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ABSTRACT

One of the core competencies required for autonomous mobile robotics is the ability to use

sensors to perceive the environment. From this noisy sensor data, the robot must build a represen-

tation of the environment and localize itself within this representation. This process, known as

simultaneous localization and mapping (SLAM), is a prerequisite for almost all higher-level au-

tonomous behavior in mobile robotics. By associating the robot’s sensory observations as it moves

through the environment, and by observing the robot’s ego-motion through proprioceptive sensors,

constraints are placed on the trajectory of the robot and the configuration of the environment. This

results in a probabilistic optimization problem to find the most likely robot trajectory and envi-

ronment configuration given all of the robot’s previous sensory experience. SLAM has been well

studied under the assumptions that the robot operates for a relatively short time period and that

the environment is essentially static during operation. However, performing SLAM over long time

periods while modeling the dynamic changes in the environment remains a challenge.

The goal of this thesis is to extend the capabilities of SLAM to enable long-term autonomous

operation in dynamic environments. The contribution of this thesis has three main components:

First, we propose a framework for controlling the computational complexity of the SLAM opti-

mization problem so that it does not grow unbounded with exploration time. Second, we present

a method to learn visual feature descriptors that are more robust to changes in lighting, allowing

for improved data association in dynamic environments. Finally, we use the proposed sparse-

approximate marginalization and learned visual features in a SLAM system that explicitly models

the dynamics of the environment in the map by representing each location as a set of example

views that capture how the location changes with time.

We experimentally demonstrate that the proposed methods enable long-term SLAM in dy-

namic environments using a large, real-world vision and LIDAR dataset collected bi-weekly over

the course of more than a year. This dataset, collected specifically for this research, captures a

wide variety of dynamics: from short-term scene changes including moving people, cars, chang-

ing lighting, and weather conditions; to long-term dynamics including seasonal conditions and

structural changes caused by construction.

xi



CHAPTER I

Introduction

As robotic applications transition from engineered environments, such as factories, to the real

world, one of the core competencies required is the ability to answer “what does the environment

‘look’ like?” and “where am I within the environment?” This problem, known as SLAM [7, 47],

is critical to any robotic application that requires a mobile robot to operate in an uncontrolled

environment. Fundamentally, SLAM is an estimation problem in which noisy observations of the

environment, collected by the robot’s sensors, are used to estimate a map of the environment and

the robot’s trajectory within the map.

SLAM has been well studied over the last several decades, and there now exists a mature

set of probabilistic tools for interpreting the robot’s sensor data and solving SLAM’s underlying

estimation problem. However, most implementations are only successful in the short-term and in

environments that can reasonably be assumed to be static during the duration of robotic operation.

A complete SLAM system consists of two key components: the front-end, that extracts mea-

surements from the raw sensor data, and the back-end, that finds the optimal configuration of

historic robot poses and map features given the current measurements. Long-term applications of

SLAM complicate both the back-end and front-end of the system.

The primary concern when developing a SLAM back-end for long-term applications is com-

putational complexity. Optimization methods are the state-of-the-art tools for many large scale

SLAM applications. However, some important drawbacks remain. Formulations that save all pre-

vious robot poses (important to maintain problem sparsity) do not scale well temporally as new

poses (i.e., latent variables) must be added to the graph in order for the robot to stay localized,

even if the robot continuously explores an already mapped location.

An appropriate front-end for long-term SLAM must be able to extract measurements from

sensor data collected in the presence of large dynamic changes. The effect of dynamic changes

1



on data association is dependent on the sensing modality. For example, light detection and rang-

ing (LIDAR) is mostly affected by dynamic occlusion and longer-term structural changes to the

environment, while vision is strongly affected by changes in lighting caused by the time of day and

weather, as well as longer-term structural and seasonal changes.

This thesis focuses on extending the state-of-the-art to account for the challenges of performing

SLAM in dynamic environments over long periods of time. Our proposed methods will allow for

SLAM systems that model and adapt to dynamic changes in the environment and remain accurate

and computationally feasible in the long-term.

1.1 SLAM Background

We first provide an overview of SLAM. Readers familiar with SLAM may wish to skip directly

to the literature review in §1.2.

1.1.1 SLAM Formulation

Figure 1.1 Factor graphs for common SLAM formulations. In (a), a robot explores an environment observing two

landmarks. The full SLAM formulation, (b), estimates the location of historical poses and the landmarks given mea-

surements and motion constraints. The pose SLAM formulation, (c), estimates the location of historical poses using

sensor observations to produce constraints directly between pose nodes. The landmark SLAM formulation, (d), es-

timates the current pose of the robot, and all landmark locations given measurements and motion constraints. The

sparsity pattern of the associated information matrix is shown for each formulation.

(a) Robot Explores

(b) Full SLAM (c) Pose SLAM (d) Landmark SLAM

2



Metric SLAM is commonly described by one of three formulations: full SLAM, pose SLAM

and landmark SLAM (Fig. 1.1). In the full SLAM problem (Fig. 1.1(a)), the robot’s trajectory is

represented by a set of poses, xi ∈ X, where each element, xi, is a vector that commonly represents

the pose of the robot, but may contain additional elements to be estimated, such as velocities or

other system parameters. The position and parameters of observed landmarks are represented as

vectors lj ∈ L. Noisy observations of the robots motion, ui ∈ U, and observations of landmarks in

the environment, zk ∈ Z, are used to find the maximum a posteriori (MAP) estimate of the robot

trajectory and the locations of the landmarks,

X̂, L̂ = argmax
X,L

p(X,L|U,Z). (1.1)

For some sensing modalities, it may be less practical to repeatedly detect and associate landmarks

in the environment. Instead, it may be possible to register two observations of the environment in

order to directly measure the motion of the robot. This is referred to as pose SLAM (Fig. 1.1(c))

and can intuitively be thought of as marginalizing out the landmark poses from the full SLAM

problem

X̂ = argmax
X

p(X|U,Z). (1.2)

Additionally, it is possible to estimate only the most recent pose of the robot, xt, and the landmark

positions. We refer to this as landmark SLAM (Fig. 1.1(d)) and it can be thought of as the full

SLAM problem with all previous robot poses marginalized out

x̂t, L̂ = argmax
xt,L

p(xt,L|U,Z). (1.3)

The choice of SLAM formulation is tightly coupled with the method used to solve the optimiza-

tion problem. As we will discuss in §1.2.2, landmark SLAM was developed in the context of

recursive filtering, while the full SLAM problem is associated with optimization-based smoothing

techniques. Pose SLAM falls somewhere between, and has been solved with both filtering and

smoothing methods.

By assuming that measurements are made under Gaussian noise, finding the optimum value

in (1.1), (1.2) and (1.3) involves solving a nonlinear least squares optimization problem. For

simplicity of notation, let all types of nodes be represented as X = X ∪ L, and all observed

3



variables be represented as Z = Z ∪U. Then

X̂ = argmax
X

p(X |Z) = argmin
X

− ln p(X |Z) = argmin
X

∑

i

‖hi(X )− zi‖
2
Σi
, (1.4)

where hi is the measurement model that predicts the measurement given the current state estimate,

and Σi is the covariance matrix associated with the measurement noise. To solve (1.4), we linearize

the measurement models about the current estimate using a first-order Taylor series expansion.

This yields a linear least squares problem

argmin
X

∑

i

‖HiX − zi‖
2
Σi
, (1.5)

where Hi is the Jacobian of the measurement model with respect to the state. The optimal solution

to the linear problem is found by solving the normal equations. Note that in full SLAM and

pose SLAM, each measurement function, hi(X ), is independent and will only depend on a small

subset of X . This results in an inherent sparsity in the linear least squares problem, which is

exploited by modern solvers to greatly reduce the computational complexity of the optimization

problem (§1.2.2). To solve the full nonlinear problem, (1.4) is repeatedly linearized and solved

until convergence. It is important to note that this does not guarantee a global optimum—if the

initial linearization point is not sufficiently close to the global optimum the optimization may

converge to a local minima. However, in practice, a good initial linearization point is usually

available from odometry and by incrementally building and solving the SLAM problem as the

robot explores.

1.1.1.1 Graphical Representation

The SLAM problem is commonly represented as one of three graphs, each of which emphasize

different aspects of the problem [45]. The first is a directed acyclic graph referred to as a Bayes

net. The Bayes net encodes the conditional dependencies in the SLAM problem and is commonly

associated with filtering techniques, as the conditional dependencies arise from temporal Markov

properties. The second is an undirected graph, the Markov random field (MRF). The connectivity

of the MRF also encodes some of the conditional independence properties of the distribution. Ad-

ditionally, for Gaussian distributions, the MRF illustrates the adjacency structure of the associated

information matrix, and therefore, provides insight into the sparsity structure of the problem. The

third is the factor graph, a bipartite graph consisting of nodes that represent variables, and factors

that represent measurement potentials over the variables. Like an MRF, a factor graph encodes the
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conditional independence properties of the distribution and illustrates the adjacency structure of

the information matrix. Additionally, it explicitly defines a factorization of the distribution, clearly

illustrating which nodes support each measurement observation function hi. If we represent each

factor in the graph as ψi(xi), where xi ⊂ X is the subset of variables that support the factor ψi,

then

X̂ = argmin
X

∑

i

‖hi(X )− zi‖
2
Σi

= argmin
X

∑

i

ψi(xi). (1.6)

In this thesis we focus on the factor graph representation of the SLAM problem as it aids the

presentation of the proposed algorithms.

1.1.2 Data Association and the “Front-End”

Figure 1.2 Illustration of data association and loop-closure in the full SLAM formulation. At time t1, the robot

observes and instantiates two new landmarks. At time t2, the robot observes four landmarks—two of which can be

associated with existing landmarks, while the other two instantiate new landmarks. At time tn, the robot revisits the

previously explored area and observes two landmarks. Because a large amount of uncertainty has accumulated between

the robot’s pose and the landmark locations (illustrated by the green ellipses) the robot is unsure which landmarks it is

observing. This problem is often referred to as loop-closure.

(a) t1 (b) t2 (c) tn

So far we have focused on the underlying estimation problem in SLAM. A complete SLAM

system, however, must also generate the constraints in the optimization problem from noisy sen-

sory observations of the environment. This is often referred to as the SLAM front-end, with the

associated optimization referred to as the back-end.

Unlike the SLAM back-end, which can be generic, the SLAM front-end is highly dependent on

the application and the sensing modality. In the full SLAM formulation, the front-end must repeat-

ably extract landmarks from raw data and be able to establish correspondence between previously-

viewed landmarks. In the pose SLAM formulation, the front-end must identify pairs of poses
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with overlapping views of the environment and then register the views to produce a relative con-

straint. The process of associating extracted landmarks, or associating views, is referred to as data

association, and is a critical function of the front-end.

Data association in the full SLAM formulation is illustrated in Fig. 1.2. When a good motion

prior is available from the current SLAM estimate (Fig. 1.2(b)), data association is often straight-

forward as false matches can be easily rejected based upon the motion prior (e.g., Mahalanobis

gating [127]). However, when a strong prior is not available, which often happens when the robot

returns to a previously explored location after a long period of time, data association becomes

much more challenging. This is referred to as the loop-closure problem (Fig. 1.2(c)). Even though

we illustrate the data association problem using the full SLAM formulation, similar challenges are

also present in the pose and landmark SLAM formulations. In this thesis, we focus on SLAM

front-ends that use two sensing modalities, LIDAR and vision, both of which are commonly used

in robotics.

1.1.2.1 LIDAR Scan Matching

Figure 1.3 LIDAR scan matching illustration. Two 3D LIDAR scans collected by the robot as it moves through the

environment are shown in (a) and (b). An initial guess of the robot’s motion between scans is then used to roughly

align the scans (c). The optimal estimate of the robot’s motion is then found by registering the two scans using iterative

methods (d).

(a) Scan A (b) Scan B (c) Initial Alignment (d) Optimized Alignment

LIDAR uses time-of-flight laser measurements to sample the 3D structure of an environment.

LIDAR can be used to capture a 2D slice of the environment or a full 3D point cloud depending

upon the sensor configuration. Two scans taken at different locations can then be registered using

iterative methods such as [13, 148]. This produces a relative-pose constraint that can be used in

the pose SLAM formulation. Iterative LIDAR registration methods require a good initial guess of

the relative transform between the two poses as convergence to an incorrect local minimum can be

a problem. An illustration of this process is shown in Fig. 1.3.
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1.1.2.2 Vision

Figure 1.4 Image registration illustration. Two images to register are shown in (a). Feature points are extracted from

both images, shown as magenta points in (b). These features are matched based on their vector descriptors (lines in

(b)) and outliers are rejected based on geometric verification (red lines in (b)). Finally, bundle adjustment is used to

optimize the robot’s motion and the 3D location of the feature points (c).

(a) Original Images (b) Feature Matching (c) Bundle Adjustment

Vision-based SLAM front-ends commonly perform feature-based image registration in order

to produce constraints for both full SLAM and pose SLAM. A good overview of standard feature-

based image registration is available in [68]. Given a set of images to register, feature points that

can be repeatedly detected under scale, rotation, and viewpoint changes [9, 104], are first extracted

from each image. The visual appearance of each feature point is described as a vector in a high

dimensional space. Feature matching is then performed using nearest-neighbors in feature space.

The initial feature matches are geometrically verified to remove outliers, often by using random

sample consensus (RANSAC) [55] to fit a projective model. In the case of full SLAM, the location

of triangulated image features can be used as landmarks. This SLAM formulation is also referred

to as bundle adjustment [68, 167] and is well studied in the computer vision community. In the

case of pose SLAM, a small bundle adjustment problem is often used over a pair of images as a

final refinement stage to produce a relative constraint between robot poses. An illustration of this

process is shown in Fig. 1.4.

1.1.2.3 Data Association Challenges

Data association is a core challenge of all SLAM systems. Some of the most common chal-

lenges for visual data association are illustrated in Fig. 1.5—though not universal, many of the

same challenges occur for other sensing modalities. Data association is further complicated by the

fact that, because Gaussian noise models are assumed, the SLAM optimization problem is highly

sensitive to outlier measurements. Therefore, it is very important that data association avoid false

positive matches.
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Figure 1.5 Data association challenges. In short-term SLAM applications, the front-end must overcome several chal-

lenges including perceptual aliasing, varying measurement saliency and short-term dynamic objects like people and

cars. Long-term SLAM is further complicated by longer-term dynamics like lighting, changing seasons, and even

structural changes caused by construction. All of these examples occur in the North Campus dataset (Appendix A).

(a) Perceptual Aliasing (b) Saliency (c) Dynamic Objects

(d) Changing Lighting (e) Changing Seasons (f) Structural Changes

In short-term SLAM applications, the front-end must overcome several challenges. The front-

end must be robust to perceptual aliasing, i.e., the fact that different places may have a similar

appearance and could be confused based on their appearance alone (Fig. 1.5(a)). Additionally, not

all sensory information is equally valuable or “salient” for map building and localization—an im-

age of the North Campus clock tower is very useful for localization, while an ambiguous image of

a parking lot provides very little help if you are lost (Fig. 1.5(a)). Perceptual aliasing and saliency

are especially challenging when solving the loop-closure problem, as loop-closure requires that

the appearance of the environment be sufficiently informative so that the true association can be

identified and incorrect associations rejected. Finally, fast moving objects like people and cars

(Fig. 1.5(c)) violate the static world assumption in most SLAM systems and can temporarily oc-

clude the sensor’s field of view.

Long-term SLAM is further complicated by medium- and long-term dynamics including changes

in lighting (Fig. 1.5(e)), changing seasons (Fig. 1.5(d)), and even structural changes caused by con-

struction (Fig. 1.5(f)). The North Campus dataset (Appendix A) contains many examples of each

of these challenges, making it a valuable tool to evaluate the algorithms proposed in this thesis.
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1.2 Literature Review

In this section, we provide a review of the literature related to this thesis, including some of the

many applications of SLAM, how the SLAM problem has been formulated and solved, and works

that seek to extend the capabilities of SLAM systems in challenging scenarios. Additionally, we

consider work related to LIDAR- and vision-based SLAM front-ends.

1.2.1 Applications of SLAM

Many of the most promising robotic applications seek to explore and manipulate environments

that are difficult or dangerous for humans to access. Examples include scientific data collection

in the ocean [53, 82, 179] or outer space [61], autonomous inspection of critical infrastructure

[71, 89, 136, 144], or search and rescue after a disaster [1, 39, 147]. In other applications, we

simply want robotics to assist us in our daily lives, from self-driving cars [6, 16, 102, 107, 109,

115, 163, 169, 183], to assistive robots for the elderly or disabled [123, 124, 141, 155], and even

automated vacuums [33, 76].

The role of SLAM varies in each of these applications. In some cases, SLAM runs online as

the robot explores the environment [71, 89, 136]. In others, SLAM is used to post-process the

data collected by the robot to produce environment models and visualizations [53, 82, 179]. In

the case of self-driving cars, modern systems [107, 183] use SLAM to build a prior map offline.

Then, during operation, the autonomous car localizes itself into the prior map [29, 103, 182],

allowing the vehicle to access prior information such as the road network topology, speed limits,

and the location of traffic signals. Regardless of how it is used, SLAM is a key component in these

applications and many more like them.

Beyond robotics, bundle adjustment [167]—a variant of SLAM where poses represent the po-

sition of cameras and the features are triangulated image key points—has been well studied in the

computer vision community where it is used for many tasks including large-scale reconstructions

from internet photo collections [3, 58, 131, 153, 154].

1.2.2 Solving SLAM

Over the last several decades many methods have been proposed for solving the various for-

mulations of SLAM illustrated in Fig. 1.1.

9



1.2.2.1 Filtering Methods

Early SLAM solutions sought to solve the landmark SLAM formulation (Fig. 1.1(d)) in a re-

cursive Bayesian estimation framework. These filtering methods, typically based on the extended

Kalman filter (EKF) [17, 43, 152], were shown to be successful in small environments with few

landmarks. However, as the number of landmarks in the environment grows, maintaining the mean

vector and (dense) covariance matrix of the state quickly becomes computationally intractable.

Careful landmark selection, as proposed by Davison and Kita [42], can delay computational issues

and allow for real-time operation in small environments. Dividing the environment into com-

putationally feasible submaps [17] was also proposed as a solution at the expense of additional

complexity of maintaining multiple maps and estimating the relative positions of each map.

Careful consideration of the SLAM problem revealed that in almost all applications, the rela-

tionship between robot states and map landmarks is inherently sparse. Sensors used to perceive

the environment have a finite field of view and landmarks in different parts of the environment are

only weakly correlated through the robot’s previous poses. This is referred to as sparsity, because

in the natural parametrization of the Gaussian distribution, which we refer to as the information

form, the information matrix will have many off-diagonal values very close to zero. In the case of

landmark SLAM (Fig. 1.1(d)), these off-diagonal entries will not be exactly zero, and therefore,

the information matrix is not truly sparse. Thrun et al. [161] proposed to force some elements to be

exactly zero, inducing sparsity in the information matrix and allowing efficient optimization using

an extended information filter (EIF), the information-form dual of the EKF. Unfortunately, this

sparsification method causes the resulting estimate to be overconfident as shown by Eustice et al.

[50]. For feature-based SLAM, Walter et al. [176] ensure sparsity in an EIF by dropping odometry

constraints and re-localizing based on features.

With this focus on sparsity, it was soon realized that it is the marginalization of past poses in

the landmark SLAM formulation (Fig. 1.1(d)) that causes the loss of sparsity. Both full SLAM and

pose SLAM are naturally sparse because past poses are maintained in the optimization problem.

This is clearly reflected in the factor graphs of the formulations, depicted in Fig. 1.1. In the context

of filtering, this is exploited by Eustice et al. [52] in a pose SLAM EIF framework, which greatly

increased the possible scale of filtering-based SLAM solutions compared to those solvable with a

dense EKF.

Even with the increased scale provided by sparse EIF methods, all filtering methods still suffer

from a significant short coming—as each new measurement is incorporated into the filter they

commit to a static linearization point. This can cause the solution to diverge as linearization errors

accumulate [8, 31, 84].

10



1.2.2.2 Optimization-based methods

Most recently, optimization-based methods [45, 46, 64, 65, 77, 86, 88, 96, 99, 105, 129, 130,

134, 140] have been proposed that explicitly treat the SLAM problem as a large, sparse, nonlinear

least-squares problem. These methods can efficiently solve both the full SLAM (Fig. 1.1(b)) and

pose SLAM (Fig. 1.1(c)) formulations by exploiting state-of-the-art sparse linear algebra solvers.

By maintaining all nonlinear measurements, these algorithms can relinearize repeatedly as new

observations are made. By exploiting the inherent sparsity of the optimization problem, these

methods are capable of efficiently solving very large SLAM problems. These methods represent

the current state-of-the-art for large-scale, metric SLAM.

Given all the measurements and an initial guess of the parameters, many of these methods

treat SLAM as a large batch optimization problem [45, 99, 105, 129, 130, 134]. This is a fast and

efficient method of solving the problem, but it is best suited for offline SLAM as the whole batch

optimization must be repeatedly performed as new measurements are obtained for online SLAM.

To better adapt optimization-based SLAM for online applications, several method have been

proposed [64, 65, 86, 88, 96, 140] that incrementally update the least-squares solution. This allows

for faster access to the SLAM solution after adding new measurements and is most appropriate for

applications that require online SLAM.

For the majority of these methods, an efficient solution is possible because of the inherent

sparsity in many real-world SLAM problems. To address the problem of graphs with many loop-

closures, and therefore reduced sparsity, Dellaert et al. [46] and Jian and Dellaert [77] have pro-

posed methods that first solve a sparse graph preconditioner, and then use an iterative method, like

conjugate gradients, to solve the full, less-sparse, problem.

Ni et al. [130] and Ni and Dellaert [129] present methods to divide the graph into subgraphs

that can be optimized independently before optimizing the relationships between each graph. This

allows for the optimization of very large graphs as the entire graph does not need to be loaded into

memory at once.

One important consideration in all SLAM systems is the parameterization of the variables to be

estimated. The most common parameterization represents each pose and landmark in a common

“world” or “local” reference frame. Several methods have proposed a relative parameterization

[110, 134, 150], reporting improved scalability and speed of convergence during optimization.

Kim et al. [91] propose the use of “anchor nodes,” which encode the transformation between local

frames. Introducing anchor nodes to the graph allows multiple maps—from different robots, or

different mapping sessions—to be parameterized in their own local frame, while still allowing for

observations between nodes in different frames.
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1.2.2.3 Additional SLAM Formulation and Methods

Several other important classes of SLAM systems have been proposed beyond the metric

filtering- and optimization-based SLAM solutions that we focus on in this thesis.

Monte Carlo Methods One important class of methods used to solve SLAM are Monte Carlo

methods employing particle filters, such as [119, 121]. These methods can model multi-modal

probability distributions, and therefore, allow multiple hypothesis tracking. However, the number

of particles required to sufficiently sample the state space increases with the scale of the envi-

ronment and it is unclear how to ensure a sufficient level of particle variety through the mapping

process.

Occupancy Grids Many indoor applications elect to use an occupancy grid [49, 122] represen-

tation of the environment during SLAM. In this formulation, the environment is discretized into

a grid and a binary variable is estimated indicating if a cell is free or occupied. The main benefit

of this approach is that the map can then immediately be used for planning and other higher-level

tasks. Unfortunately, discretized grids do not scale well to large environments.

Topological SLAM Several authors have proposed SLAM systems that do not attempt to opti-

mize a fully metric map. These methods instead attempt to estimate a topological or hybrid metric-

topological representation of the environment [10, 38, 98, 114]. Topological maps are especially

well-suited for applications that require a more semantic understanding of the environment, i.e.,

the user tells the robot to go to the end of the hall and turn right. However, they are not sufficient

for tasks where a metric understanding of the environment is important, for example, area coverage

tasks like [32, 90], spatial motion planning, or geo-referencing scientific data.

Continuous-Time SLAM In situations where sensor data is collected at a high rate, it may be

computationally infeasible to represent the robot’s trajectory using a set of discrete poses. In

continuous-time SLAM methods [4, 62], the trajectory is represented by a weighted set of basis

functions. This allows one to make measurements at any point in time while still only optimizing

over the finite set of basis weights.
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1.2.3 Robust Optimization for SLAM

Standard SLAM optimization methods are highly sensitive to outlier measurements because the

assumed Gaussian noise models assign extremely low probability to measurements in the “tails” of

the distribution. Under these assumptions, it is very important that data association have zero false

positive matches. Clearly, this is an unrealistic requirement, especially in the long-term where the

changes of making an erroneous loop-closures grows with time.

Recently, outlier-robust SLAM optimization has received a good deal of attention with several

methods [2, 133, 158] producing very promising results. Sunderhauf and Protzel [158] proposed

the addition of binary “switchable constraint” variables, which estimate if each link is an inlier or

outlier. This method produces good results at the expense of introducing many additional variables

to the SLAM problem. By marginalizing out the switching variables, Agarwal et al. [2] proposed

an M-estimator [74] referred to as “dynamic covariance scaling” that also provides similar perfor-

mance without the additional optimization variables. Olson and Agarwal [133] propose modeling

constraints with a max-mixture of Gaussian distributions. Like [2, 158], max-mixtures allow one

to model binary inlier-outlier factors, with one component representing the measure and another

representing a high-variance null hypothesis. However, unlike [2, 158], max-mixtures can also

model other more complex multi-modal measurements.

In extreme cases, these methods can converge to the correct graph in the presence of almost

as many outliers as inliers. However, this is not normally necessary in practice. Instead, these

methods allow one to relax the precision requirements on the front-end so that in the small, yet

non-zero, chance an outlier measurement is integrated in the graph, it will not corrupt the solution.

1.2.4 Long-Term SLAM in Dynamic Environments

Long-term applications of SLAM complicate both the back-end and front-end of the SLAM

system. In terms of the back-end, the primary concern is computational complexity, while for the

front-end the primary concern is data association in the presence of large dynamic changes.

1.2.4.1 Controlling the Computational Complexity of Long-Term SLAM

Many methods have been proposed that seek to reduce or bound the computational complex-

ity of the SLAM optimization problem. Methods have been proposed that enforce sparsity [161],

slow the rate of graph growth by only adding the most informative nodes and edges [75], and avoid

adding new nodes in previously explored locations [78]. Node removal, through marginalization

or an approximation of marginalization, has been proposed in [48, 56, 73, 94, 97, 108, 174, 178].
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These works are discussed in detail in the context of our proposed node removal method in

Chapter II and our proposed complexity management schemes in Chapter IV.

