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ABSTRACT

Deterministic Methods for Multi-Control Fuel Loading Optimization

by

Fariz B. Abdul Rahman

Chair: John C. Lee

We have developed a multi-control fuel loading optimization code for pressurized

water reactors based on deterministic methods. The objective is to flatten the fuel

burnup profile, which maximizes overall energy production. The optimal control prob-

lem is formulated using the method of Lagrange multipliers and the direct adjoining

approach for treatment of the inequality power peaking constraint. The optimality

conditions are derived for a multi-dimensional multi-group optimal control problem

via calculus of variations. Due to the Hamiltonian having a linear control, our opti-

mal control problem is solved using the gradient method to minimize the Hamiltonian

and a Newton step formulation to obtain the optimal control. We are able to satisfy

the power peaking constraint during depletion with the control at beginning of cycle

(BOC) by building the proper burnup path forward in time and utilizing the adjoint

burnup to propagate the information back to the BOC. Our test results show that

we are able to achieve our objective and satisfy the power peaking constraint during

depletion using either the fissile enrichment or burnable poison as the control. Our

fuel loading designs show an increase of 7.8 equivalent full power days (EFPDs) in

cycle length compared with 517.4 EFPDs for the AP600 first cycle.

ix



CHAPTER I

Introduction

1.1 Fuel Management in Light Water Reactors (LWRs)

Fuel management is a branch of nuclear engineering that seeks fuel loading de-

signs for producing full power within adequate safety margins [1]. Various decisions

on different levels are made by engineers in designing a fuel loading. In general, fuel

management involves making excore and incore decisions. Described in very simple

terms, excore fuel management involves decisions on what fuel assemblies are fabri-

cated and incore fuel management decides where to put those fuel assemblies in the

core.

The focus of our study will be in the area of incore fuel management, where we

seek to design fuel assembly arrangements in the core that promote a flat fuel burnup

profile at the end of cycle (EOC). This design provides the maximum cycle length

subject to the constraint on the maximum discharge burnup. The general scheme for

designing fuel assemblies in the core is usually divided into two stages: (1) placement

of fresh and shuffled/burnt fuel, and (2) placement of burnable poison (BP).

Sufficient fuel needs to be added to the core to meet the cycle length requirements

for operation, which is dictated by excore decisions to meet the electric grid power

demand. The role of the BP is to control the excess reactivity at the beginning

of cycle (BOC) and ensure a sufficiently negative moderator temperature coefficient
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of reactivity. The placement of BPs in our study will only be considered at BOC,

which is the case for pressurized water reactor (PWR) operations. Due to the large

absorption cross sections associated with BPs, large power fluctuations could occur

during the reactor operation causing power imbalance. The higher fluence in the

regions of peak power will lead to an increased BP depletion. This will result in a

power peak to that region later in the cycle until sufficient fuel is depleted. The power

distribution will then be shifted to other regions in the core, continuing the cycle of

power imbalance or fluctuations throughout the core.

Due to major concerns over safety and reliability, a strict constraint is placed on

the maximum power density, which is expressed in term of the power peaking fac-

tor during the reactor operation. As a result, the goal of the engineer is to shape

the power distributions throughout the core cycle and stay within the safety limits,

by properly loading fresh and burnt fuel together with BPs at the BOC in an opti-

mal manner. This represents the main objective of fuel loading optimization in our

study. Other constraints that need to be considered include discharge fuel burnup

limits, fuel enrichment and BP maximum limits, and the reactor power limit. Some

of these constraints represent active constraints to the optimization problem, which

means the objective function cannot be further improved without violating the ac-

tive constraints. Existence of active constraints further complicates the optimization

problem, even with the assistance of automated optimization capability.

1.2 The Fuel Loading Optimization Problem

If we consider the fuel loading optimization as a combinatorial problem where a

number of x fuel assemblies are permuted in n locations in the core, the size of the

decision space that needs to be considered becomes more apparent. For an inventory

of 24 possible fuel assemblies (combinations of fissile enrichment and BP) that can

be selected and placed in a reactor core with 145 fuel assembly locations, there would
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be 24145 possible permutations to consider. In practice, a flat power distribution is

desirable for maximizing fuel burnup within safety margins. Thus we can employ a

1/8th symmetry fuel design, which significantly reduces the number of n fuel assembly

locations in the core, bringing down the possible permutations to 248, or 110 billion

fuel loading designs. This decision space is only indicative of a possible optimization

problem and can grow exponentially if we account for more than 24 fuel assembly

variations, which happens very easily when we consider various possible fuel enrich-

ment, BP quantity and boron content in BPs. Adding another dimensionality to the

problem from 2-D to 3-D will also exponentially increase the decision space.

The fuel loading optimization problem is also a highly nonlinear problem, with

high-dimensionality, a large number of feasible solutions, and disconnected feasible

regions in the search space [2]. Function evaluations are computationally expensive

due to partial differential equations appearing over time and three dimensional space.

System variables range from time-dependent variables to a combination of space-

and time-dependent variables, and it is possible that system variables are a vector

themselves, with each element a vector of time and/or space (like group fluxes). In

addition, certain characteristics of a nuclear reactor operations complicate the opti-

mization problem, such as control variables only appearing at the start of operations,

as in the operation of PWRs. This challenge is unique to the nuclear optimization

problem that is not found in other engineering field. Other attributes of the opti-

mization problem are handling of mixed integer and continuous decision variables,

multiobjective and lack of derivative information concerning objective functions and

constraints in regard to decision variables [3].

1.3 LWR Optimization Methodologies

In practice, nuclear engineers still rely heavily on knowledge-based systems to

select an optimal fuel loading. Based on a library of fuel loading performances that
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have been used or tested in the past, the most optimal loading is selected which best

satisfies the system constraint and requirement at that time. The obvious advantage

of doing this is the predictability of the fuel loading performance, which can be applied

to similar situations that it had been applied in the past. However this leaves a lot of

room to explore for a better fuel loading, which is the goal of developing automated

optimization schemes.

In the last four decades, nuclear engineers have tackled the fuel loading optimiza-

tion problem with various strategies, employing mathematical models and computers

to assist in traversing the vast decision space in search of optimal solutions. Over the

years, automated optimization scheme has helped engineers find better fuel loading

patterns and explore new loading designs, especially with the rapid improvement of

computing power. The methodologies that have been applied can be divided into

two main categories, one employing deterministic methods and the other employing

stochastic methods. Both these methods are in use today and each have its own

advantages and disadvantages.

A deterministic method obtain results from the analytical solution of a series of

conditions. It can determine the input and output model of a system conclusively.

Thus results can be analyzed intuitively to understand the physical behavior of the

system and the optimization scheme. Simulation run times are relatively short, which

makes it possible to undertake large optimization problems with high dimensionality

and numerous variables. Deterministic methods tend to rely heavily on the initial

guess and their solutions are highly sensitive to system perturbations, making con-

vergence to an optimal solution challenging. A stochastic method employs a large

number of simulations to randomly establish the cause and effect relationship of a

system. Unlike deterministic methods, it is possible that a unique input lead to a

different output, which makes the stochastic method better suited to quantify un-

certainty due to varying inputs. In general, the stochastic method has very good
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convergence fidelity and can be applied easily to most optimization problems with-

out much mathematical nuances. The main drawback of this method is the large

amount of computation resource that is consumed and its heavier reliance on heuris-

tics to search for the optimal solution. With the continued growth of computing

speeds reaching the realm of petaflops (1015 flops) now in supercomputing, stochastic

methods have become the preferred method with numerous methods developed such

as simulated annealing [2, 4–6], genetic algorithm [7–9], tabu search [10] and neural

networks [11–14]. However the decision space still seems vast, even with the use of

supercomputers and we expect it to grow larger as computational speed increases

due to increasing expectations of better modelling of optimization problems, better

capability of handling more variables and perhaps wanting more constraints on the

optimal control problem. These are a few reasons why deterministic methods are still

very relevant today.

Deterministic methods have been devised decades back since Goertzel [15] in 1956

determined analytically that it was necessary to have a flat thermal flux in the core

region to obtain a minimum critical mass in a thermal reactor with a finite reflec-

tor. Goertzel used multi-group diffusion theory to derive an integral equation for the

spatial variation of mass distribution of fuel material which would lead to such a flat

flux. Many other papers that followed treated the optimization of fuel and burnable

loading in the reactor as an optimal control problem and benefited from Pontrya-

gin’s Maximum Principle developed in 1962 for optimal control theory. In 1970,

Axford [16] formulated a BOC optimal control problem with Pontragin’s Maximum

Principle to determine the fuel loading in a three-region slab reactor with maximum

thermal power. He formulated the neccessary conditions of optimality with calculus

of variation and applied a power peaking inequality constraint in the form of two

equality constraints. He was able to obtain analytical results for the problem using

two-group neutron diffusion equations. Goldschmidt and Quenon [17] also devised
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a similar optimal control problem by finding the fuel loading with bounded controls

for a two-region slab reactor model. They applied a phase-space method to find the

solution to the one-group diffusion equation. A more realistic reactor model for an

EOC optimal control problem was presented by Wade and Terney [18]. Using Pon-

tryagin’s Maximum Principle approach and applying the power peaking inequality

constraint as a penalty function, they developed an iterative approach to consistently

improve the performance of the objective function. They used a one-group spatially

nodalized reactor model with the nodal material bucklings acting as the control in

the problem. The objective of their optimization was to minimize the time integral

of squared deviations of system states from a target distribution.

Another popular method of optimizing the reactor operation is based on minimiz-

ing the power peaking by maintaining a consistent set of EOC power distribution and

the distribution of the infinite multiplication factor k∞ with BP throughout the life-

time proposed by Haling [19] and Crowther [20]. Although the overall core reactivity

is maintained with the effective multiplication factor keff=1, there is still considerable

local changes in k∞ due to loss of reactivity due to fuel burnup. This causes changes

in the power shape and the power peaking factor, which can be optimized by adhering

to a consistent power shape through active control. This technique is more applica-

ble in boiling water reactors (BWRs) where control rods are actively being moved

throughout the lifetime of the core. In PWR applications, Chao et al. [21] further

developed the backward diffusion theory from Crowther’s study for a more general

loading pattern optimization. Crowther had solved the two-group, one-dimensional

diffusion equation backwards to obtain the optimal axial BP for BWR based on the

desired power shape. Chao extended his method by using the backward diffusion

theory to obtain the desired reactivity distributions and perform a loading pattern

search by matching the available fuel assemblies to the desired reactivity.

Several more recent papers have developed deterministic methods that apply Pon-
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tryagin’s Maximum Principle to a PWR cycle length extension problem subject to a

power peaking inequality constraint. Drumm and Lee [22] used the penalty method

[23] to account for the power peaking inequality constraint on a one-group one-

dimensional diffusion equation problem. They found the optimal control for BP using

the necessary optimality conditions together with the method of conjugate gradients

[24] to minimize the Hamiltonian in the problem. Their study proved successful in

extending the cycle length but ineffective in satisfying the power peaking inequality

constraint throughout the reactor lifetime with the control determined at BOC.

In an attempt to apply the inequality constraint more strictly on the optimal

control problem, Wu [25] and Sorenson [26] used the method of directly adjoining the

inequality constraint to the Hamiltonian developed by Jacobson [27]. This method

creates constrained and unconstrained regions in the core to determine the control

that will simultaneously optimize the Hamiltonian and satisfy the inequality power

peaking constraint. They used Pontryagin’s Maximum Principle approach to arrive

at the necessary optimality conditions and applied the conjugate gradient method as

an iterative solution to search for the optimal control. They, however, faced difficulty

handling the Lagrange multipliers resulting from the direct adjoining method and

were not able to satisfy the power peaking constraint during depletion with a control

at BOC. So they added other means of treating the power peaking constraint during

the depletion that involved some empirical data and heuristics. As a result, they

were able to control the power peaking constraint during depletion at the expense of

optimizing the objective function and restricting the decision space through empirical

and heuristic applications.

1.4 Statement of Objective and Thesis Organization

We have chosen a primary goal of our study to develop an improved methodology

of determining the control at BOC that satisfies the power peaking factor throughout
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the lifetime of the core without sacrificing the optimization of the objective function.

This remains a big challenge in fuel loading design, especially using deterministic

methods. We are encouraged with the results obtained using the direct adjoining

method to incorporate the inequality power peaking constraint. The method guar-

antees the satisfaction of the inequality constraint for a steady-state problem and

integrates well with the optimization problem. So one of our objectives in the study

is to further develop the method of direct adjoining for a depletion problem where the

control exists at BOC. Implied in this goal is to further develop our understanding

of the jump conditions and the selection of constrained and unconstrained regions as

a result of the direct adjoining method. These issues are non-trivial and have gained

very little attention in past investigations for an optimal control problem. So we aim

to provide further insights and propose new ways to address these issues.

Another main objective of this study is to organically find optimal fuel loading

designs based on the necessary optimality conditions that will be derived using the

method of Lagrange multipliers and calculus of variations. This is a similar approach

to using Pontryagin’s Maximum Principle in optimal control problems. We avoid

using any heuristics or other methodologies that may interfere with the solution of

the necessary optimality conditions, which allows us to achieve the most optimal

solution that the optimization scheme is capable of producing. We will also employ

general fuel loading designs for our initial loading selection to avoid any bias due

to or from a desirable known fuel loading design. The final goal of this study is to

present a multi-control fuel loading design based on the solution of our optimization

methodology that is comparable in performance to published results of the AP600 first

cycle loading [28]. For the purpose of benchmarking and practical use of our solution,

our optimal multi-control fuel loading design is matched to the closest assembly types

similarly used in the AP600, and simulated in the Westinghouse APA code package

[29].
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It is worth mentioning here that a large amount of effort was invested in our at-

tempt to develop a second-order optimization method by applying Newton’s method

on the set of first-order optimality conditions. The aim was to use the second-order

equations to iteratively approach the optimal solutions and provide a means of obtain-

ing the control from the second-order control equation. Unfortunately the equations

did not converge correctly due to the fact that it is necessary to take a control varia-

tion on the microscopic cross sections to obtain the control variable. Attempts to use

the second-order control equation differently to solve other state or adjoint variables

were also futile. So we had to abandon this approach and use the control optimality

condition as a gradient in our current approach. We were, however, able to make

use of one of the second order equations to enable us to simultaneously optimize the

control and the eigenvalue of the diffusion equation. This has significantly improved

the convergence of the control length iterations within the gradient method when

finding the optimal controls.

In Chapter 2 we formulate our optimal control problem and derive the necessary

optimality conditions using the method of Lagrange multipliers and calculus of vari-

ation for a multi-dimensional space-time dependent problem subject to an inequality

constraint that is applied with the direct adjoining method. We also formulate our

approach for finding the optimal control solutions and the sequence of solving the set

of optimality conditions. In Chapter 3 we provide our numerical implementation of

the formulations derived in Chapter 2 in our optimization code DMCO, and perform

verifications on our numerical methods. We will also provide further discussion on

the implementation of our iterative scheme. In Chapter 4 we present our results for

four test cases to highlight the capabilities of our optimization code and produce a

multi-control fuel loading design based on our original work. Finally in Chapter 5 we

summarize our work and provide recommendations for future work.
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CHAPTER II

Formulation of Optimal Control Problem in PWRs

The optimal control problem in PWRs is made up of four main constraints that

represent the neutron transport equation, power normalization equation, fuel bur-

nup equation, and the power peaking constraint. The neutron transport equation

is approximated by the neutron diffusion equation in our study, representing a set

of coupled partial differential equations in space and time. The group fluxes are

normalized in the problem with the power normalization equation, which is in the

form of an integral over space. The cross sections are dependent on burnup and the

controls selected in fuel assemblies, which are fissile U235 number densities and BP

number densities. The fuel burnup is calculated at the end of every time step with

the burnup equation to generate a new cross section set for the next time step. The

final constraint represents the maximum allowable power density of the fuel, which

limits the fuel temperature from exceeding the fuel melting temperature. The power

density for each fuel assembly is normalized to the core-averaged power density to

represent the power peaking factor, which must stay at all times and at all assembly

locations below the power peaking limit. In this chapter we formulate our optimal

control problem in an approach similar to Pontryagin’s Maximum Principle using

the method of Lagrange multipliers and calculus of variations with a direct adjoining

approach of the inequality constraint.
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Pontryagin’s Maximum Principle is used in optimal control theory to find the best

control for a dynamic system in the presence of equality constraints. It represents

a special case of the Euler-Lagrange equation from calculus of variation. For our

optimal control problem, we will extend Pontryagin’s Maximum Principle approach

to a problem where state variables are defined in both time and space in the presence

of inequality constraints in addition to equality constraints. We will re-derive our

optimality conditions using the general method of Lagrange multipliers and calculus

of variation, in a similar way one can take to derive the Euler-Lagrange equations in

Pontryagin’s Maximum Principle approach.

Equality Constraint Formulation: The method of Lagrange multipliers is a well-

known method for finding the local minimum or maximum (in general extremum) of

a function subject to equality constraints. It is used with calculus of variations to

produce a system of equations that represent the optimality condition of the prob-

lem. It is very useful for solving problems with complex formulations and multiple

constraints that does not render a closed form solution for the function being extrem-

ized. Through this approach it is possible to find the optimum solution without the

need to explicitly represent the conditions and use them to eliminate extra variables.

This is well-suited to handle our optimal control problem with equality constraints

appearing in the form of partial differential equations mixed with an integral form

of constraints. For the treatment of our inequality constraint, the Lagrange method

is compatible with a few methodologies which can either incorporate the inequality

constraint directly or indirectly into the problem.

