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CHAPTER I

Introduction

In 2013, the National Cancer Institute published its Annual Report to the Nation

on the Status of Cancer, 1975–2009, highlighting the trends in the burden of hu-

man papillomavirus (HPV) associated cancers. Although total cancer incidence has

recently declined, incidence of HPV-related oropharyngeal and anal cancers have

increased (Chaturvedi et al., 2011; Jemal et al., 2013).

The human papillomavirus (HPV) infects multiple sites in the human epithelial

layer, in particular the genitals, oral cavity, and anal canal, and is the etiological

agent for over 90% of anogenital cancers and an increasing percentage of oropha-

ryngeal cancers (Jemal et al., 2013). While the progression from cervical HPV infec-

tion to cervical cancer is well understood because of data from annual gynecological

exams, very little is known about the progression to cancer in the head and neck.

Further, the association between infection at different sites and their relation to

seroconversion is not well characterized.

The National Health and Nutrition Examination Survey (NHANES), a United States-

wide survey conducted by the Centers for Disease Control and Prevention (CDC),

samples approximately 10,000 people in each biennial study. Begun in the 1960s

and becoming continuously run in 1999, NHANES combines both interviews and

physical examinations and is a major program within the National Center for Health

Statistics. It is used to determine prevalence of and risk factors for major diseases

as well as information about nutrition and basic biometrics (Centers for Disease
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Control and Prevention, 2014b). The NHANES program, which first began includ-

ing cervical HPV infection and serum antibodies in 2003 and oral HPV infection in

2009, offers an opportunity to assess not only associations between oral and gen-

ital HPV infection and seropositivity for certain genotypes, but HPV infection and

seroprevalence trends as well. Most knowledge of the natural history of HPV comes

from cohort and case-control studies, which, although relevant, cannot give infor-

mation about patterns and trends at the population level. Additionally, although

testing for HPV at cervical sites has been standard for some time, characterization

of oral prevalence has only recently begun.

NHANES also provides key time-course data on disease prevalence at multiple sites

that can serve as inputs for modeling HPV-related cancers whose dynamics depend

on HPV transmission in the population. Thus, although direct analysis of NHANES

is left primarily to Chapter III, the analysis of genital–oral concurrence informs the

multisite infectious disease model developed in Chapter IV, and population-level

HPV prevalence informs the cancer models of Chapters V and VI.

There are many strains of the human papillomavirus, and these are typically clas-

sified according to their oncogenic risk. Genotypes 16, 18, 26, 31, 33, 35, 39, 45,

51, 52, 53, 56, 58, 59, 66, 68, 73, 82 are considered to be high risk, that is have

the potential to be oncogenic, and genotypes 6, 11, 40, 42, 54, 55, 61, 62, 64, 67,

69, 70, 71, 72, 81, 82 subtype IS39, 83, 84, 89 [CP6108] are low risk for oncogen-

esis but may cause other complications such as condylomas (genital warts) (Muñoz

et al., 2003). (Classification into low- and high-risk types can very slightly between

studies. This classification is consistent with Gillison et al. (2012a)). HPV infection

is associated with nearly every cervical cancer, 90% of anal cancers, 60% of some

subsites of head and neck cancers, and 40% of other genital cancers (Jemal et al.,

2013). HPV 16, in particular, causes about 70% of genital cancers and together 16

and 18 are responsible for 90% (Jemal et al., 2013). HPV 6 and 11 cause 90% of

anogenital warts (Jemal et al., 2013). HPV 16 is also found in 90% of HPV-positive

squamous cell carcinomas (SCCs) in the head and neck (Gillison et al., 2012a).
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Most HPV infections clear within a year or two (Ho and Bierman, 1998; Franco

et al., 1999; Molano et al., 2003; Moscicki et al., 2012), but some infections may

persist for decades and result in intraepithelial lesions and squamous cell carci-

nomas (IARC, 2007). HPV-positive cancers are associated with overexpression of

the cyclin-dependent kinase inhibitor p16 relative to HPV-negative cancers and in-

hibition of two tumor-suppressors: gene product p53 and retinoblastoma protein

pRb (IARC, 2007; Gillison et al., 2012a).

Vaccines have been developed to target certain strains of HPV. Two vaccines are

currently approved by the FDA: GlaxoSmithKline Biologicals devolped the bivalent

(16, 18) vaccine Cervarixr, and Merck makes the quadravalent (6, 11, 16, 18) vac-

cine Gardisilr (Kreimer, 2014). Merck’s nonavalent (6, 11, 16, 18, 31, 33, 45, 52,

58) vaccine has been shown to be effective in trials (Joura et al., 2015). Vaccination

against HPV is targeted at females ages 11–12 but is recommended in the United

States for both men and women with minimal sexual activity under the age of

26. Australia, which has an aggressive vaccination campaign and a national health

monitoring system, achieved a vaccination rate of 83% for one dose and 70% for all

three doses among 12–17 year old females during 2007–2009 (Tabrizi et al., 2012).

Vaccination of school-aged females and males has been routine there since 2009,

and incidence of genital warts has decreased dramatically (Ali et al., 2013; Harrison

et al., 2014). In contrast, vaccine coverage in the United States has been low, though

increasing, especially among boys. Coverage for at least one dose (all three doses)

in 2013 was 57.3% (37.6%) for girls and 34.6% (13.9%) for boys in the targeted

age group (Centers for Disease Control and Prevention, 2014a). Markowitz et al.

(2013) found that cervical HPV prevalence among women ages 14–19 decreased

from 11.5% in 2003–2006 to 5.1% in 2007–10, a difference largely attributable to

vaccination. Concerns that administering a vaccine for a sexually transmitted in-

fection to young girls would give them license to be sexually active were recently

refuted (Mayhew et al., 2014), and the President’s Panel on Cancer called for ur-

gent acceleration of vaccine uptake (Rimer et al., 2014). It remains to see what

effect these developments will have on future vaccination coverage. Modeling may

3



provide a useful approach to predicting the effects of vaccination, and existing vac-

cination models are discussed in Chapter II.

Few studies have thus far considered multisite concurrence or type-concordance.

Steinau et al. (2014) reported that, in the 2009–2010 NHANES survey, oral HPV

infection was five-fold higher in women with a current genital infection, and that

type-specific concordance was low. The Hawaii cohort study reported a relative

risk of 20.5 for acquiring a type-concordant anal infection after a cervical infec-

tion and a relative risk of 8.8 for acquiring a type-concordant cervical infection

after an anal infection (Goodman et al., 2010). Data from the HPV in Men (HIM)

study have suggested that seroconversion in men differs by anatomical site for some

genotypes, with anal infections more likely to result in seroconversion than genital

infections (Lu et al., 2012). Modelers have similarly neglected consideration of mul-

tisite concurrence. Although multistrain models have been considered (e.g. van den

Driessche and Watmough (2002)), including for HPV (e.g. Kim and Goldie (2008)),

there has been no analysis of a dynamical systems multisite infection model. Thus,

Chapters III and IV address these gaps in the literature through both epidemiologi-

cal and mathematical approaches.

Like many sexually transmitted diseases, prevalence of HPV varies widely by de-

mographic group in the United States, possibly due, in part, to sexual assortativ-

ity (Morris et al., 2009). Prevalence among non-Hispanic blacks, for instance, is

significantly higher at both oral and genital sites of infection than for non-Hispanic

whites and Hispanics. Further, prevalence varies significantly with age. However,

no attempt has yet been made to disentangle the effects of age, birth cohort, and

time period for trends in HPV prevalence. One way to differentiate these effects is

by the use of age–period–cohort (APC) models developed by Holford (1983, 1991)

and Clayton and Schifflers (1987a,b). APC models have been used for myriad pub-

lic health issues, from infant and adult mortaility (Meza et al., 2010c), to smoking

histories (Holford et al., 2014), to the incidence of colorectal (Luebeck and Mool-

gavkar, 2002), breast (Holford et al., 2006), esophageal and gastric (Jeon et al.,
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2006), thyroid (Kilfoy et al., 2009), bone (Anfinsen et al., 2011), and oropharyn-

geal (Chaturvedi et al., 2013) cancer.

Analysis of HPV-related oral (oralpharyngeal and oral cavity) squamous cell carcino-

mas (OSCC) incidence in the Surveillance, Epidemiology, and End Results (SEER)

cancer registries, have identified gender disparities but diminishing racial differ-

ences in the United States (Brown et al., 2011, 2012). Overall OSCC incidence rates

for men are two to four times that of women across all races, though this varies

slightly for the different cancer subsite groups (Brown et al., 2012). Racial differ-

ences between rates of OSCC in white and black women have largely disappeared.

Although rates for black men have historically been higher than for white men, de-

clining rates among black men have been met by a recent increase in incidence for

white men (Brown et al., 2011). These results, however, only address overall tem-

poral trends and neither distinguish between age, period, and birth cohort trends

nor make implications about the underlying biological and epidemiological causes.

Multistage clonal expansion (MSCE) models, a class of inhomogeneous, continuous

time Markov models, capture the initiation–promotion–progression hypothesis of

tumorigenesis, in which normal cells undergo a genetic transformation that leads

to clonal expansion, followed by transformations that lead to malignancy (Mool-

gavkar and Venzon, 1979; Moolgavkar and Knudson, 1981; Luebeck and Mool-

gavkar, 2002; Meza et al., 2008). Using models that account for the natural history

of cancers is important because the effects of carcinogens acting as initiators or

promoters results in different temporal effects on the the age-specific incidence of

cancer, which can be inferred from population level data (Heidenreich et al., 1997;

Meza et al., 2008). MSCE models have been shown to capture temporal patterns

of cancer risk and provide insight into the underlying mechanisms leading to pop-

ulation level cancer incidence patterns (Meza et al., 2008, 2010b; Luebeck and

Moolgavkar, 2002; Luebeck et al., 2013). Chapter V uses an MSCE model coupled

with an APC model to address incidence of oral squamous cell carcinomas.

One challenge of combining mathematical models of infectious diseases and cancer

5



is the inherently multiscale nature of the problem. Infectious disease dynamics play

out at the population level, infection and disease progression occur at the individ-

ual level, and cancer incidence is of interest once more on the population scale.

Working on multiple time scales is also challenging: disease transmission and clear-

ance occurs on scales of a year or less, but a decade or more may pass between

the infection and the detection of the cancer. These challenge must be addressed if

we are to quantify the risk for oropharyngeal cancer associated with HPV infection

and to model the impact of interventions (e.g. vaccination) targeting HPV on inci-

dence of HPV-related oropharyngeal cancer. Chapter VI takes steps in this direction

by introducing MSCE models with infection-related initiation pathways.

This dissertation is organized in seven chapters. Chapter II explores the mathe-

matical background of infectious disease, age–period–cohort, and multistage clonal

expansion models, including the relevant literature, and presents new exposition

and several minor results that will be expanded on in later chapters. Chapter III

presents a statistical analysis of data in NHANES. We consider HPV prevalence at

oral and genital sites and prevalence of HPV antibodies in serum, with special atten-

tion to concurrent infection and genotype-concordant infection. Age–period–cohort

models are leveraged to describe cohort trends in genital HPV-prevalence and in

seroprevalence. Chapter IV introduces a multisite model of HPV or other multisite

infectious disease and presents derivations of the form and properties of the basic

reproductive number under a variety of assumptions and limiting cases. Autoinoc-

ulation and the effects of heterogeneity in the same-site and cross-site transmis-

sion pathways are considered. Chapter V presents an analysis of the incidence of

oral squamous cell carcinomas reported in the SEER cancer registries, consider-

ing HPV-related, HPV-unrelated except oral tongue, and HPV-unrelated oral tongue

anatomical subsite groups. Multistage clonal expansion models are combined with

age–period–cohort models to assess not only temporal trends in the data but also

aspects of the underlying tumor biology. Chapter VI explores two extensions of

the two-stage clonal expansion model that incorporate HPV prevalence as an age-

dependent driver of initiation. I derive the equations under the assumption that i)

6



HPV-related and HPV-unrelated cancers have the same promotion and malignant

conversion rates and ii) that they differ. Structural identifiability of each model is

considered. Chapter VII contains the final remarks and conclusions.
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CHAPTER II

Background and Minor Results

2.1 Infectious disease models

Infectious diseases have been effectively modeled with a dynamical systems ap-

proach, the heart of which is the SIR—susceptible, infectious, recovered—model.

The SIR model assumes susceptible people come into contact with infectious peo-

ple at rate β and recover at a rate γ. Typically, the birth and death rates µ are

assumed to be the same, which keeps the population size is constant. The equations

of the basic SIR model (Kermack and McKendrick, 1927) are

Ṡ = µ− βSI − µS,

İ = βSI − γI − µI,

Ṙ = γI − µR,

(2.1)

where S is the fraction of the population that is susceptible to infection, I the frac-

tion that is infectious, and R the fraction that have recovered. Many variations of

the basic SIR model exist: models without immunity or with waning immunity, with

vaccination, with a presymptomatic lag period, with seasonal forcing, with strati-

fication by risk group or demographics, etc. (Anderson and May, 1991; Hethcote,

2000; Diekmann and Heesterbeek, 2000; Keeling and Rohani, 2008).

Infectious disease dynamical systems models can easily be translated into a stochas-
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tic simulation framework by means of the Gillespie algorithm (Doob, 1942, 1945;

Gillespie, 1976, 1977) or extended to incorporate heterogeneity and stochastic-

ity of social structure and mixing by embedding the process withing a sexual net-

work model or an agent-based simulation framework (e.g. Bartlett (1953), Newman

(2002), Eubank et al. (2004), Meyers et al. (2006),Morris et al. (2009), Perez and

Dragicevic (2009), Conway et al. (2011),Valente (2012)).

2.1.1 Basic reproduction number

The basic reproduction number R0, also called the basic reproductive ratio, is an im-

portant quantity in infectious disease systems epidemiology, defined as the average

number of secondary cases arising from an typical primary case in an entirely sus-

ceptible population (Diekmann et al., 1990; Anderson and May, 1991; Diekmann

and Heesterbeek, 2000). The basic reproduction number acts as a threshold value

that controls the local stability of the disease-free equilibrium: if R0 < 1, the disease

will die off quickly, while if R0 > 1, the disease will become epidemic (Diekmann

and Heesterbeek, 2000; van den Driessche and Watmough, 2002). The values of R0

vary greatly by disease (Anderson and May, 1991), ranging from close to 1 for sea-

sonal influenza to 5–7 for smallpox and polio to 12–18 for measles and pertussis,

but are also dependent on some attributes of the population. Mathematical model-

ing is often used to estimate the basic reproductive ratio and other relevant quan-

tities. In practice, R0 is calculated as a threshold parameter that may not precisely

correspond to the number of secondary cases per infection, especially in the case

of an environmentally transmitted infections (van den Driessche and Watmough,

2002). The basic reproduction number is widely considered the most useful contri-

bution of mathematics to epidemiology (Heesterbeek and Dietz, 1996).

In the basic SIR system, the basic reproduction number is given by the ratio of

the transmission rate to the recovery rate β/γ (Keeling and Rohani, 2008). Sev-

eral methods exist for calculating R0 in more complex systems. One of the most

commonly used approaches, the Next Generation Method, is described in detail
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elsewhere (Diekmann et al., 1990; van den Driessche and Watmough, 2002; Diek-

mann et al., 2010), though we give a brief formulation here. Denote the vector of

states by x and the disease free equilibrium by x0. For each infected compartment i,

let Fi(x) be the rate at which previously uninfected people enter compartment i.

Let Vi(x) be the rate of transfer of individuals out of compartment i minus the rate

of transfer into compartment i. Then

dxi
dt

= Fi(x)− Vi(x). (2.2)

Denote by F and V the matrices whose entries are

Fij =
∂Fi(x)

∂xj

∣∣∣
x=x0

, (2.3)

Vij =
∂Vi(x)

∂xj

∣∣∣
x=x0

. (2.4)

The matrix FV −1 is called the next generation matrix.

To interpret the entries of FV −1 and develop a meaningful definition

of R0, consider the fate of an infected individual introduced into com-

partment k of a disease free population. The (j, k) entry of V −1 is the

average length of time this individual spends in compartment j dur-

ing its lifetime, assuming that the population remains near the DFE and

barring reinfection. The (i, j) entry of F is the rate at which infected

individuals in compartment j produce new infections in compartment

i. Hence, the (i, k) entry of the product FV −1 is the expected number

of new infections in compartment i produced by the infected individ-

ual originally introduced into compartment k. (van den Driessche and

Watmough, 2002)

Then, R0 is defined to be the spectral radius of the matrix FV −1 (Diekmann et al.,

1990), and, under certain assumptions trivially satisfied for realistic infectious dis-

ease models, the disease free equilibrium is locally asymptotically stable if R0 < 1
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and unstable if R0 > 1 (van den Driessche and Watmough, 2002). An equivalent

method to finding R0 is solving to the polynomial equation det(Fx − V ) = 0 (De-

Camino-Beck et al., 2009).

The basic reproduction number also has implications for infection control. If a frac-

tion of the population greater than 1 − 1
R0

is permanently protected from infection

(e.g. through immunization), the infection cannot become epidemic (Roberts and

Heesterbeek, 2003). The concept of the basic reproductive number, at least in these

infection control terms, can be extended to examine infection control in populations

with multiple subgroups using the type and target reproductive numbers, which

provide R0-like threshold quantities under the assumption that only a specific pop-

ulation group or transmission pathway is being controlled. Suppose that there are

n host types. Let K = FV −1 be the next generation matrix, and Pi the projection

matrix with Pii = 1 and all other entries 0. Then, if ρ((I − Pi)K) < 0, that is, if

the other host groups are not self-sustaining disease reservoirs, the infection can be

controlled by protecting a greater fraction than 1− 1
Ti

of host type i, where

Ti = e′iK(I − (I − Pi)K)−1ei (2.5)

is called the type reproduction number for host type i. It is known that Ti > 1 if and

only if R0 > 1 (Roberts and Heesterbeek, 2003). If ρ((I − Pi)K) ≥ 1, then another

host type acts as a reservoir for infection, the infection cannot be controlled only

through intervention on host type i, and Ti is not defined. If several host types are

to be controlled simultaneously, the target reproduction number is defined as

M` = E ′`K(I − (I − P`)K)−1E`, (2.6)

where (E`)ii = (P`)ii = 1 for i ∈ ` and 0 otherwise (Roberts and Heesterbeek,

2003). The type reproduction number is especially of interest for vector-borne and

other multiple-species infections. The target reproduction number may be further

generalized to consider individual entries of the next generation matrix, not just
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whole rows. For any matrix A such that Aij = Kij or 0, then the target reproduction

number for the nonzero entries of A is

TA = ρ(A((I − (K − A))−1). (2.7)

The target reproduction number has the same properties as the type reproduction

number (Shuai et al., 2013).

2.2 Identifiability

When estimating model parameters from data, a key consideration is model identi-

fiability. A model is said to be identifiable if the model parameters may be uniquely

determined from the observed data (Bellman and Åström, 1970; Rotherberg, 1971;

Cobelli and DiStefano, 1980). Identifiability is a key step in ensuring successful pa-

rameter estimation and is often considered in two forms: structural identifiability,

which considers a best-case scenario in which the data is noise-free and contin-

uously measured in order to uncover identifiability issues inherent in the model

structure, and practical identifiability, which addresses issues such as noise, bias,

and frequency of sampling (Raue et al., 2009). While the best-case scenario is unre-

alistic, structural identifiability is necessary for practical identifiability and can often

lead to useful insights for model reparameterization and data collection strategies

for ODE models. Structural identifiability for dynamical systems is defined as fol-

lows. Consider a vector of states x(t) (unobserved), vector of parameters µ, and

observable input and output u(t) and v(t) in the ODE model

x′(t) = f(x(t), u(t), µ),

v(t) = g(x(t), µ).
(2.8)

The above model is identifiable if µmay be uniquely recovered by u(t) and v(t) (Bell-

man and Åström, 1970). Equivalently, one often frames the identifiability problem
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as testing the injectivity of the map from the parameters to the output trajecto-

ries (implicitly defined by the ODE system and output equation above) (Saccomani

et al., 2001). There are a wide range of approaches to answering questions of iden-

tifiability, including Laplace transformation, Taylor series, similarity transformation,

and differential algebra (Cobelli and DiStefano, 1980; Vajda et al., 1989; Chappell

et al., 1990; Evans and Chappell, 2000; Saccomani et al., 2001; Audoly et al., 2001;

Meshkat et al., 2009; Raue et al., 2014). Identifiability of models in mathematical

biology are commonly considered, but the issue appears in a wide range of statis-

tical and mathematical contexts, including in infectious disease (Eisenberg et al.,

2013), age–period-cohort (Holford, 1991), cancer (Heidenreich et al., 1997; Little

et al., 2009), and other models.

If a model is not structurally identifiable, there exist identifiable combinations of

parameters that represent the parametric information possible to extract from the

data. These combinations can provide structure for other aspects of the model, de-

termine what additional data or constraints would render the model identifiable,

and generate identifiable reparameterizations of the model (Cobelli and DiStefano,

1980). It is important to remember that identifiability is a data dependent con-

cept. Identifiability analysis seeks to find combinations of parameters that can be

estimated from some given data (input and output). If additional data becomes

available later on, an unidentifiable model can become identifiable.

To assess identifiability of certain models in this dissertation, I will use a differen-

tial algebra approach, which is a method for evaluating the structural identifiabil-

ity of rational-function differential equation models. This method is built on the

idea of treating the differential equations as elements of a differential polynomial

ring, that is, a polynomial ring in the variables and their derivatives, with an ad-

ditional derivative operation. Once framed in this algebraic perspective, reduction

techniques such as characteristic sets or Gröebner bases can be used to reduce the

model to a form in which the identifiability properties can be determined, called the

input–output equations. Like many structural methods, the differential algebra ap-
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proach yields identifiability results globally for the whole parameter space; however

because there may be specific or degenerate parameter sets and initial conditions at

which the results break down (e.g. if all parameters or initial conditions are zero),

structural identifiability is defined for almost all parameter values and initial condi-

tions. Technical details of the differential algebra approach to identifiability may be

found in Saccomani et al. (2001) and Eisenberg (2013), and additional information

on the subject of differential algebra may be found in Ritt (1950).

To illustrate the differentiable algebra approach using input–output equations, we

borrow an example from Eisenberg (2013). Consider the following linear model

with two compartments of drug uptake in an organ:

ẋ1 = u(t) + k12x2 − (k01 + k21)x1,

ẋ2 = k21x1 − (k02 + k12)x2,

y = x1/V.

(2.9)

Here, x1(t) is the mass of drug in the blood, x2(t) is the mass of drug in an organ.

The mass of drug administered u(t) and concentration of the drug in the blood y(t)

are known. The drug decays in the blood and organ at rates k01 and k02 respectively.

The rate of transfer from blood to organ and from organ to blood are k21 and k12

respectively. To determine whether this system is structurally identifiable, we find

the input–output equation for this system, that is, a monic, polynomial representa-

tion of the system in terms of u and y (and their derivatives) only. We eliminate the

unmeasured variables as follows:

ẏV = u(t) + k12x2 − (k01 + k21)yV,

ẋ2 = k21x1 − (k02 + k12)x2,
(2.10)

x2 =
1

k12

(−u(t) + k01V y + k21V y + V ẏ) ,

ẋ2 = k21x1 − (k02 + k12)x2,

(2.11)
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0 = k12k21V y + (k02 + k12)(u(t)− V (k01 + k21)y + V ẏ) + u̇(t)− V (k01 + k21)ẏ + V ÿ,

(2.12)

0 = ÿ + (k01 + k02 + k12 + k21)ẏ + (k01k02 + k01k12 + k02k21)y − 1

V
u̇(t)− k02 + k12

V
u(t).

(2.13)

We see that eq. 2.13 is a monic, polynomial equation of y, u, and the parameters

and is thus an input–output equation for the model (eq. 2.9). The coefficients of the

input–output equation are identifiable combinations and represent the complete set

of structural identifiable information for the model and data. The underlying idea

for input–output equations is that testing injectivity of the map from the parameters

to the outputs can be reduced to testing injectivity of the map from the parame-

ters to the input–output coefficients. (Eisenberg, 2013). From the coefficients, we

see that V , k01 + k21, k02 + k12, and k21k12 are identifiable. This result suggests a

reparameterization x3 = k12x2, which gives the model in terms of the identifiable

combinations only:

ẋ1 = u(t) + x3 − (k01 + k21)x1,

ẋ3 = (k12k21)x1 − (k02 + k12)x3,

y = x1/V,

(2.14)

with estimated parameters p1 = V , p2 = k01 + k21, p3 = k12k21, and p4 = k02 + k12.

2.3 Age–period–cohort models

Age–period–cohort (APC) models are a class of epidemiologic models used to disen-

tangle effects of age, period (factors affecting all people at a given time), and birth

cohort (factors affecting all people born in a given time period) given prevalence

(e.g. HPV prevalence) or incidence (e.g. incidence of oral cancer). APC models are a

form of generalized linear regression developed by Holford (1983, 1991) and Clay-
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ton and Schifflers (1987a,b). The traditional model posits that incidence rates λ

are described by a multiplicative model with age (A), period (P ), and birth cohort

(C). This is usually treated in the logarithmic form, in which we fit the following

generalized linear model (using Poisson family and log link function).

log λ = β0 + βA(A) + βP (P ) + βC(C), (2.15)

where β0 is a constant and βA, βP , and βC are some functions, often chosen to be

splines or discrete functions.

Given an incidence I and at-risk population N , it is straightforward to model λ =

I/N . If, alternatively, one wishes to model prevalence (P ), one may convert as

follows (Holford et al., 2014).

log λ = log
I

N
= log

I
I+N
N
I+N

= log
P

1− P
= logit P. (2.16)

This allows us to use a generalized linear model with binomial family and logit link

function. We then model

logit P = β0 + βa(a) + βp(p) + βc(c). (2.17)

One drawback of full APC models is their inherent unidentifiability: P = A+ C. To

resolve the unidentifiability, one may consider only two effect models, typically age–

period or age–cohort, or constrain the age effects to have a given shape, such as a

hazard function (Holford, 1991; Luebeck and Moolgavkar, 2002; Meza et al., 2008;

Luebeck et al., 2013). Alternatively, one can introduce an additional assumption,

such as equating two effects (e.g. two adjacent period effects) or making the mean

of successive differences zero (i.e. equating the first and last effect); unfortunately,

there “generally is not a sound basis” for making such assumptions (Holford, 1991).

