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Abstract 
 

Rivers are advective, largely unidirectional ecological networks whose spatial patterning 

reflects both catchment and network structural characteristics. I used a headwaters-to-mouth, 

longitudinal, high-frequency-spatial sampling design to facilitate analyses of the extent and 

variability of spatial patterning in Midwestern river systems and to test alternate hypotheses 

about the underlying causes of biological spatial autocorrelation. These analyses establish the 

conceptual validity of channel segment based classifications used in management settings, and 

provide guidance for appropriate survey sampling design and statistical analyses in river 

systems. 

In the first study I tested the theoretical assumptions underlying the mapping and 

practical application of riverine ecological units (EUs) within a river mainstem. EUs require 

concordance between fish and invertebrate assemblage composition and between biological 

assemblages and environmental variables. Along the Lower Muskegon River mainstem, 

fish/invertebrate concordances and many environment/biology concordances were strong, 

resulting in distinct, homogeneous biological assemblages that persisted through time. 

In the second study I tested the same theoretical assumptions of EUs in a variety of 

disjunct river tributary systems in Michigan and Ohio. Although fish/invertebrate and 

environment/biology concordances were very strong in all of the tributaries, downstream 

tributary channels with substantial stream flow were the only contiguous stream segments with 

similar environmental and biological character. This suggests a better understanding of spatial 
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pattern and processes in headwater streams is needed to guide effective EU delineation in 

tributaries. 

In the third study I explored a common feature of spatial patterning, positive spatial 

autocorrelation (SAC). SAC was common in both environmental variables and fish assemblage 

composition, although the magnitude of SAC varied by measure and spatial extent. Strong 

environment/biology associations accounted for most or all of the SAC in biological 

assemblages, offering strong support for niche processes as the origin of biotic SAC in these 

river systems. Likewise, proximity effects on biological assemblages were largely mediated 

through similarity in the environment. 

My work here suggests that EUs do provide realistic units to map, inventory, and classify 

river segments for practical management, and provide a way to abstract and communicate the 

complex ecological processes and patterns that are characteristic of river ecosystems.
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Chapter 1 : Dissertation introduction and overview 

River ecosystems 

Rivers are diverse ecosystems and unique in that they are strongly directional, 

transporting both water and material downstream. Although rivers are frequently described as 

linear systems, growing from small, ephemeral trickles to comparatively gigantic flows at the 

river mouth, viewing rivers as “linear” ignores the network aspect of river structure. The specific 

arrangement and shape of a river network can shape ecological pattern and processes by 

restricting movement and creating patches of physical habitat (Benda et al. 2004, Grant et al. 

2007). River networks also flow from, and are shaped by, their landscape catchments. 

Hydrological, chemical, and biological characteristics of a stream or river reflect the climate, 

geology, landforms, and land use/land cover of its drainage basin (Hynes 1970, Oglesby1972, 

Likens et al. 1977, Newsom 1994, Johnson et al. 1997). Therefore, it is widely acknowledged 

that riverine environments and organisms are influenced by both local- and landscape-scale 

factors (Wang et al. 2006). In addition to perennial channel systems, rivers can have floodplains 

shaped by variation in disturbance frequency, and characterized by a high degree of habitat 

heterogeneity, spatial-temporal fluxes of materials, and complex biological associations 

(Tockner and Stanford 2002, Baker and Wiley 2009). In total, these distinctive riverine 

characteristics have encouraged a holistic view of rivers as complex “Landscapes” or 

“Riverscapes” (Fausch et al. 2002, Wiens 2002). 

http://wgbis.ces.iisc.ernet.in/biodiversity/pubs/ETR/ETR_23/ref.htm#36
http://wgbis.ces.iisc.ernet.in/biodiversity/pubs/ETR/ETR_23/ref.htm#6
http://wgbis.ces.iisc.ernet.in/biodiversity/pubs/ETR/ETR_23/ref.htm#6
http://wgbis.ces.iisc.ernet.in/biodiversity/pubs/ETR/ETR_23/ref.htm#46
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Because river catchments house humans, rivers are also often imperiled ecosystems 

(Warren and Burr 1994, Abromovitz 1996, Graf 1999, Allan 2004). This recognition that human 

actions can negatively impact river ecosystems drives my personal desire to conduct research 

that contributes to advances in fluvial ecosystem management. Ecosystem managers seek to 

protect the environment from anthropogenic pollution, maintain healthy ecosystems, permit 

sustainable development, and preserve biodiversity (Brussard et al. 1998). As such, ecosystem 

managers focus on ecological systems as a whole rather than on just some of their parts. If 

ecosystem management principals are applied to river ecosystems, this holistic focus requires an 

operational understanding of the hydrologic, geomorphic, chemical, and biological 

characteristics of rivers. My dissertation takes such an approach and explicitly addresses three 

(of ten) dominant themes in ecosystem management identified by Grumbine (1994): 1) 

Recognition of ecological boundaries with a “systems” perspective starting with consideration of 

spatial and temporal scales and hierarchical relationships, 2) Maintenance of ecological integrity 

to protect diversity as well as the ecological patterns and processes that maintain diversity, and 3) 

Use of empirical data to understand pattern and process in ecosystems and to monitor ecological 

change. 

Spatial pattern in rivers 

The over-arching theme for my dissertation is spatial pattern in river ecosystems. I build 

on a large body of literature describing the physical and ecological structure of rivers; a literature 

that has included numerous debates as to how to best describe and explain the spatial patterns 

observed in rivers and the universality of described spatial patterns. 

In the context of the physical features of rivers, geomorphologists described self-

similarity and variety in river networks by developing and analyzing hierarchical organization of 



3 
 

channel systems, developing the now familiar stream ordering systems and empirical “laws” 

(Horton 1945, Strahler 1952). The configuration of a river network, as structured by topography 

and geology, can also be described by various drainage pattern types (e.g., dendritic, trellis, 

radial, etc.; Howard 1967). Frissell (1986) developed a hierarchical classification system based 

on geomorphic stream habitat. More recently, Benda et al. (2004) proposed a geomorphic 

framework, the “Network Dynamics Hypothesis,” and developed testable predictions of how the 

spatial arrangement of tributaries in a river network interacts with watershed processes to 

influence spatiotemporal patterns of habitat heterogeneity. 

Ecologists have also described spatial pattern in rivers and have conceptualized rivers as 

longitudinal gradients, mosaics of patches, or patchy gradients. Early European stream biologists 

described longitudinal faunal zones of fishes and invertebrates and related these to changes in 

habitat, elevation and temperature as one moved from the headwaters to river mouth (Huet 1959, 

Illies and Botosaneanu 1963). The River Continuum Concept (RCC; Vannote et al. 1980) 

described common spatial and temporal downstream changes in channel morphology, biota, and 

ecosystem processes over many stream orders. In response to the RCC’s disregard for tributaries, 

Perry and Schaeffer (1984) and Minshall et al. (1985) proposed adjustments to the RCC that 

accounted for tributaries, while others eschewed the RCC completely in favor of a view of the 

river “discontinuum” (Perry and Schaeffer 1987, Townsend 1998, Montgomery 1999, and Rice 

et al. 2001). Poole’s “Fluvial Landscape Ecology” (2002) and Thorp et al.’s (2006, 2008) 

“Riverine Ecosystem Synthesis” recognize rivers as patchy gradients, based on longitudinal 

hydrogeomorphic patterning. 

Although documenting spatial pattern in rivers is itself interesting, maintaining river 

diversity requires knowledge about the origin of those spatial patterns. Most of the 
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aforementioned descriptions of spatial pattern in rivers are likely to produce positive spatial 

autocorrelation (SAC) within river ecosystems. A common statistical property, SAC is the 

tendency for more proximal locations to have more similar characteristics. Ecologists have 

developed two opposing theories about the origin of SAC in biological assemblage composition: 

1) environmental control and species sorting (Whittaker 1956, Hutchinson 1957) and 2) neutral 

theory (Hubbell 2001). Although these two theories can produce similar spatial patterns in 

assemblage composition, understanding the relative contribution of these sources of SAC has 

important consequences for understanding the functioning of ecosystems, for the conservation of 

biodiversity, and for ecosystem management (Legendre 2005). 

An example of ecosystem management based on riverine spatial pattern 

One particular ecosystem management approach that has been applied in both terrestrial 

and aquatic systems is the delineation of ecological units (EUs) and subsequent classification of 

these units into ecological “types” that can be related to management options/actions. EUs are 

defined as spatially contiguous areas with relatively homogeneous environmental and biological 

features. In theory, they are holistic, in the sense that they represent both environmental patterns 

and the biota’s “perception” of the environment. EUs are conceptualized as real, persistent, and 

map-able places that may be repeated across a larger landscape (Rowe 1961). 

If riverine EUs exist, attributed maps of such units would be a valuable asset for aquatic 

resource management activities. EUs could provide a way to abstract and communicate complex 

ecological processes and resultant patterns we see in river ecosystems (Rowe 1961, Levin 1992). 

Because EUs explicitly acknowledge river systems to be composed of many discrete habitat 

units, delineating and attributing EUs with measures of influential environmental characteristics 

(e.g. size, temperature, flow regime, and LULC), could help illustrate important “places” within 
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river systems. Maps of these “places” can then support practical classifications such as “valued 

trout streams” or can designate specific units where particular fisheries management tools, such 

as special fishing regulations or stocking, can be applied. 

Mapping, inventory, and classification are important steps in the river conservation 

planning process; and EUs provide fundamental units for these activities (Seelbach et al. 1997, 

Seelbach et al. 2006). For example, the MI-VSEC ecological unit system was used by The 

Nature Conservancy to assure representative coverage of Michigan’s stream resource types as 

land conservation priorities were developed (Higgins et al. 1999). The MI-VSEC system has also 

been used by resource and fisheries managers as the organizing framework for basin-wide 

assessments of Lake Michigan tributaries (e.g. ‘Special Management Reports’ for the Jordan, 

Manistee, Muskegon, Kalamazoo, and St. Joseph Rivers; http://www.michigan.gov/dnr). 

The existence of EUs within rivers would also have utility for sampling design and model 

application. Homogeneity within an EU and subsequent classification of EUs into types would 

also allow extrapolation of information from sampled river reaches to the larger EUs and to un-

sampled EUs of similar ecological type. For example, a basin-wide ecological assessment of the 

Muskegon River in Michigan used the MI-VSEC framework as statistical strata to ensure 

comprehensive sampling (Riseng et al. 2006, Stevenson et al. 2009). Building on assessment 

studies of the Muskegon River, GIS summaries of driving variables and model runs on the MI-

VSEC framework were used to generate climate and landscape change models of hydrologic, 

chemical loading, and biological response (Wiley et al. 2010). 

Despite the current and expanding use of EUs for river ecosystem management, little 

explicit testing of either the theoretical assumptions of ecological units or the performance of 

delineated ecological units has been performed. Neither 1) testing for the existence of 
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ecologically distinct, homogeneous river segments independent of any particular EU delineation; 

nor 2) testing of the ability of a particular EU delineation to partition independently observed 

variation in a real river system, have been rigorously undertaken. Testing the theoretical basis of 

riverine EUs and the performance of an existing EU delineation is limited by the requirement of 

longitudinal, high-spatial-frequency empirical datasets; a sampling design not common in 

existing data sources or in governmental agency data-collecting regimes. 

Dissertation research objectives 

The analyses in all three research chapters of this dissertation are based on empirical 

ecological data. I used a headwaters-to-mouth, longitudinal, high-frequency-spatial sampling 

design to facilitate analyses of the extent and variability of spatial patterning in Midwestern river 

systems. At all sites, I collected environmental data including measures of stream size, network 

position, in-stream habitat, water chemistry, and temperature, and assessed fish and benthic 

macroinvertebrate assemblage composition using occurrence, abundance, and biomass measures. 

In Chapter 2, I test the validity of underlying assumptions of ecological classification 

(e.g., existence of EUs) using an 80 km portion of the mainstem of the Muskegon River in 

Michigan and analogous sampling on four confluent tributaries. Based on five combinations of 

spatial and temporal extents, I test the validity of the underlying assumptions of ecological units: 

1) concordance between biological assemblages (e.g., different biological assemblages exhibit 

similar spatial variation in assemblage composition), 2) environment/biology concordance (e.g., 

the pattern of spatial variation is similar for environmental variables and biological 

assemblages), and 3) the occurrence of ecologically distinct, homogeneous river segment units. I 

also evaluate an existing ecological valley-segment scale delineation (VSEC version 1.0, 
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Seelbach et al. 1997) in terms of its ability to partition observed spatial heterogeneity. One 

conclusion of this study was a need for more detailed analysis of EUs in river tributary systems. 

In Chapter 3, I again test the validity underlying assumptions of ecological units, this 

time in five small Midwestern tributaries of varying physical and ecological character. Analyses 

also considered whether longitudinal network position could help explain spatial patterning in 

biological assemblage similarity. As in Chapter 2, I also evaluated an existing ecological valley-

segment scale delineation (VSEC version 1.0, Seelbach et al. 1997) in terms of its ability to 

partition observed spatial heterogeneity in these small systems. 

In Chapter 4, I first ask how concordances between environmental and biological 

compositions arise, and then how network structure itself might influence patterns of biophysical 

concordance, spatial autocorrelation, and distance decay rates. I approach these questions by 

comparing rates of longitudinal change in both environmental variables and biological 

assemblages along network trajectories. Finally, I use a path analytic approach to assess the 

extent to which 1) observed SAC in biological assemblage composition in these systems arises 

from environmental controls, and 2) effects of proximity are mediated through environmental 

similarity. The variety of tributary systems and range of spatial extents I examined allows for a 

broad exploration of spatial autocorrelation in Midwestern riverine ecosystems. 

In Chapter 5, I summarize the findings of each research chapter and discuss the 

implications of the four major conclusions of this dissertation. These conclusions are 1) observed 

spatial patterns were consistent regardless of the measure of the biological assemblage, 2) spatial 

extent and sampling regime can affect study conclusions, 3) The physical environment provides 

the template that creates within-basin biological spatial pattern, and 4) fluvial ecological units are 

real and therefore classification should be an effective tool for river management. 
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Chapter 2 : Ecological units, concordance, and spatial patterns along a river 
mainstem and confluent tributaries 

Abstract 

The delineation of Ecological Units (EUs; contiguous river segments with homogeneous 

biological and physical features) in rivers provides an important tool for resource management. 

However, little independent testing of either the theoretical assumptions of such units or the 

practical performance of extant delineations has been reported. The existence of ecologically 

distinct and homogenous river units requires that strong concordance occur between biological 

assemblages, and between biological assemblages and environmental variables. This study used 

a longitudinal, high-spatial-frequency sampling design along a river mainstem and confluent 

tributaries to test these and related assumptions of EUs across temporal and spatial extents. 

Along the river mainstem, fish/invertebrate concordances and many environment/biology 

concordances were strong, and distinct, homogeneous biological assemblages were observed at 

both within- and across-season temporal extents. Including confluent tributaries emphasized 

large differences between the biological character of the mainstem and its tributaries. Although 

fish and invertebrates had common concordances with size-related environmental variables 

(catchment area, link, discharge, and channel shape), this study does suggest spatial pattern in 

substrate may be more important for invertebrates than fish. Both the theoretical assumptions and 

performance of a specific EU delineation were well supported by spatial pattern in biological and 

environmental measures. 
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Introduction 

Two central tasks in ecology are to identify spatial pattern in biological communities and 

to understand the mechanisms that create them (Wiens 1989, Levin 1992). One approach to these 

tasks is classification, the identification and grouping of similar items or patterns. Ecological 

classification studies often begin by delineating spatially homogeneous units, proceed by 

characterizing the defined units, and finally group units with similar characteristics into 

ecological classes or “types (Cormack 1971, Barnes et al. 1982, stream classification reviewed in 

Melles et al. 2014). 

Although the specifics of such a process vary widely, most useful ecological 

classifications incorporate knowledge about both biological patterns and processes and include 

some form of hierarchical organization (Gauch and Whittaker 1981, Klijn and Haes 1994, 

Maxwell et al. 1995, Snelder and Biggs 2002, Higgins et al. 2005, Dunn and Majer 2007). River 

classification has an extensive, though often discipline-specific history (Naiman et al. 1992, 

Hawkins and Norris 2000, Makaske 2001, Melles et al. 2012). Here I focus on the development 

of ecological classifications built on meso-scale (e.g., 1 to 50 km) segments of river channel, 

often referred to as “valley segments” (Frissell et al. 1986, Cupp 1989, Maxwell et al. 1995, 

Brierley and Fryirs 2000).  

Early European stream biologists described longitudinal faunal zones of fishes and 

invertebrates and related these to changes in habitat, elevation and temperature as one moved 

from the headwaters to river mouth (Huet 1959, Illies and Botosaneanu 1963). Geomorphologists 

described self-similarity and variety in river networks by analyzing hierarchical patterns of 

organization in channel systems and developed the now familiar stream ordering systems and 

basin and hydraulic geometry “laws” (Horton 1945, Strahler 1952) used by present-day 
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hydrologists, geomorphologists, and ecologists (e.g. RCC, Vannote et al. 1980). Geomorphic 

analyses also led to classifications of river planform patterns, and to valley segment 

classifications that delimited contiguous river valley segments where floodplain character, river 

planform, and other geomorphic features could be organized into types and sub-categories 

(Frissell et al. 1986, Cupp 1989, Frissell and Liss 1993, Bisson et al. 1996, Montgomery and 

Buffington 1997, 1998). By linking the river biologists’ traditional view of faunal zonation to 

geomorphic valley segment characteristics, workers in North America and Australia began to 

identify and make use of ecologically-defined mesoscale habitat units (Maxwell et al. 1995, 

Seelbach et al. 1997, Brierley et al. 2002, Baker 2006, Seelbach et al. 2006, Thorp et al. 2008). 

In rivers, it is not unusual to have spatially concurrent change in hydrologic, thermal, 

geomorphic, and biological character (Poff et al. 1997, Frissell et al. 2001, Jensen et al. 2001, 

Zorn et al. 2002, Wehrly et al. 2003, Benda et al. 2004a, 2004b, Seelbach et al. 2006, Thorp et al. 

2006, Thorp et al. 2008). Therefore, unit boundaries in large rivers are often placed at observable 

shifts in river energy balance (e.g. observed as changes in sinuosity, slope, and valley form, and 

at major tributary confluences) while unit boundaries in smaller rivers and tributaries are often 

placed at tributary junctures, and shifts in land use/land cover (LULC) and surficial geology. The 

development of mesoscale habitat units supported a move in fisheries and watershed 

management towards a more holistic and landscape-oriented perspective (Maxwell et al. 1995, 

Bryce and Clarke 1996, Seelbach et al. 1997, Higgins et al. 2005, Seelbach et al. 2006, Baker 

2006, Brenden et al. 2006, Sowa et al. 2007, Brenden et al. 2008b, Melles et al. 2012, McKenna 

et al. 2014).  

The delineation of river channel spatial units and subsequent classifications in Great 

Lakes watersheds was heavily influenced by the work of terrestrial ecologists interested in 
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mapping forests and classifying integrated ecological landscape units (also referred to as 

landscape ecosystems; Rowe 1980, 1992, Forman & Godron 1986, Cleland et al. 1997). 

Ecological units (EUs) were defined as spatially contiguous areas with relatively homogeneous 

environmental and biological features. In theory, EUs are holistic in the sense that they represent 

both environmental patterns and the biota’s “perception” of the environment. EUs are defined as 

real, persistent, and map-able places that may be repeated across the landscape (Rowe 1961) and 

therefore lend themselves to classification. In delineating homogeneous units, emphasis is given 

to regions of rapid changes in characteristics known to determine patterns of biological 

organization and ecosystem functioning. The EUs, therefore, are not arbitrarily bounded and the 

length of an EU should correspond to the physical template on which biological assemblages are 

arranged. 

In practical application then, valley segment EUs in rivers will have two defining 

properties: 1) Relatively homogeneous biological and environmental composition and/or 

patterning; and 2) Boundary areas of rapid change at unit transitions. For these properties to 

exist, some significant degree of biological concordance (i.e., concurrent change in multiple 

biological assemblages) and concordance between biological structure and the physical 

environment (i.e., concurrent change in biological assemblages and environmental variables) 

must be present. In other words, the existence of EUs entails significant ecological concordance 

within a river network. Because it is a logical requirement of the existence of ecological units, 

concordance is a property that should exist independently of any specific unit delineation or 

classification scheme. 

I argue here that because concordance is a necessary condition for EUs to exist, the 

conceptual utility of ecological units can be tested with appropriate empirical data. However, 
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little targeted and comprehensive (i.e., across multiple measures such as habitat, multiple 

biological assemblages) testing of either the theoretical basis of ecological units or the efficacy 

of delineated ecological units has been performed. Seelbach et al. (2006) and Boys and Thoms 

(2006) found fish assemblages within delineated units (e.g. valley segments and fluvial process 

zones respectively) were typically more similar as compared to assemblages in different units 

and compared to fish assemblages in units of different ecological “type.” Thomson et al. (2004) 

found that three geomorphic-based river “style” classes had distinct macroinvertebrate 

assemblages and Warrner et al. (2010) found fairly homogeneous stream habitat within valley 

segment units, but differences in habitat between abutting units. Melles et al. (2014) conclude a 

review of stream classification by arguing the testing of proposed classifications is one of the 

most important steps in the creation of ecosystem classifications. However, such testing of 

riverine ecological units is limited by the requirement of comprehensive, longitudinal, high-

spatial-frequency empirical datasets; a sampling design not common in existing data sources or 

in governmental agency data-collecting regimes. 

This study tests the underlying assumptions of ecological classification using empirical, 

longitudinal, high-spatial-frequency sampling in a detailed examination of an 80 km portion of 

the mainstem of the Muskegon River in Michigan. Based on five combinations of spatial and 

temporal extents, I examine: 1) fish/benthic invertebrate concordance, 2) 

environmental/biological concordance, and 3) the existence of ecologically distinct, 

homogeneous river segment units. I also evaluate an existing ecological valley-segment scale 

delineation (VSEC version 1.0, Seelbach et al. 1997) in terms of its ability to partition observed 

spatial heterogeneity. 
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If the concept of EUs is valid, the implications are extensive. EUs would provide real 

units to both inventory and classify river segments for practical management (Seelbach et al. 

2006), and provide a way to abstract and communicate complex ecological processes and 

resultant patterns we see in river ecosystems (Rowe 1961, Levin 1992). Further, the existence of 

EUs within rivers should have substantial implications for study design. Homogeneity within an 

EU and subsequent classification of EUs into types would allow extrapolation of representative 

samples or models to larger-scale units and to EUs of similar type. Conservation of rivers may 

also be aided because the mapping and inventory of functional units (cf. valley segments in 

Seelbach et al. 1997, 2006, Sowa et al. 2007, and McKenna et al. 2014; macrohabitats in Higgins 

et al. 2005, and functional process zones in Thorp et al. 2008) are important steps in conservation 

planning. 

Methods 

Study area and study sites 

The Muskegon River is the second largest tributary to Lake Michigan, draining a basin of 

682,200 hectares in west-central Michigan (Figure 2.1 inset, O’Neal 1997). The Muskegon is 

well known for its recreational fishery, including smallmouth bass (Micropterus dolomieu) and 

walleye (Sander vitreus), and numerous resident and migratory salmonids. The study area is in 

the lower third of the basin and is the 80 km long section between Croton Dam and Muskegon 

Lake, a drowned river mouth that connects to Lake Michigan (connection is 10 km downstream 

of the lowermost study site). Croton Dam is one of three major dams on the Muskegon River and 

serves as the lower-most barrier to upstream-migrating fishes from the Lake Michigan and 

Muskegon Lake. The Muskegon River mainstem receives four major tributaries (Bigelow, 



 

18 

Brooks, Cedar, and Mosquito Creeks) within the study area. The upper part of the mainstem 

study area is high gradient with shallow riffles and runs; the middle part includes transition zones 

and deep U-shaped channels; and the lower part flows through a low gradient wetland complex 

and splits into a north and south branch with numerous side- and cross-channels. Based on shifts 

in river planform and valley confinement, the river mainstem in the study area was delineated 

into five EUs that are expected to differ in physical, chemical, and biological character (see 

Figure 2.1 upper map, Seelbach et al. 1997 and the delineation process is explained in more 

detail in the delineated EU methods subsection). Additionally, all mainstem EUs have designated 

subsections, four in EU1 and two each in the other EUs. For the purpose of this study, tributary 

EUs are not recognized, and analyses simply identify the tributary (i.e., T1, T2, T3, or T4) in 

which a study site occurs. 

The study data are from 114 sites on the Muskegon River mainstem and 15 sites on the 

four major tributaries confluent in the study area (Figure 2.1). The sites along the mainstem 

represent stratified random locations allocated within subsections of each delineated EU as well 

as specifically targeted locations designed to sample known notable habitats not captured by the 

random sampling of EUs. Targeted locations included confluences of tributaries, unique riffle 

habitats, edge wetlands, mid-channel island shorelines, and larger side- and cross-channels. The 

distance between sites varied, but on average, sites along the mainstem were about 0.75 km 

apart. Sites were spaced further apart in the tributaries and were located near road crossings, and 

in lower Mosquito Creek, at random locations and in notable side-channel and confluence-

influenced habitats. Six of the 114 sites were visited only during synoptic chemistry runs, while 

biological assemblages (fish, invertebrate, or both) were sampled at the remaining 98 sites. Fish 
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were more intensively sampled (both spatially and temporally) than invertebrates (Figure 2.1 

lower map). 

Delineated EUs 

The delineated EUs used in this study (Figure 2.1 upper map) were developed prior to 

sampling and data analyses by Seelbach et al. 1997 (VSEC version 1.0, available from the 

Michigan Geographic Data Library, MiGDL). The goal was to identify valley segment-scale 

ecological units with relative homogeneity in hydrologic, geomorphic, and water quality 

characteristics, and in likely biological assemblages. EUs were delineated “from above”; two 

experienced aquatic ecologists worked together, interpreting map information on catchment, 

river network, and valley characteristics, using their combined knowledge of ecological 

processes and interactions. EUs were delineated beginning at the mouth of the river working 

upstream, and boundaries of units were placed at important stream junctures, slope breaks, 

changes in river planform and valley form, and boundaries of local landforms. Delineations and 

biological interpretations were reviewed and adjusted as necessary after consultation with 

regional Michigan Department of Natural Resources biologists (see Seelbach et al. 1997, 

Seelbach and Wiley 2005, and Seelbach et al. 2006 for more details). 

Biological data collection and dataset development 

Fish assemblages at a site were characterized through a combination of DC boat boom 

and tow barge electrofishing. Boom electrofishing targeted large fish from the center of the river 

channel and non-wadeable habitats while barge electrofishing targeted smaller fish in shallow 

areas, usually along the river’s edge. Boom shocking runs varied in length from 0.2 to 1.9 km in 

length and occasionally included multiple sites in one boom run. Barge shocking runs were 
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always site-specific and were usually two-pass depletion-type runs on 100 meter unblocked 

reaches. Fish were sampled seasonally in Spring (May & June), Summer (July& August) and/or 

Fall (September & October) of 2003 and/or 2004. In both sample types, all fish were identified to 

species, measured, and weighed. To characterize the fish assemblage at each site, boom and 

barge samples should be weighted by the proportion of boom and barge suitable habitat at a site. 

However, because the boom runs were much larger than the 100 meter reach of a barge sample 

and a single boom sample sometimes spanned several sites, I could not use site-based 

proportions of habitat to weight the fish samples. Instead, I used the proportion of boom and 

barge habitat in a 500 meter buffer around each site (e.g. a compromise between barge and boom 

run lengths) to weight boom and barge samples (see Appendix 2.1 and discussion of habitat 

maps in environmental data section for details). 

Invertebrates were collected at fewer sites and with less frequency than were fish. 

Collections occurred during spring (May & June) of 2003 and 2004, and at a handful of sites in 

summer (Aug) 2003. Sampling of invertebrates was quantitative and targeted both common and 

rare habitats at a site. The specific sampling method (e.g., Hess, rock cluster, ponar grab, core, 

kickscreen, and wood and leaf debris grabs) was dictated by a sample location’s depth and 

particular substrate. Samples with large amounts of organic and non-organic debris were 

elutriated in the field. All samples were preserved in 95% ETOH and samples were processed in 

the laboratory under dissecting microscopes. Organisms were identified to the lowest taxonomic 

resolution possible with moderate effort. Most organisms were identified to genus, while some 

organisms (such as Chironomidae, flatworms, mites, Branchiobdellidae and very early instar 

insects) remained at higher taxonomic resolution. Invertebrates identifiable only to order were 

excluded from analyses as well as oligochaetes, for which accurate density and biomass 
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measures were not possible. The length of each organism was measured and converted to dry 

biomass (mg) following length-biomass equations in Benke et al. (1999) and unpublished 

conversions developed in our laboratory (M.J. Wiley, University of Michigan, personal 

communication). Habitat-specific samples were combined and “scaled up” to represent the 

invertebrate assemblage at a site by weighting samples according to represented local habitat 

proportions in a 100m buffer around sites (see Appendix 2.1 and discussion of habitat maps in 

environmental data section for more details). 

The biological assemblage was characterized in three ways: Occurrence (presence or 

absence), abundance (density in #/m2), and biomass (total dry biomass in mg/m2). Although 

excluding rare taxa from multivariate analyses can be warranted (reviewed in Cao et al. 2001), 

including rare taxa had little effect on the identification of major structure in the data and values 

of test statistics in this study and are therefore included in the dataset. 