Inequality Constraint Formulation: In the direct approach, the optimal trajectory

is viewed as being composed of constrained regions, where the inequality constraint

is active and unconstrained regions where the inequality constraint is inactive. In

general, the constrained regions could represent a point or finite volume in the core,

and the number and sequence of the constrained and unconstrained regions are pre-
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assumed [30]. The existence of constrained and unconstrained regions introduce dis-

continuities in the optimality conditions at the constrained boundaries. Bryson [31]

first applied the inequality constraint to Pontryagin’s formulation of the optimal con-

trol problem by recognizing that the inequality constraint or one of its derivatives

depend explicitly on the control variable. Later Jacobson [27] improved on Bryson’s

work by directly appending the inequality constraint to the optimal control problem

using a generalized Kuhn-Tucker (KT) theorem formulated by Leunberger [32]. Ja-

cobson showed that the optimal trajectory across the constrained boundaries where

discontinuities occur is better represented in a consistent manner.

In the indirect approach, the optimal trajectory is viewed as a single unconstrained

arc, which eliminates any discontinuities in the optimality conditions. The inequality

constraint is applied to the unconstrained problem by adding a penalty function or

barrier term to the problem. The popular methods using this approach include the

Interior Point Method and the Barrier Method. The general approach of both meth-

ods is to convert the constrained problem into a sequence of unconstrained problems

by adding a penalty term to the optimal control problem. The unconstrained problem

is then successively solved by varying values of a parameter multiplying the penalty

term so that the optimal trajectory stays within the feasible region of the problem.

The advantage of the indirect method over the direct method is that the con-

strained and unconstrained regions do not need to be predetermined and the vari-

ables do not suffer any discontinuities. However for the application to our optimal

control problem where the fuel assembly boundaries represent a fixed boundary loca-

tion, the direct method becomes more suitable as the constrained and unconstrained

regions can be defined within the boundaries of fuel assemblies. Furthermore, the

power peaking constraint is strictly applied in the direct adjoining method and any

sub-optimal results could potentially be used as a solution.

The direct adjoining method suggests that the inequality constraint is satisfied by
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the selection of the control variable in the constrained region. This is accomplished by

calculating the control in this region directly from the inequality constraint equation.

The control for the unconstrained region is determined from the control optimality

condition obtained via the calculus of variation, which serves the purpose of optimiz-

ing the problem. This dual process of selecting the control in the constrained and

unconstrained regions separately assures that we are able to satisfy the inequality

constraint together with the optimization of the problem simultaneously.

A Linear Control in Hamiltonian: A special class of our optimal control problem

in PWRs is that the control variable appears linearly in the Hamiltonian. This follows

from the selection of the possible controls representing either the macroscopic cross

sections or number densities of U235 or BP, which appears linearly in all the constraint

equations. The consequence of this is the first-order variation of the Hamiltonian

with respect to the control variable in the unconstrained region will result in the

control variable dropping out of the equation. We are left with the control optimality

condition without a control variable in it, which makes it infeasible to explicitly

determine the control variable from the equation. In the constrained region, the

problem is slightly different as only the control for BP is not present in the inequality

constraint. So we examine the strategy for finding the control in the unconstrained

and constrained region separately.

Control formulation in the unconstrained region: A significant amount of effort

was put into applying the control optimality condition differently to solve the sys-

tem of equations from the necessary optimality conditions. Attempts were made to

use the control equation to solve for other state variables or adjoint variables in-

stead of the control variable, which requires the use of other equations in the system

representation to solve for the other unknown variables. Unfortunately our study con-

cluded that the type of system of equations that make up our optimality condition

does not provide a meaningful solution when used in the unconventional way. The
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conventional method of solving the system of equations is to use the adjoint equa-

tion to solve for the adjoint variables, the constraint equations to solve for the state

variables and the control equation to solve for the control variable. To circumvent

the problem of the missing control variable in the control equation, there are two

known approaches that have been applied in the past. The control equation could be

used as a switching function to determine the bang-bang control that will minimize

the Hamiltonian. Alternatively, the control equation could be used as a gradient to

minimize the Hamiltonian.

The bang-bang control method is applicable to optimal control problems with a

linear control in the Hamiltonian. The control equation which is devoid of the control

variable is used as a switching function to determine the extreme value of the control.

If the switching function assumes a negative value, then the maximum allowable value

of the control is selected. Likewise if the switching function is positive, the minimum

control is selected.

To use the control equation as a gradient to find the control, we apply a necessary

condition of Pontryagin’s Maximum Principle which states that the Hamiltonian H

must be minimized over the set of all permissible control u such that:

H[x∗(t), u∗(t), λ∗(t), t] ≤ H[x∗(t), u, λ∗(t), t], (2.1)

where x∗(t), u∗(t), and λ∗(t) represent the optimal solution for the state variable,

control variable and the adjoint variable, respectively. Therefore, at the stationary

point of the state and adjoint variables, the optimal control will yield the minimum

value of the Hamiltonian compared to other control values. So we could use the

gradient dH/du to find the control that minimizes the Hamiltonian at the stationary

point of the state and adjoint variables.

Our study shows that application of the bang-bang method to determine the
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control is effective for an analytical problem. However, when applied to an iterative

numerical approach, the optimal control problem faces convergence issues. This can

be attributed to a large change in control from iteration to iteration due to the

selection method of bang-bang control that chooses either the upper or lower limit

of control. Therefore the approach of using the control equation as a gradient to

minimize the Hamiltonian is better suited for our numerical approach, which shows

better convergence.

Control formulation in the constrained region: It is possible to obtain the control

from the inequality constraint by taking the spatial variation of the inequality con-

straint until the control emerges [25, 26, 31]. Since the inequality constraint equation

which is active in space must vanish in the constrained region, it follows that the

spatial derivatives of the inequality constraint equation must also vanish. When this

method is applied to our optimal control problem where the diffusion equation con-

straint is an eigenvalue equation with second-order partial derivatives, the control

would emerge after taking two spatial derivatives of the inequality constraint. The

resulting condition for determining the control in the constrained region is equivalent

to the requirement of flat flux. This method is effective for finding the control if

the optimal solution of the eigenvalue of the problem is known. This is possible in

an analytical problem, but not effective in an iterative approach where the optimal

solution of the eigenvalue is unknown.

Therefore, we provide in our study a novel way of using Newton’s method to

provide a path to determine the control in the constrained region together with the

optimal eigenvalue solution of the diffusion equation simultaneously. The basic idea

involves taking a Newton step on the diffusion equation and the inequality constraint

equation, which provides two equations to solve for the optimal control and the op-

timal eigenvalue together. This will allow the eigenvalue to vary and enable our

optimization scheme to optimize the eigenvalue solution iteratively if it is selected as
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an objective to our optimal control problem. The reader is referred to Appendix A

for a quick overview of Newton’s method and how it is applied in our study.

In this chapter, the necessary optimality conditions for the optimal control prob-

lem in PWRs will be formulated with the method of Lagrange multipliers and the

direct method of adjoining the inequality constraint. We will build an iterative scheme

by using the control optimality condition as a gradient to find the control in the un-

constrained region and by applying Newton’s method to obtain the control in the

constrained region. We will begin with a general formulation for an arbitrary opti-

mization problem to present the basic ideas of our methodology, and then later apply

the formulation to our PWR optimal control problem for a steady-state or BOC

problem, followed by the full depletion problem.

2.1 Method of Lagrange Multipliers

An optimization problem typically consists of an objective function, equality and

inequality constraints, and boundary conditions. For our general notational purposes,

we define the objective function J as a function of the state variables x and control

variables u:

J(x, u) = f [x(r, t), u(r, t)]. (2.2)

Note that, in general, the vector variable x and scalar variable u are functions of the

spatial variable r and time t. For notational convenience, the spatial and temporal

variables will be suppressed here onwards except where necessary. Vector and matrix

representations will also be suppressed consistent with recent literature in control

theory. Instead we will mention explicitly when introducing a variable if it is a vector

or matrix. The equality constraints g and inequality constraints S are also defined

as functions of the state variables x and control variables u, subject to constraint c:
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g(x, u) = c, (2.3)

S(x, u) ≤ 0. (2.4)

To incorporate the objective function together with the equality and inequality

constraint in an optimization problem, the augmented objective function H is for-

mulated by appending the constraint equations with Lagrange multipliers λ and η to

the objective function:

H(x, u, λ, η) = J(x, u) + λTh(x, u) + ηTS, (2.5)

with h(x, u) ≡ g(x, u)− c.

Since the Lagrange multipliers could be vectors, we have added the transpose nota-

tions. Thus, the objective of our optimization task is to minimize the Hamiltonian

H.

Finding the extrema to Eq. (2.5) via calculus of variation will yield the optimal

solution that minimizes the objective function subject to the constraints. This means

that if J(x0, u0) is a minimum of J(x, u) for the original constrained problem, then

there exists λ0 and η0 such that (x0,u0,λ0,η0) is a stationary point, where the partial

derivatives of H are zero. However, not all stationary points yield a solution to the

original problem. Hence the method of Lagrange multipliers yields the necessary

condition for optimality to the constrained problem.

When constructing the augmented objective function in Eq. (2.5), we applied

the direct adjoining method and appended the inequality constraint directly to the

equation with Lagrange multipliers, in a similar fashion as the equality constraints.

Because the nature of equality and inequality constraints are different, it is only

17



possible to do this with an additional constraint placed on the Lagrange multiplier of

the inequality constraint:

η(r) = 0 when S < 0

≥ 0 when S = 0 (2.6)

This condition is known as the Karush-Kuhn-Tucker (KKT) condition where η is

some non-negative scalar. By the conditions in Eq. (2.6), we are assured that the

product ηTS will not add unwanted contributions to the augmented objective function

in Eq. (2.5), thereby satisfying the concept of the augmented functional. Jacobson

[27] proved this condition by use of a generalized Kuhn-Tucker (KT) theorem.

2.2 Optimality Conditions using Calculus of Variations

Next to solve the optimal control problem, we use calculus of variations to arrive

at the necessary optimality conditions by taking the partial derivative of Eq. (2.5)

with respect to all the variables and setting them to zero. This is akin to finding the

extrema of a function by finding the gradient of the function and setting it to zero.

The solution would yield either the maximum or minimum point of that function.

The difference here is that we are extremizing functionals in Eq. (2.5), which are

mappings from a set of functions to real numbers, rather than just functions. The

necessary optimality conditions are written in the system of equations below:

∂H

∂x
=
∂J

∂x
+ λT

∂h

∂x
+ ηT

∂S

∂x
= 0 (2.7a)

∂H

∂u
=
∂J

∂u
+ λT

∂h

∂u
+ ηT

∂S

∂x
= 0 (2.7b)

∂H

∂λ
= h = 0 (2.7c)

∂H

∂η
= S = 0. (2.7d)
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Equation (2.7a) is the adjoint equation and is used to find the values of the Lagrange

multipliers. This is why the Lagrange multipliers are sometimes referred to as the

adjoint variables. It suffices to say here that some of the Lagrange multipliers suffer a

discontinuity due to the non-negative nature of the Lagrange multiplier η as defined

in Eq. (2.6). This jump term will be derived explicitly in Section 2.4.2 when we

formulate our actual optimal control problem. Equation (2.7b) is the control opti-

mality condition that yields the value of the control variable. Equations (2.7c) and

(2.7d) represent the equality and inequality constraints that need to be satisfied in

the problem, yielding the values of the state variables.

The role of the Lagrange multipliers can be understood in a different light by

examining the adjoint equation (2.7a) at the optimal point. Dropping the inequality

constraint term to simplify our explanation without any loss of generality, we see that

we are trying to equate the gradients of J and h by a multiplier λ at the optimal

solution of x and u.

∇J(xopt, uopt) = −λT∇h(xopt, uopt) (2.8)

In our multi-variable problem, the gradients of J and h are each a normal vector to a

curve in two dimensions. The magnitude of the normal vector is not important since

any multiple of the gradient is also a normal vector and will satisfy Eq. (2.8). So the

unknown constant Lagrange multiplier λ is necessary because the magnitude of the

two gradients may be different and it facilitates the solution for the optimal point.

2.3 Objective Functions

Before we begin the formulation of our optimal control problems, we define the

type of objective functions we intend to use for our study. In the steady-state problem,

we select the objective to maximize the reactivity in the core which is best represented
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by maximizing the effective multiplication factor k:

J1 = −k. (2.9)

The negative sign is needed to turn our minimization problem into a maximization

problem. This objective is in line with our overall objective to extend the cycle length

of the reactor.

For the depletion problem, we select the objective for a flat burnup profile at the

EOC which reflects the overall objective of our study to achieve a maximum discharge

fuel burnup:

J2 =

∫
V

dr
[
E(r, τ)− E(τ)

]2
, (2.10)

where E(τ) is the average fuel burnup in the core at EOC, t = τ :

E(τ) =
1

V

∫
V

drE(r, τ). (2.11)

2.4 Formulation of the Steady-State Optimal Control Prob-

lem

We will begin with the formulation for the steady-state optimal control problem

in PWRs by considering the problem in two-dimensional space. The purpose of

not considering time variation in the optimal control problem for now is to provide

the derivation of the optimality conditions in the most succinct manner given the

complexity in some of our equations. In this manner, we will also be able to show

the explicit equations and methodology that are used to optimize the steady-state

problem in Chapter 4. In the following section, we will then provide the formulation

for a time-dependent optimal control problem.

Before continuing to formulate the optimal control problem by the method of
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Table 2.1: Description of variables

State Variable Description
φ(x, y, t) Group flux
k(t) Multiplication factor
Q(x, y, t) Power density
E(x, y, t) Fuel burnup
Control Variable Description
u(x, y) Cross section or number density
Adjoint Variable Description
φ+(x, y, t) Adjoint group flux
Q+(t) Adjoint power density
E+(x, y, t) Adjoint burnup
η+(x, y, t) Adjoint peaking factor
Variable Functions Description
D(u,E) Diffusion coefficient
Σa(u,E) Absorption cross section
Σr(u,E) Removal cross section
νΣf (u,E) Nu fission cross section
κΣf (u,E) Kappa fission cross section

Lagrange multipliers, we introduce all the variables that will be used in our study in

Table 2.1 so that the reader can follow the derivation, especially during the process

of taking partial derivatives with respect to the state and control variables. For our

two-group formulation, only the variables φ and φ+ in Table 2.1 are vectors. The

control variable u is a scalar representing one of the two possible control option in

our study, which is either the fissile U235 number density or the BP number density.

During our formulation of the steady-state problem, we will not show the time

variable for notational convenience. Here onwards, we will use the variable x as a

space variable in our two-dimensional notations and will no longer refer to x as we

did in Section 2.1 as a state variable. Instead we will use explicit representation of all

state variables in customary notations that is used in nuclear reactor terminologies.

The form of the objective function that we employ in the steady-state optimal
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control problem is simply the effective multiplication factor k from Eq. (2.9):

J1 = −k. (2.12)

The first equality constraint represents the neutron diffusion equation in two

energy-group form:

−∇ ·D1∇+ Σa1 + Σr 0

−Σr −∇ ·D2∇+ Σa2


φ1

φ2

 =
1

k

νΣf1 νΣf2

0 0


φ1

φ2

 .

(2.13)

For the purpose of presenting the equations in succinct form, Eq. (2.13) is re-written

in simpler operator form by combining the loss and production matrices into a single

matrix operator L:

Lφ =

∇ ·D1∇− Σa1 − Σr +
νΣf1

k

νΣf2

k

Σr ∇ ·D2∇− Σa2


φ1

φ2

 = 0. (2.14)

The operator L represents a matrix operating on the flux vector φ containing the state

variable k and variable functions dependent on the control u and burnup E. Also keep

in mind that the operator L contains second order differential operators when we later

take the first order variation to find the optimality conditions. The formulation using

operator form will also be useful for representing the neutron diffusion equations in

one or two energy group form.

The second equality constraint in our optimal control problem is the normalization

condition for power density p(x, y), which determines the magnitude of the flux in

the reactor:
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Q(X
′
, Y

′
) =

X′∫
0

Y ′∫
0

dx dy p(x, y) =

X′∫
0

Y ′∫
0

dx dy (κΣf1φ1 + κΣf2φ2), (2.15)

where Q is the state variable that represents the power within regions of (0, X ′) and

(0, Y ′). Thus the total power Ptot in a reactor of dimensions X and Y is represented

by the boundary condition:

Q(X, Y ) = Ptot. (2.16)

Converting the power normalization equation to a partial differential form and rep-

resenting the variables in vector form

κΣfφ ≡
(
κΣf1 κΣf2

) φ1

φ2

 , (2.17)

we simplify Eq. (2.15) to:

κΣfφ(x, y)− ∂2Q(x, y)

∂x∂y
= 0. (2.18)

Finally our inequality constraint represents the power peaking constraint in the

reactor core and is represented as:

S(x, y) ≡ κΣfφ(x, y)

pave

− pmax ≤ 0, (2.19)

where pave is the average power density in the core and pmax is the desired power

peaking factor limit in the core.

We are now ready to combine our objective function and constraints in the aug-
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mented objective function by the method of Lagrange multipliers:

H = −k +

∫
X

∫
Y

dx dy

[
φ+T

Lφ+Q+

(
κΣfφ−

∂2Q

∂x∂y

)
+ η+S

]
, (2.20)

where we have added transpose notation for the adjoint flux φ+ because it is a vector.