Given a set of observed cases {xi} with corresponding population-at-risk sizes {ni},
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we may derive a likelihood for the APC model in the following way. We assume that

observed incident cases xi for a given population all of age Ai at time Pi from birth

cohort Ci = Pi−Ai are Poisson distributed with mean µi = ni ·λ(Ai, Pi, Ci), where λ

is the incident rate function dependent on parameter β0 and functions βA, βP , and

βC . Observations are assumed to be independent, and thus the likelihood for the

whole data set of observations {xi} is given by

L(β0, βA, βP , βC) =
∏
i

e−µiµxii
xi!

. (2.18)

2.4 Cancer models

Many models of carcinogenesis have been developed using a variety of techniques

and with different goals. Here, we work toward multistage clonal expansion (MSCE)

models, beginning with Armitage–Doll model of carcinogenesis. Before investigat-

ing model development, however, we present a few preliminary definitions.

2.4.1 Preliminaries: survival and hazard

Let X be the random variable giving the time of malignant transformation or, more

generally, of a failure event. We define the survival function to be the probability

that failure has not occured by time x, namely

S(x) = P [X > x]. (2.19)

The standard measure of cancer risk is the hazard function, h(x), also known in this

context as the age-specific cancer incidence function. The hazard is defined as the

instantaneous rate of change of failure probability:

h(x) = lim
∆x→0

P [x < X < x+ ∆x|X > x]

∆x
. (2.20)
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We can also write the hazard in terms of the survival function.

h(x) = lim
∆x→0

P [x < X < x+ ∆x|X > x]

∆x

= lim
∆x→0

P [x < X < x+ ∆x]

∆x · P [X > x]

= lim
∆x→0

S(x)− S(x+ ∆x)

∆x · S(x)

= −S
′(x)

S(x)

= − d

dx
lnS(x)

(2.21)

We will seek to find the hazard and survival functions for several models of carcino-

genesis. Since the hazard is a representation of incidence (or mortality), the hazard

can connect theory with data, allowing model verification and parameter estima-

tion (Moolgavkar and Knudson, 1981; Luebeck and Moolgavkar, 1991; Heidenreich

et al., 1997; Luebeck and Moolgavkar, 2002; Meza et al., 2008). Similarly to the

ODE models discussed previously, considerations of parameter identifiability given

the survival and hazard are also given.

2.4.2 The Armitage–Doll model

The first mechanistic models of cancer were developed by Armitage and Doll (1954)

and Nordling (1953, 1954) to describe cancer as an accumulation of genetic trans-

formations. The mathematical formulation is as follows. Suppose n sequential ge-

netic transformations must accrue in a cell, or its progeny, before it becomes malig-

nant. We say that a cell is in stage Ek after k transformations. Each transformation

occurs in order and after a time exponentially distributed with rate λk. The process

is illustrated in a schematic in Figure 2.1.

Let Z(t) be the number of genetic transformations the cell has undergone by time

t, and let

pk(t) = P [Z(t) = k], (2.22)
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Figure 2.1: Schematic of the Armitage–Doll model of carcinogenesis

be the probability that the cell is in state Ek (i.e. has k genetic transformations) at

time t. Because the rates are exponentially distributed, this system is Markov and

may be analyzed in the context of stochastic processes. The Armitage–Doll process is

in fact a birth process, a kind of continuous-time Markov chain. Define the following

quantities for a homogeneous continuous-time Markov process:

Pij(t) = P [Z(t+ u) = j|Z(u) = i], (2.23)

νi = lim
t→0

1− Pii
t

, (2.24)

qij = lim
t→0

Pij
t
. (2.25)

The transition probabilities Pij(t) are homogeneous, that is, they do not depend on

u. In particular,

Pij(t) = P [Z(t+ u) = j|Z(u) = i] = P [Z(t) = j|Z(0) = i]. (2.26)

We will develop the theory of inhomogeneous continuous-time Markov chains in a

later section. Here, we also have

qij = νiPij. (2.27)

For our Armitage–Doll notation, pk(t) = P0k(t), νk = λk+1 for k ∈ {0, . . . , n− 1} and

0 otherwise, and qkj = λk if j = k + 1 and 0 otherwise. By the Markov property of
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the process, we have the following infinitesimal transition probabilities:

Pij(h) = hqij + o(h), (2.28)

Pii(h) = 1− hνi + o(h). (2.29)

The Chapman–Kolmogorov equations give us that, for any t and h,

Pij(t+ h) =
n∑
k=0

Pik(t)Pkj(h). (2.30)

Subtracting Pij(t), dividing by h, and taking the limit as h → 0, we arrive at the

Kolmogorov forward equations:

d

dt
Pij(t) =

∑
k 6=i

qkjPik(t)− νjPij(t). (2.31)

[Note: the same operations on the equation Pij(t + h) =
∑n

k=0 Pik(h)Pkj(t) would

give the Kolmogorov backward equations d
dt
Pij(t) =

∑
k 6=i qikPkj(t)− νiPij(t)].

For the Armitage–Doll model, the Kolmogorov forward equations of interest are

dp0

dt
= −λ1p0(t),

dp1

dt
= λ1p0(t)− λ2p1(t),

...

dpk
dt

= λkpk−1(t)− λk+1pk(t),

...

dpn−1

dt
= λn−1pk−2(t)− λnpn−1(t),

dpn
dt

= λnpn−1(t).

(2.32)

This system may be written in matrix form, d
dt
P = P (t)Q, and solved using matrix

exponentials, P (t) = eQt. The survival function for one cell is S(t) = 1− pn(t).
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Suppose a person begins with N normal cells, and let T1, . . . , TN be the random

times to malignant conversion for each cell. The time of first conversion is T =

min{T1, . . . , TN} and, assuming independence, we have the survival function

S(t) = P [t < T ],

= P [t < min{T1, . . . , TN}],

= (1− pn(t))N .

(2.33)

The hazard function can be shown under this formulation to be

h(t) =
Np′n(t)

1− pn(t)
. (2.34)

If we assume the probability of malignant conversion is small, pn(t) ≈ 0, we may

make a Taylor series approximation of the hazard:

h(t) ≈ Nλ1 . . . λnt
n−1

(n− 1)!
,

log h(t) ≈ log
Nλ1 . . . λn
(n− 1)!

+ (n− 1) log t.

(2.35)

This model predicts that cancer rates should be linear with age on a log–log scale.

The slope of the relationship is one less than the number of genetic transforma-

tions necessary for malignant conversion. Armitage and Doll (1954) demonstrated

that this framework explained death rates for certain cancers (e.g. colon and rec-

tal cancers) quite well, though it did not fully match for others (e.g. lung, bladder,

prostate).

The approximation pn(t) ≈ 0 does not hold asymptotically, and thus the Armitage–

Doll linear hazard should not be used for very large ages.
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2.4.3 Technical interlude: Markov branching processes

Before deriving the multistage clonal expansion model, we need to develop some

theory for Markov branching processes, a kind of non-homogeneous continuous

time Markov chain Z(t), which we adapt from Harris (1963). The first part of this

section concerns non-homogeneous continuous time Markov chains in general. The

transition probabilities are defined as

Pij(τ, t) = P [Z(t) = j|Z(τ) = i]. (2.36)

Because the process is not homogeneous, P [Z(t) = j|Z(τ) = i] is not necessarily

equal to P [Z(t − τ) = j|Z(0) = i]. We do allow Z(t) to be multistate. If Z(t) =

(Z1(t), . . . , Zn(t)), let i = (i1, . . . , in) and j = (j1, . . . , jn) and define

Pij(τ, t) = P [Z1(t) = j1, . . . , Zn(t) = jn|Z1(τ) = i1, . . . , Zn(τ) = in]. (2.37)

Given Z(t) = i, the probability of a change in state in the interval (t, t + h) is

νi(t)h + o(h), and the probability that the change is to state j is denoted pij(t).

We do not allow j = i (e.g. simultaneous birth and death) as this is treated as

though no change in state has occurred. We have
∑

j pij(t) = 1. We use the notation

qij(t) = νi(t)pij(t) to make the connection to the homogeneous theory clearer.

Since the process is Markov, we may use the Chapman-Kolmogorov equations,

which, in this formulation are, for 0 ≤ τ ≤ t,

Pij(τ, t+ h) =
∞∑
k=0

Pik(τ, t)Pkj(t, t+ h). (2.38)

Then, the forward equation Kolmogorov differential equations (with initial condi-
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tions Pik(τ, τ) = δik) are

∂Pij
∂t

(τ, t) = −νj(t)Pij(τ, t) +
∑
k 6=j

Pik(τ, t)qkj(t). (2.39)

and the backward equations (with initial conditions Pik(t− 0, t) = δik) are

∂Pik
∂τ

(τ, t) = νi(τ)Pik(τ, t)−
∑
k 6=j

qik(τ)Pkj(τ, t). (2.40)

Note the differences in the form of the backward equation between the homoge-

neous and inhomogeenous forms which arise because, in the homogeneous back-

ward equation, increasing t increases the length of the time interval but, in the

inhomogeneous equation, increasing τ decreases the length of the interval.

The rest of this theory, we develop for branching processes only and not inhomoge-

neous chains in general. We define a Markov branching process as follows. Let Z(t)

be the number of independent objects at time t. Suppose that an object existing at

time t has a chance ν(t)h+ o(h) of dying in an interval (t, t+ h). Consequently, the

probability density of life length ` of an object born at time τ is ν(τ + `)e−
∫ τ+`
τ ν(x) dx,

which is exponential if ν(t) is constant. If the object dies at time t, suppose it is

replaced with j objects with probability pj(t) for j 6= 1. Together ν(t) and {pj(t)}

define a continuous time Markov process: because the objects are independent,

νi(t) in the notation of the continuous time Markov chain is iν(t) in the notation

of the branching process, and pij(t) = pj−i+1(t). Then, the forward and backward

Kolmogorov equations are

∂Pij
∂t

(τ, t) = −jν(t)Pij(τ, t) + ν(t)
∑
k 6=j

Pik(τ, t)kpk−j+1(t), (2.41)

∂Pik
∂τ

(τ, t) = iν(τ)Pik(τ, t)− ν(t)
∑
k 6=j

ipk−i+1(τ)Pkj(τ, t). (2.42)

A Markov branching process is defined to be a Markov chain that satisfies these
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forward equations. The backward equations will then automatically be fulfilled.

We now introduce two generating functions. For |s| ≤ 1,

η(s, t) =
∞∑
k=0

pk(t)s
k, (2.43)

Fi(s, τ, t) =
∞∑
k=0

Pik(τ, t)s
k. (2.44)

Then η is the generating function for the number of objects that replace one object

after its death and Fi is the generating function of the probability that Z(t) = k

when Z(τ) = i for τ ≤ t. Multiplying the forward equation by sk and summing over

k, we get , for i ≥ 0 and with initial condition Fi(s, τ, τ + 0) = si,

∂Fi
∂t

(s, τ, t) = ν(t) [η(s, t)− s] ∂Fi
∂s

(s, τ, t). (2.45)

The generating function satisfies Fi = (F1)i. From this relation, the backward equa-

tions give, for t > 0 and F1(s, t− 0, t) = s,

∂F1

∂τ
(s, τ, t) = −ν(t) [η(F1, τ)− F1] . (2.46)

We will be interested in using the multistate form of the Markov branching process.

Suppose there are k different types of objects, and that an object of type i that exists

at time t has a chance νi(t)h+ o(h) of being transformed in the interval (t, t+ h) for

any h > 0. Let ηi(s1, . . . , sk, t) be the generating function for numbers of objects born

in the different states after the transformation. Let Φi(s1, . . . , sk, t) be the generating

function for the numbers of different objects at time t if there is one object of type
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i at time τ ≤ t. That is

Φi(s1, . . . , sk, τ, t) =
∑

(j1,...,jk)

P [N`(t) = j` ∀`|Ni(τ) = 1, N`(τ) = 0 ∀` 6= i]sj11 · · · s
jk
k ,

= E[s
N1(t)
1 · · · sNk(t)

k |Ni(τ) = 1, N`(τ) = 0 ∀` 6= i].

(2.47)

Then, we have the following forward and backward equations for τ ≤ t with

Φi(s1, . . . , sk, τ, τ + 0) = Φi(s1, . . . , sk, t− 0, t) = si:

∂Φi

∂t
=

k∑
j=1

νj(t)
[
ηj(s1, . . . , sk, t)− sj

] ∂Φi

∂sj
(2.48)

∂Φi

∂τ
= −νi(t) [ηi(Φ1, . . . ,Φk, τ)− Φi] (2.49)

Derivation of the backward equation requires the following fact, which can be de-

rived from the forward equation:

E
[
s
N1(t)
1 · · · sNk(t)

k

∣∣∀i Ni(τ) = ji

]
=

k∏
i=1

E
[
s
N1(t)
1 · · · sNk(t)

k

∣∣Ni(τ) = 1, ∀` 6= i N`(τ) = 0
]ji
. (2.50)

It is these differential equations for the generating functions Φi that we will use for

the multistage clonal expansion models.

2.4.4 Multistage clonal expansion models

From the Armitage–Doll model, cancer models evolved over the years, notably Ar-

mitage and Doll (1957), Fisher (1958), Kendall (1960), Neyman and Scott (1967),

Whittemore and Keller (1978), before the two-stage clonal expansion model was

proposed by Moolgavkar, Venzon, and Knudson (Moolgavkar and Venzon, 1979;

Moolgavkar and Knudson, 1981). This Markov model captures the initiation–promo-
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tion–progression hypothesis, in which normal cells undergo a genetic transforma-

tion that causes clonal expansion, followed by progression to malignancy. The initia-

tion–promotion–progression paradigm is important because carcinogenic factors

may be understood as initiators or promoters given their mechanism of action and

result in different effects at different stages of life.

2.4.4.1 Two-stage clonal expansion model: Forward derivation

Moolgavkar, Venzon, and Knudson (Moolgavkar and Venzon, 1979; Moolgavkar

and Knudson, 1981) described a non-homogeneous Poisson process followed by

a Markov branching process. Although we could formulate the problem as fully

stochastic, it is generally accepted to treat the growth of normal cells deterministi-

cally (Crump et al., 2005).

We formulate the model as follows. Let X(t) be the number of normal cells at time

t, Y (t) the number of initiated cells (also called a intermediate cell, an initiated

cell is one that has, through a genetic mutation, begun to expand clonally to form a

tumor but is not yet malignant), and Z(t) the number of malignant cells. We assume

Y (0) = Z(0) = 0. Initiation is a inhomogeneous Poisson process with intensity

µ0(t)X(t), that is, it is a Poisson Process with expectation
∫ t

0
µ0(s)X(s) ds. We treat

(Y (t), Z(t)) as a two-state Markov branching process. Initiated cells divide clonally

at rate α(t) and die at rate β(t). Progression (division of an initiated cell into one

initiated and one malignant cell) occurs at rate µ1(t). A schematic of the model is

shown in Figure 2.2.

Let

P(j,k) = P [Y (t) = j, Z(y) = k|Y (0) = 0, Z(0) = 0]. (2.51)

Then, the probability generating function for the numbers of initiated and malig-
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Figure 2.2: Schematic of the two-stage clonal expansion model

nant cells is

Ψ(y, z, t) = E
[
yY (t)zZ(t)|Y (0) = 0, Z(0) = 0

]
,

=
∑
(j,k)

P(j,k)(t)y
jzk.

(2.52)

In terms of the probability generating function, the survival and hazard functions

are

S(t) = P [T > t] =
∑
j

P(j,0)(t) =
∑
j,k

P(j,k)(t)1
j0k = Ψ(1, 0, t), (2.53)

h(t) = −Ψ′(1, 0, t)

Ψ(1, 0, t)
. (2.54)

As with the Armitage–Doll model (we do not yet need our theory of inhomogeneous

continuous time Markov chains), we may write the Kolmogorov forward equations:

d

dt
P(j,k)(t) = [(j − 1)α(t) +X(t)µ0(t)]P(j−1,k)(t) + (j + 1)β(t)p(j+1,k)(t)

+ jµ1(t)p(j,k−1) − [j (α(t) + β(t) + µ1(t)) +X(t)µ0(t)]P(j,k)(t) (2.55)
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Multiplying both sides by yjzk and summing over all j and k, we arrive at the

following differential equation for the probability generating function:

∂Ψ(y, z, t)

∂t
= (y − 1)µ0(t)X(t)Ψ(y, z, t)

+ [(µ1(t)z + α(t)y − (α(t) + β(t) + µ1(t))) y + β(t)]
∂Ψ(y, z, t)

∂y
. (2.56)

Since we usually assume that all cells begin as normal, the initial condition is

Ψ(y, z, 0) = 1. This partial differential equation is first-order, and thus may be solved

by the method of characteristics. We choose characteristic curves (y(τ), z(τ), t(τ))

such that the following ODEs are satisfied.

dy

dτ
= (α(t) + β(t) + µ1(t))y − µ1(t)zy − α(t)y2 − β(t),

dz

dτ
= 0,

dt

dτ
= 1.

(2.57)

We have, then, that z is constant along characteristic curves. Further we transform

our PDE into the following ODE:

dΨ(y, z, t)

dτ
= (y − 1)µ0(t)X(t)Ψ(y, z, t). (2.58)

Since dΨ
dτ

= dΨ
dt

, we may solve for Ψ for any characteristic:

Ψ(y, z, t) = exp

[∫ t

0

(y(s)− 1)µ0(s)X(s) ds

]
. (2.59)

Now, we fix t. As we are seeking the survival function S(t) = Ψ(1, 0, t), we consider

the characteristic curve through (y(0), 0, 0) with the boundary condition y(t) = 1.

We will need to solve for y. Along this characteristic, for 0 ≤ τ ≤ t, y(τ, t) satisfies
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the initial value problem

dy

dτ
= (α(τ) + β(τ) + µ1(τ))y − α(τ)y2 − β(τ),

y(t) = 1.

(2.60)

Employ the the change of variables s = t − τ , and define the following system of

equations:

x1(s) = y(s),

x2(s) =
dy

dt
(s),

x3(s) = Ψ(1, 0, t− s),

x4(s) = − d

dt
ln Ψ(1, 0, t− s).

(2.61)

Then, we can write the following equations:

dx1

ds
= α(t− s)x2

1 + β(t− s)− (α(t− s) + β(t− s) + µ1(t− s))x1,

dx2

ds
= 2α(t− s)x1x2 − (α(t− s) + β(t− s) + µ1(t− s))x2,

dx3

ds
= µ0(t− s)X(t− s) [x1 − 1]x3,

dx4

ds
= −µ0(t− s)X(t− s)x2,

x1(0) = 1,

x2(0) = −µ1(t),

x3(0) = 1,

x4(0) = 0.

(2.62)

Then S(t) = x3(t) and h(t) = x4(t).

If the parameters α, β, µ0, and µ1 are constant (or piecewise constant (Heidenreich

et al., 1997)), there are closed form solutions for the survival and hazard. The
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solutions for constant parameters are

S(t) =

(
q − p

qe−pt − pe−qt

)r
, (2.63)

and

h(t) =
rpq(e−qt − e−pt)
qe−pt − pe−qt

,

=
−rpq

(
e(q−p)t − 1

)
(−q − p) + q

(
e(q−p)t + 1

) (2.64)

where

p, q =
1

2

(
−(α− β − µ1)∓

√
(α− β − µ1)2 + 4αµ1

)
r =

µ0X(0)

α

(2.65)

It is useful to note that limt→∞ h(t) = −rp, p + q = −(α − β − µ1), and pq = −αµ1.

In the general case of age-dependent parameters, numerical solutions can be found

(Little et al., 2002; Crump et al., 2005).

2.4.4.2 Two-stage clonal expansion model: Backward derivation

The clonal expansion model formulation may be extended to three stages and other

more complex models (Hazelton et al., 2006; Jeon et al., 2006, 2008; Luebeck and

Moolgavkar, 2002; Luebeck et al., 2008; Little, 1995; Little et al., 2002; Meza et al.,

2005, 2008, 2010a,b; Dewanji et al., 2011). Unfortunately, although the method of

using the forward equations to derive the probability generating function for mul-

tistage models is valid, the results must typically solved by numerical methods that

may accrue a significant amount of error (Meza, 2006). Thus, the backward equa-

tions are used for large multistage models. Here, we demonstrate how this would

be done for the two-stage model, using the theory we previously developed for

inhomogeneous continuous-time Markov chains and Markov branching processes.
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This exposition, although it concerns known results (Crump et al., 2005) and is

informed by the work of Bill Hazelton and Jihyoun Jeon, is my own.

Let Ψ(y, z, τ, t) be the generating function for the numbers of intermediate and ma-

lignant cells given that there are none at time τ . Let Φ(y, z, τ, t) and Θ(y, z, τ, t) be

the generating functions for the numbers of intermediate and malignant cells given

that there is, for Φ, one initiated and no malignant cells and, for Θ, no initiated and

one malignant cell. That is,

Ψ(y, z, τ, t) =
∑
(j,k)

P [Y (t) = j, Z(k) = 0|Y (τ) = 0, Z(τ) = 0]yjzk,

= E[yY (t)zZ(t)|Y (τ) = 0, Z(τ) = 0],

Φ(y, z, τ, t) =
∑
(j,k)

P [Y (t) = j, Z(k) = 0|X(τ) = 0, Y (τ) = 1, Z(τ) = 0]yjzk,

= E[yY (t)zZ(t)|Y (τ) = 1, Z(τ) = 0],

Θ(y, z, τ, t) =
∑
(j,k)

P [Y (t) = j, Z(k) = 0|X(τ) = 0, Y (τ) = 0, Z(τ) = 1]yjzk,

= E[yY (t)zZ(t)|Y (τ) = 0, Z(τ) = 1].

(2.66)

The inclusion of X(τ) = 0 in the definition of Φ1 and Φ2 is a subtle point usually not

pointed out in derivations of the MSCE, but it is important because we are including

the inhomogeneous Poisson process for initiation.

We find the form of Ψ(y, z, t) using the backward equation for the transition proba-

bility:

∂P(0,0),(j,k)

∂τ
(τ, t) = ν(0,0)(τ)P(0,0),(j,k)(τ, t)−

∑
(i,`)6=(j,k)

q(0,0),(i,`)(τ)P(i,`),(j,k)(τ, t),

= µ0(τ)X(τ)P(0,0),(j,k)(τ, t)− µ0(τ)X(τ)P(1,0),(j,k)(τ, t).

(2.67)

Multiply both side by yjzk and sum over j and k. If we had not drawn attention

to the conditioning on X(τ) = 0 in the definition of Φ, it would be tempting to

write the result as ∂
∂τ

Ψ = µ0(τ)X(τ)(Ψ − Φ). This is, however, not correct. Rather,

31



observe, because this is a Markov branching process,

∑
(j,k)

P [Y (t) = j, Z(t) = k|Y (τ) = 1, Z(τ) = 0]yjzk

= E[yY (t)zZ(t)|Y (τ) = 1, Z(τ) = 0],

= E[yY (t)zZ(t)|Y (τ) = 0, Z(τ) = 0]E[yY (t)zZ(t)|X(τ) = 0, Y (τ) = 1, Z(τ) = 0],

= Ψ(y, z, τ, t)Φ(y, z, τ, t).

(2.68)

so that, suppressing dependence on y and z, we have, with initial condition,

∂Ψ

∂τ
(τ, t) = µ0(τ)X(τ)Ψ(τ, t) [1− Φ(τ, t)] ,

Ψ(y, z, t− 0, t) = y0z0 = 1.

(2.69)

Because we do not need to worry about X(t) and the inhomogeneous Poisson pro-

cess driving initiation when considering the backward equations for Φ and Θ, we

may directly use the theory we developed in section 2.4.3. We have that, in the

notation of that section,

ηΦ(y, z, t) =
β(t)

α(t) + β(t) + µ1(t)
+

α(t)

α(t) + β(t) + µ1(t)
y2 +

µ1(t)

α(t) + β(t) + µ1(t)
yz

ηΘ(y, s, t) = 0

νΦ(t) = α(t) + β(t) + µ1(t)

νΘ(t) = 0

(2.70)
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Thus, suppressing the dependence on y and z,

∂Φ

∂τ
(τ, t) = [α(τ) + β(τ) + µ1(τ)] Φ1(τ, t)− β(τ)

− α(τ)Φ2
1(τ, t)− µ1(τ)Φ1(τ, t)Φ2(τ, t)

∂Θ

∂τ
(τ, t) = 0

(2.71)

with initial conditions

Φ(y, z, t− 0, t) = y1z0 = y,

Θ(y, z, t− 0, t) = y0z1 = z.
(2.72)

Now, let ′ denote derivative with respect to t. Then we have

∂Ψ

∂τ
(τ, t) = µ0(τ)X(τ)Ψ(τ, t) [1− Φ(τ, t)]

∂Ψ′

∂τ
(τ, t) = µ0(τ)X(τ)

[
Ψ′(τ, t) (1− Φ(τ, t)) + Ψ(τ, t)Φ′(τ, t)

]
∂Φ

∂τ
(τ, t) = [α(τ) + β(τ) + µ1(τ)] Φ(τ, t)− β(τ)− α(τ)Φ2(τ, t)− µ1(τ)Φ(τ, t)Θ(τ, t)

∂Φ′

∂τ
(τ, t) = [α(τ) + β(τ) + µ1(τ)] Φ′(τ, t)− 2α(τ)Φ(τ, t)Φ′(τ, t)

− µ1(τ)
(
Φ′(τ, t)Θ(τ, t) + Φ(τ, t)Θ′(τ, t)

)
∂Θ

∂τ
(τ, t) = 0

∂Θ′

∂τ
(τ, t) = 0

(2.73)

The initial conditions are derived from the fact that ∂
∂t

Ψ = − ∂
∂τ

Ψ at τ = t, and

similarly for Φ and Θ. Thus,

Ψ′(y, z, t− 0, t) = −µ0(t)X(t)(1− y),

Φ′(y, z, t− 0, t) = − [α(t) + β(t) + µ1(t)] y + β(t) + α(t)y2 + µ1(t)yz,

Θ′(y, z, t− 0, t) = 0.