1.2.4.2 Dealing with Dynamic Environments in SLAM

Many methods have been proposed that try to filter out the dynamic elements of the envi-

ronment while maintaining the assumption that the underlying environment is static, for example

[22, 57, 67, 177], among others. It has also been shown that it is possible to explicitly identify

and track dynamic objects in the environment, either for specific classes of objects, such as people

[120], or a-priori-unknown dynamic objects [118]. Most promising are methods that explicitly

model the dynamic environment in the map representation [14, 15, 36, 44, 94, 156, 164]. Among

these, the “exemplar”-based methods [36, 94, 156], which capture a location’s change in appear-

ance using a set of example views, are most relevant to this thesis. We discuss these works in detail

in the context of the proposed SLAM systems in Chapter IV.

1.2.5 Data Association for Vision and LIDAR

The methods used to derive measurements from sensory data vary significantly between differ-

ent modalities. Here, we provide a brief overview of methods used to extract measurements from

cameras and LIDARs.

1.2.5.1 Deriving Observations from Computer Vision

As discussed in §1.1.2.2, two or more images of a scene can be used estimate the structure

of the scene and the motion of the camera between images. It is important to note that because

cameras only capture a 2D representation of the world, the geometric registration will not constrain

the scale of the scene unless additional information is provided, e.g., from odometry or a known

stereo baseline [68].

Visual Feature Descriptors A wide variety of visual feature descriptors have been proposed in-

cluding SIFT [104], SURF [9] and DAISY [165], among many others. Additionally, many authors

have proposed methods that leverage machine learning to improve the performance of visual fea-

ture descriptors [5, 20, 72, 142, 168, 180, 181]. We discuss these works in detail in Chapter III,

where we propose a method to learn visual feature descriptors that are more robust to changes in

lighting.
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Place Recognition Proposing sets of images that may be of the same location can be done using

the current SLAM state estimate. However, for loop-closure, place recognition [38, 113, 126, 132,

151] is commonly used to propose loop-closures based strictly on the visual content of the image.

Many of these methods [38, 132, 151] are based on the “bag-of-words” model, which represents

each image as a histogram of visual-word occurrence counts over a quantized visual vocabulary.

Recently, several methods [112, 126] have produced very good results on challenging datasets by

exploiting the coherence of temporal sequences to boost place recognition performance.

Visual Data Association in Dynamic Environments Several methods have been proposed to

improve the robustness of visual data association specifically in dynamic environments [24, 37,

80, 81, 94, 100, 128, 142]. We discuss these works in detail in the context of our proposed robust

visual feature descriptors in Chapter III.

1.2.5.2 Deriving Observations from LIDAR

Unlike vision, LIDAR allows the robot to directly observe the 3D structure of the environ-

ment. Additionally, because LIDAR is an active sensor, it is not affected by changes in lighting.

Unfortunately, LIDAR scanners are currently much more expensive than cameras.

In this thesis, we use iterative alignment methods [13, 106, 148] to derive measurements for

LIDAR scans. These methods start with an initial guess of the rigid-body transform between the

two scans. This transform is used to assign correspondence between the points in the two scans.

Based on these correspondences, the transform that best aligns the scans is found. A new set

of correspondences is then found and the process is repeated until convergence. These iterative

methods are sensitive to their initialization and can get stuck in local minima. However, if well-

initialized, they provide very accurate measurements.

1.3 Thesis Objective and Contributions

The objective of this thesis is to extend the capabilities of SLAM systems operating autonomously

for long-term periods of time in dynamic environments—to do so requires addressing two core

problems:

1. The computational complexity of the SLAM optimization problem must not grow unbounded

with time. As described in §1.1, many state-of-the-art graph SLAM formulations require that

nodes be continuously added to the graph for the robot to stay localized and preserve problem

sparsity.
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2. The SLAM front-end must continue to function as the environment changes with time. While

certain short-term and small-scale dynamic changes can be considered as noise within the

SLAM front-end, truly long-term SLAM requires a front-end that explicitly accounts for

dynamic changes in the environment. This is especially true for vision-based SLAM where

even the change in lighting between morning and evening may be enough to break state-of-

the-art systems.

Toward this objective we have produced the following contributions:

1. Collected a long-term dataset sufficient to evaluate the proposed methods.

2. Developed a mathematical method to control the computational complexity of the SLAM

optimization problem through node removal.

3. Presented a method to learn visual feature descriptors that are more robust to dynamic

changes in lighting.

4. Developed and experimentally validated SLAM systems using LIDAR and vision front-ends

capable of long-term exploration of dynamic environments.

Each of these contributions is described in the following sections.

1.3.1 Long-Term Dataset Collection

Evaluation of the proposed SLAM system requires a long-term dataset with significant dynamic

variation. An appropriate dataset is not currently available to the research community, therefore, we

have collected a challenging dataset on the University of Michigan’s North Campus. We collected

imagery and LIDAR data from January 2012 to April 2013 using our Segway robotic platform

(Fig. A.1(a)). In addition to allowing us to throughly evaluate the proposed algorithms throughout

this thesis, we plan to release this dataset to the community. The North Campus dataset is

described in detail in Appendix A.

1.3.2 Complexity Control Through Node Removal

Though other works have proposed using node removal to control the computational complex-

ity of SLAM, nearly all rely on measurement composition to produce a new set of factors over

the marginalization clique [48, 79, 94, 97, 174, 178]. This is problematic for two reasons. First,

the new factors produced through measurement composition are not independent in general and
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treating them as such produces inconsistent estimates. Second, for heterogeneous graphs with

low-rank constraints (e.g., range-only or bearing-only measurements), measurement composition

may not be well-defined. In Chapter II, we propose a factor-based method for node removal

in graph SLAM that addresses the shortcomings of measurement composition. The proposed

method, which we refer to as generic linear constraints (GLCs), is able to produce a new set of

constraints over the marginalization clique that can represent either the true marginalization, or a

sparse approximation of the true marginalization.

1.3.3 Learning Robust Visual Feature Descriptors

In many robotic applications, especially long-term outdoor deployments, the success or failure

of feature-based image registration is largely determined by changes in lighting. In Chapter III,

we present a method to learn visual feature point descriptors that are more robust to changes

in scene lighting than standard hand-designed features. We demonstrate that, by tracking fea-

ture points in time-lapse videos, one can easily generate training data that captures how the visual

appearance of interest points changes with lighting over time. This training data is used to learn fea-

ture descriptors that map the image patches associated with feature points to a lower-dimensional

feature space where Euclidean distance provides good discrimination between matching and non-

matching image patches.

1.3.4 Long-Term SLAM in Dynamic Environments

In Chapter IV, we propose LIDAR- and vision-based SLAM systems capable of long-term

operation in dynamic environments. These systems leverage the proposed GLC node removal

to control the computational complexity of the graph over time and to actively preserve a set of

example views for each location. The vision-based system additionally uses the learned feature

descriptors to better constrain the SLAM graph.
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CHAPTER II

Generic Linear Constraint Node Removal

Standard graph-based simultaneous localization and mapping (SLAM) formulations are not

ideal for use in the long-term as the size of the graph, and therefore the computational complex-

ity of its associated optimization problem, grows with exploration time, regardless of the size of

the environment. In this chapter, we present a factor-based method for node removal in graph

SLAM, which can be used to control its computational complexity. The proposed method is able

to produce a new set of constraints over the elimination clique, which can represent either the true

marginalization or a sparse approximation of the true marginalization. The proposed algorithm im-

proves upon commonly used node-removal methods in two key ways: First, it is not strictly limited

to full-state relative-pose constraints and works equally well with other low-rank constraints, such

as those produced by monocular vision. Second, the new factors are produced in a way that ac-

counts for inter-measurement correlation, a problem in other methods that rely upon measurement

composition.

We propose several alternatives for the sparse approximation of the dense potentials induced by

node marginalization in SLAM factor graphs. First, we present the Chow-Liu tree approximation,

which provides the minimum Kullback-Leibler divergence (KLD) but may be overconfident. We

then present a collection of optimization-based methods for producing a guaranteed-conservative

sparse approximation. These methods start with a sparse, but potentially overconfident, Chow-Liu

tree approximation of the marginalization potential, and then adjust the approximation with the

objective of achieving a low KLD from the true marginalization potential subject to a constraint

that the approximation is conservative.

We evaluate the proposed node removal methods over multiple real-world SLAM graphs and

show that they outperform commonly used methods in terms of Kullback-Leibler divergence. This

chapter is based on our work published in [25, 27, 30].
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2.1 Introduction

Graph based SLAM [45, 52, 86, 93, 105, 134, 160] has been demonstrated successfully over a

wide variety of applications. Unfortunately, the standard graph SLAM formulation, which main-

tains all past robot states, is not ideal for long-term applications. The robot must continually add

nodes and measurements to stay localized even if it is working in a finite region, causing the size

of the graph to grow with both spatial extent and exploration time (Fig. 1.1(b) and (c)).

In this chapter, we address this challenge by developing a principled and generic method that

allows one to arbitrarily remove nodes from the graph, thereby reducing inference complexity and

allowing for graph maintainability. We refer to this method as generic linear constraints (GLCs).

The method is illustrated in Fig. 2.1. The proposed algorithm was designed to address the pitfalls

of existing node removal and sparsification techniques—particularly those based on measurement

composition [48, 79, 94, 97, 174, 178]. The algorithm was designed so that it meets the following

criteria:

• The algorithm works equally well with non-full-state constraints. Constraints with lower

degree of freedom (DOF) than full-state (e.g., bearing-only, range-only and partial state

constraints) are handled under the same framework as full-state constraints, without special

consideration.

• The new factors are produced in a way that does not double count measurement information.

As we will show in §2.2, methods based on the pairwise composition of measurements

produce pairwise constraints that are not independent, which leads to inconsistency in the

graph.

• The algorithm produces a new set of independent factors using the current graph factors as

input. The method does not require the linearized information matrix of the entire graph as

input.

• The algorithm is able to produce constraints that can represent exact node marginalization

or a sparse approximation of the dense marginal using either a Chow-Liu tree (which mini-

mizes the KLD from the dense marginal but may be slightly overconfident), or a guaranteed-

conservative tree (which provides a low KLD while preventing overconfidence).

• The computational complexity of the algorithm is dependent only upon the number of nodes

and factors in the elimination clique, not on the size of the graph beyond the clique.
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• The algorithm does not require committing to a world-frame linearization point, rather, the

new factors are parametrized in such a way as to use a local linearization that is valid in-

dependent of the global reference frame. This allows for the exploitation of methods that

re-linearize during optimization (e.g., [45, 86, 134]).

Figure 2.1 The GLC node removal algorithm. The dense exact version follows the top row, while the sparse approx-

imate versions follows the bottom row. A sample factor graph where node x1 is to be removed is shown in (a). Here

Xm = [x0,x1,x2,x3]. The factors Zm = [z0, z01, z12, z13, z23] (highlighted in red in (a)) are those included in calcu-

lating the target information, Λt, which defines a linear potential, zt, over the marginalization clique Xt = [x0,x2,x3]
(b). In the case of sparse-approximate node removal, the original distribution associated with the target information,

p(Xt|Zm), is approximated using a sparse spanning tree (computed using either the Chow-Liu approximation or the

proposed guaranteed-conservative approximations) as p(x0|Zm)p(x2|x0,Zm)p(x3|x0,Zm) (c). Optionally, the po-

tentials are reparameterized with respect to x0 to avoid linearization in the world-frame (d). New GLC factors are

computed and inserted into the graph replacing Zm (highlighted in green in (e)). Note that node removal only affects

the nodes and factors within the Markov blanket of x1 (dashed box).
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2.1.1 Related Work

A wide variety of methods have been proposed to control the computational complexity of

long-term SLAM—ranging from methods that simply slow the growth of the graph, to methods

that actively remove edges (sparsification) and nodes (marginalization).

2.1.1.1 Slowing the Growth of Long-Term SLAM

Several prior methods have been proposed to slow the rate of growth of the graph. In Ila

et al. [75], an information-theoretic approach is used to add only non-redundant nodes and highly-

informative measurements to the graph. This slows the rate of growth but does not bound it. In

Johannsson et al. [79], new constraints are induced between existing nodes when possible, instead
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of adding new nodes to the graph. In this formulation the number of nodes grows only with spatial

extent, not with mapping duration—though the number of factors and connectivity density within

the graph still grow with time.

2.1.1.2 Graph Sparsification: Removing Edges from the Graph

Graph sparsification methods that seek to remove edges from the graph in order to increase

its sparsity include [161, 173, 176]. These methods work directly on the linearized information

matrix and are therefore, best suited for filtering-based SLAM solutions. In Thrun et al. [161],

weak links between nodes are removed to enforce sparsity. Unfortunately, this removal method

causes the resulting estimate to be overconfident [50]. In Walter et al. [176], odometry links are

removed in order to enforce sparsity in feature-based SLAM. Recently, Vial et al. [173] proposed

an optimization-based method that minimizes the KLD of the information matrix while enforcing

a sparsity pattern and the requirement that the estimated information is conservative. This method

performs favorably in comparison with [161] and [176], but requires a large matrix inversion in

order to reduce the scope of the optimization problem, limiting its online utility.

2.1.1.3 Controlling Computational Complexity by Removing Nodes

Recently, many works have proposed removing nodes from the SLAM graph as a means to

control the computational complexity of the associated optimization problem [48, 94, 97, 174,

178]. In Konolige and Bowman [94], the environment is spatially divided into neighborhoods and

then a least-recently-used criteria is used to remove nodes with the goal of keeping a small set

of example views that capture the changing appearance of the environment. In Kretzschmar and

Stachniss [97], nodes that provide the least information to an occupancy grid are removed. In

Eade et al. [48], nodes without associated imagery are removed. In Walcott-Bryant et al. [174],

“inactive” nodes that no longer contribute to the laser-based map (because the environment has

changed) are removed. Finally, in Wang et al. [178], nodes are removed based on an approximation

of their information contribution to the graph.

Each of the methods described in [48, 79, 94, 97, 174, 178] provides insight into the question

of which nodes should be removed from the graph; however, they all rely upon pairwise measure-

ment composition over full-state constraints, as described in Smith et al. [152], to produce a new

set of factors over the elimination clique after a node is removed from the graph. Unfortunately,

pairwise measurement composition has two key drawbacks when used for node removal. First,

it is not uncommon for a graph to be composed of many different types of low-rank constraints,
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such as bearing-only, range-only and other partial-state constraints. In these heterogeneous cases,

measurement composition, if even possible, quickly becomes complicated as the constraint com-

position rules for all possible pairs of measurement types must be well-defined. Second, the new

constraints created by measurement composition are often correlated. Ignoring this correlation

leads to inconsistent estimates because measurements are double counted. In some cases it is pos-

sible to avoid double counting measurements by discarding some of the composed measurements;

however, this comes at the cost of information loss. Additionally, for general graph topologies,

double counting measurements may be unavoidable when using a pairwise composition scheme as

illustrated by the simple graph in Fig. 2.2.

The exact procedure for measurement-composition-based node removal varies amongst ex-

isting methods. In [48, 94, 97] the correlation between composed measurements is ignored. In

Konolige and Bowman [94], all composed constraints are kept, causing fill-in within the graph.

In order to preserve sparsity, a subset of the composed edges are pruned by Eade et al. [48] using

a heuristic based on node degree. In Kretzschmar and Stachniss [97], composed-edge removal is

guided by a Chow-Liu tree calculated over the conditional information of the elimination clique. To

avoid measurement double counting, Johannsson et al. [79] discard an odometry link and performs

re-localization (along the lines of [176]). Similarly, Walcott-Bryant et al. [174] use a maximum

of two newly composed constraints at the beginning and end of a “removal chain” (a sequence of

nodes to remove) to ensure connectivity without double counting measurements. In Wang et al.

[178], only the two sequential odometry constraints are compounded, which also avoids double

counting measurements.

Methods that remove nodes without measurement composition have been proposed in [25, 26,

56, 60, 73]. These methods are based upon replacing the factors in the marginalization clique with a

linearized potential or a set of linearized potentials, instead of potentials produced by measurement

composition. In Folkesson and Christensen [56], these linearized potentials are referred to as

“star nodes.” The dense formulation of our proposed GLC [25] is essentially equivalent to “star

nodes” while the sparse approximate GLC replaces the dense n-nary connectivity with a sparse

tree structure. In Frese [60], linearized potentials are used to remove nodes in cliques within the

author’s Treemap [59] algorithm. The method recently proposed in Huang et al. [73] uses dense

linear potentials similar to star-nodes and dense-GLCs to remove nodes from the graph, and then

later sparsifies the graph using an L1 regularized optimization.

The recent work by Mazuran et al. [108] replaces the elimination clique factors with a set of

nonlinear virtual measurements and then uses a numerical optimization method to find the appro-

priate measurement noise for each virtual measurement. This method produces similar results to
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GLC when removing nodes with a good linearization point, and improves the KLD when remov-

ing nodes with a poor linearization, as the measurement can subsequently be re-linearized. The

authors also propose adding additional virtual factors in the elimination clique beyond a pairwise

tree, which can further reduce the KLD. One limitation of the method is that it requires the speci-

fication of the virtual measurements and their Jacobians such that their rank is appropriate for the

information in the marginalization potential. This is straightforward in homogeneous graphs with

full-rank constraints; however, it is not clear how one would specify the virtual measurements in

heterogeneous graphs with low-rank constraints. GLC automatically determines an appropriate

linear model for each measurement, and works on heterogeneous graphs with low-rank constraints

without special consideration.

Linearized potentials representing the result of marginalization are also used in several works

[40, 166, 175] to reduce bandwidth while transmitting graphs between robots in a multi-robot

distributed estimation framework. Nodes that are not part of the interaction between the robots’

graphs are marginalized, producing linearized potentials. These linearized potentials are transmit-

ted between robots.

2.1.1.4 Guaranteed-Conservative Graph Sparsification

Removing edges from the SLAM graph prevents the graph from capturing correlation between

variables that may be correlated in the true distribution. This can result in estimates that are over-

confident [50]. In most SLAM applications, conservative estimates are strongly preferred to over-

confident estimates. During map building, overconfidence can adversely affect data association,

causing the system to miss valid loop-closures. Additionally, when using the resulting map, over-

confident estimates can lead to unsafe path planning and obstacle avoidance [162].

Recently, Vial et al. [173] and Huang et al. [73] have proposed methods that explicitly ensure

conservative approximations during graph sparsification. In Vial et al. [173], an optimization-

based method is proposed that, given a desired sparsity pattern, minimizes the KLD between the

sparsified distribution and the true distribution while ensuring that the sparsified distribution is

conservative. This method performs favorably in comparison with Thrun et al. [161] and Walter

et al. [176], however, as Vial et al. [173] acknowledge, the computational cost of the optimization

grows quickly with the size of the matrix being sparsified. To avoid this, they propose a problem

reduction that allows their method to be applied to a subset of the graph’s variables. The problem

reduction still involves the expensive inversion of the block of the information matrix associated

with the entire graph beyond the subproblem’s Markov blanket, which will also be intractable for

large graphs.
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The method proposed by Huang et al. [73] performs node marginalization by inducing a

densely connected linear factor as in [56] and our proposed dense-exact GLC. To perform edge

sparsification, the authors formulate an optimization problem that seeks to minimize the KLD of

the approximation while requiring a conservative estimate and encouraging sparsity through L1

regularization. This optimization problem is then applied to the linearized information matrix

associated with the entire graph, which limits its applicability to relatively small problems, and

prevents relinearization after sparsification. Using L1 regularization to promote sparsity is ap-

pealing because it does not require the sparsity pattern to be specified—instead, it automatically

removes the least important edges. However, because the sparsity pattern produced is arbitrary, it

is unclear how the resulting information matrix might be decomposed into a sparse set of factors,

which is important if one wishes to exploit existing graph SLAM solvers such as iSAM [86, 87] or

g2o [99].

We explore additional optimization-based methods for conservative sparsification of the dense

cliques induced by node marginalization. The proposed methods are integrated within the GLC

framework and are designed to maintain the advantages of sparse-approximate GLC while ad-

dressing some of the aforementioned shortcomings of the methods proposed in Vial et al. [173]

and Huang et al. [73]. Specifically, our methods do not require the full linearized information

matrix as input nor do they have a computational complexity dependent on the size of the entire

graph.

The remainder of this chapter is outlined as follows; In Section 2.2 we discuss the pitfalls

associated with the use of measurement composition for node removal. Our proposed method

is then described in Section 2.3 and experimentally evaluated in Section 2.4. In Section 2.5 we

present methods to ensure conservative estimates during sparse-approximate node removal and

evaluate them in Section 2.6. Finally, Sections 2.7 and 2.8 offer a discussion and concluding

remarks.

2.2 Pairwise Composition is Not Marginalization

Consider the simple graph depicted in Fig. 2.2(a) where we show both its factor graph and

Markov random field (MRF) representations. Suppose that we wish to marginalize node x1. Using

the composition notation of Smith et al. [152], we can compose the pairwise measurements to
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Figure 2.2 Measurement composition versus marginalization. Here node x1 is removed from the original graph (a).

The top row shows the factor graph; the bottom row shows its Markov random field.
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produce the graph depicted in Fig. 2.2(b) as follows,

z′02 = h1(z01, z12) = z01 ⊕ z12,

z′03 = h2(z01, z13) = z01 ⊕ z13,

z′23 = h3(z12, z13) = ⊖z12 ⊕ z13.

(2.1)

These composed measurements are meant to capture the fully connected graph topology that de-

velops in the elimination clique once x1 has been marginalized. In [48, 97], this composition graph

forms the conceptual basis from which their link sparsification method then acts to prune edges

and produce a sparsely connected graph. The problem with this composition is that the pairwise

edges/factors in Fig. 2.2(b) are assumed to be independent, which they are not.

It should be clear that the composed measurements in (2.1) are correlated, as z′02, z′03 and z′23

share common information (e.g., z′02 and z′03 both share z01 as input), yet, if we treat these factors

as strictly pairwise, we are unable to capture this correlation. Now consider instead a stacked

measurement model defined as

zs =





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
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 = h
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Its first-order uncertainty is given as
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Here we see that Σs will be dense in order to capture the correlation between the compounded

measurements. Expressing this correlation requires a trinary factor with support including all three

variables. Therefore, the joint composition in (2.2) produces the factor graph shown in Fig. 2.2(c).

It is this inability of pairwise factors to capture correlation between composed measurements

that causes simple compounding to be wrong. Note that the graphs in Fig. 2.2(b) and Fig. 2.2(c)

have the same Markov random field representation and information matrix sparsity pattern. The

difference between the binary and trinary factorization is only made explicit in the factor graph

representation. It is also interesting to note that even if we were to approximate the dense connec-

tivity with a spanning tree constructed from binary factors, as in [97], the resulting estimate would

still be inconsistent as any pair of factors are correlated.

These two observations; (i) that composed measurements are often correlated, and (ii) that

representing the potential of an elimination clique with n nodes requires n-nary factors, will prove

important in the remainder of this chapter.

2.3 Generic Linear Constraint Node Removal

The proposed method, illustrated in Fig. 2.1, is summarized as follows; First, the factors that

are supported by the node to be removed and the nodes in its elimination clique (Fig. 2.1(a)) are

used to compute the linear potential induced by marginalization over the elimination clique. This

potential is characterized by its distribution’s information matrix, which we refer to as the target

information, Λt (Fig. 2.1(b)). Next, we use either (i) Λt directly to compute an exact n-nary po-

tential that produces a marginalization-equivalent potential over the elimination clique (in the case

of dense node removal), or (ii) approximate Λt as a sparse set of binary potentials that best ap-

proximate the true distribution over the elimination clique using a Chow-Liu tree (in the case of

sparsified node removal, Fig. 2.1(c)). Before creating new GLC factors, one can optionally repa-

rameterize the variables in each potential so that the constraint will be linearized in a relative frame

as opposed to a global frame (Fig. 2.1(d)). Finally, a new GLC factor is created for each potential

and we can simply remove the marginalization node from the graph and replace its surrounding

factors with the newly computed set (Fig. 2.1(e)).

In the following sections we derive the proposed method and describe each step in detail. This

description makes use of many standard concepts from prior work in SLAM including: graphical

interpretations of SLAM, the underlying least-squares problem, node removal / marginalization,

graph sparsification, the manipulation of information-form multivariate Gaussian distributions, and

the representation of robot poses. We recommend [45, 52, 152, 161] as background material to
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readers who may be less familiar with these concepts.

2.3.1 Building the Target Information

The first step in the algorithm is to correctly identify the target information, Λt (Fig. 2.1(b)).

Letting Xm ⊂ X be the subset of nodes including the node to be removed and the nodes in its

Markov blanket, and letting Zm ⊂ Z be the subset of measurement factors that only depend on the

nodes in Xm, we consider the distribution p(Xm|Zm) ∼ N−1
(
ηm,Λm

)
. From Λm we can then

compute the desired target information, Λt, by marginalizing out the elimination node using the

standard Schur-complement form. For example, in the graph shown in Fig. 2.1(a), to eliminate

node x1 we would first calculate Λm using the standard information-form measurement update

equations [50, 161] as

Λm = H⊤
0 Λ0H0 +H⊤

01Λ01H01 +H⊤
12Λ12H12 +H⊤

23Λ23H23 +H⊤
13Λ13H13,

where Hij are the Jacobians of the observation models for measurements zij with information

matrices Λij , and then compute the target information as

Λt = Λαα − ΛαβΛ
−1
ββΛ

⊤
αβ,

where Λαα, Λαβ and Λββ are the required sub-blocks of Λm with α = [x0,x2,x3] and β = [x1].

Note that, though this example only contains unary and binary factors, general n-nary factors are

equally acceptable.

While computing Λm one could exclude intra-clique factors that are not connected to the

marginalization node, for example z0 and z23 in Fig. 2.1(a), and simply leave them in the graph.

In fact, the only strict requirement is that all factors which include the marginalization node be

included in Λm. However, in §2.3.4 we wish to sparsely approximate the marginalization clique

factors, and including all intra-clique factors assures that the resulting connectivity will be sparse.

