64  
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Fig. 2.28: Characteristic of GaAs HEMTs. DC transfer (top) and RF characteristic of (a) an on 

wafer GaAs HEMTs and (b) an ELO processed GaAs HEMTs. The HEMTs on wafer shows an 

UV = 11.5 GHz and U�� = 23 GHz , and ELO processed HEMT shows shows an UV =

10.5 GHz and  U�� = 12 GHz. Reproduced from ref. 64.  

 

MESFET also can be employed for high frequency applications such as military and 

satellite communications. The transplantation of MESFETs prefabricated by a commercial 

foundry (Philips Microwave Limeil) to polyimide coated InP substrates was demonstrated to 

confirm the feasibility of integration by Pollentier et al.66 The transplanted MESFETs showed no 

significant DC and RF performance and reliability degradation after the ELO process (Fig. 2.29(a) 

and (b)). Furthermore, Moat et al. investigated effects of thermal conductivity of the host substrate 

on the operation temperature of ELO processed MESFETs. Figure 2.29(c) shows microscope 

images of ELO processed MESFETs on quartz. The maximum on-chip surface temperature was 
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significantly higher when the device was transferred onto the substrate with high thermal resistivity 

such as quartz (Fig. 2.29(d)).67 In contrast, the transferred MESFETs onto low thermal resistivity 

materials such as Si showed minor effects on device performance, which confirms the potential 

for integration of MESFETs with CMOS circuits. 

 

 

Fig. 2.29: Characteristic of MESFETs. (a) Transconductance of MESFETs before and after ELO 

process at Vds = 3V. (b) RF behavior of MESFETs before and after ELO process (Solid line: after 

ELO, dashed line: before ELO). Measurements showed nearly no difference in DC and RF 

operation before and after ELO process.  (c) Microscope images of ELO processed MESFETs on 

quartz (top : front view, bottom: view from quartz side). (d) Maximum on chip surface temperature 

of ELO processed films on various substrates measured by IR microscope. Reproduced from refs. 

66 and 67. 
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AlGaAs/GaAs HBTs fabricated on Si substrates provide considerably higher current gain 

(550) compared to that of similar structures directly grown on Si (~100) since the structures were 

grown on lattice-matched substrates and then transferred onto host substrates.68 The HBTs on Si 

provide a potential to combine high speed HBTs with Si VLSI. Furthermore, the power dissipation 

in HBTs can be reduced by transferring them onto Si which has higher thermal conductivity. 

 

2.6 Substrate recycling 

A major benefit of the ELO process is the potential for reusing the parent substrate which 

reduces the device production cost. However, wafer recycling followed by ELO processing has 

been limited due to a degraded surface quality left by the ELO process. This is partially due to 

the accumulation of contaminants on the surface, and surface roughening due to the slow etch of 

the wafer by HF.22,69 To recover the surface quality of the parent wafer in preparation for its 

recycling, understanding the origin of the contaminants on GaAs is needed. Fig 2.30(a) shows an 

optical microscope image of a GaAs wafer surface without a sacrificial layer exposed to a 20% 

HF solution, then stored in air.22 This image provides evidence that the accumulation of reaction 

product on the wafer surface not only originates from the AlAs etching, but also from the GaAs 

etching reaction. The etch rate of GaAs in HF was measured to be ~16 nm/hr with a weak 

dependence on HF concentration (Fig. 2.30(b)). The etching of GaAs in HF in the dark results in 

a brown haze on the surface (Fig. 2.30(c)). X-ray photoelectron spectroscopy (XPS) 

measurements on this brown deposit indicates an elemental arsenic peak with a small signal 

related to As2O3, but without GaAs related signals.22 The SEM image shows the morphology of 

the brown haze on GaAs surface that consists of small hillocks (Fig. 2.30(d)). In contrast, no-
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fluoride containing compounds were observed indicating that these reaction products are possibly 

dissolved in the etchant. 

 

Fig. 2.30: Reaction of GaAs in HF etchant (a) Optical microscope image of GaAs surface after 

exposed to HF, and stored in ambient air. (b) Etch rate of GaAs in dilute HF etchant. (c) Optical 

microscope image of GaAs surface after exposed to HF while it is kept in dark during etching. (d) 

SEM image of the brown haze in fig. 2.15(b). Reproduced from ref. 22.  

 

 The reaction between GaAs and HF was further investigated by exposing the GaAs surface 

to HF solution under various condition. Figure 2.31(a)-(c) show a schematic overview of GaAs 
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reaction process in dilute HF under various conditions. In the dark, GaAs was very slowly etched 

by undissociated HF via a synchronous bond-exchange mechanism (Fig. 2.31(a)).70 The Ga 

product is dissolved as a fluoride, and the arsine product is chemically decomposed (or via a redox 

reaction) into elemental arsenic that covers the GaAs surface (Fig. 2.31(d)). The accumulation of 

As on GaAs does not halt the etch of GaAs, and only a portion of etch reaction product (AsH3) is 

formed into an As accumulation layer, since the 400 nm thick GaAs etching produces only a 20 

to 30 nm thick As layer on its surface.  

Figure 2.31(b) shows a schematic process for chemical reaction of GaAs in HF solution 

under illumination. Accumulation of elemental As from GaAs etching under illumination was 

observed to be more uniform and thin compared to the same chemical reaction resulting from 

etching in the dark. This is possibly due to electroless photoetching that occurs when a 

semiconductor in an etchant is exposed to supra-bandgap light.70,71 The photogenerated electrons 

react with the oxygen in the HF solution, and photogenerated holes oxidize both Ga and As, or 

only Ga depending on the number of holes that participate in the process (6 and 3 holes, 

respectively).22 Thus, chemical reactions assisted by photogenerated carriers help to nucleate 

more uniform As layers compared to that formed by the decomposition of AsH3 in the dark. A 

similar influence of light in the etching process is also observed for AlAs epitaxial layer in HF 

etchant.72 

Figure 2.31(c) shows a schematic process for the As2O3 micro-crystal formation during 

sample storage. The As layer reacts with H2O in an ambient environment assisted by 

photogenerated holes, which leads to the growth of As2O3 micro-crystallites possibly by 

convection diffusion of AsO

.  ions73,74, and super-saturation/hydrolysis. This crystal formation 

process is a photocatalyzed reaction since it requires both air and light.  Figure 2.31(d)-(f) show 
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SEM images of HF etchant-exposed GaAs surfaces for different storage times (immediately after 

etching, after 3hours and 4 weeks storage, respectively.) in ambient.  

 

 

Fig. 2.31: Reaction of GaAs in HF etchant under dark and illumination condition. Schematic 

overview of reaction process on GaAs surface (a) during exposed to HF under dark condition, (b) 

under illumination and (c) during storage in ambient environment. SEM images of etched GaAs 

surface by HF (d) immediately after the etching, (e) after storage of sample for 3 hours and (f) for 

4 weeks. Reproduced from ref. 22. 

 

2.6.1 Chemo-mechanical polishing 

To recover the surface quality, various chemical polishing processes have been tested (Fig. 

2.32(a)). The devices grown and fabricated from chemically polished substrates followed by the 

ELO process exhibit the significantly degraded IV characteristics compared with those obtained 

from the fresh substrate (Fig. 2.32(b)).17 Poor Jsc and Voc of devices grown on a chemical polished 

wafers indicate reduced growth quality possibly due to the large scale surface roughness or 

surface contamination which is not completely removed by the chemical polishing process.  
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The CMP process is a more straightforward method to prepare the epi-ready surface. 

Bauhuis et al.17 and Adams et al.18 demonstrated wafer recycling using the CMP process without 

significant performance degradation. However, the CMP process has the limitation of production 

cost reduction due to the restriction on the number of wafer reuses. This restriction is caused by 

the wafer thinning, the relatively expensive cost for CMP process, and low yield especially when 

the wafer is thinned after a few cycles.75 

 

(a)                                                                       (b) 

 

Fig. 2.32: Parent substrate recycling after ELO process (a) Test of various etchants for chemical 

polishing of an ELO processed GaAs wafer surface. (b) Comparisons of IV-characteristics between 

thin-film GaAs solar cells grown on fresh, chemical polished and chemo-mechanical polished 

substrate. Reproduced from ref. 17. 

 

2.6.2 Epitaxial protection layers 

Recently, we demonstrated wafer recycling for both InP and GaAs without CMP by 

employing epitaxial protection layers between the sacrificial layer and the wafer.6,19 We analyzed 

the recovered surface quality by comparing the morphology and chemistry of the surface before 
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and after protection layer removal using various microscopic methods including atomic force 

microscopy, scanning electron microscopy, 3D laser scanning microscopy, energy dispersive X-

ray spectroscopy, and X-ray photoelectron microscopy. Furthermore, the crystallinity, electrical 

and optical properties of the epi-layer grown on a reused wafer were determined using cross-

sectional transmission electron microscopy, Hall effect and photoluminescence measurements, 

respectively. Moreover, multiple batches of optoelectronic devices, such as photovoltaic cells, 

LEDs and MESFETs were fabricated from a single parent wafer without any systematic 

performance degradation. This method will be discussed in detail throughout this thesis. 

 

2.7 Various fabrication methods for thin-film optoelectronic devices 

Complete removal of the substrate was a traditional method to create thin-film compound 

semiconductor crystalline layers, and we discussed the ELO process that is the most intensively 

investigated lift-off technology. In this section, we introduce various additional lift-off 

technologies to produce the thin-film optoelectronic devices.   

2.7.1 Controlled spalling 

Thin-film semiconductor layer can be created by the propagation of a spalling mode 

fracture within the substrate bulk, parallel to the surface. This process is called controlled spalling. 

It uses a tensile stressor layer (e.g. Ni) and flexible handle to mechanically guide the fracture 

front.76,77 Figure 2.33(a)-(d) show a schematic illustration of controlled spalling and an image of 

a fabricated thin-film solar cells on a flexible foil produced by this method. This process can be 

used to create a single crystalline thin-film layer not only for compound semiconductors, but also 

for elemental semiconductors such as Si and Ge. Furthermore, the lift-off of the thin-film layer 
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directly from the ingot has been demonstrated using the spalling process.77 To show its feasibility 

as a means for thin-film optoelectronic device production, this process was employed for the 

fabrication of dual and triple junction solar cells (Fig 2.33(a)-(d)) and CMOS circuits.78 Lifted-

off thin-film devices show comparable performance with the reference devices. However, the 

spalling process provides a relatively large spalled layer thickness variation (~1 μm), and the 

surface quality of lift-off film is affected by the semiconductor surface orientation.  

 

 

Fig. 2.33: Illustration of controlled spalling process and image of fabricated thin-film solar cells. 

(a) The schematic of structure used in controlled spalling process. (b) Schematic of lifted-off thin-

film active layers bonded on polyimide tape. (c) Schematic of fabricated thin-film solar cells on 

flexible substrate. (d) Photograph of fabricated thin-film tandem solar cells on plastic substrate. 

Reproduced from ref. 78. 
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2.7.2 Exfoliation 

Exfoliation is a mechanical lift-off process similar to controlled spalling. However, this 

process produces thin-film active layer separation by physically weakening the thin region using 

hydrogen ion implantation, then the weakened interface is cleaved (Fig. 2.34).79 This process is 

called the Smart-Cut process that is intensively used for the preparation of Silicon on Insulator 

(SOI) wafers. For compound semiconductors, exfoliation is used to create an engineered substrate 

consisting of thin-film epitaxial templates on top of host substrate and thin-film solar cells such 

as Si or glass (Fig. 2.34).5,80  

 

 

Fig. 2.34: Process flow chart for InP layer transfer via exfoliation process. (a) Heterostructure 

growth using MOCVD (b) Hydrogen ion implantation process (c) Wafer bonding process (d) 

Exfoliation process induced by thermal annealing (e) Selective chemical etching process of both 

samples. Reproduced from ref. 79. 
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Fabricated InGaAs solar cells (PCE = 13.6 %) on InP/Si5 and InGaP/GaAs tandem solar 

cells (PCE = 15.5 %) on Ge/Si epitaxial templates80 were demonstrated using the exfoliation 

process without significant performance degradation compared with the reference cell. However, 

this process is relatively expensive, mainly caused by the hydrogen implantation process. 

2.7.3 Cleavage of lateral epitaxial films for transfer (CLEFT) 

The CLEFT process was developed to produce multiple single crystalline thin-film layers 

from a single substrate using lateral vapor phase epitaxy (VPE) by McClelland et al.4 Figure 

2.35(a) shows a process flow chart. For the CLEFT process, a carbonized photoresist is first 

patterned on a (100) GaAs substrate with an appropriate spacing (e.g. 2.5 μm wide striped 

openings), then epitaxial growth is initiated within the patterned opening, followed by lateral 

growth over the mask. Once it reaches ~ 1 μm film thickness, it forms a continuous single 

crystalline film. After the growth, the sample is bonded to the host substrate and the thin-film 

layer is mechanically cleaved from the substrate using a cleaving wedge (Fig. 2.35(b)). 

Comparable film quality of the lateral epitaxial growth layer before and after lift-off is confirmed 

by Hall effect measurements. However, the CLEFT process requires epitaxy technique which 

allows for lateral growth, and the film quality of lateral epitaxy is poor compared to ane identical 

film grown on a crystalline substrate using conventional epitaxial growth.4 
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(a)         (b) 

                    

Fig. 2.35: Schematic illustration of cleavage of lateral epitaxial films for transfer (CLEFT) process. 

(a) Fabrication flow for CLEFT process. The photoresist is patterned on a GaAs substrate, then 

the GaAs layer is grown together laterally from the narrow slot to form a continuous single 

crystalline film. (b) Cross-sectional view of thin-film transferring process to a host substrate. A 

small force is applied to cleave the sample. Reproduced from ref. 4. 

 

2.7.4 Modified ELO  

Multiple layer release is an ELO process that produces multiple crystalline layers from a 

stack of layers on a single wafer.8 This process was proposed by Konagai et al. when the ELO 

process was initially introduced. An identical process structure was also employed for a multiple 

release layer etch method to examine the lateral etch rate of the ELO process dependence on Al 

faction in the sacrificial layer. Recently, Yoon et al. demonstrated a multiple batch of photovoltaic 

cells, MESFETs and photodiodes from a single GaAs substrate using releasable multilayer 

epitaxial assemblies (Fig. 2.36). However, the long growth time with high doping concentration 

in the device contact layers leads to unwanted p-type Zn dopant diffusion to adjacent layers which 
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causes degradation of devices in the bottom of the stack compared with those on top. This issue 

was resolved by switching the Zn dopant to carbon81 or changing the structure from n-on-p to p-

on-n.82 However, the demonstration of a multiple layer release process is still limited to sub-

millimeter size devices (~500 μm).  

 

 

Fig. 2.36: The multiple layer release process. (a) Schematic of epi-layer structure and fabrication 

flow for the multiple layer release process. (b) SIMS profile and (c) SEM image of epitaxial 

structure. (d) Photograph of a collection of GaAs solar cells produced by a multiple layer release 

process. Reproduced from ref. 8. 
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Recently, the ELO process employing an AlInP sacrificial layer instead of AlAs combined 

with HCl-based etching was developed.34 The HCl-based etchant provides a residue-free post-

ELO surface which allows for substrate recycling without CMP. Furthermore, surface-tension was 

used to accelerate the ELO process by creating a wide opening at etch interface that assists in HF 

etchant diffusion (Fig. 2.37). However, this process requires encapsulation of an In-containing 

alloy in the device structure used for passivation or side-wall protection due their high etching rate 

in HCl. Therefore the demonstration using an HCl-based ELO process is limited only to In-free 

compound semiconductors. 

 

 

Fig. 2.37: Surface tension-assisted ELO process. (a) Schematic of surface tension-assisted ELO 

process. (b) Crystallographic direction dependent etch rate of AlInP in HCl. (c) Photographs of the 

surface tension-assisted ELO process. The average lateral etching rate of 5.9 mm/h is achieved. 

Reproduced from ref. 34. 

 



71 

 

2.8 Conclusion 

Compound semiconductor based thin-film optoelectronic devices exhibit numerous 

benefits over bulky and rigid substrate-based devices including lightweight and flexibility, as well 

as superior performance enabled by light trapping and photon recycling. These advantages have 

driven the development of various lift-off technologies. Moreover, lift-off technologies provide a 

potential for substrate recycling after the process; thus, the device production cost can be 

dramatically reduced. However, most lift-off technologies are in their infancy mainly due to 

immature fabrication process development and high processing cost. To overcome the cost and 

technical barriers, considerable efforts have been focused on improving the ELO process, which 

is promising due to its simplicity and controllability. As a result, advanced processing concepts 

including ND-ELO, WI-ELO, surface tension-assisted ELO and multi-layer release processes have 

been derived from the original ELO process. These improved ELO processes allow high 

throughput, low-cost and simplified methods for advanced compound semiconductor-based thin-

film optoelectronic device fabrication. The development of cost-efficient lift-off technologies for 

high quality thin-film compound semiconductor epitaxial layers is a critical step towards allowing 

high performance optoelectronic devices to be fabricated on conformal and flexible substrate for 

countless applications. 
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Chapter III 

Cold-Welding and Epitaxial Protection Layers 

 

In this chapter, we introduce two unique technologies that makes the non-destructive epitaxial 

lift-off (ND-ELO) process possible: bonding and wafer recycling. Cold-welding directly bonds 

the epi-layer onto the host substrate. Cold-welding is an adhesive-free solid-state welding 

method between two similar and smooth metal surfaces that only requires pressure under 

ambient conditions. This process simplifies the conventional ELO by eliminating additional 

transfer processes. The second technology is the use of epitaxial protection layers. The 

combination of multiple lattice-matched epitaxial layers inserted in between the wafer and 

sacrificial layer can preserve the substrate surface during the ELO process and the layers can be 

simply removed by wet-etching to recover the epi-ready surface quality comparable or even 

better than the original substrate. Hence, the use of protection layers enables the recycling of the 

parent wafer without degrading the quality of epi-layers grown multiple times on it. The 

combination of these two key technologies with conventional ELO provides an opportunity to 

overcome the cost barrier for the various compound semiconductor-based thin-film 

optoelectronic devices.  
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3.1 Introduction 

Unlike the standard thin-film fabrication processes based on solution and deposition 

techniques such as chemical vapor deposition (CVD), sputtering, and evaporation that grow an 

active region directly on the host substrate, epitaxial lift-off (ELO) requires a bonding process to 

transfer the thin active region from the parent wafer to the handle or the flexible host substrate.1,2 

In conventional ELO, the lifted-off layers are typically attached to flexible secondary handles 

using adhesives such as thermal releasing tape, wax, or glue.2,3 These adhesives can be bulky, 

heavy, brittle, and subject to degradation, while they require an additional transfer following the 

separation of the epitaxy onto an intermediate “handle”. To eliminate the need for adhesives and 

the intermediate handle transfer, we attach the epitaxial surface directly to the final flexible 

substrate by using a cold-weld bond by applying pressure across the two surfaces to be bonded.4,5 

Furthermore, we develop a thermally-assisted cold-welding process that applies heat in addition 

to pressure under vacuum and thus, the pressure generally required for cold-weld bonding is 

dramatically reduced from 50 MPa to 4 MPa.6 

Furthermore, transferring the device active region from the original wafer to a host 

substrate via ELO provides a potential to reuse the parent substrate and enables the fabrication of 

optoelectronic devices on the flexible substrate. To avoid the use of chemo-mechanical polishing 

(CMP) that consumes tens of micrometers of material from the top surface of the wafer7,8, we 

employ lattice-matched protection layers that protect the wafer surface from the dilute HF during 

the ELO process.6,9 Here we demonstrate the protection layers schemes for both InP and GaAs 

substrates to preserve their surface qualities during ELO. Combination of the cold-weld bonding 

and protection layers is hereafter used for non-destructive ELO (ND-ELO) as a bonding and 

wafer recycling process described in the following chapters of this thesis. 
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3.2 Cold-weld bonding process  

Cold-weld bonding is a particularly promising direct-attachment technique for attaching 

metal layers associated with an ELO process. Figure 3.1(a) shows a schematic illustration of 

cold-weld bonding process that can be performed under the ambient conditions by only the 

application of pressure. Figure 3.1(b) shows a tool (Alliance RT/100, MTS) used for cold-weld 

bonding in this work. 

 

 

Fig. 3.1: Cold-welding process (a) Schematic illustration of cold-welding process to bond the 

between Au coated wafer and flexible substrate under the ambient condition (b) Photograph of a 

bonding tool (Alliance RT/100, MTS). 

 

Conventional cold-welding is simple compared with the fusion-based techniques since it 

only requires a pressure for bonding between two similar metal surfaces. However, a major 

disadvantage of cold-welding at room temperature is that it requires relatively high pressure to 

form a uniformly bonded interface5,10. Therefore, the sample can be easily damaged by a non-
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uniform pressing force or defects on the sample surface (dusts, point defects, dislocations etc.) 

which reduces device fabrication yield and prevents wafer reuse.  

Thermocompression bonding can be an alternative metal-metal bonding, requiring a 

much lower pressure, but at a temperature higher than the metal re-crystallization 

temperature.11,12 Application of this technique to plastic-based flexible electronics is limited due 

to its high processing temperature, since plastic substrates have a lower glass-transition or 

melting temperature than the metal re-crystallization temperature. Also, due to the mismatch of 

coefficients of thermal expansion between the plastic and semiconductor materials, a high 

amount of stress can be induced during the bonding process. Therefore, thermocompression is 

not appropriate for bonding semiconductors to plastic handles. 

We developed a method to bond a semiconductor wafer to plastic substrates that uses a 

much lower pressure compared to cold-welding, as well as lower temperature and shorter 

bonding duration than thermocompression bonding. This technique takes advantage of plastic 

deformation of gold which requires a temperature below the re-crystallization temperature.13 In 

addition, the relatively low elastic modulus of the plastic substrate facilitates the boding process 

and is further reduced by heat14 that helps to bond Au-Au interfaces at a much lower pressure.15 

Running the process under vacuum assists the bonding process.16,17 Table 3.1 compares the 

process parameters of cold-welding, thermally-assisted cold-welding and thermocompression 

bonding processes. 

  



83 

 

Table 3.1 Comparison between cold-welding, thermally-assisted cold-welding and 

thermocompression bonding 

 Pressure Time Temperature Base Pressure 

Cold-welding 50 MPa 1 min Room temp. Atmosphere 

Thermally-assisted 

cold-welding 
4 MPa 3 min 175 ℃ ~10-5 

Thermocompression 

bonding 
~2 MPa 20~45 mins Above 260 ℃ - 

 

 

The Au-Au metallic bonding for ELO by cold-welding or thermally-assisted cold-

welding is advantageous for several reasons. First, Au is chemically robust to HF so that it can 

form a chemically robust bond between the thin film layers and the handle substrate during the 

ELO. Second, Au conveniently acts as a back contact if deposited directly on a highly doped n or 

p type semiconductor layer or is combined with the appropriate metal at the interface by forming 

a metal alloy (e.g. Pd/Ge/Au for ohmic contact with n-type GaAs at low temperature). Third, Au, 

has a high reflectance in the near IR wavelength region, and hence can act as a rear side mirror to 

increase photon trapping.18,19 Fourth, Au can be combined with the strained materials, such as Ir, 

Ni, and NiFe, to expedite the ELO process. Lastly, it is insensitive to oxidation that can increase 

the pressure needed to form the cold-weld bond. 