(2.74)
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From these equations, it is clear that Θ′(y, z, τ, t) ≡ 0 and Θ(y, z, τ, t) = z.

With an eye toward writing an equation for the hazard function, let

Γ(y, z, τ, t) = − ln Ψ(y, z, τ, t), (2.75)

so that

∂Γ

∂τ
(τ, t) = −µ0(τ)X(τ) [1− Φ(τ, t)] ,

∂Γ′

∂τ
(τ, t) = µ0(τ)X(τ)Φ′(τ, t),

Γ′(y, z, t− 0, t) = µ0(t)X(t)(1− y).

(2.76)

Our goal is to solve for S(t) = Ψ(1, 0, 0, t) and h(t) = −Ψ′(1, 0, 0, t)/Ψ(1, 0, 0, t). We

want, then, to fix t and solve these Kolmogorov backward equations from τ = t to

τ = 0. This is done with the change of variables s = t− τ (so that ds = −dτ). Since

we are interested only in solutions with y = 1 and z = 0, we simplify notation by

defining the following variables. Let x1(s) = Φ(1, 0, t− s, t), x2(s) = Φ′(1, 0, t− s, t),

x3(s) = Ψ(1, 0, t−s, t), and x4(s) = Γ′(1, 0, t−s, t). We have the initial value problem

∂x1

∂s
(s) = − [α(t− s) + β(t− s) + µ1(t− s)]x1 + β(t− s) + α(t− s)x2

1(s, t),

∂x2

∂s
(s) = − [α(t− s) + β(t− s) + µ1(t− s)]x2 + 2α(t− s)x1x2,

∂x3

∂s
(s) = −µ0(t− s)X(t− s)x3(1− x1),

∂x4

∂s
(s) = −µ0(t− s)X(t− s)x2,

x1(0) = 1,

x2(0) = −µ1(t),

x3(0) = 1,

x4(0) = 0.

(2.77)
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where S(t) = x3(t) and h(t) = x4(t). This set of differential equations matches the

one we derived from the forward equations earlier (eq. 2.62).

2.4.4.3 Two-stage clonal expansion model: Identifiability analysis

We now consider the non-identifiability of the system, which was considered by Hei-

denreich et al. (1997) and, in a more general framework, by Little et al. (2009).

Here, we present an alternative derivation based on a differentiable algebra ap-

proach (Saccomani et al., 2001; Audoly et al., 2001; Meshkat et al., 2009; Eisen-

berg et al., 2013; Eisenberg, 2013), which has not previously been brought to bear

on this class of models. This approach has some advantages over previous methods

(e.g. Heidenreich et al. (1997); Little et al. (2009)) because it demonstrates that

approaches for identifiability in dynamical systems can be used in Markov branch-

ing processes and, more generally, continuous-time Markov processes. It also has

the advantage that it also generalizes to other multistage clonal expansion models,

as we will see in Chapter VI, but the two-stage model provides a more tractable

example.

Assuming we are matching to age-specific incidence curves (e.g. as are available in

the Surveillance, Epidemiology and End Results (SEER) cancer registries), we have

that, in eqs. 2.77, the survival x3 and hazard x4 are known to us.

Proposition 2.4.1. If the survival and hazard functions are known, the two-stage

clonal expansion model (eqs. 2.77) is unidentifiable, with identifiable combinations

µX/α, α−β−µ1, and αµ1. Further, parameters r, p, and q (eq. 2.65) are identifiable.

Proof. From eqs. 2.77, we solve for x2 using the ẋ4 equation,

x2 = − 1

µ0X
ẋ4. (2.78)

35



Then, we plug this into the ẋ2 equation,

ẋ2 = (α + β + µ1)
1

µ0X
ẋ4 − 2αx1

1

µ0X
ẋ4,

− 1

µ0X
ẍ4 = (α + β + µ1)

1

µ0X
ẋ4 − 2αx1

1

µ0X
ẋ4,

(2.79)

simplify,

ẍ4 = ẋ4 (2αx1 − (α + β + µ1)) , (2.80)

and solve for x1,

x1 =
1

2α

(
ẍ4

ẋ4

+ (α + β + µ1)

)
. (2.81)

Plugging this into the ẋ1 and ẋ3 equations will leave both with only x3, x4, and their

derivatives.

ẋ1 = −(α + β + µ1)x1 + β + αx2
1,

1

2α

( ...
x 4ẋ4 − ẍ2

4

ẋ2
4

)
= −(α + β + µ1)

1

2α

(
ẍ4

ẋ4

+ (α + β + µ1)

)
+ β

+ α

(
1

2α

(
ẍ4

ẋ4

+ (α + β + µ1)

))2

,

2

( ...
x 4ẋ4 − ẍ2

4

ẋ2
4

)
= −(α + β + µ1)2 + 4αβ +

(
ẍ4

ẋ4

)2

,

0 = 2
...
x 4ẋ4 − 3ẍ2

4 + ẋ2
4

(
(α− β − µ1)2 + 4αµ1

)
,

(2.82)

ẋ3 = −(µ0X)x3(1− x1),

ẋ3 = −(µ0X)x3

(
1− 1

2α

(
ẍ4

ẋ4

+ (α + β + µ1)

))
,

ẋ3 = −1

2

(
µ0X

α

)
x3

(
(α− β − µ1)− ẍ4

ẋ4

)
,

0 = 2ẋ3ẋ4 +

(
µ0X

α

)
(x3ẋ4 (α− β − µ1)− x3ẍ4) .

(2.83)

Thus, we have the following input–output equations, which are monic as 2 is unit
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in our field R,

0 = 2
...
x 4ẋ4 − 3ẍ2

4 + ẋ2
4

(
(α− β − µ1)2 + 4αµ1

)
,

0 = 2ẋ3ẋ4 +

(
µ0X

α

)
x3 (ẍ4 + ẋ4(α− β − µ1)) .

(2.84)

We see that there are three distinct coefficients but five unknown parameters, so

that the model is unidentifiable. We observe the following identifiable parameter

combinations: µ0X/α, (α−β−µ1), and αµ1. Since these combinations are r,−(p+q),

and −pq, we see that r, p, and q, the parameters of the hazard, are identifiable from

age-specific incidence data.

This approach is later used in Chapter VI to assess the identifiability of multistage

models of cancers with infectious disease origins.

2.4.5 APC–MSCE models

In a general APC model, the age effects are not constrained, but, if we are working

within the TSCE framework, we can restrict the age effects to have the shape of the

TSCE hazard:

log λ = β0 + log [h(t, r, p, q)] + βP (P ) + βC(C). (2.85)

This added constraint theoretically resolves the non-identifiability problem in the

full APC model (Holford, 1991; Luebeck et al., 2013). In the case of constant pa-

rameters, the multiplicative assumption of the model translates to an assumption

that the period and cohort effects are on the rate of initiation µ0 since r = µ0X(0)/α

and X(0) and α are considered fixed:

λ = − [f(P,C) · r]
(
pq(e−qt − e−pt)
qe−pt − pe−qt

)
. (2.86)

Previous studies have only considered the above models. However, depending on

the mechanism of carcinogenesis for a given cancer and the nature of the risk fac-
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tors captured by the temporal trends, it is possible that effects on promotion or

malignant conversion rates rather than initiation rates are more realistic. Thus, by

considering slightly different models with period or cohort effects acting on the

promotion or malignant conversion parameters, one can investigate the impact of

period and cohort on different stages of carcinogenesis. In Chapter V we will con-

sider models of the form

λ = h(t, r(P,C),p(P,C),q(P,C)). (2.87)

Here r(P,C) = r · θP (P ) · θC(C) where θP and θC are natural splines, r is the value

of r at the reference period and cohort, and p and q are defined similarly. This

consideration of period and cohort effects on promotion and malignant conversion

is a new contribution.

2.4.6 Other cancer models

Although not the subject of this dissertation, many other modeling techniques have

been brought to bear on the subject of cancer. In general, all models must consider

trade-offs between biological realism and mathematical tractability, and a range

of models across the spectrum have been developed for cancer (Kopp-Schneider,

1997). One popular modeling paradigm for cancer growth incorporates spatial com-

ponents, taking into account the intracellular matrix and movement by chemotaxis

and haptotaxis. These models can focus on the movement of cancer cells them-

selves or angiogenesis, the growth of blood cells toward a tumor. Such models

typically involve partial differential equations for concentration in time and some-

times agent-based models (with cells as agents) as well. Examples include Anderson

and Chaplain (1998), Anderson et al. (2012), Eisenberg et al. (2011), Jackson and

Zheng (2010, 2012), and Friedman and Jain (2013). Another popular modeling

framework, especially in the health economics community, is Markov state tran-

sition modeling. This class of models, though not mechanistic, is often used for
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chronic disease history models, especially cancer (Siebert et al., 2012). In these

models, each person resides in a compartment that defines some health state and

transitions occur after a defined time interval according to Markov transition prop-

erties that may be dependent on the person’s age, sex, or chronic disease status.

Examples include Goldie et al. (2004) and Lansdorp-Vogelaar et al. (2012).

2.5 Literature review of HPV models

2.5.1 Parameter estimation from observational studies

In order to simulate a dynamical infectious disease model, certain parameters must

be known (or perhaps estimated from data). Here we discuss some relevant param-

eters that may be estimated from the literature.

Several studies have attempted to estimate clearance rates of female genital infec-

tions (Ho and Bierman, 1998; Franco et al., 1999; Molano et al., 2003; Moscicki

et al., 1998). A review of the studies concluded that 70% of new genital HPV infec-

tions clear within one year, and 91% clear within two years; the median duration

was eight months (Gerberding, 2004). Under the assumption that clearance is ex-

ponentially distributed—a strong assumption given that there is some evidence that

if an infection does not clear within the first year, the probability of it resolving in

the next six months is significantly reduced (Ho and Bierman, 1998)—the yearly

rate of clearance γ for women is in the range 1.0–1.2. For men, a smaller, prospec-

tive investigation for the HPV in Men (HIM) study estimated median duration of

HPV infection to be 5.9 months, while the full HIM study reported a median of

7.5 (Lu et al., 2009; Giuliano et al., 2011). These values give a parameter range

of γ between 1.1–1.4, suggesting genital clearance is faster in men than in women.

For both men and women, clearance appears to be dependent on genotype, with

oncogenic types lasting longer, and, to a lesser extent, on the person’s age at infec-

tion (Franco et al., 1999; Giuliano et al., 2011).
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For clearance of oral HPV, various studies have reported a median duration of 6.9

months (Kreimer et al., 2013) for men, 72% clearance in four months for men (Edel-

stein et al., 2012), and 61% clearance in three months for a co-ed sample (Pickard

et al., 2012). Small samples size or long duration before follow up have introduced

a good deal of uncertainty into these numbers. Nevertheless, we may estimate a

clearance parameter of γ in the range 1.2–3.8. Again, we are probably seeing bi-

modal behavior where most infections clear very quickly, but those that do not clear

quickly take a long time to clear.

In women, 87% of anal infections were found to clear in one year (Goodman et al.,

2010), which corresponds to γ = 2 under an exponential assumption.

Several studies have looked at transmission of HPV between heterosexual cou-

ples (Hernandez et al., 2008; Burchell et al., 2011; Mbulawa et al., 2013; Wid-

dice et al., 2013), reporting transmissions per 100 person-months. Unfortunately,

these units do not easily translate into a differential equations framework. It is

worth noting that some studies found significantly higher transmission from female

to male (Hernandez et al., 2008; Widdice et al., 2013) while others found them

roughly equal (Burchell et al., 2011).

Little is known about autoinoculation rates, particularly between oral and genital.

What research has been done has largely focused on sequential cervical and anal

infection in the absence of anal sex (Hernandez et al., 2005, 2008; Goodman et al.,

2010). In particular, Goodman et al. (2010) found that “48% of cases of incident

cervical HPV infection occurring after anal HPV infection and 63% of cases of in-

cident anal HPV infection occurring after cervical HPV infections developed in the

absence of a self-reported history of anal sex.”

2.5.2 Vaccination models

Nearly all models of HPV—both those focusing on transmission models of an in-

fectious disease and those concentrating on progression to cancer—have primarily
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been concerned with estimating the impact of prophylactic vaccination against HPV,

both on various public health outcomes (cervical cancer, genital warts, etc.) and

economically (i.e. their cost-effectiveness). These models typically address some of

the following questions:

• Should the entire population be vaccinated or just high risk groups?

• Should both men and women be vaccinated, or just women?

• What is the disease burden or economic impact under different vaccination

strategies?

Of course, questions of optimal vaccination strategy will be highly dependent on

the outcome of interest, be it burden of infection by any strain or only oncogenic

strains, burden of cervical cancer, burden of any HPV associated cancer, or simply

the economic cost–benefit ratio.

Myers et al. (2000) developed a nineteen stage Markov model to model a cohort

of women between ages 18–85. The model did not include transmission but rather

age-specific incidence of HPV. Once infected, individuals could progress and regress

between precancerous stages (low- and high-grade squamous intraepithelial lesions

(SIL)) and stages of invasive cervical cancer (ICC) and ultimately to death by cancer

or other causes. The model predicted age-specific incidence of cervical cancer and

connected incidence of HPV to incidence of cervical cancer.

Hughes et al. (2002) developed a simple ODE dynamical systems model on the

SIR framework of susceptibles, infectious, and recovered/immune by adding com-

partments for vaccinated and vaccinated-but-infected persons (to account for the

possibility of only reduced susceptibility and loss of immunity). This model con-

sidered three sexual activity levels and distinguished between female-to-male and

male-to-female transmission. Under the assumptions of 90% vaccination coverage,

75% vaccination efficacy, and a ten year mean immunity, Hughes et al. found that

vaccinating both sexes would lead to a 44% reduction in prevalence while vaccinat-

ing women alone would only result in a 30% reduction.
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Further, Hughes et al. (2002) coupled their dynamical transmission model to an

ODE model of cancer that took into account age-specific risk of disease develop-

ment. The models together allowed the authors to estimate the effect of different

vaccination strategies on cervical cancer incidence. In addition to the result of their

transmission model described above, the authors determined that reducing HPV

prevalence would result in a smaller reduction in cancer incidence and that target-

ing core groups only would not be an effective vaccination strategy.

Sanders and Taira (2003) and Taira et al. (2004) developed a transmission model

for HPV 16 and 18 that used four sexual activity groups, nine age divisions, and age-

based mixing patterns. Basic economic considerations were taken into account to

assess cost per quality-adjusted life-year (QALY). The authors recommended achiev-

ing at least 70% vaccination coverage to achieve significantly reduce cohort lifetime

cervical cancer cases. The cost-effectiveness of vaccinating men and boys was ques-

tioned but depended upon vaccination coverage among women.

Barnabas et al. (2006) created a compartment deterministic transmission model

for HPV 16 and progression to cervical cancer and calibrated it to period data of

Finnish seroprevalence. Groups were stratified by age, and regression/progression

rates were combined into estimated transmission probabilities. The authors found

that reported data about sexual activity and number of partner changes did not ac-

count for the seroprevalence of HPV 16 even with a theoretical maximum of 100%

transmission probability. Assuming an under-reporting rate, they derived a trans-

mission probability of 0.6 per partnership. The results for vaccination impact were

similar to other modeling reports in that high vaccination coverage was necessary

and that vaccinating men as well as women had only a small additional impact.

Brisson et al. (2007b) and Van de Velde et al. (2007) developed a deterministic

cohort model of the natural history of HPV to estimate the number of people that

would need to be vaccinated and to quantify the impact of uncertainty in model

parameters. This model was later used to determine the cost-effectiveness of vac-

cination in Canada (Brisson et al., 2007a). The authors have also looked at the
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cost effectiveness of vaccination in developed countries (Brisson et al., 2009), un-

derstanding differences in vaccine effectiveness predictions (Van de Velde et al.,

2010), understanding the impact of vaccinating boys (Brisson et al., 2011), and

considering different vaccination valencies (bi-, quadra-, and nonavalent) (Van de

Velde et al., 2012).

Elbasha et al. (2007) developed a heterosexual transmission model for the United

States with age and sexual activity with outcomes of cervical intraepithelial neo-

plasia, cervical cancer, and genital warts. The analysis suggested that vaccination

would reduce incidence of all three outcomes, improve quality of life and survival,

and be cost effective. A cost effectiveness analysis for the U.K. was also done (Das-

bach et al., 2008). Catch-up vaccination was considered in Elbasha et al. (2009).

The model was expanded by Elbasha and Dasbach (2010) to include health out-

comes for men as well as women. Up to this point, the health outcome of interest

was primarily incidence of cervical cancer. This study took all anogenital cancers,

condylomas, and head and neck cancers into account by using crude assumptions

about the natural history and incidence of these outcomes. Under this framework,

the authors determined vaccination of men and boys to provide significant public

health benefits and likely be cost effective. This is the model developed and used by

Merck, the manufacturer of the vaccine GardisilTM.

Günther et al. (2008) developed a deterministic compartmental model of HPV

transmission and progression to cervical cancer including progression subcompart-

ments for loss of immunity, treatment, and progression to cervical cancer. An impor-

tant addition of this model was the complex model of sexual behavior and mixing

underlying the transmission process. The authors focused on the optimal age to

vaccinate girls as a function of duration of immunity.

Kim and Goldie (2008) developed a hybrid dynamic transmission model to sim-

ulate transmission of HPV 16 and 18 and a stochastic model of progression to

cervical cancer. The authors used likelihood methods to calibrate parameters to

demographic and epidemiological data in the US. They additionally incorporated a
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detailed cost-effectiveness analysis to determined cost of QALY for different strate-

gies. They concluded that cost-effectiveness is maximized by focusing on vaccinat-

ing preadolescent girls and recommended that strategies for screening be updated.

This paper was followed up by analyses looking at the cost effectiveness of vacci-

nating boys as well as girls (Kim and Goldie, 2009) or just men who have sex with

men (MSM) (Kim, 2010).

Jit et al. (2008) performed another primarily economic evaluation of vaccination,

this time targeted to the United Kingdom. Their model, a dynamic compartmen-

tal model similar to those previously discussed, also included genotypes 6 and 11

as condylomas have a treatment cost associated with them. Cost parameters were

drawn from probability distributions by Monte Carlo Latin-hypercube sampling over

a series of simulations. The study found vaccination of young girls to be likely cost

effective and that the bivalent and quadrivalent vaccines were of comparable cost-

effectiveness.

Cost effectivess studies were done for a number of other countries not yet men-

tioned including Australia (Kulasingam and Myers, 2003; Kulasingam et al., 2007),

which has a national screening program, France (Bergeron et al., 2008), and the

Netherlands (Bogaards et al., 2011).

Baussano et al. (2013) implemented an ad-hoc dynamic model of HPV transmission

to demonstrate that a catch-up vaccination is likely to be beneficial in medium- to

low-income countries.

2.6 Conclusion

In this chapter I have discussed the concepts underlying dynamical infectious dis-

ease models, age–period–cohort models, and mechanistic models of cancer. I have

also presented an in-depth derivation of the two-stage clonal expansion model of

carcinogenesis, including the relevant theory of continuous time Markov chains.
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Finally, I considered the state of HPV modeling in the literature. Although wide-

ranging, this chapter is the foundation on which the next four chapters stand.
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CHAPTER III

Trends in HPV cervical and seroprevalence and

analysis of multisite (oral, genital, sero) concurrence

and type-concordance in NHANES 2003–2012

3.1 Introduction

The human papillomavirus (HPV) infects multiple mucosal sites in the epithelium

and is the etiological agent for over 90% of anogenital cancers and an increasing

fraction of oropharyngeal cancers (Jemal et al., 2013). Although the progression

from cervical HPV infection to cancer has been well documented because of access

to tissue during gynecological exams, very little is understood about the progres-

sion to cancer in the head and neck. Further, the association between infection at

different sites and their relation to seroconversion is not well characterized. Ide-

ally, a single test, such as for seropositivity of certain HPV strains, could act as

a biomarker for the risk of genital and oropharyngeal/nasopharyngeal (OP/NP)

cancer (Kreimer, 2014). The National Health and Nutrition Examination Survey

(NHANES), a US-wide biennial survey conducted by the CDC, samples approxi-

mately 10,000 people each year. NHANES offers an opportunity to assess not only

associations between oral and genital HPV infection and seropositivity for certain

genotypes, but HPV prevalence and seroprevalence trends as well. Most knowledge

of the natural history of HPV comes from case-control and cohort studies, which,
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although relevant, do not give information about patterns and trends at the popula-

tion level. Additionally, although testing for HPV at cervical sites has been standard

for some time, characterization of oral prevalence has only recently begun.

There are many strains of HPV, and these are typically classified according to their

oncogenic risk. Genotypes 16, 18, 26, 31, 33, 35, 39, 45, 51, 52, 53, 56, 58, 59,

66, 68, 73, 82 are considered to be high risk, that is have the potential for oncoge-

nesis, and genotypes 6, 11, 40, 42, 54, 55, 61, 62, 64, 67, 69, 70, 71, 72, 81, 82

subtype IS39, 83, 84, 89[CP6108] are low risk for oncogenesis but may cause other

complications such as condylomas (genital warts) (Muñoz et al., 2003). (Classifi-

cation into low- and high-risk types can very slightly between studies. We are using

a classification consistent with Gillison et al. (2012a)). HPV infection is associated

with nearly every cervical cancer, 90% of anal cancers, 60–90% of some subsites

of head and neck cancers, and 40% of other genital cancers (Jemal et al., 2013;

Walline et al., 2013). HPV 16 causes about 70% of genital cancers and together 16

and 18 are responsible for 90% (Jemal et al., 2013). HPV 6 and 11 cause 90% of

anogenital warts (Jemal et al., 2013). HPV 16 is also found in 90% of HPV-positive

squamous cell carcinomas (SCCs) in the head and neck (Gillison et al., 2012a).

Most HPV infections clear within a year or two (Ho and Bierman, 1998; Franco

et al., 1999; Molano et al., 2003; Moscicki et al., 2012), but some infections may

persist for decades and result in oncogenesis.

Vaccines have been developed to target certain strains of HPV. Two vaccines are

currently approved by the FDA: GlaxoSmithKline Biologicals’s bivalent (16, 18)

Cervarixr, and Merck’s quadravalent (6, 11, 16, 18) Gardisilr (Kreimer, 2014).

Merck’s nonavalent (6, 11, 16, 18, 31, 33, 45, 52, 58) vaccine has been shown to be

effective in trials (Joura et al., 2015). Vaccination against HPV is targeted at females

ages 11–12 but is recommended in the US for both men and women with minimal

sexual activity under the age of 26. Vaccine coverage in the US has been low, though

increasing, especially among boys. The CDC reported that vaccination coverage for

at least one dose (all three doses) among women ages 13–17 was 53.0% (34.8%),
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53.8% (33.4%), and 57.3% (37.6%) in 2011, 2012, and 2013, respectively (Cen-

ters for Disease Control and Prevention, 2012, 2013, 2014a). Among males of the

same age, coverage for at least one dose (all three doses) increased from 8.3%

(1.3%) in 2011 to 20.8% (6.8%) in 2012 to 34.6% (13.9%) (Centers for Disease

Control and Prevention, 2013, 2014a). Concerns that administering a vaccine for

an STI to young girls would give them license to be sexually active were recently re-

futed (Mayhew et al., 2014), and the President’s Panel on Cancer called for urgent

acceleration of vaccine uptake (Rimer et al., 2014). It remains to see what effect

these developments will have on future vaccination coverage.

Few studies have thus far considered multiple-site concurrence or type-concordance.

Steinau et al. (Steinau et al., 2014) reported that, in the 2009–2010 NHANES sur-

vey, oral HPV infection was five-fold higher in women ages 18–59 with a current

genital infection, and that type-specific concordance was low. The Hawaii cohort

study reported a relative risk of 20.5 for acquiring a type-concordant anal infection

after a cervical infections and a relative risk of 8.8 for acquiring a type-concordant

cervical infection after an anal infection (Goodman et al., 2010). Data from the

HPV in Men (HIM) study have suggested that seroconversion in men differs by

anatomical site for some genotypes, with anal infections more likely to result in se-

roconversion than genital infections (Lu et al., 2012). To our knowledge, no studies

have been published considering seroconversion due to oral infections.

Like many sexually transmitted diseases, prevalence of HPV varies widely by de-

mographic group in the US, possibly because of sexual assortativity and differences

in sexual behavior patterns. Prevalence among non-Hispanic blacks, for instance, is

significantly higher at both oral and genital sites of infection than for non-Hispanic

whites and Hispanics. Further, prevalence varies significantly with age. However,

no attempt has yet been made to disentangle the effects of age, birth cohort, and

time period for trends in HPV prevalence. One way to differentiate these effects is

by the use of age–period–cohort (APC) models (Holford, 1983, 1991; Clayton and

Schifflers, 1987a,b). APC models have been used for myriad public health issues
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including mortality (Meza et al., 2010c), smoking histories (Holford et al., 2014),

and the incidence of several cancers (Holford et al., 2006; Luebeck and Moolgavkar,

2002; Jeon et al., 2006; Kilfoy et al., 2009; Anfinsen et al., 2011; Chaturvedi et al.,

2013).

In this chapter, we analyze patterns of HPV infection and seropositivity in NHANES

2003–2010. We characterize trends of genital infection in women, the concurrence

and type-concordance of genital and oral infections in women, trends of seropreva-

lence for both men and women, and the concurrence of seropositivity with genital

and oral infections.

3.2 Methods

3.2.1 Data

The CDC’s National Center for Health Statistics (NCHS) administers the NHANES

survey, a series of studies combining physical examinations in a mobile examina-

tion center (MEC) and interviews (both in-home and audio-assisted in-MEC) of a

representative sample of the non-institutionalized, civilian population of the US.