For consistency, we include all intra-clique factors in Λm throughout the algorithm and in all ex-

perimental results.

The key observation when identifying the target information is that, for a given linearization

point, a single n-nary factor can recreate the potential induced by the original pairwise factors by

adding the same information (i.e., Λm) back to the graph. Moreover, because marginalization only

affects the information matrix blocks corresponding to nodes within the elimination clique, an n-

nary factor that adds the information contained in Λt to the graph will induce the same potential in
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the graph as true node marginalization at the given linearization point.

Note that the target information, Λt, is not the conditional distribution of the elimination clique

given the rest of the nodes, i.e., p(x0,x2,x3|x4,Z), nor is it the marginal distribution of the elim-

ination clique, i.e., p(x0,x2,x3|Z). Using either of these distributions as the target information

results in a wrong estimate as information will be double counted when the n-nary factor is rein-

serted into the graph.

It is also important to note that the constraints in Zm may be purely relative and/or low-rank

(e.g., bearing or range-only) and, therefore, may not fully constrain p(Xm|Zm). This can cause Λt

to be singular. Additionally, some of Λt’s block-diagonal elements may also be singular. This will

require special consideration in subsequent sections.

2.3.2 Generic Linear Constraints

Having defined a method for calculating the target information, Λt, we now seek to produce

an n-nary factor that captures the same potential. We refer to this new n-nary factor as a generic

linear constraint (GLC). Letting xt denote a stacked vector of the variables within the elimination

clique after node removal, we begin by considering an observation model that directly observes xt

with a measurement uncertainty that is defined by the target information:

zt = xt +w where w ∼ N−1
(
0,Λt

)
. (2.3)

Setting the measurement value, zt, equal to the current linearization point, x̂t, induces the desired

potential in the graph. Unfortunately, the target information, Λt, may not be full rank, which is

problematic for optimization methods that rely upon a square root factorization of the measurement

information matrix [45, 86]. We can, however, use principle component analysis to transform the

measurement to a lower-dimensional representation that is full rank.

We know that Λt will be a real, symmetric, positive semi-definite matrix by construction. In

general then, it has an eigen-decomposition given by

Λt =
[

u1 · · · uq

]







λ1 0 0

0
. . . 0

0 0 λq













u⊤
1

...

u⊤
q






= UDU⊤, (2.4)

where U is an orthogonal p × q matrix, D is a q × q matrix, p is the dimension of Λt, and q =
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rank(Λt). Letting G = D
1

2U⊤ allows us to write a transformed observation model,

zglc = Gzt = Gx̂t +w′ where w′ ∼ N−1
(
0,Λ′

)
. (2.5)

Using the pseudo-inverse [143], Λ+
t = UD−1U⊤, and noting that U⊤U = Iq×q, we find that

Λ′ = (GΛ+
t G

⊤)−1 = (D
1

2U⊤(UD−1U⊤)UD
1

2 )−1 = Iq×q.

This GLC factor will contribute the desired target information back to the graph, i.e.,

G⊤Λ′G = G⊤Iq×qG = Λt,

but is itself non-singular. This is a key advantage of the proposed GLC method; it automatically

determines the appropriate measurement rank such that Λ′ is q × q and invertible, and G is a q × p

new observation model that maps the p-dimensional state to the q-dimensional measurement.

2.3.3 Avoiding World-Frame Linearization in GLC

In the case where the nodes involved are robot poses or landmark locations, GLC, as proposed

so far, would linearize the potential with respect to the state variables in the world-frame. This

may be acceptable in applications where a good world-frame linearization point is known prior to

marginalization; however, in general, a more tenable assumption is that a good linearization point

exists for the local relative-frame transforms between nodes within the elimination clique.

To adapt GLC so that it only locally linearizes the relative transformations between variables in

the elimination clique, we first define a “root-shift” function that maps its world-frame coordinates,

xt, to relative-frame coordinates, xr. Letting xij denote the jth pose in the ith frame, the root-shift

function for xt becomes

xr =


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n


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





. (2.6)

In this function, the first node is arbitrarily chosen as the root of all relative transforms. The

inclusion of the inverse of the root pose, x1
w, is important as it ensures that the Jacobian of the

root-shift operation, R, is invertible, and allows for the representation of target information that is
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not purely relative.

To derive, instead of starting with a direct observation of the state variables, as in (2.3), we

instead start with their root-shifted relative transforms,

zr = xr +wr where wr ∼ N−1
(
0,Λr

)
. (2.7)

Here, the root-shifted target information, Λr, is calculated using the fact that the root-shift Jacobian,

R, is invertible,

Λr = R−⊤ΛtR
−1. (2.8)

Like the original target information, the root-shifted target information, Λr, may also be low-rank.

Following the same principal component analysis procedure as before, we perform the low-rank

eigen-decomposition Λr = UrDrU
⊤
r , which yields a new observation model,

zglcr = Grr(x̂t) +w′
r where w′

r ∼ N−1
(
0,Λ′

r

)
, (2.9)

where Gr = D
1

2

r U⊤
r , and measurement information Λ′

r = Iq×q. Using the root-shifted linearization

point to compute the measurement value, zglcr = Grr(x̂t), will again induce the desired potential

in the graph. Now, however, the advantage is that the GLC factor embeds the linearized constraint

within a relative coordinate frame defined by the clique, as opposed to an absolute coordinate

world-frame. Fig. 2.3 demonstrates this benefit.

It is important to note that this reparameterization step is optional and that it is the only step

in GLC that is dependent on the parameterization of the state vector. It is also important to note

that reparameterization may not even be necessary if the parameters are already defined in a rel-

ative frame as opposed to in the global frame. The root-shift reparameterization defined above is

designed for graphs with nodes representing robot poses or landmark locations in the world frame,

and is only one example of a possible transformation.

In cases where graph nodes represent other parameters beyond world-frame robot poses or

point landmarks, it may be beneficial to reparameterize the variables that support the GLC factor

using a different transformation. Any invertible reparameterization of the support variables is

acceptable, allowing for large flexibility in designing reparameterizations appropriate for the user’s

application. In our public implementation [87] we provide a simple callback for user defined

reparameterizations. This is exploited in [135], where a reparameterization is defined for use in

a more complicated graph with nodes describing a piecewise-planar model of the environment in

addition to robot pose nodes.
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Figure 2.3 Demonstration of root-shifted versus world-frame GLC factors. Depicted is a simple graph (a) that is

initially constructed with two well-connected clusters connected by a highly-uncertain and inaccurate link. The center

(magenta) node in each cluster is removed inducing a GLC factor over each cluster. Subsequently, a second measure-

ment is added between the two clusters, correcting the location of the upper-right cluster, and drastically changing

its world-frame linearization point. After adding the strong inter-cluster constraint, the graph with the world-frame

linearized GLCs fails to converge to the correct optima (b), while the graph with root-shifted GLCs does (c). The KLD

from the true marginalization is displayed for each test.
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2.3.4 Sparse Approximate Node Removal

Exact node marginalization causes dense fill-in. As the number of marginalized nodes in-

creases, this dense fill-in can quickly reduce the graph’s sparsity and greatly increase the computa-

tional complexity of optimizing the graph [45, 86]. In [97], Kretzschmar and Stachniss insightfully

propose the use of a Chow-Liu tree (CLT) [35] to approximate the individual elimination cliques

as sparse tree structures.

The CLT approximates a joint distribution as the product of pairwise conditional distributions,

p(x1, · · · ,xn) ≈ p(x1)
n∏

i=2

p(xi|xp(i)), (2.10)

where x1 is the root variable of the CLT and xp(i) is the parent of xi. The pairwise conditional

distributions are selected such that the KLD between the original distribution and the CLT ap-

proximation is minimized. To construct it, the maximum spanning tree over all possible pairwise

mutual information pairings is found (Fig. 2.4), where the mutual information between two Gaus-

sian random vectors,

p(xi,xj) ∼ N
([ µi

µj

]
,
[ Σii Σij

Σji Σjj

])
≡ N−1

([ ηi
ηj

]
,
[ Λii Λij

Λji Λjj

])
, (2.11)

is given by [41]

I(xi,xj) =
1

2
log

(

|Λii|

|Λii − ΛijΛ
−1
jj Λji|

)

. (2.12)

Figure 2.4 Illustration of the Chow-Liu tree approximation. The magnitude of mutual information between

variables is indicated by line thickness. The original distribution p(x1, x2, x3, x4) (left), is approximated as

p(x1)p(x3|x1)p(x2|x3)p(x4|x3) (right).
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Like [97], we leverage the CLT approximation to sparsify our n-nary GLC factors; however,

our implementation of CLT-based sparsification actually implements the true CLT of the marginal-

ization potential over the elimination clique. In [97], the maximum mutual information spanning

tree is computed over the conditional distribution of the elimination clique given the remainder of
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the graph. This tree is then used as a heuristic to guide which edges should be composed and which

edges should be excluded. This presents two issues: First, these composed edges do not actually

implement the true CLT. Second, the conditional distribution of the elimination clique is not the

distribution that we wish to reproduce by our new factors (see §2.3.1).

We address these issues by computing the CLT distribution (2.10) from the target information,

Λt, which parameterizes the distribution that we wish to approximate, and then represent the CLT’s

unary and binary potentials as GLC factors.

2.3.4.1 Chow-Liu Tree Factors

The CLT has two types of potentials, a unary potential on the root node and binary potentials

between the rest of the nodes in the tree. We first consider the CLT’s binary potentials, p(xi|xp(i)),

and in the following use xj = xp(i) as shorthand for the parent node of xi. We note that the

target-information-derived joint marginal, pt(xi,xj), can be computed from Λt and written as in

(2.11).1 From this joint marginal, we can then easily write the desired conditional, pt(xi|xj) =

N
(
µi|j,Σi|j

)
≡ N−1

(
ηi|j,Λi|j

)
, and express it as a constraint as

e = xi − µi|j = xi − Λ−1
ii (ηi − Λijxj), (2.13)

where e ∼ N−1
(
0,Λi|j

)
, and with Jacobian,

E =
[
∂e
∂xi

∂e
∂xj

]

=
[

I Λ−1
ii Λij

]

. (2.14)

Therefore, using the standard information-form measurement update, we see that this constraint

adds information

E⊤Λi|jE, (2.15)

where Λi|j is simply the sub-block Λii.

Treating (2.15) as the input target information, we can produce an equivalent GLC factor for

this binary potential using the techniques described in §2.3.2 and §2.3.3. Similarly, the CLT’s root

unary potential, pt(x1), can also be implemented as a GLC factor by using the target-information-

derived marginal information, Λ11, and the same techniques.

1In this section, when we refer to marginal and conditional distributions, they are with respect to the target infor-

mation, Λt, not with respect to the distribution represented by the full graph.
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2.3.5 Implementation Considerations

2.3.5.1 Pseudo-Inverse

As discussed in §2.3.1, the target information, Λt, is generally low-rank. This is problem-

atic for the joint marginal (2.11) and conditioning (2.13)–(2.14) calculations used to compute the

CLT, as matrix inversions are required. To address this issue, in place of the inverse we use the

generalized- or pseudo-inverse [143, §10.5], which can be calculated via an eigen-decomposition

for real, symmetric, positive semi-definite matrices. For full-rank matrices the pseudo-inverse

produces the same result as the true inverse, while for low-rank matrices it remains well-defined.

Calculating the pseudo-inverse numerically requires defining a tolerance below which eigenvalues

are considered to be zero. We found that our results are fairly insensitive to this tolerance and

that automatically calculating the numerical tolerance using the machine epsilon produced good

results. In our experiments we use ǫ × n × λmax (the product of the machine epsilon, the size of

the matrix, and the maximum eigenvalue) as the numerical tolerance.

2.3.5.2 Pinning

When calculating the pairwise mutual information, the determinants of both the conditional

and marginal information matrices in (2.12) must be non-zero, which is again problematic because

these matrices are generally low-rank as calculated from the target information, Λt. It has been

proposed to consider the product of the non-zero eigenvalues as a pseudo-determinant [116, 143]

when working with singular, multivariate, Gaussian distributions. Like the pseudo-inverse, this

requires determining zero eigenvalues numerically. However, we found that this can cause the mu-

tual information computation to be numerically unstable if the matrices involved have eigenvalues

near the threshold. This numerical instability causes the edges to be sorted incorrectly in some

cases. This results in a non-optimal structure when the maximum mutual information spanning

tree is built and, therefore, a slightly higher KLD from the true marginalization in some graphs.

Instead, we recognize that the CLT’s construction requires only the ability to sort pairwise links

by their relative mutual information (2.12), and not the actual value of their mutual information. A

method that slightly modifies the input matrix so that its determinant is non-zero, without signifi-

cantly affecting the relative ordering of the edges, would also be acceptable. Along these lines we

approximate the determinant of a singular matrix using

|Λ| ≈ |Λ + αI|. (2.16)
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This can be thought of as applying a low-certainty prior on the distribution, and we therefore refer

to it as “pinning.”2 Pinning always results in a numerically stable mutual information computation,

the only concern is that the relative ordering of the mutual information values remains the same.

Experimentally, we found the quality of the results to be less sensitive to the pinning α value than

the numerical epsilon in the pseudo-determinant. We, therefore, elected to use pinning with α = 1

in our experiments when evaluating the determinants in the pairwise mutual information (2.12).

2.3.6 Computational Complexity

The core operations that GLC relies on, in and of themselves, are computationally expen-

sive. The CLT approximation has a complexity of O(m2 logm), where m is the number of nodes.

Matrix operations on the information matrix with n variables, including the eigen-decomposition,

matrix multiplication, and inversion operations, have a complexity of O(n3). Fortunately, the input

size for these operations is limited to the number of nodes within the elimination clique, which in a

SLAM graph is controlled by the perceptual radius. In general, the number of nodes and variables

in an elimination clique is much less than the total number of nodes in the full graph. We will see

in Chapter IV that GLC’s calculations are computationally feasible in both offline and real-time

online settings.

2.4 Experimental Evaluation of GLC Node Removal

Table 2.1 Experimental Datasets

Dataset Node Types Factor Types # Nodes # Factors

Intel Lab 3-DOF pose 3-DOF odometry, 3-DOF laser scan-matching 910 4,454

Killian Court 3-DOF pose 3-DOF odometry, 3-DOF laser scan-matching 1,941 2,191

Duderstadt Center 6-DOF pose 6-DOF odometry, 6-DOF laser scan-matching 552 1,774

EECS Building 6-DOF pose 6-DOF odometry, 6-DOF laser scan-matching 611 2,134

Victoria Park 3-DOF pose, 2-DOF Landmark 3-DOF odometry, 2-DOF landmark observation 7,120 10,609

USS Saratoga 6-DOF pose 6-DOF odometry, 5-DOF monocular-vision, 1-DOF depth 1,513 5,433

First, we directly evaluate GLC node removal over a variety of SLAM graphs (summarized in

Fig. 2.5 and Table 2.1), including:

• Two standard 3-DOF pose-graphs, Intel Lab and Killian Court.

2This is related to the derivation of the pseudo-determinant in [116], which uses a similar form in the limit as

α→ 0.

35



Figure 2.5 Graphs used in GLC’s evaluation. Blue links represent full-state (3-DOF or 6-DOF) relative-pose con-

straints from odometry and laser scan-matching. Red links represent 5-DOF relative-pose constraints modulo-scale

from monocular vision. Cyan links represent landmark observation factors.

(a) Intel Lab (b) Killian Court (c) Duderstadt Center

(d) EECS Building (e) Victoria Park

(f) USS Saratoga

• Two 6-DOF pose-graphs built using data from a Segway ground robot (Fig. A.1(a)) equipped

with a Velodyne HDL-32E laser scanner as the primary sensing modality, Duderstadt Center

and EECS Building.

• The Victoria Park 3-DOF graph with poses and landmarks.

• A 6-DOF graph produced by a hovering autonomous underwater vehicle (HAUV) perform-

ing monocular SLAM for autonomous ship hull inspection [71], USS Saratoga.

The proposed algorithm was implemented using iSAM [85, 86] as the underlying optimization

engine. The code is open-source and available for download within the iSAM repository [87]. For

comparison, a dense measurement composition (MC) method as described in §2.2, and a sparse

MC method based upon CLT-guided node removal, as proposed in [97], were also implemented.

For each graph, the original full graph is first optimized using iSAM. Then the different node

removal algorithms are each performed to remove a varying percentage of nodes evenly spaced

throughout the trajectory. Finally, the graphs are again optimized in iSAM.

For each experiment the true marginal distribution is recovered by obtaining the linearized in-

formation matrix from the full graph about the optimization point and performing Schur-complement

marginalization. This provides a ground-truth distribution that we can directly compare the distri-

bution after node removal against.

A summary of our results are provided in Table 2.2, which shows the KLD (normalized by the
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DOF of the distribution after node removal) from the true marginalization as an increasing percent-

age of nodes are removed from the graph. Results for dense-exact and sparse-approximate GLC

are provided for all six graphs, while results for dense and sparse-approximate MC are provided

only for the pose-graphs with full-state constraints. The Saratoga graph is excluded as it contains

5-DOF monocular relative-pose constraints for which MC is undefined.

Table 2.2 Experimental Normalized KLD from True Marginalization

Dense GLC CLT Sparse GLC

% Nodes Removed 25.0 % 33.3 % 25.0 % 33.3 % 50.0 % 66.6 % 75.0 % 83.3 % 87.5 %

Intel Lab 0.002 0.002 0.096 0.110 0.128 0.126 0.131 0.170 0.139

Killian Court 0.001 0.002 0.006 0.008 0.013 0.020 0.023 0.028 0.033

Duderstadt Center 0.001 0.000 0.003 0.003 0.003 0.005 0.008 0.018 0.024

EECS Building 0.003 0.002 0.005 0.005 0.004 0.010 0.017 0.035 0.049

Victoria Park 0.001 0.002 0.005 0.007 0.011 0.017 0.024 0.042 0.057

USS Saratoga 0.016 0.013 0.017 0.015 0.001 0.002 0.001 0.001 0.003

Dense Pairwise MC Sparse Pairwise MC

% Nodes Removed 25.0 % 33.3 % 25.0 % 33.3 % 50.0 % 66.6 % 75.0 % 83.3 % 87.5 %

Intel Lab 1.57E3 7.19E5 0.023 0.038 0.108 0.280 0.428 0.800 1.295

Killian Court 0.01 0.02 0.005 0.007 0.013 0.023 0.031 0.042 0.048

Duderstadt Center 0.18 42.69 0.002 0.008 0.008 0.025 0.044 0.070 0.100

EECS Building 160.76 9.32E4 0.003 0.005 0.010 0.027 0.043 0.113 0.170

2.4.1 Dense GLC Node Removal

We first consider the results for our method when performing exact node removal with dense

fill-in. Visual examples of the resulting dense GLC graphs are shown in Fig. 2.6.

To put dense GLC’s KLD values from Table 2.2 into perspective, we look at the case with

the highest KLD, which is the Saratoga graph with 25% of nodes removed (i.e., KLD = 0.016).

Under these conditions, the reconstructed graph has a mean error in translation and rotation of

18.9 mm and 3.8 mrad, respectively, when compared to the original baseline pose-graph SLAM

result. To more systematically investigate the accuracy of GLC’s marginal pose uncertainties in

Fig. 2.7 we consider the eigenvalues of the difference between the marginal covariances of the

GLC-derived and the true distribution, eig(ΣGLC
ii −ΣTRUE

ii ). In the ideal case the eigenvalues of this

difference will be zero, indicating perfect agreement between GLC and the true marginalization.

Values larger than zero indicate conservative estimates while those less than zero indicate over-

confidence. Conservative estimates are generally preferred to overconfident estimates in robotics,

as overconfidence can lead to data association failure [127] and unsafe path planning and obstacle

avoidance. For dense GLC we see that the eigenvalues are almost zero (note the 10−6 scale),
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Figure 2.6 Example graphs after dense GLC node removal. New GLC factors are shown in magenta. Note that this

is the MRF representation of the graph connectivity. The percentage indicates the percentage of nodes that have been

removed.

(a) Intel (33.3%) (b) Killian (33.3%) (c) Duderstadt (25.0%)

(d) EECS (25.0%) (e) Victoria (33.0%)

(f) USS Saratoga (25.0%)

Figure 2.7 Accuracy of GLC-derived marginals for the USS Saratoga dataset with 25% of nodes removed. The

range of the eigenvalues of the difference between the covariances of the GLC-derived marginals and true marginals,

eig(ΣGLC
ii − ΣTRUE

ii ), is shown for both dense and sparse GLC. Note 10−6 scale.
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Figure 2.8 Sample 3-σ uncertainty ellipses for the EECS graph and the Intel graphs with 33.3% node removal using

dense GLC and dense MC. The true marginalization uncertainties are shown in cyan. Note that fewer red ellipses are

plotted than cyan because fewer nodes remain in the graph after node removal.
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indicating excellent agreement between GLC and the true marginalization. Additionally, visual

examples of the marginal covariances for the EECS and Intel graphs are shown in Fig. 2.8(a) and

Fig. 2.8(e), respectively.

As more nodes are removed from the graph, dense GLC node removal quickly becomes compu-

tationally expensive due to an increase in the size of the elimination cliques. Removing nodes may

take on the order of tens of seconds [25] per node. This, combined with increased optimization cost

due to the dense connectivity, limits the applicability of dense node removal to applications where

only a small percentage (in our experiments around one-third to one-half) of nodes are removed.

Considering the results for dense MC, Table 2.2 shows that it performs quite poorly—as more

nodes are removed, the KLD quickly increases. This is because dense pairwise MC fails to properly

track the correlation that develops between composed measurements (as demonstrated in §2.2);

thus, the higher the connectivity in the graph, the more measurement information gets double

counted when compounding. This results in overconfidence, as well as a shift in the optimal mean

(Fig. 2.8(b) and Fig. 2.8(f)).

2.4.2 CLT Sparse-Approximate GLC Node Removal

Figure 2.9 KLD comparison for sparse approximate node removal. The KLD (normalized by the DOF of the distribu-

tion after node removal) for the GLC and MC-based sparse approximate node removal methods is shown in (a). In (b)

the ratio of KLD between MC and GLC is plotted, highlighting that, in most cases, as more nodes are removed MC

induces several times higher KLD than GLC.
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Next, we consider the results for sparse-approximate GLC node removal. Table 2.2 shows that

in many graphs, including Killian, Duderstadt, EECS, and USS Saratoga, the KLD for sparse-

approximate GLC is only slightly worse than that of dense-exact GLC—indicating that very little

graph information is lost due to the CLT approximation. Fig. 2.9 illustrates the KLD for the sparse-
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Figure 2.10 Example graphs after CLT sparse GLC node removal. New GLC factors are shown in magenta. The

percentage indicates the percentage of nodes that have been removed.

(a) Intel (66.3%) (b) Killian (83.3%) (c) Duderstadt (66.6%)

(d) EECS (50.0%) (e) Victoria (75.0%)

(f) USS Saratoga (87.5%)

Figure 2.11 Sample 3-σ uncertainty ellipses for the EECS graph with 75% node removal and for the Intel graph with

33.3% and 87.5% node removal using sparse GLC and MC. The true marginalization uncertainties are shown in cyan.

Note that fewer red ellipses are plotted than cyan because fewer nodes remain in the graph after node removal. The

percentage indicates the percentage of nodes that have been removed.
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approximate versions of GLC and MC, again normalizing the KLD by the number of degree of

freedom in the graph after node removal. Visual examples for sparsification on the graphs are

shown in Fig. 2.10. Examples of the marginal covariances for the EECS and Intel graphs are

shown in Fig. 2.11.

Considering the results for sparse MC, Table 2.2 shows that, unlike dense MC, sparse MC per-

forms reasonably well when removing a smaller percentage of nodes. This is because information

double counting during measurement composition accumulates to a lesser extent than in the dense

case because of sparsification. However, as the percentage of removed nodes increases, we see

that sparse MC produces less accurate and more inconsistent results than sparse GLC. This is il-

lustrated in Fig. 2.9(b), which highlights the ratio in the normalized KLD between MC and GLC,

and in Fig. 2.11 and Fig. 2.12, which compare the marginal covariances of the distributions.

It is important to note that the proposed method is not guaranteed to be conservative. This is

due to the fact that the CLT approximation simply seeks to produce the minimum KLD and does

not guarantee a conservative approximation. This is addressed in §2.5 where we propose several

methods that provide a guaranteed-conservative approximation, while still producing a low KLD.

In the case of the Intel graph, MC achieves a significantly better KLD than GLC when removing

a small percentage of nodes. This is due to the fact that when removing a small number of nodes,

GLC is slightly conservative (Fig. 2.11(e)), while MC’s inconsistency coincidentally yields a less

conservative estimate with a better KLD (Fig. 2.11(f)). As more nodes are removed this trend is

continued, with GLC remaining conservative and producing a better KLD (Fig. 2.11(g)), while

MC becomes very inconsistent (Fig. 2.11(h)).

Unlike dense node removal, sparse GLC maintains graph sparsity and keeps elimination clique

size small. This results in fast node removal on the order of tens of milliseconds per node [25, 26].

2.5 Guaranteed Conservative GLC Node Removal

The sparse approximate version of GLC as described thus far accurately implements the CLT

approximation without double counting measurement information. The CLT produces an approx-

imation with the lowest KLD among all tree structures. Unfortunately, achieving minimum KLD

often requires that the CLT approximation be slightly overconfident with respect to the true dis-

tribution, as illustrated in Fig. 2.13(c). In most SLAM applications, conservative estimates are

strongly preferred to overconfident estimates. During map building, overconfidence can adversely

affect data association, causing the system to miss valid loop-closures. Additionally, when using
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Figure 2.12 Comparison of marginal distributions between sparse GLC and sparse MC, for the Duderstadt, EECS,

and Intel graphs. The range of eigenvalues of the difference between the covariances of the approximate-node-removal

marginals and true marginals, eig(ΣEST
ii −ΣTRUE

ii ), is shown for both sparse GLC and sparse MC. In the ideal case the

range will be zero, indicating perfect agreement between the approximate and the true marginals. Values larger than

zero indicate conservative estimates while those less than zero indicate over-confidence. The results show that sparse

GLC remains conservative while sparse MC is overconfident for the Duderstadt and Intel graphs. In the case of the

EECS graph both methods produce estimates that are occasionally overconfident.
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the resulting map, overconfident estimates can lead to unsafe path planning and obstacle avoid-

ance [162]. Here, as in Vial et al. [173] and Huang et al. [73], we define a conservative estimate

as one where the covariance of the sparsified distribution is greater than or equal to that of the true

distribution, i.e., Σ̃ ≥ Σ.