Environmental data 

Environmental data for the mainstem and tributary sites were developed from field 

measurements, quantitative models, aerial photography, and GIS maps. Although different 

methods were occasionally necessary to develop data for sites on the mainstem and the 

tributaries, comparable data were developed for all study sites. Channel width was estimated at 

each mainstem and non-wadeable site from winter aerial imagery (Google Earth 2013) and 

averaged from multiple field-measured cross-sections for tributary sites. Slope and sinuosity 

were estimated from aerial imagery for sites on the river mainstem using a river length of 50x the 

river width (Google Earth 2013). For sites on tributaries, slope was measured in the field using a 

tripod and sinuosity was estimated in ArcGIS (ESRI 2011) from network maps using a river 
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length of 50x the river width. Catchment area and link number for all sites were also developed 

from network and basin maps in ArcGIS (ESRI 2011). 

In-stream Geomorphic Units (IGUs), substrate, and depth measures were developed from 

direct field observations and a habitat map developed from field observations. After thorough 

inspection of a sampling reach for each site in a tributary, the percentage of IGUs (i.e., riffle, run, 

pool, edge, bar, and backwater) and substrate types (i.e., cobble, gravel, sand, claybed, wood, 

and fine and coarse organic matter) within a sampling reach were recorded. The average depth of 

a site on a tributary was calculated as the average depth from five cross sections distributed 

within the sampling reach. IGUs, substrate, and depth measures for sites on the mainstem were 

developed from a highly-detailed, continuous habitat map for the river channel based on 

extensive direct field observations and indirect observations using a Sontek Acoustic Doppler 

Profiler. This digital map of the 80 km mainstem study area included substrate (11 classes; most 

frequent classes included cobble, gravel, sand, clay, POM, wood and emergent and submerged 

vegetation), IGUs (19 types; most frequent types included riffle, run, edge, backwater, and point 

bar), and water depth. Around each site, I used a 100 meter buffer to clip the habitat map and 

calculated the percent of each substrate class, percent of each IGU type, and average depth for 

each site. 

Daily temperature (max, min, and average), nutrients (concentrations of nitrogen, total 

phosphorus, and soluble reactive phosphorus) and average discharge were estimated for the 

mainstem and tributary sites using “The Muskegon River Ecological Modeling System” 

(MREMS; Wiley et al. 2010). MREMS consists of a set of integrated component models 

targeting aspects of the Muskegon River ecosystem such as hydrology, temperature, climate, and 

LULC. Model output was selected to correspond to biological sampling seasons (i.e., May values 
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for Narrow Temporal (NT) datasets and an average or min/max of May, August, and October for 

Wide Temporal (WT) datasets). The spatial framework of MREMS was adapted from the VSEC 

system of Seelbach et al. (1997) and includes 1-2 modeling units for each delineated EU along 

the mainstem and each tributary. Because of this difference in scale between model units and 

sampling sites, variability in temperature, nutrients, and discharge variables largely reflects the 

delineated EU structure. However, as evidenced by excellent fit of model results to field data, 

this imposed spatial structure may in fact reflect real patterns in river flow, temperature, and 

nutrient loads. In addition to field data used to develop and test MREMS models, an 

independent, synoptic sampling of water temperature and conductivity occurred at about 35 sites 

along the river mainstem between Croton Dam and Muskegon Lake during the spring and 

summer of 2003. Average velocity was calculated from the MREMS discharge estimates 

measure and channel cross-section measures (i.e., average velocity = Discharge/(width*average 

depth)). 

Data Analyses 

My analyses had three primary objectives: 1) To measure the degree of concordance 

between fish and invertebrate assemblage composition; 2) to measure the degree of concordance 

between environmental variables and biological assemblage composition; 3) to identify patterns 

of environmental and biological change to assess the homogeneity and boundary assumptions of 

generalized and delineated ecological units. All dissimilarity matrices and statistical tests were 

performed with PC-ORD version 6.08 (McCune & Mefford 2011). 

To address these objectives at multiple spatial and temporal extents I developed five 

different datasets (Table 2.1). The dataset naming convention used here reflects the spatial and 

temporal extent of the dataset. Consider the WSPNT dataset for example: The first two letters 
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“WS” indicate a dataset with a wide spatial extent (i.e., the entire study mainstem), the “P” (for 

Plus) indicates tributary sites are added to the dataset, and the last two letters “NT” indicate a 

narrow temporal extent (i.e., spring of 2003, the season and year with the most samples). The 

datasets used in the concordance analyses were smaller than those used in NMDS analyses 

because there are fewer sites with both fish and invertebrate samples than for fish or 

invertebrates samples alone (Table 2.1). 

Many of the analyses required use of a similarity, dissimilarity, or distance matrix. For 

the biological occurrence measure, I quantified differences in biological assemblages using the 

Sorenson dissimilarity index and when necessary, converted dissimilarity to similarity by 

subtracting from one. The Sorenson measure of similarity is desirable since it ignores joint 

absences, a combination that dominates many assemblage matrices (Faith et al. 1987). Because 

of the extreme right skew in abundance and biomass values and the undue influence of unusually 

large values on distance calculations, I natural log transformed abundance and biomass measures 

prior to distance matrix calculations. This transformation results in negative values for absent 

and rare taxa, thus preventing the use of Sorenson dissimilarity for abundance and biomass 

measures. For transformed abundance and biomass measures I used Euclidean distance instead. 

Euclidean distance was also calculated to represent environmental distance between sites for 

each environmental variable. Environmental variables with many small values and a few large 

values, (e.g., discharge, catchment area, link, nutrients, velocity, width and depth) were natural 

log transformed prior to analyses. 

Using analyses based on distance matrices allowed flexibility in the types of 

environmental variables developed for this study. Some environmental variables were single 

measures (e.g., catchment area, link, slope, sinuosity, discharge, depth and width) while others 
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were based on a multivariate suite of related measures (e.g., proportions of 11 substrate classes, 

proportions of 19 IGU types, concentrations of three nutrient measures, and min, max and 

average water temperatures). The ability to use multivariate data was critical, as dissimilarity 

matrices calculated from suites of measures, such as the three measures of water temperature, 

typically performed better than any one measure. 

I used simple Mantel tests to investigate the degree of concordance between a variety 

datasets. These included concordance between 1) different measures of a biological assemblage 

(i.e., fish occurrence vs. fish abundance, fish occurrence vs. fish biomass, etc.), 2) fish and 

invertebrate assemblages, and 3) environmental variables and biological assemblages. A simple 

Mantel test is extremely flexible and is used to test the null hypothesis of “no relationship” 

between two square symmetric matrices. It is an alternative to regressing one matrix against the 

other, and avoids the problem of partial dependence within each matrix. The standardized Mantel 

test statistic (r) ranges from -1 to 1, with 1 indicating perfect congruence between the two 

matrices. For all Mantel tests, the significance of r was assessed with a Monte Carlo 

randomization method using a maximum of 3000 permutations. In concordance analyses a large 

positive r indicates strong agreement between distance matrices for assemblage measures, fish 

and invertebrate assemblages, or biological and environmental character. Because the number of 

sites affects the power and significance of statistical tests, the number of sites (Table 2.1) should 

be considered when interpreting the magnitude and significance of a Mantel test statistics (r). 

I used Non-metric Multidimensional Scaling (NMDS) to illustrate concordance and 

patterns of spatial heterogeneity for fish and invertebrate assemblages. NMDS is an ordination 

method based on ranked distances; it is well-suited to non-normal data with many zero values 

(Minchin 1987, McCune and Grace 2002). A successful NMDS procedure produces a low-
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dimension ordination where the distances between pairs of sites are in rank-order agreement with 

their dissimilarities in species composition. The distance between sites in NMDS plots can be 

directly interpreted, for example, sites closer together have more similar assemblages. Each 

NMDS was run in the autopilot mode “medium” setting, (a balance of speed and thoroughness), 

with a maximum of 500 runs with random starting seed and a stability criterion of 0.00001. In 

most runs a 2D solution was suggested, although rarely a 3D solution was suggested. All of the 

NMDS ordinations performed well: Either two or three axes explained more than 80% of the 

variability in the original data sets, the ordination was significant (p=0.0196), and final stress 

was good or acceptable (usually between 7 and 15). However, after examination of the few 3D 

solutions, the additional axis explained little additional variance and interpretation of the results 

was the same regardless of dimensionality. For ease and consistency of viewing, NMDS plots 

present the two axes that explained the most variation. Figure 2.2 demonstrates how NMDS plots 

can be used to assess homogeneity and boundary assumptions of EUs under hypothetical 

situations of valid and null EUs. 

I used trajectory plots and longitudinal plots to explore environmental and biological 

transitions in the study systems, facilitating assessments independent of and in context of 

delineated EUs. Sites on side and cross channels were excluded from trajectory analyses. To 

assess differences in rates of biological change along the river mainstem, I created trajectory 

plots by plotting cumulative dissimilarity in fish and invertebrate assemblages for neighboring 

sites against distance from Muskegon Lake. Similarly, I also created trajectory plots for a suite of 

environmental variables with spatial patterns similar to the biology (e.g., Catchment area, link, 

discharge, width, hard substrate, temperature and nutrient regime). Temperature and nutrient 

regimes were first summarized by the first PCA axis (temperature: 98% variance explained; 
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Nutrients: 99% explained) and all variables were Z-score normalized. Therefore, all seven 

environmental variables contributed equally to dissimilarity values. In trajectory plots, a steep 

slope indicates rapid change in the biological assemblages or environmental features. I also 

created longitudinal plots by plotting several individual environmental variables against distance 

from Lake Muskegon to illustrate spatial pattern in specific environmental variables. 

This study also investigated the utility of an existing EU delineation. To investigate how 

well an existing EU delineation (i.e., VSEC 1.0, Seelbach et al. 1997) captured patterning in the 

environmental and biological data developed in this study, I used Mantel tests, Multi-response 

Permutation Procedures (MRPP), and longitudinal graphical analyses. I used simple Mantel tests 

with a design matrix with 1 for sites within the same delineated EU or tributary and 0 for sites in 

different EUs or tributaries. In this test a large Mantel r indicates sites within the same delineated 

EU/tributary are associated with higher biological similarity than those in different 

EUs/tributaries. Pairwise comparisons after significant MRPPs were used to determine which 

subEus/EUs/tributaries had different biological fish and invertebrate assemblages. MRPP is akin 

to ANOVA in that it is designed to assess whether there is greater difference within 

predetermined groups or among predetermined groups, but it is a data-dependent permutation 

procedure based on pairwise distance measures. It is ideally suited to ecological data because it 

makes few assumptions about the distributional structure of the data (Zimmerman et al. 1985) 

and can be used on multivariate arrays such as biological assemblage data. As with ANOVA, 

pairwise comparisons after a significant MRPP test determine which groups differed. 
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Results 

Biological measure concordance 

Preliminary analyses showed there was strong and highly significant correlation (and 

concordance) between occurrence, abundance, and biomass measures for both invertebrate and 

fish assemblages. This was true at all spatial and temporal extents (Table 2.2). Concordance (r) 

between these different measures of biological abundance ranged from 0.70 to 0.97 for 

invertebrates and from 0.77 to 0.96 for fish. This strong concordance indicates similar patterns of 

faunal transition and homogeneity are found regardless of the specific measure employed. 

Furthermore, NMDS ordinations for the three fish assemblage measures showed the same overall 

arrangement of sites (Figure 2.3 1st column). NMDS plots for invertebrates differed more 

between measures than they did for fish (Figure 2.3, 2nd column). Because invertebrate sampling 

effort was not always in proportion to available habitats and weighting of samples was by 

proportion of habitat in quantitative measures, rare taxa appear to have had a larger effect on 

occurrence measures than on abundance or biomass measures. As compared with occurrence, 

quantitative measures of the invertebrate assemblage generally increased variability of 

invertebrate assemblages and frequency of outliers within EU1, and decreased variability in 

EU2. However, as with fish, the overall spatial pattern of invertebrate assemblages was 

consistent regardless of measure. Since results for analyses based on occurrence, abundance, and 

biomass were highly correlated, I will only discuss results for occurrence data in 

biological/environmental concordance tests, NMDS plots, trajectory plots, and tests of the 

efficacy of delineated EUs. 
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Fish and invertebrate assemblage concordance 

The overall degree of concordance (as measured by the Mantel r) between fish and 

invertebrate assemblage composition varied with spatial and temporal perspective (Table 2.3). At 

the narrowest spatial extent (Table 2.3 row 1), there was no or weak concordance between fish 

and invertebrate assemblages. In contrast, for the wide and wide plus tributary data sets (Table 

2.3 lines 2-5), there was statistically significant concordance between fish and invertebrates 

ranging in strength from moderate to strong. The magnitude of fish/invertebrate concordance 

was typically higher within a single season and year (NT) than across seasons and years (WT) 

(Table 2.3 rows 2 vs. 4 and 3 vs. 5). The concordance between fish and invertebrate assemblages 

was also observed in the similarity of patterning of sites in NMDS ordinations (Figures 2.5 and 

2.6) and patterns of change in trajectory plots (top two plots in Figure 2.7). 

Environment and biology concordance 

The degree of concordance between the environment and biological assemblages and 

environmental variables varied with spatial and temporal extent. As required by the second EU 

assumption, there were many strong concordances between spatial pattern in environmental 

variables and biological assemblage composition at wide and wide plus tributary spatial extents 

(Columns 3-6 in Table 2.4). Because of concordance of the fish and invertebrate assemblage, 

spatial patterns of both fish and invertebrates were usually concordant with the same 

environmental variables. Typically, fish/environment concordances were stronger than 

invertebrate/environment concordances for the same environmental variable; however, 

invertebrate/substrate concordance was usually higher than fish/substrate concordance. Except 

for the substrate measure, expanding spatial extent to include tributaries typically strengthened 

fish/environment concordance. Expanding the spatial extent to include tributaries in 
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invertebrate/environment concordance did not have a consistent effect on the strength of 

concordance. Combining data from multiple seasons and years had no consistent effect on the 

strength of biological/environment concordance. 

The strongest environmental/biology concordances (Table 2.4) included those 

environmental variables representing aspects of size (e.g., catchment area, link, river discharge) 

or environmental variables whose spatial patterning was similar to the delineated ecological units 

(i.e., discharge, nutrients, and temperature). The importance of such longitudinally changing 

environmental variables on biological spatial pattern is also evident in NMDS ordinations. 

Especially for fish assemblages, the primary or secondary gradient arrangement of sites by 

biological assemblages is the longitudinal upstream to downstream gradient within the study area 

(Figures 2.5 & 2.6). Other strong environment/biology concordances included water velocity, 

channel shape, and substrate. Spatial pattern in slope, sinuosity, and IGUs were only weakly, 

rarely, or never associated with spatial pattern in biological assemblages. 

At the narrowest spatial extent (i.e., limited to sites in EU1), spatial pattern in fish 

assemblages were not related to spatial pattern in any environmental variables, and spatial 

pattern of invertebrates was related to only a few environmental variables (2nd column in Table 

2.4). These invertebrate/environment relationships were weak (r from 0.18 to 0.32) and included 

invertebrates/link, invertebrates/slope, and invertebrates/ave depth. Because of the parallel of 

model units in MREMS and delineated EUs, river discharge, nutrients, and temperature 

measures hardly varied within EU1 and were not analyzed. 

Distinct, homogeneous EUs 

Environmental and biological data strongly paralleled the delineated EU structure, thus 

results support both the theoretical assumption of ecologically distinct, homogeneous EUs and 
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the particular EU delineation developed for the Muskegon River (i.e., VSEC version 1.0; 

Seelbach et al. 1997). Although distinct and homogeneous biological assemblages emerged at all 

spatial extents, these units were weakly defined at the narrow spatial extent. In the NSWT 

datasets, both fish and invertebrate assemblages typically differed by EU subsections (Figure 2.4 

and Table 2.5), but this partitioning is weak and there is considerable similarity in biological 

assemblages between sites in different delineated subsections of the same EU. 

At the wide spatial extent, spatial patterning in fish assemblages strongly reflected 

delineated EUs. The wide spatial, narrow temporal (WSNT) NMDS ordination for fish (Figure 

2.5a) showed distinct and separate clusters of sites within each proposed ecological (the EU-

based clusters were statistically verified with analyses presented in Table 2.5). These clusters of 

sites are arrayed along the primary explanatory axis in upstream to downstream longitudinal 

order. Despite close proximity to sites in EU5S, the study site on a cross-channel connected to 

EU5s had a fish assemblage distinct from the rest of the sites within EU5s. Increasing the 

temporal extent to across seasons/years did modestly increase compositional overlap in the 

downstream EUs, but correlation with delineated EUs remains (Figure 2.5c). Fish assemblages at 

sites on the side channel of EU5S were similar to those in EU5S, although side-channel sites 

proximal to EU4N and EU3 were distinct from sites in the adjacent river mainstem. Statistical 

analyses of this pattern indicated higher fish assemblage similarity was associated with being in 

the same EU and that each delineated EU had a distinct fish assemblage (Table 2.5 WSNT and 

WSWT columns). 

At the wide spatial extent, spatial pattern in invertebrate assemblages strongly supported 

existence of ecological units and provided moderate support for the efficacy of delineated EUs. 

The wide spatial, narrow temporal (WSNT) NMDS ordination for invertebrates (Figure 2.6a) 
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shows distinct clusters of sites within all proposed EUs although the amount of variability 

differed. EU1 had the most distinct and homogeneous invertebrate assemblage while sites in 

EU2 were the most variable and sometimes had invertebrate assemblages that resembled sites in 

other EUs. As with fish, sites on side and cross channels often had different invertebrate 

assemblages than those in the adjacent mainstem. Although invertebrate assemblages generally 

differed between delineated EUs, small sample size and large variability resulted in low 

statistical power and made it difficult to successfully assess differences in invertebrate 

assemblages between delineated EUs (Table 2.5 WSNT and WSWT columns). 

When the spatial perspective was widened to include sites on tributaries, previously 

described spatial patterns along the mainstem persisted and clear differences between the biotic 

assemblages in tributaries and the mainstem became evident (Figures 2.5b and 2.6b). Including 

tributary data changed the meaning of the primary axes in fish NMDS ordinations; the principal 

explanatory axis for fish assemblages distinguished sites on tributaries versus the mainstem and 

the secondary axis reflected the upstream-downstream arrangement of sites along the mainstem. 

For invertebrates, tributary sites were distinguished from mainstem sites by position along both 

explanatory axes. Expanding the temporal extent to include samples from different seasons and 

years had little effect on the invertebrate ordination (Figure 2.6d), and minimal effects on the fish 

ordination (figure 2.5d). The most obvious difference was the addition of four sites in Mosquito 

Creek (T4) that had fish assemblages similar to those in the mainstem. These four sites are 

located downstream in a non-wadeable, wetland complex section of Mosquito Creek (T4) and 

are unlike the upstream, wadeable part of Mosquito Creek (represented by two sites). Again, 

higher fish assemblage similarity was associated with being in the same delineated EU or 

tributary (Table 2.5 WSPNT and WSPWT columns). Individual EUs and Bigelow Creek had 
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distinct fish assemblages, and fish assemblages in tributaries differed from those in the 

mainstem. Because of limited sampling on the tributaries, it was difficult to assess whether 

biological assemblages differed between tributaries. 

Trajectory and longitudinal plots 

Trajectory plots (Figure 2.7) suggested strong concordance between rates of change in 

fish assemblages, invertebrate assemblages, and environmental variables. Much of the upper half 

of the study mainstem was dominated by consistent and gradual rates of change in biological and 

environmental character. However, noticeable changes in the slope of the trajectory line occurred 

at about 40 km and 20 km from Muskegon Lake and steep slopes between 15 and 20 km from 

Muskegon Lake indicate rapid change in fish assemblages, invertebrate assemblages, and 

environmental features. Rates of change were also slightly higher downstream of the channel 

split and the north and south branches had similar patterns of rates of change. Including 

biological data from multiple seasons and years smoothed some transitions, but the overall 

pattern in slopes persists (Figure 2.7 plots 3 & 4).  

Major transitions in the environmental and biological character of the mainstem of the 

Muskegon River largely coincided with tributary confluences and were near boundaries of 

delineated EUs. Although the confluence with Bigelow Creek (most upstream C in Figure 2.7) 

did not coincide with an appreciable alteration in the rate of change, the downstream confluences 

were associated with rapid change in biological assemblages (Figure 2.7). Boundaries between 

delineated EUs were near transitions in biological assemblages, especially within a single season 

and year (i.e., WSNT dataset, Figure 2.7). 

The delineated EUs also successfully represented real differences in typical values or 

variability in values of many environmental variables (Figure 2.8). Water temperature measured 
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during both spring and summer synoptic chemistry sampling demonstrate clear homogeneity of 

temperature within a delineated EU and marked differences in temperature between EUs (Figure 

2.8a). As compared with the south channel (5S), groundwater contributions to the north channel 

(4N) result in warmer water in the spring and cooler water in the summer. With the exception of 

one site (which is near outflow of a wastewater treatment plant), conductivity measure during a 

synoptic study also corresponded well with delineated EUs (Figure 2.8b). Delineated EUs also 

differ in the proportion of hard substrate, sinuosity, and channel width (Figure 2.8 c-e). Areas of 

hard substrate dominated sites in the wide and sinuous upper EU1, while soft substrate 

dominated the straight and narrow downstream EUs. Average water depth differed both in 

typical values and in variability of values between EUs (Figure 2.8f).  

Discussion 

I used a variety of analytical techniques to test the validity of three basic assumptions 

underlying the practical mapping of riverine ecological units: 1) concordance between fish and 

invertebrate assemblages, 2) concordance between environment and biological assemblage 

composition, and 3) the existence of environmentally and biologically homogeneous river 

lengths. In the lower Muskegon River, these assumptions were well supported by the empirical 

data, and delineated ecological units reflected real spatial patterns in biological assemblages and 

key environmental variables. This is the first study to test these theoretical assumptions in the 

context of ecological units, although each assumption has an individual history of study. 

Additionally, this is one of only a few attempts (Thomson et al. 2004, Seelbach et al. 2006, Boys 

and Thoms 2006, Warrner et al. 2010) to evaluate the efficacy of existing ecological unit 

delineations in a river classification context. It is also the only study I am aware of that jointly 
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explores physical, chemical, fish, and invertebrate spatial pattern in the context of river 

classification. 

Fish/Invertebrate Concordance 

The existence of ecological units requires concordance between biological assemblages 

and between biological assemblages and environmental variables (Rowe 1961, 1980, 1992). 

Both requirements were met in the lower Muskegon River. The strength of fish/invertebrate 

concordance varied with the spatial extent of sampling, generally increasing in strength as more 

of the river basin was included and sampled variance increased. Measured biological 

concordance was negligible within an ecological unit, moderate across multiple reaches along 

the mainstem, and stronger as sampling approached basin-scale. This study used a longitudinal 

sampling design that was at the same time both spatially frequent enough to sample local 

variability and spatially extensive enough to include major physical transition zones in the fluvial 

system. Expanding the spatial extent of samples captured more abrupt transitions in size, 

hydraulic habitat, and temperature, that were then reflected in assemblage composition as we 

might expect (Hawkins et al. 1993, Rosgen 1994, Poff et al. 1997, Montgomery and Buffington 

1997, 1998, Biesel et al. 2000, Rice et al. 2001, Benda et al. 2004a, 2004b, Gordon et al. 2004, 

Kiffney et al. 2006, Rice et al. 2006). This suggests a large spatial perspective that transcends 

scales at which environmental transitions are organized in rivers is essential for detecting and 

evaluating concordant biological transitions. 

Previously reported strengths of within-basin fish/invertebrate concordance varies 

greatly, from no/weak concordance (Paavola 2003, Paavola et al. 2006, Infante et al. 2009), to 

moderate/strong concordance (Grenouillet et al. 2008, Dolph et al. 2011). Although Paavola et 

al. (2006) suggest biological concordance may be stronger at larger spatial scales (e.g., across 
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basins and ecoregions), studies focused at these scales have also yielded a range of concordance 

strengths (Reviewed in Heino 2010, Johnson and Hering 2010, Yates and Bailey 2010, Dolph et 

al. 2011, Larsen et al. 2012).  

Does the lack of invertebrate/fish concordance reported in some other studies limit the 

potential utility of the concept of ecological unit mapping in other river systems? Many instances 

of no/weak biological concordance arise from differences in study context, some from 

differences in sampling design, and in a few cases, both. This study frames questions of 

concordance in the context of longitudinal change in the assemblage composition of different 

riverine taxa. In contrast, many studies that have measured concordance between different taxa 

have done so within a biological assessment context, and therefore pose different questions 

concerning community concordance. For example, assessment-based questions included whether 

biodiversity in indicator taxa can be used to predict variation in biodiversity in other taxa (Heino 

2010), whether different taxa exhibit similar trends in human-induced taxa loss (Dolph et al. 

2011), and whether there is concordant variation along a gradient of anthropogenic stressors 

(Infante et al. 2009, Yates and Bailey 2010, Larsen et al. 2012) within regional datasets. 

To target the specific effects of humans on riverine taxa, some of these assessment 

studies have used sampling designs based on spatially random sample locations or restricted sites 

to a narrow range in size (e.g., streams of the same order, the same width and depth, or only 

small headwaters). Studies with these sampling designs typically found little or no concordance 

between different taxa (Paavola et al. 2003, 2006, Infante et al.2009, Larsen et al. 2012). These 

and similar studies (Lammert and Allan 1999, Johnson and Hering 2010, Dolph et al 2011) have 

led to the suggestion that strong concordance between fish and invertebrates does not occur 

because the two assemblages respond to different environmental variables operating at different 
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spatial scales. Although this may have been observed in context of assessment sampling, the 

sampling design of many of these studies simply precludes accounting for the principal 

component of spatial variation in the fluvial environment: the hydraulic gradient which shapes 

geomorphic, thermal, and many chemical and biological processes (Vannote et al. 1980, Snow 

and Slingerland 1987, Ensign and Doyle 2006). 

Biology/Environment Concordance 

Spatial concordance between fish and invertebrate assemblages within a river basin could 

arise from several mechanisms: 1) response of assemblages to the same environmental gradients; 

2) response to correlated but different gradients; 3) substantial biological interactions between 

the assemblages (leading to strong covariances); or 4) similar limitations in dispersal or 

reproductive capabilities of the assemblages (adapted from Gaston and Williams 1996). Because 

the study area does not contain major barriers to fish or invertebrate distribution, the fourth 

mechanism is likely irrelevant in the lower Muskegon River. Because of its purely observational 

design, this study cannot directly address whether biological interactions between fish and 

macroinvertebrate assemblages could create concordant spatial patterns; however, many strong 

environment/biology concordances (discussed below) suggest that environmental gradients may 

largely control the organization of biological assemblages in the lower Muskegon River basin. 

Observed changes in assemblage structure for both fish and invertebrates were associated 

with changes in the same environmental variables. Thus, it seems likely that the fish/invertebrate 

concordance I observed in this study arises from fish and invertebrates responding to the same 

environmental gradients. The most important environmental variables included measures of size 

(catchment area, discharge and depth/width), link number, temperature, and nutrient regime. 

Longitudinal gradients in river size/temperature have often been associated with changes in fish 
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(Huet 1959, Illies and Botosaneanu 1963, Hawkins and Sedell 1981, Schlosser 1991, Duncan 

and Kubecka 1996, Matthews 1998, Zorn et al. 2002, Wehrly et al. 2003) and, likewise, 

invertebrates (Statzner and Higler 1986, Perry and Schaeffer 1987, Statzner et al. 1988, Hawkins 

et al. 1997). Local longitudinal and spatial effects of tributary junctures on biological 

assemblages have also been recognized (Osborne and Wiley 1992, Benda et al. 2004a, 2004b, 

Ferguson et al. 2006, Kiffney et al. 2006, Rice et al. 2006).  

Despite strong overall environment/biology concordance, differences in fish and 

invertebrate distribution coupled with varying strength of environment/biological concordance 

suggest substrate may have more influence on invertebrate assemblages and temperature may 

have more influence on fish assemblages. Aside from associations with measures of size, 

changes in invertebrate assemblages were most strongly associated with changes in substrate. 

Substrate in the lower portion of the study area was largely uniform shifting sand, a habitat 

suited to few invertebrate taxa (Soluk 1985, Palmer 1990) and thus only minor differences 

between sparse and low diversity invertebrate assemblages in these river sections might be 

expected. Accordingly, invertebrate assemblages in the lower three ecological units were often 

similar and could not consistently be distinguished.  

In contrast, despite proximity and extensive fluvial interconnection, fish assemblages in 

the north and south channels were notably different. Although similar in substrate and IGUs, the 

north and south channel differed in hydrologic, and thus temperature, regime. The northern 

channel receives more groundwater influx and is warmer in the spring and cooler in the summer 

than the south channel. These faunal differences and strong associations with temperature regime 

variables suggest that fish may be responding strongly to even minor differences in temperature 
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regime, a commonly recognized variable controlling lotic fish distribution (Schuller et al. 1999, 

Zorn et al. 2002, Wehrly et al. 2003, Buisson et al. 2008). 

Distinct, homogeneous ecological units 

My empirical data provided strong support for the existence of ecologically distinct and 

homogeneous river channel segments. Transitions in environment character and biological 

assemblages included both gradual and sharp adjustments. Transitions in many environment 

features coincided (e.g., changes in flow rate, planform, temperature, and substrate) and typically 

occurred at certain network junctures (confluences or distributary channel splits). The influence 

of individual environment characteristics on biological assemblages has already been noted, so 

the view that emerges from my study is consistent with views of the river as a patchy continuum 

(Duncan and Kubecka 1996, Wiens 2002, Poole 2002, Thorp et al. 2006, 2008) where transitions 

between patches reflect changes in geomorphic process domains (Montgomery 1999). 