Each survey is conducted over a two-year period and is used to assess the health

and nutritional well-being of the US (Centers for Disease Control and Prevention,

2014b). Study design, weighting, and collection of samples have been previously

described (Dunne et al., 2007; Markowitz et al., 2009; Hariri et al., 2011; Gillison

et al., 2012b).

Self-collected cervicovaginal swabs were collected and typed for women ages 14–

59 in five NHANES iterations (2003–2012) for 37 genotypes. Serum samples were

collected and seropositivity of HPV types 6, 11, 16, and 18 recorded for both men

and women ages 14–59 for the same surveys, although the 2011–2012 data is not

yet available. Oral rinses were administered to both men and women ages 14–

69 in the 2009–2010 and 2011–12 surveys with 37 genotypes. The numbers of
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individuals sampled by demographic group are reported in Table 3.1.

3.2.2 Statistical analysis

Statistical analyses were performed in SAS (version 9.2). Estimates were made

using two year MEC exam weights (Botman et al., 2000). We analyzed overall

prevalence, concurrent prevalence (defined as a positive result for at least one

HPV type at two sites) for each pair of sites (cervix, oral cavity, and serum), and

type–concordant prevalence (defined as at least one positive result of the same type

at two sites) for each pair of sites by demographic group. Survey participants self-

identified as Mexican American, Other Hispanic, Non-Hispanic White, Non-Hispanic

Black, or Other Race - Including Multiracial (and, in 2011-2012, Non-Hispanic

Asian). Because of small sample sizes, we considered only the first four groups

and, where indicated, combined Mexican American and Other Hispanic into one

Hispanic category. In an effort to estimate vaccine efficacy and avoid confounding,

seroprevalence for women in 2007–2008 and 2009–2010 was broken down by vac-

cine status. Women reporting having had at least one dose of an HPV vaccine were

considered to be vaccinated.

3.2.3 Age–period–cohort modeling

Age–period–cohort (APC) models are epidemiologic models used to disentangle ef-

fects of age, period (factors affecting all people at a given time), and birth cohort

(factors affecting all people born in a given time period) on prevalence (e.g. HPV

prevalence) or incidence (e.g. incidence of oral cancer) (Holford, 1983, 1991; Hol-

ford et al., 2014; Clayton and Schifflers, 1987a,b). The traditional model posits that

incidence rates λ are described by a multiplicative model with age (A), period (P ),

and birth cohort (C). This is usually treated in the logarithmic form, in which the
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following generalized linear model is fit:

log λ = β0 + βA(A) + βP (P ) + βC(C). (3.1)

A model for prevalence P is

logit P = β0 + βA(A) + βP (P ) + βC(C). (3.2)

We use this model formulation for genital HPV prevalence in women, oral HPV

prevalence in men, and oral HPV prevalence in women, all by race. One drawback

of APC models is their inherent unidentifiability: p = A+ C. In practice, the identi-

fiability problem can be resolved by considering only two-effects models, typically

age–period or age–cohort. In this study, age and cohort effects are modeled using

splines, using five degrees of freedom/knots for both age and cohort effects, corre-

sponding to one knot for every nine and eight years respectively. APC models were

fitted using the Epi package in the statistical software R.

3.3 Results

3.3.1 Oral–genital concurrence

Figure 3.1 presents oral prevalence for women who were tested conclusively for

both oral and genital HPV. Oral prevalence is broken into three categories: infec-

tions that are not concurrent with a genital infection, infections that are concurrent

with a genital infection but not type-concordant, and type-concordant infections. A

large percentage of oral infections in every demographic category are concurrent

with a genital infection (Figure 3.1). In 2009–10, 3.7% (95%CI: 2.5–4.9) women

ages 14–59 had oral infections and 2.8% (95%CI: 1.8–3.9) had genital–oral concur-

rence, i.e., 76.7% of oral infections in women were accompanied by a concurrent

genital infection. In 2011–12, 3.2% (95%CI: 2.0–4.3) women ages 18–59 had oral
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infections and 2.4% (95%CI: 1.4–3.5) had genital–oral concurrence, i.e., 78.2% of

oral infections in women were accompanied by a concurrent genital infection.

In contrast, the vast majority of women with a genital infection do not have a con-

current oral infection. In 2009–10, genital prevalence was 40.7% (95%CI: 37.6–

43.7), with only 7.0% of those concurrent with an oral infection. In 2011–12, geni-

tal prevalence was 39.5% (95%CI: 35.0–44.0), with only 6.3% of those concurrent

with an oral infection. Table 3.2 presents oral HPV prevalence for women ages 14–

59 by genital status as well as the relative risk of oral HPV for +/- genital HPV

status in 2009–10 by age and race.

Type-concordance is notably different for the 18–24 age group in that the vast ma-

jority of their oral infections are type-concordant. The most prevalent oral geno-

types in 2009–2010 among females 18–24 are types 84 (1.4 %), 81 (0.6%), 54

(0.6%), and 16 (0.5%), and the most prevalent genital genotypes among the same

group are 51 (11.2%), 84 (10.6%), 66 (10.4%), 16 (10.1%), 39 (9.3%), and 54

(8.2%). In 2011–2012, the more prevalent oral genotypes in this demographic are

types 84 (1.1%), 83 (1.0%), 59 (0.6%), and 89 (0.4%), while the most prevalent

genital genotypes were 53 (12.0%), 84 (8.5%), 42 (8.4%), 89 (7.9%), 51 (7.8%),

and 66 (7.6%).

3.3.2 Seroprevalence and concurrence

HPV serostatus (for types 6, 11, 16, and 18) by age and race is presented in Fig-

ure 3.2, with concurrence and type-concordance with genital infections for women.

Here, concurrence means detection of 6, 11, 16, or 18 antibodies and a genital

infection of any genotype, and type-concordance means that an antibody serotype

matches a genital genotype. Prevalence of genital infections is not available for men

in this survey, and thus concurrence and type-concordance in men cannot be as-

sessed. Prevalence of concurrence for women overall has remained just under 60%

(2003–04: 58.2% (95%CI: 48.9–69.3), 2005–2006: 59.6% (95%CI: 51.0–69.6),
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2007–2008: 56.0% (95%CI: 49.7–63.0), 2009–2010: 53.6% (95%CI: 48.1–59.7))

and type-concordance around 10% (2003–04: 10.4% (95%CI: 7.8–14.3), 2005–

2006: 11.1% (95%CI: 8.1–15.0), 2007–2008: 10.3% (95%CI: 7.9–13.6), 2009–

2010: 8.4% (95%CI: 7.1–9.9)).

Oral HPV prevalence by age and race is presented in Figure 3.3, with serotype-

concordance, for both men and women. Serotype-concordance is defined as an oral

infection of type 6, 11, 16, or 18 with serum antibodies of the same type. Prevalence

of serotype-concordant oral infections is very low overall (men and women ages

14–59: 0.5% (95%CI: 0.2–0.8), and almost nonexistent for women (0.2% (95%CI:

0.0–0.8) vs 0.8% (95%CI: 0.4–1.3) for men). For men, this concordance remains

around 10% of the total oral infection, which varies with age; over all ages 14–59,

concordance is 8.6% of the oral prevalence (9.8% (95%CI: 7.9–11.7)) Additionally,

we found that the relative risk of an oral infection given seropositivity is 2.9 (95%CI:

2.0–4.1) for men but only 1.0 (95%CI: 0.6–1.9) for women. Similarly, the relative

risk of being seropositive given an oral infection is 2.8 (95%CI: 2.2–3.7) for men

and 1.0 (95%CI: 0.7–1.4) for women.

3.3.3 Seroprevalence and vaccination

Seroprevalence for women in 2007–2008 and 2009–2010 by vaccination status are

presented in Figure 3.4. Seroprevalence among unvaccinated people for each age

category is roughly the same between 2007–2008 and 2009–2010 but shows a large

increase in seroprevalence among vaccinated 14–17 and 18–24 year old women.

Genital HPV prevalence (all, oncogenic, and vaccine genotypes) was also analyzed

by vaccine status in 2009–2010 and 2011–2012 (Table 3.3). Vaccination was asso-

ciated with significant reduction in risk for genital infection by genotypes 6, 11, 16,

and 18 in the 14–17 and 18–24 age groups. Vaccination was not associated with

either an increase or decrease in risk for infection when considering all genotypes

or only oncogenic genotypes. The data were insufficient to be conclusive for the

impact vaccination has on the risk of oral infection.
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3.3.4 Age-period-cohort models

Age–cohort models fit the data better than age–period models. Figure 3.5 shows

age and cohort effects (relative to the 1980 birth cohort) of APC models for genital

prevalence (women) and seroprevalence (men/women) by race. Here the Mexican

American and Other Hispanic race categories were collapsed to Hispanic. The age-

specific prevalence for Hispanic and white females is similar to that of the overall

trend: peaking at 25 and decreasing with age. For black women, however, preva-

lence is 10–40% greater than the average. Prevalence for this demographic group

also peaks slightly later. For cohort effects, the relative prevalence for all demo-

graphic groups has been decreasing since the 1940 birth cohort, although that of

black women has been increasing again since the 1980 birth cohort. Seroprevalence

for women increases dramatically between ages 20–30, after which it largely stays

constant, except for Hispanic women for whom it continues to increase with age.

For men, the trend is a more steady increase over the lifetime. There are strong

effects on seroprevalence for birth cohorts after 1980 for women. Excluding vac-

cinated women in the genital analysis does not substantially affect either the age

or cohort effects; excluding vaccinated women from the serum analysis does not

substantially affect the age effects but does, as expected, significantly reduce the

cohort effects after 1980 (results not shown).
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Figure 3.1: Oral HPV prevalence with genital concurrence and type-concordance
a) by age and b) by race for women ages 14–59 in 2009–2010 and ages 18–59
in 2011–2012. Type-concordant oral infections have a simultaneous genital infec-
tion of the same type, and concurrent oral infections have a simultaneously genital
infection, not necessarily of the same type. The two bars in each group represent
2009–2010 and 2011–2012 respectively.
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Table 3.2: Oral HPV prevalence for women ages 14–59 by genital status with rela-
tive risk of oral HPV for +/- genital HPV status in 2009–2010. Here, %+ gives the
weighted HPV oral prevalence among the the N people in the given population.
Bold relative risks do not contain 1.

Oral Prevalence Oral Prevalence Relative Risk
Among Genital + Among Genital –

Demographic N %+ S.E. N %+ S.E. RR 95%CI

All 890 7.0 1.2 1166 1.4 0.4 4.8 2.6–9.0

Mexican American 161 9.0 1.8 276 1.6 1.1 5.5 1.4–21.2
Other Hispanic 94 8.0 2.2 139 1.8 0.6 4.5 1.9–10.5
White 366 7.2 2.1 514 1.3 0.6 5.7 2.0–16.1
Black 220 4.3 1.5 156 3.9 1.5 1.1 0.4–3.0

14–17 49 6.3 1.8 195 1.5 0.8 4.1 1.3–12.9
18–24 195 8.6 3.3 154 0.3 0.3 30.4 3.9–236
25–29 123 9.5 3.4 98 1.1 0.2 8.4 4.0–17.8
30–34 81 4.9 2.3 113 1.2 0.9 3.9 0.7–21.7
35–39 99 5.0 2.6 117 0.9 0.6 5.6 1.1–29.6
40–44 93 2.4 1.3 145 2.1 1.5 1.2 0.2–6.1
45–49 107 8.1 3.7 126 0 0 — —
50–54 80 9.2 3.4 128 2.1 1.4 4.3 0.9–20.0
55–59 63 5.2 3.2 90 3.4 2.0 1.5 0.3–8.1

Table 3.3: Genital HPV prevalence by all, oncogenic, and vaccine genotypes for
women ages 14–17 and 18–24 and relative risk by vaccination status in 2009–2010
and 2011–2012. Here, %+ denotes the weighted genital HPV prevalence of the
listed genotypes among the N people in the population.

Unvaccinated Vaccinated Relative risk
Age Year Genotypes N % + S.E. N % + S.E. RR 95%CI

2009–10 All 145 16.4 2.1 103 20.9 5.0 1.3 0.7–2.2
14–17 2009–10 Oncogenic 145 13.0 1.7 103 17.3 5.4 1.3 0.7–2.6

2009–10 6, 11, 16, 18 145 5.7 2.3 103 1.1 0.8 0.2 0.0–1.0

2009–10 All 251 57.8 5.1 109 59.4 4.6 1.0 0.8–1.3
18–24 2009–10 Oncogenic 251 44.8 4.6 109 47.0 5.5 1.0 0.8–1.4

2009–10 6, 11, 16, 18 251 19.9 3.7 109 3.5 1.0 0.2 0.1–0.3

2011–12 All 197 57.4 4.4 132 55.0 5.2 1.0 0.8–1.2
18–24 2011–12 Oncogenic 197 43.8 5.7 132 38.8 5.5 0.9 0.6–1.3

2011–12 6, 11, 16, 18 197 12.9 3.5 132 1.9 0.9 0.1 0.1–0.4
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Figure 3.2: HPV seroprevalence for women with genital concurrence and type-
concordance, and HPV seroprevalence for men, both ages 14–59. Concurrence
means a positive serum result for 6, 11, 16, or 18 and a genital infection of any
genotype, and concordance means that the antibody serotype matches the genotype
of the genital infection. The four bars in each group are 2003–2004, 2005–2006,
2007–2008, and 2009–2010 respectively. Note: data for 14-17 year old men and
women is not available in 2003–2004.
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Figure 3.3: Oral HPV prevalence with serotype-concordance for men and women
by age and race in 2009–2010. Serotype-concordance defined as an oral infection
of type 6, 11, 16, or 18 with serum antibodies of the same type.
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Figure 3.4: HPV seroprevalence by vaccination status a) by age and b) by race for
women ages 14–59. The two bars in each group represent 2007–2008 and 2009–
2010 respectively.
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(f) Relative male seroprevalence by cohort.

Figure 3.5: APC models of genital HPV prevalence among women, seroprevalence
among women, and seroprevalence among men by age and cohort and by race.
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3.4 Discussion

Oral prevalence and oral–genital concurrence vary dramatically with age. Just un-

der half of oral infections among 14–17 year olds are concurrent with a genital in-

fection, but, between ages 18–40, more than 70% of oral infections are concurrent.

This concurrence peaks for women ages 18–24, for whom nearly all oral infections

are concurrent, over 90% of which are type-concordant (Figure 3.1). This may sug-

gest that many 18–24 year olds are experiencing their first oral infection and that

it is either caused by autoinoculation from their genital infection or that both infec-

tions are from the same sexual partner. That we do not see the same pattern among

ages 14–17 may be indicative of different sexual norms and practices between the

two groups, a possibility that warrants further study. There is another age span,

45–54, with both higher overall prevalence and higher concurrence. This may be

indicative of a second sexual debut.

The differences in genotype prevalence between the two sites for the 18–24 year old

group lend evidence to the theory that certain genotypes are strongly tropic—have

an inclination toward certain tissue. Genotype 84 is more than twice as prevalent as

the next most common genotype for oral infections in women ages 18–24 in 2009–

10 and is still the most common in 2011–2012. Although NHANES has not tested

for HPV genital infections in men, there is evidence that genotype 84 is at least as

common as type 16 among male genital infections (Skiest and Margolis, 2008). It

may be that most genotypes have a great inclination toward cervical tissue while

certain genotypes, such as 84 and 16, are more likely to infect both. The high level

of type-concordance among 18–24 year olds might then be explained by uneven

distribution of genotypes caused by selection of sexual partners with similar ages.

This theory, as well as the geographical and demographic distribution of genotypes,

is a matter for future study.

Overall oral–genital concurrence and type-concordance was previously examined

by Steinau et al. (2014), who reported that the relative risk for women ages 18–59
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for having an oral infection given a genital infection was 4.86 in 2009–2010. How-

ever, the relative risk for having an oral infection given a genital infection changes

dramatically with age, as seen in Table 3.2, although the high relative error for

some estimates makes strong conclusions difficult. Women ages 18–24 with a gen-

ital infection have a notably higher relative risk of also having an oral infection.

The relative risks for Mexican Americans, other Hispanics, and non-Hispanic whites

are all similar but that for non-Hispanic blacks, who have lower than average oral

prevalence among those with genital infections and a higher oral prevalence than

average among those without genital infections, is much lower. In contrast, the rel-

ative risk of a genital infection given an oral infection is 2.0 and does not vary as

dramatically by race or age (supplement).

The relatively low oral–genital type–concordance overall, noted by Steinau et al.

(2014) and others, suggests that, although not independent, the sites have differ-

ences in natural history (e.g. time to clearance). However, because oral infection is

relatively uncommon among women, the actual number of infected women sam-

pled is also relatively low, and the age-specific concurrence and type-concordance

results must be seen as suggestive and not necessarily conclusive. In terms of race,

white women have the lowest oral prevalence but the highest type-concordance.

Hispanic women have the highest overall oral prevalence but genital prevalence

comparable to white women, who have the lowest prevalence for both sites. The

differences by race may be indicative of assortativity of sexual networks (Morris

et al., 2009) and racial heterogeneity of sexual behaviors.

About half of women who are seropositive do not have an accompanying genital in-

fection. Among those who are seropositive and have a concurrent genital infection,

type-concordant prevalence is low and decreases with age, as might be expected

since older individuals are more likely to have already seroconverted during pre-

vious infections. For racial demographics, seroprevalence more closely follows the

genital rather than oral profile. This finding may simply be a result of genital in-

fections being much more common than oral ones for women, but it also raises
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the possibility that seroconversion may occur more readily following cervical rather

than oral infection. Combined with the different relative risk of being seropositive

given an oral infection for men and women (Figure 3.3), this observation lends ev-

idence to the theory that seroconversion is strongly site-specific and occurs primar-

ily at mucosal epithelia. Cervical infections appear to often lead to seroconversion,

which, based on the lack of sero–oral type-concordance in women, may provide a

defense against oral infection. Men are less likely to seroconvert from genital infec-

tions (Lu et al., 2012), and so may be more vulnerable to oral infections, resulting

in a higher oral prevalence.

Seroprevalence increases dramatically for 14–17 and 18–24 year old women over

the period studied. Since the aim of the vaccine is seroconversion, it is likely that this

increase is largely caused by the introduction of the vaccine (Figure 3.4). If one does

not control for age, overall genital prevalence and prevalence of oncogenic types is

higher in the vaccinated population than in the unvaccinated, and prevalence of

the genotypes targeted by the vaccine is only slightly lower among the vaccinated

group. Because the vaccine is relatively new, it may be being given to previously

infected individuals. If we restrict our attention to either 14–17 or 18–24 year olds,

as in Table 3.3, the relative risk for any and oncogenic HPV drops to near 1, and

that of the vaccine types drops to about 0.2. Our results refine those reported by

Markowitz (2013) (Markowitz et al., 2013), who found that, in NHANES 2007-

2010, prevalence of vaccine types was 12.6% among unvaccinated 14–19 year olds

but 3.1% among those vaccinated. These results suggests that the vaccine has been

highly effective at preventing infections by the targeted types. The current data

neither support nor refute the possibility that other genotypes may move in to fill

the niche left by the vaccine genotypes.

Non-Hispanic black men and women have consistently high prevalence at genital

and oral sites and seroprevalence, which is consistent with previous work (Steinau

et al., 2014; Markowitz et al., 2009). The APC cohort trends for female geniral

prevalence (Figure 3.5) suggest that this high prevalence relative to the other racial
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groups has not changed much between the 1955 and 1980 birth cohorts and has,

in fact, been increasing since the 1980 birth cohort. Sexual assortativity patterns

and other contributing factors may have been relatively consistent between the

1970s and 1990s, the times that people from these birth cohorts would have been

mostly sexually active. The relative prevalence among women of all demographics

decreased after the 1940 birth cohort, the cohort that experienced the sexual rev-

olution of the 1960s. For women of all races, cohort effects for seroprevalence for

women are dominated by a large increase for those born after 1980, most likely a

consequence of vaccine-induced seroconversion. That age–cohort models fit better

than age–period is not surprising, both as trends in STI prevalence tend to be driven

by cohort sexual norms and as the NHANES time span is limited.

One strength of this study is the large sample size in the NHANES survey, which

allowed analysis at a relatively fine demographic stratification. NHANES is the only

population data source for oral infections and also allows for analysis of multiple

sites in one individual. Additionally, the use of APC models allows for the anal-

ysis of temporal trends in the data separate from the age effects. Limitations of

the NHANES data set include the relatively limited time span, especially for oral

infections, and the lack of genital prevalence for men and anal prevalence for

men/women. Anal infections may play an important role in seroconversion, es-

pecially for men (Lu et al., 2012). Further, the relatively low numbers of infected in

some demographic categories precludes strong conclusions about age-related pat-

terns of concurrence/type-concordance.

This study follows the analysis by Steinau et al. (2014) and provides a deeper look

at genital–oral concurrent and type-concordant infections. This study is the first to

analyze seroprevalence in NHANES after 2003–2004 (Markowitz et al., 2009) and

the first to look at concurrence/concordance between serpositivity and oral/genital

infections. Our results demonstrate that, in the presence of vaccination, seropreva-

lence alone is neither a good biomarker for oral infections nor a sufficient one for

genital infections in women. Although not independent, genital and oral infection
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and seropositivity appear insufficiently correlated to be predictive of each other.

Conducting studies where sampling is done at all three sites for both men and

women is paramount to fully characterize the natural history of HPV and its trans-

mission dynamics.
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3.5 Appendix

Given an incidence I and at-risk population N , it is straightforward to model λ =

I/N . If, alternatively, one wishes to model prevalence P , one may convert as fol-

lows.

log λ = log
I

N
= log

I
I+N
N
I+N

= log
P

1− P
= logit P (3.3)

Confidence intervals for prevalence ratios were calculated by a log transformation.

The standard errors of the natural log of prevalence ratios were approximated as

follows:

SE(ln p̂1/p̂0) =

√
σ̂2
p̂1

p̂2
1

+
σ̂2
p̂0

p̂2
0

(3.4)
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Table 3.4: Genital HPV prevalence for women ages 14–59 by oral status with rela-
tive risk of genital HPV for +/- oral HPV status in 2009–2010. Here, %+ gives the
weighted HPV genital prevalence among the the N people in the given population.
Bold relative risks do not contain 1.

Genital Prevalence Genital Prevalence Relative Risk
Among + Oral Among - Oral

Demographic N %+ S.E. N %+ S.E. RR 95%CI

All 86 76.7 5.1 1970 39.3 1.4 2.0 1.7–2.3

Mexican American 20 76.6 12.9 417 35.5 2.2 2.2 1.5–3.1
Other Hispanic 10 76.6 7.1 223 40.7 2.5 1.9 1.5–2.3
White 35 77.4 8.3 845 36.2 1.7 2.1 1.7–2.7
Black 16 62.3 9.5 360 59.8 3.0 1.0 0.8–1.4

14–17 8 47.7 14.4 236 17.4 2.6 2.7 1.4–5.3
18–24 16 97.6 2.5 333 55.4 4.3 1.8 1.5–2.1
25–29 13 89.9 2.9 208 49.3 3.4 1.8 1.6–2.1
30–34 8 71.7 22.6 186 38.3 3.9 1.9 1.0–3.6
35–39 7 78.9 15.2 209 39.1 4.1 2.0 1.3–3.1
40–44 7 38.6 22.3 231 35.0 3.2 1.1 0.3–3.5
45–49 8 100 0.0 225 41.2 4.4 2.4 2.0–3.0
50–54 12 68.4 14.7 196 31.7 5.2 2.2 1.3–3.7
55–59 7 47.0 22.2 146 36.4 5.4 1.3 0.5–3.4

68



CHAPTER IV

Transmission heterogeneity and autoinoculation in a

multisite infection model of HPV

4.1 Introduction

The basic reproduction number R0 is an important quantity in infectious disease

systems epidemiology, defined as the average number of secondary cases arising

from an typical primary case in an entirely susceptible population (Diekmann et al.,

1990; Anderson and May, 1991; Diekmann and Heesterbeek, 2000). The basic re-

production ratio has a threshold value that controls the stability of the disease-free

equilibrium: if R0 < 1, an emergent disease will die off quickly, while if R0 > 1, the

disease will become epidemic (Diekmann and Heesterbeek, 2000; van den Driess-

che and Watmough, 2002). The values of R0 vary greatly by disease (Anderson

and May, 1991), ranging from close to 1 for seasonal influenza to 5–7 for smallpox

and polio to 12–18 for measles and pertussis. Mathematical modeling is used to

estimate the basic reproduction number and other relevant quantities. In practice,

R0 is calculated as a threshold parameter that may not precisely correspond to the

number of secondary cases per infection, especially in the case of an environmen-

tally transmitted disease (van den Driessche and Watmough, 2002). For example,

virus shed into the environment may contribute to additional infections not directly

attributable to a specific infected person. In practice, R0 is typically calculated as the

spectral radius of the next generation matrix (van den Driessche and Watmough,
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2002).

The basic reproduction number also has implications for infection control. If a frac-

tion of the population greater than 1− 1
R0

is permanently protected from infection,

such as through immunization at birth, the infection cannot become epidemic (An-

derson and May, 1991; Diekmann and Heesterbeek, 2000; Roberts and Heester-

beek, 2003). The concept of the basic reproduction number, at least in these in-

fection control terms, can be extended to the type and target reproduction num-

bers (Roberts and Heesterbeek, 2003; Heesterbeek and Roberts, 2007; Shuai et al.,

2013). If there are multiple host types, the type reproduction number for host type

i is denoted Ti, and the infection can be controlled by protecting a greater fraction

than 1 − 1
Ti

of host type i, provided no other host acts as a reservoir for the in-

fection. The type reproduction number is especially of interest for vector-borne and

other multiple-species infections, and it can be extend to consider any subset of host

types (Roberts and Heesterbeek, 2003; Heesterbeek and Roberts, 2007). The target

reproduction number is a further generalization, in which specific pathways are tar-

geted for control. This corresponds to considering only certain entries of the next

generation matrix, instead of whole rows as is the case of the type reproduction

number (Shuai et al., 2013).

