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ABSTRACT 

Title: Amorphous In-Ga-Zn-O Thin-Film Transistors for Next Generation Ultra-High 

Definition Active-Matrix Liquid Crystal Displays 

 

Chair: Professor Jerzy Kanicki 

 

Next generation ultra-high definition (UHD) active-matrix flat-panel displays have 

resolutions of 3840×2160 (4K) or 7680×4320 (8K) pixels shown at 120 Hz. The UHD 

display is expected to bring about immersive viewing experiences and perceived realness. 

The amorphous In-Ga-Zn-O (a-IGZO) thin-film transistor (TFT) is a prime candidate to 

be the backplane technology for UHD active-matrix liquid crystal displays (AM-LCDs) 

because it simultaneously fulfills two critical requirements: (i) sufficiently high field-

effect mobility (µFE = 10 cm2/V·s) and (ii) uniform deposition in the amorphous phase 

over a large area. 

We have developed a robust a-IGZO density of states (DOS) model based on a 

combination of experimental results and information available in the literature. The 

impact of oxygen partial pressure during a-IGZO deposition on TFT electrical 

properties/instability is studied. Photoluminescence (PL) spectra are measured for 

a-IGZO thin films of different processing conditions to identify the most likely electron-

hole recombination. For the first time, we report the PL spectra measured within the 
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a-IGZO TFT channel region, and differences before/after bias-temperature stress (BTS) 

are compared.  

To evaluate the reliability of a-IGZO TFTs for UHD AM-LCD backplane, we have 

studied its ac BTS instability using a comprehensive set of conditions including 

unipolar/bipolar pulses, frequency, duty cycle, and drain biases. The TFT dynamic 

response, including charging characteristics and feedthrough voltage (ΔVP), are studied 

within the context of 4K and 8K UHD AM-LCD and compared with hydrogenated 

amorphous silicon technology. We show that the a-IGZO TFT is fully capable of 

supporting 8K UHD at 480 Hz. In addition, it is feasible to reduce a-IGZO TFT ΔVP by 

controlling for non-abrupt TFT switch-off.  
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CHAPTER 1 

Introduction 

1.1 Overview and Background 

1.1.1 Current status of backplane technology for ultra-high definition active-

matrix liquid crystal displays 

In the first decade of the twenty-first century, the active-matrix liquid crystal display 

(AM-LCD) became the dominant display technology over the plasma display panel and 

the cathode-ray tube monitor. During the same period, video image specifications made 

the leap from 480i standard definition (640×480 pixels, interlaced) to 1080p full high-

definition (Full HD, 1920×1080 pixels, progressive scan) recorded/shown at 60 frames 

per second. Despite the emergence of active-matrix organic light-emitting diode 

(AM-OLED) technology, the AM-LCD is expected to hold over 95% of the TV market 

and 70% of the mobile display market by 2017 [1]. 

In 1995, the NHK (Japan Broadcasting Corporation) Science & Technology Research 

Institute started research on the next generation digital video format, dubbed Super 

Hi-Vision [2]. It was defined as 3840×2160 pixels (4K) or 7680×4320 pixels (8K) 

displayed at a frame rate of up to 120 Hz. Studies in human visual perception have shown 

that the sensation of immersion (“being-there”) and perceived realness (real objects and 

images become indistinguishable) can be achieved when field-of-view (FOV) approaches 
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Figure 1.1 The field-of-view and the corresponding angular resolution offered by various 
AM-FPD resolutions when viewed at the optical distance for any given display size [6]. 

100° and angular resolution exceeds 30 cycles/degree (cpd) [3]–[5]. For a fixed angular 

resolution and viewing distance, FOV is increased for greater pixel count. According to 

Figure 1.1, assuming the minimal 30 cpd and a fixed optimal viewing distance for any 

given panel size, the FOV increases to 60° and 100° for 4K and 8K resolutions, 

respectively [6]. In addition, the frame rate is increased to 120 Hz to reduce the motion 

blur of moving images, further enhancing the viewing experience. In 2012, Super 

Hi-Vision, or Ultra High Definition (UHD) everywhere outside of Japan, was formally 

adopted by the International Telecommunications Union as Recommendation BT.2020 

for next generation information displays [6], [7]. 

At time of writing, 4K UHD TVs are just beginning to enter the market while 8K 

UHD TVs are several years away from commercialization. Table 1.1 lists the 
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STANDARDIZATION PROCESS
The study on TV systems beyond HDTV 
began in ITU-R in 1993, soon after the 
HDTV standard Rec. BT.709 was estab-
lished. It was called extremely high-reso-
lution imagery at that time. It was 
intended to standardize the approach to 
video systems of very high resolution for 
both broadcasting and nonbroadcasting 
use. The study results were reflected in 
ITU-R Rec. BT.1201 [6]. One of the recom-
mendations of the standard is as follows:

Television system image spatial reso-
lution of the electronic devices for 
acquisition and display should be 
related to 1,920 pixels in the  
horizontal and 1,080 pixels in the 
vertical directions based on 
Recommendation ITU-R BT.709 by 
simple integer ratios.
The next study on beyond-HDTV sys-

tems conducted in ITU-R was called large-
screen digital imagery (LSDI). LSDI was 
defined as a family of digital imagery sys-
tems applicable to programs such as dra-
mas, plays, sporting events, concerts, and 
cultural events from capture to large-
screen presentation in high-resolution 
quality in appropriately equipped the-
atres, halls, and other venues. The 
extended version of LSDI was studied and 
Rec. ITU-R BT.1769 was created. It speci-
fies 7,680 × 4,320 and 3,840 × 2,160 sys-
tems. The parameter values other than 
pixel count are the same as those speci-
fied in Rec. BT.709 or Rec. BT.1361 [7].

While the applications that use 
image formats beyond HDTV were 
under study, HDTV has been steadily 
spreading worldwide, and some pio-
neering countries and broadcasters 
have begun to consider the next-gener-
ation TV system and its standardization. 
In light of these developments, ITU-R 
started the study of UHDTV according 
to a proposal made at the ITU-R’s Study 
Group (SG) 6 meeting in 2008. The 
framework of the study was decided and 
a Rapporteur Group was established (a 
Rapporteur Group is a scheme to accel-
erate the study by conducting the work 
during the period between SG6 meet-
ings held twice a year). The efforts of 
four years’ study led to the establish-
ment of Rec. BT.2020 in August 2012. 

The detailed study results are compiled 
in ITU-R Rep. BT.2246 [8]. 

KEY FEATURES
The major parameters and their values 
specified in Rec. BT.2020 are listed in Table 
1. While the evolution from SDTV to 
HDTV changed the pixel count only, the 
evolution from HDTV to UHDTV involves 
an additional frame frequency and new col-
orimetry. In this regard, Rec. BT.2020 will 

bring important changes to this field that 
only happen once in a few decades. The 
conceptual basis for the study is described 
in Rep. BT.2246 as follows:

UHDTV is a television application that 
will provide viewers with a better visu-
al experience primarily by offering a 
wide FOV which virtually covers all of 

the human visual field, while main-
taining other features of HDTV or 
 improving them. UHDTV could there-
fore be characterized as a TV system 
having a wide field of view supported 
by enhanced spatial resolution.

PIXEL COUNT
The primary aim of UHDTV is to expand 
the FOV. The pixel count is the main 
consideration when determining system 
parameters because it fulfills the pri-
mary aim of expanding the FOV while 
maintaining the picture quality, which 
is predominantly influenced by the 
angular resolution. Subjective and 
objective experiments were conducted 
to determine the required pixel count 
for UHDTV. These experiments focused 
on the relationship between the FOV 
and the sensation of reality (the sense of 
“being there”). The results show that 
sensation of reality goes up as the FOV 
increases to around 100° [9].

Another use-case can be assumed 
where the higher pixel count serves to 
increase not only the FOV but also the 
angular resolution. Higher pixel count 
leads to an increase in angular resolution 
for the same screen size and absolute 

[FIG1] The FOV and angular resolution offered by HDTV and UHDTV systems.
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Manufacturer Model Size Resolution @ Frame 
Rate MSRP 

Sharp UD27U 70” 3840×2160 @ 60 Hz $3600 

Sony X950B 65” 3840×2160 @ 60 Hz $6000 

Samsung HU9000 65” 3840×2160 @ 60 Hz $6000 

LG UB9800 65” 3840×2160 @ 60 Hz $6000 
Table 1.1 List of commercially available 4K UHD TVs as of April 2015. 

4K TVs from the major manufacturers on the market as of April 2015, along with their 

size, suggested retail price, and maximum supported display specifications. The 

challenge with very high resolution on a large area (over 40”) display is multifaceted. 

Manufacturing yield decreases with higher number of pixels⎯a single defective pixel 

could potentially ruin an entire substrate. Another issue is RC line delay on the select and 

data bus lines, where a large number of pixels makes the margin of error for 

accommodating signal propagation delays on a large substrate even smaller [8]. These are 

all solvable with process engineering or design improvements, such as low-resistivity Cu 

bus lines [9] and dual-sided row drivers [10]. A more fundamental problem, and one 

more difficult to overcome without modifying display production lines, is the AM-LCD 

thin-film transistor (TFT) backplane. In active-matrix addressing, an array of TFT pixel 

circuits directly drives and charges the individual liquid crystal cells. This addressing 

method significantly reduces cross talk between neighboring pixels and enables far 

greater resolution compared to passive-matrix addressing. Presently, the two mainstream 

TFT backplane technologies are hydrogenated amorphous silicon (a-Si:H) and low-

temperature poly-silicon (LTPS).  

A-Si:H TFTs can be fabricated with a simple 4–5 mask process, enabling low 

production costs with very high throughput. Its uniform amorphous deposition over a 
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large area makes it suitable for large LCD TVs, currently produced on Gen 10 (2.8 m × 3 

m) glass substrates. However, its low field-effect mobility (µFE) of 0.5–1 cm2/V·s is only 

adequate for up to 1080p Full HD and insufficient for UHD TV specifications. 

On the other hand, the LTPS TFT has µFE of around 100–200 cm2/V·s, which well 

exceeds the requirements for 4K and 8K UHD at 120 Hz. Electrical stability, which 

directly impacts display lifetime and pixel circuit complexity, is also much better for 

LTPS than a-Si:H TFTs. The biggest weakness of LTPS TFT technology is the 

non-uniformity of electrical properties due to polycrystalline grain boundaries, which are 

typically on the order of 0.3–3 µm depending on process conditions. The single most 

critical step in the fabrication of LTPS TFT is the crystallization of amorphous silicon 

into polysilicon. Today, this can be achieved by several different methods, each with its 

own advantage and disadvantages: excimer-laser annealing (ELA) [11], sequential lateral 

solidification (SLS) [12], metal seeding [13], or solid-phase recrystallization [14]. 

Despite its excellent electrical properties and stability, LTPS recrystallized from any 

growth method suffers from the necessary trade-off between cost and performance. This 

is particularly evident in the well-established ELA process: uniformity improves with 

more irradiations by the excimer laser at a cost of reduced productivity and throughput.  

In order to produce uniform LTPS TFTs with µFE = 100 cm2/V·s on a Gen 4 glass 

substrate, two scans across the whole substrate is required due to the limited beam length, 

with each unit processing area irradiated 10–20 times by the laser for each scan⎯more 

irradiations corresponds to better electrical properties. Furthermore, additional non-

uniformity is introduced in the area of overlap between each scan, making production of 

large area displays extremely challenging. Non-uniformity of electrical properties over a 
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Requirement a-Si:H LTPS a-IGZO 

Large-Area 
Uniformity Good Poor Good 

Mobility Poor 
0.5–1 cm2/V·s 

Excellent 
100-200 cm2/V·s 

Good 
10-20 cm2/V·s 

Electrical Stability Poor Excellent Better than a-Si:H 

Process Complexity 
& Cost Low High Lower than LTPS 

Table 1.2 Comparison of different active-matrix flat panel display backplane 
technologies for ultra-high definition television. 

large substrate will manifest itself as uneven patches of changes in luminance, known as 

mura (Japanese for blemish). It is evident that a new backplane technology is needed to 

satisfy the requirements of backplane technology for large-area UHD AM-LCDs. 

Since the publication of the seminal paper by Nomura et al. in 2004 [15], the ternary 

oxide semiconductor amorphous In-Ga-Zn-O (a-IGZO) has emerged as a strong 

candidate to be the backplane technology for next-generation UHD AM-LCDs. The 

a-IGZO has µFE = 10 cm2/V·s, which is substantially higher than that of a-Si:H, and it can 

be uniformly deposited in the amorphous phase over a large substrate area. In amorphous 

covalent semiconductors such as a-Si:H, electrons conduct through highly directional sp3 

bonds, which are severely impacted by bonding angle variations and thus have very low 

µFE [16]. In an ionic semiconductor like a-IGZO, the µFE is higher than most other 

amorphous materials because conduction occurs through the overlapping s orbital of the 

metal ions—in this case the large In3+ ion. In addition, a-IGZO TFT has a low off-state 

leakage current (Ioff), can be processed with 4–5 masks, is transparent within the visible-

light spectrum, and has better electrical stability than a-Si:H TFTs [15], [17]–[19]. The 
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pros and cons of each backplane technology in the context of requirements for UHD AM-

LCD are summarized in Table 1.2. 

1.1.2 Requirements for UHD AM-LCD Backplane Technology 

In evaluating TFT backplane technology for application to next generation UHD 

AM-LCDs, the following should be considered: 

• For large-area UHD LCD TVs, the µFE should be sufficiently high to ensure that 

each row of liquid crystal is charged/discharged to the correct data voltage level 

within one gate selection time. The gate selection time is simply equal to 

1/(Frame Rate × Number of Rows), which would correspond to 3.8 µs for 4K 

UHD at 120 Hz. Incomplete charging/discharging directly leads to grayscale 

errors and image retention. The charging characteristics can be roughly estimated 

as a RC exponential effect i.e. V = Vdata (1−exp(−t/RC)). After t = 5RC, V would 

have reached 99.3% of the target Vdata and can be considered as fully charged. The 

effective resistance and capacitance are given by 

𝑅 = 𝑅!"#" + 𝑅!" = 𝑅!"#" +
!

!!!!!"(!!"!!!!)
,        (1-1) 

and 

𝐶 = 𝐶!" + 𝐶!" + 𝐶!" + 𝐶!"#",          (1-2) 

where Rdata is the data bus line resistance, Ron the TFT on-resistance, W and L the 

TFT channel width and length, CG the TFT gate insulator capacitance, VGS the 

applied gate pulse amplitude, Cst the storage capacitance, CLC the liquid crystal 

capacitance, CGS the TFT parasitic capacitance, and Cdata the data bus line 

parasitic capacitance. Assuming a 50” AM-LCD with Cu bus lines, and negligible 
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Cdata and CGS, we can estimate that µFE should be at least 1.5 cm2/V·s in order to 

fully charge all the pixels in a 4K UHD AM-LCD operating at 120 Hz. This value 

is just above the typical 1 cm2/V·s achievable for a-Si:H TFTs, but can be easily 

fulfilled with the a-IGZO TFT. 

• In order to support a very large display (> 50”) in which the gate and data bus line 

resistances may become significant, adoption of low resistivity metals such Al (ρ 

= 4 µΩ·cm) or Cu (ρ = 2.5 µΩ·cm) may become necessary. Because Cu has been 

shown to be relatively unstable and may diffuse during device processing [20], a 

compatible TFT fabrication process should be developed if not already available. 

• To achieve higher pixel density for UHD AM-LCD resolution without sacrificing 

the aperture ratio, the TFT should be scaled down accordingly. As mentioned in 

the previous section, when the resolution on a 50” LCD TV increases from Full 

HD to 8K UHD, the size of each subpixel reduces by a factor of 16 to 144 µm × 

48 µm. In the same way, the TFT W and L should both be reduced to 1/4 to 

maintain similar ID–VGS characteristics while keeping aperture ratio the same. In 

this case, to ensure proper TFT operation, the source/drain (S/D) contact 

resistance should be as low as possible and/or the TFT µFE needs to be sufficiently 

high. In a short-channel TFT, µFE becomes lower because the S/D contact 

resistance (RSD) dominates channel on-resistance. Baek et al. has shown that in 

the high-performance coplanar homojunction a-IGZO TFT with highly-

conductive S/D contact regions formed by hydrogen doping, the S/D contact 

resistance is negligible [21]. In such a device configuration, the a-IGZO TFT µFE 

= 13.1 cm2/V·s did not degrade even when L = 5 µm. 
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• The pixel feedthrough voltage (ΔVP), a dc voltage drop at the pixel electrode that 

is responsible for flicker and image retention, should be made as low as possible. 

While flicker may be offset with row-, line-, or dot-inversion driving methods, 

reducing ΔVP to approximately 0.1 V is critical for minimizing image retention. In 

addition, it would be beneficial to display engineers if the magnitude of ΔVP can 

be reliably predicted based on driving waveform and TFT configuration. A typical 

voltage divider equation 

𝛥𝑉! = 𝑉!" − 𝑉!"
!!"

!!"!!!"!!!"
           (1-3) 

can be used to estimate ΔVP to the first order, but is inadequate for in-depth 

analysis due to contributions from accumulated channel charge. A more robust 

model should be developed and evaluated for the UHD AM-LCD TFT backplane 

technology. 

• The TFT backplane should be sufficiently reliable against pulsed (ac) bias-

temperature stress (BTS) corresponding to AM-LCD addressing conditions. In a 

previous-generation 60-Hz Full HD (1920×1080) AM-LCD display, the select 

(gate) pulse for each row has pulse width of 16 µs, and the pulse amplitude is 

typically +13/−13 V. For such an operating condition, Chiang et al. showed that it 

would take approximately 10 years for the a-Si:H TFT threshold voltage shift 

(ΔVth) to reach the nominal end-of-life limit for AM-LCDs [22]. In UHD 

AM-LCD operation, the gate driving waveform is expected to have higher 

frequencies (for higher refresh rates), shorter pulse widths (for larger number of 

rows), and higher gate bias amplitude (for faster pixel charging). These are all 
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stress conditions that should be addressed in the TFT backplane technology for 

UHD AM-LCDs. 

• A robust DOS model based on experimental observations should be developed for 

use in numerical simulations. The model should be able to accommodate a wide 

variety of fabrication conditions and reflect them on the DOS parameters.  

• For low-cost mass-production, the fabrication process should be simple and the 

mask count should be as low as possible while preserving electrical properties and 

reliability. 

1.1.3 Current Status of Amorphous In-Ga-Zn-O TFTs for UHD AM-LCDs 

Despite its obvious advantages, the a-IGZO TFT is still not yet the mainstream 

backplane technology for AM-LCDs. This is primarily due to the need to improve 

manufacturing yield and uncertainties in both device processing and achieving consistent 

electrical performance and stability. Although companies such as LG [23], AU Optronics 

[24], and Sharp [25] have demonstrated large-area 4K or 8K UHD AM-LCD prototypes 

with a-IGZO TFT backplanes, much work remains to be done towards their large-scale 

commercial production. 

In amorphous semiconductors such as a-Si:H, localized states within the energy band 

gap arise from structural disorder (bond angles and length variations), dangling bonds, 

non-stoichiometry, and carrier scattering at defect sites [16], [26]. Such subgap density of 

states (DOS) dominates the electrical properties and stability of a-Si:H TFTs. Today it is 

generally accepted that the DOS can also impact a-IGZO TFT electrical performance, 

although the microscopic origin of DOS in a-Si:H and a-IGZO should be very different. 

Hsieh et al. extracted the density of acceptor-like states near the conduction band 



 9 

minimum (EC) in a-IGZO by fitting TFT current–voltage (I–V) data to technology 

computer-aided design (TCAD) simulations originally developed for a-Si:H technology 

[27]. Nomura et al. observed a large density of subgap states near the valence band 

maximum (EV), possibly the origin for the lack of p-type operation, using hard X-ray 

photoelectron spectroscopy [28]. Below the band gap, optical absorption spectrum 

showed tail-like decay that can be described by the Urbach relation, although its 

characteristic energy slope in the literature varies with sample quality and preparation 

[28]–[30]. Kamiya et al. and Chen et al. performed first-principles calculations using 

density functional theory and found that for IGZO, oxygen vacancies form fully occupied 

donor levels located at 1 eV above EV [29], [31]. Temperature-dependent TFT 

characteristics can also be used to extract DOS near the EC, as shown by Chen et al. with 

the Meyer-Neldel rule [32] and Lee et al. with trap-limited conduction at low-

temperature (77 K) [33]. For the next-generation a-IGZO-backplane active-matrix flat-

panel display to be realized, a robust a-IGZO DOS model is needed for the design of 

devices and circuits using 2D numerical and SPICE simulations, respectively. 

In order for a-IGZO TFTs to be widely adopted as the backplane technology for UHD 

AM-LCDs, its threshold voltage (Vth) stability under BTS, a critical factor for robust 

AM-LCDs with long lifetimes, should be evaluated in detail. Steady state (dc) positive 

and negative BTS, both in the dark and illuminated, have been the subject of much 

theoretical and experimental research effort and are well-documented [34]–[37]. Our 

group previously reported that the dc BTS-induced ΔVth instability of the a-IGZO TFT is 

significantly lower than that of the a-Si:H TFT [38], in agreement with experimental data 

in published literature. Although there is substantial work on the dc BTS stability of a-
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IGZO TFTs, the steady-state condition is not an accurate representation of AM-LCD 

operation, which biases the transistors in positive and negative alternating (ac) pulses. A 

direct comparison of ac and dc BTS on a-Si:H TFTs shows that dc BTS reliability is a 

poor predictor of ac BTS ΔVth [22]. Thus there is strong motivation to study and verify ac 

BTS behavior such that the lifetime of UHD displays with a-IGZO TFT backplane 

technology may be properly evaluated.  