The extant ecological unit delineation (VSEC version 1.0; Seelbach et al. 1997) 

performed well; it captured much of the large-scale patchiness in the lower Muskegon River. 

This suggests that riverine ecological boundaries can be successfully predicted from map 

features, especially when changes in river energy balance (observed as changes in sinuosity, 

channel slope, and valley form) and network confluences correspond to changes in biological 

assemblages. The strong association between river temperature and fish assemblage composition 

certainly helped in this regard, and suggests inclusion of specific regional models of river fauna 

(e.g., Zorn et al. 2002, Steen 2008, McKenna et al. 2014) would be critical when important 

ecological drivers cannot be developed simply from maps. As suggested by Benda et al. (2004a, 

2004b) the relative effect of a tributary juncture on mainstem ecological pattern was predictable 
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based on character (i.e., water temperature, nutrient and substrate load) and relative size of the 

tributary. 

Spatial and temporal extent considerations 

I addressed the research questions at two temporal and three spatial extents. As in 

Hawkins and Sedell (1981) and Ostrand and Wilde (2002), longitudinal changes in biological 

assemblages were much more dramatic than seasonal changes. Given large seasonal migrations 

of anadromous fishes upstream into tributaries and downstream to Lake Michigan (O’Neal 

1997), this was somewhat surprising for fish assemblages. Although combining fish data from 

several seasons and years did somewhat blur spatial transitions between fish assemblages, 

distinct fish assemblages persisted in all delineated ecological units. It seems reasonable to 

assume that local movements of fish between seasons may fuzz the boundaries between 

ecological units when sampled over extended periods of time. 

This study suggests lengths of ecological units within a basin are not arbitrary and must 

correspond to physical scaling laws in rivers, even if this results in EUs of varying size. Within 

the largest ecological unit there was no fish/invertebrate concordance, a small number of weak 

biology/environment associations, and small differences between biological assemblages in each 

subunit. This suggests shorter ecological units within this portion of the Muskegon River, 

although easily delineated, would not usefully reflect observed patterns in environment and 

biological change in this section of river. Although confluence to confluence river segments 

(e.g., arcs or node to node river segments in GIS stream networks) have been proposed as the 

smallest aquatic unit to which environmental data should be attributed (Wang et al. 2011, Melles 

et al. 2014), these units should not be conceptualized as ecological units or confused with 

ecological units. Instead, these arcs should be lumped (or split) as necessary based on 
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environmental features known to control biological distributions within a basin (Seelbach et al. 

1997, Brenden et al. 2008a). Only then should classification of the ecological units proceed 

(Seelbach et al. 1997, Brenden et al. 2008b, Melles et al. 2014). 

This study also suggests ecological unit delineation should proceed at the basin scale to 

recognize the influence of network structure on environmental and biological pattern in rivers. A 

basin-wide perspective implicitly incorporates strong discontinuities between tributaries and the 

river mainstem, while also recognizing spatial pattern within the river mainstem (Benda et al. 

2004a, 2004b). Taking a basin-wide perspective can also facilitate incorporation of differences in 

rates of change along a river network and allow adjustment of the size of ecological units based 

on location in the river network. This study suggests biological assemblages on tributaries may 

be more variable than assemblages along the river mainstem. This highlights a need to examine 

longitudinal patterns in tributaries in even more spatial detail, and to test the assumptions of 

ecological units in tributary systems. 

Ecosystem management implications 

In summary, recurring strong fish/invertebrate and environment/biology concordances 

and marked transitions in ecological character (e.g. channel shape, substrate, temperature, fish, 

and invertebrates) between units provide strong empirical support for the validity of EUs in the 

Muskegon River. Becasue delineated EUs do usefully summarize the environmental and 

biological heterogeneity of the Muskegon River, such map-based EUs can be used to guide 

practical management decisions, simplify large-scale modeling efforts, and can be used as strata 

in biological sampling designs. My analyses suggest that this utility rests on a secure conceptual 

foundation.
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Table 2.1: Spatial and temporal descriptions of the five datasets and the number of sites/taxa in the three main analyses. The number 
of sites is mainstem sites with the exception of datasets beginning WSP where it is # mainstem sites + # tributary sites. Since the 
number of sites affects the power and significance of statistical tests, the number of sites should be considered when interpreting the 
magnitude and significance of statistical tests in this chapter. 

Dataset Spatial (S) Extent Temporal (T) 
Extent 

Fish/Invert 
concordance 

analyses 

Environ/Biology 
concordance analyses NMDS analyses 

NSWT Narrow (NS): 35 river km section 
of mainstem in upstream most 
delineated ecological unit 

Wide (WT): Across 
three seasons and 
two years 

26 sites 

65 fish taxa 
137 inv taxa 

43 fish sites 
70 fish taxa 

29 inv sites 
138 inv taxa 

43 fish sites 
70 fish taxa 

29 inv sites 
138 inv taxa 

WSNT Wide (WS): Mainstem from Croton 
Dam to Muskegon Lake (80 river 
km) 

Narrow (NT): 
Within a single 
season and year 

24 sites 

56 fish taxa 
94 inv taxa 

36 fish sites 
66 fish taxa 

27 inv sites 
103 inv taxa 

37 fish sites 
66 fish taxa 

32 inv sites 
115 inv taxa 

WSPNT Wide PLUS tributaries (WSP): 
Mainstem from Croton Dam to 
Muskegon Lake plus sites on four 
tributaries  

Narrow (NT): 
Within a single 
season and year 

24 + 7 sites 

63 fish taxa 
134 inv taxa 

36 + 11 fish sites 
70 fish taxa 

27 + 7 inv sites 
141 inv taxa 

37 + 11 fish sites 
70 fish taxa 

32 + 7 inv sites 
148 inv taxa 

WSWT Wide (WS): Mainstem from Croton 
Dam to Muskegon Lake (80 river 
km) 

Wide (WT): Across 
three seasons and 
two years 

40 sites 

80 fish taxa 
151 inv taxa 

92 fish sites 
90 fish taxa 

43 inv sites 
150 inv taxa 

96 fish sites 
90 fish taxa 

49 inv sites 
161 inv taxa 

WSPWT Wide PLUS tributaries (WSP): 
Mainstem from Croton Dam to 
Muskegon Lake plus sites on four 
tributaries 

Wide (WT): Across 
three seasons and 
two years 

40 + 8 sites 

84 fish taxa 
181 inv taxa 

 92 + 15 fish sites 
91 fish taxa 

43 + 8 inv sites 
182 inv taxa 

96 + 15 fish sites 
91 fish taxa 

49 + 8 inv sites 
189 inv taxa 
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Table 2.2: Biological measure concordance: Significant Mantel tests with large test statistics (r) 
indicate strong concordance between occurrence, abundance, and biomass measures of biological 
assemblage. Dataset classes are described in Table 2.1 and all distance measures are Euclidean. 
Abundance and biomass measures were LN transformed. 

Variables or Dataset Extent NSWT WSNT WSPNT WSWT WSPWT 
     Fish Occurrence vs. Abundance 0.81*** 0.79*** 0.90*** 0.86*** 0.84*** 

     Fish Occurrence vs. Biomass 0.94*** 0.92*** 0.96*** 0.93*** 0.93*** 

     Fish Abundance vs. Biomass 0.81*** 0.77*** 0.93*** 0.85*** 0.88*** 

     Invert Occurrence vs. Abundance 0.88*** 0.97*** 0.95*** 0.93*** 0.94*** 

     Invert Occurrence vs. Biomass 0.85*** 0.94*** 0.90*** 0.87*** 0.88*** 

     Invert Abundance vs. Biomass 0.70*** 0.94*** 0.96*** 0.81*** 0.83*** 
*p<0.05, **p<0.01, *** p<0.001
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Table 2.3: Biological concordance: Mantel concordance r values for the five datasets and three 
measures of assemblage structure. Large positive r values indicate strong concordance between 
fish and invertebrate assemblages. Datasets are described in Table 2.1 and abundance and 
biomass are LN transformed. Sorenson distance is used for occurrence measure and Euclidean 
distance is used for abundance and biomass measures. 

Dataset extent Occurrence Abundance Biomass 
1) NSWT 0.06 0.22* 0.10 

2) WSNT 0.40*** 0.06 0.20 

3) WSPNT 0.36*** 0.41*** 0.58*** 

4) WSWT 0.33*** 0.26*** 0.10 

5) WSPWT 0.29** 0.40*** 0.30*** 
*p<0.05, **p<0.01, *** p<0.001
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Table 2.4: Environment/Biology concordance: Significant Mantel tests with large test statistics 
(r) indicate strong concordance between fish or invertebrate assemblages (occurrence measure) 
and environmental characteristics. Fish and invertebrate distance matrices are Sorenson and 
environmental is Euclidean distance. Some variables were not tested with the NSWT dataset due 
to minimal variance in values at this spatial extent. NS=No significant association between 
biological occurrence and environmental characteristic. 
Variables or Extent NSWT WSNT WSPNT WSWT WSPWT 
Size/Geomorphic      

     Fish/CatchArea NS 0.58*** 0.87*** 0.40*** 0.57*** 
     Invert/CatchArea NS 0.47*** 0.24** 0.43*** 0.17* 

     Fish/Link NS 0.60*** 0.88*** 0.44*** 0.57*** 
     Invert/Link 0.22** 0.48*** 0.24** 0.54*** 0.17* 

     Fish/Slope NS NS 0.42*** NS 0.34*** 
     Invert/Slope 0.32** NS NS NS NS 

     Fish/Sinuosity NS NS NS 0.11* NS 
     Invert/Sinuosity NS NS NS NS NS 

     Fish/QAve No test1 0.65*** 0.88*** 0.49*** 0.57*** 
     Invert/QAve No test1 0.31** 0.23** 0.34** 0.18* 

     Fish/AveVelocity NS 0.16* 0.43*** 0.21*** 0.23** 
     Invert/AveVelocity NS 0.17** NS 0.17* NS 

     Fish/AveDepth NS 0.31*** 0.60*** NS 0.35*** 
     Invert/AveDepth 0.18* 0.20** 0.37*** NS 0.25** 

     Fish/Width NS 0.15* 0.82*** 0.30*** 0.62*** 
     Invert/Width NS 0.16* 0.25** 0.17* 0.18* 

Habitat      
     Fish/Substrate NS 0.43*** NS 0.25*** 0.14** 
     Invert/Substrate NS 0.41*** 0.25*** 0.41*** 0.31*** 

     Fish/IGUs NS NS NS NS NS 
     Invert/IGUs NS NS NS NS NS 

Chemistry/Temp      
     Fish/Nutrients No test1 0.65*** 0.80*** 0.49*** 0.60*** 
     Invert/Nutrients No test1 0.29** 0.27** 0.31** 0.21* 

     Fish/Temp No test1 0.59*** 0.74*** 0.45*** 0.57*** 
     Invert/Temp No test1 0.33*** 0.23** 0.32** 0.17* 
*p<0.05, **p<0.01, ***p<0.001; 1Did not test: Variable is based on modeled data with only two 
possible values.
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Table 2.5: Performance of delineated EUs: Mantel tests (r) indicate higher biological similarity is associated with sites in the same 
delineated EU subunit (subEUs), EU, or tributary. Although statistically significant at all spatial extents, this association is weak at 
narrow spatial extents and strong at wide spatial extents. Mantel tests used a design matrix with one for sites in the same subEU, EU, 
or tributary and zero for all other comparisons. Pairwise comparisons from MRPP tests determined if specific subEUs, EUs, or 
tributaries differed in biological character. If subunits, EUs, or tributaries did not differ in biological character, the comparison is 
indicated by a line under the similar subunits, EUs, or tributaries. For fish assemblages at all spatial and temporal extents, all subEUs, 
EUs, and Bigelow Creek (T1) had distinct fish assemblages while other tributaries had fish assemblages distinct from the mainstem, 
but not from each other. For invertebrates, results varied somewhat with spatial extent. EU1 had a consistently unique invertebrate 
assemblage, the north (4N) and south branch (5S) often had similar invertebrate assemblages, and tributaries had different invertebrate 
assemblages than the mainstem. All analyses are based on occurrence measure and Sorenson similarity. 

Taxa or Dataset Extent NSWT WSNT WSPNT WSWT WSPWT 

Fish r=0.15** r=0.64*** r=0.53*** r=0.41*** r=0.42*** 

Differences between delineated 
subEUs, EUs and/or tribs 

s1   s2   s3   s4 1   2   4N   5S 1   2   3   4N   5S    
T1   T2   T3   T4 

1   2   3   4N   5S 1   2   3   4N   5S   
T1   T2   T3   T4 

Invertebrates r=0.14* r=0.53*** r=0.44*** r=0.65*** r=0.57*** 

Differences between delineated 
subEUs, EUs and/or tribs 

s1   s2   s31   s4 1   2   4N   5S2, 3 1   2   4N   5S 
T2   T34,5 

1   2   4N   5S3 1   2   4N   5S 
T1   T2   T345 

*p<0.05, **p<0.01, ***p<0.001; 1Comparison s2 to s3 borderline significant at p=0.06; 2Comparison 4N and 5S borderline significant 
at p=0.08; 3differences in EUs 2, 4N and 5S not required for validity of delineated EUs since river segments are not adjacent. 4Some 
tributaries are not included in analysis because of single samples; 5Included tributaries differ from the mainstem, but between tributary 
comparisons were limited by small number of sites on the tributaries.
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Figure 2.1: The lower Muskegon River study area. Lower right inset shows the location of the 
study area in the Muskegon River basin in Michigan’s lower peninsula and the two network 
maps show the location of sites within the study area. Symbols marking sites in the top map 
specify the tributary, the assigned delineated Ecological Unit (EU), and if a site is on a side or 
cross channel adjacent to the mainstem. Symbols in the bottom diagram illustrate the type of 
samples collected at a site.

EUs (upper map):  
1    2    3    3_side    4N 
4N_side    5S     5S_side            
1 Bigelow Ck      2 Brooks Ck            
3 Cedar Ck          4 Mosquito Ck 
 
Samples (lower map): 
F Fish only     I Invert only 
B Both fish & invert 
C Chem only (synoptic) 
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a) Hypothetical river mainstem, sampling sites, and delineated ecological units (EUs). 

 

b) Situation 1: NMDS plot of study sites 

A
xi

s 
2

Axis 1  

c) Situation 2: NMDS plot of study sites 
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Figure 2.2: Ecological units and NonMetric Multidimensional Scaling (NMDS) ordinations: 
Overview: Demonstration of a hypothetical river mainstem with delineated ecological units 
(EUs), two biotic assemblage spatial patterns, and interpretation of corresponding NMDS 
ordinations. Proximity between sites in NMDS ordinations equates to assemblage similarity; 
closer sites have more similar assemblages than distant sites. If the underlying assumption of 
biological/biological concordance is met, plots for both fish and invertebrates will have a similar 
arrangement of sites. If the concordance assumption is met, these demonstration plots can guide 
interpretation of NMDS ordinations for three additional factors relevant to my research 
questions: 1) Within unit assemblage variability, 2) within unit assemblage variability compared 
to between unit assemblage variability, and 3) outliers. Details: a) Simple river mainstem with 
three delineated EUs (three stream segments) and nine sampling sites (three sites per delineated 
EU with unit assignment indicated by symbol). b) In situation 1 the delineated EUs are valid 
since sites within an EU have similar assemblages that are distinct from the assemblages in other 
EUs. Although not an assumption for valid EUs, the variability of assemblages is the same for all 
units and none of the sites have particularly unusual assemblages. c) In situation 2 the delineated 
EUs are null since sites within an EU are arrayed across ordination space regardless of EU 
assignment (i.e. no homogeneity within and EU and sites in different EUs do not have distinct 
assemblages). In contrast to situation 1, within EU variability differs between EUs (less variable 
assemblage in EU3) and two sites have unusual assemblages as compared with other sites along 
the mainstem (indicated by the outline squares).

Upstream Downstream

EU1 EU2 EU3
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Figure 2.3: NMDS ordinations for biological assemblage measures and Wide Spatial, Wide 
Temporal (WSWT) datasets. Ordinations are displayed with symbols in Figure 1 upper map, 
identical axes extents, and include variance explained by each axis. Different assemblage 
measures had no effect on overall interpretation of spatial pattern. Different measures did not 
affect fish ordinations, but did affect invertebrate assemblage variability. Compared with 
occurrence, quantitative measures of the invertebrate assemblage increased variability and 
frequency of outliers in EU1 and decreased variability in EU2. These effects were consistent 
across all datasets except NSWT where there were no effects of different measures.

EU Legend: 1    2    3    3_side    4N    4N_side    5S    
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a) Fish 

 

b) Invertebrates 

 

Figure 2.4: NMDS ordinations for Narrow Spatial, Wide Temporal data sets based on a) fish and 
b) invertebrate occurrence. Variance explained is displayed on each axis, plots have identical 
axes extents, and number markers are subsections in EU1, the longest and most upstream of 
delineated EUs in the study area. Subsections are numbered upstream (1) to downstream (4) and 
vary in size and number of samples. Biological assemblages typically differed by EU subsections 
(also see Table 2.5), but this partitioning is weak and there is also considerable overlap between 
sites in different subsections. There is no concordance between fish and invertebrate 
assemblages.
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Figure 2.5: NMDS ordinations for fish assemblages at a) WSNT, b) WSPNT, c) WSWT, and d) 
WSPWT spatial and temporal extents. Ordinations based on occurrence measure, and displayed 
with symbols in Figure 1 upper map, identical axes extents, and include variance explained by 
each axis (*primary axis is displayed on the y-axis for consistency in spatial arrangement of 
mainstem sites). For WS ordinations (a, c) the primary axis reflects the longitudinal arrangement 
of sites along the mainstem while for WSP (b, d) ordinations, the primary axis differentiates sites 
on the mainstem sites in the tributaries and the secondary axis reflects the longitudinal 
arrangement of sites along the mainstem. Within a single sampling season and year (a, b), sites 
on the mainstem within the same delineated EU have similar and distinct fish assemblages, fish 
assemblages in side channels were different from proximal mainstem sites, and the tributaries 
have mixed fish assemblages that were distinct from those in the mainstem. Spatial patterns are 
similar at the wide temporal extent (c, d) except side channel assemblages are not consistently as 
different from those in the mainstem and downstream sites in Mosquito Creek (T4) have fish 
assemblages similar to those in the mainstem. See Table 2.5 for an explicit test of differences in 
fish assemblages between delineated EUs/tributaries.

EU Legend: 1  2  3  3_side  4N  4N_side  5S   5S_side  T1BG  T2BR  T3CD  T4MS 
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Figure 2.6: NMDS ordinations for invertebrate assemblages at a) WSNT, b) WSPNT, c) WSWT, 
and d) WSPWT spatial and temporal extents. Ordinations based on occurrence measure, are 
displayed with symbols in Figure 1 upper map, identical axes extents, and include variance 
explained by each axis. Unlike ordinations for fish, the primary axis only loosely reflects the 
longitudinal arrangement of sites along the mainstem for invertebrates. Within a single sampling 
season and year (a, b), sites on the mainstem within the same delineated EU often have similar 
but not always distinct invertebrate assemblages, invertebrate assemblages in side channels are 
often quite different from proximal mainstem sites, and the tributaries have mixed invertebrate 
assemblages that are distinct from those in the mainstem. These spatial patterns are also evident 
at the wide temporal extent (c, d). See Table 2.5 for an explicit test of differences in invertebrate 
assemblages between delineated EUs/tributaries.

EU Legend: 1    2    4N    4N_side    5S    5S_side    T1BG   T2CD   T3BR   T4MS 
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Figure 2.7: Trajectory analyses: Cumulative dissimilarity versus distance from Muskegon Lake 
for fish, invertebrates, and a suite of environmental variables (see methods for details). Slope at 
any position on the line indicates rate of change in biological assemblages or environmental 
features (e.g., steep slope indicates rapid change). After the main channel splits into two 
branches, the north branch is red and the south branch is dark blue. Diagrams below the plots 
show location of four major confluences (C) and boundaries between delineated EUs (B). All 
plots show similar pattern in slopes, with rapid changes in biological and environmental 
character downstream of the confluence of Brooks Creek (at 23 km). Including biological data 
from multiple seasons and years smoothed some transitions, but the overall pattern in slopes 
persists.
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a) b) 

c) d) 

e) f) 

EU Legend: 1    2    3    4N    5S 

Figure 2.8: Values of six environmental variables plotted against distance from Lake Muskegon. 
Most environmental variables show strong differences in average value or variability between 
some or all EUs. a) Water temperature is consistent within but varies between delineated EUs in 
both the spring and summer. As compared with the south channel (5S), groundwater 
contributions to the north channel (4N) result in warmer water in the spring and cooler water in 
the summer. b) With the exception of one site in EU2, conductivity is consistent within and 
varies between delineated EUs. The odd site is near wastewater treatment plant outflow. c) Hard 
substrate dominates EU1, substrates are mixed in EU2, and soft substrate dominates EUs 3-5. d) 
Channel sinuosity is highest and most variable in EU1 and lowest and least variable in EU2. e) 
The channel is wide in EUs 1 & 2 and narrow in EUs 3-5. f) Although average water depth is on 
average the same in EUs 1, 2, & 5 and in EUs 3 & 4, variability in water depth differs between 
EUs.
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Appendix 2.1 

From samples to sites in the Muskegon River mainstem: Considerable processing was required 
to move from sample-specific data to site-based summaries of fish and invertebrate assemblage 
composition across narrow and wide spatial and temporal extents. The specific process differed 
between fish and invertebrates and is summarized here. 

Fish: 

Quantitative measures of the fish assemblage at each site were based on both towbarge and boom 
sampling. Site-based assemblage measures required conflation of towbarge samples that 
included small and juvenile fish in wadeable portions of the river and boom samples that focused 
on large fish in non-wadeable portions of the river. These calculations required an estimation of 
the amount of towbarge and boom habitat at each site. Barge samples were from 100 meter 
reaches of river while boom samples varied in length from 0.2 to 1.9 km and sometimes spanned 
multiple study sites. 

Step 1: Determine the percentages of boom and towbarge habitat at each site: A 500 meter 
buffer was created for each georeferenced site and the underlying digital habitat map was 
clipped. Because of the mismatch in the scale of sampling by barge and boom, an intermediary 
scale, a 500 meter buffer, was used to estimate the proportion of each sampling habitat for each 
site. The proportion of each of 22 habitat variables (i.e., riffle, pool, edge, backwater, etc.) was 
calculated for each site and each habitat was assigned a towbarge or boom designation based on 
depth, location of habitat, and personal observations of aquatic habitat in the Muskegon River. 
The proportion of towbarge and boom habitat for every site was summed and checked for unity 
(i.e., proportion towbarge habitat + proportion of boom habitat = 1). 

Step 2: Associate towbarge and boom samples: Based on river network proximity and start/end 
coordinates of boom runs, all but a few barge samples were associated with boom samples. 
Sometimes multiple barge samples were associated with the same boom sample. 

Step 3: Refine taxa database: Exclude undesired taxa (e.g., young of the year minnows and the 
rare unidentified fish). 

Step 4: Calculate fish densities for each taxa for “Narrow Temporal” data sets: Narrow 
temporal extent only included samples from the spring of 2003. Observed densities for each fish 
taxon at each site and type of sample were multiplied by the proportion of towbarge or boom 
habitat. Densities for each fish species were summed a at site. Rarely, usually because of depth 
restrictions (e.g., too shallow for the boom shocker or too deep for the barge shocker), a site only 
had one type of fish sample and the sample was given full weight. 

Step 4: Calculate densities for “Wide Temporal” data sets: Many sites were sampled on multiple 
occasions (across seasons and two years) and these sampling occasions were conflated to 
produce the wide temporal datasets. Within each sample type (i.e., boom or barge), density or 
biomass were summed by taxon and divided by the number of samples for a “typical” fish 
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sample. These typical samples were then multiplied by the proportion of barge or boom habitat 
as appropriate and boom and barge contributions were combined for a summary of biomass/m2 
or density by site. 

Invertebrates: 

At each site, sampling was designed to account for invertebrate densities in all major habitats and 
in notable habitats. The number of samples from each habitat, and thus also the number of 
samples within a site, varied. Samples are from two seasons in two years (although many sites 
were only sampled once). 

Step 1: Calculate the proportions of sampled habitats: Using a 100 meter buffer around each 
site, calculate the total amount of each habitat type. For each site and season, include only 
habitats that were sampled for invertebrates and calculate the proportion of each sampled habitat. 

Step 2: Refine taxa database: Exclude undesired taxa (oligochaetes, taxa identified only to order, 
etc.) and conflate different life stages (i.e., larvae, pupae, adult) for each taxon. 

Step 3: Develop sampling information: Calculate the number of samples per habitat per site per 
season. Create a file with the number of samples per habitat per site per season, e.g., Site A, 
season 1, 2 samples in scour pool, 1 sample in edge, 4 samples in run; Site A season 2, 1 sample 
in scour pool, 4 samples in run, etc.). Include the total area sampled per habitat per site per 
season for per m2 measure. 

Step 4: Calculate average biomass or density per taxa per habitat at each site/season: Sum the 
total biomass or counts for each taxon per habitat per site per season. Join the samples table and 
the sum by taxon table and calculate the average dry biomass/m2 or density per habitat per site 
per season. 

Step 6: Weight samples by proportions of habitats sampled: Multiply average biomass/m2 or 
density by sampled habitat proportions per site per season. 

Step 7: Characterize the invertebrate assemblages at a site: Sum weighted biomass/m2 and 
densities per site per season for each taxon. 

Step 8: Organize a sites by taxon file and adjust for number of seasons per year with samples: 
For all narrow temporal datasets the data is simply formatted using a crosstabs query. For all 
wide temporal datasets the cross-tabbed file is adjusted for the number of times a site was 
sampled by dividing all sums of biomass/m2 and density by the number of times the site was 
sampled.
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Chapter 3 : Ecological units, concordance, and spatial patterns analyses from 
the headwaters to the mouth of river tributaries 

Abstract 

The delineation of Ecological Units (EUs; contiguous river segments with homogeneous 

biological and environmental features) in rivers may provide an important tool for resource 

management, especially in numerous and varied headwater tributary systems. However, little 

independent testing of either the theoretical assumptions or practical performance of extant 

delineations has been reported. Ecologically distinct and homogenous river segments can only 

occur where there is strong concordance between biological assemblages and between biological 

assemblages and environmental variables. This study used a longitudinal, high-spatial-frequency 

sampling design in a variety of Midwestern stream systems to test these and related assumptions 

of EUs.  

Across and within-system fish/invertebrate concordances were very strong, as were 

environment/biology concordances. Strong concordance between biological assemblage 

compositions and measures of stream size suggest weak concordances between fish and 

invertebrates observed in other studies may result from sampling designs that exclude the stream 

size gradient. Location in the network influenced patterns of spatial homogeneity, with 

decreasing rates of change in environmental variables and increased biological similarity moving 

from headwaters to the mouth. High order/main channels with substantial stream discharge were 

the only contiguous areas of environmental and biological homogeneity. This suggests a need for 

better understanding of spatial pattern and processes in headwater streams, the delineation of 
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many, small EUs in the headwaters, and the need for classification of EUs into ecological 

“types” following delineation. 

Introduction 

Lotic systems begin as small, ephemeral rivulets and grow to become comparatively 

enormous bodies of water near the rivermouth. Although images of the larger channels are most 

often associated with the word “river,” headwaters dominate river systems, sometimes 

accounting for more than 75% of total channel length (Leopold et al. 1964, Benda et al. 2004a). 

With the exception of a handful of headwater systems (such as Hubbard Brook in New 

Hampshire), ecosystem processes and resulting ecological spatial pattern in headwaters are 

poorly understood (Lowe and Likens 2005, Bishop et al. 2008, McGuire et al. 2014). Bishop et 

al. (2008) called headwaters the “aqua incognita” after recognizing management agencies tasked 

with maintaining the ecological health of Swedish streams didn’t even know the length of all 

perennial streams in Sweden, let alone their ecological condition. Lowe and Likens (2005) 

proposed “moving headwaters to the head of the class” and called for increased study in 

headwater systems. 

Although a standard definition of a “headwater” does not exist, most headwaters are 

recognized by low stream order, small channel width, and strong coupling with their catchment. 

Headwaters are also widely recognized for their contribution to biodiversity of river networks 

(Richardson and Danehy 2007, Meyer et al. 2007, Clarke et al. 2008, Finn et al. 2011). As 

Matthews (p. 31, 1998) stated, “overall, there are probably more environmental, biological and 

ichthyological differences among different kinds of 1st order streams than among stream reaches 

in higher orders.” Because of their small size and strong coupling with the landscape, headwater 

streams are also vulnerable to a variety of threats including groundwater extraction, developed 
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land use, and channel modification (Elmore et al. 2008, Waco and Taylor 2010, Rasmussen et al. 

2013). Such changes can produce local effects and have profound consequences downstream 

(Alexander et al. 2007, Freeman et al. 2007, Wipfli et al. 2007). 

Given the unique character of headwater streams and their potential degradation, it is 

reasonable to have concerns about how can we efficiently increase our knowledge of headwater 

systems, describe spatial pattern in headwater systems, and enact appropriate ecological 

management actions. One tool may be the use of ecological units (EUs). EUs are spatially 

contiguous areas with relatively homogeneous environmental and biological features. In theory, 

they are holistic, in the sense that they represent both environmental patterns and the biota’s 

“perception” of the environment. EUs are conceptualized as real, persistent, and map-able places 

that may be repeated across the landscape (Rowe 1961) and therefore lend themselves to 

classification. In delineating homogeneous units, emphasis is given to regions of rapid changes 

in characteristics known to determine patterns of biological composition and functioning of 

ecosystems. In rivers, it is not unusual to have spatially concurrent change in hydrologic, 

thermal, geomorphic, and biological character (Poff et al. 1997, Frissell et al. 2001, Jensen et al. 