Here, we consider a class of diseases that may infect multiple sites in a host. Our

motivating example is the Human Papillomavirus (HPV); it is well documented that

oral and anogenital sites, although not completely independent, can become in-

fected or clear the virus whether or not the other sites are infected and that au-

toinoculation may be an important pathway (Steinau et al., 2014). The analysis of

oral–genital concurrence in Chapter III lends further weight to the relevance of HPV

to this model. However, this model is also relevant to other sexually transmitted in-

fections that affect multiple sites, such as the herpes simplex virus (HSV) (genital,

oral, anal), chlamydia (genital, ocular), and yeast infections (genital, oral, etc.).

It can also be used to consider multisite infections not typically spread by sexual

interaction, such as Trichophyton (athlete’s foot) or conjunctivitis.
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Deviation from the average, or heterogeneity, in various aspects of infectious disease

models is important to the study of the basic reproduction number. Heterogeneity

of populations, whether in terms of behavior, spatial distribution, or other charac-

teristics, has been widely studied (May and Anderson, 1987; Adler, 1992; Diek-

mann and Heesterbeek, 2000; Neri et al., 2011) and has led to the development of

such tools as mulitgroup modeling. Although the contexts are quite different, like

Robertson et al. (2013) we will consider heterogeneity among multiple transmis-

sion pathways. While Robertson et al. (2013) considered heterogeneity in the direct

and indirect pathways of waterborne cholera transmission, we consider differences

within same-site and cross-site transmission of a multisite infectious agent.

In this chapter we first develop and explore the dynamics of a multisite model with

homogeneous contacts (homo- or pansexual population or a nonsexual infection),

including analysis of the reproduction numbers and the effects of heterogeneity in

the transmission pathways. We then extend this multisite model to one with hetero-

geneous contacts (heterosexual population) and see how the additional complexity

translates into the reproduction numbers.

4.2 Two-site model with homogeneous contacts

We first consider a model of a two-site sexually transmitted infection assuming that

contacts are homogeneous in order to explore the dynamics of a two-site system

without the complication of heterosexual contact. We assume that clearance of the

infection does not induce immunity (SIS framework). We denote, without loss of

generality, the infection sites as oral and genital. Denote the fraction of the popula-

tion that is uninfected by S, the fraction infected at site X by IX for X ∈ {O,G},

and the fraction infected at both sites by IOG. Let µ be the birth/death rate, γX the

recovery rate of infection at site X, νXY the rate of autoinoculation from site X to

site Y , and βXY the transmission rate from site X on one individual to site Y on

a second individual. The probability of two simultaneous events is assumed to be
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zero. A model schematic is presented in Figure 4.1, a summary of model parameters

may be found in Table 4.1, and the following equations define our system:

Ṡ = µ+ γGIG + γOIO − Sµ

− S
(
(βOO + βOG)(IO + IOG) + (βGO + βGG)(IG + IOG)

)
,

İO = S
(
βOO(IO + IOG) + βGO(IG + IOG)

)
+ γGIOG

− IO
(
νOG + γO + µ+ βOG(IO + IOG

)
+ βGG(IG + IOG)

)

İG = S
(
βOG(IO + IOG) + βGG(IG + IOG)

)
+ γOIOG

− IG
(
νGO + γG + µ+ βOO(IO + IOG

)
+ βGO(IG + IOG)

)

İOG = IO
(
νOG + βOG(IO + IOG) + βGG(IG + IOG)

)
+ IG

(
νGO + βOO(IO + IOG) + βGO(IG + IOG)

)
− IOG(γO + γG + µ).

(4.1)

A key feature of this class of models is autoinoculation. Here, we consider autoinoc-

ulation to be the infection of a new site on a host who currently has at least one

infected site in the absence of contact with another infected individual. As noted

in van den Driessche and Watmough (2002), it is not always mathematically fixed

whether particular terms—in this case, autoinoculation—should be considered new

infections in the context of the next generation matrix. However, we argue that it

is epidemiologically correct to consider autoinoculation to be a stage progression

(incorporated in the V matrix) rather than a new infection (reflected in the F ma-

trix). Consider an arbitrary individual, patient zero, with single-site infection who

is introduced into a fully susceptible population. The basic reproduction number

quantifies the number of secondary people infected by this initial infection over

patient zero’s whole infective period. If we consider autoinoculation to be a new

infection, autoinoculation might cause one secondary infection (at patient zero’s
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Figure 4.1: Multisite model schematic.

Table 4.1: List of parameters in the two-site infectious disease model with homoge-
neous contacts.

Symbol Parameter

µ Population birth/death rate
βOG Transmission from oral site to genital site on another person
βGO Transmission from genital site to oral site on another person
γO Clearance of an oral infection
γG Clearance of a genital infection
νOG Autoinoculation of a genital site from the oral site
νGO Autoinoculation of an oral site from the genital site
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second site) but result in no new infected people. If we consider it to be a stage

transfer, the infection at the new site may also contribute to secondary infections.

The second interpretation gives a more epidemiologically meaningful R0.

4.2.1 Basic Reproduction Number

We begin with a derivation and analysis of the reproduction number for this model

(eq. 4.1). We construct the next generation matrix K = FV −1 as in van den Driess-

che and Watmough (2002). The F matrix of new infections is

F =


βOO βGO βOO + βGO

βOG βGG βOG + βGG

0 0 0

 , (4.2)

and the V matrix of comparment transfer is

V =


νOG + γO + µ 0 −γG

0 νGO + γG + µ −γO

−νOG −νGO γO + γG + µ

 . (4.3)

Then it is easy to show that V −1 has the form

V −1 =
1

1− pOqO − pGqG


τO(1− pGqG) τOpGqO τOqO

τGpOqG τG(1− pOqO) τGqG

τOGpO τOGpG τOG

 , (4.4)

where the τ are average waiting times in the compartments, neglecting further
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infection as we are considering behavior near the disease-free equilibrium, i.e.

τO =
1

γO + νOG + µ
,

τG =
1

γG + νGO + µ
,

τOG =
1

γO + γG + µ
,

(4.5)

and the p and q are probabilities that the next compartment transfer will be to IOG

or from IOG, respectively, i.e.

pO =
νOG

γO + νOG + µ
,

pG =
νGO

γG + νGO + µ
,

qO =
γG

γO + γG + µ
,

qG =
γO

γO + γG + µ
.

(4.6)

It should be noted that 1 − pOqO − pGqG > 0 as long as V is not identically 0. We

can heuristically understand the form of V −1 in the following way (as in van den

Driessche and Watmough (2002)). In compartment IOG, the probability of returning

to that compartment in two moves is pOqO +pGqG by going either to IO and back or

IG and back. The average amount of time spent in IOG, assuming we start in, say,

IO, is

τOG
[
pO + pO(pOqO + pGqG) + pO(pOqO + pGqG)2 + · · ·

]
=

τOGpO

1− (pOqO + pGqG)
.

(4.7)

We can put this heuristic approach in more formal terms: consider the adjacency

matrix A of the infected components of the directed graph depicted in Figure 4.2,

where entry am,n is probability of entering component m from component n, for
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Figure 4.2: Multisite model graph.

m,n ∈ {IO, IG, IOG}. Thus

A =


0 0 qO

0 0 qG

pO pG 0

 . (4.8)

Then

I + A+ A2 + · · · = 1

1− pOqO − pGqG


1− pGqG pGqO qO

pOqG 1− pOgO qG

pO pG 1

 . (4.9)

This expression, with the inclusion of the τ parameters, leads directly to V −1.

The next generation matrix K = FV −1 thus has the form

K =


KO|O KG|O KOG|O

KO|G KG|G KOG|G

0 0 0

 , (4.10)
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where

KO|O =
βOOτO(1− pGqG) + βGOτGpOqG + (βOO + βGO)τOGpO

1− pOqO − pGqG
,

KG|O =
βOOτOpGqO + βGOτG(1− pOqO) + (βOO + βGO)τOGpG

1− pOqO − pGqG
,

KOG|O =
βOOτOqO + βGOτGqG + (βOO + βGO)τOG

1− pOqO − pGqG
,

KO|G =
βOGτO(1− pGqG) + βGGτGpOqG + (βOG + βGG)τOGpO

1− pOqO − pGqG
,

KG|G =
βOGτOpGqO + βGGτG(1− pOqO) + (βOG + βGG)τOGpG

1− pOqO − pGqG
,

KOG|G =
βOGτOqO + βGGτGqG + (βOG + βGG)τOG

1− pOqO − pGqG
.

(4.11)

The elements of the next generation matrix have a straightforward biological in-

terpretation: KX|Y is the expected number of secondary cases of infection at site

Y produced by one individual originally infected at site X, assuming an other-

wise susceptible population. Because two events cannot happen simultaneously, all

terms of the form KX|OG are zero. It is important to note here that KO|O 6= RO
0

and KG|G 6= RG
0 , where RO

0 = βOOτO and RG
0 = βGGτG are the basic reproduction

numbers of the single site SIS models, except in the case of no autoinoculation. In

this model, without loss of generality, an individual with only a genital infection

originally can autoinoculate their oral site and spread infection from either, which

adds significant complexity to the terms of the next generation matrix.

We find that the spectral radius of the next generation matrix (eq. 4.10) is

R0 =
1

2

(
KO|O +KG|G

)
+

1

2

√(
KO|O +KG|G

)2
+ 4

(
KG|OKO|G −KO|OKG|G

)
.

(4.12)

It is helpful here to think of KO|O +KG|G as the R0 of the system under the balance

condition that KO|OKG|G = KO|GKG|O, that is when the product of the same-site

transmission terms of the next generation matrix is equal to the product of the

analogous cross-site terms. Hence, more generally, R0 is KO|O + KG|G modified
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by a term that accounts for how balanced same-site and cross-site infections are,

which naturally leads us to the question of heterogeneity. The balance term is, in

fact, a measure of balance in same-site and cross-site transmission rates, not just

in the expectations of number of infected as a cursory inspection of eq. 4.12 would

suggest:

KO|GKG|O −KO|OKG|G =

(
βOGβGO − βOOβGG

) (
τOτG + pOτGτOG + pGτOτOG

)
1− pOqO − pGqG

=

(
βOGβGO − βOOβGG

)
τOτG

(
1 + (νOG + νGO)τOG

)
1− pOqO − pGqG

.

(4.13)

Although all parameters affect the value of R0, it is the relationship between the

transmission parameters that affects the structure of R0, e.g. whether R0 is taking

the maximum of the same site terms, the geometric average of the cross-site terms,

or some sort of intermediate behavior. Hence, understanding the effects of hetero-

geneity in the transmission parameters is necessary to understand the dynamics of

the model.

4.2.2 Limiting cases and transmission heterogeneity

The basic reproduction number displays some interesting limiting behavior. As ei-

ther KG|O or KO|G, but not necessarily both, go to 0, R0 goes to max
(
KO|O, KG|G).

As both KO|O and KG|G go to 0, R0 goes to
√
KG|OKO|G. Hence, the basic reproduc-

tion number can be thought of as occupying a space between taking the maximum

and taking a geometric average, displaying behavior more similar to one or the

other depending on the type and strength of transmission pathways. Note that these

limiting cases are already suggestive of the effect of heterogeneity on the same-site

and cross-site terms, which we will explore further below. Considering a different

limiting case, we note that as the autoinoculation parameters νGO and νOG go to
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zero, the basic reproduction number becomes

1

2

(
βOOτO + βGGτG

)
+

1

2

√
(βOOτO + βGGτG)2 + 4τOτG(βGOβOG − βOOβGG),

(4.14)

which is a significant reduction in complexity.

Without making these significantly simplifying assumptions, we can still consider

heterogeneity, as noted above, in the same-site and cross-site terms of the next gen-

eration matrix. Heterogeneity can be seen as a kind of weakly limiting case.

Proposition 4.2.1. For a fixed total KO|G + KG|O, R0 is largest when KO|G = KG|O.

For a fixed total KO|O +KG|G, R0 is smallest when KO|O = KG|G.

This proposition is clear by basic calculus on eq. 4.12. For a fixed sum KO|G +

KG|O, the product KO|GKG|O is largest when KO|G = KG|O, meaning that R0 is

largest when the two sites have the same expected number of secondary cross-

site infections. So, R0 is large when the cross-site terms are similar and is small

when they are different. Similarly, in the formula for R0 (eq. 4.12), the product

KO|OKG|G has the opposite sign from KO|GKG|O, meaning that, for a fixed sum

KO|O + KG|G, heterogeneity in the terms increase R0. That is, R0 is large when the

expected number of same-site infections is very different for the oral and genital

sites and small when they are similar. Heterogeneity in the expected site-specific

secondary infections, i.e. elements of the next generation matrix, thus, has a very

different effect for same-site than for cross-site infection.

To better understand the effect of heterogeneity in the biological transmission pa-

rameters, we derive some analytic results for a special limiting case—identical

sites—and then consider, through simulation, how the general model deviates from

the limiting case.
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4.2.2.1 Identical site model

In order to simplify the analysis, consider the scenario in which the two sites, al-

though they may have different transmission parameters, have identical clearance

and autoinoculation parameters. While a simplification for many diseases, this one

is biologically realistic for infections such as athlete’s foot or conjunctivitis.

For this section, γO = γG and νOG = νGO. Hence, τO = τG, pO = pG, and qO = qG.

We drop the subscripts for the rest of this section, except from τOG, which is distinct

from τO = τG = τ . Here

KO|O +KG|G =
1

1− 2pq

[
(βOO + βOG + βGO + βGG)pτOG

+(βOO + βGG)τ(1− pq) + (βGO + βOG)τpq
]

(4.15)

and

KO|GKG|O −KO|OKG|G =

(
βOGβGO − βOOβGG

)
τ
(
τ + 2pτOG

)
1− 2pq

(4.16)

Proposition 4.2.2. For a fixed total transmission βOO + βGO + βOG + βGG = k,

the extrema of R0 of the identical site model are on the boundary of
{
βOO ≥ 0,

βGG ≥ 0, βOG ≥ 0, βGO ≥ 0
}

. Moreover, R0 is constant on the planes described by{
βOG + βGG = k

2

}
and

{
βOG + βOO = k

2

}
. These planes partition the constrained pa-

rameter space into two regions of higher and two regions of lower R0.

The proof uses the method of Lagrange multipliers and is left to the appendix (4.5).

These partitioning planes contain three lines of interest:
{
βOO = βGG, βOG = βGO

}
,{

βOO = βGO, βGG = βOG
}

, and
{
βOO = βOG, βGG = βGO

}
. Along these lines the fol-

lowing are true respectively: KO|O = KG|G and KO|G = KG|O; KO|O = KG|O and

KG|G = KO|G; and KO|O = KO|G and KG|G = KG|O.

We wish to visualize the values of R0 on the surface βOO + βGO + βOG + βGG = k in

the four dimensional transmission parameter space. In Figure 4.3, we plot slices of
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two three-dimensional projections of this surface, with and without the partitioning

planes. In this case, the values of R0 are symmetric in the βOG and βGO coordinates

as well as in the βOO and βGG coordinates.

(a) Without partitioning planes. (b) With partitioning planes.

(c) Without partitioning planes. (d) With partitioning planes.

Figure 4.3: Heat map of R0 under the identical site assumptions.

We see that, in the (βOO, βGG)-plane (the lower boundary of the figure), R0 has a

minimum, and, in the (βOG, βGO)-plane (the z-axis in the figure)R0 has a maximum.

These results are consistent with our analysis above of the impact of heterogeneity

of the same-site and cross-site terms of the next generation matrix, highlighting the

fact that R0 is maximized by heterogeneity in same-site transmission and homo-

geneity in cross-site transmission.

In fact, the planes partition the space into four regions, two of which have larger

R0 (toward primarily same-site transmission) and two of which have smaller R0
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(toward primarily cross-site transmission). The global extrema of R0 are achieved

when there is only one transmission pathway. Indeed, if all transmission is in one

pathway with rate k, then eq 4.12 simplifies (via eqs 4.15 and 4.16) to

R0 =
k(pτOG + (1− pq)τ)

1− 2pq
(4.17)

if that pathway is same-site and

R0 =
k(pτOG + pqτ)

1− 2pq
(4.18)

if that pathway is cross-site. On the partitioning planes of Proposition 4.2.2, we

have

R0 =
k(pτOG + τ/2)

1− 2pq
. (4.19)

4.2.2.2 Deviations from the identical site model

The equations to solve for the partitioning planes in the general case are intractable.

However, numerical simulation gives a reasonably clear picture as to how R0 be-

haves under deviations from the identical site model. We examine the effect that

changing the autoinoculation and recovery parameters has on the values of R0 in

the constrained transmission parameter space.

Increasing γG

γO
from 1 (while keeping νOG = νGO constant) moves the intersection

of the three lines of partitioning planes so that βOO < βOG = βGO < βGG as seen

in Figure 4.4, which has the same parameters as Figure 4.3 except for a larger γG.

Here, the values of R0 are symmetric in the βOG and βGO coordinates, but, unlike

the identical site model, the values are not symmetric in βOO and βGG. The planes

move to balance the faster clearance in the compartment with a higher transmission

rate. Note that by increasing one clearance parameter relative to Figure 4.3, R0 is

reduced overall. Increasing both parameters but not changing their ratio would

have rescaled the values of R0 in Figure 4.3 but not broken its symmetries.
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(a) Without partitioning planes. (b) With partitioning planes.

(c) Without partitioning planes. (d) With partitioning planes.

Figure 4.4: Heat map of R0 for γG > γO.
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Increasing νOG

νGO
from 1 and keeping the recovery parameters constant, moves moves

the intersection of the three lines of the partitioning planes so that βOG < βGG =

βOO < βGO as in Figure 4.5. Now, the values of R0 are symmetric in βOO and βGG

but no longer in βOG and βGO. Here, the surface moves to balance the movement in

either direction along the infection cycles; that is, we compensate for an increased

νOG by also increasing its complement in the cycle, βGO, and similarly for the other

direction. In Figure 4.5, we see that, as we have only increased one autoinoculation

parameter relative to Figure 4.3, autoinoculation acts like transmission to increase

R0 overall, which is as expected.

(a) Without partitioning planes. (b) With partitioning planes.

(c) Without partitioning planes. (d) With partitioning planes.

Figure 4.5: Heat map of R0 for νOG > νGO.

In the identical site model, the three lines of the partitioning planes corresponded to

equality of pairs of next generation matrix terms. These equalities do not hold along
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the corresponding lines of the partitioning planes when γO 6= γG or νOG 6= νGO.

Although the position and orientation of the partitioning planes change, the overall

qualitative behavior does not. That is, regardless of the values of the recovery and

autoinoculation parameters, the extrema of R0 lie on the boundaries of the positive

parameter space, and moving off the partitioning plane increases or decreases R0

depending on which of the four regions the movement is into. Moving toward pri-

marily same-site transmission increasesR0 while moving toward primarily cross-site

transmission decreases it.

4.2.3 Type and target reproduction numbers

Let us next consider the type reproduction number for, without loss of generality,

the genital site in the full two-site model (eq. 4.1), calculated as in Shuai et al.

(2013). The type reproduction number for genital infections is, provided KOO < 1,

TG =
KO|GKG|O +KG|G(1−KO|O)

1−KO|O

= KG|G +
KO|GKG|O

1−KO|O .

(4.20)

That is, if the oral site is not an infection reservoir, here meaning that the expected

number of oral infections from an oral infection is less than one, then the infection

can be controlled by permanently preventing genital infection in a fraction of the

population greater than

1− 1

TG
=

(KG|G +KO|O − 1) + (KG|OKO|G −KO|OKG|G)

KG|G + (KG|OKO|G −KO|OKG|G)
. (4.21)

Note the reappearance of the balance term. Further, the possible deleterious effects

of model misspecification can be seen here. If one is using a model with only genital

infection, one will estimate the fraction of the population in which need to prevent

genital infections as βGGτG−1
βGGτG

, which may differ significantly from the true fraction.
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We should be careful to realize, however, that the estimates of βGG here may be

biased as another result of misspecification, which makes direct comparison of the

fractions under the two models difficult.

Returning to the two-site model, if we seek to control only genital-to-genital infec-

tions, perhaps through condom use, the target reproduction number is

TGG =
(1−KO|O)KG|G

1−KO|O −KO|GKG|O , (4.22)

provided KO|O + KO|GKG|O < 1. That is, the infection will be controlled if we

prevent genital to genital infection by a fraction of more than

1− 1

TGG
=

(KG|G +KO|O − 1) + (KG|OKO|G −KO|OKG|G)

KG|G −KO|OKG|G . (4.23)

That this latter endeavor is more challenging is seen in the reduction in the denom-

inator between the type and target reproduction numbers described here. The two

numbers are the same only if either KO|G or KG|O is zero. That these fractions are

the same when KG|O is zero is sensible, since all genital transmission in that case

will be same-site transmission. It is not so obviously true, heuristically, in the case

that KO|G is zero.

We also include the target reproduction number for either of the cross-site trans-

missions solely. The target reproduction number, provided both KO|O and KG|G are

less than 1, is

TGO =
KG|OKO|G

(1−KO|O)(1−KG|G)
, (4.24)

so that the infection will be controlled if we prevent genital to oral transmission by

more than

1− 1

TGO
=

(KG|G +KO|O − 1) + (KG|OKO|G −KO|OKG|G)

KG|OKO|G . (4.25)
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Again, to control only genital to oral transmission is easier than controlling all gen-

ital infections, and we see that the denominators of eqs. 4.23 and 4.25 add up to

the denominator of eq. 4.21. The latter fact is a nice way of expressing that, in this

case,

TG =
TGO(TGG − 1) + TGG(TGO − 1)

TGOTGG − 1
. (4.26)

In each of TG, TGG, and TOG, KO|G and KG|O only appear as a product. That each

depends upon the product instead of the sum or some other function of KO|G and

KG|O cannot be easily understood without this analysis. This result has implications

for disease control. For instance, a product can more effectively be reduced by re-

ducing only one of the terms than a sum can be. Further, the trade-off structure,

if one were able to reduce one term at the expense of another, is very different.

That KO|G and KG|O only appear as a product also has implications for the impact

of heterogeneity in the terms as it did with the basic reproduction number. In each

case, heterogeneity in the cross-site terms decreases the reproduction number. The

impact of heterogeneity in KO|O and KG|G is less clear for TG and TGG, though

heterogeneity in these same-site terms, unlike for the basic reproduction number,

decreases TGO.

4.3 Two-site model with heterogeneous contacts

Here we extend the two-site model with homogeneous contacts (homo- or pan-

sexual population or nonsexual infection) to one with heterogeneous contacts (in

particular, a heterosexual population). This model has many analogous features to

the model homogeneous contacts, but also has an added layer of complexity from

the vector–host-like dynamics (since new infections can only occur from a member

of the opposite sex). For sex i ∈ {M,F} with oral (O) and genital (G) sites and
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i 6= j, we have the following equations:

Ṡi =
µ

2
+ γGi I

G
i + γOi I

O
i − Siµ

− Si
(
βOOji (IOj + IOGj ) + βGOji (IGj + IOGj )

)
− Si

(
βOGji (IOj + IOGj ) + βGGji (IGj + IOGj )

)
,

İOi = Si
(
βOOji (IOj + IOGj ) + βGOji (IGj + IOGj )

)
+ γGi I

OG
i

− IOi
(
νOGi + γOi + µ+ βOGji (IOj + IOGj ) + βGGji (IGj + IOGj )

)
,

İGi = Si
(
βOGji (IOj + IOGj ) + βGGji (IGj + IOGj )

)
+ γOi I

OG
i

− IGi
(
νGOi + γGj + µ+ βOOji (IOj + IOGj ) + βGOji (IGj + IOGj )

)
,

İOGi = IOi
(
νOGi + βOGji (IOj + IOGj ) + βGGji (IGj + IOGj )

)
+ IGi

(
νGOj + βOOji (IOj + IOGj ) + βGOji (IGj + IOGj )

)
− IOGi (γOi + γGi + µ).

(4.27)

Here, the parameters are the same as in Table 4.1 except that we additional need

to denote that transmission as originating with one of the sexes. In particular, βXYij

are transmission rates from site X in sex i to site Y in sex j and, as before, γXi are

clearance rates for sex i and site X and νXYi are autoinoculation rates in sex i from

site X to site Y . Then the matrix F has the form

F =

 0 Fji

Fij 0

 , (4.28)

where

Fji =


βOOji βGOji βOOji + βGOji

βOGji βGGji βOGji + βGGji

0 0 0

 . (4.29)
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The V matrix has the form

V =

Vi 0

0 Vj

 , (4.30)

where

Vi =


νOGi + γOi + µ 0 −γGi

0 νGOi + γGi + µ −γOi
−νOGi −νGOi γOi + γGi + µ

 . (4.31)

Then V −1 has the form

V −1 =

V −1
i 0

0 V −1
j

 , (4.32)

where

V −1
i =

1

1− pOi qOi − pGi qGi


τOi (1− pGi qGi ) τOi p

G
i q

O
i τOi q

O
i

τGp
O
i q

G
i τGi (1− pOi qOi ) τGq

G
i

τOGi pOi τOGi pGi τOGi

 (4.33)

and, as in the pansexual model above, the τ are average waiting times, neglecting

further infection, in the compartments, and the pi and qi are probabilities for sex i

that the next compartment transfer will be to go to IOGi or from IOGi , respectively.