To perform the cold-weld bonding, the surface of both a rigid wafer and a flexible 

substrate are pre-coated with similar noble metals. In this work, a 10 nm-thick Ir adhesion layer 

is sputtered on a Kapton® sheet. The Ir layer provides tensile strain to the substrate that 

significantly reduces the wafer and substrate separation time (~5 hrs) by more than 90% and 35 % 

when compared with the ELO process without the Ir layer (~2 days) and the surface tension-

assisted ELO process (~8 hrs)20, respectively. Next, a 350 nm-thick Au layer is simultaneously 
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deposited on both sample surfaces to produce the cold-weld bonding interface. Cold-weld 

bonding is performed under vacuum (~10-5 Torr) with an applied force of 4 MPa at a stage 

temperature of 175 ℃ . The process allows for a ~92% reduction in bonding pressure in 

comparison to conventional room temperature cold-welding under ambient conditions. Figure 

3.2 shows a photograph of lifted-off GaAs thin film layers from fresh and reused substrates 

which are cold-weld bonded onto a Kapton® substrate.  

 

 

Fig. 3.2: ELO processed 2 inch diameter GaAs thin-film after bonded onto plastic substrate via 

thermally-assisted cold-weld bonding under vacuum. (Lifted-off from fresh wafer (left) and 

reused-wafer (right)) 

 

Figure 3.3(a) shows detailed procedures for thermally-assisted cold-weld bonding. The 

process combined with vacuum, heat and a soft graphite pad allows for a significantly lower 

pressure (4 MPa) than conventional cold-welding (50 MPa for the same area bonding). 

Additionally, it requires a lower temperature and shorter duration than conventional thermo-
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compression bonding (above 260	℃/ 20~45min). Figure 3.3(b) shows a bonding tool (EAG 520) 

used for thermally-assisted cold-weld bonding process in this work. 

 

 

Fig. 3.3: Thermally-assisted cold-welding process (a) Detailed bonding procedure including 

stage temperature, chamber pressure and applied force vs. time. (b) Photograph of bonding tool 

(EAG 520) used in this work. 

 

3.3 Epitaxial protection layer 

The ELO process is a promising method to create a thin-film device by transferring the 

device active region from the wafer to lightweight and flexible host substrate. After the ELO 

process, it is essential to recycle the parent substrate in subsequent epitaxial growths to reduce 

the device production cost. However, prior attempts to recycle the parent substrate have either 

resulted in reduced device efficiency or it required a CMP process of the wafer by removing the 

top several micrometers of material.7  

To allow for reuse of the wafer while avoiding loss of material, we developed a layer 

scheme for both InP and GaAs substrates to protect the wafer surface from dilute HF during the 
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ELO etch process. The protection layers include the growth buffer, etch-stop, and protection 

layers in between the substrate and the AlAs sacrificial layer. The protection layers generally 

comprise lattice matched epitaxial layers to minimize defect generation. Each comprising layer 

has high etching selectivity with adjacent epi-layers so that it can be easily removed by wet-

etching that halts at the interface with the next layer in the stack. Figure 3.4(a) and (b) show 

protection layer structures for both InP and GaAs substrates. The primary function of the top 

layer is to provide an etch stop against the ELO etch.  The etch stop layer underneath the top 

protection layer should allow for an abrupt smooth etch stop when removed for regrowth on top 

of it. A second aspect of etch stop layer is that it helps remove debris from the surface that may 

remain after the attempted removal of top protection layer.  

 

 

Fig. 3.4: Epitaxial protection layers schemes. (a) InGaAs/InP and (b) In(Al)GaP/GaAs protection 

layers employed for non-destructive ELO process to preserve the InP and GaAs wafer surface 

quality, respectively, from the dilute HF. 

 

As briefly described above, the major reason for employing double protection layers is to 

provide a clean epi-ready surface, since the selectivity between AlAs sacrificial layer and other 

III-V compounds materials to HF is finite.21 Therefore, the protection layer may react with HF, 

creating residues and other damage that are very difficult to completely remove; additional 
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protection layers can be added to separately remove the residues and allow for the proper etch 

chemistries, and place the optimal material adjacent to the AlAs lift off layer, providing the best 

surface fidelity. It should be noted that the protection layer scheme is not only limited to the bi-

layer structure, but can be a relatively thick single layer or triple layers etc. with various material 

combinations. Table 3.2 shows a summary of protection layers and selective etchants employed 

for ND-ELO process. Etch stop layers provide very high etching selectivity with substrate to 

provide high quality surface after their removal. 

 

Table 3.2 Summary of protection layers and selective etchant 

 
On InP wafer On GaAs wafer 

Epi-layer Etchant Epi-layer Etchant 

Protection 

layer 
InP 

H3PO4:HCl 

(1:3) 
GaAs 

H3PO4:H2O2:H2O 

(3:1:25) 

Etch stop 

layer 
InGaAs 

H2SO4:H2O2:H2O (1:1:10) 

: Selectivity ~8022 

+ 

Citric acid: H2O2 (20:1) 

: Selectivity ~47022 

GaInP 

(AlGaInP) 

HCl:H2O (1:1) 

: Selectivity >106 23 

 

 

Lattice mismatched epi-layers can also be employed as a protection layers. While lifting 

off the InP layers, it was found that the InP surface is exposed to the HF etchant for over a week 

without degradation5; however, GaAs exposed to HF for as short as two days can develop a 

residue or surface contamination, making it very difficult to recover the original surface quality, 

rendering wafer reuse almost impossible. We expect that by placing a thin layer of strained InP 
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adjacent to the AlAs sacrificial layer can improve the robustness of the ELO process. The InP 

layer can be thinner than the strain relaxation thickness (~1.7 nm)24 or it may be thicker, as we 

have been able to use ~10 nm of  strained AlAs on InP (the same strain value, but opposite sign 

as for this situation) for liftoff of InP-based devices (see Chapters 4 and 5) without noticeable 

degradation to the surrounding device layers.  

Detailed methods and characterizations for wafer recycling using epitaxial protection 

layers are discussed for InP and GaAs substrates in Chapter 4 and 6, respectively. In addition, the 

effectiveness of these structures is experimentally confirmed by demonstrating multiple thin-film 

optoelectronic devices lifted-off from a single InP or GaAs wafer without systematic 

performance degradation. 

 

3.4 Conclusion 

 In summary, we introduced cold-welding and epitaxial protection layer concepts to bond 

the wafer onto a flexible thin foil and to preserve the wafer surface quality during ELO process, 

respectively. The cold-welding of active device regions directly onto permanent host substrates 

eliminates the need for complicated transfer processes. The use of protective epitaxial layers in 

between the sacrificial layer and the wafer results in a chemically and morphologically preserved 

wafer surface, allowing for its continuous recycling without the need for costly CMP process. 

Hence, these two key technologies contribute to simplified and potentially low cost fabrication of 

multiple compound semiconductor-based thin-film optoelectronic devices from a continuously 

reused wafer, while maintaining the consistent performance across the devices. 
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Chapter IV 

Thin-Film InP Solar Cells and Wafer Reuse 

 

In this chapter, we demonstrate multiple growths of flexible, thin-film indium tin oxide-InP 

Schottky-barrier solar cells on a single InP wafer via epitaxial lift-off (ELO). Layers that protect 

the InP parent wafer surface during the ELO process are subsequently removed by selective wet-

chemical etching, with the active solar cell layers transferred to a thin, flexible plastic host 

substrate by cold welding at room temperature. The first- and second-growth solar cells exhibit 

no performance degradation under simulated AM 1.5G illumination, and have power conversion 

efficiencies of ηp=14.4±0.4% and ηp=14.8±0.2%, respectively. The current-voltage characteristics 

for the solar cells and atomic force microscope images of the substrate indicate that the parent 

wafer is undamaged, and is suitable for reuse after ELO and protection-layer removal processes. 

X-ray photoelectron spectroscopy, reflection high-energy electron diffraction observation and 3D 

surface profiling show a comparable or improved surface following ELO. Wafer reuse over 

multiple cycles suggests that high-efficiency, single-crystal thin-film solar cells may provide a 

practical path to low-cost solar-to-electrical energy conversion. 
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4.1 Introduction 

Epitaxial lift-off (ELO), in which the active region of an electronic device structure is 

separated from its parent substrate and then transferred to a different host substrate, is attractive 

for cost reduction of III-V thin film solar cells by re-using the original, and costly substrate1,2,3,4,5,6. 

However, wafer reuse has been limited by the increased wafer surface roughness caused by wet-

chemical etching during ELO. Although chemo-mechanical polishing is a reliable method to 

restore the surface smoothness7,8, the procedure removes some of the substrate material and has 

the potential for damaging its edges; consequently, the number of substrate re-uses and the 

concomitant reduction in production cost is limited. Here, we employ epitaxial protection layers 

for both the substrate and the lifted-off thin film to provide a high quality regrowth surface without 

polishing. By combining ELO with cold welding to transfer the epitaxial solar cells to a thin, 

flexible plastic sheet5,9,10,11,12, we demonstrate re-use of the original substrate for fabricating 

efficient indium tin oxide (ITO)-InP Schottky-barrier thin-film solar cells13 without loss of device 

performance. Power conversion efficiencies approaching ηp=15% are achieved. 

 

4.2 Background  

The Schottky-barrier diode is a device based on rectifying metal-semiconductor contacts 

and is widely employed for solar cells, photodetectors, and the gate electrode of MESFETs, etc. 

The Schottky-barrier for current rectification is formed at the interface between metal and 

semiconductor when the metal is directly in contact with the semiconductor. The Schottky-barrier 

height ( Bφ ) is determined by the band alignment between the work function of the metal (
mφ ), and 

the Fermi level of the semiconductor ( Fφ ). For an ideal contact case, the barrier height is mainly 



93 

 

governed by the difference between the work function of metal and the electron affinity ( χ ) of 

the semiconductor. This ideal case is never realized in practice, however, mostly due to the 

presence of an interface layer and defect states. 

The interface states are a property of the semiconductor surface and independent of the 

metal. Especially for III-V compound semiconductors, Schottky-barrier formation is mostly 

affected by the metal deposition process which generates defects near the interface; therefore, the 

surface Fermi-level positions are pinned at an energy independent of the metal work function. The 

dependence of Bφ  on 
mφ  can be described by the index of interface behavior, S=�∅� ���⁄ , where 

�� is the electronegativity of the metal. Hence, Bφ  is expressed as14: 

))(1()( 0φχφφ −−+−= gmB ESS    (4.1) 

where χ and Eg represent the electron affinity and the bandgap of the bulk semiconductor, 

respectively. In general, silicon and III-V semiconductors have S < 0.1 which indicates a weak 

dependence of barrier height with the metal work function, while ionic semiconductors such as II-

VI compound semiconductors have S > 0.5.14 

Schottky-barrier solar cells consist of transparent or semi-transparent metal contacts to a 

bulk semiconductor. The photocurrent is generated in both depletion and neutral regions, and the 

current-voltage characteristics of Schottky-barrier cells under illumination are given by14, 

I = ��	
�� ��⁄ − 1� −  ���   (4.2) 

and 

�� = �∗∗��
��	−� Bφ /����   (4.3) 
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where n is the ideality factor, �∗∗ is the effective Richardson constant, and � Bφ is the barrier height. 

Conventional Schottky-barrier solar cells show relatively low performance compared with p/n 

junction solar cells due to limited built-in voltage at the junction. For example, the Schottky-barrier 

GaAs-based solar cells show PCE < 10 % which is significantly lower than p/n junction GaAs 

solar cells (~28.8 %)15. However, ITO-InP Schottky-barrier solar cells show comparable PCE 

(~19 %)16 with p-n junction InP solar cells (~22 %)17 under 1 sun illumination due to their 

advantageous Fermi level pining position leading to a higher barrier. A sputtering process for ITO 

contact formation on top of the p-type InP epi-layer inverts the surface doping type into an n+ InP 

layer, therefore it enhances the barrier height which results in a correspondingly high open circuit 

voltage. This is confirmed by Hall measurements which indicate the existence of an 

unintentionally doped n+ layer at the p-type InP surface.18 Furthermore, ITO/InP Schottky-barrier 

solar cells provide the advantage of a simple fabrication process which only requires metallization 

to form the ohmic and Schottky-barrier contacts.  

 

4.3 Result and Discussion 

4.3.1 Epitaxial growth 

 The epitaxial layers were grown, starting with a 0.2 µm thick InP buffer layer, on an S-

doped (100) InP substrate by gas source molecular beam epitaxy (GSMBE). Then, a 0.1 µm thick 

lattice-matched In0.53Ga0.47As etch stop layer, followed by a 1.5 µm thick InP protection layer are 

grown. At this point, a 10 nm thick AlAs sacrificial layer is grown which is later etched away to 

separate the active layers from the parent wafer. Next, a second 1.5 µm thick InP protection layer 

is grown, followed by a 0.1µm thick lattice-matched In0.53Ga0.47As etching stop layer, and then the 
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active region consisting of a 3.0 µm thick lightly Be-doped (3 × 1016 cm-3) InP base layer with 0.1 

µm thick Be-doped (3 × 1018 cm-3) InP Ohmic contact layer is grown. For the second growth, the 

InP buffer layer thickness was increased from 0.2 µm to 2 µm to smooth the surface. In all other 

respects, the first- and second-growth epitaxial structures were identical. 

 The AlAs (lattice constant of 0.587 nm) that is generally employed as a sacrificial layer for 

ELO process is known to be lattice-mismatched with the InP (lattice constant of 0.566 nm) which 

is employed as an active device layer. However, pseudomorphic growth of the InP/AlAs 

heterostructure over the critical thickness of AlAs already has been demonstrated for the resonant 

tunneling diodes19 and the tunnel junction for semiconductor laser20. To confirm the growth quality 

of lattice mismatched InP on an AlAs layer, we grew two test structures with 3 nm and 12 nm thick 

AlAs lattice mismatched layers on an InP substrate (Fig 4.1 (a)). Figure 4.1 (b) and (c) show the 

cross-sectional, high angle annular dark field images of an InP/AlAs/InP layers at the interface 

under various resolutions. The cross-sectional, atomic resolution scanning tunneling electron 

microscope (STEM) images show the nearly perfect crystalline growth without any apparent 

defects for both samples.  
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(a) 

 

 

(b) 

   

(c) 

   

Fig. 4.1: Growth quality of lattice mismatched InP on AlAs layer (a) Test growth structure for 

InP/AlAs hetrostructure (b) Atomic resolution cross-sectional transmission electron microscope 

images of the growth interface between the InP and (b) 3 nm thick and (c) 12 nm thick AlAs 

sacrificial layer with various resolution. 
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      4.3.2 Thin-film InP solar cell fabrication 

Immediately following growth, a 100 Å thick Cr adhesion layer followed by a 600 Å Au 

contact layer were sputtered onto a 50 µm thick Kapton® sheet, and a 600 Å of Au layer was 

deposited on the highly p-doped InP epitaxial layers by electron-beam evaporation. 

After metal deposition, the wafer is mounted Au-side down on the plastic sheet and a cold-

weld bond9 is formed by applying a pressure of 10 MPa for 60 s using an MTS Alliance RT/100 

Testing system. Then, the Kapton® sheet is affixed to a rotatable, 7.5 cm diameter Teflon rod with 

Kapton® tape, and immersed into an etching solution of HF:H2O (1:10). To expedite the ELO 

process, a 13 g weight is mounted on the plastic substrate, and the Teflon rod is rotated to maintain 

an external force on the wafer while increasing the gap between the epitaxial layers and substrate 

as the etching proceeds (Fig.4.2). This ensures that the epilayer/substrate interface will constantly 

be exposed to fresh etchant throughout the process.  

 

(a)                                                                (b) 

 

Fig. 4.2: (a) Schematic of weight-induced ELO set-up (b) Image of ELO process for half 2-inch-

diameter epitaxial layer.  
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After completing ELO, the Au residue on the original InP substrate is removed by etching 

(etchant type TFA, Transene Co.). The InP protection and In0.53Ga0.47As etch-stop layers on both 

the substrate and solar cell are then selectively removed by etching in H3PO4: HCl (1:3) and H2SO4: 

H2O2: H2O (1:1:10), respectively. Subsequently, citric acid:H2O2 (20:1) is used to fully remove 

the remaining In0.53Ga0.47As. The freshly exposed InP substrate surface is then degreased by 

sequential dipping in heated trichloroethylene, acetone, and heated iso-propanol, followed by the 

intentional growth of an oxide by exposure to UV/ozone for 10 min. The substrate is then loaded 

back into the GSMBE chamber and degassed. The second photovoltaic cell is then grown on the 

original parent substrate using the identical procedure described above, followed by a second 

round of cold welding and ELO. 

To fabricate the ITO/InP Schottky junction, exposure to UV/ozone for 7 min removed the 

surface contaminants and forms a thin, passivating native-oxide.21 The ITO is sputter-deposited at 

a rate of 0.3 Å/s through a shadow mask with an array of 1 mm diameter openings. A control, thin-

film ITO/InP solar cell cold-welded onto the Kapton® sheet with the same epitaxial structure was 

fabricated via complete substrate removal, as described previously.9 Solar cell characterization 

was carried out under simulated AM1.5G illumination. 

      4.3.3 Parent substrate cleaning 

Selective removal of the protection and etch-stop layers must result in a pristine wafer 

surface to allow for repetitive use of the parent substrate. Sulfuric acid based solutions have a high 

etch rate (0.22 μm/min), with a selectivity between In0.53Ga0.47As and InP of 80:122. This etchant 

results in a 0.17 nm root-mean square (RMS) roughness of the InP substrate after In0.53Ga0.47As 

removal. In contrast, the citric acid:peroxide etch has higher selectivity (470:1)22, but nanometer-

scale spikes remain after the etching. To minimize the InP surface damage and roughness, and to 
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eliminate residual In0.53Ga0.47As, the sulfuric acid etch was used to remove the majority of 

In0.53Ga0.47As, followed by sonicating in the citric acid etch. The same procedure was employed 

for In0.53Ga0.47As layer removal from the solar cell epitaxial surface, with 1 min longer exposure 

to the citric acid solution and without sonication.  

Atomic force microscope images (Fig. 4.3 (a)) show that the RMS roughness of the InP 

surface after In0.53Ga0.47As layer removal following both the first and the second growths 

(0.16±0.01 nm) is less than that of the epi-ready original InP substrate (0.30±0.02 nm), and the 

ELO wafer that lacked a protection layer (0.41±0.02 nm).  

(a)                   (b) 

             

Fig. 4.3: (a) Atomic force microscope images of the surfaces of the original epi-ready InP substrate, 

recovered InP substrate surface after the first and second epitaxial lift off (ELO) processes 

following the removal of the protection and etch stop layers, and an ELO surface without the 

protection layer. (b) Image of lifted-off 2-inch-diameter epitaxial layer containing an array of 

ITO/InP thin film solar cells fabricated by a combination of ELO and cold-weld bonding to a 50 

#m thick Kapton® sheet. 
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An image of the completed, 2” diameter epilayer with an array of ITO/InP solar cells 

bonded to the Kapton® substrate is shown in Fig. 4.3 (b). These cells can withstand considerable 

bending stress without cracking or a degradation in performance.9  

      4.3.4 Characterization of wafer surface quality for wafer recycling 

Figure 4.4 shows the X-ray photoelectron spectra that compare the surface elemental 

compositions of the fresh and ELO-processed substrates following protection layer removal. Both 

substrates show almost identical In and P peak intensities at the same binding energies, indicating 

that the surface after ELO has not changed from that of the original, epi-ready InP substrate.  

 

 

Fig. 4.4: X-ray photoelectron spectra from the fresh and the ELO processed substrate surfaces. 

 

Furthermore, the reflection high-energy electron diffraction patterns obtained from the 

wafer surface after eliminating the native oxide exhibits the same 2 × 4 reconstructions as the 

original wafer (Fig 4.5.). The streaky pattern also indicates that the roughness has not increased on 

epitaxial layer removal. 
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Fig. 4.5: The 2x and 4x surface reconstruction patterns obtained by reflection high-energy electron 

diffraction for the fresh and the ELO-processed substrate after eliminating oxide layer. 

 

Orange-peel-like roughness was observed on the surface exposed to the ELO etching 

process in the absence of a protection layer. This is apparent from the 3D surface profiles in Fig. 

4.6 that compare the millimeter-scale surface morphology between ELO processed substrate with 

and without the protection layer. The surface images confirm the necessity of employing the 

protection layer to ensure that the regrowth surface is flat on both the macro- and nano-scales. 

 

 

Fig. 4.6: Surface morphology of the original substrate (a) after ELO and protection layer removal 

and (b) after the ELO without the protection layer. 
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      4.3.5 Comparison of device performance 

The fourth quadrant current density-voltage (J-V) characteristics of the first and the second 

ELO processed photovoltaic cells, and the control device measured under simulated AM1.5G 

illumination at 1 sun (100 mW/cm2) intensity are compared in Fig. 4.7. The characteristics are 

nearly identical for all devices (see Table 4.1). The reverse-bias dark current density (JD) at -1 V 

for the control cell is lower than that of either of the ELO cells, as also listed in Table 4.1. However, 

there is not a systematic increase in dark current with the number of ELO steps employed, 

indicating that these differences are due to run-to-run variations in the ITO/InP Schottky barrier 

formation process rather than from systematic differences in the epitaxial layer quality. This is 

confirmed by the minor differences in the forward characteristics that are apparent in Fig. 4.7.  

 

 

Fig. 4.7: Current density versus voltage characteristics of the first and the second ELO processed 

ITO/InP and the control solar cells bonded to a Kapton® sheet, all measured under 1 sun, AM1.5G 

simulated solar illumination. 
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Slight variations in Schottky barrier height and JD are observed for different ITO sputtering 

depositions and for different positions on the sample holder. The ideality factors (n) and specific 

series resistances (RS) are extracted using the Shockley equation modified to include RS,  

                   (4.4) 

where J0 is the reverse bias saturation current, q is the electron charge, V is applied voltage, kB is 

the Boltzmann constant, T is temperature and RP is specific parallel resistance.14  The first- and 

the second-growth solar cells exhibit no systematic performance loss under 1 sun intensity, with 

ηp=14.4% and 14.8%, respectively. A compilation of JD, n, RS, Jsc, Voc, FF, and ηp is provided in 

Table 4.1.  

 

Table 4.1: Comparison of device performances under AM1.5G simulated solar spectrum, and the 

dark current at -1V (JD), ideality factor (n) and specific series resistance (Rs) in the dark. 