In this section, we explore optimization-based methods for conservative sparsification of the

dense cliques induced by node marginalization. The proposed methods are integrated within the

GLC framework and are designed to maintain the advantages of sparse-approximate GLC. The

proposed methods start with a sparse, but (potentially) overconfident, Chow-Liu tree approxi-

mation of the marginalization potential, and then use optimization-based methods to adjust the

approximation so that it is conservative, subject to minimizing the KLD from the true marginaliza-

tion potential. Our proposed methods address some of the shortcomings of the methods proposed

in Vial et al. [173] and Huang et al. [73] as described in §2.1.

• Like [173] and [73] our proposed methods ensure that the sparse approximation remains

conservative while providing a low KLD from the true distribution.

• Our methods produce a new set of factors using only the current factors as input, and do not

require the full linearized information matrix as input as in [173] and [73].

• The computational complexity of our methods are dependent only upon the size of the elim-

ination clique, and not on the size of the graph beyond the clique. We do not require a large

matrix inversion to formulate the subproblem as in [173], nor do we operate over the entire

graph as in [73].
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Figure 2.13 Guaranteed conservative GLC overview. Starting with the original factor graph (a), the red node is

marginalized. This induces a densely connected factor over the marginalization clique (b). The true uncertainty

ellipses (dashed blue lines) are not affected by marginalization. The dense marginalization potential is then approx-

imated using a sparse Chow-Liu tree (c). The uncertainty ellipses after the Chow-Liu tree approximation (red lines)

are overconfident (note the yellow regions that are no longer probabilistically plausible). The sparse Chow-Liu tree

approximation is adjusted so that it is conservative (d), modifying the uncertainty ellipses (green lines).
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(b) Node

Marginalization

(c) Chow-Liu Tree

Approx.

(d) Conservative

Approx.

2.5.1 Optimization Formulation

As in Vial et al. [173] and Huang et al. [73], we wish to minimize the KLD of the sparse

approximation while producing a consistent estimate. When the distribution means are equal (i.e.,

ηt = Λtµt and η̃t = Λ̃tµt), the KLD between the marginalization-induced factor characterized by

Λt (Fig. 2.1(b)) and its approximation characterized by Λ̃t is given by

DKL

(

N−1
(
ηt,Λt

)
‖N−1

(
η̃t, Λ̃t

))

=
1

2

(

tr(Λ̃tΛ
−1
t ) + ln

|Λt|

|Λ̃t|
− dim(ηt)

)

. (2.17)

Noting that Λt and the state dimension are constant, the KLD optimization objective with respect

to Λ̃t can be written as

fKL(Λ̃t) = tr(Λ̃tΛ
−1
t )− ln |Λ̃t|. (2.18)

However, as discussed in §2.3.1, Λt will, in general, be low-rank, making the KLD ill-defined.

In Vial et al. [173], a full-rank subproblem is defined, but its implementation requires inverting the

information matrix associated with the rest of the graph beyond the subproblem’s Markov blanket.

In Huang et al. [73], optimization is performed over the full information matrix, which will always

be full-rank for well-posed SLAM graphs.

We know that Λt will be a real, symmetric, positive semi-definite matrix due to the nature of

its construction. In general then, it has an eigen-decomposition given by

Λt =
[

u1 · · · uq

]







λ1 0 0

0
. . . 0

0 0 λq













u⊤
1

...

u⊤
q






= UDU⊤, (2.19)
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where U is a p×q orthogonal matrix, D is a q×q matrix, p is the dimension of Λt, and q = rank(Λt).

Noting that the KLD is invariant under parameter transformations, we rewrite the KLD objective

as

fKL(Λ̃t) = tr(U⊤Λ̃tUD
−1)− ln |U⊤Λ̃tU|. (2.20)

When Λt is full-rank

fKL(Λ̃t) = tr(Λ̃tUD
−1U⊤)− ln |U⊤||Λ̃t||U| = tr(Λ̃tΛ

−1
t )− ln |Λ̃t|,

which is exactly equivalent to (2.18). When Λt is low-rank (2.20) computes the KLD over the

subspace where Λt is well-defined. This allows us to work with the low-rank target information and

limit the extent of the optimization problem to the elimination clique. Intuitively, this parameter

transformation can be thought of as using the pseudo-inverse [143] of Λt to compute the KLD.

However, it is important that the transformation be applied to Λ̃t so that, during optimization,

ln |U⊤Λ̃tU| is evaluated instead of ln |Λ̃t|, which will be undefined because the optimal Λ̃t will

also be low-rank.

2.5.1.1 Chow-Liu Tree Approximation

Figure 2.14 Illustration of the CLT approximation’s information matrix for the sample graph in Fig. 2.13(c).

= +≈

Ψ
1Λ

CLT

~ Ψ
2Λ

The original version of sparse-approximate GLC approximated the marginalization-induced

factor using a Chow-Liu tree. The CLT produces the minimum KLD among all trees by computing

the pairwise mutual information between all nodes, and building the maximum mutual information

spanning tree. The CLT can be expressed as

N−1
(
ηt,Λt

)
≈ N−1

(
η̃t, Λ̃CLT

)
=
∏

i

p(xi|xp(i)), (2.21)

where xp(i) is the parent of xi, and for the root of the CLT p(x0|xp(0)) = p(x0). The information
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added to the graph by the CLT approximation can then be written as

Λ̃CLT =
∑

i

Ψi, (2.22)

where each Ψi is the information associated with one of the unary or binary factors in the tree,

padded with zeros so that the appropriate dimensions are achieved (Fig. 2.14).

The methods proposed in this chapter all start with the CLT approximation and then use opti-

mization methods to “adjust” the approximation to ensure that it is conservative. Intuitively, this

can be thought of as numerically growing the uncertainty of the CLT so that it is conservative,

while minimizing the additional KLD from the true distribution. Each method will produce, by

construction, an approximation with the same sparsity pattern as the CLT.

2.5.1.2 Covariance Intersection

Figure 2.15 Illustration of Covariance Intersection and Weighted Factors approximate information. The structure of

approximate information matrix is shown for the sample graph in Fig. 2.13(d). Note that, even though Covariance

Intersection and Weighted Factors have the same structure for the approximate information, they differ in how they

ensure that the approximation is conservative.

+=≈

Λ
CI

~ Ψ
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Ψ
2Λ

w
1

w
2

The CLT approximation is often overconfident in practice. This is due to the fact that the tree

structure is not, in general, capable of capturing the full correlation structure of the original dis-

tribution. The covariance intersection algorithm, proposed by Julier and Uhlmann [83], can be

used to consistently merge measurements with unknown correlation and can be used to weight the

CLT factors so that their sum is conservative. Clearly, we should be able to do better than covari-

ance intersection because the true correlation in the original distribution, Λt, is known. Covariance

intersection, however, does provide an easy-to-compute lower bound on the approximation perfor-

mance to which we can compare additional methods. Additionally, it provides a strictly-feasible

starting point for more complex optimization problems. The approximate target information pro-

duced by covariance intersection is defined as a convex combination of the CLT factors,

Λ̃CI(w) =
∑

i

wiΨi, (2.23)
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where each wi scales the information added by each factor (Fig. 2.15). The optimal weights can

then be found by solving the convex semidefinite program,

minimize
w

fKL(Λ̃CI(w))

subject to
∑

i

wi = 1.
(2.24)

Note that it is the fact that the weights must sum to one that ensures the resulting approximation is

conservative.

2.5.1.3 Weighted Factors

Because the true distribution is known, we can relax covariance intersection’s requirement that

weights sum to one. Instead we constrain the weights to be between zero and one, and add the

conservative constraint proposed in [173] and [73]. We refer to this formulation as “weighted

factors,” and its approximate target information is defined as

Λ̃WF(w) =
∑

i

wiΨi, (2.25)

which has the same structure as Covariance Intersection (Fig. 2.15). The optimal weights can then

be found by solving

minimize
w

fKL(Λ̃WF(w))

subject to 0 ≤ wi ≤ 1, ∀i

Λt ≥ Λ̃WF(w),

(2.26)

which is again a convex semidefinite program.

2.5.1.4 Weighted Eigenvalues

Figure 2.16 Illustration of Weighted Eigenvalues approximate information. The structure of the approximation’s

information matrix is shown for the sample graph in Fig. 2.13(d).
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Instead of weighting each factor by a single value, finer-grained control can be achieved by

weighting each factor along its principal axes independently. We refer to this formulation as

“weighted eigenvalues.” Each factor has an eigen-decomposition given by

Ψi =
[

ui1 · · · uiqi

]







λi1 0 0

0
. . . 0

0 0 λiqi













ui1
⊤

...

uiqi
⊤






. (2.27)

Using the eigen-decomposition of each factor we can write the approximate target information as

Λ̃WEV(w) =
∑

i

qi∑

j=1

wijλ
i
ju

i
ju

i
j

⊤

=
∑

k

wkλkuku
⊤
k ,

(2.28)

as illustrated in Fig. 2.16. The optimal weights are found by solving

minimize
w

fKL(Λ̃WEV(w))

subject to 0 ≤ wk ≤ 1, ∀k

Λt ≥ Λ̃WEV(w).

(2.29)

Note that the number of optimization variables has increased in comparison to the covariance

intersection and weighted factors formulations. As will be demonstrated in §2.6, this results in a

significant increase in the computational cost.

2.5.1.5 Implementation Considerations

Each of the proposed semidefinite programs are convex and can be efficiently solved using

interior point methods [18, 171, 172]. Interior point methods require that a strictly-feasible starting

point be found before optimization, i.e., an initial approximation, where 0 < wi < 1, ∀i and

Λt > Λ̃t(w). Covariance intersection with uniform weights provides an easy-to-compute strictly-

feasible starting point, and is used in all experiments.

For low-rank target information, the conservative constraint, Λt − Λ̃t(w), is semidefinite and

will have at least one zero eigenvalue, and therefore, no strictly-feasible starting point exists. Ad-

ditionally, it prevents the evaluation of the optimization problem’s gradient and Hessian. Instead,
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the conservative constraint is implemented as

Λt + ǫI ≥ Λ̃t(w),

so that a strictly-feasible starting point exists and the gradient and Hessian can be evaluated. Our

experimental evaluation indicates that the actual value of ǫ has very little effect on the results. All

experiments are performed with ǫ = 0.1, though values 10−5 ≤ ǫ ≤ 1 produced nearly equivalent

results.

2.6 Experimental Evaluation of Guaranteed Conservative GLC

Table 2.3 Experimental Normalized KLD for Conservative GLC

Covariance Intersection Weighted Factors Weighted Eigenvalues Chow-Liu Tree

Dataset % Removed NKLD CLT Ratio NKLD CLT Ratio NKLD CLT Ratio NKLD

Intel Lab 33.3% 25.237 175.85× 2.302 16.04× 1.890 13.16× 0.144

Killian Court 66.7% 0.508 20.58× 0.101 4.07× 0.096 3.90× 0.025

Victoria Park 75.0% 0.574 15.85× 0.157 4.32× 0.112 3.10× 0.036

Duderstadt Center 50.0% 8.788 3,038.06× 0.037 12.70× 0.020 7.00× 0.003

EECS Building 25.0% 0.608 357.15× 0.012 6.90× 0.007 3.95× 0.002

USS Saratoga 33.3% 1.865 13,441.43× 0.002 14.44× 0.001 5.51× 0.000

Figure 2.17 KLD comparison for conservative sparse approximate node removal. The KLD (normalized by the DOF

of the distribution after node removal) for the Covariance Intersection, Weighted Factors, Weighted Eigenvalues, and

CLT sparse approximate node removal methods is shown in (a). In (b) the ratio of KLD between each method and

CLT is plotted.
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To evaluate the proposed methods, we test their performance on a variety of SLAM graphs,

summarized in Fig. 2.5 and Table 2.1. As before, the proposed algorithms were implemented

using iSAM [85–87] as the underlying optimization engine. For each graph, the original full graph
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is first optimized using iSAM. Then the different node removal algorithms are each used to remove

a set of nodes evenly spaced throughout the trajectory. Finally, the graphs are again optimized in

iSAM.

For each experiment the true marginal distribution is recovered by obtaining the linearized in-

formation matrix from the full graph about the optimization point and performing Schur-complement

marginalization. This provides a ground-truth distribution that we can directly compare our conser-

vative distribution against. In order to provide a benchmark, the CLT approximation as proposed

in §2.3.4 is also evaluated.

The results for each method, in terms of KLD, are shown in Table 2.3 and Fig. 2.17. The “CLT

ratio” columns provide a direct comparison with the CLT, which is not guaranteed to be conser-

vative, but serves as a baseline as it is the minimum KLD distribution among all spanning trees.

As one would expect, covariance intersection produces a very high KLD because it is excessively

conservative. The weighted factors formulation improves the KLD significantly with respect to

covariance intersection, while the weighted eigenvectors formulation improves the KLD further

still.

For the Duderstadt, EECS, and Saratoga graphs, the subjective difference in the quality of

the estimates is very small, with weighted factors, weighted eigenvalues, and the CLT producing

visually indistinguishable results, see Fig. 2.18 top row. For the Intel dataset, and to a lesser extent

the Killian and Victoria datasets, there appears to be more room for improvement, with a noticeable

difference between the weighted eigenvalues result and the CLT for the Intel graph, see Fig. 2.18

bottom row.

To evaluate the “conservativeness” of the proposed methods, we plot the minimum eigenvalue

of the covariance-form consistency constraint for each node marginal, i.e. minλ(Σ̃ii − Σii), de-

picted in Fig. 2.19. Values below zero indicate overconfidence, with only the CLT producing

overconfident results. Covariance intersection, weighted factors, and weighted eigenvalues all pro-

duce conservative estimates, with each producing a slightly tighter estimate (closer to zero) than

the previous.

Finally, we consider the computational cost of the proposed methods. A plot showing the

node removal time as a function of the number of variables in the elimination clique is shown in

Fig. 2.20. The average node removal times for covariance intersection, weighted factors, weighted

eigenvalues and the CLT were 7, 32, 448, and 5 milliseconds, respectively. Even though covariance

intersection and weighted factors were both solving optimization problems over the same number

of variables, weighted factors is more expensive. This is due to the fact that the equally-weighted

covariance intersection solution, used as the initial point for all optimizations, was often very close
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Figure 2.18 Comparison of 3-σ uncertainty ellipses for Conservative GLC. Sample 3-σ uncertainty ellipses are shown

for the Duderstadt graph with 50.0% node removal (top row) and the Intel graph with 33.3% node removal (bottom

row). True marginal ellipses are shown in cyan, while the marginal ellipses from the approximate distribution are

shown in red. For the Duderstadt graph both weighted factors (b) and weighted eigenvalues (c) produce distributions

very similar to the CLT (d) while remaining conservative. For the Intel graph both weighted factors (f) and weighted

eigenvalues (g) produce similar distributions that are noticeably more conservative than the CLT (h).
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Figure 2.19 Minimum eigenvalue of the consistency constraint after conservative node removal (i.e., minλ(Σ̃ii −
Σii)). Covariance intersection, weighted factors, and weighted eigenvalues all produce conservative estimates (values

greater than zero), with each producing a slightly tighter estimate (closer to zero) than the previous.
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(a) Intel 33.3% Removed
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(b) Killian 66.7% Removed
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(c) Victoria Park 75.0% Removed
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(d) Duderstadt 50.0% Removed
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(e) EECS 25.0% Removed
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(f) Saratoga 33.3% Removed

to the optimal covariance intersection solution and therefore, covariance intersection converged

quickly. Weighted eigenvalues solves a larger optimization problem and therefore is substantially

slower. Still, the weighted eigenvalues formulation will often have significantly fewer variables

than Vial et al. [173] (which optimizes all non-zero entries in the upper triangle of the information

matrix) and Huang et al. [73] (which optimizes every entry in the upper triangle of the information

matrix) for a given information matrix size.

We note that the computational cost of the proposed methods increases quickly with the size

of the node removal cliques. However, as experimentally shown in [26], sparse approximate node

removal maintains small cliques in real-world SLAM graphs even when removing a very high

percentage of nodes. This, in turn, results in essentially constant node removal time regardless of

the number of nodes removed and size of the graph beyond the elimination clique.

2.7 Discussion

2.7.1 GLC Node Removal

When considering the application of the GLC node removal, there are a few things to consider:
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Figure 2.20 Conservative node removal processing time. Node removal processing time is shown as a function of the

number of variables in the elimination clique. Average node removal times (solid lines) for covariance intersection,

weighted factors, weighted eigenvalues and the CLT were 7, 32, 448, and 5 milliseconds, respectively.
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• When performing GLC, a good linearization point for the relative transforms within the

elimination clique must exist. This affects when it is appropriate to remove nodes, especially

if performing online node removal. The graph should be optimized as well as possible before

node removal. Often it is desirable to remove well-established or “mature” nodes from the

graph, instead of nodes that have been recently instantiated and are highly uncertain. Note,

however, that this is not a function of node age, but rather whether the graph is sufficiently

constrained and optimized to provide a good linearization point.

• Because the target information is often low-rank, we use “pinning” to compute the mutual

information when building the CLT and therefore, cannot guarantee that this yields a mini-

mum KLD from the true distribution (though our experimental results show that we achieve

a significantly lower KLD than other state-of-the-art methods).

• When removing a set of nodes it is important to note that the order in which they are removed

affects the resulting graph connectivity. Experimentally, we found that removing long chains

of nodes sequentially sometimes produced large star shaped trees in the graph. To avoid this,

sets of nodes were removed in a randomized order in all experiments. The variable elimi-

nation ordering problem [92] is well studied for dense node removal. The application and

adaptation of existing variable elimination ordering strategies for node removal with sparse

connectivity could further improve the performance of GLC-based complexity management

schemes.
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2.7.2 Guaranteed Conservative Sparse Approximations

• The CLT approximation itself is not guaranteed to be conservative and therefore CLT sparse-

approximate GLC node removal does not guarantee a conservative estimate. In fact, our

results showed that CLT-based GLC sparse approximation can be either slightly conser-

vative (Fig. 2.7 and Fig. 2.12(a) and (c)), or slightly over-confident (Fig. 2.12(b)). While

our proposed GLC method avoids inconsistency pitfalls associated with measurement com-

pounding, and accurately recreates the CLT, it may still be slightly overconfident if the

CLT approximation cannot represent all of the true correlation within the clique. We have

found experimentally that the CLT performs well on most graphs, and only results in notice-

able overconfidence in graphs with large, dense cliques. It is in these situations where the

guaranteed-conservative methods proposed in §2.5 are most appropriate.

• All of the conservative methods start with the Chow-Liu tree as their basis. We believe that

this is a reasonable starting point as it is the minimum KLD spanning tree. However, there

is no guarantee that, after using the optimization based methods to ensure a conservative

estimate, the CLT’s sparsity pattern remains optimal. Furthermore, other non-tree sparsity

patterns may be of interest. This is one strongly appealing aspect of the L1 regularization

method proposed in [73] in that it automatically selects the sparsity pattern.

• There is a trade off between the complexity of the optimization problem and the accuracy

of the approximation it is able to achieve. Based upon our experimental results, we feel that

the weighted factors formulation provides the best trade off between KLD and computation

time, as weighted eigenvalues only performs marginally better while being substantially

more computationally expensive.

• In this chapter, the guaranteed-conservative optimization algorithms are presented in the

context of sparsifying the dense cliques produced by node marginalization. However, these

techniques could be applied to portions of the graph to perform sparsification, without re-

moving nodes.

2.8 Chapter Summary

In this chapter, we presented a factor-based method for node removal in a wide variety of

SLAM graphs. This method can be used to alleviate some of the computational challenges in per-

forming inference over long-term graphs by reducing the graph size and density. The proposed
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method is able to represent either exact marginalization, or a sparse approximation of the true

marginalization, in a consistent manner over a heterogeneous collection of constraints. We exper-

imentally evaluated the proposed method over multiple real-world SLAM graphs and showed that

it outperformed other state-of-the-art methods in terms of KLD.
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CHAPTER III

Learning Visual Feature Descriptors for Dynamic Lighting

Conditions

In many robotic applications, especially long-term outdoor deployments, the success or failure

of feature-based image registration is largely determined by changes in lighting. In this chapter, we

present a method to learn visual feature point descriptors that are more robust to changes in scene

lighting than standard hand-designed features. We demonstrate that, by tracking feature points in

time-lapse videos, one can easily generate training data that captures how the visual appearances

of interest points change with lighting over time. This training data is used to learn feature de-

scriptors that map the image patches associated with feature points to a lower-dimensional feature

space where L2 distance provides good discrimination between matching and non-matching im-

age patches. Results showing that the learned descriptors increase the ability to register images

under varying lighting conditions are presented for a challenging indoor-outdoor dataset spanning

27 mapping sessions over a period of 15 months, containing a wide variety of lighting changes.

This chapter is based on our work published in [28].

3.1 Introduction

Standard hand-designed visual features such as scale invariant feature transform (SIFT) [104]

and speeded up robust features (SURF) [9] detect key-points in an image and then describe the

local visual appearance of these key-points as a vector. Image registration can then be performed

by matching the key-points between images by comparing the L2 distance between the descriptors.

In order for matching to be successful, the key-point detector and descriptors must be at least par-

tially robust to common image variations such as scale, rotation, viewpoint, and lighting changes.

Invariance with respect to scale and rotation are usually accounted for at the feature detection
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stage, where key-points will be detected at a canonical scale and orientation. The description stage

then focuses on representing the appearance of the local region around the key-point such that the

descriptor is discriminative while being robust to viewpoint and illumination changes.

In this chapter we focus on increasing the robustness of feature point description to lighting

changes. Hand-designed descriptors such as SIFT and SURF have limited lighting invariance—

often allowing for affine transformations in image intensity by considering the gradient of intensity,

and through other mechanisms such as mean subtraction and normalization. However, in general,

the change in appearance caused by lighting affects the image intensity in a complex, nonlinear

way.

In many robotic applications, the success or failure of feature-based image registration is

largely determined by changes in lighting. This is especially true for medium to long-term out-

door applications, where the scene structure has not changed dramatically, but images separated

by even a few hours may be unmatchable due to cyclical changes in lighting. This phenomenon

is illustrated in Fig. A.2(a), which shows example imagery from three different locations in our

experimental dataset. In this dataset, only a small fraction of the possible matches are successfully

registered using standard features, largely because of cyclical changes in lighting.

In this work, we seek to learn a feature descriptor that is more robust to changes in local image

appearance caused by lighting (Fig. 3.1). To observe how the local appearance of image patches

changes under dynamic lighting conditions, we first track key-points and their associated image

patches through time-lapse video using a representative training dataset. We then train a feature

descriptor using matching and non-matching pairs of image patches sampled from these patch

tracks. A contrastive cost function is used so that matching patches are mapped close together (in

terms of Euclidean distance in feature space) while separating non-matching patches. The resulting

descriptor is more robust to the types of lighting variation observed in the training data.

The remainder of this chapter is outlined as follows: In Section 3.2, we discuss existing work

related to the proposed method. The descriptor learning method is described in Section 3.3. Sec-

tion 3.4 contains details of the training process, including the collection of training data. Ex-

perimental results are provided in Section 3.5. Finally, a discussion and concluding remarks are

provided in Sections 3.6 and 3.7.

3.2 Related Work

Given the limitations of existing visual feature descriptors, several proposed methods address

the difficulties in matching images collected under varying lighting conditions at a systems level.
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Figure 3.1 Illustration of visual feature learning method. Pairs of image patches labeled either as matching (green)

or non-matching (red) are supplied as input to a feature descriptor function, fθ( · ), parameterized by θ, that maps the

input patch to a feature vector. A contrastive cost function, l( · ), based on the Euclidean distance between the feature

vectors, encourages matching feature vectors to be close together in feature space while encouraging non-matching

features to be far apart. By learning parameters θ that minimize this cost function, we produce a mapping to a feature

space where Euclidean distance captures the similarity and differences amongst the training pairs. By training with

data that includes variation due to changes in lighting, the feature descriptor learns to be robust to lighting variation.

In a mapping and navigation context, both Konolige and Bowman [94] and Churchill and Newman

[37] add new example views or visual “experiences” when the current view cannot be registered

against previous views. This addresses the problem of changing lighting by capturing several

examples of how a location might look under different lighting conditions. Similarly, in Johns and

Yang [80, 81], locations are modeled with a collection of features observed at different points in

time. These works are mostly orthogonal to the proposed method, and would benefit from features

that are more robust to lighting change, because better features reduce the number of samples

needed to model a location.

Several recent works have investigated whole image place recognition under changing appear-

ance conditions, including [81, 100, 113, 128]. In Lategahn et al. [100], a set of standard descriptor

“building blocks” is defined. Place recognition performance is then optimized by searching the

space of possible descriptors constructed from these building blocks. Neubert et al. [128] attempt

to predict how a location will look at a different point in time by learning a mapping between

appearance codewords. They then perform place recognition between the current image and the

predicted image. The formulation, however, focus on changes between two distinct states (e.g.,

summer and winter) and not continual changes such as those caused by lighting. In Milford et al.

[113], whole image place recognition is performed over extreme changes in lighting from day to

night by aggressively down-sampling and contrast-normalizing the images before comparison.

In this work, we focus on geometric registration through point correspondence as opposed

to whole image place recognition. For some applications, like loop-closure detection in metric

mapping, even if one can recognize places under a high degree of lighting variation, it may not be

useful if one cannot extract a metric estimate of the motion between the camera views [142]. It
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is worth noting that the feature descriptors learned using our proposed method could be used in a

bag-of-words model [132, 151] for place recognition. However, evaluating if this would improve

the robustness with respect to lighting remains future work.