The next generation matrix K = FV −1 thus has the form

FV −1 =

 0 FjiV
−1
j

FijV
−1
i 0

 , (4.34)

where

FijV
−1
i =


K
O|O
ij K

G|O
ij K

OG|O
ij

K
O|G
ij K

G|G
ij K

OG|G
ij

0 0 0

 (4.35)
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and

K
O|O
ij =

βOOij τOi (1− pGi qGi ) + βGOij τGi p
O
i q

G
i + (βOOij + βGOij )τOGi pOi

1− pOi qOi − pGi qGi
, (4.36)

K
G|O
ij =

βOOij τOi p
G
i q

O
i + βGOij τGi (1− pOi qOi ) + (βOOij + βGOij )τOGi pGi

1− pOi qOi − pGi qGi
, (4.37)

K
OG|O
ij =

βOOij τOi q
O
i + βGOij τGi q

G
i + (βOOij + βGOij )τOGi

1− pOi qOi − pGi qGi
, (4.38)

K
O|G
ij =

βOGij τOi (1− pGi qGi ) + βGGij τGi p
O
i q

G
i + (βOGij + βGGij )τOGi pOi

1− pOi qOi − pGi qGi
, (4.39)

K
G|G
ij =

βOGij τOi p
G
i q

O
i + βGGij τGi (1− pOi qOi ) + (βOGij + βGGij )τOGi pGi

1− pOi qOi − pGi qGi
, (4.40)

K
OG|G
ij =

βOGij τOi q
O
i + βGGij τGi q

G
i + (βOGij + βGGij )τOGi

1− pOi qOi − pGi qGi
. (4.41)

Hence, we find the basic reproduction number is

R0 =

√
1

2
R2 +

1

2

√
R4 − 4

(
K
O|O
FMK

G|G
FM −K

O|G
FMK

G|O
FM

)(
K
O|O
MFK

G|G
MF −K

O|G
MFK

G|O
MF

)
,

(4.42)

where

R2 = K
O|O
FMK

O|O
MF +K

G|G
FMK

G|G
MF +K

O|G
FM F

G|O
MF +K

G|O
FM F

O|G
MF . (4.43)

We see that the quantity R is the R0 of the system under the either (or both) of

the balance conditions KO|O
FMK

G|G
FM = K

O|G
FMK

G|O
FM and K

O|O
MFK

G|G
MF = K

O|G
MFK

G|O
MF . The

balance terms appearing in the form of R0 are analogous to the one we saw in the

pansexual model above, but we now have one term for each sex instead of one for

the whole population.

The influence of the two-site and the heterosexual aspects of the heterosexual two-

site model can be clearly seen in the form of R0 here. The hallmark of the one-site

heterosexual transmission model, similarly to vector–host models, is the geometric
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average of the cross-sex elements of the next generation matrix: for the the model

Ṡi = µ
(µ

2
− Si

)
+ γiIi − SiβjiIj,

İi = SiβjiIj − γiIi,
(4.44)

we find

R0 =
√
KMFKFM =

√
(βFMτF )(βMF τM), (4.45)

where τi = 1
γi+µ

. In the two-site heterosexual model, although we do not have direct

geometric averaging, some patterns are preserved: in eq. 4.42, products (cycles)

of the cross-sex elements replace the terms of the homogeneous-contacts model

(eq. 4.12) and a square root is taken at the end, as with geometric averaging. In

fact, we recover geometric averaging under certain limiting cases, as shown below.

4.3.1 Limiting cases

Here we consider two limiting cases: i) independence of sites and ii) one site is a

“dead-end" infection. In the first case, we assume that there is no cross-transmission

(βOG = βGO = 0) and no autoinoculation (νOG = νGO = 0). Under these assump-

tions, the two sites are essentially independent as KO|G = KG|O = 0, and the basic

reproduction number is

R0 = max

(√
K
O|O
FMK

O|O
MF ,

√
K
G|G
FMK

G|G
MF

)
= max

(
RO

0 , R
G
0

)
. (4.46)

That is, since there is no autoinoculation, R0 is the maximum of the of the basic re-

production number for the model with only oral sites RO
0 and the basic reproduction

number of the model with only genital sites RG
0 .

In the second case, we assume, without loss of generality, that the oral sites are a

“dead-end" infection, that is, oral sites do not transmit the infection (βOG = βOO =
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νOG = 0). Then KO|O = KO|G = 0, and, letting τi = 1
γi+µ

,

R0 =

√
K
G|G
FMK

G|G
MF =

√
(βGGFMτF )(βGGMF τ

G
M) (4.47)

under these assumptions. Thus, despite νGO 6≡ 0, R0 is the same (c.f. eq. 4.45) as

the basic reproduction number of the model with only genital sites, RG
0 . This result

inintuitive, as additional time spent in compartments IO or IOG over the infective

lifetime will not produce any additional infections.

4.3.2 Type reproduction number

The type reproduction number for either gender, assuming the other is not a reser-

voir, is the square of the basic reproduction number. This result is sensible because

the system is similar to vector–host models for which similar results hold (Roberts

and Heesterbeek, 2003). The type reproduction number for, without loss of gener-

ality, the genital site, as long as the oral sites are not a reservoir, that is, as long as√
K
O|O
FMK

O|O
MF < 1, is

TG =
A

2B
+

1

2B

√
A2 − 4B

(
K
O|O
FMK

G|G
FM −K

O|G
FMK

G|O
FM

)(
K
O|O
MFK

G|G
MF −K

O|G
MFK

G|O
MF

)
,

(4.48)

where

A = K
O|G
FMK

G|O
MF +K

G|O
FMK

O|G
MF , (4.49)

B = 1−KO|O
FMK

O|O
MF (4.50)

Although the form is similar to that of the basic reproduction number (eq. 4.42),

there is no final square root because the type reproduction number considers cycles,

and there is a term, 1 − K
O|O
FMK

O|O
MF , which takes into account the strength of the

infection at the other site.
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4.4 Conclusion

In this chapter, I developed a model of a multisite infectious disease and derived

expressions for the basic reproduction number under a number of different assump-

tions and limiting cases. To the best of our knowledge, it is the first analysis of such

a model.

We find that autoinoculation adds considerable complexity to the analysis of two-

site models. There is a possibility that neglecting autoinoculation may potentially

result in severe model misspecification, that is, making incorrect estimations and

conclusions as a direct result of using a model that does not fully capture the dy-

namics. Fortunately, the analysis of the two-site model with homogeneous contacts

gives a reasonably clear picture of how the relative magnitudes of the autoinocu-

lation parameters (and, similarly, the clearance parameters) change the impact of

heterogeneity in the same-site and in the cross-site transmission parameters (Fig-

ures 4.4 and 4.5).

Regardless of the magnitudes of the autoinoculation and clearance parameters, het-

erogeneity in the cross-site next generation matrix terms decreases R0 while hetero-

geneity in the same-site next generation matrix terms increases it. For a fixed total

transmission rate, the extrema of R0 occur when transmission is predominantly

through one transmission pathway: the extremum is a maximum when that trans-

mission pathway is same-site and a minimum when it is cross-site. Moreover, the

constrained transmission parameter space is partitioned by two planes into four

regions in which R0 is either larger or smaller than its value on the partition.

That heterogeneity affects the pathways differently is surprising given that hetero-

geneity is classically associated with larger R0 (Dushoff and Levin, 1995; Diek-

mann and Heesterbeek, 2000). Robertson et al. (2013) investigated the effect of

heterogeneity in transmission pathways for a waterborne disease model, consider-

ing heterogeneity in the direct (person-to-person) and indirect (person-to-water-to-

person) pathways among different communities as well as their relative contribu-
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tions. They found that although it was possible to have high heterogeneity and a low

R0 by minimizing the connectendess of communities (i.e. a low indirect transmis-

sion), their measure of heterogeneity, namely the variance of the direct transmission

plus twice the covariance of the direct and indirect transmission, was predictive of

and increased with R0. Our results, then, suggest that the effects of heterogeneity in

transmission pathways can be very dependent on the structure of the transmission

pathways and, thus, should be investigated more broadly.

We are able to comment on the effects of heterogeneity in the clearance and au-

toincoulation parameters as well. Heterogeneity in the clearance parameters breaks

the symmetry between the two same-site transmission terms when considering R0

on the plane βOO + βGG + βOG + βGO = k, and heterogeneity in the autoinoculation

parameters breaks the symmetry in the cross-site transmission terms. In particu-

lar, increasing γG relative to γO (genital sites clear faster) moves the intersection

of the three lines of the partitioning planes so that βOO < βOG = βGO < βGG.

That is, for a fixed sum βOO + βGG, R0 achieves its minimum at a point where

βOO < βGG. Increasing νOG relative to νGO moves the intersection point so that

βOG < βOO = βGG < βGO. Thus for a fixed total βOG + βGO, R0 achieves its maxi-

mum at a point where βGO is greater than βOG.

The analysis of the type and target reproduction numbers for the model with homo-

geneous contacts gives a quantitative way to describe how much more difficult it is

to control an infection by targeting a specific pathway rather than a whole site. This

may be relevant in the context of HPV, when considering condom use and vacci-

nation as controls. Further, we note the importance of the product of the cross-site

infection terms to the basic, type, and target reproduction numbers, a somewhat

counterintuitive result. In the pansexual model, KO|G and KG|O never appear any-

where but as the product KO|GKG|O. This structure drives the results about cross-

site heterogeneity. It may also have implications for the efficacy of different control

methods, since a product and a sum are affected by their terms differently and have

different trade-off structures.
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Although extending the pansexual two-site model to a heterosexual one adds even

more complexity, we can see the contributions of the two-site aspect, which balances

between taking a maximum and taking a geometric average, and the heterosexual

aspect, which incorporates vector–host-like dynamics by taking a square root of

transmission cycles between the two sexes. Further, the behavior of the model near

limiting cases is clear. However, further analysis is needed to fully flesh out the

dynamics of the model more generally.

These results could be generalized to models with more than two sites. Because of

the shape of the F matrix, the R0 of an n-site model will be the largest eigenvalue

of the n × n submatrix of K = FV −1 containing only those rows and columns cor-

responding to infection at a single site. Thus, combinatorial tools might be helpful

to study R0 in this generalized context.
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4.5 Appendix

Here, we consider potential locations for extrema of R0 in (βOO, βGG, βOG, βGO)

space for the identical site model using Lagrange multipliers. Under the identical

site assumption, we write the following derivatives:

∂R

∂βOO
=

1

2

pτOG + τ(1− pq)
1− 2pq

+
1

4

1

2R−KO|O −KG|G

(
2
(
KO|O +KG|G

)(pτOG + τ(1− pq)
1− 2pq

)
−4

(
βGGτ

(
τ + 2pτOG

)
1− 2pq

)) (4.51)

∂R

∂βGG
=

1

2

pτOG + τ(1− pq)
1− 2pq

+
1

4

1

2R−KO|O −KG|G

(
2
(
KO|O +KG|G

)(pτOG + τ(1− pq)
1− 2pq

)
−4

(
βOOτ

(
τ + 2pτOG

)
1− 2pq

)) (4.52)

∂R

∂βGO
=

1

2

pτOG + τpq

1− 2pq

+
1

4

1

2R−KO|O −KG|G

(
2
(
KO|O +KG|G

)(pτOG + τpq

1− 2pq

)
+4

(
βOGτ

(
τ + 2pτOG

)
1− 2pq

))
,

(4.53)

∂R

∂βOG
=

1

2

pτOG + τpq

1− 2pq

+
1

4

1

2R−KO|O −KG|G

(
2
(
KO|O +KG|G

)(pτOG + τpq

1− 2pq

)
+4

(
βGOτ

(
τ + 2pτOG

)
1− 2pq

))
.

(4.54)
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The method of Lagrange multipliers under the constraint that βOO + βGO + βOG +

βGG = k is constant, gives the system of equations in which all of the derivatives

are equal. The conditions ∂R
∂βOO

= ∂R
∂βGG

and ∂R
∂βOG

= ∂R
∂βGO

give that βOO = βGG and

βGO = βOG respectively. The last condition imay be found as follows:

0 =
∂R

∂βGG
− ∂R

∂βOG
,

=
1

2
τ +

1

4

1

2R−KO|O −KG|G

(
2
(
KO|O +KG|G

)
τ

−4
(
βGO + βOO

) τ (τ + 2pτOG
)

1− 2pq

)
,

=
(

2R−KO|O −KG|G
)
τ +

(
KO|O +KG|G

)
τ − 2

(
βGO + βOO

) τ (τ + 2pτOG
)

1− 2pq
,

= R−
(
βGO + βOO

) (τ + 2pτOG
)

1− 2pq
.

(4.55)

Under the assumption that βOO = βGG and βGO = βOG, R simplifies to the follow-

ing,

R =

(
(βOO + βOG)pτOG + βOOτ(1− pq) + βOGτpq

1− 2pq

)
+

[(
(βOO + βOG)pτOG + βOOτ(1− pq) + βOGτpq

1− 2pq

)2

+

(
(βOG)2 − (βOO)2

)
τ
(
τ + 2pτOG

)
1− 2pq

]1/2

=
(βOO + βOG)pτOG + βOOτ(1− pq) + βOGτpq

1− 2pq

+
(βOO + βGG)pτOG + βOGτ(1− pq) + βOOpqτ

1− 2pq

=
(βOO + βGG)(τ + 2pτOG)

1− 2pq

(4.56)

It is clear that this condition gives no additional information. All potential interior
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extrema lie on the line described by
{
βOO = βGG, βOG = βGO

}
. Along this line

R0 =
k(pτOG + τ/2)

1− 2pq
. (4.57)

Setting the general identical site equation for R0 equal to this value, we find solu-

tions on two planes, namely
{
βOG + βGG = k

2

}
and

{
βOG + βOO = k

2

}
.
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CHAPTER V

Age effects and temporal trends in HPV-related and

HPV-unrelated oropharyngeal and oral cavity

squamous cell carcinoma in the United States

5.1 Introduction

In 2013, the National Cancer Institute published its Annual Report to the Nation on

the Status of Cancer, 1975–2009, highlighting the trends in the burden of human

papillomavirus (HPV) associated cancers in the United States. Although total can-

cer incidence has recently declined, incidence of HPV-positive oropharyngeal (OP)

cancers have increased proportionally (Chaturvedi et al., 2011; Jemal et al., 2013),

so much so as to be called an epidemic by some (Marur et al., 2010). There appear

to be two major etiologies of head and neck squamous cell carcinomas (HNSCC),

one with alcohol and tobacco use as predominant etiologic factors (Sturgis et al.,

2004), and one related to HPV infection and subsequent HPV genome integration,

each with its own prognosis, risk-factor profiles, and genetic markers (Gillison et al.,

2012a). HPV-positive cancers appear to be limited to certain subsites of the head

and neck, particularly in the oropharyngeal region, and, on the basis of molecu-

lar and epidemiologic data, head and neck subsites have been designated as HPV-

related or HPV-unrelated (Chaturvedi et al., 2008; Brown et al., 2011, 2012). Not

all cancers at HPV-related sites are HPV-positive, but the classification is useful in
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the abscence of information about tumor HPV-status in cancer registries.

Analysis of HPV-related oral (oralpharyngeal and oral cavity) squamous cell carcino-

mas (OSCC) incidence in the Surveillance, Epidemiology, and End Results (SEER)

cancer registries, have identified gender disparities but diminishing racial differ-

ences in the United States (Brown et al., 2011, 2012). Overall OSCC incidence rates

for men are two to four times that of women across all races, though this varies

slightly for the different cancer subsite groups (Brown et al., 2012). Racial differ-

ences between rates of OSCC in white and black women have largely disappeared.

Although rates for black men have historically been higher than for white men, de-

clining rates among black men have been met by a recent increase in incidence for

white men (Brown et al., 2011). These results, however, only address overall tem-

poral trends and neither distinguish between age, period and birth cohort trends

nor make implications about the underlying biological and epidemiological causes.

Multistage clonal expansion (MSCE) models, a class of Markov models, capture

the initiation–promotion–progression hypothesis of tumorigenesis, in which nor-

mal cells undergo a genetic transformation that leads to clonal expansion, followed

by transformations that lead to malignancy (Moolgavkar and Venzon, 1979; Mool-

gavkar and Knudson, 1981; Luebeck and Moolgavkar, 2002; Meza et al., 2008).

Using models that account for the natural history of cancers is important because

the effects of carcinogens acting as initiators or promoters results in different tem-

poral trends in the the age-specific incidence of cancer, which can be inferred from

population level data (Heidenreich et al., 1997; Meza et al., 2008). MSCE models

have been shown to capture temporal patterns of cancer risk and provide insight

into the underlying mechanisms leading to population level cancer incidence pat-

terns Meza et al. (2008, 2010b); Luebeck and Moolgavkar (2002); Luebeck et al.

(2013). We demonstrate that MSCE models with temporal effects for period and

birth cohort separately can better identify temporal trends and place them in the

context of putative underlying cancer mechanisms.
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Demographic HPV-related HPV-unrelated Oral tongue

White men 32634 27535 11106
Black men 4491 4668 977
White women 9072 13583 7135
Black women 1313 1561 474

Table 5.1: Number of cases of oral (oropharyngeal and oral cavity) squamous cell
carcinoma among ages 0–84 between 1973–2011 by race and cancer subsite group.

5.2 Data and methods

5.2.1 Data

We consider a subset of head and neck cancers reported to the Surveillance, Epi-

demiology, and End Results (SEER) cancer registries. We use the International Clas-

sification of Diseases (ICD) codes, as in Chaturvedi et al. (2008); Brown et al. (2011,

2012), to group sites into HPV-related, HPV-unrelated except for oral tongue, and

HPV-unrelated oral tongue. A full list of the codes and sites is provided in the sup-

plementary information. For brevity, we will henceforth denote these subgroups as

HPV-related, HPV-unrelated, and oral tongue, respectively.

We use SEER 9 data 1973–1991, SEER 13 data 1992–1999, and SEER 18 data

2000–2011, in order to leverage the increased sample size in later years. We re-

fer to this data set as SEER max. Concerns that can arise when combining these

data sets—relating to changing racial composition, urban/rural divides, and the

geographical distribution of new SEER registries— are minimized in this study by

performing separate analyses for white men, black men, white women, and black

women. Only white and black races are considered in this analysis, and we do not

stratify by Hispanic/non-Hispanic ethnicity; SEER reports incidence rates by ethnic

origin only for all races combined, white, and non-white. We consider only ages 0–

84, as all cases for ages 85 and over are aggregated in the database. Table 5.1 gives

the total number of cases for ages 0–84 for each group between 1973 and 2011.
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5.2.2 Two-stage Clonal Expansion Models

The two-stage clonal expansion (TSCE) model was developed by Moolgavkar, Ven-

zon, and Knudson (Moolgavkar and Venzon, 1979; Moolgavkar and Knudson, 1981)

to capture the initiation–promotion–progression paradigm. Moolgavkar, Venzon,

and Knudson described initiation through a non-homogenous Poisson process and

clonal expansion and malignant conversion through a birth–death–mutation pro-

cess, the details of which are described at length elsewhere Moolgavkar and Venzon

(1979); Moolgavkar and Knudson (1981); Moolgavkar and Luebeck (1990); Meza

et al. (2008). There are four, possibly age dependent, parameters: initial mutation

rate µ0(t), growth rate α(t) and death rate β(t) of initiated cells, and malignant mu-

tation rate µ1(t). In Figure 5.1, we present a schematic of the model, which includes

the possible time-dependent effects of HPV or other factors on the parameters.

Normal Cells 
X(t) 

Initiated Cells 
Y(t) 

Malignant Cells 
Z(t) 

Initiation 
X(t)μ0(t) 

Malignant 
conversion 

μ1(t) 

Clonal expansion 
α(t) 

Cell death 
β(t)  

Non-homogenous 
Poisson Process 

Birth-Death-Mutation 
Process 

HPV and other 
factors changing with 
period and cohort 

Figure 5.1: Schematic of the two-stage clonal expansion model with period and
cohort dependencies.

If the parameters α, β, µ0, and µ1 are not age-dependent, the closed form solutions
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for the survival and hazard are

S(t) =

(
q − p

qe−pt − pe−qt

)r
, (5.1)

h(t) =
rpq(e−qt − e−pt)
qe−pt − pe−qt

, (5.2)

where

r =
µ0X(0)

α
, (5.3)

p, q =
1

2

(
−(α− β − µ1)∓

√
(α− β − µ1)2 + 4αµ1

)
. (5.4)

The parameters themselves are not identifiable in the model given the age-specific

incidence, but r, p, and q are identifiable combinations. Note that −(p + q) is the

net clonal cell proliferation α− β − µ1, and pq = −αµ1. Further, q ≈ µ1/(1− β
α

) and

p ≈ −(α− β) (Moolgavkar et al., 2009). Hence, we identify (multiplicative) effects

on r with effects on initiation, effects on p with effects on promotion, and effects on

q with effects on malignant conversion.

Under the TSCE model, the sojourn time Ts of a tumor, the time between the time

of tumor onset (first premalignant mutation) and the time of clinical detection can

be approximated by

Ts ≈ −
ln(q/(−p)
−p

≈ −
ln
(
αµ1/(α− β)2

)
α− β

(5.5)

(as long as µ1 � 1 and µ1 < p2/α) (Meza et al., 2008; Schöllnberger et al., 2010;

Luebeck et al., 2013).

In the general case of age-dependent parameters, that is α, β, µ0, and µ1 are arbi-

trary functions of t, numerical solutions can be found (Little et al., 2002; Crump

et al., 2005), although we will not consider that case in this investigation. This

model formulation may be extended to three stages and other more complex mod-

els and has been applied successfully to a variety of cancer types (Hazelton et al.,
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2006; Jeon et al., 2006, 2008; Luebeck and Moolgavkar, 2002; Luebeck et al., 2008;

Little et al., 2002; Meza et al., 2005, 2008, 2010b,a; Dewanji et al., 2011).

5.2.3 Age–period–cohort models

Age–period–cohort (APC) models are a class of epidemiologic models used to disen-

tangle effects of age, period (factors affecting all people alive at a given time), and

birth cohort (factors affecting all people born in a given time period) given preva-

lence (e.g. HPV prevalence) or incidence (e.g. incidence of oral cancer). The tradi-

tional model posits that incidence rates λ are described by a multiplicative model

with age (A), period (P ), and birth cohort (C) (Holford, 1983, 1991; Clayton and

Schifflers, 1987a,b). This is usually treated in the logarithmic form, in which we fit

the model

log λ = β0 + βA(A) + βP (P ) + βC(C), (5.6)

where β0 is a constant and βA, βP , and βC are some functions to be determined,

often constained to be discrete functions or splines.

One drawback of full APC models is their inherent unidentifiability: P = A + C.

To resolve the unidentifiability, one may consider only two effect models, typically

age–period or age–cohort, or constrain the age effects to have a given shape, such

as the hazard function of a MSCE model, as we do in this analysis (Holford, 1991;

Luebeck and Moolgavkar, 2002; Meza et al., 2008; Luebeck et al., 2013).

Given a set of observed cases {xi} with corresponding population-at-risk sizes {ni},

we derive a likelihood for the APC model in the following way. We assume that

observed incident cases xi for a given population all of age Ai at time Pi from birth

cohort Ci = Pi−Ai are Poisson distributed with mean µi = ni ·λ(Ai, Pi, Ci), where λ

is the incident rate function dependent on parameter β0 and functions βA, βP , and

βC . Observations are assumed to be independent, and thus the likelihood for the
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whole data set of observations {xi} is given by

L(β0, βA, βP , βC) =
∏
i

e−µiµxii
xi!

. (5.7)

5.2.4 APC–TSCE hybrid models

In a general APC model, the age effects are not constrained, but if we are working

within the TSCE framework, we can restrict the age effects to have the shape of the

TSCE hazard:

log λ = β0 + log [h(t, r, p, q)] + βP (P ) + βC(C). (5.8)

This added constraint theoretically resolves the non-identifiability problem in the

full APC model (Holford, 1991; Luebeck et al., 2013). In the case of constant pa-

rameters, the multiplicative assumption of the model translates to an assumption

that the period and cohort effects are on the rate of initiation µ0 since r = µ0X(0)/α

and X(0) and α are considered fixed:

λ = − [f(P,C) · r]
(
pq(e−qt − e−pt)
qe−pt − pe−qt

)
. (5.9)

However, depending on the mechanism of carcinogenesis for a given cancer and

the nature of the risk factors captured by the temporal trends, it is possible that

the effects on promotion or malignant conversion rates rather than initiation rates

are more realistic. Thus, by considering slightly different models with period or

cohort effects acting on the promotion or malignant conversion parameters, one can

investigate the impact of period and cohort on different stages of carcinogenesis. In

this analysis we consider models of the form

λ = h(t, r(P,C),p(P,C),q(P,C)). (5.10)

Here r(P,C) = r · θP (P ) · θC(C) where θP and θC are natural splines, r is the value
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of r at the reference period and cohort, and p and q are defined similarly.

5.2.5 Optimization

The negative log-likelihood (NLL) for observed cases {xi}with corresponding population-

at-risk sizes {ni} under these models is given by

NLL
(
r, p, q, {θP , θC}r, {θP θC}p, {θP , θC}q

)
= −

∑
i

(−µi + xi log µi − xi!) , (5.11)

where µi = ni ·λ(r, p, q, Pi, Ci) and {θP , θC} are the parameters of the natural spline

functions. The negative log likelihood, under the assumptions of each model, was

minimized using a Davidon-Fletcher-Powell optimization algorithm in R (v. 3.1) (Lue-

beck and Meza, 2013). We use the Akaike Information Criterion (AIC) as a measure

of model fit. We use the formulation AIC=2(neg. log-likelihood+k) where k is the

number of parameters. Hence, a more negative AIC represents a better fit, and one

point gain in the negative log-likelihood is equivalent to reducing model complexity

by one parameter.

5.3 Results

5.3.1 Age-adjusted incidence

We plot the age-adjusted incidence rates of oral squamous cell carcinomas (OSCCs)

reported in SEER max (1973–2011) by subsite group in Figure 5.2; rates are ad-

justed to the population in the year 2000. For HPV-related sites, incidence rates

in white and black women show little to no trend. There appears to be a slight

downward trend for black men, but a clear upward trend is seen for white men.

For HPV-unrelated sites, all four groups peak in the early 1980s and trend down

afterward. For oral tongue sites, incidence for white men has remained relatively

constant, black men and black women have trended down (slightly for women and
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more strongly for men), and white women have trended slightly up.
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Figure 5.2: Age-adjusted incidence rates of oral squamous cell carcinoma among
ages 30–84 by cancer subsite group: (a) HPV-related, (b) HPV-unrelated, and (c)
oral tongue oropharyngeal. Please note the change in axes scale for the oral tongue
cancer.