 

JD 

(μA/cm2) 

n 

 

Rs 

(Ω-cm2) 

Jsc  

(mA/cm2) 

Voc  

(V) 

FF 

(%) 

ηp  

(%) 

Previous worka 1.6 1.14 5.4 29.6±2.9 0.62 55 10.2±1.0 

Control cell 0.6 1.66 0.7 31.2±1.0 0.71 64.3±2.0 14.6±0.3 

1st ELO cell 128 1.87 0.5 31.8±0.1 0.70 64.4±1.9 14.4±0.4 

2nd ELO cell 17 1.71 0.7 31.3±0.3 0.71 66.1±0.3 14.8±0.2 

 

a Ref. 9 
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The significant improvement in device performance compared with previous reports of InP 

solar cells prepared by total substrate removal12 primarily results from the increased Voc and FF 

due to the improved ITO/InP interface. To reduce the contact surface damage, a higher ITO 

sputtering power has been combined with the UV/ozone treatment to form a thin oxide passivation 

and surface protection layer. The increased sputtering power also leads to an increase in ITO 

conductivity.  

 

4.4 Conclusion 

 In summary, we have demonstrated the fabrication of ITO/InP thin-film solar cells 

sequentially grown multiple times on a single InP parent substrate. After each growth, the epilayers 

were removed by ELO, and then cold-weld bonded at room temperature to a thin, flexible plastic 

sheet. The performance of the first- and second-growth and control epitaxial cells were 

characterized and compared. The optimized fabrication processes lead to similar performance for 

both ELO processed and control cells, with ηp=14.4±0.4%, 14.8±0.2% and 14.6±0.3%, 

respectively. Furthermore, including protective epitaxial layers reduces the RMS surface 

roughness of the parent wafer, while resulting in a chemically equivalent surface, allowing for its 

continued re-use without the need for potentially damaging mechanical polishing. Hence, this 

work demonstrates a reduced-cost fabrication method for ITO/InP thin-film solar cells based on 

continuous reuse of a single substrate without the loss of device performance. 
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Chapter V 

Conformal thin-film p-i-n InGaAs photodiode array 

with external quantum efficiency approaching 100% 

 

Compound semiconductor based photodiodes provide extremely high performance over elemental 

semiconductors due to their intrinsically superior material properties; however, their applications 

have been mostly limited onto planar substrates due to the difficulties of crystal growth and device 

fabrication on a conformal structure. Here, we develop a method to transfer thin-film InGaAs p-i-

n photodiode arrays from a rigid and bulky substrate onto a flexible and lightweight plastic sheet 

via epitaxial lift-off (ELO) and cold-welding technology. The ELO processed 10 ×  10 pixel 

photodiode array shows approximately 100 % external quantum efficiency (EQE) at 1300 nm 

wavelength using a light trapping structure with 100 % fabrication yield. The unique feature of 

extremely high performance photodiode arrays integrated on a flexible or conformal substrate 

provides a practical path to meet countless imaging applications.  

 

5.1 Introduction 

InGaAs photodiodes offer high sensitivity and speed with low noise over a spectral range 

from ~900 nm to ~1700nm which is ideal for optical communication and near infrared (NIR) 

detection. Among their wide variety of applications, p-i-n InGaAs focal plane arrays (FPA) 
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provide excellent performance as a NIR and shortwave IR (SWIR) range imager which makes 

them widely employed in night vision and thermal inspection applications. However, these high 

performance SWIR imagers have been limited to the planar structures, which provide a limited 

field-of-view (FOV) smaller than 40 degree solid angle. To extend the FOV of the imager, 

photodiode arrays formed on a conformal structures such as a hemisphere is a possible solution.1,2 

In this work, we employed the epitaxial lift-off (ELO) process and cold-weld bonding to 

fabricate a p-i-n thin-film InGaAs photodiode array on a flexible substrate. The ELO process 

enables the production of thin-film optoelectronic devices by separating the active device region 

from the substrate.3,4 The lifted-off and transferred thin-film photodiode array onto a flexible 

substrate can be transformed into a conformal shape to expand the FOV, which is difficult to 

achieve with a planar photodiode array. Furthermore, very high external quantum efficiency (EQE) 

can be achieved with a relatively thin active device region by using an integrated rear-side metal 

reflector to form a light trapping structure.  

The EQE at -1V of a thin-film p-i-n InGaAs photodiode fabricated on a flexible substrate 

shows as high as 82%, 99%, 99%, and 88% at 980nm, 1300nm, 1480nm, and 1550nm wavelength, 

respectively. These results confirm a comparable or even better performance of thin-film InGaAs 

photodiode arrays under the small reverse bias compared to conventional bulky substrate-based 

InGaAs photodiode arrays with identical device structures. Moreover, the previously demonstrated 

non-destructive ELO (ND-ELO) process provides a potential for significant device production cost 

reduction by recycling the parent InP substrate multiple times.4,5 The above combination of merits 

makes thin-film flexible photodiode arrays highly promising in low-cost, high performance, large-

FOV imaging applications, which is far beyond current state of art. 
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5.2 Result and discussion  

5.2.1 Epitaxial growth 

The epitaxial structure and fabrication flow of an ELO processed thin-film p-i-n InGaAs 

photodiode array is illustrated in Figure 5.1(a)-(d). The epitaxial structure consists of the sequential 

growth of sacrificial and active device layers in inverted order. A 200 nm InP buffer layer is grown 

by gas source molecular beam epitaxy (GSMBE) on a 2 inch diameter 350 μm thick (100) InP 

wafer followed by 4 nm thick AlAs sacrificial layer. Since the lattice mismatch between AlAs epi-

layer and InP substrate creates ~3.5% strain, the critical thickness of pseudomorphically growing 

AlAs on an InP substrate is only ~2 nm.6 Hence, the AlAs layer needs to be grown as thin as 

possible to reduce defects generated by the mismatched epi-layer growth in the following active 

device layers. However, an AlAs sacrificial layer thinner than 4 nm exhibits a dramatic decrease 

in etch rate, which prohibits the completion of the ELO process. Consequently, we employed a 4 

nm thick AlAs sacrificial layer in this work. Next, a 200 nm thick degenerately Zn doped p+-InP 

window layer is grown, followed by a 2.1 μm thick unintentionally doped i-InGaAs active 

absorption layer and a 100 nm thick Si-doped n+-InGaAs contact layer growth. The active device 

region is grown in inverted order such that after bonding to the host substrate and lifted off from 

the parent InP substrate, devices can be fabricated into conventional p-i-n top illumination 

photodiode structure.  
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Fig. 5.1: Schematic of fabrication flow of p-i-n thin-film photodiode, showing that (a) the device 

epi-growth structure and the cold-welding process to bond the epi-sample onto a host substrate; 

(b) the epitaxial lift-off process to separate the active device region from the parent InP substrate, 

transferring the thin-film photodiode epi-layers to the host substrate; (c) the front contact 

patterning and mesa defining process to make p-i-n InGaAs photodiode mesas on the host substrate; 

and (d) the back contact patterning and top bi-layer anti-reflection coating (ARC) deposition 

process to finish the fabrication. 

 

5.2.2 Cold-weld bonding and epitaxial lift-off 

After growth, the epi-wafer is diced into 4mm × 4mm squares using an ADT 7100 dicing 

saw. Subsequently, the surface native oxide of epi-samples is removed by dipping them into 

buffered HF for 1 minute and rinsing in DI water for 10 seconds. Immediately after the surface 

oxide removal, 0.5 nm Ir followed by 300 nm Au are deposited on both epi-samples and a host 
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substrate using e-beam evaporation. Then, Au films on the epi-samples and host substrate are cold-

weld bonded using an EVG 510 wafer bonder with the application of heat and pressure 

immediately after Au deposition. The bonding is performed under ~10-5 torr vacuum with an 

applied pressure of 20 MPa and the stage temperature of 240 °C for 8 minutes. To ensure uniform 

force is applied over the sample, a soft graphite sheet is inserted between the sample and the metal 

press head of the bonder. Once the InP substrate is bonded to the host substrate, the epitaxial thin-

film active device region is separated from the parent InP substrate through ELO process. The 

entire sample is immersed into 16% HF acid that is maintained at 45 °C, and stirred at a speed of 

400 rpm using a magnetic stir bar. Due to the high etch selectivity between AlAs and the active 

device layers, dilute HF only removes the AlAs sacrificial layer without damaging the adjacent 

epitaxial thin-film active device region and InP substrate. The thin-film active device region can 

be lifted off within 1.5 hours with 4 nm thick AlAs sacrificial layer.  

5.2.3 Photodiode array fabrication 

A scanning electron microscope (SEM) image of a linearly connected 10×10 photodiode 

array fabricated on a Kapton substrate is shown in Fig.5.2. The fabrication process is as follows. 

The front circular contact pad attached to a ring contact is photolithographically patterned using 

an LOR 3A and S1827 (MicroChem) bi-layer photoresist process. A Ti(20 nm)/ Pt(30 nm)/Au(200 

nm) front contact is deposited using e-beam evaporation. The diameter of the circular contact pad 

is 60 μm. The inner diameter of a ring contact is 100 μm for a single photodiode mesa, defining 

the top light detection area. The width of the ring contact is 5 μm. After the front contact lift-off, 

photodiode mesas are defined at the position of the front ring contacts and circular contact pads 

using plasma etching using Cl2 (16 sccm) and H2 (12 sccm) gases with a base pressure of 12 mTorr 

and an inductively coupled plasma (ICP) power of 600 W. During the plasma etch process, a 
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forward power of 100 W is applied and the stage temperature is maintained at 0 ℃ with liquid 

nitrogen. The active device epi-layers are etched at a rate of 500 nm/min. The back Au contact is 

patterned by wet-etching for 3 minutes using TFA gold etchant. The photodiode mesas are then 

annealed for 1 minute at 270 °C for ohmic contact formation. Bi-layer anti-reflection coating (ARC) 

was deposited using e-beam evaporation as a last step of the fabrication process. The target 

thickness of ARC simulated using a transfer matrix method7 to maximize the EQE is 40 nm for 

MgF2 and 123 nm for TiO2, and the actual ARC thickness measured by a Woollam M-2000 

Ellipsometer is found to be 37 nm for MgF2 and 127 nm for TiO2, resulting in 100% transmissivity 

and 99.9% EQE at 1300 nm light at -1V. 

 

 

Fig. 5.2: SEM image of linearly connected 10×10 photodiode array fabricated on the lifted-off 

epi-layers on Kapton host substrate. 
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5.2.4 Enhanced external quantum efficiency (EQE) via light trapping structure 

The external quantum efficiency (EQE), is given by the equation 

����(�) = �(�)(1 − ���(�)�)                                             (5.1) 

where �(�) is the transmission of light through anti-reflection coating, �(�) is the absorption 

coefficient of the InGaAs active layer, and � is the absorption path length. The rear-side contact 

of the ELO-processed photodiode acts as a highly reflective mirror; therefore, the lifted-off thin-

film device absorbs additional light reflected back from the rear-side metal reflector compared 

with a conventional substrate device. With the same InGaAs active layer thickness, the thin-film 

device doubles the absorption light path, assuming that the rear-side reflector provides a 100% 

reflectivity. The large index contrast among semiconductor, anti-reflection coating (ARC) and air 

limits the escape cone of trapped light. Therefore, the solid angle of the escape cone from the 

semiconductor surface enhances light absorption path even longer than twice the absorption layer 

thickness by trapping the light inside the active device region. A schematic of light absorption in 

thin-film devices and substrate devices with and without light trapping is shown in Fig. 5.3. 
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Fig. 5.3: Schematic demonstration of light absorption in (a) thin-film devices and (b) substrate 

devices with and without light trapping mechanism.  

 

Furthermore, a Fabry-Perot cavity along the light incidence direction, is created within the 

device due to the rear-side metal reflector. By controlling the bi-layer ARC and InGaAs absorption 

layer thicknesses, the cavity length can be adjusted to enhance the Fabry-Perot effect and provide 

�(�) = 100	% for �  between 980 nm and 1650 nm. In this work, we demonstrated an anti-

reflection coating design which maximizes the response at 1300 nm wavelength, while maintaining 

�(�) � 85	%  between �  = 980 nm and 1650 nm. As a result, very high external quantum 

efficiency (EQE) is achieved over a very wide spectral range. Fig. 5.4 (a) and (b) shows the 

simulated absorption intensity distribution within a thin-film device (2.1 μm and 0.65 μm thick, 

respectively), compared with that within a substrate device using transfer matrix method. 

Comparison of the color contrast at the InGaAs absorption layers of both devices confirms the 

improved light absorption in the thin-film device. For device with a relatively thin InGaAs active 

layer (0.7μm), a huge improvement of light absorption in thin-film device is seen from the strong 

color contrast over the entire simulated wavelength region. For devices with a thicker InGaAs 

active layer (2.1μm), the absorption at short wavelength region is similar for both thin-film and 
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substrate-base device; while at long wavelength region, the thin-film device has a stronger 

absorption due to the Fabry-Perot effect, which overcomes the limitation of the low absorption 

coefficient at wavelength around band edge.   

 

 

Fig. 5.4: (a) The simulated absorption intensity distribution within a thin-film device (L), 

compared with that within a substrate device (R). The InGaAs absorption layer thickness is 2.1 

μm. (b) The simulated absorption intensity distributions for an absorption layer thickness of 0.7 

μm. The bi-layer ARC of MgF2 (37 nm) and TiO2 (127 nm) is employed for all simulated structures. 
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The improvement in EQE performance at -1V bias and 1550 nm wavelength of thin-film 

devices over substrate devices with different InGaAs absorption layer thicknesses is shown in Fig 

5.5. 

 

 

Fig. 5.5: Comparison of simulated and measured EQE performance at -1V bias and 1550 nm 

wavelength between thin-film devices (green line) and substrate devices (blue line) with different 

InGaAs absorption layer thicknesses, together with the measured EQE performance of fabricated 

photodiode devices with different InGaAs absorption layer thickness (orange dots) 

 

In this work, a double layer ARC is employed to enhance light absorption. Given that the 

refractive index of the top p-type InP layer is 3.2 at 1300 nm, the transmissivity of 1300 nm light 

at normal incidence is only 67% without ARC. To improve the transmissivity, the transfer matrix 

method is used to design a double layer ARC. According to optical simulation results, 100% 

transmissivity can be achieved by employing a 40 nm thick MgF2 layer followed by a 123 nm 

thick TiO2 layer at 1300 nm wavelength (Fig. 5.6).  
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Fig. 5.6: Simulated transmission contour plot of 1300 nm light in-coupled into the photodiode by 

employing MgF2 and TiO2 bi-layer ARC structure with different layer thicknesses. 100% 

transmission is achieved when 40 nm thick MgF2 followed by 123 nm thick TiO2 are employed. 

37 nm thick MgF2 followed by 127 nm thick TiO2 are measured on actual devices, providing a 

theoretical value of 99.996% light transmission. 

 

5.2.5 Characterization of thin-film photodiodes 

The dark current and EQE at 1550 nm and -1V bias for a photodiode array fabricated on 

Si and Kapton substrates are demonstrated. The illumination source was a 100 μW 1550 nm laser. 

As shown in Fig. 5.7(a), the dark currents at -1V bias are 3 nA (current density of 10.6 μA/cm2) 

and 4 nA (current density of 14.1 μA/cm2), and the EQE at -1V bias for 100 μW 1550 nm light 

illumination is measured to be 88% and 86% for photodiodes fabricated on Si and Kapton 

substrates, respectively. The simulated EQE spectrum from 980 nm to 1650 nm is shown by the 

green line in Fig. 5.7(b) together with the measured EQE spectrum at this wavelength regime 

shown in orange dots. Full spectrum EQE from 980nm to 1650 nm is measured under the 
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monochromated illumination, which is chopped at 200 Hz and coupled into a SMF-28 optical fiber. 

The fiber is mechanically guided by a Cascade Microtech Lightwave Probe to achieve normal 

incidence onto the detection region of the photodiode. The photocurrent generated by the 

photodiode is amplified by a gain of 105 V/A using Keithley 428 Current Amplifier under -1V bias 

condition. The output signal is then collected by a SR830 Lock-in Amplifier. The light illumination 

power is calibrated by a Newport 818-IG/DB InGaAs photodetector. As shown in Fig. 5.7(b), the 

measured EQE values are 82 %, 99 %, and 88 % at 980 nm, 1300 nm, and 1550 nm wavelengths, 

respectively, which are well matched with the simulated result. 

 

(a)                               (b) 

 

Fig. 5.7: Characterization of thin-film photodiode (a) The I-V characteristic of photodiode under 

dark (green line) and 100 μW 1550 nm light illumination (orange line) conditions. At -1V bias, 

the dark current is measured to be 3 nA (current density of 10.6 μA/cm2), and the EQE for 100 μW 

1550 nm light illumination is measured to be 88 % for photodiodes fabricated on a Si substrate. 

(b) The simulated EQE spectrum (green line) of the photodiode from 980 nm to 1650 nm, together 

with the measured EQE spectrum at this wavelength regime (orange dots). The measured EQE 

values are 82 %, 99 %, and 88 % at 980 nm, 1300 nm, and 1550 nm wavelengths, respectively. 
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The performance of 10×10 photodiode arrays fabricated on both Si and Kapton substrates 

are shown by mapping the EQE and dark current of all individual photodiodes as shown in Fig. 

5.8(a) and (b). The EQE and dark current are measured at -1 V bias with and without 60 μW 1550 

nm laser illumination, respectively. The device fabrication yield is 99% for devices fabricated on 

Si substrate and 100% for devices fabricated on Kapton substrate. The one malfunctioning device 

on the Si substrate (indicated in white blank at (3,1) in Fig. 5.8(a)) is shorted. Excluding the 

malfunctioning device, the average EQE at -1V bias and λ = 1550 nm are 88% and 86% for devices 

fabricated on Si and Kapton substrate, respectively.  

 

 

Fig. 5.8: Thin-film device fabrication yield. Dark current (top) and EQE (bottom) mapping of all 

individual photodiodes showing the fabrication yield of 10×10 thin-film InGaAs photodiode array 

on (a) Si substrate and (b) Kapton substrate. 
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Table 5.1 gives a performance comparison between devices fabricated on Si and Kapton 

substrates at -1 V bias. The dark current, EQE, and yield of devices fabricated on these two 

substrates are almost identical, showing that the device performance is independent of whether Si 

or Kapton substrates are used as the host substrate for ELO in the fabrication. 

 

Table 5.1 Device performance comparison between photodiodes fabricated on Si and Kapton substrates 

under -1 V bias condition. 

Host 

substrate 
Dark Current Dark Current Density 

EQE @ 

1550nm 
Yield 

Si 3 ± 0.4 nA 10.6 ± 1.4 μA/cm2 88% 99% 

Kapton 4 ± 0.8 nA 14.1 ± 2.8 μA/cm2 86% 100% 

 

 

5.3 Conclusion 

In summary, we demonstrate ELO processed p-i-n thin-film InGaAs photodiode arrays 

fabricated on both Si and Kapton substrates. In particular, photodiode arrays fabricated on flexible 

Kapton substrates that can be conformally shaped to achieve an expanded field of view, 

overcoming the huge FOV limitation of the conventional substrate-based photodiode array. Thin-

film flexible InGaAs photodiodes, employing a rear-side reflector, dramatically enhances the light 

absorption with a much thinner InGaAs absorption layer, achieving comparable or even better 

EQE performance compared to a substrate-based InGaAs photodiodes over a wide spectral range. 

This work represents a technological step providing a practical path for countless imaging 

applications.  
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Chapter VI 

Non-Destructive Epitaxial Lift-Off for III-V Thin-Film 

Optoelectronics 

 

Compound semiconductors are the basis for many of the highest performance optical and 

electronic devices in use today. Their widespread commercial application has, however, been 

limited due to the high cost of substrates. Device costs can, therefore, be significantly reduced if 

the substrate can be reused in a simple, totally non-destructive and rapid process. Here, we 

demonstrate a method that allows for the indefinite reuse and recycling of wafers, employing a 

combination of epitaxial “protection layers”, plasma cleaning techniques that return the wafers to 

their original, pristine and epi-ready condition following epitaxial layer removal and adhesive-free 

bonding to a secondary plastic substrate. We demonstrate the generality of this process by 

fabricating high performance GaAs-based photovoltaic cells, light emitting diodes, and metal-

semiconductor field effect transistors that are transferred, without loss of performance, onto 

flexible and lightweight plastic substrates, and then the parent wafer is recycled for subsequent 

growth of additional device layers. Our process leads to a transformative change in, device cost, 

arising from the inevitable consumption of the wafer that accompanies conventional epitaxial 

liftoff followed by chemo-mechanical polishing. 
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6.1. Introduction 

Compared to elemental semiconductors such as Si or Ge, compound semiconductors often 

have superior material properties useful in high performance optoelectronic devices, including 

high carrier mobilities, direct and indirect band-gap tuning, ability to form heterojunctions that 

confine optical fields and charge, etc.1-2. However, wafers on which compound semiconductor 

active device regions are epitaxially grown are costly (e.g. GaAs costs ~$20k/m2), limiting their 

viability for use in the production of large area devices such as displays and solar cells. Epitaxial 

lift-off (ELO) was introduced to reduce costs of GaAs/AlGaAs devices by enabling the separation 

of single crystal active epitaxial layers from fragile and bulky substrates using hydrofluoric acid 

to selectively remove an AlAs sacrificial layer grown between the substrate and the device layers3. 

The ELO process is also advantageous in that it yields a flexible and lightweight thin film. 

Unfortunately, the promise of wafer reuse has not been fully realized, since the removal of the 

sacrificial layer results in residual surface damage, and leaves debris on the parent wafer surface. 

The most common method for preparing that surface for subsequent growth, therefore, has been 

by post lift-off chemo-mechanical polishing that reduces wafer thickness and ultimately inflicts 

additional damage, limiting reuse to only a very few growth and cleaning cycles4,5. 

Recently, ELO using hydrochloric acid as a selective etchant for an AlInP sacrificial layer 

was introduced for wafer reuse without repolishing6. In this case, the process requires a pre-

processing step, such as passivation or protection of In-containing layers due their high etching 

rate in HCl. This complication is required to allow for compatibility with many devices such as 

high-efficiency multijuction solar cells with InGa(Al)P wide bandgap absorbers, window layers, 

back-surface field layers, and InGa(Al)P-based light emitting diodes (LEDs). Especially, many of 

high efficiency GaAs solar cells employed InGa(Al)P based window and back-surface field layers 
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instead of AlGaAs layer7. To ameliorate this issue, we choose to use the HF chemistry-based ELO 

process, and employ surface protecting layers that can be removed using chemically selective 

etchants7,8. These protection layers comprise alternating lattice-matched arsenide-based and 

phosphide-based materials that enable recovery of the “epi-ready” wafer surface for regrowth on 

the original wafer without any observable degradation in surface quality or device performance. 