We use the function H to represent our augmented objective function which is

also the Hamiltonian of our optimal control problem, analogous to the Hamiltonian

defined in Pontryagin’s Maximum Principle formulation. The KKT condition for

adjoining the inequality constraint to the augmented objective function now states

that 〈η+, S〉 = 0 is a sufficient condition. The inner product bracket here represents

the integral over space. Similarly as before, we arrive at the boundary condition for

the Lagrange multiplier for the inequality constraint as:

η+(x, y) = 0 when S(x, y) < 0

≥ 0 when S(x, y) = 0. (2.21)

Using the augmented objective function H in Eq. (2.20), we proceed to find the

optimality conditions which represent the first order variation with respect to the

state and control variables via calculus of variation. We begin by taking the variation

on all the state and control variables only, as taking the variation of the adjoint

variables will only yield back our original constraint equation. This is evident in our

general formulation from equations (2.7c) and (2.7d):

δH = −δk +

∫
X

∫
Y

dxdy

{
φ+T δ (Lφ) +Q+

[
δ (κΣfφ)− ∂2δQ

∂x∂y

]
+ η+δS

}
. (2.22)
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Next we expand the inequality constraint S and distribute the variation in Lφ:

δH = −δk+

∫
X

∫
Y

dxdy

{
φ+T [δLφ+ Lδφ] +Q+

[
δ (κΣfφ)− ∂2δQ

∂x∂y

]
+ η+ δ (κΣfφ)

pave

}
(2.23)

Collecting the terms that have the same multipliers δ(κΣfφ), we get:

δH = −δk +

∫
X

∫
Y

dxdy

{
φ+TLδφ+ φ+T δLφ+

(
Q+ +

η+

pave

)
δ (κΣfφ)−Q+∂

2δQ

∂x∂y

}
.

(2.24)

This equation can be further simplified if we use integration by parts on the deriva-

tive terms that involve variations on δφ and δQ and invoke the definition of adjoint

operators: ∫
X

∫
Y

dxdy φ+TLδφ =

∫
X

∫
Y

dxdy
(
L+φ+

)T
δφ (2.25)

∫
X

∫
Y

dxdy Q+∂
2δQ

∂x∂y
=

∫
X

∫
Y

dxdy
∂2Q+

∂x∂y
δQ, (2.26)

where the perturbations δφ and δQ at the limits are zero since they are fixed by

boundary conditions. By applying equations (2.25) and (2.26) to the augmented

objective function and selecting an objective function J that is a function of state

variable k only, which is the case for our steady-state objective function, we get:

δH =

− δk +

∫
X

∫
Y

dxdy

{(
L+φ+

)T
δφ+ φ+T δLφ+

(
Q+ +

η+

pave

)
δ (κΣfφ)− ∂2Q+

∂x∂y
δQ

}
(2.27)

where

δL =
∂L

∂k
δk +

∂L

∂u
δu

δ (κΣfφ) =
∂κΣf

∂u
δuφ+ κΣfδφ.
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Next we collect the variation terms that are alike. The objective function has been

brought into the volume integral to collect the δk term. We are able to factor out

the δu variable by virtue that it is a scalar variable. We arrive at the following final

form of the augmented objective function:

δH =

∫
X

∫
Y

dxdy


[
(L+φ+)

T
+
(
Q+ + η+

pave

)
κΣf

]
δφ+

[
φ+T ∂L

∂k
φ− 1

V

]
δk

−∂2Q+

∂x∂y
δQ+

[
φ+T ∂L

∂u
φ+

(
Q+ + η+

pave

)
∂κΣf

∂u
φ
]
δu

 = 0.

(2.28)

With the first order variation of the augmented objective function H reduced to

the form in Eq. (2.28), the Lagrange multipliers can now be determined to satisfy

δH=0. This is accomplished by choosing the Lagrange multipliers φ+, Q+, and η+

such that the integrals involving δφ, δu, δQ, and δk vanish.

2.4.1 First Order Optimality Conditions for Steady-State Problem

The first integral in Eq. (2.28) represents the adjoint equation that determines

the value of the Lagrange multipliers by forcing the integrals involving δφ to vanish:

∫
X

∫
Y

dxdy

[(
L+φ+

)T
+

(
Q+ +

η+

pave

)
κΣf

]
δφ = 0. (2.29)

Since δφ is dependent on space variables, we require the integrand attached to δφ to

vanish as the sufficient condition for Eq. (2.29):

(
L+φ+

)T
+

(
Q+ +

η+

pave

)
κΣf = 0. (2.30)

The adjoint equation in (2.30) is known as the Euler-Lagrange equation in Pontrya-

gin’s Maximum Principle approach which takes the form of an inhomogeneous adjoint

equation. It is very similar to the homogenous equation form of the neutron diffusion

equation with adjoint operators and the addition of a source term, which refers to the

26



terms that does not include φ+. We see this more clearly by re-arranging Eq. (2.30)

and defining a representative variable S+ for the source terms:

(
L+φ+

)T
= −

(
Q+ +

η+

pave

)
κΣf ≡ S+. (2.31)

This type of equation has an additional requirement for finding the solution to

φ+. It is an orthogonality condition [33, 34] also known as the Fredholm Alternative,

which states that the adjoint source S+ must be orthogonal to the homogenous flux

solution: 〈
φ, S+

〉
= 0 (2.32)

where the homogeneous flux φ comes from the solution of Eq. (2.14):

Lφ = 0. (2.33)

The next optimality condition requires the integral involving δQ to vanish:

−
∫
X

∫
Y

dxdy
∂2Q+

∂x∂y
δQ = 0. (2.34)

Since δQ is space-dependent, a sufficient condition for this equation is to set the

integrand attached to δQ term to zero.

∂2Q+(x, y)

∂x∂y
= 0. (2.35)

This optimality condition only describes that the Lagrange multiplier Q+ is constant

in space and does not yield a full solution for Q+. The next optimality condition

involving δk takes a different form because δk is not space-dependent. Therefore

it sits outside the space integral and the stationary condition for δk is obtained by

setting the spatial integral to zero:
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∫
X

∫
Y

dxdy

(
φ+T ∂L

∂k
φ− 1

V

) δk = 0 (2.36)

⇒
∫
X

∫
Y

dxdy

(
φ+T ∂L

∂k
φ

)
=

1

V
. (2.37)

Because Eq. (2.37) is subject to an integral over space, it is used as a normalization

condition to find the magnitude of φ+. Note that it has a term 1/V that came

from the objective function k. The final optimality condition represents the control

optimality condition for the integral involving δu:

∫
X

∫
Y

dxdy

[
φ+T ∂L

∂u
φ+

(
Q+ +

η+

pave

)
∂κΣf

∂u
φ

]
δu = 0. (2.38)

Since the control variable is a function of space, a sufficient condition is to set the

integrand attached to δu to zero:

φ+T ∂L

∂u
φ+

(
Q+ +

η+

pave

)
∂κΣf

∂u
φ = 0. (2.39)

2.4.2 Jump Conditions

As a result of the method of direct adjoining the inequality constraint, junctions

will exist between the boundary of a constrained and unconstrained region that may

cause Lagrange multipliers to be discontinuous due to the non-negativity property of

η+ defined in Eq. (2.21). Since the inequality constraint S is active only in space,

we would also expect the discontinuity to occur in the spatial Lagrange multipliers,

in particular, the Lagrange multipliers that are adjoint to the state variable φ from

the inequality constraint. The handling of the jump condition here would apply the

same way for a time-dependent problem since the jump does not occur over the time

variable.
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x

y
Constrained mesh

Unconstrained mesh

Figure 2.1: Two possible orientation of the junction

Even though our formulation of the control problem is in two dimensions, the jump

condition can only be evaluated in one dimension because the junction is essentially

an infinitesimal line between an unconstrained and constrained region. We refer to

Figure 2.1 and examine two possible cases in our two-dimensional problem. If the

junction occurs between two meshes located side by side, the jump exists in the x-

axis. Likewise if the junction occurs between two meshes one on top of the other,

then the jump exists in the y-axis.

We begin by integrating the Euler-Lagrange equation (2.31) over a junction bound-

ary in the x-axis because we are expecting a discontinuity in a Lagrange multiplier.

Since the adjoint flux is physically a continuous function, we expect the discontinuity

to appear in the leakage term that has a second order derivative of the adjoint flux.

We will also expect a discontinuity in η+ due to the KKT conditon. Other terms that

are continuous will drop out of the integral over the junction boundary xi:

−
x+
i∫

x−i

dx
(
∇ ·D∇φ+

)
=

x+
i∫

x−i

dx
η+

pave
κΣf . (2.40)
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Expressing η+ in terms of a temporary variable η∗:

η+ =
dη∗

dx
(2.41)

where η∗ is a nondecreasing function that assures η+ is always non-negative to satisfy

the KKT condition, Eq. (2.40) becomes:

−
x+
i∫

x−i

dx
(
∇ ·D∇φ+

)
=

x+
i∫

x−i

dx
dη∗

dx

κΣf

pave
. (2.42)

Then we can simply perform the integration and obtain:

−
[
D∇φ+(x+

i )−D∇φ+(x−i )
]

=
η∗(x+

i )− η∗(x−i )

pave
κΣf . (2.43)

By defining the jump parameter as

µ(xi) ≡ η∗(x+
i )− η∗(x−i ) ≥ 0, (2.44)

we obtain the jump condition that will appear in the Euler-Lagrange equation in the

derivative of the adjoint flux, which is simply the adjoint current J+:

[
J+(x+

i )− J+(x−i )
]

=
µ(xi)

pave
κΣf (2.45)

where

J+ = −D∇φ+. (2.46)

The jump parameter µ is non-negative in Eq. (2.45) because η∗ was defined as a

nondecreasing function in Eq. (2.41).
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2.4.3 Control Formulation

By the method of directly adjoining the inequality constraint to the Hamiltonian,

we have constrained and unconstrained regions that require different formulations

of the control. In the unconstrained region, the control will be determined from the

control optimality condition of Eq. (2.39). Due to a special case of our optimal control

problem that has a linear control in the Hamiltonian, the control variable does not

appear in Eq. (2.39). Hence, this does not allow us to find an explicit solution of the

control from this equation that will satisfy the optimality condition. Instead we use

the gradient method of Drumm and Lee [22] and Eq. (2.39) as a gradient ∂H/∂u to

obtain a search direction. This is accomplished by first computing the gradient based

on the initial control ui:

q =
∂H(ui)

∂u
= φ+T ∂L

∂u
φ+

(
Q+ +

η+

pave

)
∂κΣf

∂u
φ (2.47)

and choosing the search direction to be the negative gradient direction:

s = −q. (2.48)

Then an optimal control length ε∗ is chosen such that the Hamiltonian is minimized:

min H(ui + εs) = H(ui + ε∗s) (2.49)

through an iterative bi-sectional scheme that tests different values of control length

ε, yielding the optimal control u∗ in the unconstrained region as:

u∗ = ui + ε∗s. (2.50)

For control formulation in the constrained region, the control must be obtained

31



from the inequality constraint equation S that is active in that region. This requires

the inequality constraint S of Eq. (2.19) to vanish on the constrained region:

S(x, y) =
κΣfφ(x, y)

pave
− pmax = 0. (2.51)

Since the function S which is active in space must vanish in the constrained region,

it follows that the spatial derivatives of S must also vanish:

∇iS = 0 (2.52)

where i represents the ith spatial derivative. So we look for the first spatial derivative

of S in which the control emerges to extract the control in the constrained region [31].

This condition assures that the power peaking constraint is always met and yields a

flat power distribution pmax in the constrained regions. Taking the first derivative of

S yields:

∇S = κΣf∇φ = 0 (2.53)

which does not yield the control. So we take another spatial derivative of S to get:

∇ · ∇S = κΣf∇ · ∇φ = 0 (2.54)

and continue to expand the vectors κΣf and φ to obtain an explicit representation of

the control in the two-group notation:

∇ · ∇S = κΣf1
(Σa1 + Σr − νΣf1/k)φ1 − νΣf2φ2/k

D1

+ κΣf2
Σa2φ2 − Σrφ1

D2

= 0.

(2.55)

To simplify Eq. (2.55), we obtain the flux ratio of φ1/φ2 from the thermal diffusion

equation by making an approximation that the thermal leakage term is negligible
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compared to Σa2:

(−∇ ·D2∇+ Σa2)φ2 ≈ Σa2φ2 = Σrφ1 (2.56a)

⇒ φ1

φ2

≈ Σa2

Σr

. (2.56b)

Then we are left with a simplified expression of the second spatial derivative of the

inequality constraint as:

∇2S =

(
Σa1 + Σr −

νΣf1

k

)
Σa2

Σr

− νΣf2

k
= 0. (2.57)

Equation (2.57) provides an explicit representation of the control variables contained

in the cross sections Σf and Σa for both energy groups, and we see that it is dependent

on the eigenvalue k. Since we have ignored the leakage terms to arrive at Eq. (2.57),

the eigenvalue k is simply the infinite multiplication factor k∞. This is equivalent

to the flat flux condition which is the result of a flat power distribution pmax in

the constrained region. Due to the nature of eigenvalue equations that derive the

eigenvector and eigenvalue simultaneously in the solution, we are not able to obtain

an optimal solution of the control variable in Eq. (2.57) without knowing the optimal

solution of the eigenvalue beforehand. To address this problem, we seek two equations

to solve for the two unknowns u and k in terms of the incremental values δu and δk

that we obtain by using Newton’s method. In part 1, we perform a Newton step

on the diffusion equation from Eq. (2.14) and apply the Fredholm Alternative to

obtain δk in terms of δu. In part 2, we perform a Newton step on the second spatial

derivative of the inequality constraint equation (2.57) to obtain another equation in

terms of δk and δu. Then the two equations are combined to find the solutions to δu

in the constrained region and δk.

Part 1: Newton step on Lφ = 0 . By taking a Newton step on the diffusion equa-
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tion (2.14), we get:

Lδφ = −δLφ =
νΣf

k2
φδk − ∂L

∂u
φδu (2.58)

where the residual of the diffusion equation in this Newton step is zero since we solve

the diffusion equation exactly. Since this equation has an inhomogeneous source term,

it must satisfy the Fredholm alternative condition, which states:

〈
φ+
h ,
νΣf

k2
φδk − ∂L

∂u
φδu

〉
= 0 (2.59)

where the homogeneous adjoint flux φ+
h comes from the solution of:

L+φ+
h = 0. (2.60)

Since the integral in Eq. (2.59) is summed over all regions, we need to separate it

into integrals over constrained regions Γ and unconstrained regions Γ so that we can

find an explicit representation of the control in the constrained region. The control

in the unconstrained region δuΓ is already known at this point because it can be

determined beforehand using the gradient method. So from Eq. (2.59) we have:

δk

〈
φ+
h ,
νΣf

k2
φ

〉
−
〈
φ+
h ,
∂L

∂u
φδuΓ

〉
Γ

−
〈
φ+
h ,
∂L

∂u
φδuΓ

〉
Γ

= 0. (2.61)

Then we arrive at the first equation relating the unknowns δuΓ and δk by:

I1δk =

〈
φ+
h ,
∂L

∂u
φδuΓ

〉
Γ

+ I2, (2.62)
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where I1 =

〈
φ+
h ,
νΣf

k2
φ

〉
=

〈φ+
1h

φ+
2h

 ,

νΣf1

k2

νΣf2

k2

0 0


φ1

φ2

〉 ,
I2 =

〈
φ+
h ,
∂L

∂u
φδuΓ

〉
Γ

=

〈φ+
1h

φ+
2h

 ,

−∂Σa1

∂u
− ∂Σr

∂u
+ 1

k

∂νΣf1

∂u
1
k

∂νΣf2

∂u

∂Σr

∂u
−∂Σa2

∂u


φ1

φ2

 δuΓ

〉
Γ

.

Note that the perturbation of the diffusion coefficient in L in Eq. (2.62) is ignored

because it is very small and negligible.

Part 2: Newton step on ∇2S = 0 . We return to the second spatial derivative of

the inequality constraint in Eq. (2.57) and take a Newton step on it:

1

k

∂νΣf1

∂u
Σa2δu+

νΣf1

k

∂Σa2

∂u
δu− νΣf1

k2
Σa2δk +

1

k

∂νΣf2

∂u
Σrδu

+
νΣf2

k

∂Σr

∂u
δu− νΣf2

k2
Σrδk −

∂Σa2

∂u
(Σa1 + Σr) δu− Σa2

(
∂Σa1

∂u
+
∂Σr

∂u

)
δu

= −
[
νΣf1

k
Σa2 +

νΣf2

k
Σr − Σa2 (Σa1 + Σr)

]
on Γ,

where we explicitly represent the δu variable as δuΓ, and collect the δuΓ and δk terms

to arrive at:

δuΓ =
−a3 + a2δk

a1

, (2.63)

with a1 =
1

k

∂νΣf1

∂u
Σa2 +

νΣf1

k

∂Σa2

∂u
+

1

k

∂νΣf2

∂u
Σr +

νΣf2

k

∂Σr

∂u

− ∂Σa2

∂u
(Σa1 + Σr)− Σa2

(
∂Σa1

∂u
+
∂Σr

∂u

)
,

a2 =
1

k2
(νΣf1Σa2 + νΣf2Σr) ,

a3 =
νΣf1

k
Σa2 +

νΣf2

k
Σr − Σa2 (Σa1 + Σr).