5.3.2 Incidence by period and cohort

In Figure 5.3a, it appears that incidence of HPV-related OSCCs increased dramati-

cally for the birth cohorts between 1940 and 1970. When age-specific incidence is
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stratified by period, we see an increasing trend after the early 1990s (Figure 5.3b).

For the HPV-unrelated OSCCs, we see a decrease in incidence with each birth cohort

decade as well as by period (Figure 5.3c and d). Yearly variation in incidence make

interpretation of the other race–cancer-site pairs difficult, and we do not include

them here.
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(a) HPV-related incidence by birth co-
hort.
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(b) HPV-unrelated incidence by birth co-
hort.
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(c) HPV-related incidence by period.
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(d) HPV-unrelated incidence by period.

Figure 5.3: Incidence rates by period and cohort of oral squamous cell carcinoma
among white males for HPV-related and HPV-unrelated subsites groups.
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5.3.3 APC–TSCE model results

We constrain the age effects to the form of a TSCE hazard. We consider period and

cohort effects on our proxies for tumor initiation r, promotion p, and malignant

conversion q. Further, to force the cohort and period effects into a more realistic

form, we use natural splines with eight degrees of freedom for cohort effects and

five for period, corresponding to approximately one degree of freedom for twelve

and eight years respectively. We choose one model for all demographics in each

of the three cancer subsite groups. We determined that period and cohort effects

on initiation (r) gave the best model fits for all three subsite groups as this model

gave the lowest AIC for most demographics in each category. A table of AIC for

the considered models is shown in the appendix. For comparison to this APC–TSCE

model, we fitted the standard APC model as well; again, these results may be found

in the appendix.

In Figure 5.4, we present the model hazard (age-specific cancer incidence function)

for HPV-related, HPV-unrelated, and oral tongue OSCCs, for each of the four consid-

ered groups under the model that considers cohort and period effects on r. For all

three OSCC subsite groups, the hazard begins to increase earlier for black men than

white men and earlier for black women than white women, and the asymptotes for

white and black men are higher than for white and black women. The shape of the

hazard for the oral tongue sites is qualitatively different from that of the other two.

Cohort effects and period effects are also plotted for this model in Figure 5.4. The

cohort and period effects are plotted on a log-scale to emphasize that, for example,

an effect of 0.5 and an effect of 2 are equally different from the reference. To in-

terpret the period and cohort effects, note that the product of the two effects gives

the modeled relative incidence compared to that of the members of the reference

group, here the 1930 birth cohort in 1975.

We observe that, for HPV-related OSCCs, there is a five-fold increase in relative

cohort effect for white women between 1900 and 1930 followed by another five-

109



fold increase between 1930 and 1980, a pretty dramatic change overall. Further, the

overall cohort trends for the oral tongue subsites are somewhat similar to those of

HPV-related subsites, while those of the HPV-unrelated are different from the other

two. Finally, all three cancer subsite groups show decreasing period trends for most

demographics, though the period effects for HPV-unrelated and oral tongue OSCC

incidence for white women do not follow this pattern.

The estimates of the biological parameters for initiation r, promotion p, and ma-

lignant conversion q are presented in Table 5.2. The values of the biological pa-

rameters display some clear patterns. For all three cancer subsite groups, men have

a larger initiation r than women, regardless of race, and black men and women

have a larger promotion p than their white counterparts. Further, the promotion p

is very similar for the HPV-related and HPV-unrelated subsites. We can see the ef-

fect of the different values of the biological parameters reflected in the plot of the

hazards (Figure 5.4). A larger initiation r corresponds to a higher final asymptote

(with the exception of black and white women in the HPV-unrelated plot), since the

asymptotic value of the hazard h(t) is r · (−p) and the deviance in p is relatively

small. Further, a larger promotion p corresponds to an earlier increase in the haz-

ard. We estimate mean sojourn time Ts from the biological parameters: black men

and women have shorter sojourn times, and, generally, the sojourn time is shorter

for women than for men. White men and women for HPV-related OSCCs are the

one exception.

5.4 Discussion

5.4.1 Main findings

Trends in incidence of carcinoma at the three groups of subsites of the orophar-

ynx and oral cavity, namely HPV-related sites, HPV-unrelated sites (except for oral

tongue), and oral tongue sites, appear to be primarily driven by period and birth
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(b) HPV-unrelated hazards.
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(d) HPV-related cohort effects.
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(e) HPV-un. cohort effects.
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(f) Oral tongue cohort effects.
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(g) HPV-related period effects.
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(h) HPV-un. period effects.
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Figure 5.4: Hazard, cohort effects, and period effects for the cohort-and-period-
effects-on-r APC–TSCE models of oral squamous cell carcinoma by race and cancer
subsite group.
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cohort effects on the cancer initiation rate rather than the cancer promotion rate

or malignant conversion rate. For all three subsite groups, too, men had higher es-

timated initiation rates than women of the same race, and black men and women

had higher estimated promotion rates than white people of the same sex. Cancer

at the HPV-related and HPV-unrelated sites had very similar estimated promotion

rates, which were different from those of cancers of the oral tongue.

The three subsite groups have largely distinct patterns of period and birth cohort

effects on their estimated initiation rates. HPV-related carcinomas, for instance, are

strongly cohort driven in this analysis, a result that is consistent with other findings

that prevalence of sexually transmitted infections are usually related to cohort fac-

tors (Gravitt et al., 2013). In particular, in Chapter III, we found HPV prevalence

itself to be strongly cohort driven. Although the overall patterns between the sub-

site groups are distinct, there are some similarities. The period effects for all three

sites have similar trajectories, with the notable exception of white women, which

could be related to their lower incidence. Additionally, the cohort effects for the oral

tongue sites are similar, if less pronounced, to those for the HPV-related sites, for

all demographic groups but white women. This finding may suggest the etiology of

cancer at the oral tongue sites may also be influenced by changes in sexual behavior.

The separation of cohort and period effects in this analysis reveals some trends that

were not apparent from the age-adjusted incidence rates alone. In particular, the

age-adjusted rates for HPV-related OSCCs in white women remain nearly constant,

but this analysis suggests that this seeming lack of trend belies a combination of

increasing cohort and decreasing period trends. A similar effect is seen for the age-

adjusted rates of oral tongue cancer for white men. Trends in the age-adjusted inci-

dence may be a result of factors that affect everyone in a given time period or, more

subtley, be caused by changes between one birth cohort to the next. One can begin

to see the effects of these factors when plotting age-specific incidence stratified by

different time periods or birth cohorts, as we do for white men for the HPV-related

and HPV-unrelated subsite groups in Figure 5.3. Trends in period or birth cohort for

113



age-specific incidence can either exaggerate trends in the age-adjusted incidence

when the period and birth cohort trends align or be masked when the trends are

opposing. However, the trends in period and cohort can sometimes be difficult to

see in the data alone, especially for relatively rare diseases that have large varia-

tion in incidence, and so the results of the age–period–cohort models are especially

valuable.

As we saw in Figure 5.4, the model hazard begins to increase earlier in life for

black men and women for all of the subsite groups, which is reflected in the higher

estimated cancer promotion rates for those demographics. Although one might, if

looking only at the HPV-related figure, conjecture that higher oral prevalence of

HPV among black Americans could be at fault, it seems more likely, taking the

analysis of the other two groups into account, that it is a factor of other differences

in the two populations (smoking, drinking, or other risk factors and exposures).

Further, men of both races have higher hazards than the women of the same race,

which is reflected, in part, in higher estimated rates of cancer initiation. Again,

although this is consistent with men having higher oral prevalence of HPV than

women, the consistency across the subsite groups suggests that this effect is more

likely due to the underlying differences in biology.

Analysis of the estimated biological parameters for the three groups, the promotion

parameter p in particular, suggests that HPV-related and HPV-unrelated cancers are

distinct from the cancer of the oral tongue. Interestingly, the estimated rates of

promotion p and the sojourn times are very similar between the HPV-related and

HPV-unrelated OPSCCs and are quite different from those of oral tongue cancer,

which seems to progress more slowly; the mean sojourn time for the oral tongue

sites is about 2–5 years longer than the other two. The similarity between the HPV-

related and HPV-related promotion parameter and estimated sojourn times suggest

that the tumor dynamics are very similar for these sites once the tumor has been ini-

tiated, possibly through gene inactivation, whether by HPV or alcohol and tobacco

use. This is in contrast with the known differences in cancer survival between HPV
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related and HPV unrelated cancers (Chaturvedi et al., 2011).

5.4.2 Comparison to other literature

To better understand if the differences between the promotion parameters at the dif-

ferent subsite groups of the oropharynx and oral cavity are significant (HPV-related:

-0.20 to -0.26; HPV-unrelated: -0.20 to -0.29; oral tongue: -0.11 to -0.21), we com-

pare with findings from colorectal and esophogeal adenocarcinoma. Estimates of

the promotion parameters for colorectal adenocarcinomas in United States (SEER)

were -0.14, -0.19, and -0.20 for men for the proximal colon, distal colon, and rec-

tum, and -0.14, -0.18, and -0.18 for women (Meza et al., 2010c). Estimates of the

promotion parameter p for esophageal adenocarcinoma (SEER) in white men and

women range from -0.16 to -0.20 Jeon et al. (2006). Hence, this analysis suggests

that not only are we seeing significant differences between the dynamics of oral

tongue carcinoma and the other sites, but also among the demographics for each

subsite group.

That the promotion parameter for cancer of the oral tongue is significantly dif-

ferent from that of the other two is consistent with the findings of other recent

studies (Saba et al., 2011; Patel et al., 2011; Brown et al., 2012) that observed age-

and sex-specific incidence that seem to distinguish it from the other sites. This has

led to suggestions that cancer of the oral tongue may have a different etiology from

smoking and drinking (Saba et al., 2011) or HPV (Patel et al., 2011; Saba et al.,

2011), possibly bacterial/viral infection or genetic abnormalities (Saba et al., 2011;

Brown et al., 2012). Our analysis of period and cohort effects suggests that changes

in oral tongue cancer incidence by birth cohort are somewhat similar to those for

HPV, which may suggest that the etiology of oral tongue cancer is also linked to

changing sexual mores and practices.
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5.4.3 Strengths and limitations

As with any mathematical model, the modeling framework underlying this analysis

is a simplification of the complex biological underpinnings of tumorigenesis and

thus neglects a number relevant factors. Additionally, as with other SEER-based

studies, our work is limited by the uncertainty in classification of sites as presumed

HPV-related or HPV-unrelated. Similarly, this analysis is limited by the lack of al-

cohol and tobacco consumption data in SEER, which precludes the possibility of

controlling for these important risk factors.

The use of a multistage model rooted in the biology of the system, a model which

has been previously developed and validated, offers several advantages in this con-

text. In particular, we are able to assess not only on trends in the data but to also

pose hypotheses on the biological implications (i.e. the initiation, promotion, and

malignant conversion rates and sojourn times) as well; previous studies have not

included biologically motivated carcinogenesis models in their analyses. Addition-

ally, the large sample size afforded by the SEER database allows analysis stratified

by both sex and race.

5.4.4 Implications

This analysis suggests that cancer at HPV-related and HPV-unrelated sites have simi-

lar tumor growth dynamics once initiated. More work is needed to investigate these

dynamics as survival rates for HPV-positive and HPV-negative tumors are drastically

different. Testing for HPV in oropharyngeal carcinomas should become routine and

the results recorded in cancer registries.

This study supports the hypothesis that oral tongue cancer has a different etiology

from either HPV or alcohol and tobacco use. Although, there is little evidence as to

what this etiology is, our analysis offers some additional information that may be

useful to future studies. In particular, the birth cohort trends for oral tongue cancer

appear similar to that of cancer of the HPV-related subsites, suggesting trends in
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sexual behavior may be relevant. That white women have distinctly different period

effect trends for HPV-related (decreasing) and oral tongue (increasing) cancer while

the three other demographics have similar decreasing trends for both groups may

offer additional clues, though it is not clear at this time what those might be.

Further, work is needed to understand why men have higher rates of initiation

than women, for both white and black Americans, at all three subsite groups, a

phenomenon that may be biologically rooted, and why black men and women have

higher promotion rates than their white counterparts, a result of risk factors more

likely influenced by socioeconomics and behavior than biology.

Future studies may be able to include a joint analysis of HPV prevalence and in-

cidence HPV-related oropharyngeal squamous cell carcinomas using extensions of

the two-stage carcinogenesis model. Indeed, such models may be able to shed light

on the similarities and differences in initiation and growth of HPV-related and HPV-

unrelated tumor as well as help quantify the additional risk for oral cancer associ-

ated with HPV infection.
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5.5 Appendix

5.5.1 Subsite classification

Following Chaturvedi et al. (2008); Brown et al. (2011, 2012), we consider squa-

mous cell carcinomas (SCC) of the head and neck at the following fourteen sites

to be HPV-related: C01.9 base of tongue, NOS (not otherwise specified); C02.4 lin-

gual tonsil; C09.0 tonsillar fossa; C09.1 tonsillar pillar; C09.8 overlapping lesion

of tonsil; C09.9 tonsil, NOS; C10.0 vallecula; C10.1 anterior surface of epiglot-

tis; C10.2 lateral wall of oropharynx; C10.3 posterior wall of oropharynx; C10.4

branchial cleft; C10.8 overlapping lesion of oropharynx; C10.9 oropharynx, NOS;

C14.2 waldeyer ring.

We consider the following twenty-five sites to be HPV-unrelated: C03.0 upper gum;

C03.1 lower gum; C03.9 gum, NOS; C04.0 anterior floor of mouth; C04.1 lat-

eral floor of mouth; C04.8 overlapping lesion of floor of mouth; C04.9 floor of

mouth, NOS; C05.0 hard palate; C05.1 soft palate, NOS; C05.2 uvula; C05.8 over-

lapping lesion of palate; C05.9 palate, NOS; C06.0 cheek mucosa; C06.1 vestibule

of mouth; C06.2 retromolar area; C06.8 overlapping lesion of other and unspec-

ified mouth; C06.9 mouth, NOS; C12.9 pyriform sinus; C13.0 postcricoid region;

C13.1 aryepiglottic fold, hypopharyngeal; C13.2 posterior wall of hypopharynx;

C13.8 overlapping lesion of hypopharynx; C13.9 hypopharynx, NOS; C14.0 phar-

ynx, NOS; C14.8 overlapping lesion of lip, oral cavity and pharynx.

We consider the following six oral tongue sites to be HPV-unrelated: C02.0 dorsal

surface of tongue, NOS; C02.1 border of tongue; C02.2 ventral surface of tongue,

NOS; C02.3 anterior 2/3 of tongue, NOS; C02.8 overlapping lesion of tongue; C02.9

tongue, NOS.

5.5.2 APC-TSCE model fitting

In Table 5.3, we present the AIC for the models considered in this analysis.
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Confidence intervals (95%) are presented in Figure 5.5 for the APC–TSCE model

with period and cohort effects on initiation. Markov chain monte carlo (MCMC)

methods were used to estimate covariance matrices for the sixteen parameters in

each case.
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(a) HPV-related hazards.
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(b) HPV-unrelated hazards.

30 40 50 60 70 80

0
5

10
15

Age

H
az

ar
d 

pe
r 

10
0,

00
0

White Men
Black Men
White Women
Black Women

(c) Oral tongue hazards.
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(d) HPV-related cohort effects.
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(e) HPV-un. cohort effects.
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(f) Oral tongue cohort effects.
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(g) HPV-related period effects.
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(h) HPV-un. period effects.
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(i) Oral tongue period effects.

Figure 5.5: Hazard, cohort effects, and period effects for the cohort-and-period-
effects-on-r APC–TSCE models of oral squamous cell carcinoma by race and cancer
subsite group with 95% confidence intervals.
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5.5.3 APC Results

The residual deviance for each unconstrained APC model with natural spline effects

is shown Table 5.4 for each race–gender pair. We use seven degrees of freedom for

age, eight for cohort effects, and five for period, corresponding to approximately

one degree of freedom for eight, twelve, and eight years respectively. Comparison

of values may be made only down columns, not across rows. To avoid issues of

identifiability, we use the age–cohort model. The age and cohort effects are plotted

in Figure 5.6.

White men Black men White women Black women
Model Residual Dev. Residual Dev. Residual Dev. Residual Dev.

HPV-related
Age–Cohort 2300.7 2208.5 2133.6 1817.2
Age–Period–Cohort 2252.4 2176.5 2104.3 1802.5
Age–Period 2564.8 2286.7 2223.5 1844.5

HPV-unrelated
Age–Cohort 2390.0 2209.6 2177.8 2026.5
Age–Period–Cohort 2286.7 2123.5 2119.8 2017.5
Age–Period 2352.0 2277.3 2589.6 2097.2

Oral tongue
Age–Cohort 2466.9 1801.8 2308.6 1282.2
Age–Period–Cohort 2430.4 1785.4 2298.4 1279.3
Age–Period 2454.8 1806.0 2337.5 1294.9

Table 5.4: Residual deviance for APC model fits of oral squamous cell carcinoma
incidence by race and cancer subsite group.
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(a) HPV-related age effects.
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(b) HPV-unrelated age effects.

30 40 50 60 70 80

0
2

4
6

8

Age

In
ci

de
nc

e 
(p

er
 1

00
,0

00
)

White Men
Black Men
White Women
Black Women

(c) Oral tongue age effects.
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(d) HPV-related cohort effects.
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(e) HPV-un. cohort effects.
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(f) Oral tongue cohort effects.

Figure 5.6: Age and cohort effects for APC models of oral squamous cell carcinoma
incidence by race and cancer subsite group.
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CHAPTER VI

Multistage clonal expansion models with

infection-related initation pathways

In this chapter, we outline theory that can connect the dynamics of HPV trans-

mission, as considered in Chapters III and IV, to carcinogenesis in the head and

neck, which was studied in Chapter V. This is the first attempt of which we are

aware to connect infectious disease models at the population level to mechanistic

models of cancer incidence at the population level. However, while we model the

mechanistic process of viral carcinogenesis in a simplified form, we do not include

explicit within-host viral dynamics. We will consider two related multistage clonal

expansion models with infection-related initiation pathways. Given the unidentifia-

bility we observed in the two stage clonal expansion model and the fact that these

models consider a novel combination of (theoretical) data sets, the issue of iden-

tifiability is an important first step to successful parameter estimation and model

inference. Thus we will address the identifiability of the models given age-specific

cancer incidence and age-specific prevalence of HPV using a differential algebra

approach (Eisenberg et al., 2013; Eisenberg, 2013).

As discussed in Chapter V, subsites of the head and neck where cancers are often

found to be HPV-positive are designated HPV-related. However, not all cancers at

these sites are HPV-positive. In this chapter, we develop models that attempt to

differentiate between tumor initiation that is driven by HPV integration into the

genome (IARC, 2007) from carcinogenesis independent of HPV. It is not immedi-
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ately clear whether or not tumors, once initiated by these different pathways, have

the same mechanistic tumor phenotype; in particular, it is not clear whether these

tumors will have the same promotion and malignant conversion dynamics.

The analysis of incidence rates in Chapter V of HPV-related and HPV-unrelated sub-

sites suggests that the dynamics of tumorigenesis may not be that different for the

different pathways once a tumor is initiated. We thus derive the equations for two

similar models, one in which the biology of tumors initiated through HPV-related

and HPV-unrelated pathways is presumed to be the same, and one in which it is

presumed to be different. Schematics of these models are presented in Figure 6.1.

We assume that initiation through HPV and through other pathways are indepen-

dent. We assume the HPV pathway exists at age t with probability P (t), where P (t)

is the prevalence of oral HPV at age t among the considered demographic group .

The initiation rate associated with this pathway, then, includes both HPV integration

into the host genome and initiation of tumorigenesis.

6.1 Same-phenotype model

6.1.1 Model derivation

Let X(t) = X be the fixed number of normal cells, Y (t) the number of initiated

cells, and Z(t) the number of malignant cells. Let µ0 be the rate of initial mutation

for all causes except for HPV. Let ρ be the relative risk of initiation given an HPV

infection at age t. Denote

ν(t) = µ0(1− P (t) + ρP (t)). (6.1)

Let

σ = µ0(ρ− 1), (6.2)
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Figure 6.1: Schematics a multistage clonal expansion models with initiation driven
by infectious disease prevalence assuming HPV-related and HPV-unrelated tumor
have the (a) same or (b) different cancer phenotype.
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so that we may write ν(t) = µ0 +σP (t) to better compare to the model that assumes

different tumorigenesis dynamics for the two pathways. Let α, β, and µ1 be the

growth rate, death rate, and malignant conversion rate as usual. A schematic of the

model is shown in Figure 6.1a.

This model is in fact the two-stage clonal expansion model with age-dependent

initiation rate. We derived these equations (eq. 2.77) in Chapter II. We write them

here to make the dependence on the prevalence P (t) explicit.

∂x1

∂s
(s) = − [α + β + µ1]x1 + β + αx2

1,

∂x2

∂s
(s) = − [α + β + µ1]x2 + 2αx1x2,

∂x3

∂s
(s) = −(µ0 + σP (t− s))Xx3(1− x1),

∂x4

∂s
(s) = −(µ0 + σP (t− s))Xx2,

x1(0) = 1,

x2(0) = −µ1(t),

x3(0) = 1,

x4(0) = 0.

(6.3)

Solving this set of equations for each value of t, we recover the survival S(t) = x3(t)

and hazard h(t) = x4(t) functions.

6.1.2 Identifiability

Next, we examine the identifiability of the model in eq. 6.3, using the differential

algebra approach discussed in Chapter II (Saccomani et al., 2001; Eisenberg, 2013).

As noted there, this approach was developed for rational-function differential equa-

tion models. While eq. 6.3 has a delay term, it appears only in the (known) disease

prevalence input P (t − s), so that we can treat the overall function P (t − s) as a

function of s for any fixed t. The structure of the identifiable combinations holds for
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any value of t, and so the results generalize to all t.

Assuming we have age-specific incidence data and know the prevalence of HPV by

age, the observable quantities in the system of equations are the survival x3 and

hazard x4 as well as the prevalence P .

Proposition 6.1.1. If the survival and hazard functions are known, then the model in

eq. 6.3 is unidentifiable, and µ0X/α, σX/α, α − β − µ1, and αµ1 are the identifiable

combinations.

Proof. For ease of notation denote u(s) := P (t−s). Recall from Chapter II that a set

of input–output equations for a system is a monic, polynomial representation of the

model in terms of only the observed variables (here x3, x4, and u), their derivatives,

and the parameters. We eliminate x1 and x2 as follows. Using the ẋ4 equation,

x2 = − ẋ4

µ0X + σXu
. (6.4)

We plug this into the ẋ2 equation,

ẋ2 = − [α + β + µ1]x2 + 2αx1x2,

0 = ẍ4(µ0X + σXu) + ẋ4 [(µ0X + σXu) ((α + β + µ1)− 2αx1)− σXu̇] ,
(6.5)

and solve for x1,

x1 =
1

2α

[
ẍ4

ẋ4

− σXu̇

µ0X + σXu
+ (α + β + µ1)

]
. (6.6)

We now eliminate all variables but the survival x3 and hazard x4 by plugging x1 into

the ẋ1 and ẋ3 equations,

ẋ1 = − [α + β + µ1]x1 + β + αx2
1,

ẋ3 = −(µ0 + σP (t− s))Xx3(1− x1),
(6.7)
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which, respectively, become our input–output equations,

0 = ẋ2
4

[(
(α− β − µ1)2 + 4αµ1

)((µ0X

σX

)2

+ 2

(
µ0X

σX

)
+ u2

)

−2

(
µ0X

σX

)
ü+ u̇2 − 2uü

]
− 3

((
µ0X

σX

)2

+ 2

(
µ0X

σX

)
+ u2

)
ẍ2

4

+ 2

(
µ0X

σX
+ u

)
u̇ẋ4ẍ4 + 2

((
µ0X

σX

)2

+ 2

(
µ0X

σX

)
+ u2

)
ẋ4

...
x 4

0 = 2ẋ3ẋ4 −
(
µ0X + σXu

α

)
x3ẍ4 + x3ẋ4

(
σX

α
u̇+

(
µ0X + σXu

α

)
(α− β − µ1)

)
(6.8)

which we note are monic under the field R and an appropriate ranking of variables.

As noted in Chapter II, testing identifiability for the full model now reduces to

testing injectivity of the map from the parameters to the coefficients of the input–

output equations. We set each of the distinct coefficients to a symbolic copy of itself

and solve the resulting system of equations to find the following:

σX

α
=
σ̄X̄

ᾱ
,

µ0X

α
=
µ̄0X̄

ᾱ
,

α− β − µ1 = ᾱ− β̄ − µ̄1,

αµ1 = ᾱµ̄1.

(6.9)

We see that it is not possible to solve for all the parameters uniquely, which indicates

that the model (eq. 6.3) is structurally unidentifiable. However, we can see that

µ0X/α, σX/α, α− β − µ1, and αµ1 are a set of identifiable combinations.

We note that by setting u = 0, we recover the equations derived in the proof of

Proposition 2.4.1. This highlights that knowing the prevalence has actually done

very little to improve the identifiability of cancer progression parameters of the

model. However, since ρ = σ0X
α
/µX
α

+ 1, the relative risk between individuals with
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an HPV infection and those without is identifiable.

Next, we note that our proof of Proposition 6.1.1 did not depend on any knowl-

edge of the initial conditions. Although initial conditions can provide additional

identifiability information, they do not in this case. Because we assumed that we

know x3 and x4 for all s, we know x3(0), x4(0), ẋ3(0), and ẋ4(0). However, because

x1(0) = 1, the ẋ3 equation, ẋ3(0) = 0, provides no new information. Similarly,

ẋ4(0) = (µ0 + σu)Xµ1 =
(
µ0X
α

+ σX
α

)
(αµ1) is a product of the previously identified

combinations.