Several methods have been proposed to improve TFT electrical stability, such as 

thermal annealing [28], [39], [40], hydrogen incorporation [41], nitrogenation [42], [43], 

passivation [44]–[46], among other methods [47]–[51]. However, the microscopic origin 

of Vth shift is still not yet completely understood. A hypothesis proposed in the literature 

suggests that oxygen-related sub-band gap states, such as oxygen vacancies, are 

responsible for the Vth instability under BTS [52], [53]. To clarify the origin of Vth shift 

from an atomic-bonding point of view, X-ray photoelectron spectroscopy studies have 

been reported for oxygen 1s states [40], [41], [54]–[56]. Results indicated that the higher 

binding energy peak of oxygen 1s states is related to smaller ΔVth induced by BTS. It was 

assumed that higher oxygen flow during channel layer formation caused more oxygen to 

be incorporated into the final a-IGZO thin film, and this was found to significantly 

impact device BTS stability [57], [58]. However, more work is needed to ascertain the 

role of oxygen incorporation in a-IGZO thin film and its impact on device performance 

and stability. 

In addition to electrical reliability, the actual dynamic operation characteristics of  

a-IGZO TFTs for AM-LCD pixel electrodes should be fully evaluated. Improvements to 

display resolution and frame rate both correspond to shorter time margin available for 
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each pixel to complete charging, thus placing stringent requirements on TFT dynamic 

response. The dynamic response of the a-Si:H TFT pixel electrode has been studied 

extensively in literature. The ΔVP, which results from gate-source overlap capacitance 

(CGS) and channel charge redistribution, is the main source of image flickering in AM-

LCD operation and a key metric in TFT dynamic response [59]. Takabatake et al. 

reported a robust analytical model for ΔVP that is very consistent with experimental 

values [60]. Kitazawa et al. investigated the impact of a-Si:H TFT device structural 

differences on ΔVP [61]. Aoki conducted a comprehensive study detailing an analytical 

model of a-Si:H TFT dynamic operation with the liquid-crystal cell capacitance included, 

and the model has been verified by experimental data [62]. Lee et al. studied the dynamic 

response of a-Si:H TFT for AM-OLED pixel electrode, and reported in detail ΔVP and 

charging time (tch) for various TFT structures and waveform parameters [63]. Our group 

has previously described preliminary results on the dynamic response of a-IGZO TFT 

pixel electrodes in terms of its Cst and TFT dimension dependences [64]. Initial data 

suggest that a-IGZO TFT showed very favorable dynamic characteristics when operated 

at a very high frequency. To date, however, comprehensive studies of a-IGZO TFT 

dynamic response are still lacking. 

In this dissertation, our goal is to address the issues directly related to TFT electrical 

properties and stability under UHD dynamic operation, which include dynamic charging 

behavior, pixel ΔVP, and ac BTS. A robust DOS model will also be developed to enable 

the development of a-IGZO TFTs suitable for dynamic operation in the active-matrix 

backplane of UHD AM-LCDs. Various experimental evidence will be used to support the 

DOS model. 
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1.2 Thesis Organization 

This thesis begins with a detailed description in chapter 2 of a-IGZO TFT fabrication 

by shadow masking and by photolithography. Our proposed a-IGZO TFT DOS model is 

presented in chapter 3. The DOS model we have developed is derived from a 

combination of electrical and optical measurements and data from published literature. 

Oxygen-related states, such as oxygen vacancies or excess oxygen in the a-IGZO 

microstructure, are often discussed as the source of the subgap states in a-IGZO. Chapter 

4 investigates the effect of oxygen incorporation into the a-IGZO thin film in terms of 

electrical properties and stability. In chapter 5, possible radiative transitions for 

photoluminescence (PL) in a-IGZO are proposed and discussed based on the spectra of 

a-IGZO thin films processed under different conditions. The PL is used as a 

nondestructive tool to probe the TFT channel region for changes to the subgap DOS. The 

PL spectra of a-IGZO TFTs before and after application of BTS are measured and 

discussed. Chapter 6 discusses the ac BTS of metal S/D recessed a-IGZO TFTs fabricated 

by photolithography on glass substrates. Both unipolar (positive or negative) and bipolar 

pulse waveforms with different pulse periods and duty cycles are investigated. In chapter 

7, we fabricate one-transistor-one-capacitor test circuits with a-Si:H or a-IGZO TFTs and 

evaluate their dynamic characteristics side-by-side in the context of UHD display 

specifications. Lastly, chapter 8 summarizes the findings of this dissertation and future 

research directions are recommended. 
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CHAPTER 2 

Fabrication of a-IGZO Thin-Film Transistors 

 
Figure 2.1 A generic description of the (a) shadow mask and (b) photolithography 
fabrication process. A high-level comparison of the two processes are shown in (c). 

2.1 Introduction 

This dissertation utilizes a-IGZO TFTs fabricated by both shadow masking and 

photolithography at the Michigan Lurie Nanofabrication Facility and elsewhere. The 

main difference between shadow masking and photolithography can be seen in Figure 

2.1. Fabrication by shadow masking is most suited for rapid prototyping of simple TFT 
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structures to investigate fundamental properties and optimize process parameters. In 

chapters 4 and 5, the common gate shadow mask a-IGZO TFT is used to reduce 

fabrication time and eliminate process variations unrelated to the a-IGZO layer. To 

investigate a-IGZO TFT dynamic response for real-world applications, TFTs of the back 

channel etch (BCE) inverted-staggered structure are fabricated by photolithography in 

chapter 7. For the ac bias-temperature stress studies, source/drain (S/D) recessed coplanar 

homojunction a-IGZO TFTs are fabricated elsewhere by our collaborators and will be 

discussed in chapter 6.  

Within this chapter, the field-effect mobility (µFE) is extracted from a linear fit of the 

TFT transfer (ID–VGS) characteristics to the simplified ideal MOSFET equation  

𝐼! =
!
!
𝜇!"𝐶!" 𝑉!" − 𝑉!! 𝑉!"          (2-1)  

in the linear region (small drain bias VDS) and threshold voltage (Vth) from extrapolating 

the fitted line to the x-axis. In Equation (2-1), W and L are the TFT width and length, CGI 

is the gate insulator capacitance per unit area, and VGS is the gate bias. The subthreshold 

swing (SS) is derived from an average of three values around the maximum 

transconductance (dID/dVGS) point of semi-log ID–VGS characteristics. 

2.2 Common Gate a-IGZO TFTs by Shadow Masking 

The common gate inverted-staggered a-IGZO TFT is a simple TFT structure 

consisting of S/D contacts and a-IGZO islands all defined by shadow masking on a 

SiO2/Si substrate. A top-view image is shown in Figure 2.2. The Si substrate is heavily 

doped n++ silicon and serves as a single common gate for multiple TFTs. The individual 

devices can be physically separated by cleaving the substrate with a diamond cutter. The 

common gate a-IGZO TFT can be considered a “textbook” device in that the SiO2 and Si 
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Figure 2.2 Top view photograph of the shadow mask a-IGZO TFT. 

 
Figure 2.3 Fabrication process of the common gate inverted-staggered a-IGZO TFT by 
shadow mask process. 

layers are very well understood and deviations are not expected. Therefore any changes 

to device properties and stability are directly representative of changes to the fabrication 

process in the channel and contact layers. It is very suitable for investigating the critical 

a-IGZO active layer process parameters. Its fabrication process is summarized in Figure 

2.3. Depending on the thickness of the SiO2 used (generally 100 or 200 nm), there is 

possibility that the gate and S/D contacts may be shorted due to physical damage to the 

gate oxide during the fabrication process. In the device transfer characteristics (ID–VGS), 

this may appear as the S/D currents tracking the gate current. 
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Figure 2.4 Common gate a-IGZO TFTs with (a) one post-S/D deposition annealing and 
(b) one pre-S/D deposition annealing. 

2.2.1 Impact of Thermal Annealing 

Annealing is essential for the fabrication of a-IGZO TFTs with good electrical 

properties [28], [65]. Without annealing, as-fabricated a-IGZO TFTs have very negative 

Vth and very high SS. We observed no significant differences between 30 and 60 minutes 

of annealing. We have also studied the impact of the order of annealing on a-IGZO TFT 

electrical properties. Within the literature, some reported annealing before S/D deposition 

[27], [66] while some are done after [67], [68]. In our investigations, we fabricated two 

(b) 

(a) 
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common gate a-IGZO TFTs, one annealed before S/D deposition (“pre-annealed”) and 

the other annealed after (“post-annealed”). Their ID–VGS curves are shown in Figure 2.4. 

The (a) post-annealed TFT is very degraded in comparison to the (b) pre-annealed TFT. 

The extracted TFT electrical parameters are as follows for the pre-annealed 

configuration: µFE = 18.1 cm2/V·s, Vth = 0.3 V, and SS = 222 mV/dec. For the post-

annealed configuration, they are: µFE = 12.5 cm2/V·s, Vth = 3.23 V, and SS = 410 mV/dec. 

In the case of the post-annealed TFT, upon visual inspection by the naked eye, the 

molybdenum (Mo) S/D contacts are severely oxidized, which may have greatly increased 

the S/D series resistance and reduced µFE. Material and chemical analysis should be 

conducted in the TFT channel to precisely determine the cause of the degradation. Based 

on these results, we have adopted pre-S/D deposition/definition thermal annealing for all 

our shadow mask a-IGZO TFTs throughout this dissertation.  

2.2.2 Impact of Oxygen Partial Pressure 

During deposition of the a-IGZO thin film by sputtering, oxygen is usually injected 

into the sputtering chamber with argon. The typical percentage of O2/Ar partial pressure 

(pO2) ranges from 2% to 20%. Throughout this dissertation, pO2 = 5% is mostly used in 

the fabrication of a-IGZO TFTs unless where stated. We have also fabricated a-IGZO 

TFTs with pO2 = 10% and 15%. The ID–VGS electrical properties are shown in Figure 2.5. 

From the figure, we observe that Vth becomes more positive and field-effect mobility 

(µFE) is slightly reduced with higher pO2. More discussion and analysis on the impact of 

pO2 during a-IGZO deposition on TFT electrical properties and stability will be presented 

in chapter 4. 
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Figure 2.5 Impact of pO2 during a-IGZO sputtering on the electrical properties of 
common gate a-IGZO TFTs fabricated by shadow mask. 

2.2.3 Impact of Active-Wide vs. Contact-Wide TFT Configurations 

As shown in Figure 2.2, the device configuration in which the a-IGZO island is wider 

than the S/D contacts is generally referred to as the “active-wide” configuration. When 

the gate bias is applied, the entire a-IGZO island accumulates charge carriers, and fringe 

field effect causes current to also flow through the vicinity of the channel region. Field-

effect mobility is commonly extracted from TFT ID–VGS using Equation (2-1) while 

assuming that current is confined within the W/L as defined by the S/D contacts. In the 

case of the active-wide configuration, this will cause the µFE to appear higher than it 

actually is. In the “contact-wide” configuration, S/D contacts are wider than the a-IGZO 

island and current is confined entirely within the channel region as defined by the active 
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Figure 2.6 The ID–VGS at VDS = 0.1 and 10 V for the common gate a-IGZO TFTs 
fabricated by shadow mask process with W/L = 2/2 mm in the (a) contact-wide and (b) 
active-wide configurations. The arrows in (b) indicate the path of the fringe field effect. 

Contact-Wide 
W/L = 2/2 mm 

Active-Wide 
W/L = 2/2 mm 

(a) 

(b) 
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island width and the S/D contact separation. We have fabricated two TFTs of identical 

W/L (2/2 mm) in both the active-wide and the contact-wide configurations. The ID–VGS of 

(a) contact-wide and (b) active-wide a-IGZO TFTs are shown in Figure 2.6, and top-view 

photograph and mask design of the TFTs are shown as figure insets. It is clear to see that 

for devices of the same dimensions, the active-wide configuration has much higher ID at 

the same bias point in the on state. Based on W/L = 2000/2000 µm, we extract the 

apparent µFE = 16.1 cm2/V·s and Vth = 1.6 V for active-wide and µFE = 10.5 cm2/V·s and 

Vth = 1.1 V for contact-wide configuration. The apparent µFE of the active-wide 

configuration is much higher, even though the two TFTs were fabricated in the same 

processing run on the same substrate. This indicates that using the active-wide 

configuration will make extraction of TFT electrical parameters difficult. Unless extra 

steps are taken to take into consideration of the fringe field effects, the contact-wide 

configuration is recommended for most cases if possible.   

2.3 Defined Gate a-IGZO TFTs by Shadow Masking 

In our a-IGZO TFT shadow mask set, we have also prepared masks for gate electrode 

and gate insulator layers. Defined gate a-IGZO TFTs may be fabricated on glass or 

SiO2/Si substrates. The gate electrode material can be the same as that of the S/D 

electrodes, which is Mo throughout the entire dissertation. The defined gate may be used 

in conjunction with the metal-insulator-semiconductor (MIS) structure to explore the 

impact of gate insulators on a-IGZO TFT electrical properties. For the gate insulator, we 

have used plasma-enhanced chemical vapor deposition (PECVD) silicon oxide (a-SiOX). 

It is also possible to use a PECVD silicon nitride (a-SiNX)/a-SiOX bilayer as gate 
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Figure 2.7 The ID–VGS at VDS = 0.1 and 1 V of defined gate a-IGZO TFTs fabricated by 
shadow masking. The top-view photograph of the fabricated device is shown in the figure 
inset. 

insulator, provided that the a-SiOX layer always interfaces with a-IGZO because a-IGZO 

may be doped by the high hydrogen content in PECVD a-SiNX [31], [67]–[69]. The ID–

VGS and top-view photograph of the defined gate a-IGZO TFT we have fabricated are 

shown in Figure 2.7. The extracted electrical parameters are as follows: µFE = 13.2 

cm2/V·s, Vth = 1.5 V, and SS = 261 mV/dec. 

2.4 Back Channel Etch a-IGZO TFTs by Photolithography 

In the active-matrix liquid crystal display (AM-LCD) industry, the TFT backplane is 

fabricated by photolithography. The required small feature sizes are only possible 

through photolithography because it is only limited by diffraction of the exposure light 
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Figure 2.8 Process flow of the back channel etch a-IGZO TFTs fabricated by 
photolithography at the University of Michigan Lurie Nanofabrication Facility. 
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source. For fabricating the a-IGZO TFTs by photolithography in this study, we have 

adopted the BCE inverted-staggered TFT structure for its simplicity and its applicability 

to most existing AM-LCD production lines. The BCE structure is notable for its exposed 

active layer back channel during the S/D deposition and definition process. This enables 

reduced mask count for lower costs, higher throughput, and has been widely adopted for 

a-Si:H TFTs. For direct comparison of the TFT dynamic response, BCE a-Si:H and 

a-IGZO TFTs are fabricated and will be discussed in chapter 7.  The process flow of the 

BCE a-IGZO TFT is shown in Figure 2.8. 

2.4.1 Gate Electrode Deposition and Definition 

Molybdenum was selected as the gate metal. As a refractory transition metal, it is 

easily processed, is stable under most processing conditions, and has decent conductivity 

for most applications [8]. A 100-nm-thick film of Mo is deposited as gate metal on 

cleaned 4” glass substrates by dc sputtering at 600 W without any RF bias on the 

substrate holder. The flow rate of Ar is 40 sccm in 3.78 mTorr chamber pressure. The 

process conditions may vary, but at time of writing it deposits Mo at 3.5 Å/s. 

For patterning of each layer, photoresist (PR) is first applied by the ACS 200 

automated cluster tool in the Michigan Lurie Nanofabrication Facility (LNF). It spin-

coats 1.5 µm of Dow Chemical Megaposit SPR 200 positive resist and then bakes it for 

90 s at 115 °C. Alignment and exposure of the first mask pattern (Mask #1: Gate) are 

done by the Karl Suss MA-6 alignment tool. The 405 nm UV lamp at 20 mW/cm2 power 

exposes the PR for 5.5 s, which is then developed in the ACS 200 with Clariant AZ 300 

metal-ion-free developer by spraying for 30 s. Finally a hard bake is applied by the ACS 

200. After hard bake, the patterned PR is lightly descumed in the YES Plasma Stripper 
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Figure 2.9 Side-view SEM image of Mo gate electrode on glass after dry etching. 

with O2 plasma for 30 s. The same photolithography procedure is used for all subsequent 

photolithography steps. 

For gate electrode definition, dry etching in the LAM 9400 reactive ion etcher (RIE) 

is used with a 4”-to-6” carrier wafer. Pressure in the process chamber is 20 mTorr to 

prevent loss of plasma energy due to particle collision outside of deeper features. Gas 

chemistry used for the plasma is 30 sccm SF6, 20 sccm O2, and 50 sccm of He dilution. 

The SF6 provides the reactive chemistry to etch Mo, while O2 erodes the PR to encourage 

the formation of a tapered edge on the gate electrodes. Tapered edge is necessary for 

good step coverage of subsequent layers [8]. At power of 200 W + 25 W of RF power, 

the etch rate is 48.6 Å/s at the center of the substrate and 44.1 Å/s on the outer edge. To 

investigate the etch quality, Figure 2.9 shows the cross-section scanning-electron 

microscope (SEM) image of the etched gate electrode, and we see that a very desirable 

30° tapered edge has been formed as a result of the PR erosion. After brief ashing in the 

YES Plasma Etcher to remove the hardened fluorocarbons generated in the dry etch 

process, the PR is stripped in acetone and isopropyl alcohol with ultrasonic agitation.

Photoresist 

 Mo 

Glass 
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Figure 2.10 (a) The HF etch rate and refractive index of PECVD a-SiOX used throughout 
this study for gate insulator purposes, compared with those of thermally grown SiO2 on a 
Si substrate. (b) The C–V characteristics of the PECVD a-SiOX MOS structure. 
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2.4.2 Gate Insulators and Active Layer Deposition and Definition 

Gate insulator is 200 nm of a-SiOX deposited by PECVD. In the LNF cleanroom, a 

high-density low-hydrogen custom recipe on the GSI PECVD tool was developed 

specifically for electronic applications. The gas chemistry is 5 sccm of SiH4 (100%), 

2000 sccm of N2O, and 500 sccm of He dilution at 3 Torr chamber pressure. Power is 

200W at 13.56 MHz and 20W at 400 KHz. Deposition temperature is 300 °C. The optical 

refractive index and HF etch rate can provide clues on the quality of the a-SiOX in 

comparison to a reference thermally grown SiO2 sample, as shown in Figure 2.10(a). The 

refractive index is representative of the film stoichiometry, while the HF etch rate is 

related to the film density. In Figure 2.10(b) the PECVD a-SiOX MOS structure 

capacitance–voltage (C–V) characteristics is evaluated using a HP 4284A LCR meter. 

Although the quality of the PECVD a-SiOX is inferior to thermally grown SiO2, it is 

sufficiently robust for our purposes in photolithography a-IGZO TFTs. 

After deposition of a-SiOX gate insulator, 50 nm of a-IGZO is dc sputtered as the 

channel layer. The sputtering is done in a Kurt J. Lesker Lab18 sputterer with a 

In:Ga:Zn:O = 2:2:1:7 target purchased from Toshima Manufacturing Company. 

Sputtering power is 200 W, and during deposition gas mixture of O2/Ar = 1.5/30 sccm is 

injected into the sputtering chamber while a turbopump maintains chamber pressure at 4 

mTorr. Detailed description of the deposition conditions of the a-IGZO active layer and 

their impact on TFT electrical properties have been discussed in previous sections and 

will be continued in chapter 4. After a-IGZO sputtering, the substrate is annealed in room 

atmosphere (40% humidity) on a contact hot plate at 350 °C for 30 mins. The a-IGZO is 

then defined after PR has been deposited and patterned (Mask #2: Active) using wet 



 27 

etching. The wet etchant is either 0.05 M of oxalic acid (H2C2O4) or 0.1 M of HCl, both 

of which will etch a-IGZO at a reasonably low rate of ~10 Å/s for good control during 

the etching. No agitation is applied while the etching takes place for consistency between 

runs. 

Photoresist is then deposited and patterned (Mask #3: Contact) for gate contact vias. 

The contact vias in the gate insulator are then opened using dry etching in the LAM 9400 

tool. The gas chemistry is 8 sccm of SF6, 50 sccm of C4F8, 50 sccm or Ar, and 50 sccm of 

He dilution at a pressure of 10 mTorr. After dry etching, the entire substrate should be 

ashed in O2 plasma to remove hardened fluorocarbons and inhibitants resulting from the 

RIE etching process (primarily C4F8). Failure to do so will cause the metal gate pad to 

adhere poorly in later fabrication steps. 

2.4.3 Source/Drain Electrode Definition 

The S/D metal is 100 nm of Mo deposited using the identical dc sputtering recipe as 

the gate electrodes. After PR deposition and patterning (Mask #4: Metal), the S/D 

electrodes are defined. In the fabrication of hydrogenated amorphous silicon (a-Si:H) 

TFTs, dry etching has generally been used for the definition of S/D electrodes. However, 

literature has shown that a-IGZO exposed to high-energy plasma becomes very 

conductive [70]. To determine the impact of S/D definition processes, we fabricated one 

set of a-IGZO TFTs where the S/D contact electrodes are defined by dry etching and the 

other by wet etching.  