Combining Parts 1 and 2: We combine Eqs. (2.62) and (2.63) by inserting the

expression for δuΓ from Eq. (2.63) into Eq. (2.62) to get:
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I1δk =

〈
φ+
h ,
∂L

∂u
φ

(
−a3 + a2δk

a1

)〉
Γ

+ I2,

and solve for the optimal δk as:

δk =

(
−
〈
φ+
h ,
∂L

∂u
φ
a3

a1

〉
Γ

+ I2

)
/

(
I1 −

〈
φ+
h ,
∂L

∂u
φ
a2

a1

〉
Γ

)
. (2.64)

Then we obtain the optimal control δuΓ from Eq. (2.63) with the optimal δk.

2.4.4 Sequence to Solve the Steady-State Optimality Conditions

With the formulation of all the optimality conditions required to find the solu-

tion to the steady-state optimal control problem in PWRs completed, we present a

flowchart in Figure 2.2 of the sequence that we use to solve the optimality conditions

iteratively.

1. We begin with an estimate of the control variable and solve the constraint

equations of the neutron diffusion equation (2.14) and the power normalization

equation (2.18). Thus we obtain the state variables φ and k.

2. Next we solve the inhomogeneous adjoint equation (2.31) with the jump con-

dition (2.45) to obtain the adjoint variables φ+ and Q+. Then we apply the

normalization equation (2.37) on φ+ to complete our solution of the state and

adjoint variables up to this point based on the initial estimate of the control.

3. We proceed now to use the calculated state and adjoint variables to obtain the

control variable from Eq. (2.50) by using the control equation as a gradient in

the unconstrained region, and from Eq. (2.63) by using Newton’s method in

the constrained region.

4. The newly calculated control is then checked with the initial control estimate

for convergence, and the iteration is repeated until the control u converges.
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Check control
convergence

Find δuΓ with ∂H/∂u: Eq. (2.50)

Normalize φ+: Eq. (2.37)

Solve L+φ+=S+ for Q+ and φ+: Eqs. (2.31),(2.45)

Solve Lφ=0 for k and φ: Eq. (2.14)

Find δuΓ with Newton step: Eq. (2.63)

Normalize φ: Eq. (2.18)

Estimate Control

Converged Control

Figure 2.2: Flowchart for steady-state optimal control problem
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2.5 Formulation of the Depletion Optimal Control Problem

Now that we have developed the formulation of the optimality condition for a

steady-state problem, we are ready to move into the full formulation of our optimal

control problem for a depletion problem. The methodology for deriving the optimality

conditions for the depletion problem will be very similar to the steady-state problem

with the added dimension of time and an additional equality constraint from the fuel

burnup equation. Instead of reformulating all the equations as we did in the steady-

state formulation, only the equations that are different and new in the depletion

formulation will be shown.

The objective function that we are interested in is evaluating the objective at the

terminal time τ for the depletion case introduced in Eq. (2.10):

J2(τ) =

∫
X

∫
Y

dxdy
[
E(x, y, τ)− E(τ)

]2
. (2.65)

The constraint equations we had in the steady-state problem remain the same with

the addition of the fuel burnup equation where we introduce the state variable E

which is a function of space and time:

∂E(x, y, t)

∂t
=
κΣfφ(x, y, t)

ρ
=
p(x, y, t)

ρ
, (2.66)

where ρ is the mass density of the homogenized fuel in the core and p(x, y, t) was

introduced in Eq. (2.15). This equation is used to calculate the fuel burnup for the

time step ∆t:

E(x, y, t+ ∆t) = E(x, y, t) +
p(x, y, t)

ρ
∆t. (2.67)

With these changes, we build the new augmented objective function for the de-
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pletion problem in time domain:

H(τ) =

∫
X

∫
Y

dxdy
[
E(x, y, τ)− E(τ)

]2
+

∫
τ

dt


∫
X

∫
Y

dxdy

[
φ+T

Lφ+Q+

(
κΣfφ−

∂2Q

∂x∂y

)
+ E+

(
κΣfφ

ρ
− ∂E

∂t

)
+ η+S

]}
, (2.68)

which replaces the objective −k by the new flat burnup objective (2.65) and adds

the burnup equation (2.66) in the steady-state augmented objective function of Eq.

(2.20) . We also note that every system parameter is now time-dependent although

they may not be shown explicitly in the formulation for notational convenience. By

applying calculus of variation on the new augmented objective function, we develop

the equation in a similar way as in the steady-state problem by first taking the

variation on all the state and control variables:

δH(τ) =
∫
X

∫
Y

dxdy
[
2
(
E(x, y, τ)− E(τ)

)]
δE(x, y, τ)

+
∫
τ

dt
∫
X

∫
Y

dxdy

 φ+T δ (Lφ) +Q+
[
δ (κΣfφ)− ∂2δQ

∂x∂y

]
+E+

[
δ(κΣfφ)

ρ
− ∂δE

∂t

]
+ η+

[
δ(κΣfφ)
pave

]
. (2.69)

In the same way we performed integration by parts on the derivative terms in-

volving δφ and δQ to simplify the steady-state augmented objective function in Eq.

(2.24), we do the same to the adjoint burnup δE(x, y, t) term:

∫
τ

dt

∫
X

∫
Y

dxdy

[
E+(x, y, t)

∂δE(x, y, t)

∂t

]

=

∫
X

∫
Y

dxdy

E+(x, y, t)δE(x, y, t)|τ0 −
∫
τ

∂E+(x, y, t)

∂t
δE(x, y, t)


=

∫
X

∫
Y

dxdy

E+(x, y, τ)δE(x, y, τ)−
∫
τ

∂E+(x, y, t)

∂t
δE(x, y, t)

 (2.70)
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where the variation δE(x, y, 0) is zero as we restrict perturbations in the BOC fuel

burnup distribution which is either fixed from the previous cycle or zero for a fresh

fuel loading. Applying Eq. (2.70) to the augmented objective function and selecting

an objective function that is a function of the burnup variable E for our depletion

problem, we get:

δH(τ) =
∫
X

∫
Y

dxdy
[
2
(
E(x, y, τ)− E(τ)

)
− E+(x, y, τ)

]
δE(x, y, τ)

+
∫
τ

dt
∫
X

∫
Y

dxdy

 (L+φ+)
T
δφ+ φ+T δLφ+

(
Q+ + E+

ρ
+ η+

pave

)
δ (κΣfφ)

−∂2Q+

∂x∂y
δQ+ ∂E+

∂t
δE

 (2.71)

where

δL =
∂L

∂k
δk +

∂L

∂u
δu

δ (κΣfφ) =
∂κΣf

∂u
δuφ+ κΣfδφ.

Two additional terms involving E+ and ∂E+/∂t are noted, compared with Eq. (2.27).

Next we expand the remaining variation terms δL and δ(κΣfφ) and collect the vari-

ation terms that are alike to arrive at the final form of the augmented objective
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function:

δH(τ) =

∫
X

∫
Y

dxdy
[
2
(
E(x, y, τ)− E(τ)

)
− E+(x, y, τ)

]
δE(x, y, τ)

+

∫
τ

dt

∫
X

∫
Y

dxdy

[{(
L+φ+

)T
+

(
Q+ +

E+

ρ
+

η+

pave

)
κΣf

}
δφ

]

−
∫
τ

dt

∫
X

∫
Y

dxdy

[(
∂2Q+

∂x∂y

)
δQ

]
+

∫
τ

dt

∫
X

∫
Y

dxdy

[
φ+T ∂L

∂k
φδk

]

+

∫
τ

dt

∫
X

∫
Y

dxdy

[{
φ+T ∂L

∂u
φ+

(
Q+ +

E+

ρ
+

η+

pave

)
∂κΣf

∂u
φ

}
δu

]
(2.72)

+

∫
τ

dt

∫
X

∫
Y

dxdy

[{
∂E+

∂t
+ φ+T ∂L

∂E
φ+

(
Q+ +

E+

ρ
+

η+

pave

)
∂κΣf

∂E
φ

}
δE

]

≡ I1 + I2 + I3 + I4 + I5 + I6 = 0

2.5.1 First Order Optimality Conditions for the Depletion Problem

Comparing the augmented objective function in Eq. (2.72) with the steady-state

augmented objective function in Eq. (2.28), we have a new terminal condition in

integral I1, additional time integrals for the remaining integrals I2 - I6, additional

terms E+/ρ in I2 and I5, and an additional adjoint burnup equation in I6. The

additional time integrals over the same spatial integrals that were evaluated in the

steady-state problem does not change any of the optimality conditions, except the

control optimality condition in I5.

The optimality for the terminal condition at t = τ in I1 requires:

∫
X

∫
Y

dxdy
[
2
(
E(x, y, τ)− E(τ)

)
− E+(x, y, τ)

]
δE(x, y, τ) = 0, (2.73)

which is satisfied by setting to zero the integrand attached to δE(τ). This condition
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gives us the distribution of the adjoint burnup E+ at t = τ :

E+(x, y, τ) = 2
[
E(x, y, τ)− E(τ)

]
. (2.74)

In the Euler-Lagrange equation obtained from I2 in Eq. (2.72), the optimality con-

dition is the same as the steady-state problem at every time step t with the addition

of the adjoint burnup term E+/ρ:

(
L+φ+

)T
+

(
Q+ +

E+

ρ
+

η+

pave

)
κΣf = 0. (2.75)

Optimality conditions obtained from I3 and I4 are also the same as the steady-state

problem at every time step t:

∂2Q+

∂x∂y
= 0 (2.76)

∫
X

∫
Y

dxdy

[
φ+T ∂L

∂k
φ

]
= 0, (2.77)

with the difference that we do not have the term 1/V in Eq. (2.77) as we did in

Eq. (2.37). This is because the objective function in this depletion problem is the

flat burnup profile and not the multiplication factor k. This optimality condition is

satisfied no longer by normalizing the magnitude of φ+ since the integral in Eq. (2.77)

is zero. Instead this optimality condition is naturally satisfied during the solution

of the Euler-Lagrange equation for φ+ when the fundamental mode contamination

removal is performed, as will be discussed in Section 3.2.3.

Integral I5 needs to be evaluated differently because δu is only a function of space

and not time in our PWR problem where the control only exist at the BOC. This

causes δu to sit outside the time integral:
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∫
X

∫
Y

dxdy


∫
τ

dt

[
φ+T ∂L

∂u
φ+

(
Q+ +

E+

ρ
+

η+

pave

)
∂κΣf

∂u
φ

] δu = 0. (2.78)

Thus, the sufficient condition for this optimality condition is to set the time integral

to zero:

∫
τ

dt

[
φ+T ∂L

∂u
φ+

(
Q+ +

E+

ρ
+

η+

pave

)
∂κΣf

∂u
φ

]
= 0. (2.79)

Finally for the integral involving δE in I6,

∫
τ

dt

∫
X

∫
Y

dxdy

[{
∂E+

∂t
+ φ+T ∂L

∂E
φ+

(
Q+ +

E+

ρ
+

η+

pave

)
∂κΣf

∂E
φ

}
δE

]
(2.80)

setting the integrand attached to δE to zero yields the optimality condition for de-

termining the incremental E+ distribution after every time step:

∂E+

∂t
+ φ+T ∂L

∂E
φ+

(
Q+ +

E+

ρ
+

η+

pave

)
∂κΣf

∂E
φ = 0. (2.81)

2.5.2 Sequence to Solve the Depletion Optimality Conditions

The main challenge in the depletion problem is satisfying the peaking factor con-

straint for every burnup step with the initial control defined at the BOC. The for-

mulation that we have developed so far using the direct adjoining method to satisfy

the power peaking constraint requires the control in the constrained region to be

determined at every burnup step to satisfy the inequality constraint. Since this is

not a possibility in our PWR optimal control problem, we need to devise a method

that could determine the control that is needed somewhere in the middle of the cycle,

and trace its required depletion path back to the BOC where the control exists. To

achieve a mechanism with this feature, we explored using the adjoint burnup variable

43



since it holds information of the fuel burnup and naturally progresses reverse in time

from EOC to BOC.

1. We begin the iterative approach for the depletion problem by solving the for-

ward depletion equations in quasi-steady-state fashion. During the depletion

steps, we develop a desirable fuel burnup path that satisfies the power peak-

ing constraint on every depletion step. This is accomplished by applying the

steady-state optimal control problem as described in Figure 2.2 whenever a

power peaking violation occurred in that time step. To proceed to the next

time step, the burnup is calculated based on the modified control and fluxes

with Eq. (2.67) so that we develop a burnup distribution over the cycle that

conforms to the power peaking requirement. By doing so, we have effectively

turned a depletion problem into a series of steady-state problems with burnup

calculations performed between burnup steps.

2. With the desirable burnup path calculated from the forward depletion calcu-

lations, we proceed to solve the adjoint depletion calculations performed back-

wards in time. The EOC burnup information from the forward depletion mode

is used at the start of the EOC step in the adjoint depletion mode in the cal-

culation of the adjoint burnup E+ from Eq. (2.74). The adjoint burnup E+ is

updated after every adjoint burnup step marching backwards in time with Eq.

(2.81) and transfers the information of the desired burnup path over time to the

adjoint flux variable φ+ until the run reaches the BOC step on its final adjoint

step.

3. The control for the next iteration is determined by combining δu from the BOC

control recommendation from the forward depletion run if any, and the sug-

gested δu control from the gradient ∂H/∂u obtained after the adjoint depletion

run. This will combine the control recommendations to satisfy power peaking at
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the BOC and during the depletion, where at both times the objective function

is being optimized.

4. This completes one full iteration on the system of equations from the optimality

conditions and is repeated until the control converges. The iterative solution

for the depletion optimal control problem is summarized in Figure 2.3.
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Check control
convergence

Find δuΓ with ∂H/∂u: Eq. (2.50)

Calculate E+: Eq. (2.81)

Solve L+φ+=S+ for Q+ and φ+: Eqs. (2.75),(2.45)

Perform steady-state iteration from Figure 2.2

Find δuΓ with Newton step: Eq. (2.63)

Calculate E: Eq. (2.67)

Estimate Control at BOC

Converged Control

EOC ?

BOC ?

Figure 2.3: Flowchart for depletion optimal control problem
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CHAPTER III

Numerical Implementation of Our Methodology

In this chapter we show the numerical implementation of the optimality condi-

tions in the DMCO code based on the formulations in Chapter 2 for a two-group

two-dimensional reactor. The DMCO code, short for Deterministic Multi-Control

Optimization, is an optimization package that we have developed to perform the op-

timization routines with a built-in neutron diffusion equation solver called UM2DB.

It is capable of automating the optimization routines for various combinations of 1-D,

2-D, one-group, two-group, BOC and full cycle optimization using either fissile U235

number densities or BP number densities controls. It runs on the Windows platform

using batch command scripting and Fortran 95. It is lightweight enough to run on a

personal desktop or laptop with average runtimes of 13 minutes for one full depletion

control optimization in 2-D and two-group formulation.

The UM2DB code is a modified version of the 2DB code originally developed

for fast reactor applications [35]. It is capable of solving the PWR global depletion

equations using diffusion theory for a two-group two-dimensional problem. We have

made a few enhancements to the code to perform thermal feedback modeling, critical

boron search and solution for an inhomogeneous adjoint diffusion equation. The

code is used as a calculator within DMCO which is capable of solving the optimality

conditions iteratively in an automated fashion. The cross section library that we
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employ in DMCO is generated by the CASMO-4 lattice physics code [36]. The library

provides macroscopic cross sections to the system equations based on the selected

controls, fuel burnup and critical boron concentration.

We begin our numerical formulation by performing a mesh-centered finite-differencing

scheme on the forward and adjoint equations representing our optimality conditions.

Then we describe how the discretized equations are solved iteratively in DMCO, in-

cluding our iterative method of selecting the junction distribution in the core. We

also provide in this chapter the verification results of the numerical forward and ad-

joint equations that we have formulated. We perform a benchmarking of the AP600

first cycle in our code to verify the discretized forward equations as well as the ac-

curacy of our cross section libraries and the thermal feedback modeling. The results

are compared to the published results in the AP600 Standard Safety Analysis Report

(SSAR) [28] as well as results obtained from another global code package APA which

is developed by Westinghouse. For verification of the discretized adjoint equations,

we first solve a simplified analytical problem. We then solve the same problem in

DMCO in an iterative approach and verify the results we obtain for the solution of

the adjoint variables.

3.1 Numerical Solution of the Forward Equations

The set of forward equations are the equality constraints in our optimal control

problem which includes the two-group two-dimensional neutron diffusion equation

(2.13), the power normalization equation (2.18) and the burnup equation (2.66). To

solve these equations over the lifetime of the core, the operating cycle is divided into

finite number of time intervals with increasing time intervals. Shorter time intervals

are used near BOC to evaluate the effects of xenon poisoning on the optimal control

problem. Over each of these time steps, the neutron diffusion equation and the power

normalization equation are solved in quasi-static fashion, where we have assumed
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that the system is varying very slowly over the time interval that we can treat it as

a static system. Two-group macroscopic cross sections generated from the CASMO-

4 lattice physics code are applied to each fuel assembly based on the fuel burnup

of the assembly. The macroscopic cross sections are also modified to account for

thermal feedback from Doppler broadening and moderator density feedback, as well

as critical boron concentration in the reactor. At the end of each time interval, the

burnup equation is solved to update the fuel burnup in each fuel assembly so that

the macroscopic cross sections can be generated for the next time step. This process

is repeated until we have proceeded from BOC to EOC.