Many methods have been proposed that leverage machine learning to improve the performance

of feature descriptors [5, 20, 72, 142, 168, 180, 181]. In Babenko et al. [5], feature matching is

cast as a binary classification problem where one attempts to determine if two image patches do

or do not match. Boosting is then used with a set of simple hand-designed features to learn a

classifier appropriate for a specific domain. In Hua et al. [72], Winder et al. [180], Winder and

Brown [181], and Brown et al. [20], the parameters of fixed descriptor pipelines (often a variant

of the DAISY descriptor [165]) are optimized to improve descriptor performance. Similarly, in

Stavens and Thrun [157], the parameters of standard descriptors, including SIFT, are optimized

for specific domains. Ranganathan et al. [142] use the fine vocabulary method of [111] to learn

a probability distribution over visual words in an attempt to capture which visual words can be

produced by the same scene feature under various lighting conditions. Standard place recognition

and feature matching are then reformulated to account for the learned distribution. Both Philbin

et al. [139] and Shakhnarovich [149] learn an embedding on top of SIFT features. This is similar

to the proposed method except that we learn an embedding directly from the raw pixel input as

opposed to on top of a hand-designed feature descriptor. The recent work by Trzcinski et al. [168],

which uses boosting to learn a binary descriptor, is most similar to our proposed method in that

it learns a descriptor directly from raw pixel data in a supervised setting. However, our proposed

method differs in its learning method, descriptor model, and in its focus on robustness to changes

in lighting.

To learn an illumination robust feature descriptor we employ a training scheme referred to as a

“Siamese” network [19, 34, 66, 117, 159], with the goal of minimizing a contrastive cost function

[34, 66, 159] that encourages a nonlinear mapping to a lower-dimensional space where matching

features are close together and non-matching features are far apart in Euclidean distance. This goal

is often referred to as embedding learning, manifold learning, or distance metric learning.

Siamese networks have been employed in a wide range of applications including signature

verification in Bromley et al. [19], face recognition in Chopra et al. [34], and object recognition

in Hadsell et al. [66] and Mobahi et al. [117]. An especially compelling result was presented in

Taylor et al. [159] where a system was trained that could recognize similar human poses while

being highly invariant to other distractors, including changes in lighting.

Beyond Siamese networks, auto-encoder frameworks can also be used to learn nonlinear em-

beddings, as shown in Hinton and Salakhutdinov [70] and [146]. However, with auto-encoders the
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goal is to produce a lower-dimensional embedding that can be decoded with minimal reconstruc-

tion error, which does not necessarily produce embeddings where Euclidean distance is useful for

discrimination [159]. Salakhutdinov and Hinton [145] provide an interesting model that blends a

Siamese network with an auto-encoder for regularization.

The contrastive cost function employed here is just one option for learning an embedding. In

Goldberger et al. [63], a linear model is optimized in order to minimize a probabilistic version of

k-nearest neighbors classification error. A probabilistic loss function based on Kullback-Leibler

divergence (KLD) is provided in Hinton and Roweis [69].

3.3 Learning a Feature Descriptor

In this section, we first describe the Siamese network framework that can be used to learn a

wide variety of feed-forward descriptor models (Fig. 3.1). We then discuss the specific feature

descriptor models considered in this work. As in [5, 20, 72, 180, 181], we focus on the description

of the image patch associated with key-points provided by an existing key-point detector1. We

assume that the detector provides us with a pixel location, a scale, and optionally a canonical

orientation to allow for rotation invariance2. Given this information we extract an appropriate

patch from the image for each key-point. The image patch then becomes the input for the learned

descriptor. At this point we assume that we have pairs of patches labeled as either matching or

non-matching. We detail how these pairs can be easily generated in §3.4.

3.3.1 Learning with a Siamese Network

First, we define a feature descriptor that maps an image patch x to a feature vector y as

y = fθ (x) ,

where θ parameterizes the descriptor. During training we work with pairs of training examples

that are known to be matching or non-matching. Let xi and xj be two training image patches. The

current function is then used to describe each patch,

yi = fθ (xi) and yj = fθ (xj) .

1We use the SURF detector throughout our experiments.
2In our experiments we do not exploit the canonical orientation as we focus on robotic applications where the

imagery does not undergo large rotations.

60



We then consider the squared Euclidean distance in feature space

d2ij = ‖yi − yj‖
2
2.

Using the contrastive cost function from [66],

lθ
(
yi,yj

)
=







sijd
2
ij, if matching

max
(
1.0− d2ij, 0

)
, if non-matching

(3.1)

where the similarity score sij between the matching pairs is set as proposed in [159]3 (since we are

training with temporal sequences). We define sij based on the difference in time between when the

two patches were observed,

sij =
1

1 + α|ti − tj|
, (3.2)

where ti and tj are the observation times of the training patches in hours and α is a scale factor

controlling the time scale of the similarity weight. In our experiments, we selected α = 1/8 h.

Taylor et al. [159] experimentally demonstrated that this “soft” similarity allows the embedding

to better capture the temporal similarity in appearance. They also experimentally showed that this

soft similarity improved training results. The resulting cost function (3.1) is illustrated in Fig. 3.2.

Figure 3.2 Contrastive cost function. The cost for matching pairs is shown in green and the cost for non-matching

pairs in red. The dashed green lines show the matching cost function using similarity weighting (3.2) with α = 1/8 h
for |ti − tj | = [2, 4, 5, 6, 10] h.
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If we consider a training set of N training pairs, the learning objective becomes

θ̂ = argmin
θ

L(θ) = argmin
θ

1

N

N∑

n=1

lθ
(
yni ,y

n
j

)
. (3.3)

3Hadsell et al. [66] set sij = 1 to treat all matching pairs evenly.
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The learning objective is a weighted sum of positive pairwise terms, lθ
(
yni ,y

n
j

)
≥ 0, therefore,

the loss function is also positive, L(θ) ≥ 0. In general, the minimum of the objective will be

greater than zero, L(θ) > 0, for two reasons: First, our feature descriptor, fθ (x), may not have

enough complexity to learn an ideal transform that achieves L(θ) = 0. Second, if positive and

negative pairs share patches, the interaction between the pairwise terms may not allow for all

terms to be at their minimum simultaneously. Hadsell et al. [66] discuss an intuitive interpretation

of the contrastive cost function where positive pairs are pulled together by springs while negative

pairs are pushed apart. The optimum value of the cost function is achieved when this system is at

equilibrium. We optimize the objective using stochastic gradient descent, the details of which are

described in §3.4.

3.3.2 Feature Descriptor Models

Figure 3.3 Feature descriptor models.

(a) Multi-Layer Perceptron (MLP) (b) Convolutional Multi-Layer Perceptron (CMLP)

In our experiments we consider two standard model classes for the learned feature descriptor; a

multi-layer perceptron (MLP) and a convolutional multi-layer perceptron (CMLP) [101] (Fig. 3.3).

The MLP consists of multiple fully-connected layers, each performing a nonlinear transformation

on the output of the previous layer. If we denote the input to each hidden layer as hi−1 and the

output as hi then

hi = g (Wihi−1 + bi) ,

where Wi is a matrix defining a linear transform, bi is a bias vector, and g( · ) is a nonlinear acti-

vation function applied in an elementwise fashion to its input vector. This layer is parameterized

by θi = [Wi,bi], which it contributes to the parameters of the overall model. For the first layer the

input will simply be the raw image patch as a vector, h0 = x.

The CMLP expands upon the MLP by adding convolutional and pooling layers. The convolu-

tional layers exploit the fact that the statistics of natural images can be considered stationary over

the location in the image. Instead of learning the parameters of a function of the whole image,
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weights are learned for kernels that are convolved with the image to produce a number of feature

maps. This greatly reduces the number of parameters in the model without significantly reducing

its representational capacity. For a detailed description we refer the reader to [101]. The pool-

ing layers perform a spatial subsampling that reduces the size of the input for subsequent layers

and provides invariance to small translational shifts in the input. In the proposed models we use

non-overlapping max pooling, which performed slightly better than mean pooling. It is interesting

to note that the CMLP structure is very similar to that of many hand-designed feature descriptors

[9, 104, 165], which often include a convolution filtering stage (e.g., computing oriented gradients)

and a pooling stage (e.g., spatial binning or averaging).

In both the MLP and CMLP we use rectifying nonlinearity, referred to as a linear rectified unit

(LRU) [125],

s(x) = max (x, 0) ,

which we found to be quicker to train than hyperbolic tangent, or sigmoid nonlinearities. Addi-

tionally, both the MLP and CMLP have a linear output layer.

3.3.3 MNIST Example

To demonstrate the Siamese network learning method described in §3.3.1, we present results

using the MNIST handwritten digit dataset (Fig. 3.4(a)).4 We randomly selected 50,000 digit pairs

from the dataset and for each pair we consider the digits to be matching if they are from the same

class (i.e., the same numeral 0 to 9). We then train the MLP descriptor shown in Fig. 3.3(a). The

only modification is to reduce the descriptor’s output dimension from 64 to 2. This allows us to

directly visualize the resulting feature space for a set of previously-unseen test digit images. We

see in Fig. 3.4(b) how the contrastive loss function drives matching digits close together in feature

space while pushing non-matching digits apart—producing a feature space where the Euclidean

distance provides good discrimination between classes.

3.4 Training the Models

In this section, we describe how we produce training data by tracking interest points in time-

lapse videos. We also provide the details of the stochastic gradient descent learning.

4The MNIST dataset is publicly available from http://yann.lecun.com/exdb/mnist/index.html
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Figure 3.4 Learning method demonstrated on the MNIST dataset

(a) Example MNIST Digits

(b) Learned 2D Feature Space

3.4.1 Generating Training Data

Many methods have been proposed to generate a training set of image patches. In [20, 72,

180, 181], 3D reconstructions are used to establish correspondence between patches in the source

images. In [139], image-to-image feature-based matching with outlier rejection is used in order

to generate training data, since they seek only to learn an encoding on top of existing feature

descriptors. Images with known pose are used in [100]. It is also possible to generate sequences of

image patches by tracking interest points in video [157, 184] or by sliding a window through static

images [11].

In this work we elect to generate patches by tracking interest points in video. In order to

capture the changes in appearance caused as the lighting changes with time, we use time-lapse

videos. To generate these videos we downloaded imagery from stationary webcams at a fixed rate.

In total, 230 different webcam locations were used, including mostly outdoor scenes, both natural

and urban, as well as some indoor scenes. Imagery was downloaded every 20 minutes for 72 hours.

Sample imagery from five locations is shown in Fig. 3.5(a). Of the 230 locations, 184 were used

to generate training data, 23 for validation and 23 for testing in §3.5.
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Figure 3.5 Sample images and patch tracks from the webcam dataset. Sample images from five locations are shown in

(a). Note that the images have been sub-sampled so the difference in time between images is larger than the 20 minutes

used during patch extraction. Five sample patch tracks are shown in (b). Note that the tracks will be of varying lengths,

and only subsections are shown here.

(a) Sample Webcam Images (b) Sample Patch Tracks

3.4.1.1 Tracking interest points in time-lapse videos

Given a sequence of webcam frames, we track features through time as follows:

• We detect interest points in each incoming image. In our experiments we use the SURF

detector, however, any detector that provides location and scale would be acceptable. (Note

that we do not use the SURF descriptor for tracking). One could also use the canonical ori-

entation of an interest point detector in order to achieve some degree of rotation invariance;

however, we do not as our target application uses a ground robotic platform that does not

undergo large rotations.

• For each interest point we attempt to associate it with an existing track. Because the im-

agery is collected from a static viewpoint we can use several simple criteria, similar to those

proposed in [20, 180]. First, the interest point must be within 5 pixels of the most recent

observation of the track. Second, the scale of the interest point must be within ±50% of

the most recent observation’s scale. Third, the difference in time between a new patch and

the most recent observation of a track can be no more than 1 hour. These criteria are often

adequate to uniquely associate a new patch with an existing track. If there are still multiple

candidates, we select the track that minimizes

r + rt − ‖x− xt‖2
2max(r, rt)

,
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where r and rt are the radii of the interest point and track, respectively, and x and xt are the

locations of the interest point and track, respectively. If we cannot find a valid existing track,

a new track is created based upon that patch.

• After processing each image we consider the current tracks. Tracks that have been updated

recently are kept for association in future images. Tracks that have not been updated in an

hour are no longer updated and are wrapped up and saved.

• Because we wish to emphasize the temporal change in the dataset, we downsample the final

tracks by a factor of two, increasing the time between each sample in the track from 20

minutes to 40 minutes.

The results of this process are illustrated in Fig. 3.5(b). Using this processing pipeline on the

entire webcam dataset produced approximately 3.1 million feature tracks (2.5 million for training,

0.3 million for validation and 0.3 million for testing) with an average of approximately 5 patches

per track.

3.4.1.2 Generating training pairs from tracks

Given a set of patch tracks, it is easy to generate a very large set of matching and non-matching

pairs for training. Starting with all feature tracks we randomly sample pairs of tracks without

replacement. From a pair of tracks we then randomly select two matching pairs (one from each

set) and two non-matching pairs (from between the two sets). This produces an even number of

matching and non-matching pairs in the dataset. We repeat this process until all patch tracks have

been used at least once. This ensures that each track is used.

Given the combinatorially huge number of possible pairs of tracks, and possible pairs within

each track, this process can be repeated multiple times. During training we continuously sample

new pairs.

3.4.1.3 Augmenting the training data with viewpoint variation

The webcam dataset does a good job of capturing the changes patches undergo with respect

to lighting; however, because the videos are captured from static locations, they do not contain

any viewpoint variance. To account for the lack of viewpoint variance we augment the patches

extracted from the webcam dataset using the viewpoint variant patches provided in Brown et al.

[21]. This dataset provides an additional 0.9 million patch pairs (which we divide evenly between
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training, testing, and validation). Another option would be to use the existing image patches with

synthetic affine warps, which has been shown to produce good results in [137].

3.4.2 Training Descriptor Models

Batch stochastic gradient descent was employed in order to optimize the model parameters

in (3.3). We used a batch size of 1000 pairs with a learning rate of λ = 0.1 and momentum of

β = 0.9, producing an update procedure at step k of

vk+1 = βvk − λ
∂Lk
∂θk

θk+1 = θk + vk+1,

where ∂Lk

∂θk
is the gradient of the objective function (3.3) with respect to the parameters θ over the

kth batch of training data. Training was implemented using Theano [12], which allows for auto-

matic differentiation of the objective function and GPU-based evaluation of the feature descriptor

models.

3.5 Experimental Evaluation

Figure 3.6 Precision and recall for learned features. By comparing the precision-recall curves for pairs from the 23 test

webcam locations approximately 1 h, 4 h, 8 h, and 12 h apart, we see that the performance of the proposed learned

features degrades gracefully as the time between images increases, especially in the region above 90% precision.
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(a) 1 h Between Images
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(b) 4 h Between Images
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(c) 8 h Between Images
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(d) 12 h Between Images

We evaluate the proposed feature descriptor on two datasets. The first consists of 23 webcam

locations not used during training. This dataset is used to evaluate how temporal changes in lighting

affects matching. The second dataset consists of data collected by a ground robot and allows us to

compare the descriptor’s performance in a challenging real-world environment.
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In addition to the proposed descriptors, we compare against SIFT [104], SURF [9], and DAISY

[165]. For the DAISY descriptor we use learned parameters provided by [180], specifically the

“T1-4-2r8s” version as it has an output dimension of 68 and computation time comparable with

our learned descriptors. In comparison, SIFT has a dimension of 128 while SURF and both of the

learned descriptors produce 64 dimensional vectors. We also attempted to compare with another

learned descriptor, DIRD [100]; however, DIRD was optimized with respect to whole image place

recognition and was not effective for point-to-point geometric image registration. In order to focus

on the properties of the descriptors, the same key-points (which were detected using the SURF

detector) were used for all feature descriptors.

3.5.1 Webcam Dataset

We first explore the performance of the feature descriptors using imagery from 23 webcam

locations that were not used during training. Because the webcam data was collected frequently, it

allows us to evaluate performance with respect to the time between images.

Using matching and non-matching pairs from this test set, we sweep out the precision and recall

curve for a descriptor by classifying points as matching or non-matching with a varying distance

threshold. We see in Fig. 3.6 that when the time between image pairs is small, all of the methods

perform well, with the learned descriptors and DAISY having the best performance. However, as

we increase the time between image pairs, the two learned methods degrade gracefully, maintaining

good precision-recall curves in the challenging region around 12 hours. Note that this is especially

true in the region above 90% precision where we would like to operate so that matching is not

overwhelmed by outliers.

Figure 3.7 Matching results for webcam dataset. Results are averaged from exhaustive pairwise matching at 23
webcam locations.
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To evaluate the features in an image registration context we attempt to register all pairs of

images at each location that were collected within 24 hours of each other. The ability to match

images in this situation is driven primarily by the change in lighting throughout the day. So over

the course of 24 h, the ability to register images will start high, and gradually reduce as the time

between images increases, hitting a minimum at about 12 h before increasing as time-of-day light-

ing conditions return to those most similar after 24 h. For indoor locations the patterns might be

less distinct, however, many indoor locations still go through similar cycles caused by working

hours and light through windows.

When matching features we perform nearest-neighbor matching based on Euclidean distance

and only include matches that pass a second-nearest-neighbor test [104] with a threshold of 0.7.

Inliers and outliers can be easily determined based on a distance threshold of 10 pixels because

images in this dataset were collected from a static viewpoint.

In Fig. 3.7 we consider the percentage of pairs that could be registered with a minimum of 15

inliers (essentially a practical “bare-minimum” to reliably compute an estimate of camera motion).

We see that, in the most challenging region, around 12 h between image pairs, the learned feature

descriptors (CMLP and MLP) successfully match over 40% of possible pairs. DAISY performed

ever-so-slightly better in this region matching just under 45%. SIFT and SURF match significantly

fewer pairs, about 30%. Similar patterns were observed with other minimum inlier thresholds,

though the percentage of matches decreases significantly as the minimum required number of

inliers increases.

Note that Fig. 3.7 is smooth because it averages many different pairs, from different locations,

with different starting points throughout the day. With smaller sample sizes the relationship be-

tween matching and time between images can vary dramatically, i.e., two images collected 8 hours

apart at night might match easily, while two images collected 1 hour apart before and after sunset

will not be matched.

3.5.2 North Campus Long-Term Dataset

One caveat of the previous experiment is that the webcam imagery was taken from a static

viewpoint. In order to evaluate the feature descriptors in a more realistic setting we consider

their performance on imagery collected by a robotic platform. The imagery was collected in 27

sessions over the course of 15 months on University of Michigan’s North Campus (Fig. A.1). This

dataset contains a wide variety of lighting conditions ranging from early morning to just after dusk.

Additionally, this data includes viewpoint variance and additional challenges caused by moving

objects, seasonal changes, and even construction projects. Given known robot pose, the dataset is

69



Figure 3.8 North Campus dataset matching results. The percentage of matching pairs is averaged over 500 locations

in the North Campus dataset.
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Figure 3.9 Sample image pair registered with learned feature. This image pair was successfully registered using the

CMLP descriptor, but not SIFT, SURF, nor DAISY.

(a) Sample Image Registration

(b) Sample Matching Patches
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split up into 500 locations with an average of 37 images per location.

At each location we match all pairs of images. As before, when matching features we perform

nearest neighbor matching based on Euclidean distance and employ the second-nearest-neighbor

test with a threshold of 0.7. Outliers are rejected by fitting an Essential matrix using random sample

consensus [68].

In Fig. 3.8 we show the percentage of image pairs successfully matched as a function of the

minimum number of inliers. Here, we see that again CMLP, MLP, and DAISY provide the best

results, matching around 30% of possible pairs at the lowest threshold. SIFT and SURF are signif-

icantly less successful. An example image pair that was successfully registered using the CMLP

descriptor, but not SIFT, SURF, nor DAISY, is shown in Fig. 3.9.

3.5.3 Computation Time

Finally, we provide the computation time of the learned features in Table 3.1. The learned

descriptors were developed using Theano and therefore can be computed using the CPU or GPU.

For SIFT and SURF we evaluated with OpenCV’s CPU version and timing information is provided

only as a rough comparison—well-optimized GPU versions of both are readily available.

Table 3.1 Mean Feature Extraction Time

CPU GPU

MLP 0.68 ms/feature 0.07 ms/feature
CMLP 1.34 ms/feature 0.27 ms/feature

SIFT 0.64 ms/feature —

SURF 0.20 ms/feature —

DAISY 0.65 ms/feature —

3.5.4 Qualitative Analysis

Having seen that the learned feature descriptors provide improved performance over standard

hand-designed features we will now try to provide some qualitative insight into what the descriptors

are learning. The features learned by the early stages of the MLP and CMLP descriptors are shown

in Fig. 3.10 and Fig. 3.11, respectively. In Fig. 3.10, each of the 1024 patches represents the input

that most strongly activates the corresponding feature in the first layer of the network. We can

see that the features in this first layer are mostly composed of oriented edges and blobs of varying

frequency. Features in the second and third layers of the network will be non-linear combinations

of these first-level features.
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Figure 3.10 MLP first layer features. Each patch represents the input patch that most strongly activates the corre-

sponding feature in the MLP’s first fully-connected layer. Note that a random subset of 256 out of the 1024 first-level

features are shown.

The CMLP descriptor adds an additional convolutional layer to the MLP. The learned convolu-

tional filters are shown in Fig. 3.11(a). Again, we see that the network learns a variety of oriented

edge filters with varying scale, orientation, and frequency. The output of the first layer convolu-

tional filters is shown in Fig. 3.11(c) for three sample patches (Fig. 3.11(b)). These convolutional

features are fed into the first fully-connected layer with 1024 outputs. In Fig. 3.11(d), we show the

features that most strongly activate 10 of the 1024 features in the first fully-connected layer. Here

each row represents an input to the fully-connected layer.

To visualize the learned feature space we use t-distributed stochastic neighbor embedding

(t-SNE) [170] to reduce the dimensionality of output feature space from 64 to 2. This allows us to

plot a representation of the learned feature space where patches from the validation set are arranged

spatially according to the location of their associated feature descriptor. The t-SNE visualizations

for the MLP and CMLP feature descriptors are shown in Fig. 3.12 and Fig. 3.13, respectively. In

both cases, we see that patches with similar appearance are mapped to similar portions of the fea-

ture space. We have highlighted regions with similar textures, oriented edges, rectangular blobs,

and corners. It is important to note that we are only able to visualize this space using a dimen-

sionality reduction like t-SNE, and because of this, it is difficult to make concrete claims about

the original space. Nonetheless, these visualizations hopefully provide some insight into what the

descriptors are learning.

3.6 Discussion and Future Work

Selecting the model parameters for the feature descriptors presents a large number of design

choices. This includes the number of layers, the type and dimension of each layer, the activation

function, the type of pooling, etc. We feel that the two models used in this work are reasonable
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Figure 3.11 CMLP convolutional and fully-connected features. The learned convolutional filters in the first layer are

shown in (a). The output of the convolutional filters is shown in (c) for three sample patches, (b). These convolutional

features are fed into the first fully-connected layer with 1024 outputs. In (d), the features that most strongly activate 10

of the 1024 features in the first fully-connected layer are shown—each row represents an input to the fully-connected

layer.

(a) CMLP Convolutional Filters

(b) Patches (c) Sample Convolutional Features

(d) CMLP Fully-Connected Features
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Figure 3.12 MLP feature space visualized with t-SNE.
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Figure 3.13 CMLP feature space visualized with t-SNE.
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and good representatives of two points in the configuration space. However, many of the other

model variations considered during development produced very similar results—a more thorough

evaluation of the model choices with respect to performance and complexity would be beneficial.

Additionally, we would like to more thoroughly evaluate some of the other algorithm design

choices, including the effect of output dimension and the effect of the smooth similarity measure

and its time constant.

Beyond lighting invariance, we believe that a similar training scheme could be used in many

applications to learn domain specific features. Specifically, we plan to apply the method to under-

water imagery in future work.

Finally, it would be beneficial to compare the learned descriptors against additional existing

feature descriptors beyond SIFT, SURF, and DAISY.

3.7 Chapter Summary

In this chapter, we have presented a method to learn visual feature point descriptors that are

more robust to changes in scene lighting than standard hand-designed features. We demonstrated

that, by tracking feature points in time-lapse videos, one can generate training data that captures

how the visual appearance of interest points changes with lighting over time. With this training

data we learned feature descriptors that map the image patches associated with feature points to a

lower-dimensional feature space where Euclidean distance provides good discrimination between

matching and non-matching image patches. The learned features provided better image registration

performance on a challenging robotic dataset than hand-designed features including SIFT and

SURF.
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CHAPTER IV

Long-Term SLAM in Dynamic Environments

In this chapter, we leverage the generic linear constraint (GLC) sparse-approximate node re-

moval method developed in Chapter II and the learned visual feature descriptors from Chapter III

to develop simultaneous localization and mapping (SLAM) systems capable of long-term opera-

tion in dynamic environments. We consider two systems: one based on 3D light detection and

ranging (LIDAR), and the other based on omni-directional vision.

Using the LIDAR-based system, we evaluate the use of GLC node removal as a method to

control the computational complexity of long-term SLAM. We experimentally demonstrate that

GLC provides a principled and flexible tool that enables a wide variety of complexity management

schemes. Specifically, we consider two main classes: batch multi-session node removal, in which

nodes are removed in a batch operation between mapping sessions, and online node removal, in

which nodes are removed as the robot operates. The evaluation of GLC using the LIDAR-based

system was originally presented in [26].

Data association is significantly more challenging in the vision-based system. We do not di-

rectly observe the 3D structure of the scene and the visual appearance of the environment changes

more quickly than the 3D structure. In this chapter, we consider an exemplar-based SLAM system

that seeks to address these challenges by maintaining a small set of example views at each loca-

tion in the map. These example views allow the map to capture how the appearance of a location

changes with time. We evaluate the use of the learned feature descriptors proposed in Chapter III,

and several exemplar update schemes that use GLC to remove nodes and their associated imagery

from the graph in order to select the set of example views that represents each location.
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4.1 Introduction

In previous chapters, we presented a method to perform sparse-approximate node removal in

SLAM factor graphs (Chapter II) and a method to learn visual feature descriptors that are more

robust to changes in lighting (Chapter III). In this chapter, we explore how these tools can be used

to improve long-term SLAM in dynamic environments. We consider two SLAM systems: one

using 3D LIDAR and another using omni-directional vision.