The S/D dry etch recipe is again performed in LAM 9400 using the same SF6 + O2 + 

He recipe as the gate electrode definition described in section 2.4.1. For wet etching, 30% 

CMOS grade H2O2 (J. T. Baker) is used. Formation of a black MoOX complex during wet 
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Figure 2.11 SEM cross-section of a Mo thin film on a SiO2 dummy wafer etched by 
H2O2 + NH4OH. 

etching prompted the addition of NH4OH to H2O2 (in 1:40 ratio) [71] and the use of a 

magnetic stirrer to promote etch uniformity. Dummy wafers are first etched in either 

processes to evaluate the etch selectivity against a-IGZO. By visual inspection, we have 

found no signs of erosion on the a-IGZO layer by wet etching or dry etching. However, a 

four-point probe measurement on the film surface revealed that while the as-deposited 

a-IGZO thin film has very high sheet resistivity outside the measurable range of the 

probe, dry-etched a-IGZO has low sheet resistivity of 6140 Ω/sq. The wet-etched sample 

remains very resistive and is also out of the range of the four-point probe. The SEM 

cross-section image of a wet-etched Mo film on a dummy test wafer is shown in Figure 

2.11. After the S/D electrodes have been defined, the PR is then stripped and the substrate 

cleaned. The ID–VGS of the BCE a-IGZO TFTs we fabricated with the S/D electrodes dry-

etched using the conditions mentioned above is shown in Figure 2.12. We observe that at 
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Figure 2.12 The ID–VGS of the BCE a-IGZO TFT with S/D defined by dry etching. 

higher VDS, because the a-IGZO TFT back channel has become very conductive during 

plasma exposure, the impact of a parasitic transistor is evident. Therefore, we have 

adopted wet etching with H2O2 + NH4OH at room temperature for all S/D definition in 

our BCE a-IGZO TFTs. 

Due to process condition variations, some samples fabricated showed very conductive 

behavior with only one annealing step. If deemed necessary, a second anneal of 300 °C in 

room atmosphere may be applied after the PR has been stripped. Figure 2.13 shows the 

(a) ID–VGS and (b) ID–VDS of a representative BCE a-IGZO TFT fabricated for various 

studies throughout this dissertation. The extracted electrical parameters are as follows: 

µFE = 9.8 cm2/V·s, Vth = −2.0 V, SS = 700 mV/dec, and the off current is below 10−13 A. 

The output (ID–VDS) characteristics of the TFT are very good and show no sign of current 

crowding upon inspection in the low-VDS region.  
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Figure 2.13 The (a) ID–VGS characteristics and (b) ID–VDS characteristics of the BCE 
a-IGZO TFT fabricated by photolithography for this dissertation. 

(a) 

(b) 
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Figure 2.14 The TFT ID–VGS characteristics of the CPL a-IGZO TFT fabricated by 
photolithography with PECVD a-SiOX passivation layer (300 nm). 

2.5 Channel Protection Layer a-IGZO TFTs by Photolithography 

As seen in section 2.4.3, the back channel of the a-IGZO TFT heavily influences the TFT 

electrical properties. Damage or doping during the S/D metal deposition and/or definition 

may severely impact TFT operation. In order to fabricate high performance a-IGZO TFTs 

with photolithography, it may be desirable to add a PECVD a-SiOX Channel Protection 

Layer (CPL) onto the a-IGZO active layer in the fabrication process. Dry etching is used 

for CPL definition, and exposure of the unprotected a-IGZO regions to high-energy 

plasma may facilitate the formation of highly conductive S/D contact regions. The 

PECVD a-SiOX CPL should be deposited at a lower temperature than the gate insulator 

so as to not degrade its electrical integrity or modify the a-IGZO layer too much. The 

CPL a-IGZO TFT ID–VGS are shown in Figure 2.14 and the extracted parameters are µFE 

= 10.4 cm2/V·s, Vth = −3.5 V, and SS = 770 mV/dec. The a-IGZO TFTs with CPL are 

fabricated off-site at our collaborators’ lab, and the process flow is shown in Figure 2.15.
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Figure 2.15 Process flow of the Channel Protection Layer (CPL) a-IGZO TFT fabricated 
by photolithography. 
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 PECVD a-SiOX  PECVD a-SiOX/a-SiNX Bilayer 

 Initial 
Room Air 

Nitrogen 
Flow 

Room 
Air (2) 

 Initial 
Room Air 

Nitrogen 
Flow 

Room  
Air (2) 

µFE 
(cm2/V·s) 10.4 10.9 10.4  9.6 9.5 9.6 

Vth (V) −3.5 −2.9 −3.5  3.5 3.5 3.5 

SS 
(mV/dec) 770 309 720  285 246 275 

Table 2.1 Extracted device parameters in the linear region (VDS = 0.1 V) for the a-IGZO 
TFT with PECVD a-SiOX or a-SiOX/a-SiNX bilayer as passivation. 

2.5.1 Impact of Passivation Layer on a-IGZO TFTs by Photolithography 

Two different types of TFT passivation are investigated: PECVD a-SiOX (300 nm), 

and PECVD a-SiOX/a-SiNX bilayer (150 nm each). For each substrate, the TFT ID–VGS is 

initially measured in room air. It is then measured again after purging with N2. In Figure 

2.16(a), we observe that the TFT electrical properties significantly improved after the 

device has been subject to N2 purging for 30 minutes. Once the N2 flow has been 

removed for another 30 minutes, the TFT electrical properties returned to their initial 

states. The TFT ID–VGS curve measured in a vacuum probe (not shown) is almost 

identical to the curve measured in N2. However, as shown in Figure 2.16(b), no 

differences are observed for the ID–VGS of the a-SiOX/a-SiNX bilayer-passivated device 

when measured in different ambient atmospheres. For both substrates, the extracted 

device parameters before, during, and after N2 purging are summarized in Table 2.1. 

Room air is a mixture of O2, N2, humidity, and other negligible gaseous species. The 

degradation of TFT electrical properties upon air exposure suggests that the passivation is 

not sufficiently robust to shield the TFT back channel from O2 and/or humidity. In terms 

of a-IGZO TFT with the a-SiOX/a-SiNX bilayer passivation, there are no sign that  
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Figure 2.16 Comparison of the a-IGZO TFT ID–VGS characteristics before (open circles), 
during (solid red line), and after (solid black line) nitrogen purging for TFTs with (a) only 
PECVD a-SiOX passivation and (b) PECVD a-SiOX/a-SiNX bilayer passivation. 
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Figure 2.17 The ID–VGS at VDS = 0.1 V of the S/D-recessed coplanar homojunction 
a-IGZO TFT fabricated by photolithography. 

ambient gases affect the TFT electrical properties. 

2.6 S/D-Recessed a-IGZO TFTs by Photolithography 

In the dynamic operation of the TFT active-matrix backplane, the gate-source/drain 

overlap capacitance (CGS) contributes significantly to the feedthrough voltage [61], [62], 

which is responsible for display flicker in AM-LCDs. A coplanar self-aligned structure, 

in which there is no overlap between the gate and S/D electrodes, should effectively 

eliminate or greatly reduce CGS [67], [68]. In such a configuration, highly conductive  

a-IGZO homojunction regions are used as S/D contact regions and the Mo metal 

electrodes do not overlap at all within the TFT structure. In this configuration, the TFT is 

self-aligned because channel region is formed from the a-IGZO area capped by the CPL. 
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Regions outside CPL are converted to ohmic a-IGZO contact regions by hydrogen doping 

from the hydrogen-containing PECVD a-SiNX passivation layer. It has been shown in the 

literature that hydrogen acts as a shallow donor level in a-IGZO [31], [69], [72], thus 

hydrogen doping is effective in creating S/D contact regions for the a-IGZO TFT. The 

typical TFT ID–VGS characteristics for this device configuration is shown in Figure 2.17 

and the extracted device parameters are as follows: µFE = 10.9 cm2/V·s, Vth = −1.02 V, 

and SS = 220 mV/dec. The process flow for the S/D-recessed coplanar homojunction 

a-IGZO TFT is described in Figure. 2.18. The S/D-recessed a-IGZO TFTs are fabricated 

off-site at our collaborators’ location. These devices will be discussed and evaluated in 

greater detail in chapter 6. 

2.7 Summary of TFT Structures Fabricated 

Throughout this dissertation, several different configurations of a-IGZO TFTs have 

been fabricated for different purposes and studies: 

• Shadow mask a-IGZO TFTs with common gate (n++ Si). Used to rapidly 

investigate impact of processing conditions (chapter 4 and 5). 

• Shadow mask a-IGZO TFTs with defined gate. 

• Channel protection layer a-IGZO TFTs by photolithography. 

• High-performance S/D-recessed coplanar homojunction a-IGZO TFTs by 

photolithography. A strong candidate for UHD AM-LCD backplane and used 

to investigate the dynamic operation electrical instability (chapter 6). 

• Back channel etch a-IGZO TFTs by photolithography. Used to compare the 

dynamic response with BCE a-Si:H TFTs (chapter 7). 
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Figure 2.18 Process flow of the S/D-recessed coplanar homojunction a-IGZO TFT 
fabricated by photolithography 

1)  Gate metal deposition/definition 
Mo, 100 nm, dc sputtering 
Dry etch, Mask #1 

2)  Gate insulator deposition 
PECVD SiOx, 200 nm 

3)  a-IGZO deposition/definition 
40 nm, dc sputtering 
Wet etch, Mask #2 

4)  Channel Protection Layer  
(CPL) deposition/definition 
PECVD SiOx, 300 nm 
Dry etch, Mask #3 

5)  Rapid thermal anneal #1 
290 °C, 1 hour 

6)  Passivation and gate via  
deposition/definition 
PECVD SiONx, 300 nm 
Dry etch, Mask #4 and #5 

7)  S/D metal deposition/definition 
Mo, 100 nm, dc sputtering 
Wet etch, Mask #6 

8)   Rapid thermal anneal #2 
270 °C, 1 hour 
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CHAPTER 3 

Density of States of Amorphous In-Ga-Zn-O from Electrical 

and Optical Characterization 

3.1 Introduction 

Capacitance–voltage (C–V) measurement can reliably probe the density of defect 

states in a semiconductor device and is commonly used in silicon CMOS technology. 

From the C–V measurements of an a-IGZO TFT structure, Kimura et al. extracted the 

density of states (DOS) near the conduction band minimum (EC) [73]. In the case of TFTs 

with non-negligible bulk resistivity, the frequency of the ac small-signal needs to be very 

low (<1 Hz) so the electrons supplied from the source/drain (S/D) regions can have 

sufficient time to respond. Extraction of the DOS from high-frequency C–V 

measurements is demonstrated by Jeon et al., who exposed a-IGZO TFTs to 

monochromatic sub-band gap light acting as a source of photo-excitation [74]. 

Considering that a-IGZO is sensitive to bias-illumination degradation, the measurement 

should be done without exposure to light. Lee et al. developed an a-IGZO TFT 

capacitance model that allows for the frequency-independent capacitance of localized 

states, and in turn the acceptor-like DOS, to be derived using the multi-frequency C–V 

response without illumination [75]. However, none of these works have addressed the 

need for a comprehensive a-IGZO subgap DOS model that is robust enough to 
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accommodate a wide variety of deposition conditions and has explicitly defined 

acceptor/donor assignments derived from experimental and theoretical evidence. 

In this chapter, using a combination of optical methods and C–V measurements that 

are described in the literature, we develop an a-IGZO DOS model over the entire range of 

the band-gap. We also incorporate published data in the literature to complement and 

calibrate our experimental results. The photoluminescence (PL) spectrum, though 

commonly used in the analysis of compound (III-V, II-VI) semiconductors, is rarely 

reported for a-IGZO [76]–[78]. We measure the PL spectrum of a-IGZO thin film to 

confirm the results of our DOS extraction and, together with numerical simulations, assist 

the assignment of subgap states as either donor- or acceptor-like. By building our a-IGZO 

DOS model from multiple sources, we expect it to be robust and applicable to any 

laboratory research or industrial production setting. 

3.2 Experimental Setup 

An a-IGZO thin film with thickness of 100 nm is deposited using RF sputtering at 

room temperature on a clean quartz glass substrate. The sample is then annealed at 300 

°C for 30 minutes in ambient air on a hot plate. The optical absorption spectrum of the 

a-IGZO thin film is measured with a Cary 5E UV-Vis spectrometer. The spectrometer 

collects the thin-film transmittance of a polarized monochromic light with wavelength 

varying from 300 nm (4 eV) to 1000 nm (1.24 eV). The PL spectrum of the a-IGZO film 

is then measured at temperatures of T = 300 K and at T = 8 K using a system consisting 

of a grating monochromator, a lock-in amplifier, a photodiode detector, and a closed-

cycle helium cryostat. The source of the PL excitation is a He-Cd laser of wavelength λ = 

325 nm with laser power of 50 W/cm2. An in-house LabView program adjusts the 



 40 

monochromator during data collection to sweep the emission wavelength from 330 nm to 

700 nm at 1 nm intervals with 300 ms integration time. 

For the a-IGZO TFT multi-frequency C–V measurements, bottom-gate TFTs are 

fabricated on glass substrates. The gate metal is sputtered, defined, and then followed by 

a bilayer of PECVD gate insulator. The gate insulator is a 400-nm layer of a-SiNX 

(interfacing with gate metal) and 50-nm layer a-SiOX (interfacing with the a-IGZO). The 

45 nm-thick a-IGZO islands are sputtered, defined, and followed by the S/D electrodes. 

The fabricated devices have width (W) = 25 µm and length (L) = 10 µm. The C–V 

characteristics between the gate and S/D (tied together) electrodes are measured for six 

different a-IGZO TFTs on the same substrate by using an LCR meter (HP 4284A) at 

room temperature in the dark. The gate-to-S/D voltage (VG-S/D) range is −20 to 20 V, and 

its ramp-up speed is 0.4 V/s. The amplitude (A) and frequencies (fn) of the small-signal 

voltage used are A = 0.05 V and f1=50 kHz, f2=250 kHz, and f3=1 MHz. With one of the 

six a-IGZO TFTs, we also measured the temperature-dependent I–V characteristics from 

30 °C to 70 °C (10 °C intervals) and extracted the drain current activation energy [32] 

(Eact) as a function of the gate-to-source voltage (VGS) under a fixed drain-to-source 

voltage (VDS = 0.1 V). 

3.3 Results and Discussion 

The optical absorption spectrum (α) of the a-IGZO thin film on a quartz substrate is 

shown in linear and semi-logarithmic scale in Figure 3.1(a). For incident photon energies 

greater than 3 eV, a-IGZO shows strong absorption of at least 104 cm-1 and α increases 

linearly with energy. The optical band gap (Eg) of 3.37 eV can be extracted from α by 

extrapolating the absorption edge to its x-intercept. In the semi-logarithmic scale of 
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Figure 3.1 (a) The absorption spectrum of a-IGZO thin film is shown in linear and semi-
logarithmic scale as empty squares (□). The transient photocapacitance (TPC) 
spectroscopy data from literature are reproduced in the figure as solid squares (!) [80]. 
The absorption edge in linear scale is used to extract the optical gap by extrapolating the 
x-intercept. (b) The PL emission at T = 8 K and T = 300 K are shown and fitted to 
Gaussian functions. The Tauc gap energy is extracted from the square root of optical 
absorption.  

Figure 3.1(a), the exponential decay of α, or the Urbach edge, is visible for energies 

below Eg. It can be described by the equation 

𝛼 ℏ𝜔 = 𝛼! exp
!!ℏ!
!!

, (3-1) 

where E0 is the characteristic energy slope of the Urbach edge and α0 is a constant factor. 

The Urbach edge, which was first reported for alkali halide crystals [79], represents the 

band broadening due to disorder and is observed in all amorphous semiconductors [16]. 

In the figure, α is truncated at 2.81 eV, after which the signal intensity falls below the 
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detection background of the UV-Vis spectrometer. More data points are required to 

precisely determine the slope of the Urbach edge and extract E0. To achieve this, the 

transient photocapacitance (TPC) spectroscopy data of the a-IGZO metal-insulator-

semiconductor (MIS) structure is adapted from Erslev [80] and reproduced in Figure 

3.1(a) as solid squares. Details regarding TPC spectroscopy can be found elsewhere [81], 

[82] and is summarized here. A voltage-filling pulse (zero bias) is first applied to the 

reverse-biased MIS junction to fill the previously depleted regions. Immediately after the 

voltage pulse, the capacitance transient is measured while a sub-band gap light is 

illuminating the sample. These two steps are then repeated without the optical excitation. 

The measured transient signals are each integrated over the time between the two pulses, 

and their difference, normalized over photon flux, is taken to be the TPC at that photon 

energy. Repeating this process for the photon energies of interest produces the TPC 

spectrum. At low optical intensities, the TPC signal is proportional to the joint DOS, 

similar to optical absorption but at much greater sensitivity [81]. Therefore, the signal 

decay in TPC spectrum is also the Urbach edge. Since we are only interested in the slope 

instead of actual values, the TPC data, which is in arbitrary units vs. photon energy, can 

be calibrated to Figure 3.1(a) by vertically aligning its data points (solid squares) with 

absorption (open squares) at corresponding energy values until the two curves effectively 

overlap over a significant range of values. We then extract the characteristic Urbach 

energy to be E0 = 110.5 ± 2.3 meV. Assuming parabolic band edges, the Tauc gap energy 

of 3.0 eV can also be extrapolated from 𝛼(E) as shown in Figure 3.1(b). This value is 

consistent with our previous work [30] and other reported values in the literature [28], 

[29]. 
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The PL spectrum of a-IGZO thin film at T = 8 K and T = 300 K are shown in Figure 

3.1(b) for emissions between 330 nm (3.75 eV) and 700 nm (1.77 eV). At T = 8 K, we 

observe a broad deep-level emission at 2.44 eV followed by a weak near band-edge 

(NBE) emission at 3.4 eV. At room temperature, the NBE emission is almost completely 

obscured. We fit the deep-level emission with a Gaussian function and find that at T = 

300 K the emission is centered at λ = 2.76 eV with full-width at half-maximum (FWHM) 

of ΔE1/2 = 0.91 eV. At T = 8 K, the deep-level emission is described by λ = 2.44 eV and 

ΔE1/2 = 0.57 eV. In PL spectroscopy, after an electron has been excited to the conduction 

band, there are four possible recombination processes: (i) band-to-band, (ii) electron trap-

to-hole trap, (iii) band-to-hole trap, and (iv) electron trap-to-band.  In the PL spectrum, 

the dominance of the deep-level emission over the NBE emission is similar to what has 

been reported in the literature [76], [78], meaning that the main radiative recombination 

process in a-IGZO cannot be band-to-band transition and must involve at least a trap 

level. We note that the deep-level emission peak energies are different from the one 

detected near 1.77 eV (700 nm) by Yamaguchi et al. At T = 8 K in Figure 3.1(b), there 

appears to be a small PL response at 1.77 eV in our a-IGZO thin film, but because it is at 

the edge of our detection range, we limit our discussion to the peak at 2.76 eV within the 

scope of this chapter. We speculate that the peaks represent two distinct transitions within 

the band gap, and both or only one may be observed prominently in a-IGZO depending 

on deposition conditions and measurement setup. 

We extract the DOS near EC using multi-frequency C–V spectroscopy [75], which is 

briefly described as follows. As shown in Figure 3.2 inset (i), the a-IGZO TFT under test 

can be modeled with an equivalent circuit consisting of gate insulator capacitance (COX), 
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Figure 3.2 The a-IGZO DOS extracted from multi-frequency C–V measurements 
(crosshairs, +) and the associated fitting curve. Inset (i) shows the equivalent RC model 
used to extract the DOS from multi-frequency C–V measurements of a-IGZO TFTs. Inset 
(ii) shows the frequency-dependent C–V for one of the six a-IGZO TFTs as measured. 

capacitance of VGS-responsive charges captured/released by the subgap states at 

corresponding energy levels (CLOC), equivalent resistance of the CLOC-related charges 

(RLOC), and capacitance of VGS-responsive free carriers (CFREE). Assuming that the 

f-dependence is entirely contained in the channel-to-S/D series resistance (RS), the 

f-independent intrinsic C–V can be derived from the C–V at different frequencies. The C–

V at f = 50 kHz, 250 kHz, and 1 MHz for a single TFT are shown in Figure 3.2 inset (ii). 

From the resulting f-independent C–V (not shown) we can extract the DOS located in the 

range of energies observable by electrical measurements. This is repeated for six different 

TFTs on the same substrate and the combined DOS are shown in Figure 3.2 as crosshairs 
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(some points omitted for clarity). We observe in Figure 3.2 that at energies closer to EC, 

the bandtail states are an exponential distribution and can be described by the equation 

𝑔!" 𝐸 = 𝑁!" exp
!!!!
!!

, (3-2) 

where Nta is the maximum density of the conduction bandtail states and Ea is the bandtail 

slope. We then extract Nta = 4.2×1019 eV-1cm-3 and Ea = 11 ± 0.3 meV by fitting the data 

points to Equation (3-2). The conduction bandtail slope extracted this way is comparable 

to the values derived from numerical simulation [83] and carrier transport [84] studies. 

The deep-gap states we model using a Gaussian distribution of the form 

𝑔!" 𝐸 = 𝑁!" exp − !!!!
!!

!
, (3-3) 

where Nga, λa, and σa are the Gaussian peak value, the mean energy, and the standard 

deviation, respectively. We calculate the parameters Nga = 2 × 1017 eV-1cm-3, λa = 

2.55±0.37 eV, and σa = 0.69 eV by fitting the DOS near the midgap to Equation (3-3). 

The λa and the FWHM (ΔE1/2 = 0.97 eV) of the EC deep-gap states are very close to those 

of the PL deep-level emission observed in Figure 3.1(b). To verify this visually, we 

superimpose a Gaussian distribution centered at 2.76 eV representing the PL deep-level 

emission in Figure 3.2 as a dashed curve. We observe a significant overlap of the two 

Gaussians, which suggests that they are possibly of the same origin involving deep-gap 

states near the EC.  