The reactor core is divided into a finite number of mesh intervals in the x-axis and

y-axis over the fuel regions and the reflector regions of the core. Each fuel assembly

is made up of a 6 x 6 mesh array, representing a 21.6cm x 21.6cm fuel assembly

dimension. The z-axis or axial dimension of the reactor core is approximated by

use of a transverse buckling parameter that accounts for the neutron leakage in that

direction. This is generally a good approximation if the reactor core has a uniform

axial distribution, which is the case for the AP600 reactor core that we are using as

our test case. Therefore all our formulations and numerical calculations are performed

in two-dimension with a unit height in the axial direction.

3.1.1 Forward Finite-Difference Equations

We proceed to discretize our forward equations using a mesh-centered finite-

differencing scheme that is used in DMCO by first re-writing the neutron diffusion

equation in terms of the neutron current J to help us discretize the leakage term:

∇ · J1 + (Σa1 + Σr)φ1 =
νΣf1φ1 + νΣf2φ2

k
, (3.1a)

∇ · J2 + Σa2φ2 = Σrφ1. (3.1b)
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To simplify the derivation of our finite-difference equation for both energy groups,

we will derive a general form using the following representation:

∇ · J + Σφ = Fφ (3.2)

where Fφ is the fission source term for group 1 and the removal term for group 2.

We present a schematic of a single mesh at index 0 surrounded by its four adjacent

neighboring meshes in Figure 3.1 for the purpose of illustrating our finite-differencing

scheme where the flux φi is defined at the center of volume Vi, i=0,1,2,3,4. To dis-

cretize Eq. (3.2), we integrate these equations over the mesh volume i:

xi+
∆x
2∫

xi−∆x
2

yi+
∆y
2∫

yi−∆y
2

dxdy (∇ · J + Σφ) =

xi+
∆x
2∫

xi−∆x
2

yi+
∆y
2∫

yi−∆y
2

dxdyFφ (3.3)

where we have dropped the integral over the axial z direction because we represent

the reactor with unit thickness.

We transform the leakage term from a volume integral to a surface integral using

the divergence theorem which states:

∫
V

dV (∇ · J) =

∫
S

dA (J · n̂) (3.4)

where n̂ represents the outward-pointing unit normal vector on the surface. We

represent the surface integral in Eq. (3.4) as the sum of four current values Jk

multiplied by the respective surface area Ak with unit thickness:

∫
S

dA (J · n̂) =
4∑

k=1

JkAk. (3.5)

Discretization of the remaining terms in Eq. (3.3) yields in a straightforward
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Figure 3.1: Schematic of mesh i and adjacent meshes

manner the mesh center value of the terms multiplied by the volume of the mesh V0

with unit thickness:
xi+

∆x
2∫

xi−∆x
2

yi+
∆y
2∫

yi−∆y
2

dxdyΣφ = Σ0φ0V0 (3.6)

and

xi+
∆x
2∫

xi−∆x
2

yi+
∆y
2∫

yi−∆y
2

dxdyFφ = F0φ0V0. (3.7)

Thus we obtain our general form of the discretized neutron diffusion equation in

terms of current Jk as:
4∑

k=1

JkAk + Σ0φ0V0 = F0φ0V0. (3.8)

Next we re-write Eq. (3.8) in terms of flux using the discretized form of the current

which is continuous over the mesh boundary between mesh 0 and mesh 1 in Figure
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3.1:

J1 =
D0(φ0 − φ1/2)

∆x0/2
=
D1(φ1/2 − φ1)

∆x1/2
(3.9)

where φ1/2 is the boundary flux between mesh 0 and mesh 1 and calculated as:

φ1/2 =
D1φ1∆x0 +D0φ0∆x1

D1∆x0 +D0∆x1

. (3.10)

Inserting Eq. (3.10) into Eq. (3.9), we get:

J1 =
2D0D1(φ0 − φ1)

D1∆x0 +D0∆x1

. (3.11)

We can generalize the current in Eq. (3.11) for any one of the mesh boundaries Ak

as:

Jk =
2D0Dk(φ0 − φk)
Dk∆x0 +D0∆xk

. (3.12)

Then Eq. (3.3) becomes:

4∑
k=1

2D0Dk(φ0 − φk)
Dk∆x0 +D0∆xk

Ak + Σ0φ0V0 = F0φ0V0 (3.13)

and written in a concise form as:

4∑
k=1

ck(φ0 − φk) + Σ0φ0V0 = F0φ0V0 (3.14)

where

ck ≡
2D0Dk

Dk∆x0 +D0∆xk
Ak. (3.15)

Finally we can re-write the discretized equation (3.14) for a generalized mesh at

(i,j) to arrive at the final discretized form of the forward neutron diffusion equation

as:

aijφi−1,j + bijφij + cijφi+1,j + dijφi,j−1 + eijφi,j+1 = Fijφij (3.16)
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where:

aij = −c1, bij =
4∑

k=1

ck + Σ0V0, cij = −c2, dij = −c3, eij = −c4

φij = φ0, φi−1,j = φ1, φi+1,j = φ2, φi,j−1 = φ3, φi,j+1 = φ4, Fijφij = F0φ0V0.

Equation (3.16) can be simply represented in the matrix form for each group:

Mφ = Fφ (3.17)

where F contains the multiplication factor k in the first group.

Matrix M representing the loss terms is shown in Figure 3.2 consisting of a 5-

band matrix with the diagonal terms representing the absorption terms and leakage

for the center volume, and the off-diagonals terms representing the leakage in the four

possible directions in the x-axis and the y-axis. The production term F is a matrix

and the fluxes φ are column vectors. In our numerical implementation in DMCO, the

UM2DB code is used to solve the eigenvalue problem iteratively using the standard

power iteration [37].

Next we are ready to normalize the flux with the power normalization equation in

Eq. (2.18) by summing the power in the reactor core and adjusting the flux magnitude

by a coefficient α such that the total power is satisfied:

α
I∑
i=1

J∑
j=1

κΣfijφijVij = Ptot (3.18)

where I and J represents the total number of meshes i and j in the core. Finally

the last forward equation is solved by calculating the burnup of each fuel assembly

according to Eq. (2.67) in the discretized form for the time step ∆t:

∆Eij =
κΣfijφijVij

ρ
·∆t. (3.19)
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Figure 3.2: 5-band matrix M

3.2 Numerical Solution of the Euler-Lagrange Equations

We next show the numerical formulations of the Euler-Lagrange equations to

find solutions for our adjoint variables. We first recognize that the Euler-Lagrange

equation is an inhomogeneous adjoint diffusion equation, which means that it has a

source term and requires a different solver than the eigenvalue solver we used for the

forward neutron diffusion equation. The DMCO code builds the adjoint source terms

and provides the proper cross sections to the UM2DB code, which solves the fixed

source problem in the adjoint mode. The cross sections in the operator L+ are the

same cross sections used in the forward neutron diffusion equations with the difference

that they are arranged reverse in time and are transposed. The source term contains

four different adjoint variables, namely the inequality Lagrange multiplier η+, adjoint

power Q+, adjoint burnup E+ and the jump parameter µ. All these four adjoint

variables need to be determined at every time step before solving for the adjoint flux
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Figure 3.3: Schematic of mesh i with a junction boundary

φ+ and moving on to the next time step. Due to the nature of adjoint equations in

a time-dependent problem, the adjoint variables are determined in reverse order of

time, from the EOC to the BOC.

The main challenge in obtaining a finite-differencing solution of the Euler-Lagrange

equation is handling the jump parameters correctly, which originates from the leakage

term L+ at a junction as determined in Section 2.4.2. Otherwise the finite-differencing

of the Euler-Lagrange equation is essentially the same form as the forward neutron

diffusion equations without the presence of any junctions, which as we recall is the

boundary between a constrained and unconstrained region. So to provide a meaning-

ful derivation here with the jump parameters, we consider a mesh that has a junction

boundary with one of its neighboring mesh as in Figure 3.3.
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3.2.1 Euler-Lagrange Finite-Difference Equations

We begin formulating the numerical adjoint equations in the same way we did with

the forward neutron diffusion equations by expanding the L+ operator and re-writing

the Euler-Lagrange equations (2.75) in terms of the adjoint current J+:

∇ · J+
1 + (Σa1 + Σr)φ

+
1 =

νΣf1φ
+
1

k
+ Σrφ

+
2 +

(
Q+ +

E+

ρ
+

η+

pave

)
κΣf1, (3.20a)

∇ · J+
2 + Σa2φ

+
2 =

νΣf2φ
+
1

k
+

(
Q+ +

E+

ρ
+

η+

pave

)
κΣf2. (3.20b)

We proceed by casting the two-group inhomogeneous Euler-Lagrange equations

into a generalized form:

∇ · J+ + Σ+φ+ = F+φ+ + S+ (3.21)

where we have represented the inhomogeneous adjoint source terms in Eqs. (3.20a)

and (3.20b) as S+. To discretize Eq. (3.21), we integrate the equations across the

mesh volume i with unit thickness in the z direction:

xi+
∆x
2∫

xi−∆x
2

yi+
∆y
2∫

yi−∆y
2

dxdy
(
∇ · J+ + Σ+φ+

)
=

xi+
∆x
2∫

xi−∆x
2

yi+
∆y
2∫

yi−∆y
2

dxdy
(
F+φ+ + S+

)
. (3.22)

Applying the divergence theorem of Eq. (3.4) to the leakage term and integrating

the remaining terms the same way we did with the forward neutron diffusion equation,

we get:
4∑

k=1

J+
k Ak + Σ+

0 φ
+
0 V0 = F+

0 φ
+
0 V0 + S+

0 V0. (3.23)

We proceed to re-write the discretized Euler-Lagrange equation in terms of flux using

the discretized form of the current which unlike in the forward neutron diffusion

equation, is not continuous over all its mesh boundaries. As was derived in Sec 2.4.2,
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a jump occurs in the adjoint current J+ when it is evaluated over a junction at xi:

J+(x−i ) = J+(x+
i )− µ(xi)

pave
κΣf . (3.24)

Applying this jump condition to the junction between mesh 0 and mesh 1 in Figure

3.3 where the current J+
1 takes the role of current J+(x−i ) in Eq. (3.24), we get:

J+
1 =

D1(φ+
1/2 − φ

+
1 )

∆x0/2
− µ1

pave
κΣf0 (3.25)

where φ+
1/2 is the boundary adjoint flux between mesh 0 and mesh 1 and calculated

as:

φ+
1/2 =

D1φ
+
1 ∆x0 +D0φ

+
0 ∆x1

D1∆x0 +D0∆x1

. (3.26)

We have chosen the notation scheme to represent the current of mesh J+
k =J+ · n̂ as

the inward-facing current J+(x−i ) on each of the mesh boundaries. This would imply

that if the junction occurs on a different side of the mesh in Figure 3.3, the sign of

the jump term in Eq. (3.25) would still be the same. Inserting Eq. (3.26) into Eq.

(3.25), we get:

J+
1 =

2D0D1(φ+
0 − φ+

1 )

D1∆x0 +D0∆x1

− µ1

pave
κΣf0. (3.27)

We can now add this current term containing the jump parameter with the remaining

current terms for mesh 0 to represent the discretized leakage term as:

4∑
k=1

J+
k Ak =

4∑
k=1

ck(φ
+
0 − φ+

k )− µ1

pave
κΣf0A1. (3.28)

We can easily extend this exercise for a mesh that contains more than one junc-

tion boundary by simply adding more jump terms to the leakage term for every

additional junction boundary. So in general for a mesh with M junction boundaries,
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the discretized leakage term is:

4∑
k=1

J+
k Ak =

4∑
k=1

ck(φ
+
0 − φ+

k )−
M∑
m=1

µm
pave

κΣf0Am. (3.29)

Then we arrive at an expression of the discretized Euler-Lagrange equations for a

mesh with M junctions as:

4∑
k=1

ck(φ
+
0 − φ+

k ) + Σ+
0 φ

+
0 V0 = F+

0 φ
+
0 V0 + S+

0 V0 +
M∑
m=1

µm
pave

κΣf0Am (3.30)

where we have placed the jump term on the right hand side of Eq. (3.30).

3.2.2 Inhomogeneous Adjoint Source Terms

If we update the inhomogeneous adjoint source terms in Eq. (3.21) to include the

jump terms, then Eq. (3.30) can be simplified to:

4∑
k=1

ck(φ
+
0 − φ+

k ) + Σ+
0 φ

+
0 V0 = F+

0 φ
+
0 V0 + S+

0 V0 (3.31)

where:

S+
0 V0 =

(
Q+ +

E+
0

ρ
+

η+
0

pave

)
κΣf0V0 +

M∑
m=1

µm
pave

κΣf0Am. (3.32)

Next, we proceed to build the inhomogeneous adjoint source terms in Eq. (3.32) for

each energy group by finding the values of the adjoint variables in the following order:

1. inequality Lagrange multiplier η+,

2. adjoint burnup E+,

3. adjoint power Q+, and

4. jump parameters µ.
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The jump parameters are actually a by-product of the inequality Lagrange multiplier

η+, but are treated as a separate variable because it is determined from posteriori

knowledge [30].

3.2.2.1 Inequality Lagrange Multiplier

The inequality Lagrange multiplier η+ is partially determined by the KKT condi-

tion in Eq. (2.21) which says that it is zero in unconstrained regions and non-negative

in constrained regions. To obtain a representation in the constrained region, the con-

trol optimality condition from Eq. (2.79) can be used to get:

η+
ij = −pave

[
φ+
ij
T ∂L
∂u
φij

∂κΣfij

∂u
φij

+

(
Q+ +

E+
ij

ρ

)]
. (3.33)

3.2.2.2 Adjoint Burnup

The adjoint burnup E+ is determined from the terminal condition in Eq. (2.74)

and its incremental value at the end of each time step by Eq. (2.81). Because adjoint

equations are solved backwards in time, the initial value of adjoint burnup is obtained

from the EOC burnup variable E for each mesh (i, j) as:

E+
ij (τ) = Eij(τ)− E(τ). (3.34)

Then at the end of each adjoint step, an incremental change of the adjoint burnup

is calculated using the converged adjoint flux φ+ and the determined values of Q+,

initial E+ and η+ of that time step by:

∆E+
ij = −

[
φ+
ij
T ∂L

∂E
φij +

(
Q+ +

E+
ij

ρ
+

η+
ij

pave

)
∂κΣfij

∂E
φij

]
∆t. (3.35)

The partial derivatives of the cross sections were calculated from the forward run

when the cross sections and burnup variable E were determined at each time step.
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3.2.2.3 Adjoint Power

The adjoint power is only partially described from the optimality condition in Eq.

(2.76) which indicates that the adjoint power is a constant value. We are able to obtain

an expression for the adjoint power by using the Fredholm Alternative condition

that is required for the solution of the inhomogeneous Euler-Lagrange equation and

inserting the adjoint source term S+ from Eq. (3.32) into Eq. (2.32). Then using the

solution of η from Eq. (3.33), we obtain an expression of Q+ in terms of the jump

parameter µ:

Q+ = −

∑I
i=1

∑J
j=1

(
E+
ij +

ηij
pave

)
pijVij +

∑Mij

m=1
µm
pave

κΣfijAm∑I
i=1

∑J
j=1 pijVij

(3.36)

where

pij = κΣfijφij. (3.37)

3.2.2.4 Jump Parameter

The jump parameters µ have a unique position in our adjoint solution because its

optimal value can only be determined after an initial solution for the adjoint flux φ+

is found. However since we need to assign a value for the jump parameters µ to find

a solution for the adjoint flux φ+ in the first place, we need to iteratively solve for

its optimal value. So we begin by initially making a guess for the jump parameters

µ, solve for the adjoint flux φ+, and then find the optimal jump parameters from

another optimality condition.

To locate the optimality condition that can be used to find the value of the jump

parameters, we must first understand the role of the jump parameters within the

Euler-Lagrange equations. For this purpose, we can take a closer look at the adjoint

power equation in Eq. (3.36). It becomes clear in this equation that the jump param-

eters µ will directly affect the magnitude of Q+ since it is located in the numerator.
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Since µ is a non-negative number by its definition in Eq. (2.44), its value will only

increase or decrease the magnitude of the adjoint power, and not change its sign.

Since the adjoint power is a constant value determined through Fredholm Alterna-

tive, it acts as the eigenvalue for the Euler-Lagrange equation. So modifying the jump

parameters will only modify the magnitude of the adjoint power, and consequently

modify the magnitude of the adjoint flux solution.

So the most appropriate optimality condition to use for finding the optimal jump

parameters is the normalization optimality condition:

∫
X

∫
Y

dxdy

(
φ+T ∂L

∂k
φ

)
=
∂J

∂k
. (3.38)

In the case where the objective function J does not contain the state variable

k, then the optimal junction parameters cannot be determined from this equation,

which is the case for the EOC objective function representing a flat burnup. In this

scenario, the jump magnitude then becomes irrelevant because the magnitude of the

adjoint flux φ+ is inconsequential to the determination of the optimal control. This is

because the adjoint flux information is only used in the unconstrained region where

we are interested in the gradient ∂H/∂u, and not its magnitude, to find the optimal

control. The gradient ∂H/∂u is paired with a control length used within an iterative

scheme to determine the most optimal control that minimizes the Hamiltonian, as

discussed with Eq. (2.49).
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3.2.3 Solving the Euler-Lagrange Finite-Difference Equations Iteratively

The discretized Euler-Lagrange equation (3.31) can be re-written for a generalized

mesh at (i, j) to arrive at the following discretized form:

aijφ
+
i−1,j + bijφ

+
ij + cijφ

+
i+1,j + dijφ

+
i,j−1 + eijφ

+
i,j+1 = F+

ij φ
+
ij + S+

ij (3.39)

where aij through eij are the same as in Eq. (3.16) with M+ = M and

F+
ij φ

+
ij = F+

0 φ
+
0 V0, S+

ij = S+
0 V0.