As discussed in Chapter I and Chapter II, graph-based SLAM [45, 52, 86, 93, 105, 134, 160]

has been used to successfully solve many challenging SLAM problems in robotics, yet it becomes

computationally intractable in the long-term as new nodes must be continually added to the graph

for localization. The computational complexity of the graph is dependent not only on the spatial

extent of the environment, but also the duration of the exploration (Fig. 4.2(f)).

In this chapter, we use a LIDAR-based SLAM system to experimentally evaluate the perfor-

mance of GLC when used to control the computational complexity of long-term SLAM by re-

moving spatially redundant nodes. We demonstrate that GLC provides a principled and flexible

tool enabling a wide variety of complexity management schemes. Specifically, we consider two

main classes: batch multi-session node removal, in which nodes are removed in a batch operation

between mapping sessions, and online node removal, in which nodes are removed as the robot

operates. Using these schemes, we achieve a small and constant computational complexity with

respect to time by maintaining a smaller, more-sparse graph in scenarios where the complexity of

standard graph-SLAM grows super-linearly.

As discussed in Chapter I and Chapter III, visual data association is a significant challenge in

dynamic environments. In this chapter, we propose and experimentally examine an exemplar-based

visual SLAM system designed to address the challenges of long-term SLAM. We evaluate the use

of the learned feature descriptors from Chapter III and consider several exemplar update schemes

that actively maintain a small set of example views at each location in the map. These example

views allow the map to capture how the appearance of a location changes with time. The exemplar

updated schemes are implemented using GLC to remove unwanted nodes and their associated

imagery from the map. We attempt to balance two competing objectives in the exemplar update

schemes: First, we want to remove a sufficient amount of nodes such that the SLAM optimization

problem remains computationally tractable. Second, we want to maintain a sufficient number of

nodes and their associated imagery so that we capture the changing appearance of the environment

and allow for more successful image registrations.
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4.1.1 Related Work

4.1.1.1 Controlling the Computational Complexity of Long-Term SLAM

Several methods have been proposed to control the complexity of long-term SLAM including

[79, 94, 97, 174]. These works, and others related to SLAM optimization complexity, are discussed

in detail in §2.1.1.

4.1.1.2 Accounting for Dynamic Environments in SLAM

The majority of SLAM solutions, to date, make the assumption that the environment is static.

For many robotic applications, this assumption is not extremely detrimental. This is especially true

for systems that exploit robust data association methods, notably image and LIDAR registration—

these methods are capable of successful measurements despite the presence of short-term dynamic

effects, such as partial scene occlusion and moving objects.

Many methods have been proposed that try to filter out the dynamic elements of the envi-

ronment while maintaining the assumption that the underlying environment is static, for example

[22, 57, 67, 177], among others. It has also been shown that it is possible to explicitly identify

and track dynamic objects in the environment, either for specific classes of objects, such as people

[120], or a-priori-unknown dynamic objects [118].

Recently, several works have proposed methods that explicitly model dynamic changes in the

map. Biber and Duckett [14, 15] represent the environment by a collection of sample-based maps,

each of which incorporates new samples and forgets old samples at a different rate. This rate

determines the timescale of each map. During localization, the robot tests all timescales to de-

termine which best agrees with the current observation and then performs measurement updates

against that map. The idea of sample-based maps is continued by Dayoub and Duckett [44], where

the authors use a short-term versus long-term memory model to update the collection of visual

features that represent the appearance of a location. Tipaldi et al. [164] propose a method that

uses a “dynamic occupancy grid” based on a hidden Markov model to capture dynamic changes in

the environment. In Johns and Yang [80, 81], locations are modeled with a collection of features

observed at different points in time to better model changes in appearance. Walcott-Bryant et al.

[174] propose a pose SLAM method that uses the graph’s planar LIDAR scans to detect when the

environment has changed. They remove the poses associated with scans that no longer represent

the current state of the environment from the graph.

The works most relevant to our proposed systems can be considered “exemplar-based” meth-

ods (Fig. 4.1). Promising examples of these methods elect to represent locations in the map as a
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Figure 4.1 Exemplar-based map representation. Each physical location, Ni, is represented by a set of exemplar views,

Ei, that capture the change in appearance the location undergoes with time.

collection of views [94], environmental states [156], or view sequences [36], corresponding to how

the environment appeared at various observation instances. These exemplar-based representations

are capable of representing many different types of temporal variation. These methods provide

a promising way forward toward developing SLAM systems for long-term autonomy in dynamic

environments, and we therefore elect to use this model for our visual SLAM system. Stachniss

and Burgard [156] proposed a method to learn exemplar configurations of an indoor environment

from planar LIDAR scan data using fuzzy k-means clustering. They then use these exemplar con-

figurations in a particle-filter based localization framework. Konolige and Bowman [94] present a

vision-based method that works within the context of vision-based pose-graph SLAM [95], where

the pose-graph is divided into metric neighborhoods of views bounded by physical location and

view attitude. Each view is an example of how the neighborhood looked at the time it was col-

lected. They then present a least-recently-used view deletion algorithm, which limits the number

of exemplars per neighborhood to a fixed number and encourages a long-term equilibrium with the

minimum set of exemplars that explains the visual variation of that neighborhood. Churchill and

Newman [36] use sequences of views, termed “experiences,” as the basic unit of the temporal map

instead of individual views. New experiences are added to the map when the existing experiences

are unable to explain the current observations.

The remainder of this section is outlined as follows: We first describe our LIDAR-based SLAM

system and propose several complexity management schemes that use GLC node removal in §4.2.

The LIDAR-based system is used to experimentally evaluate the effects of the repeated application

of GLC node removal in §4.3. In §4.4, we present a vision-based SLAM system that uses GLC

node removal to maintain an exemplar-based representation of the environment, and the learned

feature descriptors to perform image registration. The visual SLAM system is then evaluated in
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§4.5. Finally, §4.6 and §4.7 offer a discussion and concluding remarks.

4.2 Long-Term LIDAR-Based SLAM using GLC Node Removal

We first consider the LIDAR-based SLAM system. This system was designed for the Segway

robotic platform that collected the North Campus dataset (Appendix A). This system performs

pose SLAM (Fig. 1.1(c)) using the Velodyne HDL-32E LIDAR (Appendix A) as the primary sens-

ing modality.

The Velodyne has 32 lasers mounted on a platform that spins about its vertical axis at 10 Hz

to provide a full 360 degree azimuthal field of view. Each pose in the graph is associated with a

sparse 3D point cloud around the robot corresponding to one revolution of the Velodyne. We derive

relative constraints between poses by registering two scans using Normal Distributions Transform

scan matching [106]. This allows one to directly observe the full 3D rigid-body transformation

between two poses.

Odometry is estimated with an extended Kalman filter (EKF) that uses a differential-drive pro-

cess model and integrates measurements from the Segway’s wheel encoders, a commodity inertial

measurement unit that observes roll and pitch, and a single-axis fiber optic gyro that observes

change in heading. The odometry model is described in detail in Appendix A.5. In order to pro-

duce relative odometry constraints between poses, the EKF tracks the current pose of the robot

and the pose of the last node added to the graph in a delayed-state framework [52]. When we

wish to add a new node to the graph, we can compute the relative transform from the last node to

the current robot pose. Because the delayed-state EKF tracks the correlation between the current

robot pose and the last node added to the graph, we can also compute the uncertainty of the odom-

etry constraint as described by Smith et al. [152]. We then marginalize out the old node from the

delayed-state filter, augment the state with the new node, and continue to track the current pose of

the robot. In our experiments, new nodes are added to the graph whenever odometry indicates that

the robot has moved more than 3 m.

When available, measurements from a consumer-grade GPS are also added as xy prior factors

in the SLAM graph. Note that GPS is unavailable for the indoor portions of the robot’s trajectory.

Additionally, GPS is available but suffers from a restricted view of the sky and possible multi-path

effects (Fig. A.3) through large portions of the trajectory near tall buildings.

LIDAR loop-closures are proposed based on the current SLAM estimate. First, a rough set of

loop-closure candidates are proposed based on the mean of the state estimate. For each of these

candidates, the joint marginal covariance of the current pose and the candidate pose is recovered.
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Using this covariance we estimate the probability that a node lies within the basin of convergence

of the scan matching algorithm (approximately 6 m). If this probability is sufficiently high (>

25% in our experiments), we consider this node as a valid candidate. We only try to register a

maximum of three loop-closures for each new node to limit the computational resources spent on

scan matching. If we have more than three valid candidates (very common in areas that have been

visited multiple times), we prioritize the candidates based on the expected information gain of a

successful measurement as proposed by Ila et al. [75].

To prevent the inclusion of outlier loop-closures and GPS measurements, we gate new measure-

ments based on the Mahalanobis distance between the measurement and the current estimate of the

state. We found this to be sufficient and did not use robust-optimization methods [2, 133, 158].

4.2.1 Node Removal Schemes for LIDAR-Based SLAM

Having described our LIDAR-based SLAM system, we now propose four GLC-based graph

management schemes: two that are performed as a batch step between each mapping session and

two that remove nodes as the robot moves through the environment. In each case, we attempt to

produce a graph that has a complexity dictated primarily by spatial extent and not by mapping

duration. Therefore, we seek to remove spatially redundant nodes. The definition of spatially

redundant nodes varies depending on the motion constraints of the robot and its sensing modalities.

We only consider translation in the ground plane as our system is designed for a ground robot

with 3D LIDAR that has an unobstructed 360 degree view of the environment. Additionally, we

only seek to keep one example view per location as the 3D structure of the environment changes

infrequently. Therefore, a node is considered redundant if any other node is within 3 m. This

will be relaxed when we consider the vision-based system in §4.4 to allow for multiple views per

location.

In the following sections, we will refer to each of the experimental complexity schemes using

the abbreviated names in Table 4.1.

Table 4.1 Experimental LIDAR SLAM Complexity Management Schemes

Scheme Description

Batch-MR Batch - Keep most recent (Alg. 1)

Batch-ND Batch - Keep highest node degree (Alg. 2)

Online-RPG Online - Emulate reduced pose graph (Alg. 3)

Online-MR Online - Keep most recent (Alg. 4)
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Algorithm 1 Batch Node Removal: Keep most recent

1: Given nodes in graph, nodes = {n0 . . . nm}
2: nodes = sort by time descending(nodes)
3: keep = {n0}
4: for all ni in nodes do

5: if is not spatially redundant(ni, keep) then

6: keep = keep ∪ ni
7: end if

8: end for

9: GLC remove(nodes \ keep)

4.2.2 Batch Multi-Session Node Removal

We first consider a multi-session scenario where the robot repeatedly performs SLAM in dis-

crete sessions. Under these conditions, node removal can be performed between sessions as a

batch operation. In oversampled regions, we seek to keep the most recently added nodes as this

allows the map to adapt to the changing environment; for example, there were several locations

undergoing construction during our data collection. As we pass through these regions multiple

times, old nodes that are spatially redundant should be removed, while new nodes capturing the

changing structure should be kept. Essentially, the map can march forward in time, replacing

old observations with new ones. In practice, this is performed by sorting the nodes according to

their instantiation time, and then looping through the nodes in order, keeping each node that is

“sufficiently far” from all other nodes currently being kept. This is detailed in Algorithm 1.

This strategy, however, only considers when a node was added. Depending on the application,

additional information about each node may be available and may lead to different criteria. As

an example, we consider that some nodes in the graph may be more useful for registration than

others. Nodes that have been successfully registered against many times may be good candidates to

keep in the graph; first, because they occur in locations that the robot repeatedly visits and second,

because the observation is such that registration is repeatedly successful. Therefore, if we first sort

by node degree (the number of edges connected to a node) and then remove nodes as before, we

have a strategy that encourages the retention of useful nodes, as detailed in Algorithm 2. Note that

many nodes will have the same node degree and instantiation time is used as a secondary criteria

in the case of a tie.
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Algorithm 2 Batch Node Removal: Keep highest node degree

1: Given nodes in graph, nodes = {n0 . . . nm}
2: nodes = sort by node degree descending(nodes)
3: keep = {n0}
4: for all ni in nodes do

5: if is not spatially redundant(ni, keep) then

6: keep = keep ∪ ni
7: end if

8: end for

9: GLC remove(nodes \ keep)

Algorithm 3 Online Node Removal: Emulate reduced pose graph

1: Given previous nodes in graph, nodes = {n0 . . . nm}
2: Given recent node nm+1

3: neighbors = get redundant neighbors(nm+1, nodes)
4: if neighbors 6= ∅ then

5: GLC remove(nm+1)
6: end if

4.2.3 Online Node Removal

The first online node removal scheme we consider emulates the complexity reduction scheme

proposed in [79], but uses GLC instead of measurement composition. In this method, referred

to as the “Reduced Pose Graph,” a new node is not added when the current pose is spatially re-

dundant. Instead, the measurements from the current pose are used to add constraints between

existing nodes. Conceptually, this can be thought of as temporarily adding the current node to the

graph, adding its measurements and then marginalizing out the current node. This practice will

add constraints between the existing nodes without permanently adding a new redundant node. We

can, therefore, easily emulate this strategy by performing GLC node removal to remove recently-

added redundant nodes, as detailed in Algorithm 3. Given a recently added node we look for its

spatially redundant neighbors (i.e., nodes that are sufficiently close to the new node so as to make

it redundant). If any spatially redundant neighbors are found, the recently-added node is removed.

From a data association perspective, the Reduced Pose Graph formulation may not be ideal as

it keeps the first sensory sample of a given location and avoids adding all subsequent observations.

We therefore consider an online scheme that does exactly the opposite; instead of removing the

recent node, we remove the neighbors that are made redundant by the recent node, as detailed in

Algorithm 4. This is essentially an online version of Algorithm 1.
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Algorithm 4 Online Node Removal: Keep most recent

1: Given previous nodes in graph, nodes = {n0 . . . nm}
2: Given recent node nm+1

3: neighbors = get redundant neighbors(nm+1, nodes)
4: GLC remove(neighbors)

4.3 Experimental Evaluation of Long-Term LIDAR-Based SLAM

Figure 4.2 Graph comparison for LIDAR-based SLAM node removal schemes. The resulting graphs are shown after

27 mapping sessions using the proposed complexity management schemes (see Table 4.1). Links include odometry

(blue), 3D LIDAR scan matching (green) and generic linear constraints (magenta). The full graph without node

removal is shown as Full. The top row shows a top down view. The bottom row shows an oblique view scaled by time

in the z-axis; each layer along the z-axis represents a mapping session.

(a) Full

Top View

(b) Batch-MR

Top View

(c) Batch-ND

Top View

(d) Online-RPG

Top View

(e) Online-MR

Top View

(f) Full

Time Scaled

(g) Batch-MR

Time Scaled

(h) Batch-ND

Time Scaled

(i) Online-RPG

Time Scaled

(j) Online-MR

Time Scaled

In order to validate the proposed LIDAR SLAM system and its associated GLC complexity

management schemes, we use the North Campus dataset (Appendix A). A ground-truth graph

was created from all trajectories without node removal and with the addition of constraints from a

highly accurate RTK GPS system. GLC was implemented using iSAM [85, 86] as the underlying

optimization engine. The code is available for download within the iSAM repository [87].

The graphs for each proposed method at the end of the last full run are shown in Fig. 4.2. In the

bottom row, by scaling the z-axis according to time, we can clearly see the effects of the different

node removal schemes. Using Batch-MR, we see that the most recent session is well-connected

to the previous session with some sparse connectivity to older nodes in the graph. Batch-ND

produces similar results but with more connectivity to previous nodes, which have been kept due

to a high node degree. Online-MR has also removed the bulk of the nodes from previous sessions,

additionally removing those from the penultimate session. In contrast, Online-RPG has kept its

85



earliest observations of each location and removed newer nodes adding connectivity between older

nodes.

4.3.1 Error with Respect to Ground-Truth

Figure 4.3 Error in GLC reduced graphs for LIDAR-based SLAM. Mean errors for translation (
√

δ2x + δ2y + δ2z ) and

attitude (
√

δ2r + δ2p + δ2h) are computed with respect to RTK-based ground-truth at the end of each mapping session

for batch and online node removal methods. 5% and 95% percentile bounds are denoted with dashed lines. Errors

for the node removal methods are compared against the errors for the full graph from which no nodes were removed

(black).
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(b) Attitude Error

First, we consider the performance of each complexity management scheme in terms of trans-

lation and attitude error from the ground-truth. We include a full graph that was built without

node removal as a baseline (Fig. 4.3). Note that this full graph does not include the RTK GPS and

therefore is not the same as the ground-truth graph. We see all methods produce estimates with

error similar to the full graph, with the online methods having slightly higher error than the batch

methods in general. It is worth noting that by the end of each session, before batch sparsification,

the batch methods will have almost double the number of nodes as the online methods, potentially

allowing for more informative loop-closures (Fig. 4.4(a)). The Online-RPG method produces the

highest error. This is most likely due to the fact that data association becomes more difficult as the

environment changes with time, as described in §4.2.3.

4.3.2 Computational Complexity

Though the graphs produced with GLC node removal have a similar or slightly higher error

than the full graph, they are vastly less computationally complex. We see in Fig. 4.4 that all

schemes limit the number of nodes and factors to be essentially constant as only small additions
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Figure 4.4 Graph complexity for LIDAR-based SLAM. Note that for batch methods the complexity statistics are

recorded at the end of each session immediately before node removal.
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(b) Number of Factors
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(c) Graph Sparsity

Figure 4.5 Graph optimization time for LIDAR-based SLAM. The mean CPU time for incremental and batch iSAM

optimization update steps, and for GLC node removal, is plotted in seconds.
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(a) Incremental Updates
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(b) Batch Updates
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(c) GLC Node Removal

to the spatial extent of the map are made after the first session, with no method exceeding 4,000

nodes or 15,000 factors. In comparison, the full graph grows linearly ending with over 46,000

nodes and 200,000 factors. We also see that the sparsity of the measurement Cholesky Factor, R,

is nearly constant, with Online-RPG growing the fastest as new connectivity is added between old

nodes when newer nodes are removed. Note, however, that even for Online-RPG the maximum fill

in is 0.4%, which is still quite sparse.

As new nodes and factors are added to the graph, iSAM performs two different types of updates:

an incremental update, where the solution is updated without relinearization, and a batch update,

where the solution is repeatedly relinearized and solved until convergence. In our experiments,

the batch optimization update was called every 50 incremental updates. In Fig. 4.5, we see that in

the full graph, the computation time for incremental and batch update steps grows super-linearly,

while the proposed methods remain roughly constant (Fig. 4.5(a) and 4.5(b)). The time to remove

a node using GLC is also relatively constant on the order of 10 ms (Fig. 4.5(c))—though slightly

higher in the case of Online-RPG due to the higher connectivity density.

It is important to note that not all methods perform the same number of incremental and batch

update steps. iSAM requires a batch optimization step after node removal and it is desirable to
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be as close to the optimal as possible before creating new GLC constraints. Therefore, in the

Online-RPG and Online-MR schemes, we wait until 10 nodes have been flagged for removal,

and then perform a batch-relinearization optimization step immediately before and after removing

them. This results in the batch optimization step being called more often for the Online-RPG and

Online-MR schemes. The total processing time for the 34.9 h of logged data, including graph

optimization, node removal, data association and scan matching, took 58.7 h for the full graph.

When using the proposed complexity management schemes, total processing times were reduced

to 6.1 h for Batch-MR, 6.3 h for Batch-ND, 7.9 h for Online-RPG, and 6.8 h for Online-MR, which

is at least 4.4 times faster than real-time and 7.4 times faster then the full-graph optimization.

4.3.3 Distribution Comparison

In the previous experiment, each complexity management scheme elects to remove a different

set of nodes, and therefore, the robot will make different data association decisions, resulting in

fundamentally different graphs. In order to isolate the effects of GLC, we wish to directly compare

the distribution produced by repeatedly applying sparse-approximate GLC node removal to a full

distribution derived using the exact same measurements, from which no nodes have been removed.

This can be done for the batch methods by accumulating the measurements from each session into

one large graph. The results of this comparison are shown in Fig. 4.6. Here, we see that repeatedly

applying sparse approximate GLC node removal will produce a difference in the estimates from

the full graph, though the difference remains low, both in terms of mean (Fig. 4.6(a) and 4.6(b))

and Kullback-Leibler divergence (KLD) (Fig. 4.6(c)). In Fig. 4.6(d), we consider the eigenvalues

of the difference between the marginal covariances of the GLC-derived and the full distribution,

eig(ΣGLC
ii − ΣFULL

ii ). In the ideal case the eigenvalues of this difference will be zero, indicating

perfect agreement between GLC and the true marginalization. Values larger than zero indicate

conservative estimates while those less than zero indicate over-confidence. We can see that the

reduced graph is generally conservative (positive values). However, the minimum of this range is

slightly negative, indicating that, in some dimensions, the reduced graph is not perfectly conser-

vative. Guaranteeing a conservative approximation, while still producing a low KLD, is possible

using the techniques proposed in §2.5. However, we do not consider this small overconfidence

significant enough to warrant the use of these techniques for this dataset, and therefore, elect to use

the Chow-Liu tree (CLT) sparse approximation.
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Figure 4.6 LIDAR-based SLAM distribution comparison. The estimated distributions using batch methods are com-

pared with the estimated distributions using the same measurements but without node removal. Translation error (a)

is defined as
√

δ2x + δ2y + δ2z and attitude error (b) as
√

δ2r + δ2p + δ2h. The average KLD between resulting marginal

covariances for each node are shown in (c). By looking at the range of the eigenvalues of the difference between the

covariances of the GLC-derived marginals and full graph’s marginals, eig(ΣGLC
ii − ΣFULL

ii ), (d) we can see that the

reduced graph is mostly conservative (positive values). 5% and 95% percentile bounds are denoted with dashed lines.
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(b) Attitude Error
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4.4 Long-Term Visual SLAM in Dynamic Environments

We now consider the vision-based SLAM system. Even though it is possible to perform land-

mark SLAM (Fig. 1.1(a)) with features derived from imagery, we elect to perform pose SLAM

(Fig. 1.1(c)) to avoid having to estimate the millions of 3D feature points that would exist in an

environment the size of the North Campus dataset.

On the Segway platform, imagery is collected using a Ladybug3 omni-directional camera sys-

tem (Appendix A). This system uses six cameras to collect imagery in a hemisphere around the

vehicle. Each pose in the graph is associated with five monocular images from the cameras that

image in a horizontal ring around the robot. We ignore the upward facing camera because it usually

captures the sky and is often overexposed. Given two poses and their associated images, we derive

relative constraints between the poses by registering pairs of monocular images.

To generate visual loop-closures, we start with a set of candidate poses proposed based on the

current SLAM estimate as in §4.2. Each candidate pose has five images that may match with the

five images associated with the current pose. Features are extracted from each image using the

convolutional multi-layer perceptron (CMLP) learned feature descriptor proposed in Chapter III.

We then seek to establish feature correspondence between the two sets of images. One could

directly search for correspondences between the two sets of images by lumping all features together

and simply searching for the best matches between the two aggregated feature sets. Unfortunately,

aggregating all the features together can make matching significantly more difficult. To avoid

ambiguous matches, it is common to use the second-nearest-neighbor test [104], which ensures

that a pair of features match only if the match is significantly better than any other possible match.

In a very large set of features, it is more likely that a feature will be close to more than one other

feature and will not be matched due to failing the second-nearest-neighbor test. However, if we

can reduce the set of possible matches, we can increase our confidence in weaker matches [23, 54].

To do so, we use the heading from the current SLAM estimate to predict which pairs of images

overlap and then limit the correspondence search between pairs of images. In our experiments, we

only attempt to match images with approximately 60% overlap or better. A similar approach was

presented by Pandey et al. [138].

Given the feature correspondences between two images, we use the standard two-view regis-

tration techniques outlined in §1.1.2.2 to produce constraints between the two poses. Note that the

constraints derived from monocular imagery cannot observe the scale of the relative transform and

only constrain five of the six degree of freedoms (DOFs). Observations of scale are provided by

the graph’s odometry backbone and GPS when it is available.
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We note that many SLAM systems elect to use a place recognition method to propose loop-

closure (see §1.2.5). Even though our experiments do not use place recognition, there is nothing

in the system that prevents the use of place recognition as an alternative method to propose loop-

closures.

Odometry and GPS constraints are computed and integrated exactly as in the LIDAR SLAM

system in §4.2. Again, new nodes are added to the graph whenever the odometry indicates the

robot has moved more than 3 m.

To prevent the inclusion of outlier loop-closures and GPS measurements, we gate new mea-

surements based on the Mahalanobis distance between the measurement and the current estimate

of the state. Even with this gating, we found it beneficial to apply the Dynamic Covariance Scaling

M-estimator proposed by Agarwal et al. [2] to the 5-DOF constraints produced by image registra-

tion as proposed in [135].

4.4.1 Exemplar Update Scheme

Like the node removal schemes for the LIDAR SLAM system, the goal of each visual exemplar

update scheme is to remove spatially redundant poses so that the size of the graph does not grow

unbounded with time. However, because of the additional data association challenges specific to

vision (§1.1.2.3), we relax the constraint that only one node be allowed per spatial neighborhood.

To model how a place might vary in appearance with time we allow up to max sr nodes spatially

redundant nodes. With the proposed exemplar update schemes we seek to maintain sufficient

variety of example views while removing nodes from the graph so visual registration continues

to be successful. For each scheme, we start with the current nodes and two user-defined limits:

the maximum number of nodes allowed in the graph, max nodes, and the maximum number of

spatially redundant nodes, max sr nodes. By setting max nodes, one can control the overall

computational complexity of the graph. If the spatial extent of the environment is known, as it is

in our experiments, one can simply set a value. Otherwise one could set max nodes based on the

area covered by the robot. Setting max sr nodes to a value greater than one, allows for multiple

example views of the same location. In our experiments max sr nodes was set to 3.

It is interesting to consider the relationship between the maximum number of nodes per neigh-

borhood, max sr nodes, and a total maximum number of nodes in the graph, max nodes. If

we do not enforce max nodes, then every neighborhood will fill until max sr nodes is reached.