In this thesis proposal, we significantly simplify and improve previously reported protection layer 

schemes, which were previously studied using a simulated ELO process whereby the epitaxial cell 

was removed and a further device grown on the original substrate. We find here that the number 

of protection layers can be reduced from three to two by introducing a simple, rapid and potentially 

low cost two-step surface cleaning procedure8. The simplified scheme of non-destructive epitaxial 

lift-off (ND-ELO) eliminates an interface between materials with different group-V species, whose 

addition requires temperature changes during growth that increases both the growth time and 

amount of material used. We find that this scheme of lattice-matched protection layers combined 

with totally non-destructive surface cleaning is adaptable to a wide range of GaAs and InGa(Al)P-

based devices, including photovoltaic cells, transistors, LEDs, and photodetectors, without 

material composition limitations or the need for damage-inducing wafer polishing commonly used 

in ELO processes. In this work, we develop a complete technique for non-destructive wafer 

recycling and thin-film optoelectronic device fabrication. Especially, we focus on characterizing 

various devices, and comparing their performance to validate the method. 
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6.2. Experiments 

6.2.1 General Structure 

The ELO process and a generalized epitaxial structure used in non-destructive wafer 

recycling are illustrated in Figure 6.1. The epitaxial structure consists of the sequential growth of 

protection, sacrificial and active device layers. The InGaP (50 nm) and GaAs (100 nm) protection 

and buffer layers are grown by gas source molecular beam epitaxy (GSMBE) on a 2 inch diameter 

(100) GaAs parent wafer, although this process is fully compatible to growth by other common 

techniques. An AlAs sacrificial release layer is then grown onto the protection layer stack. Next, 

the active device region is grown in inverted order such that, after bonding to the secondary plastic 

substrate, devices can be fabricated in their conventional orientation, thereby eliminating a second 

transfer step often employed in ELO device processing. For photovoltaic cells, a rear surface 

mirror allows for a thinner absorber layer than bulky substrate-based solar cells, saving growth 

time and reducing the use of costly materials while allowing for increased efficiency via “photon 

recycling”9. For LEDs, the rear surface mirror improves external quantum efficiency by allowing 

photons to be reflected back to the emitting surface instead of being absorbed in the wafer bulk10.  
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Figure 6.1: Schematic illustration of a generalized wafer structure used in non-destructive 

epitaxial lift-off (ND-ELO). The active thin film device region is lifted-off by selectively etching 

the AlAs sacrificial layer using dilute hydrofluoric acid.  Details of the epitaxial layers, including 

the alternating GaAs-InGaP protection layers and the AlAs sacrificial layer are shown along with 

the metal layer used in cold-welding to the plastic substrate. The active region structure is varied 

according to the application requirements, e.g. a photovoltaic cell, light emitting diode, or metal 

semiconductor field effect transistor.  

 

6.2.2 Epitaxial Growth 

In advance of epitaxial growth, both fresh and reused parent wafers are thermally cleaned 

in the loading chamber attached to the growth chamber at 280 ℃  and at < 5 × 10-7 torr base 

pressure for 1 hr. The surface is then outgassed in the growth chamber at 620 ℃ for 5 min under 

an As over-pressure. Elemental solid Ga, In and Al, and AsH3/PH3 gas are used as source materials. 

The cracker for the gaseous sources is kept at 950 ℃ during the growth, and 3 SCCM of AsH3 and 

4 SCCM of PH3 gas are introduced to the chamber through mass flow controller during the GaAs 

and InGaP/AlGaInP growths, respectively. The cracking efficiency is above 95% for both AsH3 
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and PH3 gas according to quadrapole mass spectroscopy measurements using a residual gas 

analyzer (RGA). For the GaAs/InGaP heterostructure growth, the substrate temperature of the 

initial GaAs growth is 600 ℃. Then the Ga shutter is closed, and the substrate temperature is 

ramped to 515 ℃  under an AsH3 flux, followed by a further decrease to 480 ℃ without AsH3 to 

change the surface from As-saturated to As-stable. Then the PH3 flow is turned on for 3 s, and In 

and Ga shutters are opened for InGaP growth. After the growth of the InGaP layer, the GaAs and 

AlAs layers are grown at 600 ℃ and 630 ℃, respectively. Growth rates for GaAs, AlAs and 

Al0.20In0.49Ga0.31P/ In0.49Ga0.51P are 1 �m/hr, 0.6 �m/hr and 0.8 �m/hr, respectively. The n/p-type 

doping concentration is calibrated by Hall effect and secondary ion mass spectrometry (SIMS) 

measurements. Lattice matching of InGaP and AlInGaP to GaAs substrate is determined by X-ray 

diffraction.  

For the protection layer, the growth starts with GaAs (0.1 µm)/ In0.49Ga0.51P (0.05 µm)/ 

GaAs (0.1 µm) layers followed by a 20 nm thick AlAs sacrificial layer. Next, an inverted active 

device region is grown as follows: For the photovoltaic cells we grow a 0.1 µm thick, 5 × 1018 cm-

3 Be-doped GaAs contact layer, 0.025 µm thick, 2 ×  1018 cm-3 Be-doped Al0.20In0.49Ga0.31P 

window layer, 0.15 µm thick, 1 × 1018 cm-3 Be-doped p-GaAs emitter layer, 3.0 µm thick, 2 × 

1017 cm-3 Si-doped n-GaAs base layer, 0.05 µm thick, 6 × 1017 cm-3 Si-doped In0.49Ga0.51P back 

surface field (BSF) layer, and 0.1 µm thick, 5  × 1018 cm-3 Si-doped n-GaAs contact layer.  For 

the light emitting diodes (LEDs) we grow a 0.1 µm thick, 5 × 1018 cm-3 Be-doped GaAs contact 

layer, 0.8 µm thick, 2 × 1018 cm-3 Be-doped Al0.20In0.49Ga0.31P layer, 0.1 µm thick un-doped 

In0.49Ga0.51P layer, 0.8 µm thick, 2 × 1018 cm-3 Si-doped Al0.20In0.49Ga0.31P layer, 0.1 µm thick, 5 

× 1018 cm-3 Si-doped n-GaAs contact layer. For the metal semiconductor field effect transistors 
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(MESFETs) we grow a 0.05 µm thick, 5 × 1018 cm-3 Si-doped GaAs contact layer, 0.16 µm thick, 

4 × 1017 cm-3 Si-doped GaAs channel layer, 1 µm thick un-doped GaAs layer.  

6.2.3 Cold Weld Bonding 

In conventional ELO, lifted-off layers are typically attached to flexible secondary handles 

using adhesives such as thermal releasing tape, wax, or glue3-6. These adhesives can be bulky, 

heavy, brittle and subject to degradation while also requiring an additional transfer following the 

separation of the epitaxy onto an intermediate “handle” 3-5. To eliminate all use of adhesives and 

the necessity of an intermediate handle transfer, we attach the epitaxial surface directly to the final 

flexible substrate following layer growth using a thermally-assisted cold-weld bond by applying 

pressure across the two surfaces to be bonded. To make the bond, the surfaces are pre-coated with 

layers of a similar noble metal.  

Figure 6.2 shows details procedure for thermally assisted cold weld bonding. To prepare 

for cold-weld bonding; a 10 nm thick Ir adhesion layer is sputtered on a Kapton® sheet. Next, Pd 

(5 nm)/ Ge (25 nm)/ Au (65 nm)/ Pd (5 nm) layers are deposited onto the substrate using e-beam 

evaporation to form an ohmic contact with the 5 × 1018 cm-3 Si-doped n-type GaAs layer11. Then, 

a 350 nm thick Au layer is simultaneously deposited on both sample surfaces to complete the cold-

welding bonding surfaces. Two freshly deposited Au films on opposing surfaces are bonded 

together with the application of pressure.  Thus, the GaAs wafer with epitaxial layer is bonded to 

the Kapton® sheet using an EVG 520 wafer bonder under ~10-5 torr vacuum immediately 

following Au deposition by e-beam evaporation. For a 2 inch-diameter substrate, 4 MPa of 

pressure is applied to establish a bond between the two gold films with a 80 N/sec ramping rate. 

Then the thermally assisted cold-weld bonding process is carried out by ramping the temperature 

at 25 ℃/min to 175 ℃, and holding at the peak temperature for 3 min. The substrate temperature 
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is subsequently reduced using active stage cooling. To apply a uniform force over the sample area, 

a reusable, soft graphite sheet is inserted between the sample and the press head. The process 

combined with vacuum, heat and a soft graphite pad allows for a significantly lower pressure (4 

MPa) than conventional cold-welding (50 MPa for the same area bonding)12. Additionally, it 

requires a lower temperature and shorter duration than conventional thermo-compression bonding 

(above 300 ℃/ 20~45min).  

 

 

Figure 6.2: Thermally assisted cold-weld bonding Detailed bonding procedure including stage 

temperature, chamber pressure and applied force vs. time.   

 

 We note that Au also conveniently acts as a back contact and mirror while being undamaged 

by exposure to HF used in the ELO process. Further, it is insensitive to oxidation that can increase 

the pressure needed to effect the cold-weld bond.  
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6.2.4 Epitaxial Lift-Off 

Once the GaAs substrate is bonded to the Kapton® sheet, the thin active device region is 

removed from its parent substrate through the non-destructive epitaxial lift-off (ND-ELO) process. 

The entire sample is immersed in a 20% HF solution maintained at 60 ℃. The HF solution is 

agitated with a stir bar at 400 rpm. Due to the high etch selectivity between AlAs and the active 

compound semiconductor layers, dilute HF removes the 20 nm thick AlAs sacrificial layer 

between the wafer and active device region without attacking the adjacent protection layers. The 

total lift-off time for a 2 inch GaAs substrate is approximately 5 hr. Here, the sample is fully 

submerged and relaxed in dilute HF and assisted solely by tensile stress introduced by the Ir. 

Therefore, the etching process is initiated from all directions similar to prior ELO process 

demonstrations7. The Ir layer provides tensile strain to the substrate, which is confirmed by 

observing curvature of the flexible secondary substrate following Ir deposition. The tensile-

strained Ir layer significantly reduces the wafer and substrate separation time (~5 hrs) by more 

than 90% compared with the ELO process without Ir layer (~36 to 48 hours).  This process 

acceleration was confirmed by comparison with a sample with the same structure and ELO process 

conditions but without the addition of the Ir film. The tensile stress from the film assists in creating 

a gap between the epitaxial layers and the substrate at the sacrificial layer etch interface allowing 

for the rapid ingress of etchant, analogous to that observed for compressively stressed layers. The 

induced curvature by tensile stress is kept below the tolerance of GaAs thin film, and the sacrificial 

layer is etched faster from the two curved sides and etched slowly from the other side which 

eliminates the damage of film caused by concentrated stress to the small area. Then, the separated 

epitaxial films are fabricated into photovoltaic cells, LEDs and MESFETs. The device 
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performance variations are negligible depending on the position of device on the film which 

indicates the integrity of the film.  

Although ELO is an effective means to separate the substrate and active regions to create 

a thin film device, it also results in roughening of the parent wafer surface, as well as the 

accumulation of contaminants, notably As2O3
8,13. Figure 6.3 shows these particles as observed by 

SEM. The rough, particle-covered surface prevents the subsequent growth of layers of the same 

quality as on the original surface, and eventually results in the degradation of regrown photovoltaic 

device performance. There is no evidence for etching of the GaAs layer adjacent to the sacrificial 

layer. 

 

 

Figure 6.3: Scanning Electron Microscopic (SEM) image of an HF exposed wafer surface without 

protection layers. 

 

 

40 �m 

1 �m 
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The surface roughening is shown in the atomic force microscope (AFM) image of Figure 

6.4. This morphological degradation significantly and negatively impacts device performance in 

subsequently regrown layers, e.g. 20~40% performance loss in solar cell power conversion 

efficiency (PCE)4.  

 

 

Figure 6.4: Comparison of wafer surface morphology before and after ELO. Atomic force 

microscope (AFM) images of the GaAs parent wafer substrate surface showing the root-mean-

square (RMS) surface roughness (indicated by color bar) after each step.  The growth starts with 

sub-nanometer surface roughness. However, immediately following ELO by etching the sacrificial 

layer, the roughness increases by an order of magnitude. Plasma cleaning reduces surface 

roughness by removing particulates while minor physical damage is incurred by the underlying 

GaAs protection layer. Wet chemical cleaning is used to remove the remaining InGaP protection 

layer, recovering the same surface morphology as the original wafer.  

 

6.2.5 Surface Cleaning & Protection Layers Removal 

 To recover original surface quality, we have developed a completely non-destructive two-

step cleaning procedure. The surface is pre-cleaned by an inductively coupled plasma using 50 

SCCM of C4F8, a chemical etch gas to remove the oxides, mixed with 50 SCCM of Ar+ for 10s 

under 10 mTorr of base pressure at a substrate RF bias power of 110 W and a transformer coupled 
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plasma RF power of 500 W. Figure 6.5(a) provides 3 dimensional laser microscopy images of the 

wafer surface before and after plasma cleaning, respectively. The image indicates that most of the 

contamination is apparently removed during the cleaning process, leaving a roughened surface. 

This cleaning procedure can be applied to the lifted-off film as well as the substrate, which are 

similarly contaminated following the ELO process (Figure 6.5(b)). While eliminating the ELO 

process residuals, this process also physically/chemically damages the protection layer surface. 

Hence, InGaP and GaAs protection layers are grown on both the epi-side and the substrate-side 

(each in reverse order to the other starting with GaAs on the substrate) to address this problem. 

The roughened top GaAs protection layer is then removed using a phosphoric acid-based etchant 

(H3PO4:H2O2:H2O (3:1:25)) until the etching stops at the InGaP layer. Next, the InGaP layer is 

removed through etching in diluted HCl acid (HCl:H2O (1:1)), which provides complete etching 

selectivity with the GaAs growth buffer layer. The dilute HCl etch is well-known for preparing 

epi-ready surfaces through the removal of native oxides, allowing this last step of surface cleaning 

to provide a high quality regrowth interface6, 14, 15. The root mean square (RMS) surface roughness 

after each step is shown in Figure 6.4, confirming the recovery of the original surface morphology 

after cleaning. 
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Figure 6.5: Comparison of wafer surface morphology before and after ELO. (a) Three dimensional 

laser microscope image of the surface immediately following ELO (left), and after plasma cleaning 

(right). (b) The thin-film surface following ELO (left), and after plasma cleaning (right). 

 

To compare the surface chemistry and effectiveness of protection layers on exposure to 

etchants with that of the as-grown surface, EDS data for the surfaces of fresh, unprotected, and 

protected wafers were obtained. Figure 6.6 shows EDS maps of O, Ga and As for the surfaces of 

the three different samples. Original and surface-protected wafers show nearly identical chemical 

compositions, whereas surfaces exposed to HF while lacking a protection layer exhibit locally 

concentrated oxygen with a corresponding deficiency of elemental Ga. The shape of the oxidized 

feature is consistent with the presence of a micron-scale particle as shown in Figure 6.3, inset. This 

suggests the formation of As2O5 on the surface during the etch process. 

  

30 �m After ELO After plasma cleaning After ELO After plasma cleaning 
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Figure 6.6: Hybrid mapping of elemental oxygen, gallium, arsenic near the surface of original, 

surface protected, and unprotected wafers after the protection layers were removed. The elemental 

compositions are shown in each image. 

 

Figure 6.7 shows the EDS data for of the same samples as in Figure 6.3. The concentrations 

of O extracted from the spectra for the original, protected and unprotected wafers over the surface 

were 2.2%, 0.7% and 25.6%, respectively. Also, the atomic ratios of Ga to As were 48.3%:49.5%, 

49.5%:50.3% and 33.2%:41.2% with ± 0.4% error, respectively. The fresh and protected samples 

show similar Ga:As ratios with low oxygen concentration.  

  

Original wafer 

Unprotected wafer 

Protected wafer 
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Figure 6.7:  Energy dispersive spectra of wafers in Figure 6.3. 

 

This conclusion is supported by the XPS data in Figure 6.8. Original and protected wafer 

surfaces exhibit nearly identical As and As2O5 peak intensities, however, the unprotected surface 

shows a weak As and strong As2O5 peak intensity. Moreover, the XPS measurements (not shown) 

indicate a negligible difference between original and regrown wafer surfaces following protection 

layer removal without the appearance of additional peaks, indicative of a chemically unchanged 

surface before and after protection layer removal and regrowth.   

Original wafer 
Unprotected wafer 
Protected wafer  
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Figure 6.8: X-ray photoelectron emission spectra of the samples in Fig. 2 measured using energy 

dispersive spectrometery (EDS).  

 

6.2.6 Characterizations of Regrown Epi-layer 

Figure 6.9 shows cross-sectional, high angle annular dark field images of an undoped 

GaAs layer at the growth interface. The reference epitaxial layer was grown on the original, epi-

ready wafer, and identical structures were grown on protected and etched wafer surfaces that have 

been exposed to this cycle twice, with the surface protection layers removed following each growth 

sequence. The cross-sectional, atomic resolution STEM image shows the nearly perfect crystalline 

growth without any apparent defects for all samples. This indicates that the quality at the growth 

interface after protection layer removal is unchanged from that of the original wafer. 
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Figure 6.9: Atomic resolution cross-sectional transmission electron microscope images of the 

growth interface between the wafer and epitaxial GaAs layer grown on (a) original, (b) first 

epitaxial and (c) second epitaxial growth steps. Dotted lines indicate the starting growth interfaces. 

Insets show details of the growth interfaces. 

 

Photoluminescence (PL) spectra of the samples were compared using a 20 mW, λ=473 

nm wavelength diode pump laser. Figure 6.10 shows the PL intensity between λ=820 nm and 

λ=900 nm for three samples consisting of a 0.1 μm thick undoped Al0.7Ga0.3As, a 1 μm thick 
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undoped GaAs, and a 0.1 μm thick undoped Al0.7Ga0.3As double heterostructure grown on an 

original (reference), protected and non-protected wafer. The data indicate that losses due to non-

radiative recombination are comparable between the layers grown on the fresh and used, protected 

wafer. However, the weak PL intensity of the structure grown on the unprotected substrate is 

further evidence of a degraded surface. The inset provides the reflection high energy electron 

diffraction (RHEED) patterns obtained from the wafer surface in the GSMBE chamber. The 

original wafer clearly exhibits a 2×4 reconstruction after 100 monolayers of buffer layer growth. 

The nearly identical streak pattern after ~100 monolayers of growth after epitaxial protection layer 

removal indicates that the surface roughness is unchanged from that of the reference. However, 

the RHEED patterns for the unprotected surface exhibits a spotty chevron-shaped pattern, once 

more indicative of a roughened surface. 

Figure 6.10: Photoluminescence spectra at room temperature (300K) from an Al0.7Ga0.3As/GaAs/ 

Al0.7Ga0.3As heterostructure on original and reused wafer. Insets: The 2 ×  and 4 ×  surface 

reconstruction patterns obtained by reflection high-energy electron diffraction for the original and 

etched substrate surfaces with and without a protection layers. 

Original wafer 

Unprotected wafer 

Protected wafer 



140 

 

The Hall effect doping concentrations of the Si-doped, 1 μm thick GaAs layers of the 

original and regrown samples were (1.62 ± 0.05) × 1018cm-3 and (1. 66 ± 0.12) × 1018 cm-3, 

respectively, and the Hall mobilities were 2030±80 cm2/Vs and 2050±120 cm2/Vs, respectively. 

The small differences between samples are due to run-to-run variations.  

6.2.7 Characterizations of Thin-Film Optoelectronic Devices 

To demonstrate the effectiveness of wafer recycling using the above methods, the cleaned 

parent wafer was re-loaded into the GSMBE chamber for subsequent growth, and the same 

procedure was repeated multiple times with solar cells, LEDs and MESFETs fabricated after each 

growth/ELO/cleaning cycle to ensure that no degradation of the original wafers was carried into 

the next cycle.  

After lift-off, the thin-film active region and flexible plastic secondary substrate is fixed to 

a rigid handle for convenience throughout the remainder of the fabrication process. The front finger 

grid is photolithographically patterned using an LOR 3A and S-1813 (Microchem) bi-layer 

photoresist process, then a Pd(5 nm)/ Zn(20 nm)/ Pd(15 nm)/ Au(700 nm) metal contact is 

deposited by e-beam evaporation. The finger grid and bus bar widths are 25 �m and 80 �m, 

respectively, and the spacing between grid lines is 660 �m. The total coverage of the front contact 

is 5.8%. After the metal layer is lifted-off, and an array of 5 mm × 5 mm device mesas are defined 

by photolithography using S-1827 (Microchem) and chemical etching using H3PO4:H2O2: 

deionized H2O (3:1:25) and the exposed, highly-doped 100 nm thick p+ GaAs contact layer is 

subsequently selectively removed using the same etchant. The thin-film solar cells are annealed 

for 1 hr at 200 °C for ohmic contact formation. Finally, to achieve a minimum surface reflection, 
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a bilayer anti-reflection coating (ARC) consisting of TiO2 (49 nm) and MgF2 (81 nm) is deposited 

by e-beam evaporation. 

For example, three identical GaAs p/n junction thin film photovoltaic cells on plastic 

substrates were fabricated from a single parent wafer and processed using conventional methods 

into single junction solar cells (Figure 11(a) - (c)).  

 

Figure 6.11: Thin-film GaAs single junction photovoltaic cells. (a) Device structure of the thin 

film GaAs p-n junction photovoltaic cells. (b) Fabricated GaAs thin film photovoltaic cells bonded 

by thermally assisted cold-welding to a plastic substrate following ND-ELO of 2 inch-diameter 

wafers. Both cell arrays are made from the same GaAs wafer using ND-ELO, wafer bonding, and 

parent wafer recycling. (c) Close-up image of the GaAs thin film photovoltaic cell array. 

 

 
b  

c 

 
a 
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The current density-voltage (J-V) characteristics of the cells measured under simulated AM 

1.5G illumination at 1 sun (100 mW/cm2) after the first, second, and third ELO cycles are 

compared in Figure 6.12(a). An Oriel solar simulator (model: 91191) with Xe arc lamp and AM 

1.5 Global filter is used for current density-voltage (J-V) measurements. Intensity is calibrated 

using a National Renewable Energy Laboratory (NREL) certified Si reference cell with diameter 

of 5 mm. Then, the J-V characteristics are obtained with an Agilent 4155B parameter analyzer. 

The external quantum efficiencies (EQE) are compared in Figure 6.12(b). A tungsten-halogen 

lamp combined with a monochrometer is used for measurement of the external quantum efficiency 

(EQE) spectrum. A band-pass filter is located at the output of the monochrometer to cut off higher 

wavelength harmonics. The monochoromatic light is then chopped at 200 Hz, focused and into an 

optical fiber. A lock-in amplifier is employed to measure the photovoltaic cell photocurrent. The 

illumination intensity is calibrated with a Newport 818-UV Si low-power photodetector. The J-V 

characteristics, short circuit current density (JSC), open circuit voltage (VOC), fill factor (FF) and 

PCE are nearly identical (with a standard deviation of 1.5% in PCE) for all devices without any 

apparent systematic degradation after a given cycle (see Table 6.1).  

 

Table 6.1: Comparison of device performances under AM1.5G simulated solar spectrum. 