Then the matrix form of Eq. (3.39) is:

M+φ+ = F+φ+ + S+ (3.40)

where the loss term M+ is the same as the 5-band matrix M in Figure 3.2 since it only

contains the diagonal terms in L+, the production term F+ is a matrix containing the

adjoint production terms, and the adjoint flux φ+ and inhomogeneous adjoint source

S+ are column vectors. To solve the matrix system in Eq. (3.39), the power-source

iteration is used to incorporate the inhomogeneous adjoint source term and solve for

the adjoint flux. For an initial adjoint flux guess of φ+
0 = 0, the evolution of the

power-source iteration is given by:

S+ = M+φ+
p1

S+ + F+φ+
p1 = M+φ+

p2

S+ + F+φ+
p2 = M+φ+

p3

...

S+ + F+φ+
p(n−1) = M+φ+

pn

(3.41)
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We have introduced a subscript p in Eq. (3.41) to denote that the adjoint flux

solution that we are interested in is the particular solution. In theory, the particular

solution should propagate through the power-source iteration if we begin with φ+
0 = 0

as the initial guess, but that is not always the case. Fundamental mode contamination

could be introduced into the particular adjoint flux solution during the iterations

such that the Fredholm alternative condition in Eq. (2.32) is no longer satisfied in

the calculation of Q+. A method that could be used to remove the fundamental

mode contamination during the iteration as proposed by Oblow [38] is to define

a contaminated solution φ+
c to be the solution of Eq. (3.41) and sweep out the

contamination by using the Fredholm alternative condition during the power-source

iteration. We recall that the Fredholm alternative condition from Eq. (2.32) states

that: 〈
φ, S+

〉
= 0 (3.42)

where φ is the solution from Eq. (3.17):

Mφ = Fφ. (3.43)

This Fredholm alternative condition cannot be used during the power-source it-

eration in the form that is in Eq. (3.42). So we find an expression for the Fredholm

alternative condition in terms of φ+
p by using Eqs. (3.41), (3.42) and (3.43) together

with the properties of adjoint operators:

〈
φ, S+

〉
=
〈
φ,M+φ+

p1

〉
=
〈
φ+
p1,Mφ

〉
=
〈
φ+
p1, Fφ

〉
=
〈
φ, F+φ+

p1

〉
= 0〈

φ, F+φ+
p1

〉
=
〈
φ,M+φ+

p2

〉
=
〈
φ+
p2,Mφ

〉
=
〈
φ+
p2, Fφ

〉
=
〈
φ, F+φ+

p2

〉
= 0〈

φ, F+φ+
p2

〉
=
〈
φ,M+φ+

p3

〉
=
〈
φ+
p3,Mφ

〉
=
〈
φ+
p3, Fφ

〉
=
〈
φ, F+φ+

p3

〉
= 0

...
...

...
...

...〈
φ, F+φ+

p(n−1)

〉
=
〈
φ,M+φ+

pn

〉
=
〈
φ+
pn,Mφ

〉
=
〈
φ+
pn, Fφ

〉
=
〈
φ, F+φ+

pn

〉
= 0.

(3.44)
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Now we can implement the Fredholm alternative condition on the jth iteration in

the power-source iteration by satisfying:

〈
φ, F+φ+

pj

〉
=
〈
φ+
pj, Fφ

〉
=

〈
φ+
pj,
∂L

∂k
φ

〉
= 0. (3.45)

This equation will also satisfies the optimality condition in Eq. (2.77) for the depletion

optimal control problem. By defining the contaminated adjoint flux solution during

the power-source iteration as:

φ+
cj = φ+

pj + αφ+
h , (3.46)

and inserting it into Eq. (3.45), we obtain the value of α as:

α =

〈
φ, F+φ+

cj

〉〈
φ, F+φ+

h

〉 . (3.47)

Then at the end of every power-source iteration, we can remove the fundamental

mode contamination and satisfy the optimality condition (2.77) by performing the

following calculation:

φ+
pj = φ+

cj −
〈
φ, F+φ+

cj

〉〈
φ, F+φ+

h

〉φ+
h . (3.48)

3.3 Fuel Assembly Cross Sections

To perform the calculations for our optimal control problem, we prepare a cross

section library for the fuel assemblies that will be used in our study. We have selected

the AP600 reactor as our test reactor and CASMO-4 as the lattice physics code

to generate our cross section library. CASMO-4 is a multi-group two-dimensional

transport code using collision probability calculations developed by Studsvik. It is a

production computer code which makes it user friendly and can be readily applied

to geometries consisting of cylindrical fuel rods of varying composition in a square
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pitch. This makes it a very good candidate for our test reactor.

The cross section generation with CASMO-4 was based on the AP600 reactor

parameters such as the operating temperature, pressure and power density. The core

is rated at 1933 MW thermal power with an active core height of 12 feet. Each

fuel assembly is modeled with fuel rods, BP rods, instrument tubes and guide tubes

that meet the specifications from the SSAR. The fuel assembly designs were based

on the available fuel assembly arrangements in the SSAR and extended to include

combinations of fissile enrichment of 2 wt%, 2.5 wt% and 3 wt% with the number of

BP rods equal to 0, 4, 8, 9, 10, 12, 16 and 24. The BPs were assigned a natural boron

content of 3.845 wt%. The purpose of our extended library is to provide more data

points during the iterative numerical calculations and help the problem converge more

smoothly. The fuel assemblies were depleted over fuel burnups of 0, 0.5, 1 through

20 MWD/kgHM in increments of 1.0 MWD/kgHM. Branch calculations were also

performed for different critical boron concentrations between 0 and 1,300 ppm. All

this makes up our four-dimensional cross section library based on fissile enrichment,

number of BPs, fuel burnup and critical boron concentration.

3.3.1 Thermal Feedback Correction

For the treatment of thermal feedback in our fuel assembly cross sections, we apply

a correction to the macroscopic cross sections after the power distribution has been

determined during our solution of the neutron diffusion equations. We have chosen to

represent the Doppler feedback and moderator density feedback in our calculations,

representing the two main feedback effect in PWRs using methods applied in the

Westinghouse ANC global code. For the Doppler model, we calculate the effects of

Doppler on the fast absorption cross section by

Σa1(P ) = Σa1(P = 1) +
a1P

1 + a2P
− a1

1 + a2

, (3.49)
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where P is the normalized power density and a1 and a2 are fitted parameters which

are obtained from the ANC code.

For the moderator density feedback, the corrections are made based on the dif-

ferences between the actual water density derived from the enthalpy rise from the

reference values that were used during the cross section generation. We begin by

finding the enthalpy rise in the channel based on the relative power and then calcu-

lating the average enthalphy, H. This allows us to calculate the water density using

a quadratic fitting using steam tables:

ρ(H) = a+ bH + cH2 (3.50)

where a, b and c are fitting parameters. Once we have the water densities, we can

find the changes in the water and boron number densities as given by

δNw = 0.03344 · (lc · (ρ− ρref ) + lrρ), and (3.51a)

δNB = 0.03344 · (lc + lr) · ρ · f · ppm · [(B10)/19.78], (3.51b)

where B10 = 19.90 represents the isotope content in natural boron, lc is the liquid area

per unit area of the cell, lr is the correction to the wet fraction to account for BP rods,

the factor 0.03344 is the conversion between atoms and grams for water (assuming

the microscopic cross sections will be in barns), and the factor f=3.295x10−7 converts

from parts per million to actual grams of B10. Then the calculation for the modified

absorption cross sections due to moderator density feedback is given by:

Σa = Σa + δNwσwa + δNBσBa . (3.52)
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3.4 Verification of Discretized Forward Equations and Cross

Section Library

For verification of the discretized forward equations, cross section library gener-

ation and the thermal feedback modeling, we have benchmarked the first cycle fuel

loading in the AP600 reactor using the information and results from the SSAR as

well as results obtained from the APA code package. The APA package is the West-

inghouse core design system comprising the ALPHA, PARAGON and ANC codes.

PARAGON is the lattice physics code that generates the cross section libraries and

ANC is the global code that runs the core simulations. ALPHA is the script that sets

up the input files for PARAGON and communicates the appropriate data to ANC.

The APA package is well suited to simulate PWR operations and its neutronic code

employs a nodal expansion method for calculating core reactivity and assembly-wise

data including power and burnup distributions.

Using the fuel loading design of the AP600 reactor from the SSAR, the eight fuel

assembly designs that are used in the reactor were modeled with both CASMO-4 and

PARAGON to generate the burnup-dependent fuel assembly cross sections. Due to

the lack of information on the reflector details of the reactor in the SSAR, both in the

radial and axial reflectors, we created our own model for the reflectors. The reflector

models were based on a mixture of steel and water. We then applied the CASMO-4

cross section libraries to our DMCO code and solved the set of forward equations

(neutron diffusion, power normalization and fuel burnup equations) for the first cycle

of the reactor. Likewise we performed the core simulation with the ANC code using

the PARAGON cross section libraries for the same first cycle run. We performed our

benchmarking exercise by comparing the BOC relative power distribution in Figure

3.4 and the critical boron concentration as a function of fuel burnup in Figure 3.5.

The relative fuel assembly power distributions for the three cases show reasonable
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Figure 3.4: Relative power distribution benchmarking for AP600
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Figure 3.5: Critical boron concentration benchmarking for AP600
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agreement, with the most distinct difference being the peak power assembly with rel-

ative power of 1.252 in the SSAR located near the mid-core is shifted to the periphery

in the ANC and DMCO simulations. This is mainly attributed to the difference in the

reflector cross sections used in the ANC and DMCO simulations, which apparently

are different from those used in the SSAR calculation. Otherwise the maximum and

minimum assembly power values from the DMCO and ANC cases agree within 5%,

with larger differences observed from the SSAR results. The critical boron letdown

curves over the fuel burnup also shows reasonable agreement between the DMCO and

ANC results in Figure 3.5, but larger differences with that of the SSAR data, which

appear to represent a more reactive core. With differences that could be attributed to

the reflector cross sections and cross section data library among other reasons, we are

satisfied enough to say that our discretized forward equations, cross section libraries

and feedback model are within an acceptable tolerance level from the results obtained

from SSAR and ANC.

3.5 Verification of Discretized Euler-Lagrange Equations

Next we wish to verify the discretized Euler-Lagrange equations and the support-

ing adjoint equations by benchmarking the results from our code with a simplified

analytical problem that allows us to solve for the adjoint variables by hand. For this

purpose, we employ a one-dimensional, one-group problem in the axial geometry z

of the reactor without any reflectors. We choose the BP macroscopic cross section

ΣBP as the control and select the maximization of reactivity represented by the mul-

tiplication factor k as the objective function. We perform the optimization for the

steady-state problem, which will simplify the equations without time dependence and

the burnup variable in our equations. The reader is referred to Section 2.4 where the

optimality conditions for this problem were formulated.
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3.5.1 Simplified Analytical Problem in One-Group and 1-D

The simplified analytical problem formulation begins with the objective of the

problem defined as

J = −k (3.53)

where we seek to maximize the multiplication factor k with a negative sign intro-

duced in the objective function. The problem is constrained by the one-group one-

dimensional neutron diffusion equation

Lφ = D
d2φ

dz2
− Σ∗φ = 0 (3.54)

where

Σ∗ = Σ0
a + ΣBP −

νΣf

k
. (3.55)

For this analytical problem, we represent the control ΣBP explicitly in the macroscopic

absorption cross section Σa and lump the other absorption cross sections as Σ0
a.

The problem is also constrained by the power normalization equation:

Ptot =

L∫
0

dz κΣfφ ≡ L (3.56)

and the power peaking inequality constraint:

S(z) =
κΣfφ(z)

pave
− pmax ≤ 0. (3.57)

By introducing the power density variable Q representing the sum of power over core

height z:

Q(z) =

z∫
0

dz′ p(z′) =

z∫
0

dz′ κΣfφ(z′), (3.58)

the power normalization in Eq. (3.56) is converted into a first order differential
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Figure 3.6: Optimal power trajectory for 1-D problem

equation:

dQ(z)

dz
= κΣfφ(z). (3.59)

3.5.1.1 Solution for the Forward Variables

We assume the optimal solution for the power trajectory that satisfies the power

peaking inequality constraint of Eq. (3.57) has one constrained region in the middle

of the core as depicted in Figure 3.6. The power is on the power peaking factor limit

pmax between z1 and z2 which is the constrained region we define.

From the optimal power trajectory, we can obtain the analytical flux solution that

satisfies the one-group one-dimensional neutron diffusion equation (3.54) as:

φ(z) =
pmax
κΣf

sinBz, 0 ≤ z ≤ z1

φ(z) =
pmax
κΣf

, z1 ≤ z ≤ L− z1

φ(z) =
pmax
κΣf

sinB(L− z), L− z1 ≤ z ≤ L

(3.60)
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where z2 is L − z1 by the symmetry of the problem and the optimal buckling B2 is

given by:

B2 =

(
π

2z1

)2

= −Σ∗

D
. (3.61)

Now that we have an analytical solution for the flux, we can use it in the power

normalization equation to find the optimal z1 location of the jump term:

2

z1∫
0

dz
pmax
κΣf

sinBz +

L−z1∫
z1

dz
pmax
κΣf

= L. (3.62)

Solving for z1 yields the optimal jump location:

z1 =
L

2−
(
1− 2

π

) (1− 1

pmax

)
. (3.63)

3.5.1.2 Solution for the Adjoint Variables

Using the method of Lagrange multipliers as derived in Section 2.4, we arrive at

the Hamiltonian for this steady-state optimal control problem in one-dimensional slab

as:

H = −k +

L∫
0

dz

[
φ+Lφ+Q+

(
κΣfφ−

dQ

dz

)
+ η+S

]
(3.64)

where we have dropped the transpose sign of φ+ in Eq. (3.64) because it is no longer

a vector of two-groups, but just a scalar function.

The resulting optimality conditions obtained via the calculus of variations are the

same form as the optimality conditions derived in Section 2.4.1 for the steady-state

problem except we express them here in one-dimensional slab as:

L∫
0

φ+

(
νΣf

k2

)
φ = −1, (3.65)

dH

du
= −φ+φ = 0. (3.66)
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The Euler-Lagrange equation is now written with the jump conditions represented as

a delta function in the continuous form, which is equivalent to the jump conditions

derived in the discretized Euler-Lagrange equations in Eq. (3.31):

−L+φ+ = −Dd
2φ+

dz2
+ Σ∗φ+ =

(
Q+ +

η+

pave

)
κΣf +µ1κΣfδ(z− z1) +µ2κΣfδ(z− z2)

(3.67)

where the adjoint operator L+ is just the same as the L operator for our one-group

problem. We represent two jump terms in the Euler-Lagrange equation as part of

our analytical solution which consists of one constrained region in the middle of the

reactor.

For regions where the inequality constraint is active, Eq. (3.66) requires the

optimal φ+ to vanish only on the constrained region [39]:

φ+ = 0. (3.68)

Then, the value of η+ in the Euler-Lagrange equation is given by:

η+(z) = 0 p(z) < pmax,

= −Q+pave p(z) = pmax.

(3.69)

where the value of η+ in the constrained region was obtained using Eqs. (3.33) and

(3.68) with E+=0 and φ+=0 respectively. We provide here an analytical solution

for the Euler-Lagrange equation, which is a general solution to the inhomogeneous

diffusion equation:

φ+(z) = −Q
+κΣf

Σ∗
[sinBz + cosBz + 1] , 0 ≤ z ≤ z1

φ+(z) = 0, z1 ≤ z ≤ L− z1

φ+(z) = −Q
+κΣf

Σ∗
[sinB(L− z) + cosB(L− z) + 1] . L− z1 ≤ z ≤ L

(3.70)
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The jump terms µ in the Euler-Lagrange equation does not appear in the piecewise

solution of φ+ in Eq. (3.70) explicitly, but through the proper values of Q+ and B.

We are able to solve for Q+ analytically by using our analytical solution of φ and φ+

in the normalization condition in Eq. (3.65) to yield:

Q+ =
D

pmax (1/B3 − z1/B2)
. (3.71)

Finally, we obtain the value of µ by using the Fredholm Alternative condition of

the Euler-Lagrange equation since it takes the form of an inhomogeneous diffusion

equation, which states that:

< φ, S+ >=

L∫
0

dz

[(
Q+ +

η+

pave

)
κΣfφ+ µ1κΣfφδ(z − z1) + µ2κΣfφδ(z − z2)

]
= 0.

(3.72)

Inserting η+ from Eq. (3.69) and φ from Eq. (3.60) into Eq. (3.72), we find the jump

parameter µ in terms of Q+:

Q+ = −µ1κΣfφ(z1) + µ2κΣfφ(z2)

2
z1∫
0

dzκΣfφ

= −µκΣfφ(z1)
z1∫
0

dzκΣfφ

= −µB (3.73)

⇒ µ = −Q
+

B
(3.74)

where we represent one value for µ=µ1=µ2 as a result of the symmetry of the problem.