To validate the DOS extracted from multi-frequency C–V, Eact as a function of VGS is 

extracted from the temperature-dependent I–V characteristics from 30 °C to 70 °C 

following the methodology described in Chen et al. [32] The Arrehenius plot and the 

extracted Eact as a function of VGS are shown in Figure 3.3(a) and Figure 3.3(b), 

respectively. The Eact in the figure is the average barrier height for an electron trapped in 
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Figure 3.3 (a) The Arrhenius plot used to extract the a-IGZO activation energy Eact from 
the temperature-dependent TFT I–V characteristics from 30 °C to 70 °C. (b) The 
activation energy of a-IGZO as a function of TFT gate-source voltage. The activation 
energy saturates at Eact = 15 meV for high gate biases. 
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the localized states needed to jump into the conduction band. It represents the difference 

between the EC and the Fermi level (EF) at the a-IGZO/gate insulator interface (EC – EF) 

and any influences from the bulk. It has been shown in hydrogenated amorphous silicon 

(a-Si:H) TFT numerical simulations that at high VGS, the deep-gap states have no 

influence on Eact, which actually approaches Ea for values less than 20 meV [85]. In the 

case of a sharp conduction bandtail slope, the movement of EF in response to VGS would 

become limited in the vicinity of a large density of tail states, i.e. when Eact approaches 

Ea. We observe in Figure 3.3 that at VGS = 40 V, Eact saturates at 15 meV, which is very 

close to Ea = 11 meV. This shows that our DOS parameters extracted from multi-

frequency C–V spectroscopy are reliable. 

3.4 DOS Model of a-IGZO 

Based on our experimental data and the extracted parameters, we construct a model 

for the subgap DOS of a-IGZO, which is shown in Figure 3.4. As previously mentioned, 

the conduction bandtail and deep-gap states are given by exponential and Gaussian 

distributions with parameters extracted from multi-frequency C–V measurements. We can 

combine Equations (3-2) and (3-3) into a single expression 

𝑔! 𝐸 = 𝑔!" 𝐸 + 𝑔!" 𝐸 =   𝑁!" exp
!!!!
!!

+ 𝑁!"𝑒𝑥𝑝 − !!!! !

!!!
. (3-4) 

The above equation alone provides no information about the donor/acceptor 

assignment of the gga states. In semiconductors, donor-like defect states are charge-

neutral when occupied by electrons and positively charged when empty, whereas 

acceptors are charge-neutral when empty and negatively charged when occupied by 

electrons [86]. Most states above the Fermi level are assumed to be occupied by electrons 
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Figure 3.4 The proposed a-IGZO subgap DOS model derived from electrical and optical 
characterization. In this figure, D denotes donor-like states and A denotes acceptor-like 
states. The fully occupied deep-gap donor states (VO

0) are adopted from first-principles 
calculations in the literature [31]. 

and those below, empty. The multi-frequency C–V method for extracting the DOS is 

responsive to both trapping and de-trapping of charge carriers at defect states and cannot 

differentiate between the two processes. Two-dimensional numerical simulations have 

shown that donor assignment has no impact on TFT threshold voltage (Vth), while 

acceptor assignment causes Vth to shift with peak density. The latter is consistent with 

experimental TFT I–V characteristics, therefore we designate the conduction band 

deep-gap states acceptor-like as shown in the figure. Although this assignment is 

different from what was used in previous work on a-IGZO TFT numerical simulations 

[83], it best describes the data collected in this study. 
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For the density of subgap states near the EV, we also represent the valence bandtail 

states using an exponential expression 

 𝑔!" = 𝑁!" exp
!!!!
!!

,  (3-5) 

where Nta is the maximum density of the valence bandtail states and Ed is the valence 

bandtail slope. From the results of our optical absorption experiment and the TPC 

spectrum in the literature, we have determined the Urbach energy to be E0 = 110 meV. 

Though the Urbach edge is given by the convolution of the conduction and valence 

bandtail states, the characteristic energy width of the conduction bandtail states is much 

smaller than the Urbach energy. Therefore we expect the valence bandtail states to 

dominate the joint DOS of a-IGZO, similar to a-Si:H [16], which allows us to 

approximate the slope of the Urbach edge as the valence bandtail slope (Ed ≈ E0 = 110 

meV). In our model, we have adopted Ntd = 1.5×1020 cm-3eV-1 from the literature [83]. 

From first-principles calculations based on density functional theory, it was found 

that oxygen vacancies form fully occupied deep donor levels (VO
0) in both crystalline 

[31] and amorphous [29] IGZO located around 1.0 eV above EV. The large molecular 

spacing of the oxygen vacancy is expected to trap and prevent the electrons from being 

released. We adopt this in our model in the form of a Gaussian distribution: 

𝑔!" = 𝑁!"exp − !!!! !

!!
! , (3-6) 

where Ngd = 2×1017 eV-1cm-3, λd = 1.0 eV, and σd = 0.1 eV. Similar to the conduction 

band subgap states, the valence bandtail and deep-gap states can also be combined into a 

single expression 

𝑔! = 𝑔!" 𝐸 + 𝑔!" 𝐸 = 𝑁!" exp
!!!!
!!

+ 𝑁!"𝑒𝑥𝑝 − !!!! !

!!
! . (3-7) 
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Conduction band subgap states 

Nta (cm-3eV-1) Ea (meV) Nga (cm-3eV-1) λa (eV) σa (eV) 

4.23 × 1019 11 ± 0.3 2.08 × 1017 2.55 ± 0.37 0.69 

Valence band subgap states 

Ntd (cm-3eV-1) Ed (meV) Ngd (cm-3eV-1) λd (eV) σd (eV) 

1.55 × 1020 110 2.0 × 1017 1.0 0.01 
Table 3.1 Parameters used in the proposed a-IGZO subgap DOS model. 

The parameters of our a-IGZO DOS model are summarized in Table 3.1. 

Our DOS model can be used to explain the PL emission spectrum described earlier in 

Figure 2.1(b). In the case of trap-to-trap transition, the recombination energy is only 1.5 

eV, which is much lower than 2.76 eV and therefore cannot be responsible for the deep-

level emission we have observed. The remaining two scenarios of band-to-hole trap 

(transition energy 2.37 eV) and electron trap-to-band (transition energy 2.55 eV) are 

potential candidates. In the former, the oxygen vacancy deep donor could trap a hole and 

then hypothetically recombine with a photo-excited electron in the conduction band. 

Although oxygen vacancy defects are often cited as the source of deep-level green 

emission in ZnO [87], Taniguchi et al. [77] and colleagues have shown experimentally 

that they may act as non-radiative recombination centers in a-IGZO. The intensity of 

deep-level emissions is quenched for a-IGZO deposited in low oxygen partial pressure 

[76] (pO2) or annealed in oxygen-deficient ambient (e.g. N2) [77], both of which are 

assumed to enhance the formation of oxygen vacancies. This would eliminate all but the 

electron trap-to-band transition as the origin of the deep-level emission. Regarding the 

nature of the electron trap states, Ide et al. suggested that excess or weakly-bonded 

oxygen in the a-IGZO microstructure can exist as a broad distribution of deep-gap states 
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near EC [88]. Desorption of O2 was observed in thermal desorption spectrum 

measurements for a-IGZO films annealed in O3 or O2 ambient or deposited under high 

pO2. Results from our group [89] and in literature [90] also indicate that pO2 has a strong 

impact on gga. This is consistent with our assignment based on numerical simulations that 

gga are acceptor-like because excess/weakly-bonded oxygen can accept/capture electron 

through O! + 𝑒! → O!!  and/or O!! + 𝑒! → O!! . The O2− ion cannot capture any 

electrons because of its filled outer shell. In this physical picture, the photo-excited 

electron falls to the band edge and then to an electron trap through scattering. It then 

radiatively recombines with a hole in the valence band, emitting at energy of 2.55 eV. 

The fact that the shape of the deep-level emission and the gga deep-gap states are very 

similar also supports this proposition. 

It is informative to compare the DOS of a-IGZO with that of a-Si:H, which also 

consists of exponential tail states and Gaussian deep-gap states [16], [26]. In a-Si:H, the 

conduction and valence bandtail states are a result of fluctuations of the Si-Si bond angles 

and lengths. Structural disorder also causes the bandtail states in a-IGZO, but its 

conduction bandtail slope is sharper and the peak density is at least one to two orders of 

magnitude lower than a-Si:H because of the large overlapping s orbitals of the heavy In3+ 

cation [18]. The deep-gap states in a-Si:H are mainly attributed to dangling Si bonds and 

can be greatly reduced by optimized hydrogenation. The deep-gap states for a-IGZO, due 

to its nature as an oxide semiconductor, can be attributed to localized oxygen-deficiency 

or excess oxygen in the a-IGZO thin film. As mentioned in this chapter, oxygen 

vacancies and excess oxygen in the a-IGZO microstructure form deep donor states and 

deep acceptor states, respectively. Kamiya and Hosono stated that low pO2 during 
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deposition produces films with high electron density and this is linked to oxygen 

vacancies, whereas the low electron density in high pO2-deposited films is attributed to 

excess oxygen [72]. We note that the impact of pO2 on carrier density can be described 

using only oxygen vacancies, only excess oxygen, or both. Both descriptions are 

consistent with our conclusion that the transition from gga to EV is responsible for the 

deep-level PL emission. 
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CHAPTER 4 

Oxygen Flow Effects on Electrical Properties and Stability of 

a-IGZO Thin-Film Transistors 

4.1 Introduction 

To gain insight on charge injection or defect state creation in the device during bias-

temperature stress (BTS) of a-IGZO TFTs, capacitance–voltage (C–V) measurements are 

often performed before and after stressing [91]–[93]. Lee et al. showed that the 

dispersion relation of multi-frequency C–V measurements could be used to extract the a-

IGZO TFT subgap density of states (DOS) [75]. However, the relationship between 

device stability and the subgap DOS was rarely studied by the C–V method. Kim et al. 

used the multi-frequency C–V method to compare the positive BTS (PBTS) stability and 

DOS of a-IGZO TFTs with channel layers sputtered in various oxygen flow ratios [90]. 

They found that a higher oxygen flow ratio corresponded to a larger PBTS-induced 

threshold voltage shift (ΔVth) and that the DOS have observable differences for different 

flow ratios. 

For this chapter, we varied the oxygen flow rate during the sputtering of a-IGZO thin 

films and studied its impact on a-IGZO DOS and TFT electrical properties including 

stability under both PBTS and negative BTS (NBTS). From the device current–voltage  

(I–V) and C–V characteristics, threshold voltage (Vth) and mid-gap voltage (Vmg) were 
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extracted for a-IGZO TFTs before and after BTS. We extracted a-IGZO DOS from multi-

frequency C–V measurements. The goal of this study is to correlate the TFT C–V and I–V 

characteristics and parameters extracted on the same device structure. Both provide 

different but complementary information about the properties and stability of a-IGZO 

TFTs and its DOS. 

4.2 Experimental 

4.2.1 Fabrication of a-IGZO TFTs with Various Oxygen Partial Pressures 

To fabricate bottom-gate a-IGZO TFTs, n++-doped silicon wafers with 100 nm of 

thermally grown SiO2 were used as gate electrode and gate insulator. The a-IGZO active 

islands (50 nm) were deposited by dc sputtering with power of 200 W at pressure of 4 

mTorr under room temperature and patterned by shadow masking. The sputtering target 

used has composition ratio of In:Ga:Zn:O = 2:2:1:7. While keeping the total gas flow into 

the sputtering chamber constant at 31.5 sccm, the oxygen/argon gas flow rate during 

IGZO sputtering was varied from O2/Ar = 1.5/30 sccm, 3.2/28.3 sccm, and 4.7/26.8 

sccm, which represented 5%, 10%, and 15% oxygen partial pressure (pO2), respectively. 

After a-IGZO deposition, thermal annealing was performed at 350 °C for 30 min in 

ambient air on a hot plate. Then 100 nm of molybdenum (Mo) was sputtered as the 

source/drain (S/D) electrodes and defined by shadow masking. The fabricated common-

gate TFTs with staggered S/D electrodes were designed to have a channel width/length of 

300/150 µm.  

4.2.2 Measurement of a-IGZO TFT I–V and C–V Characteristics 
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The TFT I–V characteristics were measured using an Agilent B1500A semiconductor 

analyzer both before and after BTS at room temperature. During the measurement of the 

I–V characteristics, the gate voltage was swept from Vg = −10 V to +10 V while Vd =  

10 V was applied to the drain terminal, while the source terminal was grounded. During 

BTS, the sample was first heated to stress temperature Tst = 70 °C by a heated chuck. The 

Agilent B1500 then applied the gate stress voltage for duration of tst = 104 s while both 

the source and drain are grounded (Vd = Vs = 0 V). For PBTS tests, gate bias stress Vst = 

+10 V was applied to the TFT gate electrode, whereas Vst = −10 V was applied instead 

for NBTS. After BTS, the device was allowed to cool to room temperature and its I–V 

characteristics measured again. All stressing and measurements are done in ambient air in 

the dark. A different device on the same wafer was used for each BTS test. 

The multi-frequency TFT C–V measurements were done at room temperature before 

and after BTS using a HP 4284A LCR meter. The dc and the small-signal ac voltages are 

forced through the gate electrode, while any changes to the stored charges due to the ac 

signal were detected through the shorted source and drain electrodes. The frequencies of 

the small-signal voltage oscillations are between 20 and 500 Hz. Such low frequencies 

are selected to allow the charging current to arrive from the source and drain regions. At 

higher frequencies, the subgap states cannot be filled in time, and the C–V curves become 

flat lines with no distinct accumulation and depletion regions. This is due to the influence 

of the highly resistive a-IGZO bulk region. 

4.3 Results and Discussion 

4.3.1 Impact of Bias-Temperature Stress on a-IGZO TFT C–V Characteristics 



 56 

 
Figure 4.1 C–V curves before and after BTS. ΔVmg is the shift of mid-gap voltage before 
and after BTS with 10% O2/Ar flow ratio. 

 
Figure 4.2 (a) The Vmg variation before BTS (○) and (b) the shift of Vmg after PBTS (■) 
and NBTS (●) with the oxygen flow rate. 
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Figure 4.1 shows the C–V characteristics of the a-IGZO TFT measured at f = 20 Hz 

before and after PBTS. The C–V curve after NBTS shows no visible changes and is 

omitted in the figure. Only the C–V of a-IGZO channel layer sputtered in 10% O2/Ar 

flow ratio is shown. Similar curves were obtained for all oxygen flow ratios studied in 

this chapter. The Vmg were extracted at the maximum inclination point in the C–V curves. 

Positive Vmg shift (ΔVmg) without any change in curve slope or shape was observed after 

PBTS. This is also the case for TFTs with channel layers deposited at 5 and 15% oxygen 

flow (not shown). From these observations, we believe that the fixed and/or trapped 

charges near the a-IGZO/SiO2 interface region are most likely responsible for ΔVmg [86]. 

In this study, the fixed charges could have originated from bonding imperfections of the 

non-stoichiometric composition (2:2:1:7) a-IGZO influenced by oxygen flow changes 

during the deposition process. We see in Figure 4.2(a) that TFTs with higher oxygen 

ratios have higher Vmg, indicating that higher oxygen flow can be responsible for larger 

concentration of negative oxide charges localized near or at the a-IGZO/SiO2 interface. In 

Figure 4.2(b), ΔVmg also increased after PBTS for TFTs with higher O2 ratios. Based on 

these results we can speculate that larger oxygen flow not only has impact on initial Vmg 

but also produces larger positive shift of Vmg after PBTS. These effects might be due to 

the increase of non-stoichiometry at the a-IGZO/SiO2 interface. 

4.3.2 Impact of Bias-Temperature Stress on a-IGZO TFT I–V Characteristics 

The TFT I–V characteristics for different O2/Ar ratios before and after stressing are 

shown in Figure 4.3 for PBTS and Figure 4.4 for NBTS. The device parameters extracted 

from the I–V curves of unstressed TFTs are shown in Table 4.1. The device parameters 

were extracted from the unstressed a-IGZO TFT I–V shown as solid black circles in 
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Figure 4.3 The device transfer characteristics for TFTs with different oxygen flow during 
sputtering. The solid circles and triangles represent before and after positive BTS (Vst = 
10 V) for 10,000 s at 70 °C respectively. 
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Figure 4.4 The device transfer characteristics for TFTs with different oxygen flow during 
sputtering. The solid circles and triangles represent before and after negative BTS (Vst = 
−10 V) for 10,000 s at 70 °C respectively. 
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 Ion (A) Ioff (A) Vth (V) µFE 
(cm2/V·s) 

SS 
(V/dec) 

5% 1.14×10-4 1.21×10-14 -1.55  32 0.243 

10% 7.47×10-5 2.10×10-14 -0.34  27.1 0.278 

15% 3.21×10-5 1.11×10-14 1.00  16.7 0.238 

Table 4.1 The initial parameters of I–V curves with O2/Ar flow ratios during deposition. 

Figures 4.3 and 4.4. The field-effect mobility (µFE) is extracted from fitting the TFT I–V 

to the ideal MOSFET equation, and Vth from extrapolating the fitted curve to the x-axis. 

To examine the impact of BTS on subthreshold operation, the ΔVth was calculated as the 

difference in the applied Vg that is required for the drain current (ID) to reach 10-9 A 

before and after BTS. The subthreshold swing (SS) is calculated from the inverse average 

of three values near the maximum transconductance (dId/dVg) point. We observe that µFE 

and maximum current (Ion) decreased with increasing O2/Ar ratio. This suggests that 

increasing the oxygen flow rate reduced the carrier concentration of the samples tested. 

After PBTS, the ΔVth were positive for all O2/Ar ratios, while they were all negative after 

NBTS. For all oxygen flow ratios studied, the extracted Vth and ΔVth after PBTS/NBTS 

are shown in Figures 4.5(a) and 4.5(b), respectively. Two observations can be made from 

Figure 4.5: 1) ΔVth is smaller for lower pO2 in PBTS 2) the dependence of ΔVth on pO2 in 

NBTS is insignificant. These trends are consistent with what has been reported in the 

literature [45], [90]. For NBTS, Chen et al. showed that the ΔVth of unpassivated a-IGZO 

TFT is strongly affected by ambient gas composition during stressing: ΔVth becomes very 

severe when moisture is present in the ambient gas [94]. This suggests that under NBTS, 

ΔVth is associated with the adsorption/diffusion of humidity/hydrogen/hydroxyl species in 

the TFT back channel. Considering that all our samples are stressed under the same
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Figure 4.5 (a) Variation of Vth before BTS (○) and (b) after PBTS (■) and NBTS (●) with 
oxygen flow rate. 

 
Figure 4.6 The relation between Vth and Vmg with oxygen flow rate before/after PBTS. 
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 a b 

Before PBTS 0.425 -1.36 

After PBTS 0.345 -0.06 

Table 4.2 Linear fitting curve parameters (Vth = aVmg + b). 

ambient environment, the lack of obvious trends between NBTS and pO2 is within our 

expectations. In Figure 4.6, we show that the relationship between Vth and Vmg has a 

linear dependence on oxygen flow ratio. From this figure, a linear relationship can be 

established between TFT I–V (represented by Vth) and C–V (represented by Vmg) data, 

which holds even after the application of PBTS. The fit parameters for the linear 

relationship are shown in Table 4.2. 

It should be noted that as short as 30 minutes after the stress bias was removed and 

device returned to room temperature, the threshold voltage began to shift back towards its 

initial state. While this effect is not as pronounced for devices subject to NBTS because 

the magnitudes of ΔVth were small, the recovery was readily observable for TFTs applied 

with PBTS. Such recovery has been observed in the literature for unpassivated a-IGZO 

TFTs after PBTS [95] and NBTS [96]. 

4.3.3 Extraction of DOS of a-IGZO TFTs from Multi-frequency C–V 

Measuring the C–V at different frequencies can allow us to extract the subgap DOS of  

a-IGZO [75] and investigate the influence of pO2. Knowledge of a-IGZO DOS is critical 

for SPICE simulations and for improving the electrical properties of a-IGZO TFTs. The 

experimental subgap DOS for a-IGZO TFTs of different pO2 are shown in Figure 4.7 as 

empty symbols in each sub-figure. The experimental data were extracted from multi- 

frequency C–V measurements following the methodology described in [75] and then
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Figure 4.7 The a-IGZO DOS extracted from multi-frequency C–V for pO2 of (a) 5%, (b) 
10%, and (c) 15%. The solid lines are calculated from Equations (4-1) and (4-2), and the 
symbols are experimental data. 
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 Nta (cm-2eV-1) Ea (meV) 

5% 3.50×1018 11 

10% 3.00×1018 5 

15% 2.50×1018 3 

Table 4.3 Exponential subgap DOS fitting parameters for O2/Ar flow rate. 

 

 Nga (cm-2eV-1) σ  (meV) λ  (eV) 

5% 9.00×1015 0.06 0.365 

10% 1.20×1016 0.035 0.115 

15% 3.00×1016 0.018 0.05 

Table 4.4 Gaussian subgap DOS fitting parameter for O2/Ar flow rate. 

fitted to the following proposed a-IGZO DOS model. The model consists of a Gaussian-

like distribution and an exponential near the conduction band minimum, as given by 

Equations (4-1) and (4-2) [97], [98]: 

𝑔! 𝐸 =   𝑁!"exp − !!!
!

!
, (4-1) 

𝑔!"# 𝐸 =   𝑁!"exp
!!!!
!!

. (4-2) 

In Equation (4-1), which describes the Gaussian-like states, Nga, λ and σ are the peak 

density, the mean energy position, and the standard deviation of the distribution, 

respectively. For the exponential states in Equation (4-2), EC is the conduction band edge 

energy, Nta is the density of acceptor-like states at E = EC, and Ea is the characteristic 

slope of the exponential states.  

For all pO2 studied, the DOS fits to Equations (4-1) and (4-2) are shown in Figure 4.7 

as solid lines, and the extracted parameters of the subgap DOS are shown in Table 4.3 
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and Table 4.4. We note that there are minor but discernable differences in conduction 

bandtail states for the different pO2 samples: higher pO2 corresponded to lower Nta and Ea. 