2001, Zorn et al. 2002, Wehrly et al. 2003, Benda et al. 2004a, 2004b, Seelbach et al. 2006, 

Thorp et al. 2006, Thorp et al. 2008). Therefore, unit boundaries in large rivers are often placed 

at observable shifts in river energy balance (e.g. observed as changes in sinuosity, slope, and 

valley form, and at major tributary confluences) while unit boundaries in smaller rivers and 

tributaries are often placed at tributary junctures, and shifts in land use/land cover (LULC) and 

surficial geology. 

In practical application then, valley segment-scale EUs in headwater tributaries will have 

two defining properties: 1) Relatively homogeneous biological and environmental composition 
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and/or patterning; and 2) Areas of rapid change across unit boundaries. For these properties to 

exist, some significant degree of biological concordance (i.e., concordance between different 

types of organisms) and concordance between biological structure and the physical environment 

must be present. Because it is a logical requirement of the existence of ecological units, 

concordance is a property that should exist independently of any specific unit delineation or 

classification scheme. 

If effective EUs can be delineated in headwater tributary systems, the implications are 

extensive. EUs would provide real units to both inventory and classify tributary stream segments 

for practical management, providing a crucial tool to better understand and manage the plethora 

of headwater streams in river catchments. Homogeneity within an EU and subsequent 

classification of EUs into types would allow extrapolation of representative samples or models to 

larger-scale units and to EUs of similar ecological “type”. Effective EUs would also provide a 

way to communicate complex ecological processes and resultant patterns we see in river 

tributaries (Rowe 1961, Levin 1992). Conservation of river headwaters may also be aided since 

the mapping and inventory of functional units (cf. valley segments in Seelbach et al. 1997, 2006, 

Sowa et al. 2007, McKenna et al. 2014; macrohabitats in Higgins et al. 2005, and functional 

process zones in Thorp et al. 2008) are important steps in conservation planning. 

Despite the potential utility of EUs in tributary systems, little targeted and 

comprehensive (i.e., across multiple measures such as habitat, multiple biological assemblages) 

testing of either the theoretical basis of ecological units or the efficacy of delineated ecological 

units has been performed. Four studies which have addressed the effectiveness of ecological 

units have done so for fish (Boys and Thoms 2006, Seelbach et al. 2006), macroinvertebrates 

(Thompson et al. 2004), or habitat (Warrner et al. 2010). Melles et al. (2014) conclude a review 
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of stream classification by arguing the testing of proposed classifications is one of the most 

important steps in the creation of ecosystem classifications. However, such testing of riverine 

ecological units is limited by the requirement of comprehensive, longitudinal, high-spatial-

frequency empirical datasets; a sampling design not common in existing data sources or in 

governmental agency data-collecting regimes. Longitudinal sampling in small tributaries is 

especially rare, as most bioassessment-oriented sampling programs prioritize sampling a variety 

of tributary systems more than targeted study of particular systems (US Environmental 

Protection Agency 2006). 

Because concordance is a necessary condition for EUs to exist, the conceptual utility of 

ecological units can be tested with appropriate empirical data. I applied a headwaters-to-mouth, 

high-spatial-frequency sampling design to five Midwestern tributaries of varying ecological 

character to test the validity of the underlying assumptions of EUs: 1) fish/benthic invertebrate 

assemblage composition concordance, 2) environment/biology concordance, and 3) the existence 

of ecologically distinct, homogeneous river segment units. This sampling design also allows 

investigation of ecological transition zones and rates of change within a river tributary. I also 

examined an existing ecological, valley-segment-scale delineation (VSEC version 1.0 with 

extension into previously unmapped headwater stream segments; Seelbach et al. 1997) in terms 

of its ability to partition spatial homogeneity in tributary systems. 

Methods 

Study systems and sites 

Five tributary systems were chosen to represent a range of network complexity, drainage 

density, hydrologic regime, anthropogenic impairment, and biological assemblages. Fifty-seven 
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study sites were assigned across the five systems with the goal of characterizing each system 

from its smallest, permanent streams to its mouth (Figure 3.1). Sampling sites were classed by 

position in the network and by delineated EU. Network position classes include Extreme 

headwaters (“E”; 1st or 2nd order sites with low-flow discharge <0.1cms and catchment area 

<25km2), Creek main channel (“C”; Highest order sites after a large jump in link number), and 

Headwaters (“H”; all other sites). The H and C classes are similar to those Hitt and Angermeier 

(2011) used when predicting effects of stream network position on fish community composition 

and bioassessment. Sites also spanned delineated EUs with the goal of including maximum 

variability within the delineated EUs. Most sites within a system were spaced 3-4 km apart, but a 

few sites were less than a km apart and one set was more than six km apart.  

Three of the five study systems are in the Muskegon River watershed, a cool- and cold-

water tributary of Lake Michigan. Bigelow Creek (BG) is the smallest study system 

(catchment≈80 km2) with the fewest sites and delineated EUs. This catchment is dominated by 

forest and wetland with minimal agricultural (Ag) and urban (Ur) development (5.8% Ag, 1.2% 

Ur). The main branch is a cold-water trout stream, while an intermittently connected side branch 

originates from a small warm water lake and flows through a wetland complex before joining the 

main branch. BG terminates at the Muskegon River <1 km downstream of site BG5. Cedar 

Creek (CD) is larger (wadeable portion of catchment≈160 km2) and includes warm-water 

agricultural headwaters and a cold, groundwater-dominated mainstem. The eastern branch of CD 

originates in a warm water lake and flows through a large wetland complex. Overall, this system 

is minimally impacted (14.7% Ag, 3.5% Ur) and becomes non-wadeable downstream of site 

CD9, and then becomes the north branch of the Muskegon River. Brooks Creek (BR) drains 

primarily till plain topography (catchment≈160 km2) and therefore has a dense, highly bifurcated 
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stream network which includes flashy warm-water agricultural ditches, stable cold-water 

segments, and lake outflows. Agriculture is widespread in this system (44.8%) and urban 

development is moderate (4.9%). Within BR there is a large warm-water lake immediately 

upstream of site BR8 and a small in-line lake upstream of site BR9. BR terminates at the 

mainstem of the Muskegon River <0.5 km downstream of site BR14.  

In contrast, the other two study tributary systems, Mill Creek (ML) in SE Michigan and 

Crane Creek (CR) in NW Ohio are far removed (Figure 3.1 inset) and comparatively more 

impaired. ML, a highly dendritic tributary of the Huron River, has a large catchment (≈370 km2) 

draining mixed land use/land cover (LULC) and surficial geologies. The northern and western 

headwaters are largely groundwater sourced while southern headwaters originate as agricultural 

ditches. This catchment is largely agricultural (48.3%) with a moderate amount of urban 

development (5.7 %) and extensive channelization. At the time of sampling, a small man made 

impoundment existed just upstream of ML16, preventing movement of fish between sites ML15 

and ML16, strongly affecting physical conditions at ML16, and producing lentic habitat at 

ML15. ML terminates about 2 km downstream of site ML16 at the Huron River which drains 

into the western basin of Lake Erie. CR is smaller (riverine portion of catchment≈115 km2), 

dominated by agriculture and clay soils and flows into an estuary complex which terminates in 

Lake Erie (Fig 1). Crane Creek has highly degraded water quality, and is a flow-gradient, flashy, 

run-off driven highly channelized system. CR’s headwaters are largely drainage ditches. The 

most downstream site (CR13) is strongly affected by estuary and lake seiches, having little 

discharge except under high flow conditions or during falling levels in western Lake Erie. This 

catchment is dominated by agriculture (84.1%) and urban land cover (6.3%) and has little 

riparian cover upstream of site CR7. 
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Delineated EUs 

The delineated EUs used in this study (Figure 3.1) were developed prior to sampling and 

data analyses (For tributaries in MI: VSEC version 1.0; Seelbach et al. 1997). Their goal was to 

identify valley segment-scale ecological units with relative homogeneity in hydrologic, 

geomorphic, limnologic, and water quality characteristics, and in likely biological assemblages. 

EUs were delineated “from above”; two experienced aquatic ecologists worked together, 

interpreted map information on catchment and valley characteristics, using their combined 

knowledge of ecological processes and interactions. Delineations and biological interpretations 

were reviewed with regional MDNR biologists to ensure consistency with general experience.  

EUs were delineated beginning at the mouth of the river and working upstream. 

Boundaries of units were placed at important stream junctures, slope breaks, changes in river 

planform, and boundaries of local landforms. Seelbach et al (1997) recognized that very small, 

1st order streams were likely ecologically different than adjacent stream segments and terminated 

EU delineation prior to the mapped end of the smallest stream segments. However, in practical 

application of EUs, it is common to simply extend these upstream-most EUs to include all 

mapped stream segments. In the MI study tributaries, three upstream EU boundaries were 

extended to include three study sites. A similar approach was used to delineate EUs for Crane 

Creek, with emphasis on stream junctures since LULC, surficial geology, and slope varied little 

within the catchment. 

Environmental data collection and development 

I described the environmental character of each study site based on field measurements 

and network and landscape features derived from GIS maps. At each site I established a 

sampling reach of length approximately 20x stream width (with a minimum length of 50 meters 
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and a maximum length of 250 meters). This sampling reach was used for all field measures and 

biological collections. With the exception of spring chemistry and temperature measures, 

sampling occurred during typical summer low-flow conditions. GIS-derived characteristics were 

developed for each site based on field-recorded GPS coordinates at the midpoint of each 

sampling reach and snapped to the 1:100,000 scale National Hydrography Dataset (NHD) 

network lines. 

Channel characterizations were made using visual habitat and cross-sectional surveys. 

After thorough inspection of each sampling reach, the percentage of erosional and depositional 

habitat, specific In-stream Geomorphic Unit types (IGUs; i.e., riffle, run, pool, edge, bar and 

backwater) and substrate types (i.e., cobble, gravel, sand, claybed, wood, fine and coarse organic 

matter) within a sampling reach were recorded. Five cross-sections were equally spaced across 

the sampling reach and described by line transect methods (width, depth, and water velocity). 

The cross-sections were used to summarize channel shape by averaging or maximizing values 

resulting in width, depth, maximum depth, depth and width at bankfull, ratio of width to depth at 

bankfull, cross-sectional area, wetted perimeter, and hydraulic radius measures for each site. 

Additionally, bankfull shear stress and channel average power (Gordon et al. 2004) were 

calculated based on field measures. 

Hydrologic and chemical character was measured in the summer of 2004 and the spring 

of 2005 through a combination of field and laboratory techniques. To ensure temporal variation 

contributed little to differences between measured values, sites within a tributary system were all 

sampled within a 24-hour period without a precipitation event immediately prior to or during 

sampling. Stream discharge was measured using the velocity-area method with a pressure-

induced Marsh-McBirney flowmeter. Conductivity, dissolved oxygen, pH, and temperature were 
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measured in the field with handheld meters (YSI-brand) while nutrients (nitrate, ammonia, and 

soluble reactive phosphorous), and alkalinity were measured in the laboratory following standard 

HACH procedures.  

GIS-derived landscape and network characteristics were developed from the 1:100,000 

scale NHD. For each site, network link number was determined. Catchment area, low-flow 

discharge, bankfull shear, and average power were LN transformed to reduce the influence of 

extremely large values. 

Biotic assemblages 

To assess fish assemblage abundance and composition, sites were electrofished during 

low-flow condition between July and August 2004. Based on a stream’s size and accessibility, 

either a backpack or a towbarge electroshocking unit was used, with the exception of one site, 

CR13, whose unusual width required a boat-mounted boom electroshocker. At all sites except 

CR13, we used two-pass depletion with upper and lower block nets; at CR13 we shocked a 100-

meter reach without blocknets. All fish were identified to species and were counted, with the 

exception of some young-of-year minnows and immature native lamprey. Abundances were 

estimated as follows: 

Estimated abundance = (# in pass 1)2/(# in pass 1– # in pass 2). 

To account for differences in estimated abundance due to stream size and reach length, 

abundances were converted to densities (#/m2) based on shocked areas calculated from reach 

length and average stream depth. 

The standardized, semi-quantitative procedure used to collect macroinvertebrates in this 

study attempts to detect all taxa within a sampling reach and quantify their relative abundance. 

This procedure is more comprehensive than most rapid bioassessment protocols, although this 
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procedure can also be used for bioassessment (Barbour et al. 1995, Park 2007). Invertebrates 

were collected prior to emergence during the spring of 2005. At each sampling reach, two 

individuals trained in collection and identification techniques used D-nets, kickscreens, and 

wood grabs to collect organisms from either erosional or depositional habitats throughout the 

sampling reach. Usually each individual collected for one hour, rarely less than one hour if 20 

minutes of sampling yielded no additional taxa and the reach was fully explored. Organisms 

were identified to family or genus while in the field and relative abundance was recorded on a 

scale of 1 (extremely rare) to 5 (dominant) for each taxon for each habitat. Field identifications 

were verified, or corrected as necessary, with voucher specimens examined in the laboratory. 

Erosional and depositional habitat subsamples were combined, and relative abundances were 

weighted according to the proportional abundance of erosional and depositional habitat across 

the sampling reach. The resulting composite relative abundance score was our best estimate of 

relative abundance of the taxon across the entire sampling reach. 

Data analyses 

My analyses had four primary objectives: 1) To measure the degree of concordance 

between fish and invertebrate assemblages in tributary systems; 2) to measure the degree of 

concordance between biological and environmental variables in tributary systems; 3) to identify 

patterns of biological and environmental change in tributaries from their headwaters to mouths, 

and 4) to assess the homogeneity and boundary assumptions of generalized and delineated 

ecological units. Analyses at the within- and across-system spatial extents provide both system-

specific results and more generalized results. All analyses were performed with PC-ORD version 

6.08 (McCune & Mefford 2011). 
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For concordance analyses, I used simple Mantel tests to investigate the degree of 

concordance between occurrence and abundance measures of the fish and macroinvertebrate 

assemblages, concordance between fish and invertebrate assemblage composition, and 

concordance between biological and environmental spatial variability. A simple Mantel test is 

extremely flexible in utility and is used to test the null hypothesis of no relationship between two 

square symmetric matrices. It is an alternative to regressing one matrix against the other, 

avoiding the problem of partial dependence within each matrix. The standardized Mantel test 

statistic (r) ranges from -1 to 1, with 1 indicating perfect positive congruence between the two 

matrices. For all Mantel tests, the significance of r was assessed with a Monte Carlo 

randomization method using the maximum number of possible data permutations or a maximum 

of 3000 permutations. In concordance analyses a large positive r indicates strong agreement 

between distance matrices for assemblage measures, fish and invertebrate assemblages, or 

biological and environmental variables. 

For all biological variables I calculated Sorenson similarity between sites within each 

stream system and across all sites and systems. This measure of similarity is desirable since it 

ignores joint absences, a combination that dominates many assemblage matrices (Faith et al. 

1987) and gives less weight to rare taxa (McCune and Grace 2002). I used the square root 

transform on fish abundance to allow influence, but not dominance of, extremely abundant fish 

taxa (Zar 2010). I excluded extremely rare taxa (only one individual total or only a few 

individuals at one site) and YOY minnows and lamprey that were not identified to species, 

resulting in 141 macroinvertebrate taxa (out of 168) and 53 fish species (out of 65) used in the 

analyses. 
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Analyses based on similarity matrices required fish to be present at all sites, but at the 

three headwater-most sites in Crane Creek (Figure 1) fish were completely absent from the 

sampling reach. Sampling occurred during extremely hot and dry conditions, and I believe fish 

that would normally be at these sites moved downstream to escape toxic chemical and thermal 

conditions. Therefore I added one Fathead Minnow, (Pimephales promelas), to the data matrix 

for the three fishless sites in Crane Creek; Fathead minnow was the most abundant fish in Crane 

Creek and present downstream of the fishless sites. These three sites were excluded if the 

analysis permitted. 

I also used simple Mantel tests to assess concordance between biological and 

environmental dissimilarity matrices. Euclidean distance was used to measure differences 

between environmental character. Some distance matrices were calculated based on a single 

variable (e.g., catchment area, low-flow discharge, link, shear, and power) while others were 

composite measures calculated on multiple variables (e.g., nine measures of channel shape, 

proportions of seven substrate classes, proportions of six IGU types, concentrations of three 

nutrient measures across seasons, alkalinity and conductivity across seasons, and water 

temperature across seasons) Because of the difference in units, Alkalinity and conductivity 

measures were Z-score normalized prior to distance matrix calculation. 

I used Non-metric Multidimensional Scaling (NMDS) to illustrate concordance and 

patterns of spatial homogeneity for fish and invertebrate assemblages both across- and within-

study systems. NMDS is an ordination method based on ranked distances and it is well-suited to 

non-normal data with many zero values (Minchin 1987). A successful NMDS produces a low-

dimension ordination where the distances between pairs of sites are in rank-order agreement with 

their dissimilarities in species composition. The distance between sites in NMDS plots can be 
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directly interpreted, for example, sites closer together have more similar assemblages. Each 

NMDS was run in the autopilot mode “medium” setting, (a balance of speed and thoroughness), 

with a maximum of 500 runs with random starting seed and a stability criterion of 0.00001. In 

most runs a 2D solution was suggested although rarely a 3D or 4D solution was suggested. 

However, after careful examination of the 3D+ solutions, the additional axis explained little 

additional variance and interpretation of the results was the same regardless of the additional 

dimensionality. For ease and consistency of viewing, the NMDS plots include the two axes that 

explained the most variation and are oriented similarly for fish and invertebrates. Figure 3.2 

demonstrates how NMDS plots can be used to assess homogeneity and boundary assumptions of 

EUs under hypothetical situations of valid and null EUs. 

I used Multi-response Permutation Procedures (MRPP) and simple Mantel tests to test the 

ability of network position classes to partition differences in biological assemblages. MRPP is 

akin to ANOVA in that it is designed to assess whether there is greater difference within 

predetermined groups or among predetermined groups, but it is a data-dependent permutation 

procedure based on pairwise distance measures. It is ideally suited to ecological data because it 

makes few assumptions about the distributional structure of the data (Zimmerman et al. 1985) 

and can be used on multivariate arrays. The null distribution of the test statistic, chance-corrected 

within-group agreement (A), is based on the collection of all possible permutations of sites into 

groups of specified size. A is maximized at 1 when sites within predefined groups are identical, 

and A is 0 when the within-group heterogeneity exceeds that expected by chance (McCune and 

Grace 2002). Because MRPP requires replicates within a group, it could not be used to analyze 

location class in Bigelow Creek; Instead, I used a simple Mantel test to test the relationship 

between similarity matrices and a design matrix, a matrix with ones for comparisons of sites 
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within the same location class and zeros for sites in different location classes. In these analyses, r 

is large if sites within the same location class are associated with higher similarity than those in 

different location classes.  

Trajectory analyses and NMDS plots explored biological and environmental transitions in 

the study systems. These analyses allowed assessment of transitions independent of EUs and 

assessment of transitions across delineated EU boundaries. For each study system I calculated 

the average Sorensen assemblage dissimilarity per km separation for fish and invertebrates from 

neighboring sites. To assess differences in rates of change from the headwaters to the river 

mouth, I created trajectory plots by plotting cumulative dissimilarity in fish and invertebrate 

assemblages for each headwater to mouth flow route against distance from the downstream-most 

site. In these plots, a steep slope indicates rapid change in the biological assemblages. 

Boundaries between delineated EUs are illustrated with arrows in the NMDS plots 

(Figures 3.3, 3.4). Within the five systems, there are a total of 14 proposed ecological 

boundaries, one in Bigelow, two in Cedar, four in Brooks, four in Mill, and three in Crane. These 

proposed boundaries were examined individually and compiled for an overall assessment of 

boundary performance. The similarity of each biotic assemblage across each boundary was 

calculated and compared to the similarity of the fish assemblage of the upstream site and its 

upstream neighbor in the same EU. For example, in Cedar Creek there is a proposed boundary 

between sites 5 and 9. The similarity of the fish assemblage between sites 5 and 9 was compared 

to the similarity of the fish assemblage at sites 4 and 5. If the proposed boundaries are realized in 

the data, the similarity of fish assemblages should be lower across the boundary than between 

upstream sites. This hypothesis was tested using a one-sided Sign test, whose null hypothesis is 

that there should be equal numbers of differences in each direction. 
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I used two sample t-tests to evaluate the ability of delineated EUs to partition sites into 

biologically and environmentally similar groups. For the t-test I grouped biological and 

environmental similarities into three categories: 1) Same, where the similarity is a comparison of 

sites in the same delineated EU; 2) Adjacent, where the similarity is a comparison of sites in 

adjacent but different EUs; and 3) Neither, where the similarity is a comparison of sites that are 

not in the same or adjacent EUs. If EUs are effective, we would expect higher average similarity 

for sites within the same unit than for comparisons with sites in adjacent units. Analyses do not 

include the neither category since there is no directional prediction of similarity in this category; 

similarities could be high between sites if species pools and environmental conditions are the 

same or low if species pools differ and/or environmental conditions vary. These expectations for 

the “neither” comparisons also preclude the use of more rigorous statistical tests (e.g. MRPP) 

tests comparing within and between group variances. Either the standard t-test or Welch’s t-test 

for unequal variance was used (Zar 2010). Significance of t was determined for degrees of 

freedom limited to the number of sites (not the number of similarities) included in the analyses 

minus two. 

Results 

Differences between tributary systems 

The five study systems differed considerably in physical, chemical, and biological 

character, achieving my intention of including a spectrum of systems in this study. The systems 

can be usefully arrayed along a nutrient/water source gradient (Table 3.1). At one extreme, 

Bigelow and Cedar Creeks were largely cold, nutrient-poor, mineral-rich systems (Table 3.1) 

with low fish taxa richness and intolerant fish and invertebrate species (with the exception of site 
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BG3, Table 3.2). In contrast, Crane Creek was highly impacted by agricultural practices within 

the watershed. Crane Creek experienced large fluctuations in temperature, dissolved oxygen, and 

flow, and consistently experienced extremely high nutrient concentrations (Table 3.1). The biotic 

assemblage in Crane Creek was largely pollution-tolerant fish and invertebrate taxa (Table 3.2). 

The environmental and biological character of Brooks and Mill Creeks fell between these other 

tributary systems. 

Fish and invertebrate assemblages generally differed between study systems and at sites 

within study systems, although within-system variability was typically lower than between-

system variability, especially when extreme outliers were excluded (Table 3.2 and Figures 3.3a, 

3.4a). Fish assemblages in Bigelow and Cedar Creek were similar to each other, but different 

from those in Brooks and Mill Creeks, which were also similar to each other. The fish 

assemblage in Crane Creek was distinct from the other four systems. Two extreme differences in 

fish assemblages within a stream system were highlighted by the outlying sites BG3 and ML10 

(Figure 3.3a). Both sites had extremely small basins resulting in little to no flow except in storm 

events, small standing pools, and limited physical connectivity to downstream sections. As 

compared with fish, most study systems had more distinct invertebrate assemblages. Brooks 

Creek was the exception with invertebrate assemblages similar to sites in other study systems, 

although the typical assemblage (indicated by the centroid of the distribution of sites) was unique 

to Brooks Creek (Figure 3.4a). Again BG3 and ML10 were outliers for their respective stream 

systems, although the invertebrate assemblage at ML10 was not as extreme as the fish 

assemblage (Figures 3.3a & 3.4a). 

Occurrence and abundance measure concordance 
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There was very strong and statistically significant concordance between occurrence and 

abundance measures at across- and within-system spatial extents (Table 3.3 section a). This 

concordance implies similar patterns of faunal transition and homogeneity using either measure 

of the assemblage. For simplicity, NMDS and biological/environmental concordance analyses 

presented in subsequent sections of this study are based on the occurrence measure of the 

assemblage. 

Fish and invertebrate concordance 

There was very strong and statistically significant concordance between fish and 

invertebrate assemblages at across- and within-system spatial extents (Table 3.3 section b). By 

including sites from all study systems, faunal differences across sites within the same system and 

faunal differences between systems contribute to strong across-system concordance (r >0.6). 

Within-system concordances varied (Table 3.3 section b, r ranged from 0.40 to 0.93), but were 

generally quite strong and statistically significant for all study systems. This concordance implies 

similar patterns of faunal transition and patterned biological homogeneity, supporting the first 

underlying assumption required in ecological unit delineation. Likewise, the similar 

configuration of sites in corresponding fish and invertebrate NMDS plots (e.g., Figures 3.3a and 

3.4a, 3.3b and 3.4b, etc.) implies strong concordance of fish and invertebrate assemblages at the 

across- and within-system spatial extents. As with Mantel tests (Table 3.3 section b), NMDS 

interpretations were similar whether analyses used occurrence or abundance assemblage 

measures. 

Environment/Biology concordance 
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As required by the second EU assumption, there were many strong concordances 

between environmental variables and biological assemblage composition. However, the strength 

varied with environmental variable, study system, and spatial extent of analysis (Table 3.4). 

Because of strong concordance of fish and invertebrate assemblages, spatial patterns of both 

assemblages were usually associated with patterns of the same environmental variables. At the 

across-system extent, temperature, water chemistry, substrate, IGUs, channel shape, link, low-

flow discharge and catchment area were strongly associated with biological assemblages. These 

associations reflect across- and within-system differences in size, network typology, hydrologic 

regime, surficial geology, and LULC. With the exception of Crane Creek, spatial pattern in 

bankfull shear and average power were rarely associated with patterns in biological assemblages 

at the across- or within-system spatial extent. 

At the within-tributary system spatial extent, repeated environment/biology concordances 

suggest common associations regardless of tributary system and a few associations specific to 

particular systems (Table 3.4). With a few exceptions, there was strong concordance between 

biological assemblages and the environmental variables temperature, nutrient chemistry, habitat, 

channel shape, and link number. In all systems except Crane Creek, which has a largely 

homogeneous catchment, concordance involving nutrient chemistry was much stronger than 

concordance for the alkalinity and conductivity composite variable. In Bigelow Creek, low-flow 

discharge, link, and temperature were very strongly concordant with the biological assemblage, 

although this may primarily reflect differences between the wetland-influenced site BG3 from 

the other four sites. There was especially strong concordance between biological assemblages 

and catchment area and channel shape in the three drainage-dense systems, Brooks, Mill and 

Crane Creeks. Cedar Creek was unusual in that, especially for fish, it had fewer strong 
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environmental/biological concordances than the other four systems. In contrast, Crane Creek was 

unusual in that there were significant concordances between biological assemblage composition 

and all non-habitat environmental variables except fish and substrate.  

Distinct, homogeneous EUs 

Distinct and fairly homogenous biological assemblages were only observed downstream 

in the network along the creek mainstem; these river segments are indicated in the NMDS plots 

by distinct, clumped blue letters (Figures 3.3 & 3.4 b-f). In Mill Creek, the tributary with the 

largest catchment and highest number or links, some high-discharge, but headwater-classified 

sites also had similar fish assemblages to sites in the downstream-most channel section (Figure 

3.3e and likely represent errors in the a priori network position classification). Two exceptions to 

the rule of homogeneity in downstream/main channel sections are estuary-influenced site 13 in 

Crane Creek (Figures 3.3f & 3.4f, upper blue C) and the big river confluence site 9 in Cedar 

Creek (Figures 3.3c & 3.4c green C). Both of these sites had divergent fish and invertebrate 

assemblages. Assemblage similarity was quite high in downstream/mainstem channel sections, 

as high as 91% for fish and 78% for invertebrates, and averaging about 55-60% within the creek 

main channel (C) class sites (Table 3.5).  

In contrast, many extreme headwaters (E) and headwater (H) sites not on the tributary 

mainstem had biological assemblages that differed from those at spatially-contiguous sites. 

Instead, position in the network appeared to be as important a factor in partitioning biological 

similarity as longitudinal proximity. Extreme headwater sites on different network branches (as 

indicated by different color markers) often shared ordination space and headwater sites on 

different network branches often shared ordination space, but the ordination space for E and H 

class sites rarely overlapped (Figures 3.3 & 3.4 b-f). Although the EHC location classes did 
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partition more biological heterogeneity than was expected by chance, within group variability 

was generally large and between group variability was generally small (Table 3.5). The small, 

but significant test statistics may result from differing variability within site classes. The 

variability of assemblages at sites within a stream system generally decreased as location in the 

network transitioned from E to H to C (i.e., transitioned downstream; Table 3.5).  

Extreme headwater sites consistently had comparatively unusual biological assemblages 

as indicated by their location on the edge of NMDS ordination space and frequent separation 

from longitudinally-adjacent sites (Figures 3.3 & 3.4 b-f). The uniqueness of fish assemblages at 

extreme headwater sites usually resulted from a paucity of taxa, rather than the presence of 

unique species. The average percent increase in fish taxa richness between an E site to the next 

downstream non-E site (i.e., [Closest downstream H or C Richness - E Richness]/Closest H or C 

Richness*100) varied by system (BG:56%, CD:0% , BR:48%, ML:47%, CR: 88%). Only three E 

sites had fish unique to the site within their respective systems, (CD1: Cyprinus carpio 

(Common Carp); CD6: Semotilus atromaculatus (Creek Chub) and Notropis cornutus (Common 

Shiner); and ML7: Etheostoma flabellare (Fantail Darter).  