3.5.1.3 Solution for the Optimal Control

With the solution for the forward and adjoint variables known for our simplified

analytical problem, we can find the optimal control solution in a similar way that was

formulated in Section 2.4.3 when we described the control formulation of our direct

adjoining method. The only difference is instead of using the gradient method in the

unconstrained region, we apply the bang-bang control method, which is ideal for an
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analytical solution. Recall that since the control is linear in the Hamiltonian, it does

not appear in the control optimality condition (3.66) for us to derive its value from

dH

du
= −φ+φ. (3.75)

Instead we use the control optimality condition as a switching function to assign

bang-bang controls which will minimize the Hamiltonian. This is in agreement with

the goal of minimizing our Hamiltonian defined in Eq. (3.64) and will facilitate

the optimization of the objective function through the selection of the control in

the unconstrained region. In bang-bang control problems, the optimal control is

determined by the sign of the switching function:

ΣΓ
BP = Σmax, −φ+φ < 0 (3.76)

ΣΓ
BP = Σmin. − φ+φ > 0 (3.77)

In the constrained region, we use the inequality constraint equation (3.57) to

obtain the control for the region. Since the control ΣBP does not appear in the

inequality constraint equation, we take the spatial derivative of the equation until

the control variable appears. Taking the first spatial derivative yields:

dS

dz
= κΣf

dφ

dz
= 0 (3.78)

which fails to yield the control. So we take another spatial derivative and apply the

neutron diffusion equation from Eq. (3.54) to yield:

d2S

dz2
= κΣf

d2φ

dz2
= κΣf

(
Σ∗φ

D

)
=
κΣfφ

D

(
Σ0
a + ΣBP −

νΣf

k

)
= 0. (3.79)

75



Solving for the optimal control in the constrained region yields:

ΣΓ
BP =

νΣf

kopt
− Σ0

a. (3.80)

Equation (3.80) is simply the flat flux condition where the infinite multiplication

factor k∞ is the optimal effective multiplication factor kopt. The condition of finding

the control in the constrained region in Eq. (3.80) is dependent on knowing the

optimal effective multiplication factor kopt, which is also the objective function of the

problem. We can solve for kopt by using the optimal buckling equation (3.61) for the

unconstrained region to get:

B2 =

(
π

2z1

)2

= −Σ∗

D
= −Σ0

a + ΣΓ
BP − νΣf/k

opt

D
. (3.81)

Using the optimal control solution found for the unconstrained region via the bang-

bang method, we obtain the optimal effective multiplication factor by:

kopt =
νΣf

DB2 + Σ0
a + ΣΓ

BP

. (3.82)

3.5.2 Benchmarking Analytical and Numerical Solution

To quantify the analytical results and provide a benchmark for our numerical

calculations of the Euler-Lagrange equations, we calculate the solution for the forward

state and adjoint variables in the one-group one-dimensional optimal control problem

with some representative values of the macroscopic cross sections. The total power

will represent the total height in the core for the one-dimensional problem. The

macroscopic cross section values and core parameters are included in Table 3.1. We

summarize the results of the analytical model by plotting the analytical solution for

the neutron flux, adjoint flux, switching function and control in Figures 3.7 and 3.8.

The results from the numerical implementation of our code shows a very good

76



-0.008

-0.006

-0.004

-0.002

0.000

0.6

0.8

1.0

1.2

1.4

1.6

Ad
jo

in
t F

lu
x 

(M
J2 s

-1
cm

3 k
g-2

d)

N
or

m
al

iz
ed

 F
lu

x

Normalized Flux Adjoint Flux

-0.014

-0.012

-0.010

0.0

0.2

0.4

0.6

0 60 12
0

18
0

24
0

30
0

36
0

Ad
jo

in
t F

lu
x 

(M
J

N
or

m
al

iz
ed

 F
lu

x

Axial Position (cm)

Figure 3.7: Analytical φ and φ+ solution for 1-D
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Figure 3.8: Analytical switching function and optimal control solution for 1-D
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Table 3.1: Core parameters in one-group 1-D problem

Core Parameters
D = 1.59 cm
Σ0
a = 2.045× 10−2 cm−1

νΣf = 2.471× 10−2 cm−1

Σmax = 1.761× 10−3 cm−1

Σmin = 1.385× 10−3 cm−1

L = 360 cm
Pmax = 1.4

Table 3.2: Benchmarking analytical and numerical solutions for 1-D

Analytical Solution Numerical Solution
Q∗ −2.720× 10−6 cm−2 −3.455× 10−6 cm−2

η 2.720× 10−6 cm−2 3.455× 10−6 cm−2

µ 2.451× 10−4 cm−1 2.707× 10−4 cm−1

z1 141.5 cm 138 cm
z2 218.5 cm 222 cm
J k=1.122 k=1.119

agreement with the analytical results, which converged after 4 iterations. The main

cause for the differences in the analytical and numerical results can be attributed

to the location of the junction. Since we are using mesh sizes of 6.0 cm in our

numerical finite-differencing scheme, we can only allocate the junction position in

increments of 6.0 cm. The number of iterations it took were highly dependent on the

selection method that was employed to determine the junction distributions, which

will be discussed more in the next section. We summarize the benchmarking of

the discretized Euler-Lagrange equations in this chapter by comparing the converged

solution for the adjoint flux, adjoint power and jump parameters with the analytical

solution in Figure 3.9 and Table 3.2.

3.6 Selection Method of Junction Distributions

With the method of directly adjoining the inequality constraint, the core will be di-

vided into regions of constrained and unconstrained fuel assemblies. The constrained
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Figure 3.9: Benchmarking analytical and numerical adjoint flux for 1-D

regions represent the fuel assembly locations that will experience the maximum al-

lowable power peaking values. These constrained regions could be distributed in

many different ways, and they need to be determined before we begin to solve the

Euler-Lagrange equations which require information on the junctions that occur at

the boundaries between the constrained and unconstrained regions. This represents

the outer loop around the optimization scheme we have devised in Chapters 2 and

3 because we do not have prior knowledge of the optimal junction distribution and

need to rely on an iterative approach to find an acceptable junction distribution.

An important lesson we learn from the analytical solution is that the locations of

the junctions is strongly coupled with the power peaking factor in the core. This is

evident from the solution of the optimal junction locations z1 in Eq. (3.63):

z1 =
L

2−
(
1− 2

π

) (1− 1

pmax

)
.

We may interpret Eq. (3.63) differently by saying that given a location of the junction
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z1, we will obtain a unique value of pmax in the core. So the selection of a certain

junction distribution will determine the maximum power peaking value in the core.

This represents the criterion for stopping the outer loop iteration on the junction

distribution which occurs when the junction distribution yields a maximum power

peaking that is acceptable.

The method that we have adopted to determine the junction distribution iter-

atively is by defining constrained regions in the core that are above a determined

fraction of the power peaking factor in the initial fuel loading of that iteration. This

is a naturally good idea because we are defining constrained regions based on the

highest power fuel assemblies in the core. We have found that a fraction between

85% to 95% of the power peaking factor in the initial fuel loading of that iteration

yields a more predictable convergence pattern to the desired power peaking factor

in the core. A smaller fraction than 85% may create larger changes in the junction

distribution between iterations, that may cause convergence problem.

To illustrate this method, we use the example of finding the optimal z1 location

in a one-dimensional problem with a desired pmax = 1.4. Beginning with a flat

distribution of the control in the core, the power peaking factor determined from the

forward solution of the neutron diffusion equation is 1.65. Using the fraction of 95%

on 1.65 gives 1.57. Thus we assign all the meshes with the relative power distribution

≥ 1.57 to the constrained region and the rest to the unconstrained region. Solving the

Euler-Lagrange equation with this junction distribution and finding the new control

suggestion, we obtain a new power peaking factor for the updated controls, which is

1.51. Since we have not achieved the desired power peaking factor of 1.4, we repeat

the process with a new junction distribution obtained with the next power peaking

limit of 95% from 1.51, which is 1.43. This exercise goes on until we finally arrive

at the optimal z1 location that yields the desired power peaking factor. The fraction

used to obtain the power peaking limit can be varied by smaller amounts when we
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approach the desired power peaking factor for a more accurate solution of the junction

z1.
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CHAPTER IV

Results for Multi-Control Optimization in PWRs

We are now in a position to apply the numerical equations and iterative scheme

that we developed in Chapters 2 and 3 on a few test cases representing two-group, two-

dimensional problems over a full depletion cycle. In this chapter, we have applied the

DMCO code to automate the optimization process and produce fuel loading designs

that meet the power peaking factor constraint and have a flatter EOC fuel burnup

profile so that the overall discharge burnup can be maximized. This promotes higher

energy production with the same fuel loading and extends the fuel cycle. Initially,

we tackle the challenge of satisfying the power peaking constraints throughout the

cycle with only the control at BOC, which represents one of the bigger challenges

in PWR optimal control problems. Giving this challenge its proper due attention,

we use actual numerical results and explain how we approach to satisfy the power

peaking constraint throughout the cycle.

• In Case A, we demonstrate how the power peaking factor is controlled in a

quasi-steady state step.

• Then in Case B we demonstrate how we may control the power peaking factor

during the cycle, by using the methodology of Case A in a depletion calculation.

• For the verification of our Case B results, we run Case C without power peaking

factor control with the same initial control as in Case B.
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To show the multi-control capability of the DMCO code, we perform Case A

with number of BP rods as the control, and Cases B and C with fissile enrichment

as the control. Next we present the test cases that were used to develop our final

multi-control fuel loading design in two stages of control optimization.

• In Case D, we perform a BP control optimization by selecting a uniform fissile

enrichment distribution in a general checkerboard pattern.

• Finally in Case E, we perform a fissile enrichment control optimization by using

the optimal BP distribution from Case D. This case will represent our final

multi-control fuel loading design featuring the optimal fissile enrichment and

number of BP rods using our optimization code DMCO.

Cases D and E will be benchmarked with the first cycle AP600 performance by using

the same average fissile enrichment in the core. The controls will be rounded off and

grouped into a few fuel assembly types, that are comparable to the number of fuel

assembly types used in the AP600 design.

4.1 Quasi-Steady State Power Peaking Control (Case A)

The quasi-steady state power peaking control refers to the ability of the DMCO

code to satisfy the power peaking inequality constraint for any particular time step.

Recalling that the depletion cycle is divided into intervals of time where each interval

is treated as a quasi-steady state, we use the same calculational path that was de-

scribed in the steady-state iteration in Figure 2.2. Here we will present a two-group

two-dimensional test case and explain in detail how the power peaking constraint is

satisfied iteratively on the quasi-steady state step.

For this test case, we begin with a uniform distribution of 2.2wt% fissile enrichment

and eight BP rods in each fuel assembly. The control that will be employed for

this test case is the BP number density, representing the number of BP rods in
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each fuel assembly. We begin with a relative assembly power distribution in the

core with a maximum value of 2.026 as shown in Figure 4.1. To select the junction

distribution for this iteration, a fraction setting of 90% of the power peaking factor was

selected as described in Section 3.6, which comes out to 1.823. Then the constrained

regions are defined as the fuel assembly regions that are equal to or greater than

this value, and the rest are defined as unconstrained regions. In this example, the

central fuel assemblies will be selected as the constrained regions because that is

where the maximum power distribution occurs. The junction distribution for this

iteration is presented in Figure 4.2 where constrained regions are labeled as index 2

and unconstrained regions are labeled as 0.
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Figure 4.1: Initial relative power distribution for Case A

With the junction distributions defined as in Figure 4.2, the Euler-Lagrange equa-

tion is solved to obtain the solutions of the adjoint variables which are used to build

the normalized search direction that is shown in Figure 4.3. The overall search direc-

tion provides information on how to insert or remove controls in the fuel assemblies
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Figure 4.2: Junction selection on first iteration for Case A

that will minimize the Hamiltonian and optimize the objective function. Since we

are using the objective of maximizing the reactivity for the steady-state problem, the

search direction in Figure 4.3 suggests that we remove the BP rods in the periphery

of the core, where the unconstrained regions are defined. Removing BP rods in those

fuel assemblies will increase the reactivity in the core as it translates to less poison

and higher neutron flux in the core. Since the search direction provides important

information on the direction but not the magnitude of the control selection, a sim-

ple control length search is performed using the bi-section method according to Eq.

(2.50) by testing a few control length values and choosing the one that best minimizes

the objective function.

In the central part of the core where the constrained regions are located, the

search direction is not used because the inequality constraint is active in that region.

So the control is calculated from Eq. (2.63) that was formulated using Newton’s
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Figure 4.3: Normalized search direction on first iteration for Case A

method, essentially yielding the control that achieves a flat flux distribution in the

constrained regions. The result of the optimal control suggestion in both constrained

and unconstrained regions after the first iteration is presented in Figure 4.4. The term

δu in the figure reflects the calculation of the control using the search direction in the

unconstrained region, and the Newton step formulation in the constrained region.

Making the suggested changes to the control for this iteration and repeating the

same procedure as explained here and summarized in Figure 2.2, we finally arrive

at the optimal control distribution of the BP number density summarized in Figure

4.5. The final design shows that BP rods are removed from the periphery of the

core and added to the middle of the core, promoting a flatter power distribution in

the middle of the core with a peaking factor of 1.299 (Figure 4.6). We also see an

improvement in the objective function keff from 1.115 to 1.119 from the initial control

estimate. To a large degree, the improvement in the objective function is influenced

by the magnitude of the control length selected in the unconstrained regions. A larger
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Figure 4.4: δu calculation on first iteration for Case A

control length generally reflects a larger improvement in minimizing the Hamiltonian

and the objective function, but this has to be done in balance to satisfying the power

peaking factor constraint in the constrained regions. Figure 4.7 shows the convergence

of the power peaking factor in the core representing the progression of the junction

selection during the iterations.

4.2 Power Peaking Control during Depletion (Cases B and

C)

The next test case we present demonstrates how we may control the power peaking

during depletion with the control variable at BOC. As we described in Section 2.5.2,

we perform the quasi-steady state power peaking control during the forward depletion

solution to build a desirable burnup path. Then this information is used in the adjoint

depletion calculations which propagates back in time from EOC to BOC. Then we
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calculate the search direction with the gradient ∂H/∂u to find the suggested control

for the next iteration.

To test this method, we perform two test cases beginning from the same initial

loading. Case B demonstrates the power peaking control during depletion as described

in the depletion optimal control flowchart in Figure 2.3. Case C demonstrates a

regular forward depletion calculation followed by the backwards adjoint depletion

calculation, without using the additional quasi-steady state power peaking control as

in Case B. The results from both test cases are compared to illustrate the effects of

our depletion control approach, particularly on the search direction, maximum power

peaking factor and the optimal control.

For these two test cases, we choose to use the fissile U235 number densities as the

control and begin with a fuel loading that does not have a power peaking violation

at the BOC. Instead the power peaking violations occur somewhere in the middle of

the cycle. The reason for this is to show the capability of controlling power peaking
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Table 4.1: Objective function comparison for Cases B and C

Objective Function
Initial 11757
Case B 10833
Case C 11290

during later part in the cycle. After performing the forward and adjoint calculations

for both cases, the search direction is calculated for both cases and presented in a

3-D plot in Figures 4.9 and 4.8 to give a qualitative understanding of the differences

between the two cases. The most significant difference between the two cases is

higher positive values in the periphery of the core for Case C, representing the test

case without depletion control. In terms of fissile enrichment control, this translates

to adding more fuel in the periphery of the core whereas Case B with the depletion

control suggests adding less fissile enrichment in that region. Case B also has larger

negative values in the central region of the core, leading to larger removal of the fissile

material in that region as compared to Case C.

To examine if this is a good recommendation for controlling the power peaking

during the middle of the cycle, we perform a forward depletion run on the suggested

new controls in both test cases and plot their maximum power peaking factor over

the fuel cycle in Figure 4.10. The maximum power peaking factor reduces the most

for Case B, with a large reduction in the power peaking factor at 9 MWd/kgHM to

1.264. This is much lower than Case C which only managed to reduce the power

peaking factor at the same burnup step to 1.314. These results confirm that the

control suggestions from the search direction in Case B promote better control of the

power peaking factor during the depletion as compared to Case C.

We also summarize in Table 4.1 the EOC objective function of Eq. (2.10) for both

test cases, which indicates a lower value of 10,833 in Case B as compared to 11,290 in

Case C. This shows that the objective function is minimized together with the power

peaking factor, which is the ultimate goal of the optimization. The initial and new
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Figure 4.10: Comparison of power peaking factor Cases B and C

control loading for both test cases are presented in Figure 4.11 where we can verify

that indeed less fissile enrichment was added in Case B compared to Case C in the

periphery of the core, which means as a result there is less fissile material in that

region for Case B. Likewise there is less fissile material in the central region of the

core for Case B compared to Case C.

4.3 BP Optimal Control Problem (Case D)

We begin our multi-control optimization by disabling the fissile enrichment control

and selecting the number of BP rods as the control, represented by the BP number

densities to optimize the EOC burnup distribution for a flatter profile. The aim of

Case D is to eventually benchmark the performance of our optimal BP control formu-

lation with the AP600 first cycle loading. So we choose an average fissile enrichment

distribution in our loading that is the same as the AP600 first cycle loading arranged

in a general checkerboard distribution. We arrive at the general checkerboard distri-
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Figure 4.11: Initial and optimal fissile U235 number densities for Cases B and C

bution by first distributing fuel assemblies with 2.0wt% and 2.5wt% fissile enrichment

in the middle part of the core with a checkerboard design. Then the remaining fuel

assemblies in the periphery is loaded with 3.0wt% fissile enrichment such that the av-

erage fissile enrichment in the core is 2.5wt%, which is the same as in the AP600 first

cycle loading. The reason we select a general checkerboard design for the fissile con-

trol distribution is to search the decision space for a checkerboard-like loading design,

which would be comparable to the AP600 loading, which is a modified checkerboard

design. As for the BP control distribution that will be optimized in this test case,

we begin without any BP rods in the core, so that we begin from an unbiased initial

control position. The initial fissile enrichment distribution is presented in Figure 4.12

and the EOC burnup distribution for this initial loading design is shown in Figure

4.13.