In a-IGZO, conduction occurs through the overlap of the large 5s orbital of the In3+ ion 

[18]. The conduction bandtail states are thus primarily a result of structural disorder, 

which we do not expect to be greatly affected by pO2. For the a-IGZO TFTs deposited 

under higher pO2 in this study, it is possible that the lower Ar gas flow reduces the 

damage caused by the high-energy Ar plasma bombardment, which is reflected on the 

conduction bandtail states. We observe that as PO2 increases, the Nga of the Gaussian-like 

deep-gap states increases and the mean energy position λ shifts towards EC. Taking the 

TFT I–V characteristics into consideration, increased Nga directly corresponds to reduced 

µFE and the shift of Vth towards higher positive voltage. These phenomena can be 

explained by assuming that the deep-gap states are acceptor-like and act as electron traps. 

Ide et al. proposed the idea that incorporation of weakly bonded oxygen, resulting from 

either high-temperature O3-annealing or high pO2 during a-IGZO deposition, can manifest 

itself as a broad distribution of deep-gap states [88]. These oxygen-related states could be 

either O0 or O1-, which may accept an electron to become O1- or O2-; O2- ions could not 

accept an electron due to the filled outer shell. Kamiya and Hosono showed that high pO2 

directly leads to low electrical conductivity and TFTs not entering on state (i.e. very high 

Vth) [72], both of which are consistent with our observations. Furthermore, the 

designation of these deep-gap states as acceptor-like is supported by our previous results 

on photoluminescence (PL) of a-IGZO thin film [97] and 2D numerical simulations of 

a-IGZO metal-semiconductor field-effect transistors [98]. It should be noted that in 

chapter 3, we concluded that the PL deep-level emission peak energy corresponds to λ of 
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the Gaussian deep-gap states. Thus we expect the PL deep-level emission to shift towards 

higher energies when pO2 is increased. More experimental work is required to verify this 

hypothesis. 

With regards to PBTS for different pO2, we speculate that the larger ΔVth for higher 

pO2 is also associated with the excess oxygen weakly bonded to nearest neighbors. They 

can exist as non-bridging or free oxygen in the a-IGZO microstructure, and their 

migration can be accelerated by a combination of electrical field and temperature during 

PBTS. If we assume that higher pO2 corresponds to greater incorporation of 

excess/weakly-bonded oxygen in the a-IGZO thin film, then increased accumulation of 

negatively charged O1- or O2- ions at the a-IGZO/SiO2 interface could reasonably account 

for the larger ΔVth in high-pO2 samples. It should be noted that in Ji et al., high-pressure 

O2 annealing actually reduced negative-bias illumination stress (NBIS)-induced 

instability [99]. This was attributed to a reduction of the oxygen vacancy (VO
0) defects, 

which could be photoexcited to the VO
2+ charged state during NBIS and cause Vth to shift. 

Taking this into consideration along with our results on PBTS, we can then conclude that 

there exists a continuous spectrum of oxygen incorporation in a-IGZO, depending on 

deposition and annealing conditions. Oxygen-deficiency and oxygen-excess, both readily 

discernable through conductivity and carrier density, lead to NBIS and PBTS instability, 

respectively. We speculate that it may be possible to optimize oxygen content for 

minimal PBTS and NBIS instability. 
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CHAPTER 5 

Photoluminescence of a-IGZO Thin-Film Transistors 

5.1 Introduction 

Photoluminescence (PL) spectroscopy is the detection of light emission over a range 

of wavelengths as the result of radiative recombination between photo-excited electrons 

and holes [100]. In the study of semiconductor devices, PL spectroscopy has been used 

very extensively for identification of the impurity levels in materials such as 

hydrogenated amorphous silicon (a-Si:H) [101] and ZnO [102], as the photoemission 

energy represents the energy difference between the electron-hole recombining carriers. 

Few published reports in the literature have applied PL spectroscopy to the transistor 

channel region as a nondestructive method to rapidly evaluate the bias-operation 

properties of III-V high-electron mobility transistors [103], [104] and organic transistors 

[105]. To date, however, such a method has never been used to investigate the a-IGZO 

TFT. 

The first reported study of IGZO PL by Jeong et al. was performed for crystalline 

InGaZnO4 (c-IGZO) prepared from high-temperature (1250 °C) solid-state reaction 

[106]. After c-IGZO was annealed in an oxygen-deficient environment at 900 °C, PL 

emissions at 2.87 eV and deep-level emission at 1.78 eV were observed. Taniguchi et al. 

measured the low temperature (T = 77 K) PL spectra of sputtered a-IGZO thin films 
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annealed under different ambient conditions including air, O2, and N2 [77]. Together with 

their colleagues Yamaguchi et al. [76] they both observed a negative correlation between 

carrier concentration and intensity of the deep-level emission at 1.8 eV i.e. carrier 

concentration decreased when photoemission increased. In their works, oxygen vacancy 

defects (VO) were treated as an intrinsic donor and a non-radiative recombination center 

that was passivated by atomic oxygen during annealing in oxidizing atmosphere (air or 

O2). Ota et al. also showed that there is a negative correlation between sheet resistance of 

a-IGZO thin-film and the deep-level emission near 1.8 eV [107]. Tsubuku et al. [108] 

and Ishihara et al. [78] confirmed the observation of PL in c-axis-aligned crystalline 

(CAAC)-IGZO thin film with a strong deep-level emission at 1.87 eV. They attributed 

this to VO but did not elaborate on the microscopic origin of this transition. They only 

suggested that photo-excited holes could be trapped in these VO states and contribute to 

negative bias-illumination instability of TFTs. By combining the PL emission spectrum 

with density of states (DOS) extracted from multi-frequency capacitance–voltage 

measurements, Yu et al. developed a DOS model of a-IGZO and proposed that the deep-

level transition at 2.76 eV is the result of electrons transitioning between oxygen-related 

acceptor-like states and the valence band maximum (EV) [97]. Recently, Tiwari et al. 

observed in both annealed and as-deposited a-IGZO thin films a near-band edge (NBE) 

emission at 3.27 eV and a blue emission at 2.76 eV, the latter of which they attributed to 

electron transition from VO acting as shallow donor level to valence band [109]. 

In this chapter, our goal is to study in detail the electron-hole transition that is 

responsible for the observed deep-level photoemission in a-IGZO. The PL spectra of a-

IGZO thin films deposited in different oxygen flow and annealed in atmospheres of 



 69 

different O2 concentrations are measured and compared. A number of possible transitions 

responsible for the observed PL emissions are discussed in connection to experimental 

results. Finally, PL spectroscopy is then used as a nondestructive method to directly 

probe the a-IGZO TFT channel before/after the application of bias-temperature stress 

(BTS). 

5.2 Experimental 

5.2.1 Fabrication of a-IGZO TFTs and Thin Films for Photoluminescence 

Spectroscopy 

The a-IGZO TFTs used in this study are fabricated on n++-doped silicon substrate 

with 100 nm of thermally grown SiO2. The heavily doped silicon and thermal oxide act as 

gate electrode and gate insulator for the TFTs. The active layer is 50-nm-thick a-IGZO 

deposited by dc sputtering at 200 W of power. The sputtering target has composition ratio 

of In:Ga:Zn:O = 2:2:1:7. During deposition of a-IGZO, a mixture of Ar and O2 gas is 

injected into the sputtering chamber, with O2 partial pressure (pO2) set at 5%. After the 

a-IGZO islands are deposited and defined by shadow masking, the sample is annealed in 

room air at 350 °C for 1 hour. The source/drain (S/D) contacts are 100 nm of Mo, also 

deposited by dc sputtering and defined by shadow masking. The final fabricated a-IGZO 

TFTs have width/length (W/L) of 3000/3000 μm. The TFTs used in this study are very 

large by design to facilitate the alignment between the laser and the TFT channel region. 

For the PL measurements, 250-nm-thick a-IGZO thin films are also deposited on the 

same SiO2/Si substrates as the TFTs by dc sputtering at 200 W with pO2 = 5% or 15%. 

After sputtering, the films are annealed in room atmosphere, O2, N2, or low vacuum.  
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The a-IGZO thin films are annealed at 350 °C for 1 hour on a hot plate in an 

annealing chamber. When annealing in room atmosphere, the chamber door is left open, 

and air at time of annealing is at 40% humidity. For annealing in O2 or N2 gas, the gas is 

fed into the chamber with the door closed and exhaust line opened while the hot plate is 

pre-heated to temperature. After 20 minutes, the door is then opened and the sample set 

onto the hot plate while the gas continues to flow, then the door is immediately closed. 

For low-vacuum annealing, the vacuum pump is turned on only after the sample has been 

set onto the pre-heated hot plate and the door has been closed. The lowest pressure 

achievable by the mechanical pump is ~10-1 Torr. Both O2 and room air are considered to 

be high-O2% atmospheres, and N2 and low vacuum low-O2% atmospheres. We expect 

low-O2% atmospheres to be relatively deficient but not completely devoid of oxygen 

species in the annealing chamber. 

5.2.2 Measurement of Electrical Properties and Photoluminescence Spectra 

A Keysight (Agilent) B1500A semiconductor device parameter analyzer is used to 

measure the a-IGZO TFT transfer characteristics (ID–VGS) at room temperature before 

and after BTS. For BTS, the B1500A applies gate stress voltage of Vst = +20 V for 

positive BTS (PBTS) or −20 V for negative BTS (NBTS) at stress temperature of T = 80 

°C while the source and drain electrodes are grounded (VDS = 0 V). Different devices 

fabricated in the same run are used for PBTS and NBTS such that a fresh device 

unstressed and not irradiated by the UV laser is used for each experiment. The 

experiments are repeated several times and only representative data are included in this 

chapter. 

The PL experimental setup used in this study is shown in Figure 5.1 together with a 
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Figure 5.1 (a) The experimental setup for the photoluminescence spectroscopy 
performed in this study on a-IGZO thin-film transistor channel regions. (b) The top-view 
diagram showing the sample mounted on the cryostat sample mount and a cross section 
diagram of the a-IGZO TFT with the channel region irradiated. (c) A photograph of the a-
IGZO TFT fabricated by shadow masking in this study. 

side-view diagram of the a-IGZO TFT and a photograph of the device fabricated shown 

as figure insets. All PL spectra in this investigation are measured at T = 33 K using a 

system consisting of a grating monochromator, a lock-in amplifier, a photodiode detector, 

and a closed-cycle helium cryostat. The source of the PL excitation is a He-Cd laser of 

wavelength λ = 325 nm with laser power of 25 W/cm2. An OD6 laser-line filter (Semrock 

MaxLine) is used to remove optical noise of the laser for wavelengths outside of 325 nm. 

The absorption of the laser may be approximated to the first order using film thickness 

and absorption coefficient at 325 nm from section 3.3. We estimate that 85.1% and 

31.7% of the incident light is absorbed by the 50-nm a-IGZO TFT channel region and the 

250-nm a-IGZO thin film, respectively. An in-house LabView program adjusts the 
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monochromator during data collection to sweep the emission wavelength from 350 nm to 

800 nm at 2 nm intervals with 300 ms integration time. Using an arbitrary sample with 

very strong emission in the visible spectrum and identical thickness to the SiO2/Si 

substrates, the optical elements are aligned at the beginning of experiments for maximum 

intensity and are not changed at all throughout the study. We measure the PL spectra of 

the a-IGZO thin films before any of the TFT structures. The PL spectra for all a-IGZO 

thin films and TFTs are measured using identical experimental setup and measurement 

conditions. When measuring the PL of a-IGZO TFTs, the channel region is first manually 

aligned to the laser at room temperature and then fixed in place with carbon tape. If the 

device is too small, refraction of the laser through the cryostat window and contraction of 

the sample/mount at low temperature may cause the laser to become misaligned. 

Experimentally, we find that the laser may move up to 1 mm vertically and horizontally, 

which necessitated the use of very large devices. Our experiments on the a-IGZO TFT 

channel region are performed in the following order: 1) pre-BTS PL, 2) pre-BTS ID–VGS, 

3) BTS, 4) post-BTS ID–VGS, and 5) post-BTS PL.  

5.3 Photoluminescence Spectra of a-IGZO Thin Films and TFTs 

In this chapter, PL spectroscopy is performed on a-IGZO thin films deposited and 

annealed under various conditions. Figure 5.2(a) shows the PL spectra for the same  

a-IGZO thin film (250 nm, pO2 = 5%) before and after annealing in ambient air. We 

observe a near-band edge (NBE) emission at 3.35 eV and a deep-level emission at 1.82 

eV (full-width half-maximum FWHM = 0.39 eV). From the figure, we see that intensity 

of the deep-level emission greatly increased after annealing. Even at room temperature, 

the PL emission of the annealed a-IGZO thin film can be faintly observed by the naked 
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Figure 5.2 The PL emission spectrum of 250-nm a-IGZO films with (a) pO2 = 5% 
annealed vs. unannealed and (b) pO2 = 5% vs. 15%, both annealed. 

 
Figure 5.3 The PL emission spectrum for 250-nm a-IGZO thin film with pO2 = 15% 
annealed in ambient air (open green circles), O2 (red dotted line), N2 (purple solid 
squares), vacuum (black solid line), or as-deposited (blue dashed line). 
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eye, but is not detectable at all for the as-deposited sample. In Figure 5.2(b), the PL 

spectra are compared for air-annealed a-IGZO thin films of pO2 = 5% versus 15%, both 

250-nm-thick. We note that higher pO2 during a-IGZO deposition increased the intensity 

of the deep-level emission, although the difference is not as drastic as in Figure 5.2(a). In 

both sub-figures, no obvious differences are observed for the NBE emission. Figure 5.3 

shows the PL spectra of a-IGZO thin films (pO2 = 15%) annealed in various gas 

environments. For comparison, the PL spectrum for the as-deposited a-IGZO film (pO2 = 

15%) is also shown in the figure as a dashed blue line. It is clear that the intensity of the 

deep-level emission at 1.82 eV for the as-deposited sample is the lowest. After annealing 

in low vacuum at 350 °C for 1 hour, the deep-level emission intensity increased. The 

deep-level emission of the N2-annealed film is still slightly higher than the low vacuum-

annealed film. Lastly, the deep-level emissions of air-annealed and O2-annealed a-IGZO 

thin films are the strongest and there are no obvious differences between the two spectra. 

For all five samples, the NBE emissions are all very similar. We can summarize our 

experimental results on PL of a-IGZO thin film as follows: 1) Deep-level emission is 

stronger in annealed films than as-deposited films. 2) Deep-level emission is stronger in 

films annealed in high-O2% atmospheres than low-O2%. 3) Deep-level emission is 

stronger in films deposited in higher pO2. All variations in the PL spectra shown in Figure 

5.3 were outside of possible experimental errors. Experiments were repeated several 

times to exclude any possible experimental errors. 

The ID–VGS of the a-IGZO TFT used in this study is shown in Figure 5.4 before and 

after irradiation by the laser used for PL measurements. The TFT electrical properties are 

very uniform for all devices tested, and one representative device is shown in Figure 5.4. 
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Figure 5.4 The a-IGZO TFT ID–VGS characteristics before and after exposure to the 325 
nm laser. Time of exposure is between 5 and 10 minutes.  

The TFT field-effect mobility (µFE) of 10.2 cm2/V·s and threshold voltage (Vth) of 0.65 V 

are extracted from a linear fit of the ID–VGS in the TFT on-region and extrapolating that 

linear fit to the x-axis. The subthreshold swing (SS) is extracted to be 340 mV/dec. 

Exposure to the laser for less than 10 minutes during the PL measurement induced no 

visible impact on the TFT electrical properties. Figures 5.5(a) and (b) show the a-IGZO 

TFT ID–VGS before/after PBTS and NBTS, respectively. After PBTS, the Vth shift (ΔVth) 

was +1.11 V and µFE decreased slightly to 9.4 cm2/V·s. The opposite happened after 

NBTS: µFE increased to 10.9 cm2/V·s and Vth became more negative (ΔVth = −1.18 V). 

Any changes to SS after BTS are within the extraction error and no trend could be 

discerned. For both PBTS and NBTS, the ΔVth is obtained from the difference in VGS at a 

fixed current of ID = 1 nA in the TFT ID–VGS before and after BTS is applied. As 

described in section 5.2, the TFT ID–VGS is always measured at room temperature 

immediately before or after BTS, thus the extracted ΔVth is without any influence of the 
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Figure 5.5 The ID–VGS of a-IGZO TFTs at VDS = 0.1 V before and after (a) PBTS and (b) 
NBTS. The BTS applied are +20 V for PBTS and −20 V for NBTS, both at 80 °C with 
VDS = 0 V for 10,000 s. The PL deep-level emissions are shown in (c) for PBTS and (d) 
for PBTS as figure insets. Directions of the arrows indicate the shift induced by the BTS. 
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exposure to the laser. The changes induced by PBTS and NBTS are consistent with 

results in the literature [37], [38], [89]. The changes to the PL spectra before and after 

BTS are shown in Figure 5.5(c) for PBTS and Figure 5.5(d) for NBTS. The active layer 

thickness of the a-IGZO TFT is 50 nm for all devices tested. We observe that the deep-

level emission becomes stronger after PBTS and weaker after NBTS in comparison to the 

devices before BTS. These results have been reproduced several times. 

5.4 Discussion of the Photoluminescence Spectra 

For the purpose of analyzing our results in Figures 5.2 and 5.3, the a-IGZO DOS 

model we have adopted [97] is reproduced in Figure 5.6 for reference. It has very sharp 

acceptor-like conduction bandtail states and broad donor-like valence bandtail states. A 

broad Gaussian distribution of acceptor-like deep-gap states centered at 0.82±0.37 eV 

below EC is assigned to weakly-bonded excess (non-stoichiometric) oxygen (O). Based 

on first-principle density functional theory calculations, VO are fully-occupied deep 

donors located at 1.0 eV above EV and are given in our model as a Gaussian distribution. 

There are four possible electron transitions that may be responsible for the observed PL 

emission: 1) band-to-band, 2) conduction bandtail states-to-hole trap (VO), 3) electron 

trap (O)-to-valence bandtail states, 4) electron trap (O)-to-hole trap (VO), and 5) 

conduction bandtail states-to-valence bandtail states. We assign the energy of the NBE 

emission, 3.35 eV, to the energy difference between an electron at EC and a hole at EV. It 

is similar to most published a-IGZO band gap (Eg) values in the literature [29], [30], [97], 

therefore we adopt Eg = 3.35 eV in this study. Since no significant differences are 

observed across all samples for the NBE emission, we will focus only on the deep-level 

PL emission located at 1.82 ± 0.39 eV. In the case of transition 2), a deep-level emission 
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Figure 5.6 A diagram showing the a-IGZO density of states model we have adopted [97]. 
The thicker arrows show the two proposed radiative transitions in a-IGZO. In the figure, 
D indicates donor-like states and A indicates acceptor-like states. 

of 1.82 eV and a very sharp conduction bandtail means that the fully-occupied deep 

donor VO
 recombination center is located at Eg − hν = 1.53 eV above EV, which is too 

close to the midgap and does not match the energy position of 1.0 eV above EV obtained 

from first-principles calculations. For transition 3), because the valence bandtail states are 

very broad, an electron captured by the excess-oxygen deep-gap states could radiatively 

recombine with a hole in the valence bandtail states, emitting photons at 1.82 eV. In the 

trap-to-trap transition 4), in order for there to be deep-level emission at 1.82 eV, holes 

captured by localized donors 1.0 eV above EV would have to radiatively recombine with 

electrons captured by localized acceptors at Eg – 1.0 – 1.82 = 0.53 eV below EC. Having 

excluded transition 2) as the radiative transition for the 1.82 eV photoemission, we 

examine transitions 3), 4), and 5) based on experimental results in various processing 

conditions. 

Eg = 3.35±0.02 eV 

1.82±0.39 eV 
0.82±0.37 eV 
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After a-IGZO has been annealed in a high-O2% atmosphere, the intensity of the deep-

level emission significantly increased in comparison to the as-deposited thin film, as 

shown in Figure 5.3. We speculate that for the PL emission to become stronger, the 

concentration of the radiative excess oxygen recombination center O should increase. It is 

reasonable to consider that after annealing in a high-O2% atmosphere or deposition in 

higher pO2, the density of atomic oxygen within a-IGZO becomes higher and that of VO 

becomes lower. Using depth-dependent secondary-ion mass spectroscopy (SIMS), 

Nomura et al. reported evidence suggesting diffusion of atomic/weakly-bonded oxygen 

into a-IGZO after annealing in an oxidizing atmosphere at 200–400 °C [110]. For 

transition 3), which is from the oxygen-related acceptors to valence bandtail states, higher 

concentration of the O states leads to more transitions and stronger photoemission 

intensity. However, in 4), the transition is from O states to VO states, so it is unlikely for 

the probability of this transition to become much greater if the former increases while the 

latter decreases. As for transition 5), the range of possible emission is between 3.35 eV 

(EC-to-EV) and 2.35 eV (EC-to-VO), and 1.82 eV is smaller than 2.35 eV. Thus the deep-

level photoemission at 1.82 eV could only be described by transition 3) and not 2), 4), or 

5). In low vacuum or N2 gas flow, we expect that the oxygen species are not completely 

purged and still exist in relatively lower concentrations within the annealing chamber. 

The results after low-O2% annealing are as we would expect: Because a smaller amount 

of oxygen is being added to the a-IGZO thin film, the intensity of the deep-level 

photoemission is weaker than that of the high-O2% anneal but still stronger than 

as-deposited a-IGZO. 