The reasons for divergent extreme headwaters are not as obvious for invertebrates, as 

they are for fish. Although taxa richness tended to be lower at extreme headwaters, this was not 

always the case in Mill and Crane Creeks, and average percent increases in taxa richness were 

generally much smaller than for fish (BG:15%, CD:17%, BR:26%, ML:2%, CR:9%). Of the 15 

E sites, six did not have any unique invertebrate taxa, six had one or two unique taxa 

representing less than 10% of the taxa at the site, and one had four unique taxa representing 11% 

of the taxa at the site. The two remaining extreme headwater sites had considerably more unique 

species. Site CD1 had 7 unique invertebrate taxa representing 30% of the taxa at the site and site 
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BG3 had 15 unique invertebrate taxa representing 44% of the taxa richness at the site. At both 

sites, the invertebrate assemblage included taxa commonly associated with marsh and lentic 

systems rather than lotic systems (e.g., Hyallela azteca, Notonecta, and Peltodytes). 

My observation of strong fish/invertebrate concordance and differences in rates of change 

along the network are supported by trajectory plots (Figure 3.5a-e). Average rates of biological 

change (i.e., average dissimilarity/km) were quite consistent across study systems (Fish: 0.11 to 

0.20 and Invert: 0.14 to 0.25; Figure 3.5). The slightly higher values for Brooks Creek result 

exclusively from the unusual proximity of sites BR3 and BR7 and BR6 and BR7. Excluding 

these transitions, Brooks Creek actually had the lowest average dissimilarity per km of all the 

systems (i.e., Fish: 0.09 and Invert: 0.11). The average rate of change for invertebrates was 

slightly higher than for fish in all systems except Crane Creek, although these increases could be 

an artifact of 3-4 fold increase in the number of invertebrate taxa as compared to fish taxa 

included in the analyses. Strong concordance between fish and invertebrates within a system is 

evident in similar pattern in slopes of the corresponding fish and invertebrate trajectories (Figure 

3.5 a-e). The highest rates of change in biological assemblages were in a route’s headwaters or 

on trajectories where a small stream joined a much larger channel. 

Performance of delineated EUs 

NMDS plots (Figures 3.3 & 3.4 b-f) and t-tests (Table 3.6) suggest the performance of 

the delineated EUs lay somewhere between the two hypothesized extreme situations illustrated in 

Figure 3.2; delineated EUs varied between and within systems in their ability to identify distinct, 

biologically and environmentally homogeneous river segments. As summary measures of EU 

performance within a system, average biological similarity within delineated EUs was usually 

higher than the average similarity of comparisons of sites in adjacent EUs (Table 3.6 section a). 
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The delineated EUs performed slightly better for fish than for invertebrates, and with the 

exception of Brooks Creek, differences in average similarities between occurrence measures 

were larger than differences between abundance measures.  

While t-tests provide statistical and system-wide assessments of delineated EUs, NMDS 

ordinations suggest the success of delineated EUs in partitioning homogeneous river segments 

depends on the location of the EU in the network. NMDS ordination plots indicated only 

mainstem/downstream-most EUs had fairly homogeneous biological assemblages (as indicated 

by distinct groups of blue letters in Figures 3.3 & 3.4 b-f). In most systems, these sites were 

distinct from adjacent headwaters. The biological assemblages in EUs containing E and H 

classed sites were not homogeneous and sites within these EUs were often more similar to sites 

from different EUs (as indicated by scattering of same colored sites in Figures 3.3 & 3.4 b-f). 

The delineated EUs successfully partitioned large differences in most environmental 

variables measuring aspects of stream size (e.g., link, catchment area, low-flow discharge, and 

channel shape; Table 3.6 section b). Performance varied by system for water chemistry, 

temperature, and average power. Delineated EUs never or rarely partitioned distinct, 

homogeneous river segments for the environmental variables bankfull shear, average power, 

substrate, and IGUs. 

Overall, boundaries between delineated EUs did not correspond with strong transitions in 

biological assemblages and only corresponded with transitions in physical characters measuring 

some measures of stream size. Sign Test analyses based on the compiled 14 unit boundary 

transitions from all systems suggest moderate rather than abrupt faunal transitions for both 

assemblage measures at delineated boundaries (sign test probabilities of observed number of 

successes, i.e., Similarity across EU boundary < Similarity between upstream sites: fish 



 

88 

occurrence and abundance p=0.2, invert occurrence p=0.4, and invert abundance p=0.6). 

However strong individual discontinuities in biological assemblages are evident in NMDS plots 

and in specific site to site comparisons. Strong biological discontinuities did correspond to 

boundaries between delineated EUs for transitions BG3 to BG4, CD5 to CD 9, BR 12 to BR13, 

ML11 to ML12, and CR10 to CR11. All of these transitions correspond to large differences in 

stream size (e.g., large increases in catchment area, link, flow, and channel width) in the system.  

In contrast to biological community transitions, boundaries between delineated EUs were 

particularly effective at capturing some environmental discontinuities (i.e., Similarity across EU 

boundary < Similarity between upstream sites). These include link number (13 of 14 transitions, 

p=<0.001), channel shape and low-flow discharge (12 of 14 transitions, p=<0.01), and the 

composite alkalinity and conductivity chemistry measure (11 out of 14 transitions, p<0.05). 

Boundaries between EUs did not represent strong transitions in power, bankfull shear, substrate, 

habitat, temperature, and nutrient chemistry. 

Discussion 

Biological concordance 

The biological concordances in this study, the degree to which patterns in biological 

assemblage compositions are similar, were high and perhaps surprisingly so. Both across- and 

within-tributary systems, faunal transitions in fish and macroinvertebrate assemblages coincided, 

as did areas of faunal continuity. Other analyses from large spatial extents indicate moderate to 

strong fish-invertebrate concordances (defined as r>0.5 for Mantel tests as reviewed in Heino 

2010) are common. An exception is Larsen et al. (2012) which found weak concordance between 

fish and invertebrates across 13 wadeable basins. Smaller within-basin studies have even more 
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ambiguous results, with many reporting no or weak concordance. This study joins two recent 

exceptions (Grenouillet et al. 2008 and Dolph et al. 2011) in finding significant concordance at 

both large and smaller scales. 

Strong fish/invertebrate assemblage concordance could arise from several mechanisms: 

1) response of assemblages to the same environmental gradients; 2) response to correlated but 

different gradients; 3) substantial biological interactions between the assemblages; and/or 4) 

similar limitations in dispersal or reproductive capabilities of the assemblages (adapted from 

Gaston and Williams 1996). Because of its purely observational design, this study cannot 

directly address whether biological interactions between fish and macroinvertebrate assemblages 

could create concordant spatial patterns; however, many strong environmental and biological 

concordances suggest environmental gradients may largely control the organization of biological 

assemblages in these tributary systems. 

In this study, it is likely that some portion of the across-system concordance results from 

spatial and hydrologic isolation of the five stream systems. However, large differences in the 

natural character (e.g. flow and temperature regime) and degree of anthropogenic impact in the 

stream systems necessarily lead to relatively distinct environmental and chemical environments 

in each system, and these differences likely account for much of the across-basin concordance. In 

Michigan, it is well established that biological communities respond to strong gradients in size 

and hydrologic regime (Zorn et al. 2002), surficial geology (Johnson et al. 1997, McRae et al. 

2004), temperature (Wehrly et al. 2003, 2006), and anthropogenic stressors (Riseng et al. 2010). 

Stream fish and macroinvertebrate assemblages clearly respond similarly to many natural and 

human-driven landscape patterns (Paavola et al. 2006, Johnson et al. 2007, Yates and Bailey 

2010), creating strong biological concordance at large spatial scales. One across-system study 



 

90 

which restricted streams to similar depth, velocity and width found weak concordance between 

fish and macroinvertebrates (Larsen et al. 2012). 

Within-tributary system fish/invertebrate concordances observed in this study are 

unusually large, even compared to other studies documenting strong within-system concordance. 

I believe concordance was especially strong because assemblage composition was responding to 

the same principal longitudinal gradient in stream systems: the necessary increase in channel 

hydraulic geometries (e.g., catchment area, discharge, velocity, depth, and width; Leopold and 

Maddock 1953) as one travels downstream (Vannote et al. 1980, Ward 1998). Given the context 

of this study, this longitudinal gradient and probable discontinuities within tributary systems 

were specifically targeted using a high-spatial frequency, longitudinal sampling design. Two 

recent studies that show strong within-system concordance also either sampled longitudinally 

(Grenouillet et al. 2008) or included a range of stream sizes (Dolph et al. 2011). Although 

longitudinal hydraulic gradients are an inherent feature of every river system, their influence on 

stream assemblages can only be detected if the scale of analyses is large enough (Wilkenson and 

Edds 2001), and if a sampling regime adequately targets the size gradient (as in this study and 

Dolph et al. 2011). 

In contrast, studies showing little or no concordance within a river basin (Paavola 2003, 

Paavola et al. 2006; Infante et al. 2009), have typically used randomly selected locations or 

restricted sites to a narrow size range (e.g., streams of the same order, the same width, or only 

small headwaters). Differing study contexts and corresponding differences in sampling design 

may preclude incorporating, and thus recognizing, a strong size-related hydraulic gradient to 

which both assemblages respond. 
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It has been suggested that degree of human impact influences within-basin concordance. 

Paavola et al. (2006) suggest that stronger concordances between fish and macroinvertebrates are 

expected when sites are “variously modified by human activities.” However, concordances in the 

present study were consistently strong, regardless of the degree of human impact within a 

system’s basin. In fact, the highest concordances were in the least-impacted systems, and the 

lowest concordances were in the system with the widest variety of impact. However, it is 

alternately possible that this trend is simply an effect of the varying sample sizes among the 

basins. This suggests a need for more research to understand how sampling design, spatial 

intensity, and LULC variation affect measures of biological concordance. 

Patterns of spatial homogeneity 

Location in the network had a strong influence on patterns of spatial homogeneity, with 

decreasing rates of change and variability of biological assemblages as one moves from the 

headwaters to the mouth. Despite high-spatial-frequency sampling, I was not able to identify 

contiguous, distinct environmentally and biologically homogenous river lengths within river 

headwaters. However, if the spatial pattern in river headwaters is a patchy gradient like the rest 

of the river system, then headwater EUs would exist, although they would necessarily be many 

and short. Ascertaining whether spatial pattern in headwaters is best described by a gradient or a 

patchy gradient requires even higher-spatial-frequency sampling than I used in this study; it 

would require multiple sites within stream segments and bracketing of network junctures (as in 

Sparks-Jackson 2000), or continuous sampling (as in Torgersen et al. 2006). These two studies 

suggest tributary junctures are associated with biological discontinuities. 

The observed patterns in spatial heterogeneity should be expected because of the physical 

structure of a river. Empirical “laws” predicting declines in the number of streams segments of a 
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given order and increasing stream segment length as stream order increases (Horton 1945, 

Strahler 1952) suggest that, the very structure of the network will help shape biological 

heterogeneity in rivers, a suggestion borne out in recent modeling studies (e.g., Padgham and 

Webb 2010, Neeson et al. 2012, Webb and Padgham 2013). In the headwaters, rapid 

accumulation of discharge through increases in catchment size and frequent junctures of low-

order streams create rapid change in physical character over short distances. In contrast, 

downstream in the network, many junctures between small and large channels occur with little 

distinguishable effect on the character of the large channel (Benda et al. 2004a, 2004b; Kiffney 

et al. 2006). Although the joining of a small stream to a large stream may have minimal effect on 

the physical or biological character of the large stream, such junctures do create sharp boundaries 

between tributary and mainstem EUs. Similarly, sharp biological transitions observed in this 

study corresponded to abrupt changes in size, flow, and temperature. 

Because rivers are aggregating systems, downstream reaches of river networks are also 

defined and confined by the character of upstream reaches. While upstream sections of rivers can 

theoretically exhibit an infinite variety of biological and environmental conditions as shaped by 

an infinite variety of possible catchments, the character of a downstream reach is limited by 

upstream contributions. For example, in Michigan, differences in catchment LULC and surficial 

geology can produce both cold, stable, nutrient-poor groundwater-sourced stream segments and 

flashy, nutrient-rich, runoff-sourced stream segments within the headwaters of a tributary 

system, but downstream segments necessarily reflect a homogenization of upstream influences. 

Extreme headwaters 

Extreme headwater sites had extremely varied biological and environmental character. 

Meyer et al. (2007) suggest that because headwater streams are characterized by small 
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catchments that are easily influenced by small-scale differences in local condition, they are the 

most varied of all running-water habitats. As would be expected for most low order streams in 

the Midwest, the headwaters within and between systems in this study varied greatly in 

catchment and riparian land cover, hydrologic and temperature regimes, degree of 

channelization, slope, and chemical load regime (Beugly and Pyron 2010, Holmes et al. 2011). 

For example, headwaters in Crane Creek were open, channelized agricultural ditches while 

headwaters in Brooks Creek were often well-shaded and non-channelized. This variety in 

headwater stream “types” within and between study systems contrasts with considerable 

similarity of headwater streams in the Pacific Northwest (e.g., consistently characterized as 

steep, forested, and often fishless; Gomi et al. 2002, Richardson and Danehy 2007). 

Much of the recent discussion around the biology of headwater streams concerns their 

limited contribution to within-assemblage diversity (α), but potentially large contribution to 

among-assemblage diversity (β) and regional diversity (γ) (Heino et al. 2003; Meyer et al. 2007; 

Clarke et al. 2008; Finn et al. 2011). However, headwater sites in these tributary systems rarely 

contributed ecologically meaningful within-system β diversity; instead, headwater biological 

assemblages was mainly subsets of taxa found downstream and usually distinguished by a 

paucity of taxa (low α diversity). As compared with other regions, the recent glaciation of the 

Great Lakes (approximately 12,000 years ago, Bay 1938) and the young geological age of 

streams may also contribute to the lack speciation in the headwaters. 

All of the headwater sites in this study were permanent streams although in Brooks, Mill 

and Crane Creeks these sites could have no flow or be reduced to a series of pools during low 

flow conditions. Reductions in macroinvertebrate diversity (Mackie et al. 2012) and fish 

diversity (Beugly and Pyron 2010) are associated with stream intermittency, and taxa found in 
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intermittent streams were a subset of those found in perennial reaches. Although lower fish and 

invertebrate diversity in the headwaters can be partially attributed to small catchment area 

(Horowitz 1978, Matthews 1998), harsh conditions in the extreme headwaters may also 

contribute to low diversity. Although shading effects of forested headwater streams in the 

temperate Pacific Northwest create thermal stability (Richardson and Danehy 2007), headwater 

streams in the Midwest are often agricultural ditches with no shading resulting in large diel 

temperature and dissolved oxygen swings. Such harsh conditions likely contributed to the 

absence of fish in three extreme headwater sites in Crane Creek. 

Performance of delineated EUs 

Delineated EUs successfully defined distinct, environmentally homogeneous stream 

segments based on several measures of stream size, but these same units did not contain sites 

with similar substrates or habitats. In all study systems, only sites within the most downstream 

EU or along the main channel EU were of distinct and similar biological character. The defined 

EUs in low-order sections of the tributaries often contained sites with disparate biological 

character. Because sampling sites were specifically chosen to span the entire length of proposed 

EUs, and thus quantify the maximum variability within an EU, this is not entirely unexpected. 

This failure to delineate biologically homogenous ecological units in low-order streams 

suggests a more detailed delineation of headwater ecological units may be warranted. The high 

rates of change in biological assemblages in these stream headwaters suggest that delineated 

ecological units in these areas need to be broken into more and smaller EUs. Consistently 

observed discontinuities in biological assemblages in this study suggest utility in adding 

additional ecological unit boundaries between extreme headwaters (defined here as 1-2 order and 

catchment of <25 km2 with little to no low-flow discharge) and adjacent headwaters. 
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Although the division of headwater streams into many, small ecological units more 

closely reflects ecological heterogeneity, verifying appropriate boundaries many require even 

more intense sampling than in this study. The required intensity of sampling is extremely rare in 

most sampling regimes. Continuous sampling has been used to quantify overall fish abundance 

(Duncan and Kubecka 1996), single-species abundance (Kanno et al. 2012), and multi-species 

abundance (Torgersen et al. 2006). However, this type of sampling is impractical in species-rich 

Midwestern streams where access is often limited to road crossings by impenetrable riparian 

vegetation. 

Developers of the original EU delineation for rivers in Michigan (Seelbach et al. 1997; 

Wiley, personal communication) terminated EU delineations prior to the end of mapped stream 

lines in 1st order stream. Although it is common practice to simply extend VSEC version 1.0 EUs 

into all currently mapped stream segments, the results of this study question the utility of such 

extensions. A second ecological unit delineation for MI was developed using an improved 

hydrography data (1:100,000 NHD) and a computer-driven, automated process that grouped 

stream arcs into EUs based on environmental features (Brenden et al. 2008a, 2008b). Although 

this delineation successfully divided the headwaters into many, small EUs it also divided 

tributary mainstems and river mainstems into many more ecological units than is supported by 

the results of this and the previous study (Chapter 2). This problem suggests that the rules 

governing ecological unit delineation may need to differ with location in a river network. 

Acknowledging such limitations of the EU delineation, MIDNR personnel combined many 

delineated units, greatly reducing the number of delineated EUs to reflect their own knowledge 

of biological spatial pattern (Paul Seelbach, personal communication 4/2014). 
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The results of this study also suggest the need for nested, hierarchical classification of 

EUs after their delineation. Each study system had a distinct biological assemblage, and within a 

study system, location (i.e., E, H and C) had a strong effect on the biological similarity of sites. 

Although this study suggests the need for many, small EUs in the headwaters of stream 

tributaries, scores of headwater EUs present challenges for sampling, modeling, and assessment 

if EUs are not subsequently classed by type. 

Ecological management implications 

Recurring strong biological/biological and environmental/biological concordance in a 

variety of tributaries provide empirical support for the theoretical existence of EUs in 

Midwestern tributary systems. However, tributary EUs should be scaled to river network 

geometries, and thus the length of EUs should change with position in the network. If EUs in 

river tributaries can be delineated to accurately reflect the environmental and biological 

homogeneity in river tributaries, these EUs should aid in river ecosystem management. EUs are 

real units that can be used to describe the holistic character of river segments, should guide 

modeling efforts and sampling regimes, and certainly can provide a foundation on which 

ecological classifications can be built. These capabilities would be particularity useful because of 

the abundance and considerable variety of stream headwaters.
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Table 3.1: Study systems differed in chemical and physical characteristics. For all variables except link, values in table are average 
(minimum, maximum) of all sites within designated system. For link, values are median (minimum, maximum). 

 Bigelow Cedar Brooks Mill Crane 
Spring Chemistry      

Alkalinity (mg/L CaCO3) 124 (97,128) 131 (103, 196) 158 (103, 222) 164 (117, 213) 156 (136, 178) 

Conductivity (µS/cm3) 324 (299, 344) 375 (300, 644) 488 (375, 550) 674 (441, 213) 824 (714, 977) 

Nitrate (µg/L) 100 (30, 180) 210 (30, 630) 530 (10, 1810) 310 (10, 1910) 940 (480, 1490) 

SRP (µg/L) 20 (0, 40) 40 (10, 130) 30 (0, 80) 30 (10, 70) 50 (10, 110) 
      
Link 3 (1,5) 6 (2,11) 2 (1,18) 8 (1,31) 2 (1,6) 

Catchment Area (km2) 36 (18,73) 52 (16,143) 48 (8,158) 147 (9,368) 41 (3,142) 

Q (cms) at low flow 0.40 (<0.01, 0.81) 0.53 (0.04, 1.53) 0.31 (0.02, 1.07) 0.19 (<0.01, 0.53) 0.07 (0.01, 0.20) 

Summer Temp (°C) 18.9 (16.7, 24.4) 19.4 (15.2, 24.1) 18.8 (16.3, 24.6) 15.9 (12.5, 21.2) 22.8 (19.6, 27.6) 

      
Habitat/Substrate      

Erosional habitat (% site) 77 (35, 97) 73 (40, 85) 79 (60, 94) 75 (0, 90) 66 (20, 90) 

Cobble or gravel (% site) 20 (0, 59) 5 (0, 31) 6 (0, 31) 28 (0, 82) 21 (0, 60) 

Wood (% site) 9 (0, 15) 11 (2, 19) 4 (0, 16) 6 (0, 15) 4 (0, 12) 
      
Channel shape      

Bankfull Width/Depth 13.3 (7.5, 17.8) 16.2 (7, 32.3) 7.6 (5.1, 11.4) 10.5 (5.9, 19.1) 8.6 (4.3, 22) 

Hydraulic Radius (m) 0.25 (0.15, 0.36) 0.30 (0.19, 0.42) 0.20 (0.07, 0.39) 0.24 (0.04, 0.46) 0.16 (0.03, 0.50) 
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Table 3.2: Study systems differed in fish and invertebrate assemblages. Site richness is presented as average (min, max). Taxa are 
listed in order from most abundant, including the five most abundant fish and eight most abundant invertebrate taxa (excluding 
Chironomidae which were very common in all systems). 

 Bigelow Cedar Brooks Mill Crane 
Fish Assemblage      

Richness (system) 20 24 31 31 23 

Richness (per site) 6.8 (4, 11) 8.0 (6, 13) 11.1 (2, 19) 12.7 (5, 24) 6.4 (0, 18) 

Most common taxa Mottled Sculpin 
(C. bairdii) 

Blacknose Dace 
(R. atratulus) 

Rainbow Trout 
(O. mykiss) 

Pumpkinseed 
(L. gibbosus) 

Brown Trout 
(S. trutta) 

Mottled Sculpin 
(C. bairdii) 

Creek Chub 
(S. atromaculatus) 

Cent. Mudminnow 
(U. limi) 

Johnny Darter 
(E. nigrum) 

Brook Trout 
(S. fontinalis) 

Blacknose Dace 
(R. atratulus) 

Cental Mudminow 
(U. limi) 

Creek Chub 
(S. atromaculatus) 

Mottled Sculpin 
(C. bairdii) 

Brook Stickleback 
(C. inconstans) 

Fathead Minnow 
(P. promelas) 

Brook Stickleback 
(C. inconstans) 

Johnny Darter 
(E. nigrum) 

Creek Chub 
(S. atromaculatus) 

Mottled Sculpin 
(C. bairdii) 

Bluntnose Minnow 
(P. notatus) 

Creek Chub 
(S. atromaculatus) 

Fathead Minnow 
(P. promelas) 

Common Shiner 
(N. cornutus) 

Green Sunfish 
(L. cyanellus) 

      

Invert Assemblage      

Richness (system) 78 84 92 97 55 

Richness (per site) 33.2 (27, 41) 27.2 (18, 32) 27.1 (17, 36) 29.1 (16, 44) 18.2 (10, 27) 

Most common taxa Gammarus 
Baetis 

Pisidiidae 
Stenonema 

Ephemerella 
Pycnopsyche 
Ceratopsyche 
Amphinemura 

Gammarus 
Baetis 

Ceratopsyche 
Anabolia 

Stenonema 
Oligochaeta 

Physidae 
Simulium 

Gammarus 
Pycnopsyche 

Physidae 
Pisidiidae 

Baetis 
Sigara 

Caecidotea 
Simulium 

Pisidiidae 
Stenonema 

Pycnopsyche 
Ceratopsyche 
Oligochaeta 

Chrysops 
Calopteryx 
Corbicula 

Caecidotea 
Pisidiidae 

Oligochaeta 
Hirudinea 
Ischnura 

Peltodytes 
Sigara 

Stenacron 
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Table 3.3: Biological measure and assemblage composition concordance: Significant Mantel 
tests with large test statistics indicate strong concordance between a) occurrence (Occur) and 
abundance (Abun) measures of biological assemblage or between b) fish and invertebrate 
(Invert) biological assemblages. 

Variables or Study System All Bigelow Cedar Brooks Mill Crane 
a) Measure Concordance       
      Fish Occur/Abun 0.62**** 0.71 0.73**** 0.51**** 0.74**** 0.47*** 

      Invert Occur/Abun 0.90**** 0.98*** 0.85**** 0.88**** 0.87**** 0.87**** 

b) Fish/Invert Concordance       
      Fish/Invert Occur 0.61**** 0.85* 0.56*** 0.61**** 0.40** 0.53*** 

      Fish/Invert Abun 0.62**** 0.93* 0.67**** 0.57**** 0.58*** 0.49*** 
*p<0.10 **p<0.05, ***p<0.01, ****p<0.001
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Table 3.4: Environment/Biology concordance: Significant Mantel tests with large test statistics 
indicate strong concordance between fish or invertebrate assemblages and environmental 
characteristics. Fish and invertebrate distance matrices based on occurrence measure. Fishless 
sites excluded from Crane fish-based analyses. NS=No significant association between 
biological occurrence and environmental characteristic distance matrices. 

Variables or System All Bigelow Cedar Brooks Mill Crane 
Size/Geomorphic       

     Fish/CatchArea 0.15**** NS NS 0.42*** 0.51**** 0.42** 
     Invert/CatchArea 0.17**** NS NS 0.27** 0.41**** 0.50**** 

     Fish/Qlowflow 0.24**** 0.92ꜝ NS 0.68**** 0.42*** 0.33** 
     Invert/Qlowflow 0.21*** 0.87* NS 0.48*** NS 0.52**** 

     Fish/Link 0.13*** 0.82! NS 0.45*** 0.42**** 0.45** 
     Invert/Link 0.16*** 0.82* 0.41*** 0.23** 0.37**** 0.49**** 

     Fish/BFShear NS NS 0.24** NS NS 0.22* 
     Invert/BFShear NS NS NS 0.29* NS 0.27** 

     Fish/AvePower NS NS NS NS NS 0.53*** 
     Invert/AvePower NS NS NS 0.14* NS 0.38*** 

     Fish/Chan Shape 0.30**** 0.56! NS 0.64**** 0.41*** 0.40**** 
     Invert/Chan Shape 0.23**** 0.64* NS 0.44**** 0.28** 0.46*** 

Habitat       

     Fish/Substrate 0.34**** NS NS NS 0.40** NS 
     Invert/Substrate 0.50**** NS 0.47** NS 0.32** 0.44*** 

     Fish/Habitat 0.16** NS 0.28* 0.31** 0.66**** 0.39** 
     Invert/Habitat 0.31**** NS 0.62*** NS 0.40** 0.34*** 

Chem/Temp       

     Fish/Nutrients 0.21**** 0.56! 0.37** 0.32* 0.53**** NS 
     Invert/Nutrients 0.30**** 0.32 0.52*** 0.41** 0.30** NS 

     Fish/AlkCond 0.44**** NS NS NS 0.32** NS 
     Invert/AlkCond 0.41**** NS NS NS NS NS 

     Fish/Temp 0.41**** 0.91* 0.34** 0.36** 0.35** 0.25** 
     Invert/Temp 0.42**** 0.95** 0.44*** 0.22* 0.24* 0.31** 

*p<0.10 **p<0.05, ***p<0.01, ****p<0.001; !Likely not significant because of low power of test due to 
small number of sites.
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 Table 3.5: Analyses of network position classes: Statistical tests show some ability of network 
position classes (E=Extreme headwater, H=Headwater, C=Creek main channel) to partition 
biological variability. If the test statistic (r or A) is large or significant, sites within a class are 
more similar to each other and distinct from sites in different classes. The average similarity 
within a group is a rough measure of variability within a group. With the exception of Bigelow 
and Crane Creeks, group similarity increases as location moves down the stream network. 

p<0.10 **p<0.05, ***p<0.01, ****p<0.001; 1Since MRPP requires one group to have 3 or more members 
I substituted the MRPP analyses with a Mantel test with distance matrix with within-class comparisons 
coded 0 and between-class comparisons coded 1. 2Excluded from analysis: only one site in the class. 3Test 
statistic is artificially inflated because analysis required addition of one Fathead Minnow to three E class 
fishless sites. 

Variable or System Bigelow Cedar Brooks Mill Crane Ave. 

Fish Occurrence r=0.371 A=0.07 A=0.18**** A=0.14 A=0.28**3  

     E ave similarity N/A2 N/A2 0.50 0.36 0.40 0.42 
     H ave similarity 0.60 0.50 0.57 0.65 0.39 0.54 
     C ave similarity 0.50 0.55 0.72 0.77 0.61 0.63 

Fish Abundance r=0.371 A=0.12* A=0.15**** A=0.10*** A=0.14**3  

     E ave similarity N/A2 N/A2 0.39 0.26 0.23 0.29 
     H ave similarity 0.45 0.33 0.41 0.52 0.36 0.41 
     C ave similarity 0.63 0.53 0.60 0.56 0.33 0.53 

Invert Occurrence r=0.431 A=0.09** A=0.10**** A=0.07**** A=0.12**  

     E ave similarity N/A2 N/A2 0.47 0.45 0.60 0.51 
     H ave similarity 0.62 0.41 0.52 0.53 0.58 0.53 
     C ave similarity 0.54 0.62 0.69 0.50 0.48 0.57 

Invert Abundance r=0.381 A=0.05* A=0.10*** A=0.07**** A=0.10**  

     E ave similarity N/A2 N/A2 0.39 0.40 0.52 0.44 
     H ave similarity 0.60 0.41 0.50 0.45 0.61 0.51 
     C ave similarity 0.50 0.60 0.70 0.49 0.44 0.55 
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Table 3.6: Two-sample t-tests indicate sites within the same Ecological Unit (EU) had, on average, more similar biological 
assemblages as compared to sites in adjacent EUs. The same is true for many environmental characteristics, although the significant 
environmental characteristics varied with study system. Table values are average Bray-Curtis similarity for biological measures and 
average normalized Euclidean similarity for environmental measures. Statistical comparisons compare the average similarity within 
EUs vs. average similarity of comparisons between sites in adjacent EUs. Significance of differences between means was determined 
with degrees of freedom limited to the number of included sites minus two. Fishless sites in Crane Creek are excluded from fish 
analyses. NS=No significant difference between the means. 