 
JSC 

(mA/cm2) 

VOC 

(V) 

FF 

(%) 

PCE 

(%) 

Jmax 

(mA/cm2) 

Vmax 

(V) 
N 

First ELO 24.2 ± 0.1 0.98 76.4 ± 0.6 18.1 ± 0.1 22.4 ± 0.2 0.81 1.95 

Second ELO 23.9 ± 0.1 0.97 77.9 ± 1.3 18.0 ± 0.3 21.7 ± 0.3 0.83 1.83 

Third ELO 24.2 ± 0.1 0.98 77.7 ± 0.1 18.5 ± 0.1 23.2 ± 0.2 0.84 1.98 
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Integration of the EQE spectra assuming an incident AM 1.5G solar spectrum gives JSC = 

23.2 ± 0.1mA/cm2, 23.0 ± 0.1 mA/cm2 and 23.2 ± 0.1 mA/cm2 for the first, second, and third 

ELO cycle, respectively. The discrepancy between the integrated JSC and that extracted from the 

J-V characteristics is primarily due to absorption at wavelengths λ<400 nm, which is not accounted 

for in the integration. Finally, we note that PCE = 18.1	�	0.1%, 18.0	�	0.3%, and 18.5	�	0.1% 

were achieved for the three-cycle ND-ELO sequence. Normalized device performance parameters 

of the first, second and third cells are compared in Figure 12(c). 

 

  

  

 
b 

 
a 

 
c 
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Figure 6.12: (a) Current density versus voltage (J-V) characteristics measured under 1 sun, 

AM1.5G simulated solar illumination, and (b) External quantum efficiency (EQE) measured from 

wavelengths between 400 nm and 900 nm after the first, second and third ND-ELO-processed 

photovoltaic cells originating from a single parent wafer. (c) Comparison of photovoltaic cell 

performance. These figures display statistically identical device performance without systematic 

degradation from growth to growth. 

 

Figure 6.13 presents both the measured and fitted J-V characteristics assuming a Shockley 

ideal diode behavior modified to account for series resistance (RS). The extracted �� of the first, 

second and third ELO-processed photovoltaic cells are 4.2 Ω-cm2, 4.5 Ω-cm2 and 4.4 Ω-cm2, 

respectively. The ideality factor is n = 1.9, 1.8 and 1.9, respectively.  

 

 

Figure 6.13. Current density-voltage (J-V) characteristics of photovoltaic cells in the dark. 

Measured and fitted J-V characteristic of the first, second and third ND-ELO processed solar cells. 

The second ELO is offset by a factor of ten and the third ELO by a factor of hundred for clarity. 
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The generated power as a function of forward voltage from photovoltaic cells after the 

first, second and third ND-ELO cycle is presented in Figure 6.14, indicating a nearly identical 

similar maximum power point at nearly identical voltage and current density of ~0.83 V and ~22 

mA/cm2, respectively. The output of each 5 mm × 5 mm thin-film cell at their maximum power 

points are 4.5 mW, 4.5 mW and 4.6 mW, respectively. These non-systematic, small deviations 

confirm the feasibility of wafer reuse via ND-ELO and surface-preserving buffer layers. 

 

Figure 6.14. Power generation for photovoltaic cells. Comparison of the power output from 

each photovoltaic cell under forward voltage (V) under 1 sun intensity, AM1.5G illumination.  

 

Multiple cylces of AlGaInP/ InGaP double heterojuction LEDs (Figure 6.15(a)) were also 

grown and fabricated to test the generality of our process approach. After the ND-ELO process, 

the thin-film active region and flexible plastic secondary substrate is fixed to a rigid substrate as 

in the case of the solar cell processing. The front finger grid is patterned by photolithography as in 

the case of the solar cells. Then, a Pd(5 nm)/ Zn(20 nm)/ Pd(15 nm)/ Au(300 nm) metal contact is 
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deposited by e-beam evaporation. The width of the front grid is 25 �m, and a 300 �m × 300 �m 

contact pad is patterned at the center of the grid. The total coverage of the front contact is 22.7%. 

After the metal layer is lifted off, 680 �m × 680 �m mesas are defined by photolithography using 

S-1827 (Microchem) and chemical etching using the same etchants as for the solar cells. The thin-

film LEDs are annealed for 1 hr at 200 °C for ohmic contact formation. 

Figure 6.15(b) shows images of the thin film LEDs with and without current injection (bent 

over a 1.2 cm radius without incurring damage or performance degradation), confirming device 

flexibility as in the case of the solar cells in Figure 6.11. The J-V and EQE characteristics of the 

first and second ELO-processed thin-film LEDs are compared in Figure 6.15(c) and (d), 

respectively. An HP 4156A semiconductor parameter analyzer and a Si PIN photodetector 

(Hamamatsu S3584-08) were used to measure the J-V and EQE of the LEDs. For 

electroluminescence (EL) measurements, the emitted light is focused onto an optical fiber, and the 

spectrum is measured by an Ocean Optics spectrometer. Turn-on voltage (1.66 ± 0.01 V and 

1.67 ± 0.01 V, respectively) and peak EQE (4% variation) are extracted from the data for the first 

and second ELO cycles. Electroluminesence (EL) spectra for these same devices is provided in 

Figure 6.15(e).  
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Figure 6.15: Thin-film AlGaInP/InGaP double heterostucture LEDs. (a) Device structure of the 

thin film AlGaInP/InGaP LEDs. (b) Images of patterned LEDs in the shape of the University of 

Michigan logo bonded by thermally assisted cold-welding to a Kapton™ substrate (above), and 

the same device under operation (below). The images were taken for the plastic wrapped around a 

1.2 cm radius cylinder. (c) Current density versus voltage (J-V) characteristics, (d) External 

quantum efficiency (EQE) measured from 400 nm to 900 nm and (e) Electroluminescence (EL) 

spectrum intensity comparisons for LEDs after the first and second ND-ELO removal from the 

same parent wafer. Similar peak EL intensities and full width half maxima (FWHM) indicate 

identical device performance without systematic degradation from the wafer recycling process.  

 

The nearly identical performances of the first and second ELO processed thin film LEDs 

is confirmed by the measured full width half maxima of 16.5 nm and 16.6 nm, and peak EL 

intensities (3% variation) at an injection current of 60 mA. The current density vs. peak EL 

intensity (Figure 6.16) extracted from EL spectra in Figure 6.15(d) indicates comparable device 

performance without degradation following the ND-ELO process. Figure 6.17 shows an image of 

the LEDs before being bent around a cylinder. 

 

 

Figure 6.16. Comparison of LEDs performance. Comparison of peak intensity vs applied 

current density extracted from LED electroluminescence characteristics.  
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Fig. 6.17. Thin-film LEDs. Image of AlGaInP/ InGaP double heterostructure LEDs on a plastic 

substrate before the epitaxy is bent around a 1.2 cm radius. 

 

Finally, two iterations of n-GaAs MESFETs are fabricated from a single parent wafer and 

transferred to plastic, as shown in Figure 6.18(a). After lift-off, 225 �m × 250 �m mesas for ohmic 

contacts and channel layers are photolithographically defined as for solar cells. Then 210 �m deep 

mesas are etched with an inductively coupled plasma etching using a plasmalab system 100 

(Oxford Instruments). For plasma etching, the sample was attached to a Si wafer carrier using 

thermal paste and Kapton® tape. During the etch process, the stage is actively cooled to 5 ℃ using 

LN2. The source and drain contact is patterned using photolithography, and a Pd(5 nm)/ Ge(50 
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nm)/ Au(300 nm) metal contact is deposited by e-beam evaporation. The width and length of 

channel are 250 �m and 25 �m, repectively. After the metal layer is lifted-off, a 50 nm highly n-

doped GaAs contact layer and the 10 nm thick channel layer are selectively removed by the 

inductively coupled plasma etching using the same procedure as above. The MESFETs are 

annealed for 1 hr at 240 °C for ohmic contact formation. Finally, the gate contact is patterned using 

photolithography, and a Ti(5 nm)/Au(300 nm) metal contact is deposited by e-beam evaporation. 

The patterned gate length is 11 �m measured by optical microscope. 

The inverted MESFET structure is grown with the active channel layer closer to the growth 

interface compared with substrate-based device, therefore the device performance is very sensitive 

to the growth interface quality. Figure 6.18(b) shows a scanning electron microscope image of a 

fabricated MESFET, Figure 6.18(c) and (d) present source drain current-gate voltage (IDS-VG) and 

transfer curves after the first and second ELO cycles. To compare the performance of the 

MESFETs, IDS-VDS and IDS-VG characteristics are measured using a Keithley 4200-SCS 

semiconductor characterization system. Ohmic contact formation for the source and drain using 

low temperature annealing is confirmed by comparing the resistance between source and drain 

without a gate contact. We find the contact changes from slight Schottky-like to ohmic behavior 

following annealing. The transconductance characteristics of thin-film MEFETs are extracted from 

the transfer curve, and compared in Figure 6.18(e). The similar transconductances of 7.5 ± 0.5 mS 

and 8.5 ± 0.5 mS for the first and second ELO processed MESFETs, which is more than twice 

that of MESFETs fabricated with similar technology on glass substrates16, shows that ND-ELO 

growth quality for these majority carrier electronic devices is not compromised by wafer recycling, 

epi-layer cleaning, and cold-weld bonding. Minor variations in device performance arise from 

variations in fabrication and growth from run-to-run.  
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Figure 6.18: Thin-film n-GaAs MESFETs. (a) Device structure of thin film n-GaAs MESFETs. 

(b) Microscope image of the MESFET after transfer and thermally assisted cold-weld bonding to 

the plastic substrate. (c) Source-drain current versus source-drain voltage (IDS-VDS) characteristics 

measured under various gate biases (VG), (d) Source-drain current versus gate voltage (IDS-VG) 

transfer characteristics at VDS = 3 V, and (e) Transconductance after the first and second ND-ELO-

processed MESFETs from a single parent wafer. Differences in characteristics are due to variations 

in device processing from run to run. 

 

6.3. Conclusion  

The nearly identical performance of both minority (solar cells and LEDs) and majority 

(MESFETs) carrier devices that are grown and lifted-off from as-delivered and reused wafers 

confirms the feasibility of our ND-ELO wafer reuse process, as well as the generality of the 

fabrication methods using epitaxial protection layers and substrate cleaning combined with cold-

weld bonding to a secondary substrate. The protection layers preserve the surface quality during 

the ELO process, as well as eliminate the wafer thinning issue caused by conventional polishing. 

Therefore, this method allows for potentially unlimited wafer recycling. Furthermore, all devices 

are directly fabricated on a flexible thin-film plastic substrate instead of rigid and bulky platforms 

such as glass or Si, thereby eliminating the need to transfer the fragile epitaxial active regions 

twice as is required in conventional ELO processing. In addition, the acceleration of the lift-off 

process via external strain makes this process compatible for use with large area substrates. The 

extreme flexibility of this approach makes it useful for deploying the mounted substrates on 

compact roles prior to unfurling for a particular application (i.e. area coverage by solar cells for 

terrestrial or space-borne purposes), as well as lending itself to simplified attachment of devices 

on conformal or pre-deformed substrate surfaces17, 18. 
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 In summary, we have demonstrated a universal method for creating a variety of very low 

cost GaAs-based single crystalline thin-film optoelectronic devices including photovoltaic cells, 

LEDs and MESFETs. The process involves a unique, non-destructive ELO process that allows for 

multiple growth and active epitaxial film removal cycles, thereby transforming the conventional 

high cost of materials associated with the substrate to a capital cost. We developed unique methods 

for substrate bonding, wafer protection and cleaning, and combined them with ND-ELO to avoid 

the typically wafer consuming repolishing step. A non-destructive substrate reuse method without 

performance degradation provides the potential for dramatic production cost reduction along with 

extending the application of high performance group III-V optoelectronic devices by moving from 

bulky, two dimensional substrate-based platforms to conformal, flexible and lightweight thin film 

devices. This technology is a critical step towards allowing III-V devices to overcome the cost 

barriers impeding their widespread acceptance in mainstream commercial applications. 
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Chapter VII 

Transforming the Cost of Solar-to-Electrical Energy Conversion:  

Integrating Thin-Film GaAs Solar Cells with Non-Tracking Mini-Concentrators 

 

Practical solar energy solutions must not only reduce the cost of the module, but also address the 

substantial balance of system costs. Here we demonstrate a counter-intuitive approach based on 

gallium arsenide (GaAs) solar cells that can achieve extremely low-cost solar energy conversion 

with an estimated cost of only 3% of conventional GaAs solar cells using an accelerated, non-

destructive epitaxial lift-off (ND-ELO) wafer recycling process integrated with a lightweight, 

thermoformed plastic, truncated mini-compound parabolic concentrator (CPC) that avoids the 

need for active solar tracking. Using solar cell/CPC assemblies whose orientation is adjusted only 

a few times per year, the annual energy harvesting is increased by 2.8 times compared with planar 

solar cells without solar tracking. These results represent a potentially drastic cost reduction in 

both the module and balance of systems costs compared with heavy, rigid conventional modules 

and trackers that are subject to wind loading damage and high installation costs. 

 

7.1. Introduction 

Due to the nearly unlimited abundance of solar energy, photovoltaic cells that convert 

sunlight directly into electricity, represent the most promising alternative energy source.  

However, cost-efficient solar-to-electrical energy harvesting still remains a major hurdle that needs 
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to be fully surmounted if we are to expect its eventual widespread deployment. Considerable 

efforts in developing photovoltaics have therefore focused on achieving low cost while increasing 

their power conversion efficiency (PCE)1. One recent achievement has been the demonstration of 

thin-film GaAs solar cells approaching their thermodynamic efficiency limit2,3,4,5. However, the 

cost reduction long promised by the ELO process has primarily been limited by the inability to 

fully recover the original wafer surface quality after each growth leading to a limited number of 

times the substrate can be recycled due to accumulation of defects,  and due to wafer thinning 

incurred by chemo-mechanical polishing6,7,8,9,10. Furthermore, high PCE alone does not 

necessarily translate into low cost solar energy production when expensive active materials and 

fabrication processes are used in their manufacture. As an alternative to simply improving the 

PCE, solar concentrators have been demonstrated as a means for reducing the use of costly active 

solar cell materials11. However, most concentrators suffer from a significant roll-off in efficiency 

at large light incident angles and can also result in high cell operating temperatures, thereby 

necessitating expensive active solar tracking and solar cell cooling systems12.  

Here we demonstrate that the integration of thin-film GaAs solar cells produced by an 

accelerated ND-ELO fabrication process, and integrated with simple, thermoformed mini-

concentrators can lead to dramatic reductions in the cost of the production of electricity via solar 

energy harvesting. This approach reduces cell materials and fabrication costs to only 3% of that of 

analogous substrate-based GaAs cells, and only 11% of ELO-processed GaAs solar cells, while 

the optical system maximizes the annual energy output without requiring daily active solar tracking 

systems by using highly-truncated two dimensional mini-compound parabolic concentrators 

(CPCs). This low-profile concentrator provides a very thin and lightweight module with improved 

off-angle sunlight absorption compared to conventional concentrators both in direct, as well as 
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diffuse sunlight with only minor losses. Our approach, therefore eliminates the need for high 

concentration factor optics that require expensive and heavy solar tracking paraphernalia. 

Furthermore, the unique geometry of thin-film GaAs solar cells that are mounted on a heat-sinking 

metal layer enable operation at or near room temperature without active cooling, even for 

concentration factors approaching 4×, representing a reduction of over 40oC when compared to 

substrate-based GaAs solar cells.  

 

7.2. Experiments and results 

7.2.1 Epitaxial growth  

The solar cell epitaxial layer structures are grown by gas-source molecular beam epitaxy 

(GSMBE) on Zn-doped (100) p-GaAs substrates. The growth starts with a GaAs buffer layer (0.2 

µm thick) followed by InGaP/GaAs (100 nm/100 nm) protection layers, and the AlAs (20 nm) 

sacrificial layer. Next, an inverted active device region is grown as follows: 5 × 1018 cm-3 Be-

doped GaAs (0.15 µm) contact layer, 2 × 1018 cm-3 Be-doped Al0.20In0.49Ga0.31P (0.025 µm) 

window, 1 × 1018 cm-3 Be-doped p-GaAs (0.15 µm) emitter layer, 2 × 1017 cm-3 Si-doped n-

GaAs (3.0 µm) base, 6 × 1017 cm-3 Si-doped In0.49Ga0.51P (0.05 µm) back surface field (BSF) 

layer, and 5 × 1018 cm-3 Si-doped n-GaAs (0.1 µm) contact layer. The GaAs/AlAs layers are 

grown at 600 °C and Al0.20In0.49Ga0.31P/ In0.49Ga0.51P layers at 480 °C.  

7.2.2 Accelerated ND-ELO   

Figure 7.1(a) shows the fabrication sequence of the thin-film GaAs solar cells via the 

combination of rapid ND-ELO and cold-weld bonding6. The previously described ND-ELO 

method employs epitaxial protection layers grown between the sacrificial layer and the wafer that 

completely preserves the original wafer surface quality, even at the atomic scale, during the ELO 
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process6,7.  Selective removal of protection layers using wet chemical etching eliminates the need 

for chemo-mechanical polishing used in conventional ELO. Therefore, ND-ELO allows for the 

nearly indefinite reuse of the GaAs substrates, converting their cost from a materials expense into 

a capital investment. To accelerate conventional ELO that takes several hours to separate the active 

epitaxy from even a small wafer, a 350 nm thick Au layer deposited onto the epitaxial layer surface 

is photolithographically patterned using a LOR 3A and S-1827 (Microchem) bi-layer photoresist 

to form a mask for the formation of an array of 2.5 mm × 6.5 mm mesas separated by 500 μm 

wide trenches by wet chemical etching using H3PO4:H2O2: deionized H2O (3:1:25) and HCl: 

H3PO4 (3:1) for GaAs and InGaP, respectively that terminates at the active solar cell epitaxy/AlAs 

sacrificial layer interface. Immediately following mesa etch, the sample is cold-weld bonded to a 

Cr/Au (4 nm/ 350 nm) coated 25 μm-thick E-type Kapton® sheet by application of 4 MPa of 

pressure with a 80 N/sec ramp rate at a temperature of 230 ℃ for 8 mins using an EVG 520 wafer 

bonder at ~10-5 torr, where the patterned Au on the wafer is used for the bonding interface6,13,14,15. 

The substrate is then rapidly cooled. To apply uniform pressure, a soft graphite sheet is inserted 

between the sample and the press head. Once the GaAs substrate fully adheres to the Kapton® 

sheet, the thin active device region is removed from its parent substrate using ND-ELO6. The 

sample is immersed in a 20% HF:H2O maintained at 60°C while agitating the solution with a stir 

bar at 900 rpm. The total lift-off time is 30 min. 
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Fig. 7.1: Illustration of the fabrication steps for integration of compound parabolic 

concentrators (CPCs) with thin-film GaAs solar cells. (a) Proceeding left to right: Mesas are 

pre-patterned prior to non-destructive epitaxial lift-off (ND-ELO) by selective etching that stops 

at the AlAs sacrificial layer (red). The sample is then bonded onto the Au coated Kapton® sheet 

via cold-welding. The third step shows the sample following ND-ELO. (b) The PETG sheet is 

fixed on top of the metal mold, then the PETG is thermoformed into its final shape by applying 

heat and vacuum. Finally, the mini-CPCs are detached from the mold. (c) The solar cell-Kapton® 

sheet assembly is separated into individual bars using laser dicing. Then, each bar is transfer 

printed onto the mini-CPCs using a PDMS stamp via low-pressure cold-welding. The last 

schematic shows the integrated thin film solar cells and mini-CPC after reflective metal coating is 

deposited onto the CPC array surface.  

 

7.2.3 Solar cell fabrication  

Following lift-off, the thin-film active region and flexible plastic host is fixed to a rigid 

substrate using Kapton® tape. The front surface contact grid is photolithographically patterned 

using the LOR 3A and S-1827 (Microchem) bi-layer photoresist; then a Pd(5 nm)/Zn(20 nm)/ 

Pd(20 nm)/Au(700 nm) metal contact is deposited by e-beam evaporation. The widths of the grid 
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and bus bar are 20 μm and 150 μm, respectively, and the spacing between the grid fingers is 300 

μm. The total coverage of the solar cell active area by the metallization is 4%. After the metal layer 

is lifted-off, the highly-doped 100 nm p++ GaAs contact layer is selectively removed by plasma 

etching. The thin-film solar cells are annealed in air for 1 hr at 200 °C to form ohmic contacts. An 

anti-reflection coating bilayer comprised of 49 nm thick TiO2 and 81 nm thick MgF2 is deposited 

by e-beam evaporation.  

7.2.4 Laser dicing of thin-film GaAs solar cells on plastic sheet   

A CO2 laser engraving and cutting system (X-660 superspeed-600, Universal Laser 

Systems, Inc.) is used to dice the non-destructive epitaxial lift-off (ND-ELO) processed thin-film 

GaAs solar cells bonded to a Kapton® sheet. The solar cells on the plastic sheet are covered by a 

plastic film to protect them from debris generated during dicing. To confirm the feasibility of the 

laser dicing process, linear and zig-zag cut patterns, with 750 μm and 500 μm spacing between 

the active solar cell active areas, respectively, are demonstrated (Figure 7.2(a) and (b)). Improved 

material utilization by reducing the 300 μm kerf is possible.  Figure 7.2(c) and (d) shows the area 

loss due to the cut geometry. For 6 inch wafers, the area loss is ~27% and 6.2% for single square 

and bar shaped cuts, respectively. Therefore, the wafer material utilization is improved by ~21% 

by increasing the cell packing density. 
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Fig. 7.2 Laser dicing of thin-film GaAs solar cells on plastic sheet (a) Linear cutting pattern 

with 750 μm spacings between solar cells. (b) Zig-zag cutting pattern with 500 μm spacing 

between solar cells. Schematic illustration of wafer utilization for (c) single square cut and (d) 

multiple small bar shape (2.5 mm × 6.5 mm) cut.  

 

7.2.5 Thermoforming of plastic-CPC and adhesive-free transfer printing.   

Figure 7.1(b) illustrates the thermoforming process used in fabricating the mini-CPCs. 

The process employs three molds: a metal mold in which to shape the thermoformed CPC, another 
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for making an elastomeric stamp to transfer the solar cells onto the substrate, and a third to assist 

in solar cell alignment. 

The process for fabricating the CPCs and integration with the solar cells is as follows: A 

0.75 mm thick polyethylene terephthalate glycol-modified (PETG) sheet is employed for the 

concentrators due to its low glass transition temperature (81°C), making it possible to shape by 

simultaneously applying heat and vacuum16. First, the PETG is fixed with Kapton® tape across the 

top of a metal mold containing holes at its base. While vacuum is applied through the holes, the 

assembly is placed in an oven at 60°C. The PETG is drawn into the mold as the oven temperature 

is raised to 96°C for ~15 min, forming the compound parabolic shape. The CPC is then cooled, 

after which CPC is detached from the metal mold. To transfer the diced, thin-film solar cells onto 

the thermoformed CPCs, an elastomeric PDMS stamp is prepared using an acrylonitrile butadiene 

styrene plastic mold (Fig. 7.1(c)) that is shaped using a 3D printer (Dimension Elite, Stratasys). 