Figure 5.6 shows the PL spectrum of a-IGZO thin film (pO2 = 5%, air-annealed) 
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Figure 5.7 The photoluminescence emission spectrum of a-IGZO thin film measured in 
this study (solid black line) superimposed with data from the literature: Yamaguchi et al. 
(dashed red line) [76], Ishihara et al. (dotted blue line) [78], and Yu et al. (dash-dotted 
green line) [97]. 

measured for this work superimposed on top of a-IGZO PL data available in the 

literature. Our NBE emission is identical to the one reported in Yu et al. [97] and Tiwari 

et al [109], while an NBE emission is not observed in many published reports [78], [107], 

[108]. It appears that observation of the NBE emission would depend on the 

measurement setup and/or a-IGZO layer preparation and processing conditions. The 

observed strong deep-level emission at 1.82 eV is very similar to what was also observed 

in Yamaguchi et al. [76] and Ishihara et al [78]. Although this energy of deep-level 

emission appears to be different from the 2.44 eV photoemission that was observed in Yu 

et al. [97], based on our analysis above we may consider them both as originating from 

the excess oxygen acceptor-like states. The transition in our previous work is directly 
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from O to EV, whereas the photoemission observed in the present work involves electrons 

recombining with holes in the valence bandtail states. 

In Figure 5.5, we observe that after PBTS, more positive Vth is accompanied by 

stronger PL emission intensity at 1.82 eV and vice versa. In the above discussion, we 

have already established that increased deep-level photoemission is attributed to an 

increase of acceptor-like excess oxygen states. While VO are deep occupied donors and 

have no impact on TFT operation [31], [69], weakly-bonded excess oxygen in the form of 

O0/O1- can trap an electron to form the negatively-charged O1-/O2- and cause a positive 

shift in Vth. Experimental results from high-resolution transmission electron microscopy 

and energy-dispersive X-ray spectroscopy showed that after PBTS, the oxygen 

concentration within the a-IGZO TFT channel increased in addition to compositional 

changes of the individual In, Ga, and Zn elements [111]. We speculate that during PBTS, 

the diffusion of the oxygen adsorbed at the exposed TFT back channel is influenced by 

electric field and stress temperature, resulting in a modified thin-film composition and 

higher density of excess oxygen in a-IGZO. In addition to stronger deep-level PL 

emission, a higher concentration of excess oxygen corresponds to more positive threshold 

voltage and lower µFE, which is consistent with the previously published results from our 

group [89]. It is possible that the exact opposite is happening after NBTS, causing lower 

deep-level PL emission and more negative threshold voltage. 
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CHAPTER 6 

AC Bias-Temperature Stability of a-IGZO TFTs with Metal 

Source/Drain Recessed Electrodes 

6.1 Introduction 

For the ac bias-temperature stress (BTS) of a-IGZO TFTs, only a small number of 

studies have been published. Existing literature is limited in the scope of stress conditions 

and the BTS studies are often performed on devices with poor electrical properties and/or 

reliability. Fung et al. investigated the pulse width (PW) dependence of threshold voltage 

shift (ΔVth) in a-IGZO TFTs with an inverted-staggered bottom-gate structure [112]. 

They reported a strong PW dependence for positive unipolar ac BTS, with larger ΔVth for 

longer PWs up to 100 ms. Negative unipolar ac BTS exhibited very small ΔVth and no 

obvious trend regarding PW was observed. Work by Ohta et al. showed that after 100 

hours of stressing, ac BTS-induced ΔVth for a-IGZO TFT is about half that of a-Si:H TFT 

[35]. In terms of stress conditions, the effect of different duty cycles [113] and pulse rise-

times [114] have also been studied for different device structures. However, these devices 

showed |ΔVth| > 5 V after less than 104 s of stressing, suggesting that the observed ΔVth 

may be the result of other fabrication deficiencies and not truly characteristic of a-IGZO. 

A “swing-back” of the ΔVth towards its initial state (i.e., recovery) or the opposite polarity 
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has been observed for both positive unipolar [115] and bipolar ac BTS [116] but not 

negative unipolar pulses. Furthermore, existing data on the PW dependence of the 

positive unipolar ac BTS are inconsistent for different structures/processes, where some 

showed increased instability for dc and longer PWs (more dc-like) [112], [115] while 

others are the opposite (greater ΔVth for shorter PWs, positive steady-state is the smallest) 

[114], [117]. Finally, ac BTS produces observable change in the TFT capacitance–

voltage measurement after stressing [116], similar to dc BTS [34]. 

Our objective in this study is to fabricate highly reliable bottom-gate a-IGZO TFTs 

with reduced gate-to-source/drain capacitance (CGS) and evaluate their electrical stability 

under ac BTS. In order for this work to be more applicable to ultra-high definition (UHD) 

active-matrix liquid crystal displays (AM-LCDs), we have fabricated the source/drain 

(S/D)-recessed a-IGZO TFTs by photolithography. We present a comprehensive set of 

data on ac electrical stability using a broad set of stress conditions: polarity, frame time 

(1/frequency), and duty cycle. Our devices are all very stable under ac BTS and the |ΔVth| 

for all stress conditions are within 0.35 V or less after 104 s of stressing at temperature of 

Tst = 70 °C in ambient air. 

6.2 Experimental 

6.2.1 Fabrication of Source/Drain-Recessed a-IGZO TFTs 

The fabrication process flow of the S/D-recessed a-IGZO TFTs is described in section 

2.6 and will be briefly summarized in this section. The molybdenum gate electrode (100 

nm) is first deposited on the glass substrate by sputtering, then patterned and defined by 

dry etching using CF4/O2 plasma. The gate insulator is a layer of amorphous silicon oxide 
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(a-SiOX) (200 nm) deposited with plasma-enhanced chemical vapor deposition (PECVD) 

at 340 °C. The a-IGZO active layer (40 nm) is dc-sputtered and defined (islands) using 

dilute hydrochloric acid. The a-SiOX channel protection layer (CPL) (300 nm) is 

deposited by PECVD at 285 °C and dry etched to define device geometry. After CPL 

definition, the substrate is treated in a rapid thermal anneal (RTA) oven at 290 °C for one 

hour. The amorphous silicon oxynitride (a-SiONX) passivation layer (300 nm) is then 

deposited by PECVD at 250 °C, during which the hydrogen in the PECVD process 

chamber and/or the hydrogen-rich a-SiONX layer dopes the a-IGZO regions not covered 

by the CPL. This process greatly reduces the resistivity of a-IGZO [67], thus creating 

nearly self-aligned H-doped S/D contact regions. The a-IGZO area defined by the CPL 

width (W) and length (L) are considered the device dimensions, and in this report the 

TFTs studied have W/L = 60/10 µm. The S/D contact via is opened in the passivation 

layer by dry etching. Molybdenum S/D electrodes (100 nm) are then sputtered and wet-

etched using a dilute phosphoric and nitric acid mixture. In this TFT configuration, the 

Mo S/D electrode edges are recessed with respect to the Mo gate electrode edges. There 

is a separation/underlap (UL) of about 20 µm between the CPL and the S/D via. Such 

device structure is expected to produce significantly lower CGS in comparison to other 

TFT structures described in literature. After processing, the TFTs undergo one more 

anneal at 270 °C in ambient atmosphere for one hour. The top-view diagram, cross-

section diagram, and top-view micrograph of the complete device are shown in Figure 

6.1. 

It should be indicated that if back exposure is used in combination with the gate 

electrode as mask, the top CPL can be fully self-aligned to the gate dimensions. In 
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Figure 6.1 (Top) Cross-section and (Lower left) top-view diagram of the a-IGZO TFT 
used throughout this study. (Lower right) Top-view micrograph of the fabricated device. 

addition, the CPL is used as mask for H-doping, hence creating the nearly self-aligned 

H-doped source/drain regions. Such a device structure is expected to have a reduced 

overlap between the S/D regions and gate electrode; as shown in Figure 6.1 the S/D metal 

electrodes do not overlap at all with the gate metal electrode (reversed TFT structure). In 

this TFT structure we still maintain a small overlap between H-doped a-IGZO regions 

and gate electrode. We expect that this overlap will not affect CGS. Both these effects will 

be responsible for significant reduction of CGS in comparison to other TFT structures 

used in previous BTS investigations. Therefore this BTS study is novel and significant 

because it can be applied to future high-resolution flat panel displays. 

6.2.2 Characterization of TFT Electrical Properties and AC BTS Stability 
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Figure 6.2 Diagram showing the experimental setup switching between stressing (switch 
positions 1,a) and characterization (switch positions 2,b) steps by the E5250A switching 
matrix. 

Throughout this study, device measurement and stressing are done at Tst = 70 °C on a 

heated chuck in the dark. The illumination effect is not addressed in this study. The 

a-IGZO TFT transfer characteristics (ID–VGS) in the linear (VDS = 0.1 V) and saturation 

(VDS = 15 V) regions between VGS = −10 V to 10 V are measured at 0.1 V steps using an 

Agilent B1500A semiconductor analyzer. The TFT source electrode is always grounded 

during device measurement. 

The B1500A and a HP 8114A pulse generator are connected to a HP E5250A 

switching matrix. An Agilent EasyExpert software routine is responsible for switching 

the E5250A between the 8114A for ac stressing and the B1500A for device measurement 

and dc stressing, as shown in Figure 6.2. During stressing, the source and drain electrodes 

are tied together and grounded (VDS = 0 V) to ensure a uniform distribution of the electric 

field across the channel. The device stressing is interrupted at pre-determined time 

intervals to measure the TFT transfer characteristics at Tst = 70 °C. This repeats until total 

accumulated stress time reaches 104 s. Total accumulated stress time is defined as the 

amount of time a non-zero gate bias (positive or negative) is applied to the gate. A 

different TFT on the same wafer is used for each stress condition. 
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Figure 6.3 The different gate bias stress waveforms used in this study. The left half 
shows unipolar positive and negative pulses. The right half shows bipolar pulses of 
different duty cycles. 

For ac gate stress, the three types of waveforms used in this study are shown in Figure 

6.3: positive unipolar (VG-Stress = 0 to +20 V), negative unipolar (0 to −20 V), and bipolar 

(−20 V to +20 V). The duty cycle of a stress waveform is defined as the ratio of positive 

pulse width to frame time (tHI/tframe), and frame time is the inverse of frequency. For 

unipolar ac waveforms, the duty cycle is fixed at 50%, so tHI is always one half the frame 

time. For bipolar ac waveforms, the duty cycle is varied from 10% to 50%. In the case of 

unipolar ac stressing, because the gate bias is 0 V for half the frame time, the stress 

waveform needs to be applied for twice the duration (i.e. 2×104 s) to achieve the same 

accumulated stress time (104 s) as dc or bipolar ac stressing. 

6.3 Results and Discussion 

6.3.1 Electrical Properties of Source/Drain Recessed a-IGZO TFTs 
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Figure 6.4 The transfer characteristics in the linear region (VDS = 0.1 V) and saturation 
region (VDS = 15 V) of (a) the a-IGZO TFT used in this study and (b) the same TFT after 
receiving 104 s of ac BTS. The red line indicates the linear fit of the device ID at the 20% 
and 80% points. 

µEF (cm2/V·s) Vth (V) SS (mV/dec) IOFF (A) 

10.9 -1.03 220 <10-12 
Table 6.1 Extracted parameters of the a-IGZO TFT in the linear region (VDS = 0.1 V). 
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The device transfer characteristics before stress are shown in Figure 6.4(a). The TFT 

field-effect mobility in the linear region is extracted by fitting the linear region transfer 

curve in Figure 6.4(a) [26]. The threshold voltage is extracted by extrapolating the 

x-intercept of the fit. The TFT used in this study has the parameters µFE = 10.9 cm2/V·s, 

Vth = −1.03 V. We also extracted the subthreshold swing (SS) of the TFT, for which the 

∂logID/∂VGS is taken as the average of three values nearest the maximum slope point in 

the subthreshold region of the transfer curve. The SS of TFT studied is calculated to be 

220 mV/decade. From the device transfer characteristics we observe that Ioff is on the 

order of 10−14 A at room temperature (not shown). The drain current is independent of the 

gate and drain voltage in the off-region. The off-current increases to the order of 10−12 A 

when measured at 70 °C, and it should be noted that this is a result of increased thermal 

noise in the measurement setup at an elevated temperature. Table 6.1 summarizes the 

extracted device parameters of the a-IGZO TFT at 70 °C. An example of the TFT transfer 

characteristics after undergoing ac BTS is shown in Figure 6.4(b) and appears almost 

identical to that of the unstressed device. In fact, none of the stressed TFTs show visible 

changes in µFE, SS, or Ioff under any of the ac BTS stress schemes applied throughout this 

study, with the only noticeable degradation being ΔVth. 

6.3.2 Unipolar AC Bias-Temperature Stress Stability of a-IGZO TFTs 

For the hydrogenated amorphous silicon (a-Si:H) TFT, it has been shown in a side-

by-side comparison that a combination of positive and negative dc BTS cannot accurately 

predict ac BTS stability. In this study, we apply a similar methodology [22] to the 

a-IGZO TFT. The threshold voltage instability ΔVth for a particular stress time tst is 

defined as Δ𝑉!! 𝑡 = 𝑡!" = 𝑉!! 𝑡 = 𝑡!"   –𝑉!! 𝑡 = 0 . In Figure 6.5, ΔVth over 
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Figure 6.5 Side-by-side comparison of bipolar ac BTS (open triangles) and the sum 
(crosshairs) of positive (solid squares) and negative (solid circles) dc BTS. Stressing and 
measurements are done at Tst = 70 °C in ambient air in the dark. 

 
Figure 6.6 Side-by-side comparison of bipolar ac BTS (open triangles) and the sum 
(crosshairs) of positive (solid squares) and negative (solid circles) unipolar ac BTS. 
Stressing and measurements are done at Tst = 70 °C in ambient air in the dark. 
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Figure 6.7 Frame-time dependence of the a-IGZO TFT threshold voltage instability 
under (a) positive unipolar ac BTS (b) negative unipolar ac BTS. Stressing and 
measurements are done at Tst = 70 °C in ambient air in the dark. 

accumulated stress time for the positive and negative dc BTS, their sum, and bipolar ac 

BTS (PW = 10 ms) are shown superimposed in the same figure. It is clear that the sum of 

steady-state behavior significantly overestimates the ac BTS instability of a-IGZO TFTs. 

In Figure 6.6, we compare the sum of positive and negative unipolar ac BTS with bipolar 

ac BTS of equal frame time and stress voltage magnitude. We consider the positive and 

negative unipolar ac waveforms as two halves from which the bipolar waveform can be 
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Figure 6.8 The ac BTS-induced threshold voltage shift as a function of ac stress frame 
times, normalized to the (a) positive or (b) negative dc BTS shift. Stressing and 
measurements are done at Tst = 70 °C in ambient air in the dark. 

constructed from. This relationship is described by the equation  Δ𝑉!!
± = Δ𝑉!!! + Δ𝑉!!! . In 

the figure, we see that the curve of the sum very closely follows that of the bipolar ac 

BTS instability. From this, we can conclude that in order to model or predict the lifetime 

of AM-LCD with a-IGZO TFT backplane technology, ac BTS evaluation is required. 

In Figure 6.7, we investigate the effect of frame-time dependence for both (a) positive 

(+20 V) and (b) negative (−20 V) unipolar ac BTS instability as a function of 

accumulated stress time. For positive unipolar pulses, the ΔVth of the devices are all 

negative and very insignificant (within −0.1 V), therefore no clear conclusions can be 

drawn regarding the frame-time dependence for positive unipolar ac stressing. However, 

upon closer examination, we find that the ΔVth values actually are positive within the first 
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Figure 6.9 The dc BTS-induced (VG-Stress = +20 V) threshold voltage shift extracted by 
the constant current method (ΔVT) at ID = 100 pA for subtreshold region (solid red 
circles) and ID = 1 µA for on-region (solid black squares). 

1000 s of BTS, beyond which they trend negative until the end of the duration tested. For 

negative gate biases, the ΔVth are all invariably negative and the magnitudes increase with 

accumulated stress time. In this case, the frame time dependence is much more obvious 

and larger tframe cause greater ΔVth instability. Regarding the strong dependence of 

negative unipolar ac BTS ΔVth on frame time, we can consider the dc case to be the upper 

limit and calculate the ΔVth
ac/ΔVth

ac as a function of frame time, which is shown in Figure 

6.8. 

In our results, the observation that Vth becomes more negative (ΔVth < 0 V) for 

positive dc and positive unipolar ac BTS is very curious and deserves further discussion. 

This effect is contradictory to most published reports in the literature, in which ΔVth > 0 

V after positive gate bias stress is applied. However, in Fung et al., it was observed that 

after application of constant positive gate bias stress, the instability in the on-region 



 94 

behaves differently from that in the subthreshold region [38]. In particular, they noted 

that after prolonged stress of 104 s has been applied, positive shift is observed in the on 

region while the subthreshold region became more negative. Although they were unable 

to offer an explanation for this behavior, they suggested that a secondary time-dependent 

effect possibly related to a-IGZO film resistivity could work to counteract the usual 

a-IGZO/a-SiOX interface trapping mechanism. In Figure 6.9, we show the positive dc 

(VG-Stress = +20 V) BTS-induced threshold voltage shifts extracted by constant current 

method at ID = 100 pA (subthreshold region) and 1 µA (on region). In the constant 

current method, the threshold voltage shift (ΔVT) is calculated by the difference in the 

VGS that is required to reach a certain ID before and after stressing. From the figure, we 

note that before tst = 7000 s, ΔVT > 0 V in both the on- and the subthreshold regions. 

After 7000 and 104 s, ΔVT trended negative in both regions, although this appears to be 

stronger in the subthreshold region. 

6.3.3 Bipolar AC Bias-Temperature Stress Stability of a-IGZO TFTs 

One notable advantage of the a-IGZO TFT is that its superior electron mobility compared 

to a-Si:H TFT will enable next-generation ultra-high refresh rate displays (240–480 Hz) 

[118]. In Figure 6.10, we evaluate the ac BTS stability of a-IGZO TFTs with bipolar 

waveforms mimicking AM-FPD pixel addressing under higher frame rates. The duty 

cycles of the waveforms are fixed at 50%, which for bipolar pulses mean that higher 

frequency is equivalent to shorter frame time. From the figure, we see that for tst = 1000 s 

(solid triangle symbols), frequencies 360 Hz and below cause almost no ΔVth while it 

becomes slightly more noticeable at 500 Hz. After tst = 104 s, this effect is magnified such 

that the ΔVth induced by the 500 Hz waveform is almost 150% that of the ΔVth induced by  
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Figure 6.10 The ac BTS-induced threshold voltage shift as a function of applied bipolar 
stress frequency (1/tframe). The duty cycle is kept at 50% for all frequencies. Stressing and 
measurements are done at Tst = 70 °C in ambient air in the dark. 

 
Figure 6.11 The ac BTS-induced threshold voltage shift as a function of accumulated 
stress time for different bipolar stress duty cycles (10, 20, and 50%) at tframe = 20 ms (50 
Hz). The ΔVth induced by ac stress with tframe = 2 ms (500 Hz) is reproduced here for 
reference. Stressing and measurements are done at Tst = 70 °C in ambient air in the dark. 
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Figure 6.12 The ac BTS-induced threshold voltage shift as a function of duty cycle at 
tframe = 20 ms (50 Hz) for different accumulated stress times. Stressing and measurements 
are done at Tst = 70 °C in ambient air in the dark. 

the 360 Hz waveform. We observe higher ΔVth with higher operation frequency, up to 

−0.35V for 500 Hz. This should be taken into consideration when using a-IGZO TFTs for 

ultra-high refresh rate AM-LCDs. 

We then investigate for the bipolar ac BTS the effect of varying the duty cycle of the 

stress waveforms. Referring to Figure 6.3, we fix the frame time tframe at 20 ms (50 Hz), 

while applying gate stress pulses with duty cycle values of 10%, 20%, and 50%. These 

duty cycle values would represent positive gate bias of +20 V being applied for 2 ms, 4 

ms, and 10 ms within each frame, respectively, while −20 V is applied for the rest of the 

frame. In Figure 6.11, we see that when compared to 50% duty cycle, ΔVth trends smaller 

for lower duty cycle values. This is better illustrated in Figure 6.12, where we plot ΔVth 

with respect to duty cycle for three different tst values. We that see for all tst, ΔVth is 
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always smaller for lower duty cycle, and this effect is even more pronounced for longer 

tst. Considering that higher-frequency operation causes more instability in a-IGZO TFTs, 

adjusting the duty cycle and reducing the time portion of the positive bias segments (tHI) 

may help reduce ΔVth significantly. However, doing so may have an impact on the 

a-IGZO TFT pixel circuit design. In the dynamic response of an a-IGZO one-capacitor-

one-transistor test circuit, it is desirable to minimize the feedthrough voltage (ΔVP), 

which can be achieved by increasing the storage capacitance (Cst) [64] or reducing CGS 

value. It has been shown that larger Cst also causes the charging time (tch) to increase, for 

which we are limited by the duty cycle and tHI of the transistor driving the waveform. 

This is expected to become an important factor to consider in the design of a-IGZO TFT 

pixel circuits for 8K×4K and long lifetime AM-LCDs. 

6.4 AC BTS Stability of a-IGZO TFTs for 4K UHD AM-LCD 

Considering that the focus of this dissertation is a-IGZO TFTs as the backplane 

technology for UHD AM-LCDs, we are motivated to study the Vth instability when 

voltage waveforms corresponding to 4K UHD specifications are applied to the TFT gate 

and drain terminals. In Figure 6.13, the impact of VDS data voltage is investigated with 

respect to stress time. In this figure, the gate voltage pulse is between −5 and +15 V at 

120 Hz while constant VDS is applied at 70 °C. The duty cycle of the gate pulse is 

0.046%, which corresponds to the selection of 1 out of 2160 rows (1/2160 = 0.00046) in 

4K UHD specifications. We observe that Vth becomes more negative with stress time as 

VDS increases. This can be explained by generation of electron-hole pairs or positively 

charged species at the drain side by impact ionization that is accelerated by high drain-to-

source lateral electrical field and elevated temperature. The existence of increasing self- 
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Figure 6.13 The threshold voltage shift (ΔVT) extracted by the constant current method 
for a-IGZO TFT subject to various constant VDS bias while voltage pulses are applied to 
the gate terminal. In this figure, stress temperature 70 °C and the frequency of the gate 
pulses is 120 Hz. Duty cycle of 0.046% represents 2160 rows of 4K UHD specification. 

heating in the channel with the stress time and drain bias stress caused by the drain 

current have already been established by the thermal analysis [119]–[121]. Oxygen 

vacancies (Vo
2+) are possible candidates of the positively charged species [122], [123]. 