Variable or System Bigelow Cedar Brooks Mill Crane 
a) Biological:      

     Fish Occurrence 0.46 vs. 0.04*** 0.58 vs. 0.46** 0.59 vs. 0.51* 0.65 vs. 0.57* 0.66 vs. 0.21**** 
     Fish Abundance  0.46 vs. 0.01*** NS 0.51 vs. 0.31*** NS 0.45 vs. 0.19*** 

     Invert Occurrence 0.56 vs. 0.34** 0.56 vs. 0.46** 0.54 vs. 0.49* 0.52 vs. 0.45*** 0.57 vs. 0.44*** 
     Invert Abundance NS NS 0.54 vs. 0.45** 0.47 vs. 0.42** 0.54 vs. 0.42*** 

b) Environmental:      
     Catchment Area NS 0.67 vs. 0.35** 0.78 vs. 0.52**** 0.80 vs. 0.63*** 0.83 vs. 0.53**** 

     Qlowflow 0.9 vs. 6.7**** NS 0.79 vs. 0.64** 0.89 vs. 0.63**** 0.74 vs. 0.52*** 

     Link 0.79 vs. 0.16*** 0.80 vs. 0.41** 0.81 vs. 0.50**** 0.79 vs. 0.57*** 0.84 vs. 0.22**** 

     Bankfull Shear NS NS NS NS NS 

     Ave Power NS NS NS NS 0.76 vs. 0.49**** 

     Channel Shape 0.56 vs. 0.27** 0.54 vs. 0.29** 0.71 vs. 0.61* 0.78 vs. 0.65*** 0.76 vs. 0.62*** 

     Substrate NS NS NS NS NS 
     Habitat NS NS NS NS NS 

     Nutrients 0.52 vs. 0.25* NS 0.67 vs. 0.58* NS NS 

     Alka/Cond NS NS 0.74 vs. 0.67** 0.84 vs.0.64**** 0.81 vs. 0.66** 

     Temperature 0.79 vs. 0.13*** NS 0.67 vs. 0.59* NS 0.73 vs. 0.58** 

*p<0.10 **p<0.05, ***p<0.01, ****p<0.001
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Figure 3.1: Study systems and sites: Four of the five study systems are in Michigan’s Lower 
Peninsula; one is in northwestern Ohio. For simplicity, not all 1st order streams are illustrated. 
Sampled locations (sites) are shown by letter markers indicating location in the network 
(E=Extreme headwater, H= Headwater, and C=Creek main channel; see text for specific 
definitions). Sites within the same proposed ecological unit are indicated by the same color. The 
repetition of markers across systems does not indicate sites from different systems are in the 
same ecological unit (EU). The site markers in this figure are used consistently throughout the 
manuscript. Within each system, sites are numbered consecutively from the most distant 
headwater site moving downstream. 
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a) Hypothetical stream system, sampling sites, and delineated ecological units (EUs). 
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Figure 3.2: Ecological Units and Non-metric Multidimensional Scaling (NMDS) ordinations. 
Overview: Demonstration of a hypothetical stream system with delineated ecological units 
(EUs), two biotic assemblage spatial patterns, and interpretation of corresponding NMDS 
ordinations. Proximity between sites in NMDS ordinations equates to assemblage similarity; 
closer sites have more similar assemblages than distant sites. If the underlying assumption of 
biological/biological concordance is met, ordinations for both fish and invertebrates will have a 
similar configuration of sites. If the concordance assumption is met, these demonstration plots 
can guide interpretation of NMDS plots for four additional factors relevant to my research 
questions: 1) Within unit assemblage variability, 2) within unit assemblage variability compared 
to between unit assemblage variability, 3) outliers, and 4) transitions between adjacent EUs. 
Details: a) Simple stream system with three delineated EUs (the three stream segments), nine 
sampling sites, (letters indicate location class, headwater (H) and creek mainstem (C), and colors 
indicate EU membership), and two transitions between EUs. b) In situation 1 the delineated EUs 
are valid since sites within an EU have similar assemblages that are distinct from the 
assemblages in other EUs. Although not an assumption for valid EUs, the variability of 
assemblages is the same for all units and none of the sites have particularly unusual assemblages. 
c) In situation 2 the delineated EUs are null since sites within an EU are arrayed across 
ordination space regardless of EU assignment (i.e. no homogeneity within and EU and sites in 
different EUs do not have distinct assemblages). In contrast to situation 1, within EU variability 
differs between EUs (less variable assemblage in EU3) and two sites have unusual assemblages 
as compared with other sites along the mainstem (indicated by the outline squares). Transitions 1 
and 2 are “typical” changes in assemblage for the system.
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Figure 3.3: NMDS ordinations (with % variability explained by each axis) for fish assemblages 
for sites across systems (a) and within each study system (b-f). Fish occurrence is used in all 
plots except for Crane Creek where abundance is used. Symbols in system-specific analyses are 
those in Figure 1. Letters denote network location class and colors denote shared EU. Numbers 
indicate sites with the same NMDS coordinates. Arrows illustrate transitions between delineated 
EUs (one transition in Mill is not shown because the distance is tiny).
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Figure 3.4: NMDS ordinations (with % variability explained by each axis) for invertebrate 
assemblages (occurrence measure) for sites across systems (a) and within each study system (b-
f). Symbols in system-specific analyses are those in Figure 1. Letters denote network location 
class and colors denote shared EU. Arrows illustrate transitions between delineated EUs.
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Figure 3.5: Headwaters to mouth trajectory analyses for each study system (a-e): Slope at any 
location on a line indicates rate of change in biological assemblage occurrence (e.g., steep slope 
indicates rapid change in taxa) and is summarized by D (average biological dissimilarity per km) 
for neighboring sites in each system. Distance is network distance. The color of each line 
corresponds to the EU of the headwater-most site and specifies trajectory route. Solid lines are 
for fish and dotted lines are for invertebrates (vertically offset for easier interpretation). Fishless 
sites in Crane Creek are excluded.
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Chapter 4 : Rates of change and spatial dependence in river ecosystems 

Abstract 

The particular spatial pattern of a river system has both ecological and statistical 

implications. Positive spatial autocorrelation (SAC) and distance decay are common in river 

ecosystems because rivers are characterized by patchy, longitudinal gradients in physical, 

chemical, and biological attributes. Despite the ubiquity of longitudinal ecological patterning in 

rivers, studies that measure within basin SAC for multiple ecological measures are surprisingly 

rare. Nor have studies that have explored SAC in riverine biology composition led to any 

consensus about the origin of said SAC. In this study I use a within basin, high-spatial-

frequency, longitudinal sampling regime to explore spatial patterning in a set of seven 

Midwestern river ecosystems. The channel systems explored include five headwater tributaries, 

and a lower mainstem river mouth system, considered both with and without its confluent 

tributaries. I measured SAC and characterized distance decay rates in each of seven systems, and 

examined the degree of concordance between physical environments and biological assemblages. 

Using path analyses, I assessed how spatial separation directly and indirectly (through 

environment) affects biological assemblage composition, and the implications of these results for 

neutral and niche theory explanations of the source of SAC. 

Rates of change in most environmental variables and fish assemblage composition 

decreased downstream, suggesting the assumption of stationarity in many common spatial 

statistics is violated. I observed strong SAC in many environmental variables and in both fish 

and invertebrate assemblage composition. Strong environment/biology assemblage interactions 
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accounted for most or all of the SAC in biological assemblages, and much of the association 

between proximity and biological assemblage similarity is mediated through similarity in 

environment. This offers strong support for niche processes as the primary origin of SAC in 

these river systems. This also suggests that river ecologists may be able to avoid lack of 

independence statistical problems caused by SAC by developing appropriate non-spatial models.  

Introduction 

The rapid development of landscape perspectives in ecology (Risser et al. 1984, Forman 

and Godron 1986, Wiens 1992, Turner 2005) has fostered the explicit study of spatial structure 

and spatio-temporal interactions of ecological processes (Liebhold et al. 1993, Liebhold and 

Gurevitch 2002, Wagner and Fortin 2005). Legendre (1993) has argued “spatial heterogeneity is 

… functional in ecosystems, and not the result of some random, noise-generating process, so it 

becomes important to study it for its own sake.” Positive spatial autocorrelation (SAC) and 

distance decay are common spatial patterns in ecosystems (Legendre 1993, Koenig 1999, Nekola 

and White 1999). SAC can be broadly defined as a statistical property in which closer locations 

are typically more similar than locations further apart (Legendre 1993). As a result, measured 

similarity of samples decreases as geographic distance increases, a distance decay relationship 

that can be explicitly described by mathematical equations and/or as rates of change in similarity 

(Nekola and White 1999, Soininen et al. 2007). 

Strong, SAC is expected in systems organized as gradients or patchy mosaics. Rivers are 

often described as both gradients (i.e., longitudinal changes in chemical, physical, and biological 

assemblages; Huet 1959, Illies and Botosaneanu 1963, Vannote et al. 1980; Statzner and 

Borchardt 1994), and as longitudinally arrayed patches, i.e., patchy gradients (Poole 2002, Thorp 

et al. 2006, 2008). Rivers are accumulating, advective network systems, moving water and 
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material largely in one direction (downstream), and flux rates are strongly influenced by both 

network typology (Benda et al. 2004a, 2004b) and characteristics of the catchment landscape 

(Horton 1945, Hynes 1970). It is not surprising, therefore, that SAC is a commonly observed 

property of samples in studies of  riverine water chemistry (Jager et al. 1990, Peterson et al. 

2006, Isaak et al. 2014, McGuire et al. 2014), benthic invertebrates (Parsons et al. 2003, Lloyd et 

al. 2006, Mac Nally et al. 2006, Marshall et al. 2006, Mykrä et al.2007, Maloney and Munguia 

2011, Bonada et al. 2012, Heino et al. 2012), and fish (Wilkinson and Edds 2001, Magalhães et 

al. 2002, Grenouillet et al. 2004, 2008, Stewart-Koster et al. 2007, Maloney and Munguia 2011). 

The origin of SAC in ecological systems determines what is appropriate with regard to 

ecological interpretation and statistical treatment (Figure 4.1). For example, ecologists 

acknowledge two mechanistic hypotheses that can produce positive SAC in biological 

composition data: 1) environmental control, where species distributions are caused by niches and 

species sorting rules and spatially-structured environmental conditions (Whittaker 1956, 

Hutchinson 1957, and supported by many authors) and 2) neutral control, where random 

mortality and dispersal limitations create SAC in biological assemblages (Bell 2001, Hubbell 

2001, He 2005). Although these hypotheses are commonly presented as competing either-or 

hypotheses (as will done in this introduction for illustrative purposes), SAC in an ecological 

system can be created through the actions of both mechanisms (Cottenie 2005). Understanding 

the relative influence of the two mechanisms on SAC, therefore, is likely more important than 

simply providing evidence for or against each hypothesis. 

The environmental and neutral control hypotheses lead to different expectations for the 

strength of relationships between geographic distance, environmental variables, and biological 

assemblages (see Figure 4.1). Appreciation of the relative influence of these sources of SAC has 
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important consequences for understanding the functioning of ecosystems, for the conservation of 

biodiversity, and for ecosystem management (Legendre et al. 2005). For example, if 

environmental control is the dominant mechanism creating SAC in biological assemblage 

composition, all locations within an ecosystem are not equal and a mosaic of connected habitats 

is likely important in maintaining diversity. In contrast, if dispersal limitation is the dominant 

mechanism creating SAC in biological assemblage composition, maintaining high rates of 

dispersal and connectivity is of utmost importance in maintaining diversity. 

An understanding of the relative importance of environmental and neutral control sourced 

SAC in ecological systems is also required to appropriately handle statistical issues including 

pseudoreplication and overly liberal hypothesis tests when SAC is present (Legendre 1993; 

Figure 4.1). For example, if a spatially-structured environment controls community composition, 

and sufficient environmental variables are included in statistical models, many statistical and 

geostatistical tools developed to remedy spatial autocorrelation (e.g., Rossi et al. 1992, Perry et 

al. 2002) are unnecessary. In fact, removing the spatial structure of such an ecosystem prior to 

association with environmental variables could mask relationships with the most important 

environmental variables and stress only secondary relationships (i.e., only relationships that exist 

once the dominant gradient of SAC is removed). However, if spatial autocorrelation is present, 

but not accounted for, traditional statistical tests are too liberal, type-1 errors likely occur more 

frequently than the specified α-level, and analysis of ecological patterns may produce misleading 

results (Lennon 2000, Lichstein et al. 2002, Keitt et al. 2002). 

To clarify the use of the term SAC and these ecological and statistical distinctions, 

ecologists well-versed in statistics have encouraged limiting the use of the term “spatial 

autocorrelation” to spatial patterns that arise from dispersal limitation and using “spatial 
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dependence” to describe spatial autocorrelation that arises from dependence on spatially-

autocorrelated environmental variables (Legendre et al. 2005, Tuomist and Ruokolainen 2006). 

In reality, this terminology is not consistently applied. Perhaps this is because ecological 

interpretation of such spatial pattern requires a priori knowledge of the primary mechanism that 

creates spatial pattern in a particular ecosystem, but naming the statistical property that closer 

sites are typically more similar does not. Many studies (including this one) necessarily first 

measure the strength of the relationship between proximity and similarity, using the term SAC as 

a descriptor of a statistical property, and then refine and interpret the use of the term by 

comparing the likelihood of the two hypotheses concerning the source of SAC. 

Despite the frequency of SAC observed in physical, chemical, and biological components 

of river ecosystems, most studies do not approach SAC from an ecological perspective (but see 

Grenouillet et al. 2008 who jointly analyzed diatoms, benthic invertebrates, fish, and 

environmental variables). Likewise, despite an abundance of studies addressing the relative 

influence of environment and spatial proximity on biological assemblage composition, there is 

little consensus concerning the origin of SAC in the biology of rivers. Detailed comparison 

between studies is hindered by different spatial extents, varied sampling design, disparate 

environmental variables, and competing analytical approaches (see Legendre et al. 2005, 

Tuomisto and Ruokolainen 2006, and subsequent discussion by Pélissier et al. 2008, Laliberté 

2008, Legendre et al. 2008, and Tuomista and Ruokolainen 2008). Equally problematic are 

results where SAC in biological assemblages is not fully accounted for by included 

environmental variables. In such analyses, the question remains as to whether remaining SAC is 

the result of biotic processes or because important explanatory environmental variables were 

missing from the analyses. 
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In this study, I first ask 1) how concordance between different stream biota and between 

environmental and biological compositions may arise, and then 2) how network structure itself 

might influence patterns of biophysical concordance, SAC, and distance decay rates. I approach 

these questions by comparing rates of longitudinal change in both environmental variables and 

biological assemblages along network trajectories. Finally, 3) I use path analyses to evaluate 

relative support for environmental and neutral control hypotheses as the source/s of SAC in 

biological assemblage composition in these systems. In related analyses, I also calculate the 

portion of the effect of geographic distance on biological assemblage structure that is mediated 

through the spatial structuring of the riverine environment. The variety of network systems and 

range of spatial extents examined here allows a broad exploration of the prevalence of, the 

strength of, and the mechanisms that create SAC and the effects of geographic distance in 

Midwestern riverine ecosystems. 

Methods 

Sampling design and study systems 

This study used longitudinal, high-spatial-frequency, within-basin spatial sampling in 

five tributary systems across Michigan and Ohio and the lower mainstem of the Muskegon River 

(Michigan) to develop a set of comparable environmental and biological datasets. The five 

tributary systems were chosen to represent a range in network complexity, drainage density, 

hydrologic regime, anthropogenic impairment, and biological community composition. Fifty-

seven study sites, spaced 3-4 km apart on average, were assigned across the five tributary 

systems with the goal of characterizing each tributary system from its smallest permanent 

streams (1:24,000 scale NHD) to its mouth (Bigelow, Cedar, Brooks, Mill, and Crane Creeks; 
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Figure 4.1, Table 4.2). The Muskegon River has been the focus of recent, intense ecological 

study (e.g., Riseng et al. 2006, Steen et al. 2010, Wiley at al. 2010), and my study area includes 

104 sites on an 80 km length of the lower river mainstem (Figure 4.2, Muskegon River). Fish 

were more intensively sampled (both spatially and temporally) in the mainstem than were 

invertebrates, although invertebrates were collected from all distinct ecological segments (as 

determined by VSEC 1.0, Seelbach et al. 1997) of the river (Figure 4.2, Table 4.2). The distance 

between sites varied, but on average, sites along the mainstem were about 0.75 km apart. 

The Muskegon River in west-central Michigan is the second largest tributary system of 

Lake Michigan, draining a basin of 682,200 hectares with mixed land use/land cover (LULC) 

(Figure 1 inset; O’Neal 1997). The Muskegon is in good ecological condition (Riseng et al. 

2006) and is well known for its recreational fishery. The 80 km study area lies between a 

drowned river mouth known as Muskegon Lake and Croton Dam (lower-most barrier to 

migrating fishes). Although the Muskegon River upstream of Croton Dam has also received 

extensive study, I limited my study area to river segments where dispersal is not limited by dams. 

The upper part of the mainstem study area is high gradient with shallow riffles and runs; the 

middle part includes transition zones and deep U-shaped channels; and the lower part flows 

though a low gradient wetland complex and splits into a north and south anabranch with 

numerous small side- and cross-connected channels. 

Three of the five tributary systems I used in this study are located in the Muskegon River 

watershed and confluence in the Muskegon mainstem study reach (Figure 4.2). Bigelow Creek 

has a small catchment (≈80 km2) dominated by forest and wetland and is primarily a cold-water 

trout stream. Cedar Creek is larger (catchment of wadeable portion ≈150 km2) and includes 

warm-water agricultural headwaters and a cool, groundwater-dominated mainstem. Brooks 
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Creek drains primarily till plain topography (catchment ≈160 km2) and therefore has a dense, 

highly bifurcated stream network which includes flashy warm-water agricultural ditches, stable 

cold-water segments, and lake outflows. LULC in Brooks Creek’s catchment is similar to that in 

Cedar Creek, with mixed LULC including some urban development. 

The other two study tributary systems are far removed both spatially and ecologically 

(Figure 4.2); Mill Creek in SE Michigan and Crane Creek in NW Ohio are both comparatively 

more impaired systems. ML, a highly dendritic tributary of the Huron River, has a large 

catchment (≈370 km2) draining mixed landcovers and surficial geologies, resulting in a variety of 

stream types. Mill Creek joins the Huron River, a tributary of the western basin of Lake Erie. 

Crane Creek is smaller (catchment ≈115 km2), dominated by agriculture and clay soils. It is a 

low-gradient, flashy, run-off driven, highly channelized system. Crane Creek flows into an 

estuary complex which terminates in Western Lake Erie. Downstream sections of Crane Creek 

are strongly affected by estuary and lake seiches, having little flow discharge except under high 

flow conditions or during falling water levels in Western Lake Erie. 

Environmental data collection 

Comparable environmental measures were developed for all study sites, although 

occasionally different field methods were necessary to collect these data and some measures 

differed slightly for sites in tributaries and the mainstem (Table 4.1). Environmental variables 

include catchment area, low-flow discharge, network link, channel shape, substrate, In-stream 

Geomorphic Units (IGUs), nutrients, and water temperature. Environmental data for the 

mainstem and tributary sites were developed from a combination of field measurements, 

quantitative models (i.e., Muskegon River Ecological Modeling System (MREMS), Wiley et al. 

2010), aerial photography, and/or GIS maps. Some additional variables were developed 
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specifically for tributary sites (i.e., field slope, bankfull shear, average power, alkalinity and 

conductivity, and additional channel shape measures) and mainstem sites (i.e., map slope, 

sinuosity, and average velocity). In previous analyses (Chapters 2 and 3), these variables were 

not associated with biological assemblages and are excluded from analyses in this study. Two 

measures of substrate are used in this study, proportions of all substrate types and proportion of 

hard substrate (Table 4.1). Preliminary analyses (Chapters 3 and this study) at the tributary 

spatial extent indicated strong associations between substrate types and biological assemblages 

were lost if the substrate measure was simplified to the proportion of hard substrate. However, 

along the mainstem, associations between biological assemblages and substrate types and 

proportion hard substrate were equivalent. Thus, except where notes, analyses on mainstem sites 

used the proportion of hard substrate measure while analyses on tributary sites used the 

proportion of substrate types. 

Biological data collection 

Benthic invertebrate assemblages were characterized using a standardized, semi-

quantitative Rapid Assessment Procedure (RAP) in the tributaries and quantitative sampling in 

the river mainstem. The semi-quantitative procedure attempts to detect all taxa within a sampling 

reach and is more comprehensive than most rapid bioassessment protocols (Barbour et al. 1995, 

Park 2007). Invertebrates in tributaries were collected using dip nets, kickscreens, and manual 

collection during the spring of 2005. Invertebrates were collected on the Muskegon mainstem 

during spring (May & June) of 2003 and 2004, and at a handful of sites in summer (Aug) 2003. 

Sampling of invertebrates was quantitative and targeted both common and rare habitats at a site. 

The specific sampling method (i.e., Hess, rock cluster, ponar grab, core, kickscreen, and wood 

and leaf debris grabs) was dictated by a sample location’s depth and particular substrate. 
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Although abundance-based measures were developed for both tributary and mainstem sites, these 

measures were not comparable; thus macroinvertebrate data were simplified to occurrence 

(presence-absence) for these analyses. For both tributary and mainstem sites, invertebrates were 

identified to the lowest taxonomic resolution possible with moderate effort. Most organisms 

were identified to genus, while some organisms (such as Chironomidae, flatworms, mites, 

Branchiobdellidae and very early instar insects) remained at higher taxonomic resolution. Insect 

taxa that could only be identified to order were removed from the dataset prior to analyses. 

The fish assemblage at each site was sampled using DC electrofishing gear. Depending 

on channel size and accessibility, backpack and barge electrofishing units targeted fish in 

wadeable areas, e.g., tributaries and along mainstem river edges, and boom electrofishing from 

boats targeted large fish from the center channel of the river mainstem. Fish in tributaries sites 

were assessed once in summer 2004 and fish in the Muskegon mainstem were electroshocked 

seasonally in spring, summer, and/or fall of 2003 and/or 2004. Young of year fish and fish which 

could not be identified to species were excluded from analyses and abundance data were 

simplified to presence/absence. 

Biological assemblage data for mainstem sites were summarized at two temporal scales; 

1) a more spatially and temporally restricted dataset limited to a single season/year (Spring 

2003), and 2) a more temporally and spatially comprehensive dataset including multiple seasons 

across two years. Previous analyses (Chapter 2) indicate species occurrence remained quite 

stable between seasons and years, justifying the across season/year compilation of biological 

assemblages. 

Distance calculations 
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Analyses in this study required the calculation of biological dissimilarity, environmental 

dissimilarity, and a measure of geographic distance for between site comparisons. Variability in 

fish and invertebrate assemblages was summarized in a Sorensen dissimilarity matrix based on 

occurrence of taxa. Use of Sorensen dissimilarity is desirable because it ignores joint absences, 

gives less weight to rare taxa, and takes values between zero (all species in common) and one (no 

species in common)(McCune and Grace 2002). Variability in environmental condition was 

summarized by a Euclidean distance matrix. Euclidean distance is strongly influenced by large 

outliers; thus environmental variables with many small values and a few large values, (i.e., low-

flow discharge, catchment area, link, nutrients, and channel shape) were natural log transformed 

prior to analyses. 

Because this study includes fish, whose dispersal is limited to in-stream routes, and 

invertebrates, whose dispersal can include both in-stream and terrestrial routes, both overland 

and watercourse distance might be reasonable measures of geographic distance. However, I 

chose watercourse distance (i.e. network-restricted distance between sites or “swim” distance) 

for three reasons: 1) It is a more relevant measure of geographic distance for most physical and 

chemical environmental variables, 2) preliminary analyses suggested stronger biological 

associations with watercourse distance than overland distance, and 3) Landeiro et al. (2011) 

showed watercourse distances provided better representations of the spatial patterns generated by 

fish and invertebrate dispersal along a dendritic network. The shortest watercourse distance 

between sites was calculated using the Network Analyst extension in ArcGIS (ESRI 2011). 

Rates of change analyses 

Trajectory plots were developed to illustrate spatial variability in rates of change as well 

as concordance between fish, invertebrate, and environmental character. Trajectory plots were 
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confined to the longest watercourse distance path within a study system. For Mill and Crane 

Creeks, cumulative dissimilarity (beginning upstream) in biological assemblages and 

environmental character of neighboring sites was plotted against watercourse distance to the site 

nearest the river mouth (i.e., longest route from the headwaters to the downstream-most site). To 

assess differences in rates of change in the biology along the river mainstem and confluent 

tributaries, I created the trajectory plots by plotting cumulative dissimilarity in fish and 

invertebrate assemblages for neighboring sites against distance from Muskegon Lake. Slope at 

any position on the trajectory line reflects rate of change in biological assemblages or 

environmental features (e.g., steep slope indicates area of rapid change; conversely, mild slope 

indicates areas of little change). Since only the slope of the line is important in these plots and 

the actual values on the Y-axis are irrelevant, trajectory lines were sometimes shifted up or down 

on the y-axis for ease of interpretation and visualization. Biological data were restricted to one 

sampling time (Spring 2003) to avoid introducing temporal differences in the trajectories. Prior 

to distance calculations, environmental variables based on multiple measures were summarized 

by the primary Principal Components Analysis axis (average percent variation explained: Ch 

Shape = 93%, Substrate = 66%, IGUs=68%, Nutrients = 73%, and Temperature=82%). Each 

environmental variable was also normalized by Z-score, accounting for differences in scale 

between variables and allowing each variable to contribute equally to the overall environmental 

distance matrix. 

These trajectory plots and prior analyses (Chapters 2 & 3) suggest a more detailed 

comparison of rates in different river network positions was warranted. Comparison of distance 

decay rates for different positions in a river network required grouping sites into position classes, 

calculating biological and environmental dissimilarity, and creating comparable proximity 
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between sites. Prior analyses (Chapters 2 & 3) suggested that considerable biological differences 

existed between mainstem sites and confluent tributaries, and between a sites on tributary 

mainstem and sites in its headwaters. Accordingly, all study sites were assigned a position class: 

“River Mainstem,” sites on the mainstem of the Muskegon River; “Creek Mainstem,” highest 

order sites along tributary systems after a large jump in link number; and “Headwaters,” all other 

upstream sites in tributary systems. Sites within the same position class from the five tributary 

systems were pooled for analysis. 

Longitudinal trajectories along the longest water route largely ignore the network aspects 

of a river, so I also developed a very simple measure of standardized distance decay, the percent 

change in similarity per km of watercourse distance. Biological and environmental similarities 

were calculated with Sorensen and Jaccard dissimilarity and Euclidean distance, respectively. 

Jaccard dissimilarities are used in my rate calculations because Jaccard dissimilarities are 

adjusted for species richness, which differs by network position (i.e., species richness increases 

as position advances downstream in a river network). Because Euclidean distance does not have 

an upper bound on the maximum value and the magnitude of distance depends on the scaling of 

original variables, raw Euclidean distances were normalized to a range of zero to one using the 

formula Dnorm=D/Dmax where Dnorm is the normalized Euclidean distance, D is the observed 

Euclidean distance, and Dmax is the maximum observed Euclidean distance. 

Although the average and variability of spacing of sites was similar for Headwater and 

Creek Mainstem sites (with the exception of two sites in Brooks Creek that were unusually close 

and excluded from rate analyses), each tributary differed in overall watercourse length and River 

Mainstem sites were on average much closer and the distances between sites more variable. 

These differences introduced problems when calculating rates of change; spacing of sites has a 
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large effect on rates since the denominator of the rate of change measure can vary, but the 

numerator is restricted to values between 0 and 1. To remedy these issues, rate calculations were 

limited to adjacent sites within a tributary, and a subsample of sites on the River Mainstem. 

Subsampled sites on the River Mainstem were chosen to replicate the average separation and 

variability in separation of sites in Headwater and Creek Mainstem groups. Likewise, biological 

data were restricted to a single season and year to avoid introducing temporal difference in River 

Mainstem rate calculations. Statistical significance of differences between average rates for the 

three position classes were calculated with the SumF permutation procedure (Edgington 1995) in 

PC-ORD version 6.08 (McCune & Mefford 2011). 

Environment, biology, and proximity associations 

Because of its flexibility (Urban 2003), simple Mantel tests were used to answer a variety 

of questions in this study. A simple Mantel test is used to test the null hypothesis of “no 

relationship” between two square symmetric matrices and is an alternative to regressing one 

matrix against the other, avoiding the problem of partial dependence within each matrix. The 

standardized Mantel test statistic (r) ranges from -1 to 1, with -1 indicating negative positive 

correlation between the two matrices, 0 no correlation between matrices, and 1 perfect positive 

correlation between matrices. For all Mantel tests, the significance of r was assessed with a 

Monte Carlo randomization method using the maximum number of possible permutations for a 

given dataset or a maximum of 3000 permutations. All Mantel tests were conducted using PC-

ORD version 6.08 (McCune & Mefford 2011). 

Mantel tests were performed on seven systems in three spatial extent classes, 1) within a 

tributary, 2) along a mainstem only, and 3) along a mainstem plus three confluent tributaries. 

These seven systems include substantially different numbers of sites, and thus sample size (Table 
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4.2) should be considered when evaluating both the magnitude of r and its statistical significance. 