Figure 7.3(a) shows the detailed dimensions and photographs of the mold for the PDMS stamp, 

which is designed to exactly fit into the CPC opening shown in Figure 7.3(b). An additional 3D 

printed mold is used to align the solar cell strips for pick-up by the PDMS stamp. The pyramid 

shape of the PDMS stamp prevents direct contact between the stamp and the side walls of the CPC 

so that pressure for bonding the solar cells is only applied onto the CPC base. Figure 7.3(c) is a 

schematic of the fit between the stamps and CPCs. 
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Fig. 7.3 Self-aligned transfer printing process (a) Mold design for the PDMS stamp. Image 

shows a 3D printed mold. (b) Mold design for the plastic CPCs. Image shows a mold made from 

a metal block. (c) Schematic illustration of the fit between the PDMS stamp and the plastic CPCs 

for solar cell transfer printing. 
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The CPC and Kapton® sheet beneath the solar cell strip are coated with Pd/Au (5 nm/100 

nm) deposited through a shadow mask using electron beam evaporation. The solar cell strips are 

picked up by the PDMS stamp and transfer-printed onto the Au-coated plastic CPC via adhesive-

free low-pressure cold-weld bonding13 (Fig. 7.1(c)). A pyramid-shaped fixture is used to align the 

solar cell to the CPC without contacting its side walls (Figure 7.3(c)). Subsequently, the CPC is 

coated by a 500 nm thick reflecting Ag layer using vacuum thermal evaporation while screening 

the solar cell with a shadow mask. The metallic mirror coating can potentially enhance the CPC 

reliability under ambient and solar illumination conditions. Figure 7.4 shows images of the CPC 

and thin-film GaAs solar cells at several stages of fabrication. 

 

  

Fig. 7.4: Photographs of the fabrication steps for integration of compound parabolic 

concentrators (CPCs) with thin-film GaAs solar cells. � PETG sheet after thermoforming into 

CPCs, � Fabricated thin-film GaAs solar cells on a Kapton® sheet after mesa pre-patterning and 

ND-ELO, � Thin-film GaAs solar cells following dicing, � Separated and cleaned solar cell bars, 

� PDMS stamps and 3D printed mold used in transfer printing, and � Integrated thin-film GaAs 

solar cells integrated with plastic mini-CPCs. 
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7.2.6 Characterization of integrated CPC/thin-film GaAs solar cell assemblies   

The CPC consists of two, rotated half parabolas joined together to achieve an acceptance 

angle that is determined by their tilt angle17. Previously, application of CPCs for solar energy 

generation has primarily focused on solar thermal energy conversion18. In fact, the combination of 

CPCs with photovoltaic cells has, up to this point been limited by their unwieldy, form factor, high 

aspect ratios and production costs compared with lens or mirror-based concentrators. To overcome 

this shortcoming, we employ the highly truncated (> 90%) design using low-cost plastic materials 

and fabrication processes. The combination of their high truncation ratios and half cylindrical 

symmetries enables concentration over a wide range of incident angles, thus completely 

eliminating the need for active tracking systems. 

Figure 7.5(a) and (b) show schematics for a CPC comprised of two parabolas with tilted 

axes at an angle equal to its acceptance angle17. The plastic mini-CPCs are 2D, half cylinders to 

eliminate the need for solar tracking along its longitudinal axis. Figure 7.5(c) shows the effect of 

CPC truncation on the acceptance angle and concentration factor, CF. A non-truncated CPC shows 

the highest CF with no light collection outside of the acceptance angle. Although the CF is reduced 

with increased truncation, it is nevertheless able to collect light at much broader angles than the 

acceptance angle.  

Ray tracing using Matlab software (MathWorks) was used to determine the CF. The 

geometry of the CPC is defined in Cartesian coordinates, and its four vertices are calculated using 

base width (defined by the dimensions of the GaAs solar cell), height, and acceptance angle. Note 

that the focal points of the two parabolas comprising the CPC form the base edges. We choose 

practical CPC heights (~8% of the untruncated CPC), where truncation alters the acceptance of 

input rays incident on the CPC, and hence the CF. We assume that the input rays are parallel.  
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Now, CF is the ratio of photons incident on the solar cell with CPC, to that without it. Due 

to the symmetry of the CPC about its central axis, only positive solar incident angles were 

considered, i.e., 0 < θsun < θmax, where  θsun is the angle of the rays with respect to the central axis 

of CPC, and θmax 
 is the angle at which all incident rays are shadowed and thus, CF → 0 . Greater 

than 10,000 spatially distributed rays for each angle were used. When a ray is reflected by the CPC, 

its intensity is reduced by the reflectance of Ag, which was measured on PETG using a variable-

angle spectroscopic ellipsometer (VASE, J.A. Woollam) and a UV/Vis/NIR Spectrophotometer 

(LAMBDA 1050, Perkin Elmer). The range of wavelengths and angles was 300 nm to 900 nm 

with 3 nm steps, and from 15 o to 85 o with 5o steps. The values between those measured are 

interpolated. Then, the wavelength and incident angle dependent reflectance is weighted by the 

AM1.5G solar spectrum. Finally, CF vs. θsun and acceptance angle is calculated.  

Figure 7.5(d) and (e) show contour plots of CF vs. incident angle calculated for various 

CPC shapes. Figure 7.5(d) shows the case of a non-truncated CPC where CF increases as the angle 

between each parabola axis (i.e. the acceptance angle) decreases. Figure 7.5(e) shows the case of 

CPCs with a fixed aspect ratio of 4 (CPC height/solar cell width) such that the truncation ratio 

depends on the acceptance angle. The truncation ratios of CPCs with narrow acceptance angles are 

higher than for wide acceptance angles. 
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Fig. 7.5 Two dimensional mini-compound parabolic concentrator (CPC) design. Schematic 

illustration of the (a) CPC shape and (b) 2 dimensional CPCs. (c) Effect of CPC truncation on the 

acceptance angle and concentration factor. Contour plot of light incident angle dependent 

concentration factors for various shapes of (d) non-truncated, and (e) truncated CPCs.  
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Figure 7.6(a) shows the current-voltage (I-V) characteristics of the thin-film GaAs solar 

cells measured under simulated AM 1.5G illumination at 1 sun (100 mW/cm2) intensity, both in a 

conventional planar configuration, and integrated with the variously shaped thermoformed CPCs 

with a fixed aspect ratio of 4 (corresponding to 2.5 mm wide solar cells with 10 mm high CPCs). 

The dependence of the concentration factor on the tilt angles of the axes of the parabolas, as 

inferred from the I-V characteristics along with the calculated values, are provided in Figure 7.6(b). 

A maximum concentration factor of 3.6 is achieved using a CPC with a 2.5o axis tilt.  

 

 

Fig. 7.6: Performance of thin-film GaAs solar cells and plastic mini-CPCs (a) Current versus 

voltage (I-V) characteristics of thin-film GaAs solar cells with and without various CPCs measured 

under 1 sun, AM1.5G simulated solar illumination. Inset shows the shape of each CPC along with 

their corresponding tilt angles. (b) Concentration factors depending on the tilt angle of the CPCs. 

Blue and green bars show simulated and measured concentration factors under AM 1.5G solar 

illumination, respectively.  

 

The ND-ELO processed solar cell performance has a PCE = 18.4% and 17.9% with and 

without a 6o tilted CPC, respectively. Figure 7.7(a)-(d) summarize the performance of the thin-

film ND-ELO GaAs solar cells under various concentrated light conditions. The solar cells are 

integrated with the mini-CPCs and are measured using an Oriel solar simulator (model: 91191) 
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with a Xe arc lamp and AM 1.5 Global filter calibrated to 1 sun illumination (100 mW/cm2). I-V 

characteristics are obtained with an Agilent 4155B parameter analyzer. The simulator intensity is 

calibrated using a National Renewable Energy Laboratory (NREL) certified Si reference cell with 

diameter of 5 mm. Short circuit current (Jsc), Open circuit voltage (Voc), fill factor, and power 

conversion efficiency (PCE) are extracted from the I-V characteristics (Figure 7.6(a)). The 

measurement shows the power conversion efficiency of the cell integrated with a 6° tilted CPC 

with CF = 3.3 is slightly improved (~0.5%) compared to a non-concentrated device with one due 

to the increased open circuit voltage, Voc, at higher intensities. The improved PCE using the 

concentrator is due to the increased open circuit voltage at higher light intensity. 

 
Fig. 7.7: Performance of the thin-film GaAs solar cells under the concentrated light (a) Short 

circuit current (b) open circuit voltage, (c) fill factor, and (d) power conversion efficiency of the 

thin-film GaAs solar cells under the various concentrated light conditions measured by their 

integration with the mini-CPCs. 
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Figure 7.8(a) shows both the measured and calculated values of the concentration factor 

as functions of the solar incidence angle for the 92% height-truncated, 6o tilted CPC under both 

direct and diffuse illumination. The measured peak concentration factor is 3.3, corresponding to 

76% of the light incident on the concentrator aperture being directed onto the cell.  The actual 

optical element also has an approximately 10o wider acceptance angle than calculated. 

Concentration losses are due to the rough light-scattering surfaces that result from the imperfect 

shape of the metal mold, and distortions created due to non-uniform thermal expansion of the 

PETG during thermoforming.  

Light concentration vs. incidence angle was also characterized under diffuse illumination. 

The light incident angle is adjusted using an optical fiber and rotation stage (Newport, 481-A). The 

concentration factor under diffuse illumination (N-BK7 ground glass diffusers, 220 grit polish, 

Thorlab) is measured with an identical set-up. As a result of the wide collector acceptance angle, 

the measured concentration factor has a maximum of 3.2 suns, which is nearly identical with that 

obtained for specular illumination at normal incidence (Figure 7.8(a)). The reduced sensitivity of 

light concentration with solar position under diffuse, as well as direct sunlight confirms that the 

truncated CPC eliminates the need for active tracking. 

The thermal performance of both substrate-based and thin film GaAs solar cells under 3.3 

suns concentration is shown in Figure 7.8(b). The solar cell operating temperature is measured by 

a thermal imaging camera (A325, FLIR). Infrared images taken without heat sinking at an ambient 

temperature of 23.6℃ are shown in the inset. The thin-film cells are mounted onto a 700 nm thick 

Au film which is used for the contact, rear-side mirror, cold-weld bonding material, and heat-sink.  
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Fig. 7.8: Performance of thin-film GaAs solar cells and plastic mini-CPCs (a) Light incident 

angle dependent concentration factors for thin-film GaAs solar cells integrated with 6 o tilted 

plastic mini-CPCs. The green solid line shows the simulated value. Blue and red dots with guide 

line show measured concentration factors under direct and diffuse illumination, respectively. (b) 

Operating temperatures of thin-film and substrate-based GaAs solar cells under AM1.5G 

simulated solar illumination at 3.3 suns concentration measured using an infrared (IR) camera. 

Inset shows the cell IR camera images.  

 

The cells exhibit a 17oC lower temperature under 1 sun illumination compared with 

analogous cells on a 350 µm thick GaAs substrate, and 41oC lower operating temperature under 3 

suns intensity. The near room temperature operation of thin-film solar cells is advantageous, since 

every 10oC increase leads to decrease in PCE of ~0.7%19. Figure 7.9 shows the operating 

temperatures of thin-film and substrate-based GaAs solar cells under simulated AM 1.5G, 1 sun 

intensity (100mW/cm2) illumination. After 250 s, the substrate-based GaAs solar cells operate 

around 45℃ as predicted19, whereas the thin-film cells operate at 28℃.  
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Fig. 7.9 Operating temperature of thin-film and substrate GaAs solar cells. Time dependent 

temperature measured by IR imaging under 1 sun illumination (100mW/cm2). 

 

7.2.7 Enhanced annual energy harvesting using CPC/thin-film GaAs solar cell assemblies 

As noted, the mini-CPC is cylindrically symmetric, suggesting that it should be aligned 

along an east-west axis to provide the widest coverage of sunlight throughout the day simply by 

tilting its axis towards the zenith of solar declination path, with only occasional seasonal 

adjustments in tilt. Figure 7.10(a) and (b) shows east-west and north-south axis longitudinal CPC 

alignments. For north-south alignment, the CPC only collects light when the sun lies within the 

acceptance angle of the CPC; however, the east-west axis alignment provides a wide coverage of 

sunlight throughout the day by tilting it toward the solar declination path. The position of the CPC 

needs to be adjusted only 4 times per year for optimum energy harvesting since the acceptance 

angle of the CPC is sufficiently wide to cover the seasonal changes in the solar path. 
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Fig. 7.10 Alignment of CPCs. Schematic of the CPC longitudinal axis aligned along an (a) east-

west axis and (b) north-south axis.  

 

 To maximize the energy harvesting throughout the year, at Phoenix, AZ (33.4N, 112.1W), 

we first calculate the optimum seasonal alignment. Solar radiation intensity is then determined 

using time dependent zenith angles and air mass for each day of the year. Diffuse light is not 

considered for the calculation. The daily energy generation is then integrated over the entire year. 

The device tilt is iteratively changed, to generate a full contour mapping of the energy generation 

as both a function of southward tilt and day of the year. 

Figure 7.11(a), (b) and (c) show the daily energy generated using the measured angle 

dependent CFs for a non-concentrated and a cell with 6° tilted a CPC aligned along north-south 

and east-west axes. Using the seasonal position shift of the solar path, we find the optimum CPC 

facing angle by maximizing the integrated energy generation with varying alignment angle. The 

optimum seasonal positions are summarized in Figure 7.11(d). 
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Fig. 7.11 Optimum alignment of CPCs. Contour plot of energy harvesting for each day, 

depending on the CPC tilt angle of (a) non-concentrated cell, (b) east-west axis and (c) north-south 

aligned CPC. Solid lines indicate optimum seasonal CPC positions and transition dates for 

maximum yearly energy harvesting. (d) Summary of optimum seasonal facing angles for each case. 

   

Fig. 7.12 shows the solar path at specific dates (Jan 1, April 1 and July 1) and the coverage 

of the 6o tilted CPC at seasonally adjusted tilt angles (i.e. adjusted to zenith angles of 11o / 31o / 

53.5o only at the summer solstice, spring/fall equinoxes, and the winter solstice, respectively).  
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Fig. 7.12: Optimum alignment of CPCs for maximum annual energy harvesting. Polar plots 

showing coverage of CPC at its optimum seasonal positions.  

 

To calculate the hourly, daily and yearly energy generation of thin-film GaAs solar cells 

with the plastic mini-CPCs, the air mass and zenith angle of the solar radiation are calculated at 

Phoenix, AZ. The solar position is calculated for every day of the year, and at 500 times during 

each day. The radiation incident on the device is calculated based on the air mass at that time. 

Figure 7.13(a) shows the hourly air mass and solar angles for two specific dates. Hourly and daily 

radiation intensity values, and the incident angle on the CPC are determined based on these 

calculations.  

Figure 7.13(b)-(e) shows hourly and daily energy harvesting patterns of the thin-film GaAs 

solar cells with and without east-west aligned CPCs for four seasonal alignments per year. The 

CPC with a narrow acceptance angle shows high energy harvesting at specific dates but, is not 

able to completely cover the seasonal solar path. In contrast, CPCs with wider acceptance angles 

show almost full coverage of the solar path, although it shows a relatively low CF. The optimum 

design employs a 9.5° tilted CPC, although the 6° tilted CPC shows the best annual energy 

harvesting performance from the experimentally measured concentration factors due to an 

imperfect CPC shape and reflectance of the Ag film on PETG. Figure 7.13(f) shows the energy 

harvesting based on angle dependent CFs measured using a 6° tilted CPC. 
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Fig. 7.13 Characterization of hourly, daily and yearly energy harvesting at Phoenix, AZ. (a) 

Air mass and zenith angle of sunlight calculated on Jan 1st and July 1st. (b) Simulated hourly and 

daily energy generation for (b) non-concentrated thin-film GaAs solar cells, and the thin-film 

GaAs solar cells with (c) 5o, (d) 9.5 o and (e) 15 o tilted CPC. (f) Hourly and daily energy harvesting 

based on measured angle-dependent concentration factors for the thin-film GaAs solar cells 

integrated with 6o tilted CPC. 
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Figure 7.14(a) and (b) show the energy harvesting on two specific dates during winter and 

summer, respectively, using a 6° tilted CPC. The wide acceptance angle enables the CPC to cover 

most of the useful daylight with low air mass. From the integration of hourly energy harvesting 

curves for thin-film GaAs solar cells with and without a CPC, we confirm that the ND-ELO 

processed solar cells integrated with a 6° tilted CPC shows 2.8 and 2.7 times higher energy 

harvesting compared with non-concentrated cells on January 1st and July 1st, respectively (Figure 

7.14(c)). Figure 7.14(d) compares the non-concentrated, and the 2, 3 and 4 tilt positions per year. 

 

 
Fig. 7.14 Characterization of hourly and annual energy harvesting. Hourly energy generation 

using thin-film GaAs solar cells with and without a CPC for (a) January 1st and (b) July 1st at 

Phoenix, AZ. Dashed lines indicate the maximum energy harvesting case using a double axis 

tracking system. (c) Comparison of daily energy harvesting for January 1st and July 1st by 

integrating the curves in Fig. 7.14 (a) and (b). (d) Annual energy harvesting dependence on the 

number of CPC positions per year.  



179 

 

Figure 7.15(a) shows the daily and hourly trends of concentrated power generation using 

the 6o tilted CPC. The wide CPC acceptance angle allows for energy harvesting during the most 

useful hours of daylight straddling midday. Figure 7.15(b) shows the result of concentrated energy 

harvesting throughout the year using a thin-film GaAs solar cell with the 6o tilted CPC compared 

to conventional, non-concentrated cells. Both cases are calculated based on three seasonal 

positional adjustments each year. The inset of Fig. 7.15(b) compares the annual energy generation 

of concentrated and non-concentrated thin-film GaAs solar cells. We find that the total annual 

energy yield is 2.8× higher for the concentrated cells.  

 

 

 

Fig. 7.15: Optimum alignment of CPCs for maximum annual energy harvesting. (a) Contour 

plot of daily and hourly concentration factors in Phoenix, AZ using a 6o tilted CPC. (b) Ratio of 

the daily concentrated energy harvesting factor for the thin-film GaAs solar cells with the 6o tilted 

CPC compared to a cell without concentration. Inset: Summary of annual power generation 

calculated from the integration of hourly and daily energy harvesting using thin-film GaAs solar 

cells with and without concentrators. 
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7.2.8 Production cost estimation   

Ultimately, the most important figure of merit for any solar cell technology is the cost of 

energy generation.  Hence, Fig. 7.16 shows estimated cost reductions using the combination of 

approaches demonstrated here, as compared with conventional GaAs-based methods20,21. 

Manufacturing costs of solar cells grown by metal organic vapor phase epitaxy (MOVPE) on 6 

inch diameter round wafers are estimated based on the consideration of 24% cell efficiency, $150 

per 6 inch wafer with a 27% area loss, 50 wafer reuses for both conventional ELO with wafer 

polishing and ND-ELO processing, 30% and 20% group III and V precursor utilization yields, 15 

μm/hr growth rate, 70% CMP process yield, 9% margin, and miscellaneous expenditures 

(materials costs, labor, maintenance, utility and equipment depreciation)21. Module materials costs 

are estimated using the existing crystalline Si manufacturing costs without considering the 

expenses for module assembly (depreciation, labor, etc.)20. The loss of wafer area can be reduced 

by the increased packing density achieved by the bar shaped solar cells. Another significant cost 

is incurred in the chemo-mechanical polishing (CMP) process used in conventional ELO, which 

amounts to ~$8/repolishing at 70% yield21. This cost can be completely eliminated by the ND-

ELO method which does not employ CMP6. Other assumptions for U.S. based manufacturing 

include21: 1) 0.25 labor cost per reactor and 1:0.35 direct:indirect labor ratio. Wages assumed are 

$12.05 /hr and $17.56 /hr with 55% benefits for unskilled and skilled workers. 2) 350 working 

days per year and 24 working hours per day (3 shifts). 3) $0.07 /kWh electricity price. 4) $500 /m2 

for class 1000 cleanroom cost. 6) 28% effective corporate tax rate.  
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Fig. 7.16: Comparison of production cost using thin-film GaAs solar cells integrated with 

CPCs.  Comparison of solar cell production cost for the substrate based, ELO processed and ND-

ELO processed thin-film GaAs solar cell modules with and without the 6o tilted CPC. The 

percentages show the relative costs compared to a conventional non-lifted-off (substrate) cell 

lacking concentration. Inset shows the cost reduction for the major processes used in fabrication 

of ND-ELO processed thin-film GaAs solar cells integrated with CPCs, compared with a non-

concentrated substrate based cell and a conventional ELO processed cell. 

  

This analysis indicates an approximately 97% cost reduction using the ND-ELO thin-film 

GaAs solar cell integrated with a 6o tilted CPC compared with substrate-based cells, and a 89% 

reduction compared with conventional ELO-processed thin film solar cells. Here, 66% of the 

reduction is due to improved epitaxial-substrate utilization using ND-ELO, and 25% from the area 

reduction of 2.8× afforded by the mini-CPCs. The cost for CPC fabrication is estimated at < 1% 
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of the total module production cost. Table 7.1 shows the detailed costs used in comparing each 

technology approach. 

 

Table 7.1 Production cost estimation. Cost estimation for substrate based, conventional ELO 

processed, and ND-ELO processed thin-film GaAs solar cells, and module employing integrated 

plastic mini-CPCs. 

 

* 9% fixed margin is assumed 

� Fixed CMP cost of $8/repolish with a 70 % process yield is assumed. 

 

 

Ultimately, to estimate the long term cell production cost, we assume the reference case 

cost base of $13.6 /Wp by assuming 20× substrate reuse, utilization of 30% for the III-source and 

20 % for the V source precursors, 15 µm/hr GaAs growth rate, 70% CMP process yield and 25 % 

cell power conversion efficiency. 49 % of this cost originates from the CMP process and the cost 

of parent epi-substrate. Therefore, a dramatic cost reduction to $4.6/Wp can be achieved simply by 

eliminating the CMP process via ND-ELO, and increasing the number of wafer reuses combined 

 
Substrate 

cell 

ELO 

processed cell 

ND-ELO 

processed cell 

ND-ELO processed 

cell integrated with 

mini-CPCs 

wafer $47.1/Wp $12.37/ Wp
� $0.94/ Wp $0.34/ Wp 

Material $1.62/ Wp $1.25/ Wp $1.25/ Wp $0.45/ Wp 

Depreciation $1.8/ Wp $1.8/ Wp $1.8/ Wp $0.64/ Wp 

Module cost $0.1/ Wp $0.1/ Wp $0.1/ Wp $0.11/ Wp 

Margin* $4.62/ Wp $1.46/ Wp $0.43/ Wp $0.16/ Wp 

Etc (laber, utility, 

maintenance) 
$0.73/ Wp $0.73/ Wp $0.73/ Wp $0.26/ Wp 

Total $55.97/ Wp $17.71/ Wp $5.25/ Wp $1.96/ Wp 
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with lower weighted average cost of capital (WACC, 9% to 7%) and improved PCE (27%). As 

shown in figure 7.17(a), this cost can be further reduced to $0.5 /Wp by improving cell processing 

(enhanced material utilization, deposition rate and yield etc.), and developing manufacturing 

processes that lead to reduced material, labor, and depreciation expenses. 