However, when the max nodes constraint is active, some neighborhoods will have fewer than

max sr nodes nodes. It is even possible that no nodes will be kept in areas of the environment

where data association is consistently poor.
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Algorithm 5 Batch Node Removal: Keep most recent

1: Given nodes in graph, nodes = {n0 . . . nm}, max nodes, and max sr nodes
2: nodes = sort by time descending(nodes)
3: keep = {n0}
4: for all ni in nodes do

5: if spatially redundant cnt(ni, keep) < max sr nodes and len(keep) < max nodes then

6: keep = keep ∪ ni
7: end if

8: end for

9: GLC remove(nodes \ keep)

We elect to use batch removal between sessions as it produced the best results in the LIDAR

SLAM system. As in §4.2, nodes within 3 m of each other are considered to be spatially redundant.

Note that we do not consider heading because omni-directional imagery is used. We will refer to

each of the experimental complexity schemes using the abbreviated names in Table 4.2.

Table 4.2 Experimental Visual SLAM Exemplar Update Schemes

Scheme Description

Batch-MR Batch - Keep most recent (Alg. 5)

Batch-CND Batch - Keep camera node degree (Alg. 6)

Batch-CMR Batch - Keep camera most recent (Alg. 7)

The first scheme is the Batch-MR method proposed in §4.2, which keeps the most recent nodes

in oversampled regions, allowing the map to adapt to the changing environment. For use in the

vision system, we relax the constraint that there be no spatially redundant nodes and allow up to

max sr nodes nodes per location while enforcing that the total number of nodes in the graph is

less than max nodes. The updated Batch-MR scheme is detailed in Algorithm 5.

The Batch-MR scheme does not consider how useful the imagery at a node may be for data as-

sociation. Some regions of the trajectory may have imagery that is consistently difficult to register.

Nodes in these regions should be given low priority when selecting the nodes to keep. In the North

Campus dataset, this happens frequently when the robot passes through open parking lots or areas

with trees on both sides of the path. To account for this, we track each time a node is successfully

used to produce a measurement. We can then sort the nodes based on the number of times they

have been used in a measurement. In the case of a tie, we favor nodes that have been used in a

measurement more recently to move the example views forward through time. Once the nodes are

sorted, we greedily select nodes to keep until the max sr nodes and max nodes constraints pre-

vent including any more. This method is referred to as Batch-CND and is detailed in Algorithm 6.
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Algorithm 6 Batch Node Removal: Keep camera node degree

1: Given nodes in graph, nodes = {n0 . . . nm}, max nodes, and max sr nodes
2: nodes = sort by num cam meas descending(nodes)
3: keep = {n0}
4: for all ni in nodes do

5: if spatially redundant cnt(ni, keep) < max sr nodes and len(keep) < max nodes then

6: keep = keep ∪ ni
7: end if

8: end for

9: GLC remove(nodes \ keep)

Algorithm 7 Batch Node Removal: Keep camera most recent

1: Given nodes in graph, nodes = {n0 . . . nm}, max nodes, and max sr nodes
2: nodes = sort by cam meas time descending(nodes)
3: keep = {n0}
4: for all ni in nodes do

5: if spatially redundant cnt(ni, keep) < max sr nodes and len(keep) < max nodes then

6: keep = keep ∪ ni
7: end if

8: end for

9: GLC remove(nodes \ keep)

This scheme is analogous to the Batch-ND scheme proposed for LIDAR SLAM, however, instead

of just considering node degree (which could be caused by odometry, scan matching, GPS, and

GLC factors), we focus specifically on the number of camera factors.

One potential pitfall of the Batch-CND scheme is when the environment drastically changes

(e.g., due to construction or the changing of seasons) it may take a long time for well established

nodes that have produced many successful measurements to be replaced—even though they are

no longer valid. One option to prevent this lag is to prioritize nodes that have recently been used

to produce a camera constraint. We implement this in a scheme referred to as Batch-CMR. In

this scheme, nodes are first sorted by the time of their most-recent camera measurement. To break

ties, which occur because all nodes that match a new node have the same most-recent measurement

time, we fall back on the number of camera measurements to retain nodes that have been repeatedly

useful. The Batch-CMR scheme is detailed in Algorithm 7.
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Figure 4.7 Graph comparison for vision-based SLAM node removal schemes. The resulting graphs are shown after

27 mapping sessions using the proposed complexity management schemes (see Table 4.2). Links include odometry

(blue), 5-DOF camera constraints (cyan) and GLCs (magenta). The top row shows a top down view. The bottom row

shows an oblique view scaled by time in the z-axis; each layer along the z-axis represents a mapping session.

(a) Batch-MR Top View (b) Batch-CND Top View (c) Batch-CMR Top View

(d) Batch-MR Time Scaled (e) Batch-CND Time Scaled (f) Batch-CMR Time Scaled

4.5 Experimental Evaluation of GLC Long-Term Visual SLAM

We first compare the proposed exemplar update schemes using the CMLP learned features. We

limit the total number of nodes in the graph to max nodes = 4000 and limit the number of nodes

in each neighborhood to max sr nodes = 3. From the evaluation of the LIDAR SLAM system,

we know that a graph with 4000 nodes is computationally feasible for our system. Additionally,

it takes just over 2000 nodes to sample the entire space of trajectories with a single node for each

3 m neighborhood. Therefore, the max nodes = 4000 constraint will limit the average number

of nodes per neighborhood to approximately 2, though the distribution will vary depending on the

update scheme.

Fig. 4.7 shows the graphs for each method at the end of the last session. We see that the Batch-

MR scheme (Fig. 4.7(a) and (d)) only has nodes from the previous two to three sessions, having

removed all older nodes. Both the Batch-CND (Fig. 4.7(b) and (e)) and Batch-CMR (Fig. 4.7(c)

and (f)) schemes maintain some older nodes that have proven sufficiently useful for visual regis-

tration.

We compare the error from ground-truth at the end of each session for the node removal

schemes in Fig. 4.8(a) and (b). In these plots, we also show the results for a graph using only

odometry and GPS constraints (to highlight the contribution of the visual constraints) and the
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Figure 4.8 Comparison of exemplar update schemes for vision-based SLAM. In (a) and (b), we compare the mean

error for translation (
√

δ2x + δ2y + δ2z ) and attitude (
√

δ2r + δ2p + δ2h) with respect to RTK-based ground-truth at the end

of each mapping session for our proposed node removal methods (5% and 95% percentile bounds are denoted with

dashed lines). As a comparison, errors for a SLAM solution that ignores the visual data and only includes GPS and

odometry constraints, and for the Batch-MR LIDAR SLAM solution are also provided. In (c), we show the number of

successful image registrations that have been integrated into the graph at the end of each session. In (d) and (e), we

show the average incremental and batch update time for each scheme.
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(a) Translation Error
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(b) Attitude Error
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(c) Camera Factors
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(d) Incremental Update Time
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LIDAR Batch-MR result (as a performance benchmark). We see that all of the methods have a

very low error, comparable with that of the LIDAR systems for the first 16 sessions. After this

point the visual methods begin to accrue more error, with the Batch-CND and Batch-CMR slightly

outperforming Batch-MR.

Investigating the graphs around the 16th session more closely, we see that errors increase when

a large construction project restricted the trajectories on the north side of campus to a long, dis-

connected, feature-poor path. These changes are illustrated in Fig. 4.9 using the Batch-MR graph,

which quickly removes nodes from areas that have not been visited recently. Prior to Session 16,

the area highlighted in green in Fig. 4.9(a) was accessible and many of the sessions passed through

this area. This area was closed from Session 18 onward due to a large construction project, as high-

lighted in red in Fig. 4.9(b). All subsequent sessions were restricted to the path along the north of

the construction site (Fig. 4.9(c)). This path follows a road lined with trees and lawn. Views of

more interesting structure were blocked by a tall, screened construction fence (Fig. 4.9(d)). Af-

ter returning from this long and poorly-constrained path, several trajectories accepted poor loop-

closures and failed to tightly integrate back into the graph. This causes an increase in error for

these trajectories and all subsequent trajectories as new images register to them. This challenging

feature-poor area of the environment affected all the visual methods—highlighting that challenges

still remain for vision-based SLAM front ends.

Figure 4.9 Change in the route caused by construction. The change in route is shown with the Batch-MR graph, which

quickly removes nodes from areas that have not been visited recently. Prior to Session 16, the area highlighted in green

was accessible, and many of the sessions passed through this area. This area was closed from Session 18 onward, as

highlighted in red. All subsequent sessions were restricted to the path along the north of the construction site. Sample

imagery from this path is shown in (d).

(a) Session 16 (b) Session 18 (c) Session 22

(d) Sample Imagery

In Fig. 4.8(c) we show the number of successful camera constraints that have been integrated
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into the graph at the end of each session. We see that each of the methods produces roughly

the same number of successful image constraints. In Fig. 4.8(d) and (e) we show the average

incremental and batch update times. For all methods, these times level out as we reach the

max nodes = 4000 limit. The Batch-CND and Batch-CMR schemes are noticeably more compu-

tationally expensive as they retain more of the original camera factors that have not been folded

into the reduced set of GLC factors. The total processing time for the 34.9 h of logged data, in-

cluding graph optimization, node removal, feature extraction, and image registration, took around

24 h for each of the methods, which is about 1.5 times faster than real-time. Note that the bulk of

this time, around 16 h, was spent on feature extraction.

In Figures 4.10, 4.11, 4.12, and 4.13 we show example imagery from four different neighbor-

hoods. Each row represents the example views at the end of a session, up to max sr nodes = 3.

In Fig. 4.10, we see a feature-rich indoor scene that establishes a relatively stable set of example

views. Fig. 4.11 shows an outdoor scene where the example views cycle through various lighting

conditions. We see variation in example views capturing changes in foliage in Fig. 4.12 and snow

in Fig. 4.13.

We experimentally evaluate the effect of maintaining multiple example views per location by

comparing the Batch-CND scheme with three example views per neighborhood and with one ex-

ample view per neighborhood. The results of this comparison in terms of error and number of

camera factors is shown in Fig. 4.14. Surprisingly, the algorithm finds no benefit in maintaining

more than one example view, even though the visual inspection of the example views indicates

that they are capturing some of the appearance variation of the neighborhoods. There are several

reasons why this may be the case: First, we only propose a maximum of 20 camera factors for

every new node to limit the computation cost of data association. With more example views per

neighborhood, we may need to consider significantly more potential factors. Second, potential

camera factors are prioritized by their expected information gain [75]. This is a good choice for

the underlying optimization problem, but it does not consider the example view representation of

a neighborhood. Here, place recognition, or a method specifically designed for exemplar-based

maps, such as our preliminary work in [24], may be more appropriate.

Finally, we consider the effect of the learned feature descriptors on the SLAM system. To

do so we use the Batch-CND scheme with the learned CMLP and multi-layer perceptron (MLP)

features proposed in Chapter III and the commonly-used scale invariant feature transform (SIFT)

feature. We see in Fig. 4.15(c) that the CMLP successfully registers significantly more links than

MLP and SIFT, corroborating the results from Chapter III. However, simply making more camera

constraints did not directly translate into a reduction in error, with all features having similar errors
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Figure 4.10 Sample Batch-CND exemplars inside the CSE building. Each row represents the exemplars (up to three)

for this location at the end of a session. 14 of the 27 sessions are shown.
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Figure 4.11 Sample Batch-CND exemplars outside the CSE building. Each row represents the exemplars (up to three)

for this location at the end of a session. 14 of the 27 sessions are shown.
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Figure 4.12 Sample Batch-CND exemplars outside the EECS building. Each row represents the exemplars (up to

three) for this location at the end of a session. 14 of the 27 sessions are shown.
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Figure 4.13 Sample Batch-CND exemplars outside the Duderstadt center. Each row represents the exemplars (up to

three) for this location at the end of a session. 14 of the 27 sessions are shown.
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Figure 4.14 Effect of multiple exemplars for vision-based SLAM. In (a) and (b), we compare the mean error for

translation (
√

δ2x + δ2y + δ2z ) and attitude (
√

δ2r + δ2p + δ2h) with respect to RTK-based ground-truth at the end of each

mapping session with a maximum of one or three example views per neighborhood. 5% and 95% percentile bounds

are denoted with dashed lines. In (c), we show the number of successful image registrations that have been integrated

into the graph at the end of each session.
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(b) Attitude Error
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(c) Camera Factors

Figure 4.15 Comparison of visual feature descriptors for vision-based SLAM. In (a) and (b), we compare the mean

error for translation (
√

δ2x + δ2y + δ2z ) and attitude (
√

δ2r + δ2p + δ2h) with respect to RTK-based ground-truth at the end

of each mapping session with the two learned features proposed in Chapter III and the standard SIFT feature. 5% and

95% percentile bounds are denoted with dashed lines. In (c), we show the number of successful image registrations

that have been integrated into the graph at the end of each session.

5 10 15 20 25
0

2

4

6

8

Session

M
e

a
n

 T
ra

n
s
la

ti
o

n
 E

rr
o

r 
(m

)

 

 

CMLP��
MLP
SIFT

(a) Translation Error

5 10 15 20 25
0

1

2

3

4

5

Session

M
e

a
n

 A
tt

it
u

d
e

 E
rr

o
r 

(d
e

g
)

 

 

CMLP��
MLP
SIFT

(b) Attitude Error

5 10 15 20 25
0

1

2

3

4

5

6
x 10

4

Session

N
u

m
b

e
r 

o
f 

C
a

m
e

ra
 C

o
n

s
tr

a
in

ts

 

 

CMLP��
MLP
SIFT

(c) Camera Factors

102



(Fig. 4.15(a) and (a)). We suspect that, because the Segway robot has very good odometry, yielding

a strong odometry backbone, the number of links does not strongly affect the accuracy. A small

number of good loop-closures spread evenly throughout the trajectory may be sufficient to correct

the odometry. This may not be true on other robotic platforms with weaker odometry.

4.6 Discussion

4.6.1 Using GLC Node Removal to Control Long-Term SLAM Computational Complexity

Having compared four different complexity management schemes based on GLC node re-

moval, we can highlight some things to consider when designing new schemes:

• Removing larger sets of nodes less often produces better results than removing small sets of

nodes more often. Note that there is not a binary difference between online and batch node

removal, it is just a matter of how long nodes are left in the graph before removal.

• Even though the GLC constraints are reparameterized in terms of relative transforms, they

still commit to a relative linearization point. Therefore, it is desirable that the relative trans-

forms be as close as possible to the optimal solution before node removal. The graph should

be optimized as well as possible before node removal.

• When removing a set of nodes, it is important to note that the order in which they are re-

moved affects the resulting graph connectivity. Experimentally, we found that removing long

chains of nodes sequentially sometimes produced large star shaped trees in the graph, which

slowed subsequent node removal. To avoid this, sets of nodes were removed in a randomized

order in all experiments. The variable elimination ordering problem [92] is well-studied for

dense node removal. The application and adaptation of existing variable elimination ordering

strategies for node removal with sparse connectivity could further improve the performance

of GLC-based complexity management schemes. Toward this, we have compared the ran-

domized ordering used in this thesis with a greedy minimum-degree ordering. Preliminary

results indicate that the minimum-degree ordering can significantly reduce the time it takes

to remove nodes from the graph. However, it does not seem to impact the quality of the

resulting sparse approximation.
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4.6.2 Long-Term Visual SLAM

Compared to the LIDAR SLAM system, there are several areas where the exemplar-based

visual SLAM system proposed in this chapter could be improved:

• The increase in error after session 16 (§4.5) indicates that there is still significant room for

improvement in visual data association in unstructured environments.

• Even though the exemplar update schemes qualitatively appear to capture interesting changes

in the visual appearance of the neighborhoods, this did not result in improved visual data

association (§4.5). It would be interesting to further explore how the variance in appearance

captured by the example views could be better exploited.

4.7 Chapter Summary

In this chapter, we demonstrated that GLC provides a principled and flexible tool that enables a

variety of complexity management schemes where pairwise measurement composition would nor-

mally be used. We proposed and evaluated four complexity management schemes based on GLC

node removal. Each method is shown to successfully solve a large-scale long-term SLAM problem

while greatly reducing the associated computational complexity. Additionally, we proposed and

evaluated a visual, exemplar-based SLAM using learned visual feature descriptors and GLC node

removal.
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CHAPTER V

Conclusion

Extending the capabilities of simultaneous localization and mapping (SLAM) systems operat-

ing for long-term periods of time in dynamic environment requires addressing two core problems:

First, the computational complexity of the SLAM optimization problem must not grow unbounded

with time. Many state-of-the-art graph SLAM formulations require that nodes be continuously

added to the graph for the robot to stay localized and preserve problem sparsity. Second, the

SLAM front-end must continue to function as the environment changes with time. While certain

short-term and small-scale dynamic changes can be considered as noise within the SLAM front-

end, truly long-term SLAM requires a front-end that explicitly accounts for dynamic changes in

the environment. This is especially true for vision-based SLAM where even the change in lighting

between morning and evening may be enough to break state-of-the-art systems. In this thesis, we

have produced the following contributions that seek to address these challenges:

• We have collected a challenging dataset on the University of Michigan’s North Campus

appropriate for the evaluation of long-term SLAM systems (Appendix A). Using our Segway

robotic platform, we collected imagery and light detection and ranging (LIDAR) data from

January 2012 to April 2013. In addition to allowing us to throughly evaluate the proposed

algorithms throughout this thesis, we plan to release this dataset to the community.

• In Chapter II, we proposed a factor-based method for node removal in graph SLAM that

addresses the shortcomings of measurement composition. The proposed method, which

we refer to as generic linear constraint (GLC), is able to produce a new set of constraints

over the marginalization clique that can represent either the true marginalization, or a sparse

approximation of the true marginalization. We experimentally demonstrate that GLC can be

used to provide an accurate approximation of marginalization when removing a large number
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of nodes from a SLAM graph. We also present several methods that ensure a conservative

approximation of the true marginalization.

• In Chapter III, we presented a method to learn visual feature point descriptors that are more

robust to changes in scene lighting than standard hand-designed features. We demonstrated

that, by tracking feature points in time-lapse videos, one can easily generate training data

that captures how the visual appearance of interest points changes with lighting over time.

This training data was used to learn feature descriptors that map the image patches associated

with feature points to a lower-dimensional feature space where L2 distance provides good

discrimination between matching and non-matching image patches. We showed that our

learned feature descriptors outperformed standard hand-designed features on imagery from

the North Campus dataset.

• In Chapter IV, we proposed LIDAR- and vision-based SLAM systems capable of long-term

operation in dynamic environments. These systems leveraged the proposed GLC node re-

moval to control the computational complexity of the graph over time, and to actively pre-

serve a set of example views for each location. Using the LIDAR-based system, we exper-

imentally demonstrated that GLC node removal can be used to control the computational

complexity of long-term SLAM. We proposed an exemplar-based SLAM system that seeks

to address the challenges of long-term visual SLAM. We evaluated the use of the learned

feature descriptors from Chapter III, and several exemplar update schemes that actively seek

to maintain a small set of example views at each location in the map that capture how the

appearance of a location changes with time.

5.1 Future Directions

The methods and results developed in this thesis motivate several areas of future research.

5.1.1 Improving GLC Node Removal

Considering the GLC node removal method presented in Chapter II, there are several potential

avenues for future work:

• We have considered two classes of GLC node removal, fully-dense and a sparse tree approx-

imation. These classes represent the opposite ends of a spectrum of connectivity structures.
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Mazuran et al. [108] have shown that the addition of even a few additional edges can sub-

stantially reduce the Kullback-Leibler divergence (KLD) of the approximation while still

maintaining sufficient sparsity. Extending GLC to allow for a variety of sparse approxima-

tion structures is a promising avenue for improving its performance.

• GLC provides the best performance when nodes are well-constrained and near their true

optimal solution before they are removed. Committing to a linearization point, even if it is

strictly relative, can be detrimental if the linearization point is far from the optimal. It would

be beneficial to predict, based upon the graph, when nodes are sufficiently well-constrained

and can be removed accurately.

• When considering the application of sparse-approximate GLC, one must currently decide if

the Chow-Liu tree (CLT) or a guaranteed-conservative variant is most appropriate. We have

found experimentally that, in some cases, the guaranteed-conservative methods perform very

well and should be used in place of the CLT. In other cases, there is a significant increase

in the KLD when using the conservative methods, and one must choose, based on their ap-

plication requirements, if a low KLD is more important than the guarantee of a conservative

estimate. We currently have no method to predict when the guaranteed conservative methods

will perform well and rely on experimental evaluation before making a decision. A better un-

derstanding of the conditions where the conservative methods perform well would be useful

in the practical application of GLC.

• As mentioned in Chapter II, when removing a set of nodes it is important to note that the

order in which they are removed affects the resulting graph connectivity. To avoid remov-

ing long chains of nodes sequentially, we instead removed sets of nodes in a randomized

order in all experiments. The variable elimination ordering problem [92] is well-studied for

dense node removal. The application and adaptation of existing variable elimination ordering

strategies for node removal with sparse connectivity could further improve the performance

of GLC-based complexity management schemes. Toward this, we have compared the ran-

domized ordering used in this thesis with a greedy minimum-degree ordering. Preliminary

results indicate that the minimum-degree ordering can significantly reduce the time it takes

to remove nodes from the graph. However, it does not seem to impact the quality of the

resulting sparse approximation.
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5.1.2 Long-Term Visual Data Association

Long-term visual data association still faces many challenges if we hope to achieve results

that are truly competitive with specialized sensors like LIDAR. Vision-based SLAM systems can

struggle with natural, unstructured environments as described in §4.5. Additionally, there will

always be a trade-off between the discriminative power of local features and their robustness to

changes in visual appearance. We can try to improve local descriptors so that they are robust to

some changes, as in Chapter III, while still being sufficiently discriminative. However, it seems

unlikely that in very challenging scenarios the local appearance around key-points in an image

will be sufficiently consistent or discriminative to establish correspondence and perform geometric

registration. Recent works in whole-image place recognition, such as [38, 113, 126, 132, 151],

have shown very promising results on datasets with large changes in visual appearances. However,

if geometric image registration is desired, whole-image place recognition is not adequate by itself.

Methods that allow for both robust place recognition and robust geometric image registration using

a mid-level or hierarchical representation would be a very interesting area of future research. Ad-

ditionally, leveraging a more semantic understanding of the environment could lead to improved

image registration in dynamic environments.

5.1.3 Systems for Long-Term Mapping and Navigation

In most, if not all, long-term mapping and navigation applications, it will not make sense to

perform SLAM indefinitely. Adding new measurements to the graph provides diminishing returns,

and at some point adding further measurements will not result in a significantly better map. This

motivates a system that performs SLAM for a period of time and then switches to localization. De-

signing such a system raises many questions: How can we determine when further measurements

are no longer important? How do we account for the fact that the graph may be well constrained in

some areas but not others? How can we detect that a portion of a map has changed and “rebuild”

that area? It would be interesting to address these questions with systems that smoothly alternate

between localization and SLAM to build, utilize, and update a map as needed.
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APPENDIX A

North Campus Long-Term Dataset

In order to validate the algorithms proposed in this thesis, we have collected a challenging

long-term dataset on the University of Michigan’s North Campus. This dataset will be used for

evaluation throughout this thesis. The North Campus long-term dataset consists of data collected

by a Segway robotic platform, Fig. A.1(a), approximately biweekly, between January 8th, 2012 and

April 5th, 2013, on the University of Michigan’s North Campus. The Segway is outfitted with a

Ladybug3 omni-directional camera, a Velodyne HDL-32 3D LIDAR, two Hokuyo planar LIDARs,

an inertial measurement unit (IMU), a single-axis fiber optic gyro (FOG), consumer grade GPS,

and a RTK GPS for ground-truth.

A.1 Data Collection

The dataset contains 34.9 hours of logs covering 147.4 km of robot trajectory. The dataset

was collected in 27 discrete mapping sessions, Fig. A.1(b). Each session covers roughly the entire

mapped area, however, the path for each session is varied. We also varied the time of day for

each session—from early morning to just after dusk. Each session contains data from indoor

and outdoor environments. The dataset contains many dynamic elements, including pedestrians,

bicyclists, and vehicle traffic. Because we repeatedly traverse the same environment the dataset

also captures longer-term dynamics, including moving furniture, weather and lighting conditions,

seasonal changes, and two large construction projects. Sample imagery and lidar data are shown

in Fig. A.2(a) and Fig. A.2(b).

A.2 Sensors
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Figure A.1 The North Campus long-term dataset. The Segway robotic platform used for experimental data collection

is outfitted with an RTK GPS (1), omni-directional camera (2), 3D LIDAR (3), IMU (4), consumer-grade GPS (5),

1-axis FOG (6), 2D LIDARs (7), and CPU (8) (a). A sample trajectory from one session of data collection, overlaid

on satellite imagery is shown in (b).

(a) Segway Robot (b) Sample Trajectory

Figure A.2 Sample images and point cloud from North Campus dataset. Sample images from the dataset (only forward

camera shown) are shown in (a). A sample LIDAR point cloud from single session, colored by height above ground is

shown in (b).

(a) Sample Images (b) Sample Point Cloud
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The sensors collected in the dataset include:

(a) Velodyne HDL-32E LIDAR: The HDL-32E has 32 lasers mounted on a platform that spins

about its vertical axis to provide a full 360 degree azimuthal field of view. The range of the

sensor is 100 meters. We captured our dataset with the laser spinning at 10 Hz.

(b) Pointgrey Ladybug3 omni-directional camera: The Pointgrey Ladybug3 (LB3) is a high

resolution omni-directional camera system. It has six 2-Megapixel (1600x1200) cameras,

with five CCDs positioned in a horizontal ring and one positioned vertically, that enable the

system to collect video from more than 80% of the full sphere. We collected our dataset at

full resolution (i.e. 1600x1200) and 5 fps in a JPG compressed format.

(c) Hokuyo UTM-30LX LIDAR: The UTM-30 is a single beam LIDAR with a 30 meter range

and a 270 degree field of view. The UTM-30 is mounted horizontally on the front of the

Segway platform.

(d) Hokuyo URG-04LX LIDAR: The URG-04 is a single beam LIDAR with a 4 meter range

and a 240 degree field of view. The URG-04 is mounted in a “push-broom” configuration to

sweep out the ground plane in front of the vehicle.

(e) Microstrain 3DM-GX3-45 IMU: The GX3 contains 3-axis accelerometers, gyroscopes, and

magnetometers, and an integrated GPS receiver. Its internal signal processor provides filtered

3D position, velocity, and attitude at 100 Hz.