To summarize the evolution of the depletion optimization iterations for Case D,
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Figure 4.12: Initial controls for Case D
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Figure 4.13: Initial fuel burnup distribution at EOC for Case D

94



we present in Table 4.2 the following significant results:

• maximum power peaking factor,

• EOC flat burnup objective function,

• BOC critical boron concentration,

• EOC burnup peaking factor, and

• cycle length in equivalent full power days (EFPDs).

After performing eight depletion optimization iterations, we arrived at an optimal

fuel loading design in the 7th iteration that satisfied the power peaking constraint

of 1.3 and improved the objective function from 147 in the first iteration to 135.

The cycle length also reached a maximum of 530.6 EFPDs on the optimal iteration.

The optimization iterations showed a general improvement of the objective function

until the 8th iteration when the value started going up. This was the point where

we stopped the optimization iterations as we have reached a local minimum for the

objective function. Any further progress in the iterations would also point to a lower

BOC critical boron value, which may not be desirable since effectively more BP rods

are being added into the core. The optimal EOC burnup distribution in the 7th

iteration is presented in Figure 4.14 which shows a flatter profile compared with the

initial burnup distribution in Figure 4.13. We note that the EOC burnup peaking

factor tracks closely with the objective function in Table 4.2, although not exactly. As

we would expect, the EOC burnup peaking factor is never greater than the maximum

power peaking factor.

The optimal BP distribution that is obtained after the 7th iteration is not readily

applicable because it appears in various fractional values. For practical applications,

such a control solution is not meaningful because we would need to design many fuel

assemblies to closely match the various BP control fractions. Instead BP designs in
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Table 4.2: Evolution of key parameters in Case D

Iteration
Number

Maximum
Power

Peaking
Factor

Objective
Function

BOC Critical
Boron

Concentration
(ppm)

EOC
Burnup
Peaking
Factor

Cycle
Length
(EFPD)

1 1.261 147 1567 1.153 425.7
2 1.232 136 1549 1.154 430.0
3 1.261 142 1339 1.158 459.1
4 1.267 152 1160 1.158 486.3
5 1.235 157 1134 1.165 495.8
6 1.228 142 1088 1.158 506.6
7 1.218 135 942 1.146 530.6
8 1.275 244 827 1.190 391.5
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Figure 4.14: Optimal fuel burnup distribution at EOC for Case D
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Figure 4.15
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Figure 4.15: Optimal controls for Cases D and D*

fuel assemblies are created in incremental values such as 0, 4, 8 BP rods per assembly

so that we minimize the number of BP designs actually manufactured. With this in

mind, we round off the control solution from our optimization scheme to the nearest

whole numbered BP design available and strive to use as few fuel assembly types as

possible. We present our rounded off solution for the optimal BP control in Figure

4.15 with 8 types of fuel assemblies as Case D*, which is the same number of fuel

type assemblies in the first cycle AP600 loading.

This rounding off is the only heuristics we applied to our optimal control selection,

after we completed our optimization scheme without any heuristics. To verify our

optimal control design with BP control, we simulate the fuel loading design for Case

D* that has been rounded off, in the APA code using the same operating conditions

that was used to benchmark the first cycle AP600 loading. The APA power peaking

factor for Case D* plotted in Figure 4.16 verifies that the DMCO power peaking

factor is below the desired 1.3 limit throughout the fuel cycle.
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Figure 4.16: Maximum power peaking verified in APA for Case D*

4.4 Fissile Enrichment Optimal Control Problem (Case E)

We present our final Case E by selecting the fissile enrichment as the control

and disabling the control for the number of BP rods. We use the same objective

function as in Case D to find a flat fuel burnup profile at the EOC. For the BP

control distribution in this test case, we use the rounded optimal BP controls that

were obtained from Case D*. So finding the optimal fissile enrichment distribution in

this test case will represent our solution for the multi-control optimization problem

by developing our own BP and fissile enrichment loading design based on a general

checkerboard loading pattern as the initial loading in Case D. For the initial fissile

enrichment distribution, we select a flat distribution of 2.5wt% fissile enrichment.

Again we emphasize our approach of starting from an unbiased control estimate like

we did in Case D with a flat distribution in the control. The initial fuel loading for

this test case is presented in Figure 4.17 and the initial burnup distribution at the

EOC is presented in Figure 4.18.

After performing eleven depletion optimization iterations, we select the optimal
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Figure 4.17: Initial fuel loading for Case E

8
10
12
14
16

18

20

22

Fu
el

 B
ur

nu
p 

(M
W

d/
kg

H
M

) a
t E

O
C

20-22
18-20
16-18
14-16
12-14
10-12
8-10
6-8

0
2
4
6
8

Fu
el

 B
ur

nu
p 

(M
W

d/
kg

H
M

) a
t E

O
C

Position in Core

6-8
4-6
2-4
0-2

Figure 4.18: Initial fuel burnup distribution at EOC for Case E
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control results on the 10th iteration. A similar table as presented earlier in Case D is

presented here for Case E to summarize the evolution of the depletion optimization

iterations in Table 4.3. The objective function generally trended lower from a high

value of 202 to 90 over ten iterations before starting to show signs of increase in

the following few iterations. The cycle length on the 10th iteration was also the

highest value among other iterations that had an acceptable BOC critical boron

concentration. For reference, the BOC critical boron concentration in the AP600

reactor is 1020 ppm and concentrations much higher than this are undesirable due

to the possibility of the moderator temperature feedback turning positive. We plot

the optimal EOC fuel burnup distribution in Figure 4.19 which shows a much flatter

profile compared to the initial distribution of Figure 4.18.
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Figure 4.19: Optimal burnup distribution at EOC for Case E

The optimal fissile enrichment before and after rounding off is presented in Figure

4.20 as Cases E and E* respectively. The rounding of enrichment values was per-

formed by matching our optimal controls in Case E with one of the three possible

enrichment of 2.0wt%, 2.5wt% or 3.0wt% that are used in the AP600 reactor. During
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Table 4.3: Evolution of key parameters in Case E

Iteration
Number

Maximum
Power

Peaking
Factor

Objective
Function

BOC Critical
Boron

Concentration
(ppm)

EOC
Burnup
Peaking
Factor

Cycle
Length
(EFPD)

1 1.275 202 1289 1.143 653.1
2 1.274 212 629 1.148 364.1
3 1.255 181 864 1.123 504.7
4 1.175 166 850 1.136 498.8
5 1.244 141 820 1.115 484.5
6 1.234 132 692 1.174 412.4
7 1.279 93 760 1.129 454.1
8 1.241 103 972 1.113 558.5
9 1.242 128 971 1.162 558.0
10 1.251 90 971 1.110 558.3
11 1.254 119 1025 1.142 580.0

this rounding process, we also managed to match the average fissile enrichment in

the rounded control design in Case E* with the AP600 value of 2.5wt%. This is done

so that we can attribute any fuel cycle extension to the optimal design of the fuel

loading, and not due to any difference in the fissile enrichment in the core. To verify

this final fuel loading design, which represents our multi-control fuel loading design

in Case E*, it was simulated in the APA code. The results showed that the power

peaking constraint throughout the fuel cycle stayed below the 1.3 constraint limit as

shown in Figure 4.21.

4.5 Benchmarking Test Cases

As a final exercise, we compare all the fuel loading design that we obtained in our

test cases and compare them with the AP600 first cycle performance in Table 4.4.

This includes the BP and fissile enrichment control problems performed in DMCO

(Cases D and E), and their respective rounded BP and fissile enrichment fuel loading

designs that were verified in APA (Cases D* and E*). These four cases are compared

with the AP600 first cycle results obtained with the APA code.
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Figure 4.20
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Figure 4.21: Power peaking factor verified in APA for Case E*
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Table 4.4: Benchmarking test cases with AP600

BP control Fissile
enrichment

control

AP600

Test Case D D* E E* APA
Cycle Length (EFPD) 530.6 526.7 558.3 525.2 517.4
Max Power Peaking Factor 1.218 1.210 1.251 1.295 1.294
Critical Boron Conc. (ppm) 942 934 971 932 962
Ave. Fissile Enrichment (wt%) 2.50 2.50 2.54 2.50 2.50
Total No. of BP Rods 1,269 1,332 1,332 1,332 1,424
No. of Assembly Types N/A 8 N/A 8 8

* Controls have been rounded and simulated in APA.

Overall, the results from cases D* and E* show that our fuel loading designs

for the BP and fissile enrichment control problems have longer fuel cycles than the

AP600 which was the main goal in our study. We are able to extend the cycle length

by 9.3 EFPDs in the fuel loading design for Case D*, and 7.8 EFPDs in the fissile

enrichment control problem of case E*, which represents our final multi-control fuel

loading design. Although our original optimal fuel loadings for Cases D and E had

longer cycle lengths, they are not benchmarked against the AP600 result. This is

because Cases D and E were not simulated in the APA code, and Case E had a

higher average fissile enrichment than the AP600 design. Table 4.4 also shows that

our fuel loading designs in all cases used fewer BP rods than the AP600 design, which

interestingly did not result in a higher BOC critical boron concentration as would be

expected with a minor exception in Case E. The configurations resulting in fewer BPs

and lower BOC critical boron concentrations could be attributed to a more efficient

distribution of the BP rods in our optimal designs.

103



CHAPTER V

Summary and Future Work

5.1 Summary of Work

The main contribution of our study is developing an overall optimization scheme

that employs adjoint information through the optimality conditions derived from

Lagrange multipliers and calculus of variation. Through this formulation, we are able

to minimize the Hamiltonian and achieve our objective to maximize the fuel cycle

length.

1. The overall structure is formulated harmoniously with the satisfaction of the in-

equality power peaking constraint via the direct adjoining method. The method

of selecting the junction distribution developed was equally important in mak-

ing it possible to use the direct adjoining method to avoid convergence problem.

The role of the adjoint burnup and adjoint flux during the adjoint depletion so-

lution was very important to propagate the desired burnup distribution from

EOC to BOC to provide a means of finding the control through the optimality

conditions.

2. To complete the overall optimization scheme in providing the optimal control,

a key contribution in our study was to develop a Newton method approach

in obtaining the optimal control in the constrained region together with the
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optimal multiplication factor. Without this component, the suggested control

is suboptimal because the multiplication factor is not updated with the lat-

est adjoint information and control information from the unconstrained region.

Based on the test case results, the two-region control formulation has proven

to be very effective in controlling the power peaking constraint and optimizing

the Hamiltonian at the same time.

3. Another significant contribution of our study is in formulating our optimality

conditions with multi-controls that are more realistic in terms of number den-

sities rather than macroscopic cross sections. Our formulation also generalizes

the control variable so that either the fissile enrichment or number of BP rods

could be used interchangeably within all the formulations. Our formulation has

not required almost any form of approximation or assumption that may deter

the use of either of the controls. The only approximation that was made was a

minor one for the flux ratio by neglecting the thermal leakage. This was done

for formulation convenience since the effect of the thermal leakage is almost

insignificant on the effective multiplication factor.

In terms of key results, we have been successful in applying the flat burnup distri-

bution objective for the depletion problems. Our test cases D* and E* with rounded

control values achieved an extended fuel cycle of 9.3 and 7.8 EFPDs respectively

compared with the AP600 first cycle performance. Power peaking constraints were

satisfied in both cases. This was accomplished with fewer BP rods in the core which

did not lead to an increase in BOC critical boron concentration. We recall that we

arrived at our final multi-control fuel loading design in Case E* resembling a modified

checkerboard design, starting from an initial general checkerboard fissile enrichment

distribution and flat control estimates. The DMCO results with the UM2DB code

for Cases D and E showed an even longer fuel cycle with an additional 13.2 and

40.9 EFPDs, respectively, for the BP and fissile enrichment control problem. To be
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fair, Case E had a slightly higher average fissile enrichment in the core of 2.54wt%

compared to 2.5wt% in the AP600 reactor, which contributed partially to the longer

fuel cycle. Finally, although we were not focused on optimizing the run time of the

optimization code, the estimated total CPU time for both our fissile enrichment and

BP control problems with 19 iterations was 4.1 hours. This is based on an average

run time of 13 minutes for each depletion optimization iteration described in Figure

2.3.

At the beginning of our study, we explored the idea of applying Newton’s method

as a numerical approach to solving the complete set of optimality conditions. A

lot of time and effort was put into exploring this approach, but it came to an end

because of two reasons. First, application of the Newton step on the control optimality

condition did not produce the control which we initially thought was possible. This

could have potentially resolved a big issue with the missing control variable from the

control optimality condition. However, it would have involved taking a variation on

the microscopic cross section, which would not be meaningful in our optimization

problem. Second, we found that we could not solve the set of optimality conditions

in an alternate way by using the control optimality condition to derive other system

variables instead of the control variable. On the bright side of this, we are able to

use the Newton method in an efficient manner for the forward system equation to

provide a means of solving for the optimal control and optimal multiplication factor

simultaneously in our iterative numerical approach.

5.2 Future Work

1. A natural progression of our work would be to develop fuel loading designs

for either an equilibrium fuel cycle or a reload core. This would extend the

application of our optimization method to different situations where both these

cases may involve some form of integer programming or heuristic applications to
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limit the possible selection of the fuel loading controls to the available inventory.

In our study, we applied a simple heuristic application by rounding and matching

our fractional optimal control solutions to arrive at fuel assembly types similar to

the AP600. Our basic formulation involving a continuous form of optimization

may not interface effectively with the heuristic matching of fuel assembly types.

This could be a starting point for applications to the equilibrium fuel cycle or

reload core by matching to only the assembly types available in the inventory.

However, it may be necessary to incorporate the heuristic matching during

the optimization iteration to achieve good results, but this will require care in

handling the convergence of the problem whenever heuristics are applied during

the optimization process.

2. Another possible future work is to extend our study to a three-dimensional opti-

mal control problem and develop intra-assembly fuel loading designs. So instead

of optimizing the location of fuel assemblies within the core with homogenized

fuel assembly cross sections, the optimization is performed by controlling the

positions of fuel pins and BP rods within a fuel assembly itself. The power

peaking constraints would now be pin-to-pin power peaking factors instead of

averaged power peaking factors in a fuel assembly. It may also make sense for

this optimization problem, albeit challenging, to consider the third dimension

of the problem and account for Fq which is the ratio of the power density of the

pin divided by the power density of the core. The optimization code will need

to be applied to the lattice physics code combined with the global code.

3. Another area of study that could be performed is to extend our sequential

multi-control optimization scheme to a simultaneous multi-control optimiza-

tion scheme. Modifications would need to be made on the control optimality

condition as it would involve taking a vector derivative of the control vector u
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on the matrix L in the δL expression in Eq. (2.27). Theoretically we may have

as many control variables in the control vector and turn the problem into a 2,

3 or 4 multi-control problem. Possible additional controls could be BP boron

content, or other isotopes such as plutonium or thorium which could be applied

for a reload fuel cycle. In addition to a systematic way to relate the operator

variation δL to various controls, secondary effects between the controls need

further attention. δL needs to be evaluated for a control vector and additional

equations may be required to relate the control variables to each other to avoid

an underdetermined system.

4. Further work could also develop a different method of determining the junction

distributions iteratively. The junction distribution search was implemented as

an outer iteration in our optimization scheme, which was performed manually

by selecting a scalar value representing the desired fraction of constrained and

unconstrained region in the core based on the relative power. A more sophisti-

cated approach is to bring the junction distribution search into the optimization

iteration by defining a new variable for the jump locations. For example in a

one-dimensional problem, the junction distributions could be represented by

variables z1, z2, etc. This would yield additional optimality conditions due to

the additional variables, that could yield a method for finding the optimal values

for z1 and z2.

5. Finally, another proposed future work could develop methods for producing

checkerboard type of loadings from completely flat fissile enrichment and BP

distribution. In our study, we began from an initial loading with some form of

general checkerboard design, for one control that was not active. This allowed

our fuel designs to look for optimal distributions with similar checkerboard

designs. It may be possible to promote a checkerboard design by developing
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a new selection method of the junction distributions since the constrained re-

gions would have a significantly different control from the unconstrained regions.

Along the same lines, perhaps the bang-bang control could be used to achieve

more checkerboard fuel loading designs. However, care needs to be given when

applying any large stepwise change to the controls so that convergence prob-

lems does not arise during the iterations. Another option could use heuristics

in a colorset fashion to assign different control values within a cluster of fuel

assemblies such that the average control in that cluster is the desired control.
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APPENDIX A

Newton’s Method

Newton’s method (also known as Newton-Raphson method) is a popular tool in

numerical analysis. It is a method of successively finding better solutions to the roots

(or zeroes) of a function by using the slope of the function. The general idea behind

Newtons method is to begin with an initial guess x0 that is reasonably close to the

true root (refer to Figure A.1). Then the function is approximated by its tangent line

and the x-intercept of this tangent line is found. This x-intercept will typically be a

better approximation to the function’s root than the original guess, and the method

is iterated upon until the true root is found.

The general formulation for Newton’s method or often referred to as taking a

Newton step, is represented as

xn+1 = xn −
f(xn)

f ′(xn)
. (A.1)

so that xn+1 will be an improved root of f(x).
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Figure A.1: Newton’s Method to find the root of f(x)

In our research, the form of Newton step is in terms of δx:

δx = − f(xn)

f ′(xn)
. (A.2)
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