The $0.6 /Wp module cost is estimated based on the production cost of 2.26 m2 crystalline 

Si module. For our calculation, the thin-film GaAs solar cell efficiency of 29% is adjusted to 24%, 

which is the current record module efficiency for the equivalent cell1. Therefore, an additional cost 

of $0.12 /Wp is incurred. The CPC fabrication cost is estimated at ~$0.01/Wp based on the material 

cost ($1.05 /m2 for PETG and $2.08 /m2 for 300 nm thick Ag; therefore, ~$0.003/Wp for PETG 

and ~$0.007/Wp for Ag) which is comparable to a commercially available Ag-coated Mylar 

substrate with ~95% reflectance (DuPont Teijin Film). By applying an active GaAs solar cell area 

reduction using CPCs, the total cost for the completed module is reduced to $0.34/Wp (Figure 

7.17(b)), representing a potential cost reduction of 99.4%. Furthermore, the lightweight module 

impacts the balance of system cost by minimizing expenses incurred on installation and racking, 

thus making it adaptable for rooftop installations which may not be capable of supporting heavy, 

unwieldy modules and bulky, active solar tracking concentrator systems. 

  



184 

 

           
Fig. 7.17 Production cost estimation (a) Cost estimation for thin-film GaAs solar cells and (b) 

modules where the cells are integrated with plastic mini-CPCs. 
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7.3 Conclusion 

In summary, we demonstrated thin-film GaAs solar cells integrated with low-cost, 

thermoformed, lightweight and wide acceptance angle mini-CPCs.  The fabrication combines 

rapid ND-ELO thin film cells that are cold-welded to a foil substrate, and are subsequently attached 

to the CPCs in an adhesive-free transfer printing process. The combination of low-temperature 

operation of the thin-film solar cells along with the highly truncated low-profile plastic CPCs 

provides 2.8× enhanced energy harvesting throughout the year without the need for active solar 

tracking, while eliminating losses incurred at high operating temperatures characteristically 

encountered in concentration systems. Additionally, the combination of potentially low-cost 

fabrication and lightweight materials enables significant reductions in the balance of systems costs. 

This demonstration represents a significant step towards removing the cost barriers to the 

widespread deployment of lightweight and high performance thin-film GaAs solar cells in 

terrestrial and commercial solar electricity generation applications. 

 

 

  



186 

 

CHAPTER VII 

Bibliography 

 

1. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency 

tables (version 44). Prog. Photovoltaics Res. Appl. 22, 701–710 (2014). 

2. Kayes, B. M. et al. 27.6% Conversion efficiency, a new record for single-junction solar 

cells under 1 sun illumination. in 2011 37th IEEE Photovolt. Spec. Conf. 000004–000008 

(IEEE, 2011). doi:10.1109/PVSC.2011.6185831 

3. Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong Internal and External Luminescence 

as Solar Cells Approach the Shockley–Queisser Limit. IEEE J. Photovoltaics 2, 303–311 

(2012). 

4. Steiner, M. A. et al. Optical enhancement of the open-circuit voltage in high quality GaAs 

solar cells. J. Appl. Phys. 113, 123109 (2013). 

5. Shockley, W. & Queisser, H. J. Detailed Balance Limit of Efficiency of p-n Junction Solar 

Cells. J. Appl. Phys. 32, 510 (1961). 

6. Lee, K., Zimmerman, J. D., Hughes, T. W. & Forrest, S. R. Non-Destructive Wafer 

Recycling for Low-Cost Thin-Film Flexible Optoelectronics. Adv. Funct. Mater. 24, 

4284–4291 (2014). 

7. Lee, K., Zimmerman, J. D., Xiao, X., Sun, K. & Forrest, S. R. Reuse of GaAs substrates 

for epitaxial lift-off by employing protection layers. J. Appl. Phys. 111, 033527 (2012). 

8. Cheng, C.-W. et al. Epitaxial lift-off process for gallium arsenide substrate reuse and 

flexible electronics. Nat. Commun. 4, 1577 (2013). 

9. Bauhuis, G. J. et al. Wafer reuse for repeated growth of III-V solar cells. Prog. 

Photovoltaics Res. Appl. 18, 155–159 (2010). 

10. Yoon, J. et al. GaAs photovoltaics and optoelectronics using releasable multilayer 

epitaxial assemblies. Nature 465, 329–333 (2010). 

11. Kurtz, S. R. Opportunities and challenges for development of a mature concentrating 

photovoltaic power industry. NREL/TP-5200-43208 (2012). 

12. Rabl, A. Comparison of solar concentrators. Sol. Energy 18, 93–111 (1976). 



187 

 

13. Ferguson, G. S., Chaudhury, M. K., Sigal, G. B. & Whitesides, G. M. Contact adhesion of 

thin gold films on elastomeric supports: cold welding under ambient conditions. Science 

253, 776–778 (1991). 

14. Kim, C., Burrows, P. & Forrest, S. Micropatterning of organic electronic devices by cold-

welding. Science 288, 831–3 (2000). 

15. Lee, K., Shiu, K.-T., Zimmerman, J. D., Renshaw, C. K. & Forrest, S. R. Multiple growths 

of epitaxial lift-off solar cells from a single InP substrate. Appl. Phys. Lett. 97, 101107 

(2010). 

16. Xu, X., Davanco, M., Qi, X. & Forrest, S. R. Direct transfer patterning on three 

dimensionally deformed surfaces at micrometer resolutions and its application to 

hemispherical focal plane detector arrays. Org. Electron. 9, 1122–1127 (2008). 

17. Rabl, A. Optical and thermal properties of compound parabolic concentrators. Sol. Energy 

18, 497–511 (1976). 

18. Kalogirou, S. A. Solar thermal collectors and applications. Prog. Energy Combust. Sci. 30, 

231–295 (2004). 

19. Fan, J. C. C. Theoretical temperature dependence of solar cell parameters. Sol. Cells 17, 

309–315 (1986). 

20. Goodrich, A. et al. A wafer-based monocrystalline silicon photovoltaics road map: 

Utilizing known technology improvement opportunities for further reductions in 

manufacturing costs. Sol. Energy Mater. Sol. Cells 114, 110–135 (2013). 

21. Woodhouse, M. & Goodrich, A. a manufacturing cost analysis relevant to single and dual 

junction photovoltaic cells fabricated with III-Vs and III-Vs grown on Czochralski 

Silicon. NREL Rep. No. PR-6A20-60126 92 (2014).  

 

 



188 

 

 

Chapter VIII 

Application of thin-film GaAs photovoltaic cells 

 

In this chapter, we introduce the various applications of thin-film GaAs photovoltaic cells by 

taking advantage of their unique features of flexibility and light weight. First, we demonstrate the 

integration of a GaAs thin-film solar cell array with an ultra-high frequency (UHF) antenna and 

an RF choke on a flexible substrate using the epitaxial lift-off (ELO) process. In this setup, the 

thin-film solar cells, their contact metallization, and metallic interconnections function as both 

power source and radiation element. A resonant frequency at ~350 MHz is simulated and this value 

is confirmed with the voltage standing wave ratio (VSWR) measurement of the solar cell array. 

Furthermore, the multifunctional thin-film GaAs solar cell array works as both the power supply 

and communication antenna for an unmanned aerial vehicle (UAV) platform. Second, we 

introduce a new paradigm for solar tracking and concentration system based on thin-film GaAs 

solar cells using origami and kirigami processes. These flexible and lightweight thin-film solar 

tracking and concentrating systems enable the replacement of traditional bulky optical systems 

with cost-efficient and simple structures by using a simple cutting and folding process. Therefore, 

the balance of system (BoS) cost of a thin-film GaAs solar module can be significantly reduced 

compared with conventional solar tracking/concentration systems. 

 



189 

 

8.1 Introduction 

Recently, demand has been increasing for lightweight and flexible electronics, making 

thin-film III-V solar cells a relevant technology for satellites to personal and terrestrial 

applications.1,2  By integrating III-V solar cells onto the lightweight plastic substrates, the ELO 

process enables high specific power conversion (W/g), which is essential for reducing device 

weight.3,4,5,6 The overall system mass can be further enhanced by adding additional functionalities 

to the solar cell modules.  

In this chapter, we demonstrate two kinds of possible applications using the unique feature 

of thin-film GaAs solar cells. First, we describe the fabrication of GaAs thin-film solar cell array 

on flexible plastic substrates integrated with ultra-high frequency (UHF) antenna and RF choke, 

and the performance is investigated. The integration of solar cells and an antenna is promising as 

both components are exposed to the surface of the device.7,8 Second, we demonstrate single axis 

tracking/concentrating thin-film GaAs solar cells using a kirigami architecture. The kirigami 

design enables the addition of a solar tracking/concentrating function by applying a simple cut and 

fold geometry to the thin-film platform. A lightweight and low-profile solar tracking and 

concentrating optical system can potentially reduce the balance of system cost of a solar module 

compared to conventional solar tracking systems. 

 

8.2 Experiment and results 

8.2.1 ELO processed solar cell array integrated with a flexible antenna 

The epitaxial layer structures were grown by gas-source molecular beam epitaxy (GSMBE) 

on Zn-doped (100) p-GaAs substrates. The growth starts with a 0.2 μm-thick GaAs buffer layer 
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followed by the 0.1 μm-thick Al0.25Ga0.26In0.49P/ 0.1 μm-thick GaAs/ 0.05 μm-thick 

Al0.25Ga0.26In0.49P protection layers. Then, a 0.025 μm-thick AlAs sacrificial layer is grown. A p-

on-n GaAs solar cell active region is grown as follows: 0.1 μm-thick, 5 � 1018 cm-3 Be-doped 

GaAs contact layer, 0.025 μm-thick, 2 � 1018 cm-3 Be-doped Al0.25Ga0.26In0.49P window layer, 

0.15 μm-thick, 1 � 1018 cm-3 Be-doped p-GaAs emitter layer, 3.5 μm-thick, 2 � 1017 cm-3 Si-

doped n-GaAs base layer, 0.05 μm-thick, 4 � 1017 cm-3 Si-doped In0.49Ga0.51P back surface field 

(BSF) layer, and a 0.1 μm-thick, 5 � 1018 cm-3 Si-doped n-GaAs contact layer.  

After growth using GSMBE, a 5 nm-thick Ir layer is sputtered onto a 50 μm-thick Kapton® 

sheet as an adhesion layer. Ir is also utilized as a stressor layer to accelerate the ELO process. Then, 

500 nm-thick -thick Au contact layer is deposited onto both the Ir coated Kapton® sheet and GaAs 

epitaxial layer by e-beam evaporation. The substrate and plastic sheet are bonded via cold-welding 

by applying 25 kN force application using an MTS alliance RT/100 stamping machine and then 

submerged into a heated solution of 20% HF for epitaxial lift-off. Immediately after the ELO 

process, the thin film and parent substrate are cleaned by plasma etching with BCl3 and Ar gases. 

Then, the thin film is fabricated into a solar cell. The Al0.25Ga0.26In0.49P and GaAs protection layers 

are sequentially etched with HCl:H2O (1:1) and H3PO4:H2O2:H2O (3:1:25). 

The lifted-off thin film is fabricated into solar cells starting with the front contact grid 

patterning using photolithography and deposition of Pd(5 nm)/ Zn(15 nm)/ Pd(15 nm)/ Au(800 

nm) by e-beam evaporation. The device is annealed for 30 min at 180 °C to form Ohmic contacts. 

Mesas are defined using photolithography and wet etching, and the highly-doped GaAs Ohmic 

contact layer is removed between gridlines. Finally, a TiO2 (52 nm)/ MgF2(85 nm) bi-layer 

antireflective coating (ARC)  is deposited by e-beam evaporation. The inset of Fig. 8.1 shows a 

fabricated GaAs thin-film solar cells from an ELO processed 2” GaAs wafer. 
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The fourth quadrant current density-voltage (J-V) characteristics of the ELO processed 

GaAs solar cell was measured under simulated Atmospheric Mass 1.5 Global (AM 1.5G) 

illumination at 100 mW/cm2 intensity and is presented in Fig. 8.1. The optical power intensity was 

calibrated using a National Renewable Energy Laboratory traceable Si reference photovoltaic cell. 

The short circuit current density is 26 mA/cm2 and the open circuit voltage is 0.99 V, the fill factor 

is 76.1 %, resulting in a power conversion efficiency of 19.8 %.  

 

 

Fig. 8.1: The current density-voltage characteristics and (inset) image of flexible GaAs thin-film 

solar cells on a 50 μm-thick Kapton® sheet 

 

For the solar cell array to function as an antenna, additional fabrication steps are required 

between mesa definition and ARC deposition. After mesa definition, Au is patterned using 

photolithography and wet-etching (TFA etchant, Transene CO), followed by an Ir inductive 
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coupled plasma etch using Cl2 gas at 4 mTorr to pattern the rear-side of the metal array connection. 

To form a series connection of the solar cells, the sides of each solar cell are passivated using a 

400 nm SiNx layer deposited by plasma enhanced chemical vapor deposition and patterned by 

photolithography and plasma etching. After a ZnS(43 nm)/MgF2(102 nm) antireflective coating is 

deposited by e-beam evaporation, solar cells are connected using a 500 nm-thick Au layer 

sputtered through a shadow-mask. 

 

 

Fig. 8.2: The schematic of multifunctional solar cell array in series a spiral RF choke and (inset) 

image of fabricated GaAs thin-film solar cell array on a 50 μm-thick Kapton® sheet 

 

After solar cell fabrication, a 15 μm-thick Al layer is deposited via e-beam evaporation 

through a shadow mask to enhance the antenna and RF choke. Then, the DC output metal 

connection is evaporated onto the reverse side of the Kapton® sheet and connected to both the 

center of the RF choke and the contact pad on the front side. Figure 8.2 shows the schematic of a 

solar cell array and interconnections integrated with antenna and the RF choke. 
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Fig. 8.3: Thin-film solar cells working as part of a UHF antenna, their current distribution at 350 

MHz and the whole antenna topology integrated with a RF choke. 

 

The fabricated thin-film solar cells have a large junction capacitance at microwave 

frequencies, and thus can be used as a part of or an entire efficient antenna. Figure 8.3 shows the 

topology and current distribution in a meander monopole UHF antenna employing thin-film solar 

cells as a part of the radiating elements. Except for the solar cells where the metal is part of the 

back contact (denoted by number 1~6), all of the traces are exposed metal. A RF current path 

excited by the antenna feed on the top left-hand corner in Fig. 8.3 is effectively disconnected by a 

RF choke. Therefore, while solar cells 1 and 2 operate as a transmission line of RF current as well 

as a DC power generator, solar cells 3, 4, 5 and 6 only operate as a DC power generator. This is 

shown in Fig. 8.3 where the RF current density on solar cells 1 and 2 is much higher than on solar 

cells 3, 4, 5 and 6.  
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(a)                                                                      (b) 

            

Fig 8.4: (a) Measured and simulated VSWR and (b) 3D radiation pattern (Gθ) of the solar antenna. 

 

Figure 8.4(a) and (b) show the measured and simulated voltage standing wave ratio 

(VSWR) and 3D radiation pattern (Gθ) of a solar antenna integrated with a RF choke. The 

measured VSWR shows good agreement with the simulated VSWR and the value of antenna gain 

acquired by 3D radiation pattern validates high radiation efficiency of the integrated solar cells 

and antenna. Finally, the ELO processed solar cell array with patterned interconnection is mounted 

on the wing of an UAV platform, and the versatility of power supply and communication properties 

is confirmed.8 

8.2.2 Thin-film photovoltaic cells integrated with Orgami & Kirigami based optical systems 

To fabricate the thin-film GaAs solar cells on plastic substrate, epitaxial layers of p-n 

junction GaAs active material on an AlAs sacrificial layer were grown by gas-source molecular 

beam epitaxy (GSMBE) on a 2 inch-diameter (100) GaAs substrate. The sample was then coated 

with a 300 nm thick Au layer by e-beam evaporation, and bonded to a 50 μm-thick E-type Kapton® 

sheet (also coated in 300 nm Au layer ) using cold-weld bonding by applying a pressure of 4 MPa 

for 8 mins at a temperature of 230 ℃. After bonding, the photovoltaic epitaxial active region and 
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Kapton® carrier were isolated from the bulk wafer using epitaxial lift-off (ELO) by selectively 

removing the AlAs sacrificial layer in dilute (15%) hydrofluoric acid (HF) solution at room 

temperature. 

 After ELO, a Pd(5 nm)/ Zn(20 nm)/ Au(700 nm) front metal contact was patterned using 

photolithography. Then, the device mesas were similarly defined using photolithography and 

subsequent chemical etching using H3PO4:H2O2:deionized H2O (3:1:25). The exposed, highly-

doped 150 nm thick p+ GaAs contact layer was selectively removed using plasma etching. After 

annealing the sample for 1 hr at 200 °C to facilitate ohmic contact formation, the sidewalls were 

passivated with a 1 μm-thick polyimide applied by spin coating. After curing the sample at 300 °C 

for 30 min, the polyimide was selectively removed by photolothograpy and plasma etching. The 

external contact pad was patterned with Ti (10 nm)/Au (500 nm). Finally, a bilayer anti-reflection 

coating consisting of TiO2 (49 nm) and MgF2 (81 nm) was deposited by e-beam evaporation. Then, 

to test the feasibility of the kirigami process as a single axis solar tracker, various cut geometry is 

formed on the Kapton® sheet. Figure 8.5(a) shows the schematic illustration of a solar tracking 

mechanism using a kirigami-based thin-film solar tracking structure. The Kapton® sheet is cut 

into various different dimensions to test the tracking performance: For R1 = R2 = 3, LC = 15 mm, 

LU = 5 mm, and WC = 5 mm. For R1 = R2 = 5, LC = 15 mm, LU = 3 mm, and WC = 3 mm (Fig 8.5 

(b)).  
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(a) 

(b) 

 

Fig. 8.5: (a) A kirigami tracking structure that, upon stretching, simultaneously changes the angle 

of the elements comprising the sheet. By incorporating thin film solar cells into this structure, it 

may be used as a low-profile alternative to conventional single-axis solar tracking mechanisms. (b) 

Schematics of four kirigami structures, where R1 = R2 = 3, 5, 10, and 20, along with their 

corresponding units cells. Figure courtesy of Aaron Lamoureux 

 

Figure 8.6(a) shows photographs of thin-film GaAs photovoltaic cells comprised of 

kirigami cut geometry, where R1 = R2 = 3. The appropriate force is applied to strain each cell to 

track the simulated solar radiation. Then, the photovoltaic cells are measured by using light 

incident angle resolved measurement under the simulated AM1.5G light source (Oriel solar 

simulator, model 91191 with Xenon arc lamp and AM 1.5 global filter) calibrated by using Si 
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photodiode certified by NREL. The J-V characteristics were measured at each angle using a 

semiconductor parameter analyzer (SPA, Agilent 4155B), in increments of five degrees, from 

normal incidence (ϕ = 0°) to ϕ = 90°. The short circuit current density, JSC, was determined at each 

angle, and subsequently normalized to JSC at ϕ = 0°. Figure 8.6(b) shows the normalized short 

circuit current density as a function of light incident angles for two different samples with cut 

geometry of R1 = R2 = 3 and R1 = R2 = 5 (closed symbols) with the simulated values for various of 

R1 = R2 (open symbols, solid lines). The larger R1 and R2 result in an enhanced solar tracking 

performance as expected due to the suppression of transverse strain at equivalent axial strain. The 

inset of Fig. 8.6(b) shows a schematic of measurement set-up. 

Furthermore, the reliability test of a kirigami-processed system performed by repeating the 

straining/un-straining process over 350 cycles shows no systematic performance degradations 

before and after the test. Finally, the daily energy harvesting of thin-film GaAs solar cells with and 

without a kirigami-based tracking system are compared in Fig. 8.6(c). The zenith and air mass of 

the solar radiation is assumed to be at the equator during Equinox for the energy harvesting 

simulations for simplified comparison. As expected, the kirigami structures with larger R1 and R2 

provide more close tracking performance to the conventional perfect single-axis tracking systems. 

The inset of Fig. 8.6(c) shows values for the integration of each curve in Fig. 8.6(c). The enhanced  

output energy density from thin-film GaAs solar cells (~1.78 times) indicates the effectiveness of 

the kirigami-based solar tracking systems. 
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Fig. 8.6: (a) Photographs of integrated kirigami solar cells, comprised of linear cut epitaxial lift-

off GaAs solar cells, mounted by cold weld bonding on the plastic carrier substrate. Here, LC = 15 

mm, LU = 5 mm, and WC = 5 mm (R1 = R2 = 3). (b) Normalized solar cell short circuit current 

density JSC(ϕ) / JSC(ϕ=0) for two samples, where R1 = R2 = 3 and R1 = R2 = 5 (closed symbols). 

Also shown are the simulated data for coupling efficiency, ηC, (solid lines, open symbols). The 

agreement between experimental and simulated results suggests that ηC is a direct measure of 

optical coupling, and that performance may be optimized by increasing R1 and R2. (c) Output 

electrical power density (per unit area of semiconductor) vs. time of day for several kirigami cut 

structures, stationary panel, and single-axis tracking systems. Integration of the curves yields the 

energy density per unit area of semiconductor, where kirigami-enabled tracking systems are 

capable of near single-axis performance (inset). Figure courtesy of Aaron Lamoureux 
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We also demonstrate the solar tracking/concentrating integrated system based on an 

origami process. Figure 8.7(a) and (b) shows a schematic illustration of the origami process to 

form parabolic solar concentrators and trackers. Polyethylene terephthalate (PET) is employed as 

a concentrator and tracker platform for the origami process. The planar figure of hexagonal 

parabolic concentrators are designed using Solidworks software, first. Then, the 125 �m thick PET 

substrate is cut and folded along the guidelines on it. The length of each bottom hexagonal side is 

2 mm, and the opening area of concentrator is 9 times larger than the solar cell area. To form the 

reflector on top of the concentrator, a ~100 nm thick silver coating is applied using e-beam 

evaporation which is thick enough to limit the transmission through the thin-film metal layer to 

approximately 0.05 %. Figure 8.7(c) shows a schematic illustration of the solar tracking operation 

using concentrator/tracker assemblies. Flexible arch bridges which support the solar cells enable 

the rotation of solar cell/concentrator assembles to track the solar radiation by pushing the structure 

with a laterally moving stage. Figure 8.7(d) shows an image of an origami-processed 

concentrator/tracker assembles array. 
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(a)                                                                     (b) 

 

      (c) 

                                   

      (d)  

                              

Fig. 8.7: Origami integrated PV system (a) Schematic illustration of origami process for 

concentrator fabrication: The dashed lines indicate the folding guide lines. (b) Schematic 

illustration of origami process for origami solar trackers: The patterned PET substrate is squeezed 

up and shaped into an arc structure. The red area shows the position of the solar cell. (c) The cross-

section view of the origami PV system with and without the rotation of collectors. The bottom 

origami structure is the principal part to perform tracking of the concentrators. The net force 

applied on the bottom origami structure determines the rotation angle of the solar collectors. The 

figure shows that the net force on the bottom origami structure is toward the left and, thus, the 

solar concentrator is tilted toward right. (d) The schematic diagram of the origami integrated PV 

system. Figure courtesy of Chih-Wei Chien. 
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 Figure 8.8(a) shows the current-voltage characteristics of a GaAs solar cell with and 

without the origami concentrator under normal angle illumination. The GaAs solar cell without 

concentrator shows a short-circuit current density (Jsc) of 23.07 mA/cm2, open circuit voltage (Voc ) 

of 0.91 V, and fill factor of 73.3% under the simulated AM 15.G illumination at 1 sun intensity. 