The generated electrons are swept into the drain electrode by the positive drain voltage, 

but holes are attracted and then trapped near the channel/gate dielectric interface by the 

pulsed gate bias, which is at −5 V for most of the frame time (tLO ≈ tframe = 8.33 ms) 

except for a very short positive pulse of tHI = 3.9 µs. In addition, we note that the impact 

on TFT SS is almost negligible. After stressing, the initial TFT electrical properties can 

be recovered by storing the devices in room temperature and atmosphere for at least one 

week. 

Over a fixed amount of time, the number of TFT switch-on for one row can be 

defined as Non = frequency (f) × tst. By varying f while keeping tst identical, we examine 
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Figure 6.14 The threshold voltage shift (ΔVT) extracted by the constant current method 
for a-IGZO TFT subject to constant VDS = 10 V while voltage pulses are applied to the 
gate terminal. In this figure, stress temperature 70 °C and the frequency of the gate pulses 
is varied. Duty cycle of 0.046% represents the 2160 rows in 4K UHD specifications. 

the influence of Non on ΔVth in Figure 6.14. In this figure, gate stress voltage is between  

−5 V and +15 V, VDS = 10 V, duty cycle = 0.046%, and T = 70 °C are used for the ac 

BTS. Since high frame-rate operation, such as 480 Hz, has very short switch-on time 

(0.96 µs), it is important to verify whether VDS can induce impact ionization in such a 

short time. If the switch-on time is extended at the same refresh rate, the influence of 

positive gate bias during the pulsed gate stress cannot be ignored in attracting the 

electrons generated by the impact ionization. As the frequency increases from 60 Hz to 

480 Hz, the switch-on time per frame decreases from 7.7 µs to 0.96 µs but the number of 

switch-on increases from 6 × 105 to 48 × 105 over 104 s of stress time. We found that 

even a short turn-on time of 0.96 µs at 480 Hz is sufficient to generate the electron-hole 

pairs (or positively charged species) by impact ionization. These results are consistent 

with Chen et al.’s report [124]; in their study the switch-on time is varied from 1 µs to 
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100 µs and ΔVth are independent of switch-on time in the investigated range. Therefore, 

the negative shift of threshold voltage during ac BTS should be carefully considered to 

realize high frame-rate driving in UHD AM-LCDs. These results clearly indicate the 

important role of drain bias stress in generating the electron-hole pairs needed for the 

hole trapping at the channel/gate dielectric interface. 
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CHAPTER 7 

Dynamic Response of a-IGZO and a-Si:H Thin-Film 

Transistors for Ultra-High Definition AM-LCDs 

7.1 Introduction 

We evaluate and compare the dynamic response of hydrogenated amorphous silicon 

(a-Si:H) and a-IGZO TFTs and their potential application to pixel circuits for ultra-high 

definition (UHD) active-matrix liquid crystal displays (AM-LCDs). For this purpose, we 

have fabricated test circuits consisting of one TFT connected in series with a storage 

capacitor. Driving waveforms corresponding to UHD timing specifications are applied to 

the TFT and the resulting storage capacitance (Cst) charging characteristics are 

investigated. The test circuits are similar to an AM-LCD pixel circuit, but the liquid 

crystal cell is omitted for fabrication simplicity and capacitance charging is evaluated 

only for Cst. We study in detail the feedthrough voltage (ΔVP) at Cst and its dependence 

on the gate voltage falling edge (tFE) for both a-Si:H and a-IGZO TFTs. Analytical 

equations from the literature are adopted to calculate ΔVP for various falling edge time 

(tFE) and Cst and compared to experimental observations. In addition, we also evaluate the 

feasibility of overdriving the gate pulse voltage level of a-IGZO TFTs, which we expect 

should improve the dynamic response of a-IGZO TFTs with minimal negative impact. 
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7.2 Experimental 

7.2.1 Fabrication of 1T1C a-Si:H TFT Test Circuits 

The fabrication of back channel etch (BCE)-type bottom-gate a-Si:H TFT follows the 

process described in Kuo et al. [125] and is briefly summarized here. The a-Si:H TFT has 

patterned chromium gate (200 nm) followed by amorphous silicon nitride (a-SiNX:H, 400 

nm) and a-Si:H (170 nm), both deposited by plasma-enhanced chemical vapor deposition 

(PECVD). Near the gate insulator/semiconductor interface, deposition rates of PECVD 

a-Si:H and a-SiNX:H are significantly reduced to promote higher film density and thus 

superior electrical properties. A 70-nm layer of phosphorous-doped n+ a-Si:H is then 

deposited also by PECVD to act as source/drain (S/D) contact regions. The a-Si:H islands 

are then defined by dry etching using an SF6:Cl2:O2:He gaseous mixture. The 

source/drain (S/D) electrodes are 200 nm of sputtered Mo and are wet-etched with a 

phosphorous-nitric-acetic acid mixture. The resulting gate-S/D metal overlap (OVLP) is 3 

µm. During the S/D electrode definition, one set of TFTs (“S/D-recessed”) is 

intentionally over-etched by 160 s such that the Mo S/D electrodes are recessed laterally 

from the channel region by 1 µm while the underlying n+ a-Si:H layer is unmodified. 

Lastly, we dry-etched (HBr:Cl2) the n+ a-Si:H completely and 70 nm of a-Si:H in the 

channel region. The a-Si:H TFT dimensions are width (W)/length (L) = 57.5 µm/7.5 µm. 

The patterned photoresist remained on top of the Mo electrodes throughout the S/D 

definition steps and is removed at the end. The storage capacitor of Cst = 0.19 pF is 

fabricated at the same time as the TFT using the gate insulator layer as dielectric and is 

connected in series to the TFT source terminal. The a-Si:H TFT top-view micrograph and 

cross-section scanning electron microscope (SEM) images and diagrams illustrating the 



 103 

 
Figure 7.1 (a) Top-view micrograph and (b) SEM image and cross-section diagram of 
the bottom-gate a-Si:H TFT used in this study. The SEM image and cross-section 
diagram of the a-Si:H TFT with the S/D-recess is shown in (c), where the recess length 
(dREC) is 1 µm. 

 
Figure 7.2 (a) Top-view micrograph and (b) cross-sectional diagrams and SEM images 
of the bottom-gate a-IGZO TFT used in this study. 

recess are shown in Figure 7.1.  

7.2.2 Fabrication of 1T1C a-IGZO TFT Test Circuits 

The fabrication process of the BCE a-IGZO TFT has already been described in detail 

in section 2.4 and is briefly summarized here. To fabricate the a-IGZO TFT, 100 nm of 

Mo is first deposited on a glass substrate (Corning Eagle or Asahi PD-200) using 

sputtering and the gate electrodes are then defined using dry etching. The gate insulator is 

200 nm of PECVD amorphous silicon oxide (a-SiOX) deposited at 380 °C. The channel 

layer (50 nm) is then deposited by dc sputtering an a-IGZO target of composition ratio of 

In:Ga:Zn:O = 2:2:1:7. The a-IGZO active islands are defined using dilute oxalic acid 

!
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(0.05 M) and then annealed in ambient air at 300 °C for 30 minutes on a hot plate. The 

gate vias are then opened using dry etching and subsequently 100 nm of Mo is sputtered 

during metallization. The S/D electrodes are defined using wet etching with 30% H2O2. 

The dimensions of the a-IGZO TFTs fabricated are W/L = 74/3 µm and OVLP = 5 µm. 

The a-IGZO TFTs undergo one final annealing step of 300°C for 30 minutes in ambient 

air. For the a-IGZO TFT, test circuits with three Cst are fabricated: 0.29 pF, 0.65 pF, and 

1.15 pF. The Cst in the a-IGZO TFT test circuit is also formed from overlap of the source 

and common electrodes with the gate insulator as dielectric. The top-view micrograph 

and cross-section diagram of the a-IGZO TFT are shown in Figure 7.2. 

7.2.3 Electrical Properties of a-IGZO and a-Si:H TFTs 

For the TFTs fabricated, we approximate CGS in the area of gate-source overlap as 

two parallel plate capacitors connected in series:  

𝐶!" =𝑊×𝑂𝑉𝐿𝑃× !
!
!!"

! !
!!"#

, (7-1) 

where CGI is the gate insulator capacitance per unit area and Cact is the active layer 

capacitance per unit area. Both CGI and Cact can be calculated from the layer thickness 

and dielectric constant. Using Equation (7-1), we calculate CGS = 0.021 pF for normal 

a-Si:H TFTs and 0.06 pF for the a-IGZO TFTs. We expect CGS to be lower than 0.021 pF 

for the S/D-recessed TFT, but not exactly reduced by 1/3 because the highly conductive 

n+ regions are unmodified.  

The device transfer characteristics (ID–VGS) at drain-source voltage VDS = 0.1 V are 

shown in Figure 7.3(a) for normal a-Si:H TFT and Figure 7.3(b) for a-IGZO TFTs. The 

ID–VGS for S/D-recessed a-Si:H TFT is similar to the normal TFT and is omitted for 
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Figure 7.3 The TFT transfer characteristics (ID–VGS) of the (a) a-Si:H (normal) and (b) 
a-IGZO TFTs. In both subfigures, VDS = 0.1 V. 

 a-Si:H a-IGZO 

W/L (µm/µm) 57.5/7.5 74/3 

Gate-S/D Overlap 
(µm) 3 5 

Gate Insulator  
Thickness (nm) 400 200 

Active Layer 
Thickness (nm) 170 50 

Vth (V) 3.1 0.3 

µFE (cm2/V·s) 0.29 9.1 

Cst (pF) 0.19 0.29, 0.65, 1.15 

Table 7.1 Parameters of the thin-film transistors and test circuits fabricated. 
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clarity. The TFT device parameters are extracted from linear fits to ID–VGS and are 

summarized together with device dimensions in Table 7.1. We observe that the field-

effect mobility of a-IGZO is much higher than a-Si:H, a well-established result in the 

literature [18]. In a-Si:H, conduction occurs through highly directional sp3 orbitals, and 

carriers can be trapped within high-density localized states formed from bond angle 

fluctuations. In contrast, the conduction band minimum of a-IGZO is formed from the 

overlap of the large spherical s orbitals of the In3+ ions, which are relatively unaffected by 

structural disorder. 

7.2.4 TFT Dynamic Response Measurement Setup 

The setup for evaluating the dynamic response of a-Si:H and a-IGZO TFTs is as follows: 

a two-channel HP 8110A pulse generator is connected to the drain and gate electrodes of 

the test circuit, where the drain is the data signal and the gate is the select signal. A low-

input capacitance (0.02 pF) and high-impedance (input leakage <10 fA) Picoprobe 

(HP18C-1-5-HV, GGB Industries) is used to measure the voltage of the storage capacitor 

Cst at the TFT source terminal. An Agilent MSO7104B oscilloscope is used to record the 

storage capacitor voltage measured by the Picoprobe with respect to time. Figure 7.4(a) 

shows the schematic for the setup used in this study. The waveforms applied to the gate 

and data lines are shown in Figures 7.4(b) and 7.4(c) respectively. For each frame, two 

gate pulses of VGH = 18 V are applied to the TFT gate electrode—one for set and another 

for reset. The low voltage of the gate waveform is VGL = −2V. The gate pulse width, 

indicated in Figure 7.4(b) as the charging-time margin (tcm), is the time available to 

charge/discharge Cst (for set/reset) in each pixel when the row lines are selected in active 

matrix operation. For a simple driving scheme without any charge sharing or 
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Figure 7.4 (a) The schematic for the setup used to evaluate the dynamic response of the 
one-TFT-one-capacitor test circuit. (b) The gate voltage applied is VGH = 18 V when 
charging/discharging and VGL = −2 V at all other times. The charging-time margin tcm is 
the time available for the storage capacitor to completely charge/discharge. (c) The data 
voltage applied is VDH = 10 V for set and VDL = 0 V for reset. The set/reset duration is 3 × 
tcm. The falling edge of the waveforms is 10 ns except where specified. 

 Resolution 

 Full HD 
(1920×1080) 

4K UHD 
(3840×2160) 

8K UHD 
(7680×4320) 

60 Hz 15.4 µs (16 µs) 7.7 µs (8 µs) 3.9 µs (4 µs) 

120 Hz 7.7 µs (8 µs) 3.9 µs (4 µs) 1.9 µs (2 µs) 

240 Hz 3.9 µs (4 µs) 1.9 µs (2 µs) 0.96 µs (1 µs) 

480 Hz 1.9 µs (2 µs) 0.96 µs (1 µs) 0.48 µs (0.5 µs) 
Table 7.2 The calculated charging-time margins calculate from various HD and UHD 
AM-LCD resolution and frame rate specifications. 

Cst�

Gate 
Data 

Picoprobe 

Output 1 

Agilent 8110A 
Pulse Generator 

Output 2 

Agilent MSO7104B 
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Input 1 

Triggering 

Output 

(a) 
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pre-charging, tcm is defined as in [126]:   

Charging-time argin (𝑡!") =
!

Frame Rate × Number of Row Lines
. (7-2) 

In this study, we are most interested in the charging-time margins corresponding to the 

UHD display specifications in [7]. Using Equation (7-2), the tcm are calculated based on 

these specifications and listed in Table 7.2. The values in parentheses indicate tcm 

rounded up to the next microsecond and are the values we used for the gate and data 

waveforms. For each frame, a single fixed pulse of data voltage VDH = 10 V is applied to 

the drain terminal for set, after which the data voltage is returned to its low level VDL =  

0 V for reset. For the data voltage waveform, each set/reset period is defined to be 3 × 

tcm. Each gate pulse arrives exactly 1 × tcm after the data voltage is applied/removed. The 

rising and falling edge time (tFE) of the data and gate pulses are all 10 ns unless where 

specified. For tFE values other than 10 ns, the corresponding rising edge is always 10% of 

that. 

7.3 Results and Discussion 

7.3.1 Charging Characteristics of a-Si:H and a-IGZO TFTs for UHD AM-LCDs 

The output voltages (Vout) at the source terminal of the a-Si:H or a-IGZO TFT as a 

function of time after applying the gate and data waveforms are shown in Figure 7.5. In 

this figure, the gate and data waveforms are based on tcm = 16 µs, which corresponds to 

Full HD 1080p resolution at 60 Hz, the current mainstream AM-LCD specification. In 

TFT dynamic response, one of the most important metrics is the storage capacitance 

charging behavior: Incomplete charging directly causes the display grayscale to 

deteriorate. Within this subsection, Cst = 1.15 pF is evaluated for the a-IGZO TFT to 
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Figure 7.5 The Vout measured at the source terminal of the a-Si:H or a-IGZO TFTs with 
the data and gate waveform applied. The feedthrough voltage ΔVP is the output voltage 
drop at the end of tcm after the gate voltage is flipped from VGH to VGL. Storage 
capacitances are 0.19 pF for a-Si:H TFTs and 1.15 pF for a-IGZO TFT. 

maximize the charging delay. In Figure 7.5, both a-Si:H TFTs are able to charge Cst 

completely to VDH = 10 V within 16 µs, but the charging curvature is clearly observable 

at the scale of the figure. In contrast, charging by the a-IGZO TFT appears almost 

instantaneous. From this figure, we can approximate the charging behavior as a simple 

RC process and extract the exponential-fit time constant (τ) for each device structure. The 

values of τ are 1.35 µs, 0.76 µs, and 0.08 µs for normal a-Si:H, S/D-recessed a-Si:H, and 

a-IGZO TFT, respectively. In the simple RC model, the TFT drain current (ID) supplies 

the charges to the capacitor: 

𝐶!"
!!!"#
!"

= 𝐼!. (7-3) 

We can approximate ID using the following simplified ideal MOSFET equation, which is 

appropriate for small VDS: 



 110 

𝐼! = 𝜇!"𝐶!"
!
!
𝑉! − 𝑉!"# − 𝑉!! (𝑉! − 𝑉!"#). (7-4) 

We then combining Equations (7-3) and (7-4) to get 

𝐶!"
!!!"#
!"

= 𝜇!"𝐶!"
!
!
𝑉! − 𝑉!"# − 𝑉!! (𝑉! − 𝑉!"#). (7-5) 

Equation (7-5) is then rearranged: 

𝜇!"𝐶!"𝑊
𝐶!"𝐿

𝑑𝑡 =
𝑑𝑉!"#

𝑉! − 𝑉!"# − 𝑉!! 𝑉! − 𝑉!"#
  

= −
1

𝑉! − 𝑉! + 𝑉!!
1

𝑉!"# + 𝑉!! − 𝑉!
𝑑𝑉!"# −

1
𝑉!"# − 𝑉!

𝑑𝑉!"#   

 = − !
!!!!!!!!!

!
!!"#!!!!!!!

𝑑(𝑉!"# + 𝑉!! − 𝑉!)

− !
!!"#!!!

𝑑(𝑉!"# − 𝑉!)  
. (7-6) 

Integrating Equation (7-6) from t = 0 to an arbitrary t = tch, we obtain 

!!"!!"!
!!"!

𝑑𝑡!!!
! = − !

!!!!!!!!!

!
!!"#!!!!!!!

𝑑(𝑉!"# + 𝑉!! − 𝑉!)

− !
!!"#!!!

𝑑(𝑉!"# − 𝑉!)  
!!"#
!  (7-7) 

𝑡!!
𝜇!"𝐶!"𝑊
𝐶!"𝐿

= −
1

𝑉! − 𝑉! + 𝑉!!
ln(𝑉!"# + 𝑉!! − 𝑉!)− ln 𝑉!"# − 𝑉! !

!!"#   

 = !
!!!!!!!!!

ln (!!"#!!!!!!!)
!!"#!!! !

!!"#
  

 = !
(!!!!!!!!!)

ln !!!!!"#!!!! !!
(!!!!!!)(!!!!!"#)

. (7-8) 

Assuming that VG and VD are at their maximum values VGH and VDH, respectively, the 

time required for charging Cst to a specific voltage Vout can be derived [63]: 

𝑡!!(𝑉!"#) =
!!"!

!!"!!"!
!

(!!"!!!"!!!!)
ln !!"!!!"#!!!! !!"

(!!"!!!!)(!!"!!!"#)
. (7-9) 

With regards to Equation (7-9), τ approximately corresponds to the tch when Vout = 6.3 V 

(0.63 VDH). We note that tch is directly proportional to Cst and inversely proportional to 

W/L, CGI, and µFE. To better compare the charging time for the different TFT dimensions 
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Figure 7.6 The output voltage at the source terminal of the a-Si:H and a-IGZO TFTs 
after applying the gate and data voltage waveforms based on (a) tcm = 16 µs, (b) tcm = 8 
µs, (c) tcm = 4 µs, (d) tcm = 2 µs, corresponding to the AM-LCD specifications in Table 
7.2. Cst is 1.15 pF for a-IGZO TFTs and 0.19 pF for a-Si:H TFTs. 

and structures, we normalize τ and calculate (τ×W×CGI)/(Cst×L) to be 0.828 s/cm2, 0.466 

s/cm2, and 0.0308 s/cm2 for the normal a-Si:H, recessed a-Si:H, and a-IGZO TFT, 

respectively. It becomes obvious that the charging time of the a-IGZO TFT is at least an 

order of magnitude lower than that of any a-Si:H TFT. 

To highlight the advantage of a-IGZO TFTs over a-Si:H TFTs in terms of charging 

characteristics, we apply gate and data waveforms based on the charging-time margins 

given in Table 7.2 and show the resulting output voltages in Figures 7.6 and 7.7. In 

Figure 7.6(a), where tcm = 16 µs, the a-Si:H TFTs are capable of fully charging Cst within 

the allotted time. As tcm is reduced to 8 µs and 4 µs in Figures 7.6(b) and 7.6(c), the 

a-Si:H TFTs begin to struggle to charge the storage capacitor. In Figures 7.6(d), where tcm 

= 2 µs represents the 8K×4K UHD AM-LCD at 120 Hz, the a-Si:H TFTs can only charge 
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Figure 7.7 The output voltage at the source terminal of the a-IGZO TFTs after applying 
the gate and data voltage waveforms based on (a) tcm = 1 µs and (b) tcm = 0.5 µs 
corresponding to 8K×4K resolution at 240 and 480 Hz. For this figure, Cst = 1.15 pF. 

Cst to 7.2 V (normal) and 8.7 V (S/D-recessed). In real-world AM-LCD operation, gate 

and data bus-line RC delay may impose additional requirements for the charging-time 

margin [127], meaning that further degradations are expected for a-Si:H TFTs. In 

comparison, the simple BCE-type bottom-gate a-IGZO TFT is able to readily charge Cst 

to VDH = 10 V with ease for all four cases shown in Figure 7.6. Charging of Cst by the  

a-IGZO TFT is shown in Figure 7.7 for (a) tcm = 1 µs and (b) 0.5 µs, corresponding to 

8K×4K resolution at 240 and 480 Hz, and the Cst is fully charged to VDH before the end of 

tcm. 