The seven systems also differ in spatial extent and watercourse length, network complexity, and 

physical character (Table 4.2). For Mantel analyses, I used across season and years mainstem 

biological datasets because a larger spatial coverage was more important than the minimal 

temporal variability introduced in the dataset. 

A simple Mantel test between an environmental variable and watercourse distance or a 

biological assemblage and watercourse distance is an overall measure of SAC in the dataset. This 

use of a Mantel test addresses the questions whether proximal sites are more similar in 

environmental condition or have more similar biological assemblages. Simple Mantel tests 

between environmental variables and biological assemblages can assess whether spatial patterns 

are concordant, i.e., changes in biological assemblages co-occur with changes in environmental 

character. 

Path analyses and variance partitioning based on environmental and geographic distances 

can quantify the direct and indirect effects (through environment) of geographic distance, and 

determine the likelihood of environmental control as the primary cause of biological spatial 

autocorrelation (Borcard et al. 1992; Tuomisto and Ruokolainen 2006). I used partial Mantel 

tests to test for significant patterns between biological dissimilarity and watercourse distance 

while controlling for environmental effects. This use of partial Mantels addresses the question 

“can the variation in the difference in community composition between two sites be explained by 

variation in difference in environmental characteristics or geographic distance?” (Tuomisto and 

Ruokolainen 2006). I also performed partial Mantel tests between environmental and biological 

dissimilarity while controlling for watercourse distance. Using these Mantel test coefficients, I 

also used path analyses to calculate the total effect of the watercourse distance on biological 
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assemblage composition, partitioning direct and indirect effects (effects mediated through the 

riverine environment). For these analyses, the composite environmental matrix included only 

variables with large correlation coefficient (r) or statistically significant environment/biological 

assemblage associations. As with the trajectory analyses, environmental variables based on 

multiple measures were summarized by the primary Principal Components Analysis axis and 

normalized to Z-scores. 

Results 

Rates of change in river ecosystems 

Trajectory plots (Figure 4.3) illustrate differences in rates of change along the headwaters 

to mouth trajectory, as well as concordance between fish and invertebrate assemblages, and 

concordance between biological assemblages and environmental character. In many systems, 

upper headwaters had high rates of change and invertebrate assemblage composition changed 

more rapidly per km than did the fish assemblage. In the Muskegon tributaries, rates of change of 

fish assemblages were much higher than in the corresponding mainstem. Within the Muskegon 

River mainstem, rates of change in fish, invertebrates, and environmental components changed 

as position along the trajectory shifted downstream; biological and environmental character 

changed rapidly from 80-53 km from Muskegon Lake, moderately from 53 to 50 km, more 

slowly from 40 to 20 km, and changed very rapidly between the confluence of Brooks and Cedar 

Creeks. These trajectory plots (Figure 4.3) also demonstrate that changes in biological 

assemblages and environmental character often corresponded, and therefore system-by-system 

analyses associating biological change with environmental change are warranted. These 

associations are explicitly assessed in the environmental and biological concordance section. 
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The average rate of distance decay (% change per km) and the variability in the rates of 

distance decay differed with position in the network (Table 4.3). With the exception of channel 

shape, all environmental variables and the fish assemblage changed more rapidly within the 

Headwaters than along a River Mainstem. The rates of fish assemblage and environmental 

change were also typically more variable in headwaters, although statistical differences in 

standard deviations were not assessed. The average rates of change for environmental variables 

in the Creek Mainstem were either the same as the headwaters (i.e., Hard Substrate and 

Nutrients), the same as the River Mainstem (CatchArea and Link), or because of low statistical 

power, somewhere in between (Qlow and IGUs). Average rate of change in temperature 

decreased from 11% to 5.7% to 1.7% as network position shifted from Headwaters to Creek 

Mainstem to River Mainstem, respectively. For the fish assemblage, the dissimilarity measure 

used affected which average rates were statistically different; with Sorensen dissimilarity all 

three rates differed significantly while with Jaccard dissimilarity (which accounts for species 

richness) only the average rate in the Headwaters was lower. Average rate of change and 

variability in invertebrate assemblage rates of change were similar in all three network position 

classes, regardless of dissimilarity measure used. 

Spatial autocorrelation 

Many environmental variables and both fish and invertebrate assemblage composition 

displayed some degree of SAC (i.e., proximal sites tend to be more similar than more distant 

sites), although specific associations varied by spatial extent and system (Table 4.4). Within 

tributary systems, measures of size (i.e., CatchArea, Link, Qlow, and Ch. Shape) were usually 

strongly associated with network distance, while in-stream habitat (i.e., Substrate and IGUs) 

were rarely or never spatially autocorrelated. Significance and magnitude of SAC in Nutrients 
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and Temperature varied with tributary system. As compared with other tributaries, Cedar and 

Crane Creeks had fewer variables that exhibited SAC. 

Because of the large number of sites, all environmental variables had statistically 

significant SAC at the Mainstem and Mainstem plus tributaries spatial extents, but the magnitude 

of the associations varied considerably between variables and between spatial extents. At the 

mainstem spatial extent, the strongest associations were between watercourse distance and link 

and CatchArea. Unlike in the tributaries, similarity in hard substrate was strongly associated with 

proximity, while similarity in IGUs and channel shape were weakly associated with proximity. 

Qlow, nutrients, and temperature showed moderate SAC at the mainstem spatial extent. When 

confluent tributaries are include with the mainstem, the association between watercourse distance 

and CatchArea, Qlow, link, and temperature were substantially reduced (reductions in magnitude 

of Mantel r’s of 0.60, 0.38, 0.67, and 0.30 respectively). Associations between channel shape and 

watercourse distance and IGUs and watercourse distance increased slightly and associations 

between substrate and nutrients decreased slightly. 

Spatial autocorrelation was observed in fish and invertebrate assemblages in all systems 

and at all spatial extents (Table 4.4). In all systems except Crane Creek, SAC in fish composition 

was moderate to strong (Mantel r’s from 0.40 to 0.67). In Bigelow, Brooks, Mill, and the 

Muskegon plus confluent tributaries, SAC in fish assemblages were stronger than SAC in 

invertebrate assemblages, in Cedar and Crane Creek SAC magnitude was similar and in the 

Muskegon mainstem there was stronger SAC in invertebrates than fish. 

Environment and biology concordance 

There were many strong associations between change in environmental variables and 

change in biological assemblages (Table 4.5). The strongest biological/environmental 
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concordances included variables representing aspects of size (i.e., CatchArea, Link, Qlow, and 

Ch. Shape). Temperature regime was concordant with biological assemblages in all seven 

systems, although the strength of the association varied with study system. Because of 

concordance between the fish and invertebrate assemblages, spatial patterns of both fish and 

invertebrates were usually concordant with the same environmental variables. Typically, 

fish/environment concordances were stronger than or equivalent to invertebrate/environment 

concordances for the same physical variable; however, invertebrate/substrate concordances were 

typically stronger than fish/substrate concordance. 

Spatial extent also affected the significance and magnitude of environmental/biological 

associations. While IGUs were associated with biological assemblages in several tributary 

systems, IGUs were not associated with biological spatial pattern in the river mainstem or the 

river mainstem plus confluent tributaries spatial extents. Combining the tributary and mainstem 

sites increased the magnitude of all environmental/biological associations, with the exception of 

Invertebrates/Link (equal magnitude), and Invertebrates/Substrate (decreased magnitude). 

Joint environmental, biological, and spatial proximity concordance 

In all study systems, composite environmental variables were spatially structured; that is 

sites closer on the watercourse typically had more similar environmental character. The SAC in 

environmental variables was usually similar in magnitude to the SAC for both fish and 

invertebrate assemblages within a system because strong concordance between fish and 

invertebrate assemblages resulted in similar or identical composite environmental datasets. SAC 

in the composite environmental variables was particularly strong in the Muskegon mainstem 

(Fish rDE = 0.80, Invert rDE = 0.76) while SAC was weakest when the sites on confluent 

tributaries were added to those mainstem sites (Fish rDE = 0.33, Invert rDE = 0.45). 
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In most study systems there were strong associations between composite environmental 

variable and biological assemblages (Figure 4.4, rEF and rEI). The magnitude of most of these 

associations remained strong when partial tests accounted for watercourse distance (Figure 4.4, 

rEF|D and rEI|D). Two exceptions are substantially weaker environment/fish assemblage 

association in Cedar Creek and weaker association with both biological assemblages in the 

Muskegon Mainstem once watercourse distance was accounted for. In all systems, the SAC 

between biological assemblages and watercourse distance (as measured by simple Mantel tests 

rDF and rDI, Figure 4.4) were reduced or eliminated when environmental associations were 

accounted for with a partial test (rDF|E and rDI|E). For most systems, these reductions in SAC were 

substantial even if the partial mantel test remained statistically significant because of large 

sample size (e.g., Muskegon rDF|E = 0.07 but p<0.10). The SAC in invertebrate assemblages in 

Cedar Creek was the only association that was minimally reduced once environment had been 

statistically accounted for. 

Averaged across systems, much of the total effect of geographic distance on biological 

assemblage composition (77% for fish and 84% for invertebrates) was mediated through the 

environment. However, the total effect of geographic distance (as measured by watercourse 

distance) varied by system and biological assemblage, as did the relative importance of direct 

and indirect effects (Table 4.6). In larger river systems with more network confluences (i.e. 

Brooks, Mill, and Muskegon+Tribs), the direct effects of watercourse distance on fish 

assemblages was comparatively large (41 to 53% for these three systems versus 0 to 27% for the 

other four), but statistically nill for invertebrate assemblages. The only systems with large direct 

effects of watercourse distance on invertebrate assemblages were Cedar Creek and the Muskegon 
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River mainstem. The invertebrate-based analyses for these two systems included variables with 

the strongest associations between proximity and environmental similarity. 

Summary of results 

Average of and variability in standardized distance decay rates were highest in headwater 

systems and lowest in the large river system; and in almost all cases, confluence points marked 

important changes for both fauna and key environmental variables. At the system extent, I 

observed strong SAC in many environmental variables and in both fish and invertebrate 

assemblage composition. Strong environment/biology associations accounted for most or all of 

the SAC in biological assemblage composition, offering strong support for the hypothesis that 

niche processes with species sorting are the origin of most biological SAC within river basins. 

Similarly, on average, most of the total effect of geographic distance on biological assemblage 

composition is mediated through the riverine environment. 

Discussion 

Rates of change in river ecosystems 

Trajectory analyses along the Muskegon mainstem demonstrated that ecological spatial 

pattern in this river is best described as a patchy ecologic gradient (Poole 2002, Thorp et al. 

2006, 2008). The confluence of the smallest tributary system, Bigelow Creek, had little effect on 

the rate of change in the river mainstem while the confluence of much larger Brooks Creek was 

immediately followed by very rapid change in the environment and biological assemblage 

composition in the river mainstem. These observations are consistent with Benda et al.’s (2004a, 

2004b) predictions of larger confluence effects with a larger ratio of tributary to mainstem size. 
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Trajectory analyses also suggested there may be differences in rates of change with position in 

the river network. These were confirmed with calculation of standardized distance decay rates 

(% change per km)  

Both the average and variability in standardized decay rates of many environmental 

variables decreased from headwaters to mainstem. What underlies these differences in distance 

decay rates in different portions of the drainage network? Early geomorphic studies of network 

structure developed empirical “laws” (e.g., the “law of stream numbers”, and “law of stream 

lengths”; Horton 1945) that indicated rates of channel bifurcation (and therefore confluence) 

generally decline with increasing stream order (and covariates: link magnitude and catchment 

basin area). In advective networks, confluence points provide the physical opportunity for new 

hydrologic, chemical and biological inputs and downstream regimes. Thus the local bifurcation 

rate of the network system itself will influence the frequency of trajectory change points. Since 

bifurcation rate declines with increasing stream order, longitudinal variation in rates of change as 

described by decay rates will necessarily vary across the watershed system. Network nodes 

(confluence points) thereby play an important role in shaping the physical habitat template and 

potentially the biological community as well (e.g., Osborne and Wiley 1992, Rice et al. 2001, 

Padgham and Webb 2010, Neeson et al. 2012, Webb and Padgham 2013). In the headwaters of 

most Midwestern streams, discharge grows rapidly through increases in catchment size and the 

frequent confluence of similarly sized low-order streams draining different landscapes. The 

result is rapid change in the environment over short distances. In contrast, downstream in the 

network, confluences with comparably sized channels are rarer; the frequent entry of smaller 

channels that do occur have little distinguishable effect on flow, chemistry or the hydraulic 

character of the larger channel (Benda et al. 2004a, 2004b, Kiffney et al. 2006). 



 

137 

Standardized distance decay rates in fish community composition also generally 

decreased from headwaters to mainstem systems. Hitt and Angermeier (2011) have reported a 

similar pattern for riverine fish communities in West Virginia, USA; finding that community 

heterogeneity was inversely related to stream size, with headwater streams having extremely 

variable fish assemblages, and the largest streams comparatively little variation in fish 

assemblages. The observed distance decay rates in invertebrate assemblages in this study did not 

vary with position in the network, even though the same scaling and network rules discussed 

above should apply. This failure to observe lower rates of change in the Muskegon mainstem is 

likely an artifact of the invertebrate sampling methodology. In tributaries, macroinvertebrate 

assemblages at each site were comprehensively sampled across all existing habitats, while 

sampling in the non-wadeable portions of the mainstem was necessarily limited to a handful of 

samples, usually grab samples. Adequately sampling invertebrates in large rivers is notoriously 

difficult and requires a very large effort to account for the full suite of taxa present (Bady et al. 

2004, Flotemersch et al. 2006, Flotemersch et al. 2011). Thus, it is likely a smaller proportion of 

the invertebrate taxa present were represented in samples from the river mainstem, as compared 

to samples from tributary sites. In difficult to sample areas, low sampling efficiency and small 

sample numbers could lead to random fluctuations in measured composition and conflate 

variability in assemblage composition from sampling methods with true spatial variability, 

artificially increasing calculated rates of change in the Muskegon mainstream. 

Partitioning the sampling sites into Headwater, Creek Mainstem, and River Mainstem 

classes was based on previous analyses (Chapters 2 & 3) and is very similar to classes Hitt and 

Angermeier (2011) used to reflect relative network position. However, this gradient in position is 

likely a continuum suggesting a continuous decline in rates of change from headwaters to river 
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mouth. This hypothesis could be tested by plotting rates of change against continuous measures 

of stream size or network position (e.g., average catchment area, discharge, or link). However, 

such analyses were not possible in this study because the study tributaries join the Muskegon 

mainstem in the lower third of the watershed. Sites in this study contrast comparatively 

headwater positions within tributaries (e.g., catchments of 10s to 100s of km2, discharges around 

one cms, and links from 1 to 10s of orders of magnitude) to comparatively downstream positions 

on the lower mainstem of a large river (e.g., catchments of 6000+ km2, average discharges 

around 7000 cms, and links of 390+). 

Understanding how distance decay varies across a river basin could usefully inform the 

choice of statistical methods used in river research. For example, incorporating different distance 

decay rates (or its conceptual inverse, SAC) across a river network could improve spatial 

regression models, and geostatistical techniques such as kriging used to interpolate sample data 

to entire river networks (see Gardner et al. 2003, Sauquet 2006, Cressie et al. 2006, and Garreta 

et al. 2010 for discussion and application of such issues). The observed variation in distance 

decay rates also raises questions about the applicability of many spatial statistics frequently 

suggested for use in river systems (Rossie et al. 1992, Cooper et al. 1997, Ganio et al. 2005). 

Many common spatial analyses are based on variograms and correlograms that assume a single 

dominant spatial structure exists across the entire study area (i.e., stationarity; Legendre and 

Fortin 1989). This assumption of stationarity fails if rates of change vary with network position. 

Solutions might include performing analyses within network position subgroups or scaling SAC 

parameters by stream order or other network metrics. 

SAC in river environment and biological assemblages 
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Most environmental variables included in this study showed some degree of SAC, 

although the magnitude of the SAC varied by environmental measure, system, and spatial extent 

of the analysis. By including a variety of tributary systems, I was able to document both shared 

and system-specific SAC patterns. In the five tributary systems, there was no SAC observed in 

instream geomorphic units (i.e., riffles, runs, pools, etc) and only one instance of SAC in 

substrate. This was surprising given there are well established expectations of gradients in 

channel slope, power, sediment grain size, and types of IGUs with increasing stream size 

(Church 2002, Fryirs and Brierley 2013). The within tributary scale of the analyses may have 

limited analyses to a narrow portion of the expected gradient. 

SAC in environmental measures was common and similarity was strongly associated 

with proximity along the Muskegon River mainstem. SAC in environmental variables was also 

observed at the mainstem plus confluent tributaries spatial extent, although the magnitude of the 

strongest associations decreased substantially. This expansion of spatial extent included tributary 

to mainstem transitions, where environmental conditions change abruptly. Rates of change at 

major network junctures are unusually large, and including such transitions, in effect, reduces 

overall associations between proximity and similarity. The marked decreases in the magnitude of 

overall SAC are also consistent with a view of a river as a patchy gradient (Poole 2002, Thorp et 

al. 2006, 2008), rather than simply a gradient (Vannote et al. 1980). 

SAC has regularly been reported in riverine environments (Wilkinson and Edds 2001, 

Magalhães et al. 2002, Lloyd et al. 2006, Stewart-Koster et al. 2007, Grenouillet et. al 2008), 

although differences in sampling regime and spatial extent complicate detailed comparisons. 

Nevertheless, the physical arrangement of study sites within and across basins does appear to 

affect whether SAC in riverine environments is observed. Studies with sites of similar stream 
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size primarily arranged across basins and ecoregions, have found no association between 

environment and proximity (Thompson and Townsend 2006, Heino and Mykrä 2008). In 

contrast, this study and many others that used longitudinal sampling designs, observed moderate 

to strong SAC in many environmental variables (Wilkinson and Edds 2001, Magalhães et al. 

2002, Lloyd et al. 2006, Stewart-Koster et al. 2007, Grenouillet et. al 2008). 

SAC in fish and invertebrate assemblage composition was observed in all of my study 

systems and all spatial extents, indicating sites closer together typically had more similar 

biological assemblages. These results largely agree with studies using within-basin, longitudinal 

sampling regimes (Fish: Wilkinson and Edds 2001, Grenouillet et al. 2004, Stewart-Koster et al. 

2007, Maloney and Munguia 2011; Fish and Invertebrates: Grenouillet et al. 2008). The ubiquity 

of SAC found here contrasts with Lloyd et al. (2005) who found SAC in macroinvertebrate 

assemblages in only one of two adjacent river systems and Ganio et al. (2006) who found SAC in 

abundance data for Cutthroat Trout in only one of two adjacent forks in Hinkle Creek. Rather 

than assume SAC is universal, these authors suggest that one cannot assume similar SAC 

patterns even in adjacent rivers because each river may have its own idiosyncratic spatial 

patterning. 

All SAC analyses require a measure of proximity, therefore the measure of proximity 

chosen could also affect the magnitude of SAC observed in rivers. Efforts to incorporate river 

network structure, flow direction, and biologic dispersal patterns into more meaningful measures 

of “proximity” have proliferated over the past decade (Cressie et al. 2006, Ver Hoef et al. 2006). 

I chose watercourse distance as the measure of proximity because it was a simple measure that 

could be applied to environment, invertebrate, and fish measures at all spatial extents. 

Watercourse distance assumes a unit of distance within a river network is constant, i.e., a km 
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separation in the headwaters is functionally equivalent to a km separation in the mainstem. 

Analyses in this study indicate this assumption oversimplifies proximity relationships in river 

ecosystems. Olden et al. (2001) developed a proximity measure where distance was calculated as 

the number of stream reaches an organism must travel through between any two locations. Since 

this measure implicitly incorporates river network geometry, it may help resolve issues with 

changing rates of change within a river network and may work particularly well in dendritic 

networks (Stewart-Koster et al. 2007). 

Effects of environment and distance on biological assemblage composition 

This study, and the majority of ecological studies addressing the relative importance of 

environmental and spatial processes (Cottenie 2005), provides evidence for the dominance of 

environmental control on taxa sorting. Comparing the results of this study to others riverine 

studies is difficult, however, because of differences in spatial extent, sampling design, 

environmental variables, and analytical approaches. In comparable studies that address within-

basin SAC using longitudinal sampling, results have varied widely. For fish assemblages, my 

results agree with Wilkinson and Edds (2001) and Stewart-Koster et al. (2007) who found a 

spatially structured environment was the primary factors organizing fish communities. In 

contrast, Maloney and Munguia (2011) found weak SAC in fish assemblage composition that 

was not accounted for by environmental variables. Likewise Grenouillet et al. (2004) found 

spatial pattern in local fish species richness remained once stream width and other gradients were 

accounted for. Grenouillet et al. (2008) was able to account for SAC in invertebrate assemblages 

with environmental variables, but not for SAC in fish assemblages, while Lloyd et al. (2005) 

accounted for little of the observed SAC in benthic invertebrates with environmental variables. 

Studies where environmental variables cannot completely account for SAC in biological 
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assemblages face the challenge of determining whether such results indicate the importance of 

biotic processes in structuring biotic assemblages or whether the results arise simply from 

missing important, spatially-structured environmental variables. 

In my analyses, a small number of environmental variables were able to account for most, 

and in some cases all, of the observed SAC in biological assemblages. The spatial structure of 

these environmental variables was also responsible for strong indirect effects of geographic 

distance on biological assemblages. These environmental variables include measures of channel 

size, channel shape, substrate, IGUs, and nutrient and temperature regimes, measures known to 

be associated with stream assemblage composition (Cummins and Lauff 1969, Minshall and 

Minshall 1977, Vannote et al. 1980, Hawkins and Sedell 1984, Matthews 1986, Hawkins et al. 

1997, Zorn et al. 2002, Wehrly et al. 2003, 2006). With the exception of substrate and IGUs, this 

short list of environmental variables includes variables that are widely available (e.g., network 

structure from the National Hydrography Dataset, NHD; large river channel width estimates 

from aerial photography), or can be modeled with existing techniques (Wiley et al. 2004, Wehrly 

et al. 2006, HEC-HMS Anonymous 2010). LULC and surficial geology variables were not 

included in the analyses, but influences of these variables were indirectly included in water 

temperature and nutrient measures. 

Do these results imply spatial dispersal processes are wholly unimportant in the study 

river systems? Probably not, but the effects of dispersal limitation do appear to be minimal as 

compared to the effects of environmental heterogeneity. However, the study area in the 

Muskegon River was restricted to the lower 1/3rd of the catchment, but dispersal limitations 

(especially for fish) are likely in upper 2/3 of the Muskegon River because of three major dams 

on the river mainstem (O’Neal 1997). It also appears that differences in dispersal of fish and 
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invertebrates may be suggested by observed direct effects of geographic distance; direct effects 

of dispersal were important for fish in network systems with many confluences, but absent for 

invertebrates in these same systems. Movement of fish across tributary confluences is common, 

both in spawning anadromous fishes and in local fish movement that is for non-reproductive 

reasons (Dames et al. 1989, Wilkinson and Edds 2001, Osborne and Wiley 1992). In contrast, it 

is unlikely invertebrates can move as easily upstream through large confluences. Instead, the 

primary effect on invertebrates appears to be changes in assemblage composition in the river 

mainstem (Rice et al. 2001, Rice et al. 2006). 

Several authors (Thompson and Townsend 2006, Bahn and McGill 2007, Currie 2007, 

Heino and Mykrä 2008, Grönroos et al. 2013) maintain exploring the independent effects of 

spatial proximity and environment on assemblage structure is only possible if environmental 

variables are not spatially autocorrelated. Bahn and McGill (2007) argue environmental variables 

may predict spatial variation in the abundance of organisms because the two have similar spatial 

structures, and not because environment actually influences abundance. Although independence 

of riverine spatial structure and environment variables may be the ideal to statistically tease apart 

the effects of each on biological assemblages, my study suggests data that comply with this ideal 

are extremely unlikely. Furthermore, an extensive history of laboratory and experimental field 

studies support the thesis that SAC in biological assemblages is caused by a spatially-structured 

environment. There are widely documented direct effects of environmental variables on riverine 

organisms (e.g., temperature on fish survival and metabolic and growth rates in Diana 2004) and 

biological assemblage composition (e.g., stream flow reduction on riffle species in Wills et al. 

2006, substrate/current on benthic invertebrates in Minshall and Minshall 1977, hydraulics in 

Statzner and Higler 1986, and longitudinal gradients in Statzner and Borchardt 1994). 
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Statistical, ecological, and management implications 

The dominant influence of a river’s physical template on biological assemblage 

composition has statistical, ecological and management implications. Differences in rates of 

change with river network position should be considered when choosing appropriate statistical 

and management tools. Since many common spatial analyses are based on variograms and 

correlograms that assume a single dominant spatial structure exists across the entire study area, 

these statistical tools may not be appropriate for exploring spatial pattern in river ecosystems. It 

also suggests that management techniques, such as delineation of homogeneous and distinct 

ecological units, should recognize changes in spatial pattern, especially in regards to scaling, 

with position in the network. This study suggests spatial autocorrelation in biological assemblage 

composition can be accounted for by a relatively small number of environmental variables. The 

ability of these spatially-structured environmental variables to explain the spatial autocorrelation 

observed in fish and invertebrate assemblages suggests environmental control determines taxa 

sorting rules and produces much of the spatial pattern in riverine biology. In rivers, therefore, 

statistical modeling should first attempt to account for SAC with traditional non-spatial models 

and appropriate explanatory environmental variables. If necessary, more complex spatial models 

(discussed in Isaak et al. 2014) can be used to account for residual SAC.



 

 

 
145 

Table 4.1: Comparable environmental variables were developed for sites on tributaries and the mainstem, although methods of 
collection necessarily differed for some variables. Some variables were based on a single measure for each site, while others were 
based on multiple related measures. If the distribution of a variable was strongly right-skewed, the variable was LN transformed. 
MREMS is the Muskegon River Ecological Modeling System; see Wiley at al. 2010 for model description and development. 

Variable Name 
(abbreviation) 

Single or 
multiple 
variables 

Measure Method of acquisition in 
tributaries Method of acquisition in mainstem 

Catchment Area 
(CatchArea) 

Single LN Catchment area (km2) Calculated for study site basin 
maps in ArcGIS 

Calculated for MREMS model units in ArcGIS 

Qlowflow 
(Qlow) 

Single LN Low-flow discharge (cms) Estimate from field measured 
flow cross section 

Estimated with MREMS 

Link (Link) Single LN Number of upstream network 
junctures 

Developed from tributary 
networks (NHD) in ArcGIS 

Developed from river network (modified NHD 
to include major cross channels) in ArcGIS 

Channel Shape 
(Ch. Shape) 

Multiple LN Channel width, LN water depth, and 
LN cross-sectional area (m or m2) 

Width (W) & Depth (D): 
Average of five field measured 
cross sections 

Cross-sectional area: W*D 

Width (W): Estimated from winter aerial photos 

Depth (D): Calculated as weighted average from 
habitat map depths  

Cross-sectional area: W*D 

Substrate 
(Substrate) 

Multiple 
or Single 

Tribs: Proportion of study reach in each 
of seven substrates (cobble, gravel, sand, 
silt, claybed, CPOM, wood) 
Mainstem and Tribs+Mainstem: 
Proportion of substrate that includes hard 
substrates 

Estimated from field 
observations 

Calculated for 100 meter buffer around site and 
from comprehensive GIS habitat map. GIS 
habitat map was developed from field 
observations of depth, substrate, and IGUs. 

Instream 
Geomorphic 
units (IGUs) 

Multiple Proportion of study reach in each of six 
major types (riffle, run, pool, edge, bar, 
backwater) 

Estimated from field 
observations 

Calculated from habitat map for 100 meter 
buffer around site 

Nutrients 
(Nutrients) 

Multiple Tribs: LN NO3, LN NH4, LN SRP 
Mainstem: LN N, LN SRP, LN TP 
Tribs+Mainstem: LN N, LN SRP 

Field samples in Spring and 
Summer; laboratory tested 

Estimated with MREMS 

Temperature 
(Temp) 

Multiple Tribs: Synoptic measurements during 
spring and summer 
Mainstem: Ave, max, min of daily values 
Tribs+Mainstem: Ave, max 

Synoptic field measures Estimated with MREMS 
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Table 4.2: Study systems differed in spatial extent, network complexity, environmental character, and the number of sites. The number 
of sites also depends on the type of variable. Since the number of sites affects the power and significance of statistical tests, the 
number of sites should be considered when interpreting the magnitude and significance of Mantel test statistics (r’s). In the tributaries, 
fish and invertebrates were sampled at all sites, while fish were sampled at more sites than invertebrates in the Muskegon mainstem. 
Three sites in Crane Creek were devoid of fish during summer sampling and are excluded from fish-based analyses. 

 Tributaries     Mainstem Mainstem+Tribs 
Variables or Study System Bigelow Cedar Brooks Mill Crane Muskegon Muskgeon+BG,BR,CD 
Number of Sites        

Fish 5 9 14 16 10 92 120 
Invertebrates 5 9 14 16 13 43 71 
Environmental 5 9 14 16 13 104 132 
        

System Characteristics        
Total catchment area (km2) 80 150 160 370 115 6761 6761 
Max between site watercourse distance (km) 17 30 25 32 26 76 101 
Min/Max Link 1/5 1/11 1/18 1/29 1/6 392/465 1/465 
Average depth (m) 0.3 0.4 0.2 0.3 0.2 0.9 0.7 
Average % hard substrate 30 15 10 25 34 34 32 
Average Temp (°C) 14.7 17.1 15.4 12.2 20.1 17.6 17.3 
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Table 4.3: The average and standard deviation (SD) of standardized distance decay rates (% 
change/km) with sampling position in the network. Averages indicated with the same letter 
cannot be distinguished statistically (p>0.10). All environmental variables (except channel 
shape), and the fish assemblage changed more rapidly within the Headwaters than along a River 
Mainstem. The rates were also usually more variable in headwaters. Rates of change for 
environmental variables are normalized Euclidean distance per km separation and rates of 
change for biological assemblages are Sorenson or Jaccard dissimilarity per km watercourse 
distance. 