The identical solar cells integrated with an origami-processed parabolic concentrator shows a 6.09 

times higher Jsc compared with the reference case without concentrator. As a result, the power 

generation from the GaAs solar cells shows 6.14 times improvement compared with the same cell 

without concentrators due to increased Jsc as well as Voc.  

 Figure 8.8(b) shows a characteristic of an GaAs solar cell with and without origami 

tracker/concentrators assemblies under various light incident angles. As expected, GaAs solar cells 

with an origami-processed single-axis solar tracking system provides enhanced energy harvesting 

under the off-angle light illumination. The effect of an origami tracking system is significant when 

combined with a concentration system. Parabolic concentrators generally provide very narrow 

acceptance angles. Therefore, the off-angle performance of a solar cell with a parabolic 

concentrator is relatively poor compared with the normal light incident angle case. However, the 

concentrator combined with a single-axis tracking system enabled by the origami process provides 

a significant improvement in terms of sensitivity to the light incident angle, which indicates a 

feasibility of the origami process for a solar concentrating/tracking system. Eventually, the 

integrated origami PV system provides potential to reduce the solar module production cost due 

to its low process cost.  

 

  



202 

 

(a)                                                                               (b) 

-1.0 -0.5 0.0 0.5 1.0

-150

-100

-50

0

50

100

 

 

C
u
rr

e
n
t 
d
e
n
s
it
y
 (

m
A

/c
m

2
)

Voltage (V)

 under one sun

 w/ concentrator

 

Fig. 8.8: Energy harvesting and GaAs solar cell characteristics. (a) I-V characteristics of GaAs 

solar cell with and without the Ag-coated origami collector. (b) Comparison of energy harvesting 

ratio with and without the trackers and collectors. Figure courtesy of Chih-Wei Chien. 

 

8.3. Conclusion 

In summary, we have demonstrated the fabrication of thin-film GaAs p/n junction solar 

cells on flexible plastic substrates with an efficiency of approximately 20% by combining ELO 

and cold welding. Moreover, patterned, ELO-processed GaAs thin-film solar cells and 

interconnections functioned as a UHF antenna and RF choke at the design frequency. The 

incorporation of ELO-processed GaAs solar cells with an UHF antenna presents an opportunity 

for a thin, flexible and lightweight power supply that also works as a radio communication antenna. 

Furthermore, we have demonstrated the solar tracking and concentrating structure via origami and 

kirigami processes to maximize energy harvesting of thin-film GaAs solar cells. The simple cut 

and folded geometry enables a low profile and lightweight solar tracking and concentrating system 

which leads to a significant cost reduction of balance of system. The combination of the previously 
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described non-destructive wafer recycling and versatility of ELO-processed GaAs thin-film solar 

cells provides the potential for cost effective, solar-to-electrical energy conversion with increased 

compactness of system by adding extra functionality. 
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Chapter IX 

Conclusions and Future Work 

 

9.1 Conclusions 

Thin-film optoelectronics attract considerable attention due to their unique features, such 

as light weight, flexibility and superior performance over substrate-based rigid and bulk devices. 

However, their deployment for commercial applications is still in its infancy due to immature 

fabrication process development and high production cost. In this thesis, we proposed universal 

and advanced fabrication methods to produce lightweight and flexible thin-film compound 

semiconductor optoelectronic devices including photovoltaic cells, photodetectors, LEDs, and 

MESFETs from both GaAs and InP substrates using non-destructive epitaxial lift-off (ND-ELO) 

process. Furthermore, substrate recycling for various optoelectronic devices using epitaxial 

protection layers is demonstrated without any systematic performance degradations. The multiple 

substrate recycling provides a potential for optoelectronic device production cost reduction by 

eliminating the cost of expensive wafers. The low cost and high performance thin-film based 

optoelectronics provide an opportunity to open a completely new domain of device applications 

by escaping from its planar and rigid geometry to a conformal one. In this chapter, we are 

proposing two promising applications by taking advantage of the unique features of thin-film 

photodiode and photovoltaic cells on a plastic substrate. 
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9.2 Conformal and multispectral photodetector array 

 Vision is one of the most crucial senses for humans when evaluating a scene. Current 

cameras use a flat focal plane arrays that require complex multi-element optics that flatten the 

Petzval field curvature of a simple lens. This adds weight and complexity, while limiting the field 

of view and f/number of the optics.  By curving the focal plan array to match the field of curvature 

of a lens, analogous to the way a human eye is shaped, the imaging system can be made much 

lighter, smaller, and with minimal optical aberrations. In Chapters 5 and 6, we have demonstrated 

the fabrication and characterization of high performance thin-film photodiodes and field effect 

transistors. The thin-film based photodetector array on a conformal substrate has the potential to 

provide small, ultra-lightweight camera systems that have wide fields of view, function in very 

light-limited environments, and can operate across multiple spectral bands. For future work, we 

propose a multispectral hemispherical focal plane array (HFPA) imaging system with extremely 

low optical aberration, operating at wavelengths from the visible to the near infrared (i.e. 400 nm 

– 1700 nm) in both extremely low light levels and infrared rich environments.  

 Previously, Xu et al. demonstrated an organic photodetector array on a conformal substrate1; 

however, it lacked the passive or active pixel sensor transistor backplane and other features needed 

to realize a functioning, low-cost, high sensitivity, high dynamic range multispectral imaging 

system. The inorganic transistor backplane, along with extremely low dark current integrated 

inorganic and organic detectors ensures that the performance (dynamic range, field of view, 

f/number, light weight, video acquisition rates, spectral bandwidth) of the camera will surpass all 

known imaging systems available today. Multispectral HFPA imaging systems will enable visible 

and short wavelength infrared (SWIR) detection. The combination of organic and inorganic 

(InGaAs) detectors spans the wavelengths from λ=400 nm to λ=1650 nm, along with an InP-based 
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transistor active pixel sensor array to maximize sensitivity. High performance photodetectors and 

associated circuitry can be grown by molecular beam epitaxy and can be transferred to transparent 

hemispherical domes as in Fig. 9.1 using cold welding to metal pads pre-deposited on the 

substrates. Integrating organic detectors to extend the spectral bandwidth of the pixels is also not 

anticipated to lead to higher leakage or other performance degradation of the inorganic components 

since the deposition processes are completely non-destructive and occur near room temperature.  

Hence, leakage current introduced in heterogeneous integration schemes, where lattice mismatch 

and high temperature processing are common, are not a factor in this integration scheme. 

 

(a)                                           (b) 

  

Fig. 9.1: The hemispherical focal plane array (HFPA) imaging systems (a) conceptual diagram of 

a HFPA. (b) an example 20x20 HFPA. 

 

 Mimicking the form factor of the human eye, imagers with spherical, or near-spherical 

focal planes greatly simplify the optics needed to create a high definition image. This approach, 

shown in Fig. 9.1, results in a low f/number (~1) for very low light level imaging, an exceptionally 

large field of view without need for optical correction, as well as lightweight, and inexpensive 
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optics. The achievement of such an imaging system remains a challenge. Demonstration of 

multispectral imaging systems that are capable of very low light level and thermal imaging, while 

being only 0.5-1 cm in radius and a few grams in weight, will allow for capturing thermal and 

other multispectral images. 

Typical cameras have a field-of-view of 50o ×  40o. The proposed camera with a 

hemispherical focal plane array will have a field-of-view of 140o × 140o providing near complete 

vision in the direction forward of the FPA.  As opposed to merely imaging, the backplane (retina) 

electronics could be designed to provide processing that would mimic retinal processing in the 

human eye.  This would, among other advantages, enable noise suppression via averaging over 

receptive fields, optical flow sensing, light level adaptation that is variable across the retina, etc. 

A notable advantage of this curved imaging architecture is its rapid, high resolution, exceptional 

field-of-view, and night-vision data acquisition capability that make the platform highly capable 

for countless applications. 

 

9.3 Thin-film GaAs solar cell technologies 

9.3.1 50 times wafer recycling 

Given the prohibitive cost of GaAs substrates, the parent wafers must be recycled at least 

50X without the use of chemo-mechanical polishing (CMP) to make thin-film GaAs solar cells 

economically viable. In a recent NREL cost assessment of GaAs technology2, the largest cost 

impact comes from wafer handling due to CMP. However, past demonstrations of ELO have all 

required CMP to remove defects following each growth iteration, introducing wafer damage and 

drastically limiting the number of cycles possible.  By using the process of ND-ELO3, a potentially 
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unlimited number of wafer reuses is possible, therefore transforming the wafer expense from a 

costly expendable material into a capital outlay.  

However, continual regrowth on the same substrate can result in the accumulation of 

defects from previous growth cycles4.  To achieve >50X wafer reuse, variants to the ND-ELO 

process are required to avoid this problem. Hence, the introduction of a superlattice (SL) within 

the protection or growth buffer layers provides a high quality regrowth interface on the parent 

wafer.  Here, a 5 to 50 period Al0.3Ga0.7As/GaAs SL (each individual layer from 2 to 300 nm thick) 

followed by InGaP (Fig. 9.2) can be combined for wafer protection. Both the buffer and protection 

layers can be replaced by an Al0.3Ga0.7As/GaAs SL.  The Al composition can be varied up to 100% 

for the upper protection layer and up to 40% for the growth buffer.  This scheme will allow for the 

continual restoration of the original wafer surface after many repetitive ND-ELO cycles required 

since the process for removing SLs is identical to that used for removal of GaAs. 

 

 

Fig. 9.2: Modified protection layer scheme where the top GaAs layer is replaced by a 5 period 

AlGaAs/GaAs superlattice (SL) that can bend defect propagation toward the wafer edges.  AlAs 

is the sacrificial layer removed during ELO. The active solar cell epitaxial layers are grown on the 

SL protection layer surface.  
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The critical stress of dislocation threading in AlGaAs is larger than that of GaAs5, and 

hence the SL results in bending dislocations and other defects toward the wafer edges, removing 

them along with the SL during the protection layer etch-off process6,7.  On each growth cycle, the 

lower GaAs buffer (or SL buffer) thickness will increase. Hence, after approximately 20 growths, 

these layers will have a total thickness of ~10 μm. CMP can then be used to remove the 

accumulated GaAs or SL buffer layers together with any residual roughness and accumulated 

defects without causing thickness loss to the parent wafer, while leaving an epi-ready surface for 

wafer reuse.  

9.3.2 Mini-concentrator arrays with exceeding 5× concentration 

To decrease the cost of solar cells an additional 5×-10×, the devices can be attached to 

parabolic or compound parabolic mini-concentrators using the automated process flow described 

in Fig. 9.3.  The mesas patterned prior to ND-ELO process can be used such that parallel trenches 

are etched into the epitaxial layers across the wafer surface down to the AlAs sacrificial layer to 

form narrow, raised mesas.  Next, an elastomeric stamp (e.g. PDMS) is metallized and attached at 

very low pressure to the raised regions of the epitaxial layer and its metalized surface. In this 

geometry, the n and p layers of the cells in Fig. 9.2 are reversed.  Then, the upper (n-type) surface 

of the solar cells is patterned and metalized to allow for illumination and contact via that surface.  

Next, the elastomer is stretched to approximately double its length and wrapped around a cylinder.  

The cylinder is used to press against an array of previously fabricated, molded and metalized 

cylindrical paraboloids that are planarized with a transparent (e.g. polymer) medium. The 

appropriate spacing between strips is adjusted by translating the substrate beneath the roller.  

Alternatively, a flat elastomer handle can be deformed out of plane toward the concentrator array 

during the placement of each strip. To prevent the degradation of concentrator performance due to 
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moisture and dust, a super-hydrophobic coating will be applied directly on its surface. For the 

applications where there is severe weather or environmentally adverse conditions, the array can be 

fully encapsulated by plasma-deposited SiO2 with a super-hydrophobic coating.8 

 

 

Fig. 9.3: Example process flow for fabricating integrated GaAs solar cell/mini-concentrator arrays. 

1. Channels are patterned and etched to the sacrificial layer, defining the stripes. 2. Once patterned, 

the wafer is bonded epi-side to an elastomer and 3. Stretched over the surface of a 4. Roller. 5. The 

stripes are then cold-weld bonded to the mini-concentrator array (either the top or bottom side) to 

6. Form the concentrator/solar cell arrays. 

3 mm 
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3. Stretching the host elastomer 

5. Assemble to concentrator 
6. Encapsulated cells  

& concentrator 
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The concentrator can be fabricated via one of two processes.  In the first, a glass master is 

patterned to form the CPC shape (Fig. 9.4).  A polymer is then poured over the mold and cured by 

baking, forming the permanent CPC shape, after which it is removed from the mold.  An alternative 

is to use a suitably shaped hollow mold with vacuum channels at its base.1,9  A thin plastic sheet 

is placed over the mold opening, and vacuum is applied while the sheet is heated. The sheet is then 

pulled into the mold and cooled.  

 

 

Fig. 9.4: One of two methods for fabricating and integrating compound parabolic concentrators 

(CPC). 1. Prepare a mold, for example by etching the appropriate pattern in glass using 

photolithographic patterning. 2. Pour polymer into mold to form concentrator shape. 3. Remove 

concentrator (along with window apertures) and metalize interior surface with Ag. 4. Attach solar 

cell array to CPC by cold weld bonding forming contact fan out.  

3. Separate polymer from mold and metalize 

Aperture  

eliminates loss 

Solar cell strips on  

metal sheet or glass 

4. Assemble CPC with solar strips 

1. Prepare CPC mold 2. Pour polymer into mold 
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Au pad is pre-deposited onto the bottom surface plane, which is cut open to form a window 

aperture to eliminate light loss incident on the cell.  This pad forms a fan out contact, and also is 

the surface onto which the array of solar cells is cold-weld bonded.  The entire molded array should 

be extremely lightweight and have limited flexibility since it is comprised only of plastic and thin 

metal films.   

9.3.3 Increasing cell efficiency using back surface reflectors 

 One means to increase cell efficiency is to use a reflector on the back surface of the cell.  

Indeed, a significant advantage of thin ELO cells is that incident light not absorbed by the cell can 

be reflected for a second pass, whereas light that passes through cells supported by the original 

wafer is absorbed far from the p-n junction, and hence is lost.10  This becomes particularly 

important at the near infrared absorption (NIR) edge of the GaAs cell (at a wavelength of 0.88 

µm), where a photon that is absorbed at a shorter wavelength is re-emitted at the band edge, and 

is ultimately lost as radiation.  However, by placing a high reflectivity distributed Bragg reflector 

(DBR) on the bottom cell surface, the weakly absorbed NIR radiation will experience multiple 

bounces.11  This limits radiative cell losses, moving the cell efficiency much closer to its 

thermodynamic limit.  Indeed, photon recycling has led to record high efficiencies of 28.8% in 

GaAs solar cells.12 

 In Fig. 9.5, we show a comparison between a conventional substrate/thin-film solar cell 

and a bi-facial GaAs cell bonded to the metallized (and hence reflecting) secondary substrate, 

whereby a dielectric (TiO2/SiO2) DBR is grown on the back cell surface.  Minimizing the loss of 

photons from the cell is extremely important for photon recycling, which increases the open circuit 

voltage by cycling the internal emission and reabsorption process more than 50 times.  Bi-facial 

GaAs cells differ from that described above, in that both top and bottom ohmic contact layers are 
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patterned.  Hence, the absorption loss due to the bottom Ohmic contact layer is minimized, and 

reflection from the rear surface mirror is enhanced.  Back-side patterning requires the use of a 

handle. The process flow is as follows:  Following semiconductor growth, the DBR is grown on 

the epi surface, followed by patterning and deposition of the grid. Next, a temporary handle is 

attached, followed by ND-ELO.  It may be necessary to protect the mirror edges during etching 

using a polyimide coating.  A similar patterning and grid deposition process on the back surface 

then follows.  The handle is used to apply pressure to the bi-facial cell and the Au-coated substrate 

to form the cold-weld bond.  The substrate Au coating provides a high reflectance surface useful 

for reflecting shorter wavelength light is not absorbed in its first pass. 

 

 

Fig. 9.5: Comparison of absorption processes between conventional substrate/thin film solar cells 

and bi-facial GaAs solar cells with rear NIR reflecting distributed Bragg reflecting mirrors. High 

reflectance of the DBR and minimum absorption losses by the patterned back ohmic contact layer 

enhance the photon recycling.  
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 The sputtered DBR will consist of at least 10 periods to achieve >99% reflectivity in the 

NIR, designed for a pass band of 200 nm centered at 790 nm. The objective is to achieve an 

efficiency increase of approximately 2% in addition to the as-grown cell efficiency of 

approximately 23%.  We note that a simple bilayer dielectric antireflection coating tuned to shorter 

wavelengths (<600 nm) will be grown on the top surface of the solar cell.  

9.3.4 Monolithic integration of microinverters with thin-film solar cells 

A photovoltaic cells generate a direct current (DC) output; therefore, the extra solar 

inverters are generally accompanied to convert the DC output into a utility frequency alternating 

current (AC) which can be fed into a commercial electrical grid or off-grid electrical systems. The 

inverter is an essential component in a photovoltaic panel, at the same time, it takes a considerable 

portion of balance of system (BOS) cost. Therefore, the integration of inverter with photovoltaic 

cells provide a potential to reduce the cost of photovoltaic system. Here, we are proposing a 

monolithic integration of microinverter with a thin-film III-V solar cells via epitaxial lift-off (ELO) 

process and cold-welding. The integrated microinverter on each solar cell allows the parallel 

connection of individual cells in a modular way; therefore, it provides an enhanced power 

generation especially under the shaded condition compared with the photovoltaic system using 

single inverter. 

We have shown that ND-ELO can also be used to transfer GaAs field effect transistors to 

flexible substrates without degradation of their operating characteristics in Chap 5. Thin-film 

HEMT transistors can be integrated with a solar cell array and bonded to a Kapton foil to 

implement the H-bridge DC/AC inverter in Fig. 9.6.  By switching G1/G4, on/off while switching 

G2/G3 off/on, DC/AC inversion is achieved using an external transformer. The transistor epi-

layers are grown prior to the solar cell layers on the parent wafer. After bonding and ND-ELO, the 
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structure is inverted, leaving the transistor layers on top. The transistor mesa is then etched, and 

metal interconnects are deposited. Since transistor mesas are roughly 10-4 times smaller than the 

solar cells, the loss of active area is negligible.  

 

(a)             (b)                            

 

Fig.  9.6: (a) H-Inverter circuit plus solar cell array. (b)  Monolithic integration scheme of a GaAs 

HEMT transistor plus solar cell cold-weld bonded to a flexible substrate. 

 

The integrated microinverter on each solar cell allows the parallel connection of individual 

cells in a modular way; therefore, it provides an enhanced power generation especially under the 

shaded condition compared with the photovoltaic system using single inverter (Fig. 9.7 (a) and 

(b)). Furthermore, the microinverter embedded with power optimizer can provide a maximum 

power point tracking functionality by pinpointing individual cell’s ideal voltage and producing at 

its maximum power. 
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Fig. 9.7: Schematic illustration of solar power system (a) Large number of panels connected to a 

single inverter. (b) Each solar cell or module incorporates its own inverters (known as 

microinverter system). 

 

The innovations demonstrated and envisioned are poised to revolutionize the cost structure 

and acceptance of high efficiency solar cells. This combination of technologies promises to make 

GaAs cost competitive with the most aggressive solar technologies deployed to date, while 

delivering flexibility and the highest specific power (i.e. power/weight) performance of any other 

known solar cell technology.  



218 

 

CHAPTER IX 

Bibliography 

 

1. Xu, X., Davanco, M., Qi, X. & Forrest, S. R. Direct transfer patterning on three 

dimensionally deformed surfaces at micrometer resolutions and its application to 

hemispherical focal plane detector arrays. Org. Electron. 9, 1122–1127 (2008). 

2. Woodhouse, M. & Goodrich, A. a manufacturing cost analysis relevant to single and dual 

junction photovoltaic cells fabricated with III-Vs and III-Vs grown on Czochralski 

Silicon. NREL Rep. No. PR-6A20-60126 92 (2014). 

3. Lee, K., Zimmerman, J. D., Hughes, T. W. & Forrest, S. R. Non-Destructive Wafer 

Recycling for Low-Cost Thin-Film Flexible Optoelectronics. Adv. Funct. Mater. 24, 

4284–4291 (2014). 

4. Horng, R.-H. et al. Thin Film Solar Cells Fabricated Using Cross-Shaped Pattern Epilayer 

Lift-Off Technology for Substrate Recycling Applications. IEEE Trans. Electron Devices 

59, 666–672 (2012). 

5. Hayafuji, N. et al. Effectiveness of AlGaAs/GaAs superlattices in reducing dislocation 

density in GaAs on Si. J. Cryst. Growth 93, 494–498 (1988). 

6. Bedair, S. M. et al. Defect reduction in GaAs grown by molecular beam epitaxy using 

different superlattice structures. Appl. Phys. Lett. 49, 942 (1986). 

7. Petroff, P. M., Miller, R. C., Gossard, A. C. & Wiegmann, W. Impurity trapping, interface 

structure, and luminescence of GaAs quantum wells grown by molecular beam epitaxy. 

Appl. Phys. Lett. 44, 217 (1984). 

8. Nakajima, A., Hashimoto, K. & Watanabe, T. Recent Studies on Super-Hydrophobic 

Films. Monatshefte fuer Chemie/Chemical Mon. 132, 31–41 (2001). 

9. Pfeiffer, C., Grbic, A. & Forrest, S. R. Novel methods to analyze and fabricate electrically 

small antennas. in 2011 IEEE Int. Symp. Antennas Propag. 761–764 (IEEE, 2011). 

doi:10.1109/APS.2011.5996824 

10. Bauhuis, G. J., Mulder, P., Haverkamp, E. J., Huijben, J. C. C. M. & Schermer, J. J. 

26.1% thin-film GaAs solar cell using epitaxial lift-off. Sol. Energy Mater. Sol. Cells 93, 

1488–1491 (2009). 



219 

 

11. Miller, O. D., Yablonovitch, E. & Kurtz, S. R. Strong Internal and External Luminescence 

as Solar Cells Approach the Shockley–Queisser Limit. IEEE J. Photovoltaics 2, 303–311 

(2012). 

12. Green, M. A., Emery, K., Hishikawa, Y., Warta, W. & Dunlop, E. D. Solar cell efficiency 

tables (version 44). Prog. Photovoltaics Res. Appl. 22, 701–710 (2014).  

 


	new Title
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9