7.3.2 Feedthrough Voltage of a-Si:H and a-IGZO TFTs 

The feedthrough voltage ΔVP shown in Figure 7.5 is the voltage drop at Cst after the 

gate voltage VG flips from VGH to VGL for both set (Vout charging to VDH = 10 V) and reset 
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(Vout discharging to VDL = 0 V). Because of the ΔVP voltage drop, Vout for the a-Si:H 

TFTs start at negative values (Vout = −ΔVP) before Cst charging at time = 0 s.  It was 

originally observed as clock feedthrough in CMOS switched-capacitor circuits, affecting 

its high-frequency accuracy [128]. In AM-LCD operation, ΔVP at the pixel electrode 

primarily manifests itself as image flickering [59]. Takabatake et al. developed a series of 

equations describing ΔVP [60], which we briefly summarize below. 

There are two primary contributions to ΔVP: channel charge redistribution when VG is 

reduced from VGH to Vth + VDH, and capacitance feedthrough from CGS to Cst when VG is 

reduced from Vth + VDH to VGL. Channel charge redistribution occurs when the TFT 

switches from its on to off state and the accumulated channel charge (Qch) is released 

towards the source and drain terminals. We can estimate Qch in the area of overlap (A) 

between the gate electrode and the active layer with the following equation: 

𝑄!! = 𝐶!"𝐴 𝑉!" − 𝑉!! − 𝑉!" . (7-10) 

In our TFTs, we calculate the overlap area as A = W×(L+2OVLP). When VG = Vth + VDH, 

the TFT is turned off and half of any Qch in the channel is redistributed onto Cst: 

𝛥𝑉!,!" = 𝛼 !!!
!!"

= 𝛼 !!"! !!"!!!!!!!"
!!"

, (7-11) 

where α is a constant factor related to the gate voltage falling edge. The capacitance 

feedthrough component of ΔVP can be calculated from voltage division between two 

capacitors Cst and CGS. Assuming that the initial output voltage is Vout and the final output 

voltage is V’out, we can write the charge conservation equation before/after VG flips from 

Vth+VDH to VGL and solve for Vout−V’out: 

𝑉!"#𝐶!" + 𝑉!"# − 𝑉!! − 𝑉!" 𝐶!" = 𝑉!"#! 𝐶!" + 𝑉!"#! − 𝑉!" 𝐶!"  

𝑉!"#𝐶!" + 𝑉!"#𝐶!" − 𝑉!!𝐶!" − 𝑉!"𝐶!" = 𝑉!"#! 𝐶!" + 𝑉!"#! 𝐶!" − 𝑉!"𝐶!"  
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𝑉!"# − 𝑉!"#! 𝐶!" + 𝑉!"# − 𝑉!"#! 𝐶!" = 𝑉!! + 𝑉!" − 𝑉!" 𝐶!"  

𝛥𝑉!,! = 𝑉!"# − 𝑉!"#! = !!"
!!"!!!"

(𝑉!! + 𝑉!" − 𝑉!").      (7-12) 

In Equation (7-12), capacitance feedthrough primarily depends on the ratio between CGS 

and Cst. Overlap capacitance CGS can be eliminated through the use of a self-aligned 

structure [68], [129]–[131], but is difficult to avoid in the commonly used bottom-gate 

staggered structure such as the TFTs in this study. The total ΔVP is a sum of Equations 

(7-11) and (7-12): 

𝛥𝑉! = 𝛥𝑉!,! + 𝛥𝑉!,!" =
!!"

!!"!!!"
𝑉!! + 𝑉!" − 𝑉!" + 𝛼 !!"! !!"!!!!!!!"

!!"
. (7-13) 

The factor α ranges from 0 to 0.5, depending on how fast the drop from VGH to VDH + Vth 

is. For a very short tFE, the TFT is turned off so abruptly that no charges can be released 

through the drain terminal while VG is reduced from VGH to Vth + VDH. In this upper limit 

of α = 0.5, tFE satisfies the condition: 

𝑡!" ≪
!!

!!"⋅!!!,!"
. (7-14) 

The right-hand side of Equation (7-14) is the channel transit time for accumulated 

charges. For longer tFE, α decreases until it approaches the lower limit of α = 0. In this 

lower limit, tFE is much slower than channel transit time of charge carriers:   

𝑡!" ≫
!!

!!"⋅!!!,!"
. (7-15) 

In this case, most if not all of Qch can be released through the drain terminal while VG is 

reduced from VGH to Vth + VDH. Contribution from ΔVP,CR then becomes negligible (α ≈ 0) 

and the total feedthrough voltage is simply   

𝛥𝑉! = 𝛥𝑉!,! =
!!"

!!"!!!"
(𝑉!! + 𝑉!" − 𝑉!"). (7-16) 

We note that according Equation (7-16), in the case of slow tFE, ΔVP does not depend on 



 115 

 
Figure 7.8 The output voltage of the a-IGZO TFT test circuit for waveforms with VGH 
varied from 18 V to 12 V for (a) tFE = 10 ns and (b) tFE = 10 µs. The storage capacitance 
tested in this figure is 0.29 pF. In (c), the ΔVP extracted for tFE = 10 ns (empty squares),  
1 µs (solid circles), and 10 µs (asterisks) are shown. The calculated ΔVP values are also 
shown in the figure for α = 0 to 0.5. 
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Figure 7.9 The Vout of the (a) a-Si:H and (b) a-IGZO TFT test circuits for waveforms 
with tFE varied from 10 ns to 10 µs. The Cst evaluated in this figure is 0.19 pF and 0.29 pF 
for the a-IGZO and a-Si:H TFTs, respectively. The ΔVP are extracted from (a) and (b) 
and shown in (c). Using Equation (7-14), channel transit times is calculated and denoted 
in (c) as dashed line and dotted line for the a-IGZO and a-Si:H TFTs, respectively. 
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VGH. We can experimentally verify this by comparing the VGH dependence of ΔVP for 

slow and fast tFE. The output voltage of the a-IGZO TFT test circuit is shown in Figure 

7.8, where the falling edge of the gate pulse is (a) tFE = 10 ns and (b) tFE = 10 µs. In 

Figure 7.8(c), ΔVP corresponding to different VGH are extracted for tFE = 10 µs, 1 µs, and 

10 ns. We first calculate the ΔVP for various VGH using Equation (7-13) with α = 0.5 and 

we find that the generated values are much larger than the experimental data for tFE = 10 

ns. This means that the actual fast-tFE limit for a-IGZO TFTs is much smaller than 10 ns. 

Using Equation (7-10), we calculate the channel transit time of the a-IGZO TFT to be 7.2 

ns. This is consistent with what we observe in Figure 7.8(c) in that Equation (7-14) is not 

satisfied because channel transit time and tFE are on the same order of magnitude and thus 

α < 0.5. For tFE = 10 ns, we find that Equation (7-13) with α = 0.32 models the 

experimental data quite well. In the same figure, ΔVP appears to be independent of VGH 

for tFE = 10 µs and can be well described by Equation (7-16). This means that tFE = 10 µs, 

which is three orders of magnitude larger than the channel transit time, can be considered 

as the slow-tFE limit and Equation (7-15) is satisfied. 

In Figure 7.9, we compare the impact of tFE on the ΔVP of (a) normal a-Si:H and (b) 

a-IGZO TFT by varying tFE from 10 ns to 10 µs. The extracted ΔVP at various tFE are 

shown in Figure 7.9(c) for normal a-Si:H and a-IGZO TFTs. For a change of three orders 

of magnitude in tFE, ΔVP decreases by only 0.3 V for the a-Si:H TFT. Upon inspection, 

ΔVP appears to be almost unchanged from tFE = 10 ns to 1 µs. In contrast, ΔVP decreases 

by 1.6 V for the a-IGZO TFT over the same range of tFE values. This significant 

difference is primarily due the fact that the µFE of a-IGZO is more than an order of 

magnitude larger than that of a-Si:H, which would allow Equation (7-15) to be fulfilled at 
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a lower tFE. We calculate the channel transit time to be 1.2 µs for a-Si:H TFTs and it is 

shown in Figure 7.9(c) together with that for a-IGZO TFTs. Our experimental 

observations are consistent with these two values in that for a-Si:H TFTs, ΔVP remains 

almost constant for tFE < 1 µs. For a-IGZO TFTs, ΔVP is seen to be decreasing for all tFE 

because no tFE faster than 10 ns is tested in this study. An implication of Figure 7.9 is that 

it may be possible to reduce ΔVP for the a-IGZO TFT by controlling for tFE because of the 

shorter channel transit time, while the same is difficult to realize for a-Si:H TFTs.  

The ΔVP for the S/D-recessed a-Si:H TFT (not shown) is similar to the normal a-Si:H 

TFT curve shifted downward with the overall trend remaining the same. We have omitted 

some of the experimental data for the S/D-recessed a-Si:H TFT in this section because 

only marginal improvements to ΔVP (<10%) were observed. This is most likely due to the 

fact that the n+-doped a-Si:H S/D contact regions remain unmodified even though the 

metal electrodes are recessed by 1/3. 

To study the impact of Cst on the dynamic response of a-IGZO TFT test circuits, the 

output voltage for circuits with three different storage capacitances are characterized and 

shown in Figure 7.10(a). The tFE for the waveforms applied are all 10 ns. From the figure, 

we observe that larger Cst corresponds to higher charging times and lower ΔVP, which is 

what we expect based on the previous analyses. The difference in terms of charging time 

is insignificant in this time-scale (tcm = 16 µs) and only observable in the Figure 7.10(a) 

inset. Of particular interest is the ΔVP, which we extract to be 3.3 V, 1.8 V, and 0.9 V for 

Cst = 0.29 pF, 0.65 pF, and 1.15 pF, respectively, and shown in Figure 7.10(b) as empty 

squares. The ΔVP for the normal a-Si:H TFT (Cst = 0.19 pF) is extracted from Figure 7.5 

to be 2.71 V and is shown in the same figure as a solid circle. From Equation (7-13), we 
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Figure 7.10 (a) The Vout of a-IGZO TFT test circuits with different Cst. The charging-
time margin used for this figure is tcm = 16 µs. (b) The ΔVP for a-IGZO TFTs with 
different Cst extracted from (a) is shown as empty squares. The ΔVP is calculated using 
Equation (7-13) and shown in the figure as a dotted line (α = 0.32). The normal a-Si:H 
TFT ΔVP is also shown in the figure as a solid circle, with the calculated values (α = 0.5) 
represented as a solid line. The same calculation is performed after normalizing the a-
IGZO TFT for W, L, OVLP, and CGI and shown as a dashed line. 
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calculate and show the relationship between Cst and ΔVP for a-Si:H (solid line) and 

a-IGZO TFTs (dotted line) in Figure 7.10(b). We observe that because of device structure 

and geometry, the a-IGZO TFT has greater ΔVP than the a-Si:H TFT for the same Cst. In 

Figure 7.10(c), we normalize the a-IGZO TFT ΔVP curve based on the same geometry 

(W, L, OVLP) and CGI as the a-Si:H TFT and show it as a dashed line. In the 

normalization of the a-IGZO TFT curve, we assume a-SiOX/a-SiNX bilayer gate insulator 

having the same CGI as 400-nm a-SiNX. We can thus conclude that given identical TFT 

geometries and structure, the a-IGZO TFT suffers no drawbacks to ΔVP and has vastly 

superior charging characteristics in comparison to the a-Si:H TFT. By implementing a 

larger Cst, the ΔVP of a-IGZO TFTs can be further reduced. Increasing Cst, as shown in 

Figure 7.10(a), has negligible impact on the charging characteristics of the a-IGZO TFT. 

The limiting factor in this case would not be charging-time margin but rather the aperture 

ratio of the AM-LCD pixel. This also bodes well for a-IGZO TFTs as the backplane 

technology of large-area AM-LCDs, which have larger liquid-crystal cells and thus 

greater cell capacitance.   

7.3.3 a-IGZO TFT Gate Overdrive Operation 

Overdrive operation was initially proposed for operation of individual AM-LCD cells to 

improve the gray-level response when displaying high-speed motion images [132]–[134]. 

Because there is a time delay in the gray-level transitions of a liquid crystal cell, the 

image signal can be pre-processed and an additional voltage (overdrive voltage VOD) can 

be added on top of the image signal to help the liquid crystal reach the desired 

transmittance faster. However, within published literature, the TFT has rarely been 

considered in the study of the overdrive method for AM-LCDs. In this work, we apply 
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Figure 7.11 The overdrive operation of the a-IGZO TFT in the test circle is shown in (a). 
The waveforms for baseline, overdrive, and full overdrive are shown in (b). Overdrive 
operation adds tOD = 100 ns of VOD = 5 V on top of the baseline VGH = 13 V at the 
beginning of tcm. In full overdrive, the entire duration of tcm is VGH = 18 V. For this 
experiment, a test circuit with Cst = 0.65 pF was evaluated. 

the voltage overdrive method to the gate signal of the a-IGZO TFT test circuit and the 

results are shown in Figure 7.11 for Cst = 0.65 pF. As shown in Figure 7.11(b), three 

different gate waveforms are tested: VGH = 18 V (fully overdriven), VGH =13 V + 5 V 

(overdrive time tOD = 100 ns), and VGH = 13 V (baseline). Alternatively, we can also 

consider VGH = 18 V the baseline, VGH = 13 V + 5 V (tOD = 100 ns) partially underdriven, 

and VGH = 13 V fully underdriven. In this scenario, by underdriving the TFT after the 

capacitor has been sufficiently charged, the final VGH value is reduced, which according 

to Equation (7-13) corresponds to lower ΔVP From Figure 7.11(a), we see that the 

proposed method (solid circles) is a good balance of both improved charging time 

compared to VGH = 13 V and lower ΔVP than VGH = 18 V. In our previous work, we have 
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shown that reducing the duration of high gate voltage (VGH) in pulsed waveforms of 

a-IGZO TFT dynamic operation improves the ac bias-temperature stress (BTS) stability 

[131]. The partially underdriven method proposed in this study is expected to help reduce 

ac BTS instability and still retain adequate charging characteristics. 
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CHAPTER 8 

Conclusions and Future Work 

8.1 Summary of Results and Conclusions 

In this dissertation, we have developed a comprehensive and robust subgap density-

of-states (DOS) model for a-IGZO based on a combination of experimental results and 

information available in the literature. The valence bandtail states are defined by 

parameters extracted from optical absorption and transient photoconductance 

spectroscopy. We adopt the results of first-principles calculations of a-IGZO in the 

literature, which states that oxygen vacancies form fully occupied deep donor states near 

the valence band. The conduction bandtail and deep-gap states are extracted by multi-

frequency capacitance–voltage (C–V) spectroscopy. Numerical simulations indicate that 

the conduction band deep-gap states originate from excess oxygen acting as electron 

acceptors. Recombination of an electron trapped in the conduction band deep-gap state 

and a hole in the valence band is responsible for the deep-level emission in the 

photoluminescence (PL) spectrum of a-IGZO thin film. We have used this DOS model in 

2D numerical simulations to obtain electrical properties of a-IGZO metal-semiconductor 

field-effect transistors in good agreement with experimental data, and the results are 

published in peer-reviewed literature [98]. 
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In order to investigate what effect oxygen flow during a-IGZO sputtering has on TFT 

electrical properties and stability, we fabricated simple inverted-staggered a-IGZO TFTs 

on silicon substrates using mechanical masks for 5%, 10%, and 15% O2 partial pressure 

(pO2). We find that the excess oxygen content can significantly impact a-IGZO TFT 

electrical characteristics. High pO2 reduces TFT field-effect mobility (µFE) and on-current 

(Ion) and increases threshold voltage (Vth). When undergoing positive bias-temperature 

stress (PBTS) at a gate stress voltage of Vst = +10 V, higher pO2 corresponds to larger 

threshold voltage shift (ΔVth), while no clearly discernable trend is observed for negative 

bias-temperature stress (NBTS). The subgap DOS of a-IGZO are decomposed into 

exponential bandtail states and Gaussian-like deep-gap states, according to the DOS 

model we have adopted. The peak density of the Gaussian-like distributions is larger for 

higher pO2 during deposition. Assuming that high pO2 during deposition is associated with 

incorporation of excess/weakly-bonded oxygen in the a-IGZO thin film, then we can 

conclude that these deep-gap states are acceptor-like electron trap states in the form of O0 

or O1- ions. The O0/O1- ions may trap an electron and become O1-/O2-, reducing free 

carriers and increasing Vth. During PBTS, the migration of these ion species can be 

accelerated by a combination of electric field and temperature, and increased 

accumulation at the a-IGZO/SiO2 interface causes ΔVth to become more severe. 

We have thoroughly investigated the impact of annealing in high-O2% or low-O2% 

atmospheres have on the deep-level PL emission of a-IGZO thin films. We have found 

that the deep-level PL emission at 1.82 eV is stronger for a-IGZO annealed in high-O2% 

atmospheres or deposited in higher pO2. After several possible electron-hole transitions 

have been discussed, it appears that radiative recombination between electrons in 
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acceptor-like excess oxygen (O) states and holes in valence bandtail states is most likely 

to be responsible for the observed deep-level PL emission. We have compared the PL 

intensity of this emission within the a-IGZO TFT channel before and after PBTS and 

NBTS. Our results show that after PBTS, Vth becomes more positive, µFE slightly 

decreases, and deep-level emission becomes stronger. We speculate that these are the 

results of higher concentration of excess oxygen when adsorbed oxygen diffuses into  

a-IGZO under the influence of electric fields and stress temperature. It is possible that the 

opposite is happening during NBTS. 

To investigate the ac bias-temperature stress (BTS) stability of a-IGZO TFTs for 

ultra-high definition (UHD) active-matrix liquid crystal display (AM-LCD) applications, 

photolithography is used to fabricate high-performance and highly stable bottom-gate 

source/drain (S/D) recessed nearly self-aligned a-IGZO TFTs that have a-SiONX as 

passivation layer. The a-IGZO TFTs have been demonstrated to be very reliable under a 

wide variety of ac and dc stressing conditions at 70 °C. We find that for our TFTs, the 

bipolar ac BTS instability time-evolution can be well-described by a simple sum of the 

positive and negative unipolar ac BTS instability but not the sum of the dc BTS 

instabilities. The ac frame time dependence of the threshold voltage shift is thoroughly 

investigated. We find that negative unipolar pulses exhibit larger (more negative) ΔVth 

shift for longer frame times. For positive unipolar pulses, the ΔVth are initially positive 

and eventually trend towards negative for all frame time. For bipolar ac BTS, we find that 

instability also has a dependence on the operation frequency and that higher frequencies 

causes more instability. This is an important issue that should be addressed for high-

refresh rate flat-panel displays. Upon changing the duty cycle of bipolar pulses from 50% 
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to 10%, we can suppress the ΔVth for the same operation frequency. This shows that 

different pixel addressing schemes, in the form of duty cycle control, may be viable for 

improving device stability. By applying gate and data waveforms corresponding to 4K 

UHD AM-LCD, we observe that ΔVth becomes more negative for higher frame 

frequencies and higher drain voltages. We speculate that electron-hole pair generation by 

impact ionization at the source terminal is responsible for the trapping of holes at the 

a-IGZO/a-SiOX interface. 

To evaluate the dynamic response of a-Si:H and a-IGZO TFTs, we have fabricated 

test circuits in which a TFT is connected to a storage capacitor. For the a-Si:H TFT, in 

addition to the normal TFT configuration, we also fabricated the S/D-recessed TFT 

where the S/D metal is intentionally over-etched to reduce the gate-S/D overlap. 

Waveforms corresponding to UHD timing specifications are tested. In our results, the 

S/D-recessed a-Si:H TFTs have slightly superior charging behavior and lower 

feedthrough voltage (ΔVP) compared to normal a-Si:H TFTs, but both are insufficient for 

8K×4K UHD AM-LCDs. Only the a-IGZO TFT is fully capable of supporting 8K×4K 

resolution at 480 Hz. Analytical expressions describing the ΔVP are investigated in detail. 

In particular, the impact of the gate signal falling edge (tFE) is thoroughly studied. We 

find that at the small-tFE limit, channel charge redistribution and overlap capacitance 

feedthrough both contribute to ΔVP. At the large-tFE limit – approximately three orders of 

magnitude above the transit time—accumulated channel charges are almost completely 

released through the drain electrode and do not contribute to ΔVP. In this case, ΔVP 

becomes entirely independent of VGH. The storage capacitance (Cst) size is shown to have 

a strong impact on the ΔVP for a-IGZO TFTs but has negligible influence on its charging 



 127 

behavior. After normalizing for TFT geometry and structure, ΔVP of a-IGZO TFTs is 

shown to be very similar to a-Si:H TFTs. Increasing the size of Cst can reduce the ΔVP, 

and for a-IGZO TFTs this can be done without sacrificing charging behavior. 

8.2 Recommendations for Future Work 

1) In light of the conclusions reached in this dissertation regarding deep-level PL 

emission, a-IGZO processing conditions, and TFT electrical instability, it is 

critical to conduct chemical and materials analysis in conjunction the PL 

spectroscopy evaluation of a-IGZO TFTs we have developed. Definitive 

microscopic observations by high-resolution tunneling electron microscopy 

(HRTEM), secondary ion mass spectroscopy (SIMS), and other methods should 

be conducted to verify our proposed model based on excess-oxygen states.  

2) The evaluation of ac bias-temperature stability (BTS) and dynamic response in 

this dissertation is all done within the context of AM-LCDs. Considering that the 

active-matrix organic light-emitting diode (AM-OLED) display is expected to 

take on a significant role in both mobile displays and large area AM-OLED TVs, 

the dynamic operation instability and dynamic response should be evaluated for 

a-IGZO TFTs as the backplane technology of AM-OLED displays. For the ac 

instability, because the AM-OLED is a current-driven device, current-temperature 

stress should be studied with waveforms corresponding to next generation ultra-

high definition AM-OLED displays. Also, the dynamic response should be 

evaluated for AM-OLED pixel circuits, which are much more complex than AM-

LCD pixel circuits in that three or more TFTs are often used. 
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