 

Average dissimilarity  
per km separation 

SD dissimilarity  
per km separation 

Variable/location Head-
waters 

Creek 
Mainstem 

River 
Mainstem 

Head-
waters 

Creek 
Mainstem 

River 
Mainstem 

# of rates included 27 12 20 27 12 20 

Environment: 

      
CatchArea 4.6 (a) 2.3 (b) 1.3 (b) 2.9 2.5 1.6 
Qlow 6.3 (a) 3.8 (a,b) 1.3 (b) 9.4 5.7 4.8 
Link 5.6 (a) 0.9 (b) 1.3 (b) 7.6 1.3 1.3 
Ch. Shape 7.0 4.8 7.0 6.4 3.4 5.8 
Substrate (hard) 12.5 (a) 7.0 (a) 0.2 (b) 11.4 8.9 0.2 
IGUs 10.8 (a) 7.6 (a,b) 5.3 (b) 7.5 5.9 4.6 
Nutrients 11.2 (a) 7.7 (a) 1.6 (b) 8.1 4.6 4.7 
Temperature 11.0 (a) 5.7 (b) 1.7 (c) 8.5 2.5 5.4 

Biology: 

      
Fish (Sorensen) 15.4 (a) 8.0 (b) 6.05 (c) 12.0 3.0 3.6 
Invert(Sorensen) 14.6 11.6 14.2 6.8 6.6 8.1 
Fish (Jaccard) 19.7 (a) 12.0 (b) 14.2 (b) 13.0 3.9 5.2 
Invert (Jaccard) 19.8 16.1 19.0 9.3 8.1 9.5 
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Table 4.4: Mantel tests for overall SAC. Significant Mantel tests with large test statistics indicate sites closer together typically have 
more similar environmental characteristics and biological assemblages than sites further apart. The strength of these relationships 
varied by spatial extent, system, and variable of interest. Distance is watercourse distance between sites. NS = not significant 

 Tributaries     Mainstem Mainstem+Tribs 
Variables or System Bigelow Cedar Brooks Mill Crane Muskegon Muskgeon+BG,BR,CD 

Environmental:        
CatchArea NS NS 0.42*** 0.44**** 0.51*** 0.86**** 0.26**** 
Qlow 0.64** 0.34* 0.47*** 0.19* NS 0.66**** 0.28**** 
Link 0.61* NS 0.38*** 0.44**** 0.46*** 0.93**** 0.26**** 
Ch. Shape NS NS 0.46*** 0.27** 0.55*** 0.19**** 0.27**** 
Substrate 0.55* NS NS NS NS 0.80**** 0.63**** 
IGUs NS NS NS NS NS 0.12*** 0.14*** 
Nutrients 0.83*** 0.65*** 0.30* 0.33** NS 0.63**** 0.41**** 
Temp 0.61* 0.45** NS 0.28** NS 0.60**** 0.30**** 

Biological:        
Fish Dissimilarity 0.67* 0.48*** 0.52*** 0.46*** 0.26** 0.40**** 0.42**** 

Invert Dissimilarity 0.57* 0.50** 0.33** 0.33** 0.31** 0.51**** 0.30**** 
*p<0.10 **p<0.05, ***p<0.01, ****p<0.001; 
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Table 4.5: Mantel tests for environment/biology concordance. Significant Mantel tests with large test statistics indicate strong 
concordance between fish or invertebrate assemblages and environmental characteristics, i.e., large transitions in the biotic assemblage 
coincide with large changes in environmental attributes. NS=Not a significant association and a small Mantel r. Italics indicates this 
variable is included in the environmental matrix used in simple and partial mantel tests in Figure 4.4. 
 Tributaries     Mainstem Mainstem+Tribs 
Variables or System Bigelow Cedar Brooks  Mill Crane Muskegon Muskgeon+BG,BR,CD 
Size/Geomorphic        

     Fish/CatchArea NS NS 0.42*** 0.51**** 0.42** 0.40**** 0.72**** 
     Invert/CatchArea NS NS 0.27** 0.41**** 0.50**** 0.43**** 0.53**** 

     Fish/Qlow 0.92! NS 0.68**** 0.42*** 0.33** 0.48**** 0.75**** 
     Invert/Qlow 0.87* NS 0.48**** NS 0.52*** 0.33*** 0.52*** 

     Fish/Link 0.82! NS 0.45*** 0.42**** 0.45** 0.44**** 0.72**** 
     Invert/Link 0.82* 0.41*** 0.23** 0.37**** 0.49**** 0.54**** 0.53**** 

     Fish/Ch. Shape 0.56! NS 0.66**** 0.40*** 0.43**** 0.21**** 0.71**** 
     Invert/Ch. Shape 0.68* NS 0.44**** 0.27** 0.45*** 0.22*** 0.53*** 

Habitat        

     Fish/ Substrate NS NS NS 0.40** NS 0.25**** NS 
     Invert/ Substrate NS 0.47** NS 0.32** 0.44*** 0.51**** 0.31**** 

     Fish/IGUs NS 0.28** 0.31** 0.66**** 0.39** NS NS 
     Invert/IGUs NS 0.62*** NS 0.39** 0.34*** NS NS 

Chem/Temp        

     Fish/Nutrients 0.55! 0.37** 0.32** 0.53*** NS 0.49**** 0.64**** 
     Invert/Nutrients NS 0.51*** 0.41** 0.30** NS 0.31*** 0.38**** 

     Fish/Temp 0.90* 0.34** 0.36** 0.35** 0.25** 0.45**** 0.69**** 
     Invert/Temp 0.95* 0.44*** 0.21* 0.23* 0.32** 0.32*** 0.48*** 

*p<0.10 **p<0.05, ***p<0.01, ****p<0.001; !Likely not significant because of low power of test due to small number of sites. 
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Table 4.6: Direct, indirect, and total effects of watercourse distance on fish and invertebrate (invert) assemblage composition based on 
path diagrams in Figure 4.4. If a path coefficient in Figure 4.4 was not statistically different than zero, the path coefficient was set to 
zero for these calculations. Direct effects are the effect of watercourse distance on biological assemblage composition similarity while 
accounting for similarity of the riverine environment, indirect effects are the effect between watercourse distance and biological 
assemblage composition similarity mediated through environmental similarity, and total effects is the sum of the direct and indirect 
effects. Across all systems, on average 77% of the watercourse distance effect on fish and 84% of the watercourse distance effect on 
invertebrate assemblage composition could be attributed to the environment. 
 Tributaries     Mainstem Mainstem+Tribs 
Assemblage or System Bigelow Cedar Brooks  Mill Crane Muskegon Muskgeon+BG,BR,CD 
Fish Assemblage        
     Direct effect 0 (0%) 0 (0%) 0.24 (43%) 0.21 (41%) 0 (0%) 0.07 (27%) 0.27 (53%) 
     Indirect effect 0.55 (100%) 0.13 (100%) 0.31 (57%) 0.30 (59%) 0.21 (100%) 0.19 (73%) 0.24 (47%) 
     Total effect 0.55 0.13 0.55 0.51 0.21 0.26 0.51 
        
Invert Assemblage        
     Direct effect 0 (0%) 0.40 (48%) 0 (0%) 0 (0%) 0 (0%) 0.24 (64%) 0 (0%) 
     Indirect effect 0.56 (100%) 0.43 (52%) 0.23 (100%) 0.24 (100%) 0.38 (100%) 0.14 (36%) 0.25 (100%) 
     Total effect 0.56 0.83 0.23 0.24 0.38 0.38 0.25 
        
.
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 Path diagram: Ecological Interpretation 
and Implications: 

Statistical Interpretation and 
Implications: 
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Diagram represents potential 
causal associations between 
dissimilarities in biological 
assemblage (Bio), 
environmental variables 
(Env), and geographic 
distance (Dist). 
 
Heads of arrows indicate 
assumptions of causal 
direction. Arrow weight 
shows magnitude of the 
association and which 
control pathways dominate 
in an ecological system. 

Distance approach: Input data are 
dissimilarity/distance matrices 
based on raw data  
rDE = Simple Mantel test between 
Dist and Env,  
rDB|E = Partial Mantel test between 
Dist and Bio, after accounting for 
Env, and  
rEB|D = Partial Mantel test between 
Env and Bio, after accounting for 
Dist. 
 
Weight of arrows is proportional to 
the magnitude of simple and partial 
mantel correlations. 
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 Landscapes are mosaics 
where species composition is 
controlled by environmental 
site characteristics. Positive 
Spatial Autocorrelation 
(SAC) in biological 
assemblages is caused by 
SAC in environmental 
variables. Dispersal 
limitations do not contribute 
to SAC in biology. 

Account for SAC in biological 
variables by including all necessary 
environmental variables in models. 
If residual SAC persists after the 
modeling process, model needs to 
include additional explanatory 
variables; dispersal is not important 
and residual SAC is caused by 
unaccounted for environmental 
variables. If spatially structured 
environmental variables control 
biological assemblages, methods 
that control for SAC first will mask 
important environmental effects. 
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 All species are 
demographically and 
competitively equal. SAC in 
biological assemblages is 
caused by ecological 
processes such as dispersal, 
and spatial dependence on 
underlying environmental 
variables is not present. 
 

Variation in biological assemblages 
is explained by variation in 
geographic, but not environmental 
distances. Use spatial models to 
account for dispersal affects and 
then explore residual 
environmental/biology 
associations. Neighboring sites are 
not statistically independent of one 
another and traditional statistical 
tests are too liberal. 

Figure 4.1: Diagram illustrating simple and partial mantel test results under the extremes of 
complete environmental versus complete neutral control of biological assemblages. These 
extremes are presented for illustrative purposes with the acknowledgement that biological 
assemblages may be controlled by a combination of these processes. Both ecological and 
statistical interpretation and implications are addressed.

 
Bio 

Dist Env 

 

Env 

Bio 

Dist 



 

152 

 
Figure 4.2: The seven study systems and sampling sites. The lower right inset shows the location 
of the six systems in Michigan’s Lower Peninsula and Crane Creek in Northwestern Ohio. The 
entire Muskegon River basin is also shown, although only the lower third of the basin (indicated 
with a box in inset) was included in this study. Watercourse maps show the location of sites 
within a system, with letter markers indicating the type of biological samples collected at a site 
(i.e., both fish and invertebrates, fish only, invertebrates only, or no biological sample). All sites 
on Crane Creek were sampled for fish, but fish were not present during sampling at the three 
sites marked invertebrate only. Environmental data were collected at all sites in all systems. For 
simplicity, not all 1st order streams are illustrated.
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Figure 4.3: Trajectory plots of cumulative dissimilarity along river flow watercourse. Slope at 
any position on the lines indicates rate of change. These plots illustrate differences in rates of 
change along the headwaters to mouth trajectory, as well as concordance between fish and 
invertebrate assemblages, and between biological assemblages and environmental character. The 
upper plots are for Mill Creek and Crane Creek and include fish, invertebrates, and 
environmental change in one plot. The bottom three plots show cumulative dissimilarity versus 
distance from Muskegon Lake for the Muskegon mainstem and confluent tributaries. For clarity, 
fish, invertebrates, and environmental variables are displayed in separate plots and Bigelow 
(BG), Brooks (BR), and Cedar (CD) Creeks are offset from the mainstem. After the mainstem 
splits into two branches, the north branch is shown in red and the south branch in dark blue.
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Due to size, figure follows on the next page. 

Figure 4.4: Path diagrams of each study system based on simple and partial Mantel tests. In most 
systems, associations for fish and invertebrates (Invert) are similar within a system; 
environmental variables (Env) are spatially structured, Env accounts for most or all of the 
association between watercourse distance (Dist) and biological assemblages, and Dist accounts 
for little of the association between Env and the biological assemblage. The Env matrix includes 
only the variables associated with the biological assemblage (i.e., variables in italics in Table 
4.4). The weight of an arrow is directly proportional to the magnitude of the Mantel r for 
statistically significant partial mantels and Dist Env associations. Simple mantels corresponding 
to partial tests are included in parentheses for comparison purpose, but do not affect the weight 
of arrows. *p<0.10 **p<0.05, ***p<0.01, ****p<0.001. 
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(Figure 4.4) 
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Chapter 5 : Dissertation conclusions and synthesis 

Summary of research chapter conclusions 

The common theme of this dissertation is the nature and genesis of ecological spatial 

pattern in rivers. Each of the three studies contributed to a better understanding of spatial 

patterning in river ecosystems. By framing much of the exploration of spatial pattern in the 

context of ecological units (EUs), I was also able to fulfill my personal aspiration of carrying out 

dissertation research with clear management applications. 

In Chapter 2, the theoretical assumptions underlying EUs were validated in a study of the 

mainstem of the Muskegon River. An extant delineation was evaluated and deemed effective, 

particularly for fish. I found moderate fish/invertebrate assemblage composition concordance, 

frequent environment/biology concordance, and distinct, homogeneous biological assemblages in 

this section of the Muskegon River. These characteristics persisted through time. Although there 

were many common biological associations with measures of stream size, reflecting the primary 

longitudinal gradient, there were also some differences in the spatial patterning of fish and 

benthic invertebrate assemblages. These differences suggest substrate may be more important for 

invertebrate community structure and temperature more important for fish community structure. 

Within a delineated EU, concordance assumptions were not met suggesting smaller than valley-

segment scale units would be unfounded. Biological assemblages in confluent tributaries were 

quite distinct from, and more varied than, those in the river mainstem.  

In Chapter 3, the theoretical assumptions underlying EUs were only partially supported 

across a set of five different headwater tributary systems. The effectiveness of existing EU 
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delineations varied with longitudinal location in the tributary system. There were very strong 

fish/invertebrate concordances and frequent environment/biology concordances, but distinct 

homogeneous biological assemblages existed only in higher order/downstream channels with 

substantial streamflow (Q). Biological assemblages in headwaters varied and noncontiguous sites 

were just as likely to have similar assemblage composition as were adjacent sites. The sites in 

extreme headwaters (i.e., the smallest permanent channels) had depauperate biological 

assemblages composed of taxa also found downstream in the tributary system. This suggests 1) a 

need for better understanding of spatial pattern and process in headwater units and/or 2) the 

delineation of shorter EUs in the headwaters to better reflect the scale of observed heterogeneity. 

In Chapter 4, I looked more closely at how spatial pattern in rivers arise. Rates of change 

varied by location in the river network, both along a river mainstem and along a headwaters to 

river mouth trajectory; rates of change and variability in the rates of change generally decreased 

with downstream position in the network. I measured strong positive spatial autocorrelation 

(SAC) in the riverine environment and in biological assemblage composition, but also sharp 

transitions that reduce overall SAC magnitude if the spatial extent was expanded to include 

tributary/mainstem transitions. Strong environment/biology associations accounted for most or 

all of the SAC observed in biological assemblage composition, offering strong support for niche 

processes and species sorting in a diverse environment as the origin of within basin SAC in river 

biological assemblage composition. Likewise, proximity effects on biological assemblages were 

largely mediated through similarity in the environment. 

Dissertation synthesis 

Four major conclusions can be drawn from this dissertation. These conclusions include 1) 

observed spatial patterns were consistent regardless of the measure of the biological assemblage, 
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2) sampling regime and spatial extent can affect study conclusions, 3) environmental pattern in 

rivers create within-basin biological spatial pattern (i.e., the environmental template dominates), 

and 4) ecological units are real and mapping them can be an effective tool for river management, 

especially in downstream river segments. I will address these conclusions sequentially in the 

following sections. 

Different biological assemblage measures, same spatial patterns 

In Chapters 2 and 3 I tested the assumptions underlying EU delineation using three 

different measures of the biological assemblage, 1) occurrence, 2) abundance, and 3) biomass 

(Note: for brevity, only occurrence based analyses were typically included in the results). The 

three data measures were highly concordant, and all led to the same conclusions about EU 

assumptions and longitudinal spatial patterns. This insensitivity to the type of data measure has 

been previously reported in studies on benthic macroinvertebrates (Marshall et al. 2006) and 

freshwater mussels (Miller and Payne 1993). Likewise, Gauch (1982) suggested that most of the 

pattern in assemblages over large spatial scales can be represented by differences in the 

presence/absence of taxa. I concur that rigorously-collected occurrence data are sufficient for 

understanding spatial pattern in rivers at all spatial extents.  

While qualitative sampling of rivers assemblages may be sufficient to describe a river’s 

large-scale spatial patterning, there is still need for some caution. In my datasets, fish and 

invertebrate occurrence measures were developed from quantitative and semiquantitative 

sampling respectively, so sampling effort was equivalent for both occurrence and abundance 

measures. This may not always be the case if differences between qualitative and quantitative 

sampling result in different rates or proportion of taxa detection. 
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In addition to being quantitative, sampling was also of high-spatial-frequency, helping to 

identify unusual sites/samples. There were rare occasions where the invertebrate assemblage at a 

site was more appropriately described by the abundance/biomass measures. For example, 

downstream in the anabranching channels of the lower Muskegon, shifting sand is the dominate 

substrate and is associated with a unique, low-diversity benthic assemblage (Soluk 1985, Palmer 

1990). Within these channels, however, infrequent snags can catch woody debris/leaves and 

create uncommon microhabitats that support benthic fauna commonly found upstream on hard 

substrate. At the site level, the occurrence measure gives these extremely rare taxa equivalent 

weight in assemblage composition, while the abundance measure properly accounts for their 

rarity. The high-spatial-frequency sampling design used in these studies contained replicate sites 

in ecologically homogeneous river segments of similar ecological character. This facilitated 

quick recognition of unusual microhabitats and provided an explanation for differences in 

occurrence, abundance, and biomass assemblage measures. 

Spatial extent and sampling regime can affect concordance and SAC 

This dissertation presents several examples of how a particular sampling regime and/or 

spatial extent can affect study conclusions. The longitudinal, high-spatial-frequency sampling 

regime used in this dissertation was necessary to test the hypothesis that river segments had 

homogeneous ecological character and to evaluate the transitions between unit boundaries. Not 

surprisingly, the results of statistical analyses of the validity of ecological units varied with 

spatial extent. Within a single EU, I found no fish/invertebrate concordance nor many strong 

environment/biology concordances. But delineated EUd did partition a river segment with 

homogenous ecological condition and this ecological condition was distinct from that in adjacent 

units. When spatial extent was expanded to include tributaries confluent with the Muskegon 
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mainstem, large differences between biological assemblages in tributary systems and the entire 

mainstem were evident, and the mainstem appeared to have more comparatively more 

homogenous biological assemblages. 

I also found spatial extent could affect the strength of observed SAC in ecosystems 

exhibiting patchy or patchy gradient spatial patterns. Measures of overall SAC in environmental 

variables in the Muskegon mainstem were very strong, indicating proximity was strongly 

associated with similarity in environmental condition. However, when the spatial extent was 

expanded to include confluent tributaries, SAC was still observed, but with greatly reduced 

magnitude. Does this imply proximity is not as effective a predictor of similarity at large spatial 

extents? If there was no additional information available to describe spatial pattern in rivers, this 

may be a logical conclusion. But I also showed there are marked difference between tributaries 

and the mainstem and the tributary/mainstem confluence marks a rapid change in ecological 

condition over a very short distance. The reduction of SAC when the tributaries were included, 

tells us less about the effects of proximity on biological pattern and more about the effects of 

river network structure. 

This dissertation also demonstrated sampling regime may affect the ability to detect 

concordance between different riverine biological assemblages. In all study systems sampled in 

this dissertation, there was strong concordance between fish and invertebrates, i.e., shifts in fish 

and invertebrate assemblage composition occurred jointly. The pervasiveness of this 

concordance and its strength (especially in tributaries) contrasts with many studies in the 

literature showing little to no concordance between biological assemblages. Some differences in 

observed concordance are likely from differences in sampling regimes. High, concordance was 

typically observed when streams were sampled longitudinally or streams varied substantially in 
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size. When sampling was restricted to streams of the same size, no concordance was observed. 

Since longitudinal size gradients were one of the main causes of concordance in my dissertation 

research, it may be that sampling regimes which exclude this gradient are unlikely to observe 

strong concordance between biological assemblages. 

Physical pattern in rivers create patterns in the biological data 

My dissertation offers strong evidence that most of the spatial pattern in biological 

assemblage composition within a river basin can be explained by longitudinal patterning of the 

river’s physical environment. This patterning affects rates of ecological change within river 

systems and supports the validity of EU delineations based on hydrogeomorphologic spatial 

units. 

Numerous other studies have also illustrated the importance of confluences in river 

ecosystems (Osborne and Wiley 1992, Rice et al. 2001, Benda et al. 2004a, 2004b, 2006, Kiffney 

et al. 2006). The frequency and arrangement of confluences affects rates of change in riverine 

environments and biological assemblages. In river networks, confluence points provide the 

physical opportunity for new hydrologic, chemical, and biological inputs and downstream 

regimes. However, the effect of each particular confluence varies with position in the network 

and the size ratio of the confluent streams. In the headwaters of most Midwestern streams, 

discharge grows rapidly through increases in catchment size and frequent additions of similarly 

sized low-order streams draining different landscapes. The result is rapid change in the 

environment and corresponding biological assemblage composition over short distances (Horton 

1945). In contrast, downstream in the network, confluences with comparably sized channels are 

rarer; the frequent entry of smaller channels that do occur have little distinguishable effect on 

flow, chemistry, or the hydraulic character of the larger channel (Benda et al. 2004a, 2004b, 
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Kiffney et al. 2006). Accordingly, rates of change in environmental character and biological 

assemblage composition were lower downstream in rivers. 

Tributary/mainstem confluences also mark large discontinuities in riverine environments 

and biological assemblages. By using varied spatial and temporal extents in my analyses, I was 

able to illustrate that spatial discontinuity at tributary/mainstem confluences persists across 

seasons and years. Although I expected this for macroinvertebrates, I was surprised strong 

discontinuities in fish assemblage composition persisted despite anadromous fishes’ seasonal use 

of tributaries for spawning. 

Concordant changes in river size, shape, and water temperature and fish and invertebrate 

assemblage composition were the most frequent and compelling biology/environment 

associations. These associations support delineation of valley-segment scale EUs based on 

stream size and hydrogeomorphic patches (Seelbach et al. 1997, 2006, Thorp et al. 2008). 

Because of its glacial history, the Midwest has tremendous heterogeneity in landform and 

hydrology that produces spatial variation in biotic assemblages (Seelbach and Wiley 1997, Zorn 

et al. 1998, 2002). In Michigan streams, measures of stream size including catchment area and 

low-flow yield link catchment-scale features of the landscape to multiple, site-specific 

characteristics of stream habitat (e.g., temperature, velocity, and depth) important to fishes. 

Hydrologic differences create varied temperature regimes, which also contributes to variation in 

biotic assemblages (Hawkins et al. 1997, Wehrly et al. 2003, 2006). The study systems 

investigated in this dissertation illustrated both within-system and between-system variation in 

size, geomorphic character, and hydrologic and thermal regimes. 

By including a variety of tributary systems, I was also able to note certain environmental 

variables can produce distinct ecological units in different ways in different stream systems. 
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Differences in hydrologic and temperature regime created variation in fish assemblages in both 

Bigelow Creek, the most pristine tributary system, and Crane Creek, the most degraded tributary 

system. In Bigelow Creek, an intermittentantly flowing eastern channel originates from a small 

lake outflow and travels through a wetland complex before joining the main channel, a stable, 

cold, groundwater stream. Despite being physically close (<5 km overland distance), the diverse 

warm-water fish assemblage in the eastern channel bore no resemblance to the cold-water fish 

community in the main channel. This creates a clear EU boundary at this confluence. In Crane 

Creek, the upper headwaters were extremely harsh aquatic environments of unshaded 

agricultural ditches with intermittent flow and huge diel oxygen and temperature swings. 

Immediately following their confluence, the stream was shaded by riparian vegetation and diel 

oxygen and temperature swings were moderated. Although the available fish species pool was 

the same in all three stream segments, sites in the upstream-most segments had on average three 

fish species, while the segment downstream of the confluence had on average nine fish species. 

This creates a clear EU boundary at the confluence. These system-specific effects of the same 

environmental variables, suggest personal knowledge of local conditions, biological 

assemblages, and controls on assemblage composition should supplement computer-driven 

delineation of EUs (Brenden et al. 2008). 

Utility of ecological units (EUs) 

In this dissertation I closely examined the validity of two assumptions which lay behind 

the mapping and classification of EUs: 1) concordance between different biological assemblages 

and 2) concordance between the biological community and the physical environment. I observed 

strong concordance within river headwater systems and at transitions between tributaries and the 

Muskegon River mainstem, and moderate concordance along the Muskegon mainstem. My 
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results highlight the appropriateness of the term “ecological” when referring to these physically 

distinctive channel units. Although there was some evidence that invertebrates were more 

sensitive to substrate, and fish more sensitive to temperature, both assemblages were associated 

with environmental changes caused by network confluences and longitudinal gradients in rivers. 

The validity of third assumption of ecological units, the existence of ecologically distinct, 

homogeneous river segments, was validated in all but the headwaters of river systems, where EU 

delineation itself was problematic. Despite high-spatial-frequency sampling, I was not able to 

identify contiguous, distinct environmentally and biologically homogenous river lengths within 

river headwater systems. However, if the spatial pattern in river headwaters is a patchy gradient 

like the rest of the river system, then headwater EUs would exist, although they would 

necessarily be many and short. Ascertaining whether spatial pattern in headwaters is best 

described by a gradient or a patchy gradient requires even higher-spatial-frequency sampling 

than I used in these studies; it would require replication of sites within stream segments and 

bracketing of each network juncture, or continuous sampling (as in Torgersen et al. 2006). 

Therefore, my research supports the contention that EUs really do exist as map-able 

channel units in river systems. As such, they are useful basic units for mapping, inventory, and 

classification of river systems (Seelbach et al. 1997, Seelbach et al. 2006, Melles et al. 2014). 

EUs provide a convenient way to generalize and communicate about recurring ecological 

processes and resultant patterns we see in river ecosystems (Rowe 1961, Levin 1992). EUs 

within rivers should function like strata in a statistical design sense, and mapped EUs should be 

accounted for in sampling regime and study design. Furthermore, classification of EUs into 

groups with similar characteristics (i.e. typing) might allow extrapolation from representative 

samples or models to unsampled or under-sampled units, and guide management actions in areas 
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where data are scare. However, because of their small size, EUs in the headwaters may be of less 

utility than EUs in lower longitudinal positions in the network. 

Management application example 

One aspiration of my dissertation was to perform research with clear ecological 

management applications. To conclude this dissertation, I will illustrate how several findings of 

this dissertation can be applied to a specific ecosystem management need: effectively assessing 

the biological condition of a watershed. Let’s assume that in this watershed EUs have been 

delineated on recognized hydrogeomorphic patches and influential stream network junctures, and 

the delineated EUs have been attributed with network (e.g. stream size, link, order, etc.), flow 

and temperature regime, and catchment (land use/land cover, surficial geology, groundwater 

potential, etc.) measures. Also assume that based on these attributed measures and established 

statistical relationships between these measures and biological assemblages, EUs have 

subsequently been classified into EU types. To simplify this example I will contrast sampling in 

the headwaters and the mainstem, although bioassessment sampling should occur across streams 

of all sizes. Based on decreasing rates of change and reduced variability in rates of change along 

a river network, in the headwaters there are many, short EUs described by numerous ecological 

types and in the mainstem there are a few, long EUs described by just a few ecological types. If a 

watershed bioassessment is to truly represent the condition of the entire catchment, sampling 

sites should be stratified by ecological type and distributed in proportion to the ecological types 

within the watershed. This requires a sampling regime with many, possibly proximal sites in the 

headwaters and few, distant sites along the mainstem. 

Once sampling is complete, regional normalization models can be developed to assess 

variation in biological condition metrics (e.g. species richness, EPT taxa, percent intolerant taxa) 
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caused by both natural variation within the watershed and human-influenced change in the 

watershed (Wiley et al. 2003, Baker et al. 2005, Riseng et al. 2010). Normalization is founded on 

the premise that location-specific reference conditions can be modeled using large-scale features 

because these features are important controls on the ecological character of a stream. Models 

predicting biological assemblage condition from large-scale features can include both non-

stressors (e.g. catchment area, surficial geology, stream temperature) and stressors (e.g. urban 

land use, proximity to dams, proximity to NPDES site). When models include anthropogenic 

controls such as urban or agricultural land uses, these can be set to zero to produce site-specific 

reference conditions even if “true” reference sites do not exist in the current landscape. 

Deviations from reference condition are normalized (or scaled) by accounting for natural 

variation of the metric and a measure of the model fit.  

Because each EU is fully attributed with measures that are known to control biological 

assemblages, EUs serve as the basic unit on which such normalized models are constructed and 

on which model results can be displayed. For example, impact levels (e.g. levels from not 

impacted to highly impacted) can be mapped onto the EU system illustrating both local and 

watershed-wide assessment of a river’s ecological condition. Likewise, by using the EU system 

with normalized models, the spatially-explicit effects of future land development on riverine 

health can be explored (as in Wiley et al. 2010). 
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