6.2 Different cancer phenotypes model

6.2.1 Model derivation

Let X(t) be the number of normal cells, Y1(t) the number of cells whose initiation is

unrelated to oral HPV infection, Y2(t) the number of cells whose initiation is related

to oral HPV infection, and Z(t) the number of malignant cells. Let µ0 be the rate of

initial mutation for all causes unrelated to oral HPV infection. For ease of notation,

let

σ(t) = σP (t) (6.10)

be the rate of initiation by related to oral HPV infection. Let α, β, and µ1 be the

growth rate, death rate, and malignant conversion rate for the Y1 cells and α̃, β̃,

and µ̃1 the analogous rates for the Y2 cells. A schematic of the model is shown in

Figure 6.1b.
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For this model, we derive the equations as we did in Chapter II. For t > τ ,

Ψ(y1, y2, z, τ, t) = E[y
Ya(t)
1 y

Y2(t)
2 zZ(t)|Y1(τ) = 0, Y2(τ) = 0, Z(τ) = 0)],

Φ1(y1, y2, z, τ, t) = E[y
Y1(t)
1 y

Y2(t)
2 zZ(t)|Y1(τ) = 1, Y2(τ) = 0, Z(τ) = 0],

Φ2(y1, y2, z, τ, t) = E[y
Y1(t)
1 y

Y2(t)
2 zZ(t)|Y1(τ) = 0, Y2(τ) = 1, Z(τ) = 0],

Θ(y1, y2, z, τ, t) = E[y
Y2(t)
2 y

Y2(t)
2 zZ(t)|Y1(τ) = 0, Y2(τ) = 0, Z(τ) = 1].

(6.11)

Now, the survival and hazard functions are given by

S(t) =
∑
j,k

P(0,0,0),(j,k,0)(0, t) =
∑
j,k,`

P(0,0,0),(j,k,`)(0, t)1
j1k0` = Ψ(1, 1, 0, 0, t), (6.12)

h(t) = −Ψ′(1, 1, 0, 0, t)

Ψ(1, 1, 0, 0, t)
. (6.13)

We may write the Kolmogorov backward equations:

dΨ

dτ
= (µ0X)Ψ(1− Φ1) + σ(τ)XΨ(1− Φ2),

dΦ1

dτ
= [α + β + µ1] Φ1 − β − αΦ2

1 − µ1Φ1Θ,

dΦ2

dτ
=
[
α̃ + β̃ + µ̃1

]
Φ2 − β̃ − α̃Φ2

2 − µ̃1Φ2Θ,

dΘ

dτ
= 0.

(6.14)

Denote derivative with respect to t as ′. Then

dΨ

dτ
= (µ0X)Ψ(1− Φ1) + σ(τ)XΨ(1− Φ2),

dΨ′

dτ
= −(µ0X)[Φ′1Ψ + (Φ1 − 1)Ψ′]− σ(τ)X[Φ′2Ψ + (Φ2 − 1)Ψ′],

dΦ1

dτ
= [α + β + µ1] Φ1 − β − αΦ2

1 − µ1Φ1Θ,

dΦ′1
dτ

= [α + β + µ1] Φ′1 − 2αΦ1Φ′1 − µ1

(
Φ′1Θ + Φ1Θ′

)
,

dΦ2

dτ
=
[
α̃ + β̃ + µ̃1

]
Φ2 − β̃ − α̃Φ2

2 − µ̃1Φ2Θ,

dΦ′2
dτ

=
[
α̃ + β̃ + µ̃1

]
Φ′2 − 2α̃Φ2Φ′2 − µ̃1

(
Φ′2Θ + Φ2Θ′

)
,

(6.15)
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with initial conditions

Ψ(y1, y2, z, t− 0, t) = 1,

Ψ′(y1, y2, z, t− 0, t) = −µ0(t)X(t)(1− y1)− σ(t)X(1− y2),

Φ(y1, y2, z, t− 0, t) = y1,

Φ′1(y1, y2, z, t− 0, t) = − [α(t) + β(t) + µ1(t)] y1 + β(t) + α(t)y2
1 + µ1(t)y1z,

Φ(y1, y2, z, t− 0, t) = y2,

Φ′2(y1, y2, z, t− 0, t) = −
[
α̃(t) + β̃(t) + µ̃1(t)

]
y2 + β̃(t) + α̃(t)y2

2 + µ̃1(t)y2z,

Θ(y1, y2, z, t− 0, t) = z,

Θ′(y1, y2, z, t− 0, t) = 0.

(6.16)

From these equations, it is clear that Θ′(y1, y2, z, τ, t) ≡ 0 and Θ(y1, y2, z, τ, t) = z.

Let

Γ(y1, y2, z, τ, t) = − ln Ψ(y1, y2, z, τ, t), (6.17)

so that

∂Γ

∂τ
= −(µ0X)(1− Φ1)− σ(τ)X(1− Φ2), (6.18)

∂Γ′

∂τ
= (µ0X)Φ′1 + σ(τ)XΦ′2. (6.19)

Let x1(s) = Φ1(1, 0, t− s, t), x2(s) = Φ′1(1, 0, t− s, t), x3(s) = Φ2(1, 0, t− s, t), x4(s) =
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Φ′2(1, 0, t− s, t), x5(s) = Ψ(1, 0, t− s, t), and x6(s) = Γ′(1, 0, t− s, t). Then, we have

∂x1

∂s
(s) = − [α + β + µ1]x1 + β + αx2

1,

∂x2

∂s
(s) = − [α + β + µ1]x2 + 2αx1x2,

∂x3

∂s
(s) = −

[
α̃ + β̃ + µ̃1

]
x3 + β̃ + α̃x2

3,

∂x4

∂s
(s) = −

[
α̃ + β̃ + µ̃1

]
x4 + 2α̃x3x4,

∂x5

∂s
(s) = −(µ0X)x5(1− x1)− σP (t− s)Xx5(1− x3),

∂x6

∂s
(s) = −(µ0X)x2 − σP (t− s)Xx4,

x1(t) = 1,

x2(t) = −µ1(t),

x3(t) = 1,

x4(t) = −µ̃1(t),

x5(t) = 1,

x6(t) = 0.

(6.20)

6.2.2 Identifiability

Again, assuming we have age-specific incidence data and know the prevalence of

HPV by age, the observable quantities in the system of equations are the survival x5

and hazard x6 as well as the prevalence P .

The identifiability of a model with two cancer phenotypes has not been previously

considered, so we first find the identifiable combinations assuming that P is con-

stant over all t, without loss of generality taking P ≡ 1. Secondly, we find the

identifiable combinations of the full model with P = P (t).

Proposition 6.2.1. If the survival and hazard functions are known and P ≡ 1, then

the model in eqs 6.20 is unidentifiable, and the identifiable combinations are µ0X/α,

σX/α̃, (α− β − µ1)2 + 4αµ1, and (α̃− β̃ − µ̃1)2 + 4α̃µ̃1.
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Proposition 6.2.2. If the survival and hazard functions are known and the preva-

lence P (t) is known, then the model in eqs 6.20 is unidentifiable, and the identifiable

combinations are µ0X/α, σX/α̃, α− β − µ1, α̃− β̃ − µ̃1, αµ1 and α̃µ̃1.

The proofs of Propositions 6.2.1 and 6.2.2 proceed similarly to that of Proposi-

tion 6.1.1. The algebra required is extremely cumbersome, yielding input–output

equations with 79 and 1949 terms respectively, and so calculations were completed

in Mathematica 10. Indeed, the computations were extensive enough that standard

approaches (e.g. using Gröebner bases) were computationally intractable, running

for over five days without terminating. Thus, we instead used a manual simplifi-

cation step similar to that used by Eisenberg et al. (2013) to eliminate particular

squared terms that complicate the standard algorithms and generate input–output

equations. Because the number coefficients was large, setting each coefficient equal

to a symbolic copy of itself and solving for the parameters (to test injectivity of the

map from the parameters to the coefficients) was also computationally intractable,

and so we used a numeral point in parameter space (chosen arbitrarily) to test iden-

tifiabilty. As noted in Saccomani et al. (2001), since the identifiability results are

generic, this approach will yield correct identifiability results almost always, and

provides a significant increase in computational speed. We then used a Gröebner

basis (or the equivalent method Solve in Mathematica) to evaluate whether each

parameter could be uniquely solved to equal its numerical value. From the resulting

solutions/Gröebner basis elements, we determined that the models were unidentifi-

able, and determined the identifiable combinations given above. The proof structure

is outlined in the appendix (section 6.5).

It is worth noting that, in this model, the relative risk between individuals with an

HPV infection and those without is no longer identifiable. Instead α̃
α

(ρ − 1), a less

useful quantity, is identifiable.
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6.3 Model behavior

Here, we consider the range behavior exhibited by these two models. We fix σ = µ0,

corresponding to a relative risk of 2, so that the range behavior will be interesting

but still reasonable. All simulations in this section have the following base values:

µ0 = 10−10, X = 107, α = 3, β = 2.8, µ1 = 10−7. These values were based on

estimates in Chapter V, though they do not represent any specific cancer or demo-

graphic group.

Because prevalence is so important, we consider a number of different prevalences.

We begin with base prevalence of P (t) = (6.4825E − 4)t2e−10−3(10+t)2, which was

chosen to approximately match a typical bump-shaped curve seen for infectious

diseases over age. We also consider 4P (t), 8P (t), and age-independent prevalences

corresponding the average values of the P (t), 4P (t), and 8P (t) over ages 0 to 84:

0.05, 0.20, and 0.40, respectively. The considered prevalences are plotted in Fig-

ure 6.2.
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Figure 6.2: Theoretical prevalences considered for understanding the behavior of
the MSCE models with infection-related initiation pathways.

For each prevalence, we vary each of the identifiable combinations: α̃ − β̃ − µ̃1

(Figure 6.3), α̃µ̃1 (Figure 6.4), and σX/α̃ (Figure 6.5), while keeping the other two
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identifiable combinations constant. This is accomplished by setting σ = µ0, α̃ =

σα/(Aµ0), µ̃1 = Bαµ1/α̃, β̃ = α̃− µ̃1−C(α− β − µ1) and varying parameters A, B,

and C. Note that the same-phenotype and different-phenotype models align when

α̃ = α, β̃ = β, and µ̃1 = µ1, which is represented by the black line in Figures 6.3,

6.4, and 6.5.

These simulations reveal practical identifiability issues when prevalence is low. In

each of the figures with low prevalence (Figures 6.3a, 6.3b, 6.4a, 6.4b, 6.5a, 6.5b),

distinguishing between the curves would be incredibly difficult given the noise of

real data. Hence, because oral HPV is a low prevalence disease (10% in men and

4% in women (Gillison et al., 2012b)), it may be difficult to distinguish between the

same cancer phenotype and different cancer phenotype models with the given in-

cidence data (not differentiating between HPV-positive and HPV-negative cancers).

For practical purposes then, the same phenotype model may suffice. The preva-

lence of genital HPV is higher, but it is thought that virtually all cervical cancers are

HPV-initiated, so that these models are not applicable.

Further, these simulations demonstrate the importance of the shape of the preva-

lence function. In Figures 6.3, 6.4, and 6.5, the differences in shape between the left

and right columns of subfigures are apparent. The differences are plainest in Fig-

ure 6.3, which controls the relative net cell proliferation α̃−β̃−µ̃1
α−β−µ1 between the two

pathways and in which the figures with the age-dependent prevalence (left) develop

a hump as the ratio increases while those with the constant prevalence (right) de-

velop an almost step-like appearance that separates the increase in hazard related

to each of the two pathways (HPV-related followed by HPV-unrelated). The hump-

like shapes are reminiscent of some of the age-effects (Figure 5.6) calculated for the

oral cancers in Chapter V. This suggests that, for non-negligible prevalence levels,

the patterns of HPV prevalence could be inferred from cancer data.

In Figure 6.3, we see that increasing the net cell proliferation of the HPV-related

pathway α̃ − β̃ − µ̃1 relative to that of the HPV-unrelated pathway increases the

hazard and moves the initial increase in hazard earlier in life. This observation

135



is biologically sensible. Decreasing the net cell proliferation decreases the hazard

mildly, but only to a point. If the proliferation is very slow relative to the other

pathway, the model is indistinguishable from one with only the relevant pathway.

In Figure 6.4, we see that the ratio between α̃µ̃1 and αµ1 is much less sensitive than

the other two identifiable combinations. Here, we change the ratio by several orders

of magnitude and still only effect a moderate change in the shape of the hazards.

The difference between the age-dependent and constant prevalences, while still

apparent, is less pronounced than in Figure 6.3.

In Figure 6.5, we change the ratio between σX/α̃ and µ0X/α. This changes essen-

tially captures the difference in initiation rates between the two pathways. Chang-

ing the ratios is seen to change the asymptotes of the hazards but not have a signif-

icant impact on the shapes. As in Figure 6.3, reducing the relative initiation rate of

the HPV-related pathway collapses the hazard onto that of the model with only the

HPV-unrelated initiation pathway (not pictured).

In these figures, we see that, although the shape of the same cancer phenotype

model hardly deviates from that of the TSCE model, the different cancer phenotype

model can display a wide range of behavior depending on the shape of the preva-

lence function and the ratios of the identifiable combinations of the two pathways.

6.4 Conclusion

In Chapter II, we derived the equations of the two-stage clonal expansion model

and proved that it is unidentifiable given age-specific incidence with identifiable

combinations α − β − µ1, αµ1, and µ0X/α. In this chapter, we considered exten-

sions of this model by including infection-related initiation pathways and found the

identifiable combinations given age-specific incidence.

Knowing the prevalence in the same cancer phenotype model allowed identification

of σX/α in addition to the identifiable combinations already listed. The relative risk

136



0 20 40 60 80

0
5

10
15

Age

H
az

ar
d 

(p
er

 1
00

,0
00

)

π~ = (1 4)π
π~ = (1 2)π
π~ = (3 4)π
π~ = π
π~ = (4 3)π
π~ = 2π
π~ = 4π

(a) Prevalence: P (t).

0 20 40 60 80

0
5

10
15

Age

H
az

ar
d 

(p
er

 1
00

,0
00

)

π~ = (1 4)π
π~ = (1 2)π
π~ = (3 4)π
π~ = π
π~ = (4 3)π
π~ = 2π
π~ = 4π

(b) Constant prevalence: average value of P (t).

0 20 40 60 80

0
5

10
15

Age

H
az

ar
d 

(p
er

 1
00

,0
00

)

π~ = (1 4)π
π~ = (1 2)π
π~ = (3 4)π
π~ = π
π~ = (4 3)π
π~ = 2π
π~ = 4π

(c) Prevalence: 4P (t).

0 20 40 60 80

0
5

10
15

Age

H
az

ar
d 

(p
er

 1
00

,0
00

)

π~ = (1 4)π
π~ = (1 2)π
π~ = (3 4)π
π~ = π
π~ = (4 3)π
π~ = 2π
π~ = 4π

(d) Constant prevalence: average value of 4P (t).

0 20 40 60 80

0
5

10
15

Age

H
az

ar
d 

(p
er

 1
00

,0
00

)

π~ = (1 4)π
π~ = (1 2)π
π~ = (3 4)π
π~ = π
π~ = (4 3)π
π~ = 2π
π~ = 4π

(e) Prevalence: 8P (t).

0 20 40 60 80

0
5

10
15

Age

H
az

ar
d 

(p
er

 1
00

,0
00

)

π~ = (1 4)π
π~ = (1 2)π
π~ = (3 4)π
π~ = π
π~ = (4 3)π
π~ = 2π
π~ = 4π

(f) Constant prevalence: average value of 8P (t).

Figure 6.3: Behavior of the MSCE models with infection-related initiation pathways
for different values of π̃ = α̃− β̃− µ̃1. The hazard in black is for the same phenotype
model, and the hazards in color are the different phenotype model.
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Figure 6.4: Behavior of the MSCE models with infection-related initiation pathways
for different values of α̃µ̃1. The hazard in black is for the same phenotype model,
and the hazards in color are the different phenotype model.
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Figure 6.5: Behavior of the MSCE models with infection-related initiation pathways
for different values of σX/α̃. The hazard in black is for the same phenotype model,
and the hazards in color are the different phenotype model.
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between individuals with an HPV infection and those without was also identifiable.

We also found that the shape of the hazard did not deviate significantly from the

canonical shape of the TSCE model.

The model that allowed different tumorigenesis dynamics for the two types of initi-

ation displayed a wider range of behavior; some instances of which were similar to

age-effects for oral cancer that we previously estimated. In fact, it may be possible

to make inferences about the prevalence of HPV from the incidence of oral can-

cer. The identifiable combinations related to the second pathway were analogous

to those of the first pathway. However, depending on the shape of the age-specific

incidence and prevalence functions, practical identifiability of these combinations

may be difficult. Additionally, the relative risk between individuals with an HPV

infection and those without is not identifiable in this model.
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6.5 Appendix

The proofs of Propositions 6.2.1 and 6.2.2 are outlined here. Calculations were

carried out in Mathematica 10.

• Solve the ẋ6 equation for x4. Take a derivative to find ẋ4. Then, x4 and ẋ4 are

functions of x2, x6, u, and their derivatives.

• Substitute x4, ẋ4, and ẋ2 (from the ẋ2 equation) into the ẋ4 equation and clear

the denominator. This equation now contains x1, x2, x3 and various derivatives

of x6 and u.

• Solve this equation for x2, and take a derivative to find ẋ2. Plug these into

the ẋ2 equation. Plug in ẋ1 and ẋ3 (from the ẋ1 and ẋ3 equations). Clear the

denominator. This equation now contains x1, x3, and derivatives of x6 and u.

• Solve the ẋ5 equation for x3. Take a derivative to find ẋ3. Plug these into the

two equations that still contain x3 and its derivative, and clear the denomi-

nators. There are now three equations containing only x1, x5, x6, u, and their

derivatives.

• Solve for x1 using what was formerly the ẋ3 equation. Then, x1 has two solu-

tions of the form (p1 ±
√
p2)/p3). Find p1, p2, p3 and their derivatives.

• Plug x1 = (p1 +
√
p2)/p3 into the ẋ1 equation, and clear the denominator. The

equation is now of the form 0 = v +w
√
p2 where v and w are functions of the

parameters and p1, p2, and p3. Multiply both sides of the equation by v−w√p2

to clear the square roots. Plug in p1, p2, p3 and their derivatives. This is now

an algebraic equation only in x5, x6, u, and their derivatives.

• Do the same operations for the other equation (formerly ẋ2 equation).

• The remaining two equations are algebraic equations of in x5, x6, u, and their

derivatives.

• For u ≡ 1, the two equations have 23 and 56 monomials whose coefficients
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have between 2 and 2936 terms. For u = u(s), the equations have 424 and

1525 monomials.

• In each equation, divide by the coefficient of one of the monomials to be sure

that the equations are monic. Collect all of the coefficients.

• Determine the identifiable combinations from the list of coefficients by setting

the coefficients equal to copies of themselves with placeholder parameter val-

ues and finding a Gröebner basis. In particular, we set α = 2, β = 3, µ1 = 5,

α̃ = 7, β̃ = 11, µ̃1 = 13, µ0X = 17, and σX = 19. The output of the Solve

function in Mathematica is shown eqs. 6.21 and 6.22 for the two models re-

spectively.
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α =
2

17
µ0X

α̃ =
7

19
σX

β =
1

17

(
2µ0X − 17µ1 − 2

√
17
√

323− 2µ0Xµ1

)
β̃ =

1

38

(
1360 +

35409

σX
− 119µ0Xµ1

σX
+ 14σX

+
680
√

17
√

323− 2µ0Xµ1

σX
+ 14
√

17
√

323− 2µ0Xµ1

)
µ̃1 =

1

38σX

(
−35409 + 119µ0Xµ1 − 680

√
17
√

323− 2µ0Xµ1

)

(6.21)

α =
2

17
µ0X

σX =
19

7
α̃

µ1 =
86

µ0X

µ̃1 =
91

α̃

β = 6− 85

µ0X
+

2

17
µ0X

β̃ = 17− 91

α̃
+ α̃

(6.22)
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CHAPTER VII

Conclusion

The human papillomavirus presents an inherently multiscale problem. Prevalence

data is typically available at the population level, as is data for incidence of HPV-

related cancers. However, transmission of the virus occurs on a local scale, and the

transition from infectious disease to etiological agent of cancer—by HPV genome

integration in host DNA—happens within an individual. Time, too, presents a chal-

lenge; infection and clearance are measured in months and years, but it may take

more than a decade between the time of infection and the clinical detection of a

tumor. This dissertation addresses, through a variety of mathematical models, the

dynamics of HPV on different scales.

In Chapter III, I considered data in NHANES for oral and genital HPV prevalence

as well as seroprevalence of HPV antibodies. I found that two-site concurrent in-

fection and gentotype-concordant infection (or infection at the same time as the

detection of antibodies in serum for that genotype) could differ significantly by age,

by race, and by sex. The lack of correlation between tests suggests that there will

be no easy test for being at risk for HPV-related cancer. There is current contro-

versy among medical professionals as to whether cervicovaginal tests for HPV DNA

should replace Pap smears in routine gynocological exams. That discussion, how-

ever, does not address risk of oropharyngeal or anal cancer. Our study suggests that

the presence of serum antibodies is not a useful test for HPV presence, being poorly

correlated with current oral and genital infection and varying (for oral) by sex; too,
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vaccination typically causes seroconversion, making a test of serum antibodies un-

able to distinguish between a person who has been vaccinated and one who has

seroconverted through infection.

Chapter III also analyzed, using age–cohort models, trends in the prevalence by

age and relative prevalence by birth cohort of vaginal HPV infection and of sero-

prevalence among men and women. This is the first study to try to characterize

large-scale trends in HPV infection in the United States. Further, this study high-

lights the racial differences in HPV prevalence. Unfortunately, testing for oral HPV

infection is relatively recent, and testing for genital HPV in men is not being done at

the population level. To better characterize HPV prevalence and link it to incidence

of genital, anal, and oropharyngeal cancer, it is imperative that more comprehen-

sive testing be undertaken. Additionally, as further NHANES survey data become

available, we will be able to add confidence to our existing models.

In Chapter IV, I constructed a two-site infectious disease ODE model to better un-

derstand how the virus’s ability to infect multiple sites affects its dynamics as an

infectious disease. To this end, I considered the impact of of autoinoculation and

how heterogeneity in the transmission pathways affected the basic reproduction

number R0, a widely used measure of a disease’s potential to cause an epidemic.

This is the first analysis of a model of a multisite infectious disease. I found that

consideration of autoinoculation increases the complexity of the form of the basic

reproductive number; we must be concerned, therefore, about the possible intro-

duction of mispecification errors if only modeling HPV as a genital disease. Analy-

sis of heterogeneity between the same-site parameters and between the cross-site

parameters demonstrated that, for a fixed sum of transmission parameters, hetero-

geneity in the same-site terms increases R0 while heterogeneity in the cross-site

terms decreases it. This is an unusual finding, as heterogeneity is known to increase

R0 in classical models. Although these findings are suggestive and identify under-

lying dynamics, there are two obstacles to using this model currently to investigate

HPV transmission in the United States. First, although some information is known
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about clearance rates of HPV, little is known about transmission or autoinoculation

rates. Second, assuming infectious contacts are well-mixed is a poor assumption

for a sexually transmitted infection, even if taking heterosexuality into account, be-

cause of high demographic assortativity. The first problem will need to be addressed

through observational studies. The second can be treated by further stratifying the

model state space or reimagining the model with a network structure; each tech-

nique has its own challenges, however.

Chapter IV also addressed disease control. The basic reproduction number can pro-

vide information on the fraction of the population that would need to be vaccinated

to force the disease to die out. The type and target reproduction numbers allow

consideration of more finely tuned controls, such as vaccination of one sex or con-

dom use. Once values of transmission and autoinoculation parameters are better

known, it will be possible to identify reservoir host or site types that, if not targeted

with controls, will make it difficult to control the disease in the overall population.

Chapter V leveraged age–period–cohort and multistage clonal expansion models to

consider trends and racial disparities in oral (oropharyngeal and oral cavity) squa-

mous cell carcinoma incidence in the United States. Using these models in combi-

nation allowed me to ground the model in the underlying biology of tumorigene-

sis, resolve the unidentifiability problem of the APC model, and consider temporal

trends in tumor initiation rates. This is the first study to look at oral cancer us-

ing the multistage clonal expansion model paradigm. Although the primary aim of

this project was to consider HPV-related subsites, consideration of HPV-unrelated

subsites allowed deeper insight. Carcinomas of the oral tongue had different tu-

mor promotion rates from cancers at the other two subsite groups, corroborating

previous hypotheses about different etiologies. Further, for all three subsite groups

considered, men had higher initiation rates than women and black men and women

had higher promotion rates than white men and women. If one were considering

HPV-related sites alone, it would have been reasonable to hypothesize that these

differences and the relative incidence were related to the relative prevalence of oral
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HPV in the United States. However, since all three subgroups had these similar pat-

terns, they are more likely attributable to male–female biological differences and

risk factor differences between racial groups.

Chapter VI extended the two-stage clonal expansion model considered in Chapter

V to consider to models incorporating infection-related initiation pathways. I derive

model equations under the assumption that the infection-related pathway leads to

promotion and malignant conversion rates identical to infection-unrelated initiation

and under the assumption that the rates differ. These models are a novel approach

to connecting infectious disease prevalence to cancer incidence. I also addressed the

identifiability of these models, which is necessary if one wishes to do parametric in-

ference from cancer incidence data, using a differential algebra approach. Behavior

of the models is considered for a range of prevalence functions, and the behavior

of the different cancer phenotype model was compared to that of the same cancer

phenotype model by varying the relative magnitudes of their analogous identifi-

able combinations. The different phenotype model was found to display a wider

range of behavior and sensitivity to the prevalence functions, raising the possibility

that information about prevalence could be inferred from incidence data, though

issues of practical identifiability may make confident estimation of the identifiable

combinations difficult.

These four chapters considered the prevalence of HPV, the dynamics of HPV as an

infectious disease, and incidence of HPV-related oropharyngeal cancer. This disser-

tation lays the groundwork for a multiscale approach to the problem and describes

one possible method to connect prevalence to incidence without an intermediate

within-host model.
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