(f) KVH DSP-5000 single-axis FOG: The KVH fiber optic gyro provides highly accurate ro-

tation measurements around a single axis. On the Segway platform it is used to measure

yaw.

(g) Garmin 18x 5Hz: The 18x provides consumer grade GPS at 5 Hz (Fig. A.3).

(h) NovAtel DL-4 plus RTK GPS: The DL-4 GPS receiver provides highly accurate, Real-Time

Kinematic (RTK) corrected GPS at 1 Hz. A NovAtel RTK base station was installed on

campus to provide corrections. Outdoors, this provides highly accurate position information

to ground-truth the robot trajectory (Fig. A.3).

A.3 Ground-Truth
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Figure A.3 Comparison of GPS performance between RTK GPS (green) and consumer grade GPS (red) on North

Campus. The true trajectory follows the RTK solution around the fountain. This performance is typical for many of

the outdoor portions of the dataset as the consumer GPS is more affected by the close proximity of campus buildings

We have preprocessed a large SLAM solution, Fig. A.4, with all sessions using laser scan

matching and RTK GPS (Fig. A.3) to provide ground truth robot pose. To compute ground truth

poses between nodes in the graph we interpolate based on the odometry.

Figure A.4 North Campus dataset ground truth. The ground truth SLAM graph comprised of all sessions is shown in

(a). Links include odometry (blue) and 3D lidar scan matching (green). An oblique view scaled by time in the z-axis

is shown in (b). Each layer along the z-axis represents a mapping session.

(a) Top View

(b) Time Scaled

A.4 Coordinate Frame Conventions
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In this section we describe the coordinate frame conventions used in the North Campus dataset.

Following the conventions described by Eustice [51] we define the 6-DOF pose of frame j with

respect to frame i as

xij =
[
itij

⊤,Θ⊤
ij

]⊤
= [xij, yij, zij, φij, θij, ψij]

⊤.

Here, itij is a translation 3-vector from i to j as expressed in frame i, and Θij is a 3-vector of

Euler angles with φ representing roll about the x axis, θ as pitch about y, and ψ as yaw about z. To

produce the 3 × 3 orthonormal rotation matrix that rotates frame j into frame i, the Euler angles

are applied in rotz(ψ) → roty(θ) → rotx(φ) order yielding

i
jR = rotxyz(Θij)

= rotz(ψij)
⊤ roty(θij)

⊤ rotx(φij)
⊤

=






cosψ sinψ 0

− sinψ cosψ 0

0 0 1






⊤ 




cos θ 0 − sin θ

0 1 0

sin θ 0 cos θ






⊤ 




1 0 0

0 cosφ sinφ

0 − sinφ cosφ






⊤

=






cosψ cos θ − sinψ cosφ+ cosψ sin θ sinφ sinψ sinφ+ cosψ sin θ cosφ

sinψ cos θ cosψ cosφ+ sinψ sin θ sinφ − cosψ sinφ+ sinψ sin θ cosφ

− sin θ cos θ sinφ cos θ cosφ




.

The 4 × 4 homogeneous coordinate transformation matrix from frame j to frame i defined by xij

is then defined as

i
jH =

[
i
jR

itij

0 1

]

.

This 6-degree of freedom (DOF) convention is used for representing robot pose in the dataset and

the rigid-body transformations between the vehicle and sensor coordinate frames.

Table A.1 GPS Linearization Constants

Latitude Origin lat0 42.293215◦

Longitude Origin lon0 −83.709662◦

Altitude Origin alt0 260 m
Earth Equatorial Radius re 6, 378, 135 m
Earth Polar Radius rp 6, 356, 750 m

Robot poses are represented in a local coordinate frame aligned with the cardinal directions,

with x pointing north, y east, and z down. The origin of this coordinate frame is fixed in GPS
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coordinates as described in Table A.1. Converting between the local frame and GPS coordinates is

done by linearizing around this origin. To define the transformation from GPS coordinates to the

local frame, we first compute an approximation of the earth’s radius in the north-south direction,

rns, and in the east-west direction, rew, at the origin of the linearization,

rns =
(rerp)

2

(
(re cos lat0)

2 + (rp sin lat0)
2)

3

2

rew =
r2e

√

(re cos lat0)
2 + (rp sin lat0)

2

,

where re and re are the equatorial and polar radii of the earth defined in Table A.1. Using the local

radii we can convert from GPS coordinates to the local frame using

x = sin (lat− lat0) rns

y = sin (lon− lon0) rew cos lat0

z = alt0 − alt

.

Conversely, we can convert from the local frame to GPS coordinates using

lat = arcsin

(
x

rns

)

+ lat0

lon = arcsin

(
y

rew cos lat0

)

+ lon0

alt = alt0 − z

.

Table A.2 Sensor Coordinate Frames

Sensor Transform x m y m z m φ◦ θ◦ ψ◦

Velodyne LIDAR xbody,vel 0 0 -0.9 0 0 -90

Ladybug3 Base xbody,lb3 0.03 0 -1.1 180 0 0

Microstrain IMU xbody,imu -0.11 -0.18 -0.71 0 0 0

KVH FOG xbody,fog 0 -0.25 -0.49 0 0 0

Garmin GPS xbody,gps 0 -0.25 -0.51 N/A N/A N/A

Novatel RTK GPS xbody,rtk -0.24 0 -1.24 N/A N/A N/A

Hokuyo UTM30-LX LIDAR xbody,h30 0.28 0 -0.44 180 0 0

Hokuyo URG04-LX LIDAR xbody,h04 0.31 0 -0.38 180 -40 0

The robot’s body frame is centered on the axle between the Segway’s wheels with x pointing

forward, y to the right, and z down. Each sensor’s frame of reference is defined with respect to
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Figure A.5 Illustration of the Segway’s sensor frames. For each frame, the x, y, and z axes are colored red, green and

blue, respectivly.

body

h04

h30

lb3

vel

imu

fog

gps

rtk

this body frame. An illustration of the body and sensor frames is provided in Fig. A.5. The 6-DOF

transformations for each sensor, relative to the body frame, are given in Table A.2.

A.5 Odometry Model

Odometry is estimated with an extended Kalman filter (EKF) that uses a differential-drive

process model to integrate measurements from the Segway’s wheel encoders and a single-axis

FOG that observes change in yaw. Measurement updates are derived from a commodity IMU that

observes roll, pitch, and body-frame angular rates.

We define the Segway’s state at time t as,

xt = [x, y, φ, θ, ψ, p, q, r]⊤ ,

where [x, y]⊤ represent the robot’s translational position in a local frame, [φ, θ, ψ]⊤ are the Euler

angles representing orientation, and [p, q, r]⊤ are the body-frame angular rates. We do not estimate

the robot’s altitude, z, in the local frame because change in z is not observable using the Segway’s
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odometry sensors. Altitude is estimated in our ground-truth by fusing RTK GPS and LIDAR scan

matching with the odometry.

The Segway process model predicts the translation and yaw of the robot using a differential

drive model, and the roll and pitch using a constant velocity model. For a given time step, the

process model takes as input

ut = [vr, vl, δψ]
⊤ ,

where vr and vl represent the speeds of the left and right wheels and δψ denotes the change in yaw

measured by the single-axis FOG. Given the two wheel speeds, we can compute the speed of the

vehicle at the center of the wheelbase as

vc =
1

2
(vr + vl). (A.1)

The relationship between the body-frame angular rates and the roll and pitch rates can be derived,

as described in [51, § A.3], by considering the inverse relationship where the Euler angle rotation

sequence rotz(ψ) → roty(θ) → rotx(φ) is used to map Euler rates to body rates as






p

q

r




 =






φ̇

0

0




+ rotx(φ)






0

θ̇

0




+ rotx(φ) roty(θ)






0

0

ψ̇






=






1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ






︸ ︷︷ ︸

J−1






φ̇

θ̇

ψ̇




.

Thus, the mapping from body-frame rates to the roll and pitch rates is given by

J =






1 0 − sin θ

0 cosφ sinφ cos θ

0 − sinφ cosφ cos θ






−1

=






1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ




.
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The Segway’s process model updates the roll and pitch of the vehicle using a constant velocity

model. We compute the required angular velocities for roll and pitch as

[

φ̇

θ̇

]

=

[

1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

]





p

q

r




. (A.2)

Using (A.1) and (A.2) the process model is then defined as

x̂t+δt = f(xt,ut) + ωt =



















x+ vc cos(θ)δt

y + vc sin(θ)δt

φ+ φ̇δt

θ + θ̇δt

ψ + δψ

p

q

r



















+ ωt, (A.3)

where ωt ∼ N
(
0,Q

)
and δt is the duration of the time step. The process model noise is com-

prised of two terms: one capturing the uncertainties associated with the control vector, and another

capturing uncertainties in the constant velocity terms. The process model noise is defined as

Q =
∂f

∂ut
diag([σ2

vr
, σ2

vl
, σ2

δφ
])
∂f

∂ut

⊤

+ diag([0, 0, σ2
φ, σ

2
θ , 0, σ

2
p, σ

2
q , σ

2
r ]).

Measurement updates are derived from the Microstrain IMU, which observes the platform’s

roll, pitch and body-frame angular rates. This leads to linear observation models

ẑφ θ = hφ θ(xt) =

[

φ

θ

]

+ νφ θ νφ θ ∼ N
(
0, diag([σ2

φ, σ
2
θ ])
)

ẑpqr = hpqr(xt) =






p

q

r




+ νpqr νpqr ∼ N

(
0, diag([σ2

p, σ
2
q , σ

2
r ])
)
.

In order to produce the relative odometry factors between poses that are used in our SLAM

systems, the EKF tracks the current pose of the robot and the pose of the last node added to the

graph in a delayed-state framework [52]. Letting xli denote the pose associated with the last node
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added to the SLAM graph, and xlj denote the current robot pose, the EKF estimates the distribution

p(xli,xlj) ∼ N
([ µli

µlj

]
,
[ Σli,li Σli,lj

Σlj,li Σlj,lj

])
.

When we wish to add a new node associated with the pose xlj to the graph, we can compute the

relative transform from the last node to the current robot pose, using the “tail-to-tail” function

described by Smith et al. [152]. Because the delayed-state EKF tracks the correlation between

the current robot pose and the last node added to the graph, we can also compute a first-order

approximation of the uncertainty of the odometry factor. This yields the relative factor

p(xij) ∼ N
(
⊖xli ⊕ xlj, ⊖J⊕

[ Σli,li Σli,lj

Σlj,li Σlj,lj

]

⊖J
⊤
⊕

)
,

where ⊖J⊕ is the Jacobian of the tail-to-tail function. We then marginalize the old pose, xli, from

the delayed-state filter and augment the state with a new vector of variables to track the current

pose of the robot, xlk. This process is illustrated in Fig. A.6.

Figure A.6 Generating odometry factors using a delayed-state EKF. The delayed-state EKF estimates the pose of the

last node added to the graph and the current pose of the robot. The joint distribution of these two poses is used to

produce the relative odometry factor.

l

xli

xij xjk

xlj xlk

i j k

119



BIBLIOGRAPHY

120



BIBLIOGRAPHY

[1] M. Achtelik, M. Achtelik, Y. Brunet, M. Chli, S. Chatzichristofis, J.-D. Decotignie, K.-M.

Doth, F. Fraundorfer, L. Kneip, D. Gurdan, L. Heng, E. Kosmatopoulos, L. Doitsidis, G. H.

Lee, S. Lynen, A. Martinelli, L. Meier, M. Pollefeys, D. Piguet, A. Renzaglia, D. Scara-

muzza, R. Siegwart, J. Stumpf, P. Tanskanen, C. Troiani, and S. Weiss. SFly: Swarm of

micro flying robots. In Proceedings of the IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, pages 2649–2650, Vilamoura, Portugal, Oct. 2012. (p. 9)

[2] P. Agarwal, G. D. Tipaldi, L. Spinello, C. Stachniss, and W. Burgard. Robust map optimiza-

tion using dynamic covariance scaling. In Proceedings of the IEEE International Conference

on Robotics and Automation, pages 62–69, Karlsruhe, Germany, May 2013. (p. 13, 82, 91)

[3] S. Agarwal, Y. Furukawa, N. Snavely, I. Simon, B. Curless, S. M. Seitz, and R. Szeliski.

Building rome in a day. Communications of the ACM, 54(10):105–112, 2011. (p. 9)

[4] S. Anderson and T. D. Barfoot. Towards relative continuous-time SLAM. In Proceed-

ings of the IEEE International Conference on Robotics and Automation, pages 1033–1040,

Karlsruhe, Germany, May 2013. (p. 12)

[5] B. Babenko, P. Dollar, and S. Belongie. Task specific local region matching. In Proceed-

ings of the IEEE International Conference on Computer Vision, pages 1–8, Rio de Janeiro,

Brazil, Oct. 2007. (p. 14, 59, 60)

[6] A. Bacha, C. Bauman, R. Faruque, M. Fleming, C. Terwelp, C. Reinholtz, D. Hong,

A. Wicks, T. Alberi, D. Anderson, S. Cacciola, P. Currier, A. Dalton, J. Farmer, J. Hurdus,

S. Kimmel, P. King, A. Taylor, D. V. Covern, and M. Webste. Odin: Team VictorTango’s

entry in the DARPA Urban Challenge. Journal of Field Robotics, 25:467–492, 2008. (p. 9)

[7] T. Bailey and H. Durrant-Whyte. Simultaneous localization and mapping (SLAM): Part II.

IEEE Robotics and Automation Magazine, 13(3):108–117, Sept. 2006. (p. 1)

[8] T. Bailey, J. Nieto, J. Guivant, M. Stevens, and E. Nebot. Consistency of the EKF–SLAM

algorithm. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots

and Systems, pages 3562–3568, Beijing, China, Oct. 2006. (p. 10)

[9] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. Speeded-up robust features (SURF). Com-

puter Vision and Image Understanding, 110(3):346–359, 2008. (p. 7, 14, 56, 63, 68)

121



[10] P. Beeson, J. Modayil, and B. Kuipers. Factoring the mapping problem: Mobile robot

map-building in the hybrid spatial semantic hierarchy. International Journal of Robotics

Research, 29(4):428–459, Apr. 2010. (p. 12)

[11] J. Bergstra and Y. Bengio. Slow, decorrelated features for pretraining complex cell-like

networks. In Proceedings of the Advances in Neural Information Processing Systems Con-

ference, pages 99–107, Vancover, Canada, Dec. 2009. (p. 64)

[12] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian,

D. Warde-Farley, and Y. Bengio. Theano: A CPU and GPU math compiler in python. In

Proceedings of the Python for Scientific Computing Conference, Austin, TX, 2010. (p. 67)

[13] P. J. Besl and H. D. McKay. A method for registration of 3-D shapes. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 14(2):239–256, Feb. 1992. (p. 6, 15)

[14] P. Biber and T. Duckett. Dynamic maps for long-term operation of mobile service robots.

In Proceedings of the Robotics: Science & Systems Conference, pages 17–24, 2005. (p. 14,

79)

[15] P. Biber and T. Duckett. Experimental analysis of sample-based maps for long-term SLAM.

International Journal of Robotics Research, 28(1):20–33, 2009. (p. 14, 79)

[16] J. Bohren, T. Foote, J. Keller, A. Kushleyev, D. Lee, A. Stewart, P. Vernaza, J. Derenick,

J. Spletzer, and B. Satterfield. Little Ben: The Ben Franklin Racing Team’s entry in the

2007 DARPA Urban Challenge. Journal of Field Robotics, 25(9):598–614, 2008. (p. 9)

[17] M. Bosse, P. Newman, J. Leonard, and S. Teller. An Atlas framework for scalable mapping.

International Journal of Robotics Research, 23:1113–1139, Dec. 2004. (p. 10)

[18] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

(p. 48)

[19] J. Bromley, I. Guyon, Y. LeCun, E. Sackinger, and R. Shah. Signature verification using

a ‘Siamese’ time delay neural network. International Journal of Pattern Recognition and

Artifical Intelligence, 7(4):669–688, 1993. (p. 59)

[20] M. Brown, G. Hua, and S. Winder. Discriminative learning of local image descriptors. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 23(1):43–57, 2010. (p. 14, 59,

60, 64, 65)

[21] M. Brown, S. Winder, and G. Hua. Learning local image descriptors data. http://www.

cs.ubc.ca/˜mbrown/patchdata/patchdata.html, 2011. (p. 66)

[22] W. Burgard, A. B. Cremers, D. Fox, D. Hähnel, G. Lakemeyer, D. Schulz, W. Steiner, and

S. Thrun. Experiences with an interactive museum tour-guide robot. Artificial Intelligence,

114:3–55, 2003. (p. 14, 79)

122

http://www.cs.ubc.ca/~mbrown/patchdata/patchdata.html
http://www.cs.ubc.ca/~mbrown/patchdata/patchdata.html


[23] N. Carlevaris-Bianco and R. M. Eustice. Multi-view registration for feature-poor underwater

imagery. In Proceedings of the IEEE International Conference on Robotics and Automation,

pages 423–430, Shanghai, China, May 2011. (p. 90)

[24] N. Carlevaris-Bianco and R. M. Eustice. Learning temporal co-observability relationships

for lifelong robotic mapping. In IROS Workshop on Lifelong Learning for Mobile Robotics

Applications, Vilamoura, Portugal, October 2012. (p. 15, 97)

[25] N. Carlevaris-Bianco and R. M. Eustice. Generic factor-based node marginalization and

edge sparsification for pose-graph SLAM. In Proceedings of the IEEE International Con-

ference on Robotics and Automation, pages 5728–5735, Karlsruhe, Germany, May 2013.

(p. 18, 22, 40, 42)

[26] N. Carlevaris-Bianco and R. M. Eustice. Long-term simultaneous localization and mapping

with generic linear constraint node removal. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 1034–1041, Nov. 2013. (p. 22, 42, 52,

77)

[27] N. Carlevaris-Bianco and R. M. Eustice. Conservative edge sparsification for graph SLAM

node removal. In Proceedings of the IEEE International Conference on Robotics and Au-

tomation, pages 854–860, Hong Kong, China, June 2014. (p. 18)

[28] N. Carlevaris-Bianco and R. M. Eustice. Learning visual feature descriptors for dynamic

lighting conditions. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 2769–2776, Chicago, IL, Sept. 2014. (p. 56)

[29] N. Carlevaris-Bianco, A. Mohan, J. R. McBride, and R. M. Eustice. Visual localization in

fused image and laser range data. In Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 4378–4385, San Francisco, CA, Sept. 2011. (p. 9)

[30] N. Carlevaris-Bianco, M. Kaess, and R. M. Eustice. Generic node removal for factor-graph

SLAM. IEEE Transactions on Robotics, 30(6):1371–1385, 2014. (p. 18)

[31] J. Castellanos, J. Neira, and J. Tardós. Limits to the consistency of EKF-based SLAM. In

IFAC Symp. Intell. Auton. Veh., Lisbon, Portugal, July 2004. (p. 10)

[32] S. M. Chaves, A. Kim, and R. M. Eustice. Opportunistic sampling-based planning for active

visual SLAM. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 3073–3080, Chicago, IL, USA, September 2014. (p. 12)

[33] Y.-H. Choi, T.-K. Lee, and S.-Y. Oh. A line feature based SLAM with low grade range

sensors using geometric constraints and active exploration for mobile robot. Autonomous

Robots, 24(1):13–27, 2008. (p. 9)

[34] S. Chopra, R. Hadsell, and Y. LeCun. Learning a similarity metric discriminatively, with

application to face verication. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 539–546, San Diego, CA, June 2005. (p. 59)

123



[35] C. Chow and C. N. Liu. Approximating discrete probability distributions with dependence

trees. IEEE Transactions on Information Theory, 14:462–467, 1968. (p. 32)

[36] W. Churchill and P. Newman. Practice makes perfect? managing and leveraging visual

experiences for lifelong navigation. In Proceedings of the IEEE International Conference

on Robotics and Automation, pages 4525–4532, Saint Paul, MN, May 2012. (p. 14, 80)

[37] W. Churchill and P. Newman. Experience-based navigation for long-term localisation. In-

ternational Journal of Robotics Research, 32(14):1645–1661, 2013. (p. 15, 58)

[38] M. Cummins and P. Newman. FAB-MAP: Probabilistic localization and mapping in the

space of appearance. International Journal of Robotics Research, 27(6):647–665, June

2008. (p. 12, 15, 108)

[39] A. Cunningham, M. Paluri, and F. Dellaert. DDF-SAM: Fully distributed SLAM using

constrained factor graphs. In Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 3025 – 3030, Taipei, Taiwan, October 2010. (p. 9)

[40] A. Cunningham, V. Indelman, and F. Dellaert. DDF-SAM 2.0: Consistent distributed

smoothing and mapping. In Proceedings of the IEEE International Conference on Robotics

and Automation, pages 5200–5207, Karlsruhe, Germany, May 2013. (p. 23)

[41] A. Davison. Active search for real-time vision. In Proceedings of the IEEE International

Conference on Computer Vision, pages 66–73, Beijing, China, Oct. 2005. (p. 32)

[42] A. Davison and N. Kita. Sequential localisation and map-building in computer vision and

robotics. In SMILE Workshop Proceedings of the European Conference on Computer Vision,

Dublin, Ireland, 2000. (p. 10)

[43] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse. MonoSLAM: Real-time single

camera SLAM. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(6):

1–16, June 2007. (p. 10)

[44] F. Dayoub and T. Duckett. An adaptive appearance-based map for long-term topological

localization of mobile robots. In Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 3364–3369, Nice, France, Sept. 2008. (p. 14, 79)

[45] F. Dellaert and M. Kaess. Square root SAM: Simultaneous localization and mapping via

square root information smoothing. International Journal of Robotics Research, 25(12):

1181–1203, 2006. (p. 4, 11, 19, 20, 26, 28, 32, 78)

[46] F. Dellaert, J. Carlson, V. Ila, K. Ni, and C. E. Thorpe. Subgraph-preconditioned conjugate

gradients for large scale SLAM. In Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 2566–2571, Taipei, Taiwan, Oct. 2010. (p. 11)

[47] H. Durrant-Whyte and T. Bailey. Simultaneous localization and mapping: Part I. IEEE

Robotics and Automation Magazine, 13(2):99–110, June 2006. (p. 1)

124



[48] E. Eade, P. Fong, and M. E. Munich. Monocular graph SLAM with complexity reduction. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 3017–3024, Taipei, Taiwan, Oct. 2010. (p. 13, 16, 19, 21, 22, 25)

[49] A. Elfes. Using occupancy grids for mobile robot perception and navigation. IEEE Com-

puter, 22(6):46–57, June 1989. (p. 12)

[50] R. Eustice, M. Walter, and J. Leonard. Sparse extended information filters: Insights into

sparsification. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 3281–3288, Edmonton, Alberta, Canada, Aug. 2005. (p. 10,

21, 23, 27)

[51] R. M. Eustice. Large-area visually augmented navigation for autonomous underwater ve-

hicles. PhD thesis, Massachusetts Institute of Technology / Woods Hole Oceaonographic

Institution Joint Program, June 2005. (p. 114, 117)

[52] R. M. Eustice, H. Singh, and J. J. Leonard. Exactly sparse delayed-state filters for view-

based SLAM. IEEE Transactions on Robotics, 22(6):1100–1114, 2006. (p. 10, 19, 26, 78,

81, 118)

[53] R. M. Eustice, H. Singh, J. J. Leonard, and M. R. Walter. Visually mapping the RMS Titanic:

Conservative covariance estimates for SLAM information filters. International Journal of

Robotics Research, 25(12):1223–1242, 2006. (p. 9)

[54] R. M. Eustice, O. Pizarro, and H. Singh. Visually augmented navigation for autonomous

underwater vehicles. IEEE Journal of Oceanic Engineering, 33(2):103–122, Apr. 2008.

(p. 90)

[55] M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting

with application to image analysis and automated cartography. Communications of the ACM,

24(6):381–395, June 1981. (p. 7)

[56] J. Folkesson and H. Christensen. Graphical SLAM—a self-correcting map. In Proceedings

of the IEEE International Conference on Robotics and Automation, pages 383–390, New

Orleans, LA, USA, April 2004. (p. 13, 22, 24)

[57] D. Fox, W. Burgard, and S. Thrun. Markov localization for mobile robots in dynamic

environments. Journal of Artificial Intelligence Research, 11:391–427, Nov. 1999. (p. 14,

79)

[58] J.-M. Frahm, P. Fite-Georgel, D. Gallup, T. Johnson, R. Raguram, C. Wu, Y.-H. Jen,

E. Dunn, B. Clipp, S. Lazebnik, , and M. Pollefeys. Building rome on a cloudless day.

In Proceedings of the European Conference on Computer Vision, pages 368–381, Hersonis-

sos, Greece, Sept. 2010. (p. 9)

125



[59] U. Frese. Treemap: An O(Log N) algorithm for simultaneous localization and mapping. In

C. Freksa, editor, Spatial Cognition IV. Springer Verlag, 2004. (p. 22)

[60] U. Frese. Efficient 6-DOF SLAM with treemap as a generic backend. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages 4814—4819, Rome,

Italy, Apr. 2007. (p. 22)

[61] P. Furgale and T. D. Barfoot. Visual teach and repeat for long-range rover autonomy. Journal

of Field Robotics, 27(5):534–560, 2010. (p. 9)

[62] P. Furgale, T. D. Barfoot, and G. Sibley. Continuous-time batch estimation using temporal

basis functions. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 2088–2095, Saint Paul, MN, USA, May 2012. (p. 12)

[63] J. Goldberger, S. Roweis, G. Hinton, and R. Salakhutdinov. Neighbourhood components

analysis. In Proceedings of the Advances in Neural Information Processing Systems Con-

ference, pages 513–520, Whistler, Canada, Dec. 2004. (p. 60)

[64] G. Grisetti, D. Lodi Rizzini, C. Stachniss, E. Olson, and W. Burgard. Online constraint

network optimization for efficient maximum likelihood map learning. In Proceedings of the

IEEE International Conference on Robotics and Automation, pages 1880–1885, Pasadena,

CA, May 2008. (p. 11)

[65] G. Grisetti, R. Kummerle, C. Stachniss, U. Frese, and C. Hertzberg. Hierarchical optimiza-

tion on manifolds for online 2D and 3D mapping. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 273–278, Anchorage, AK, USA, May 2010.

(p. 11)

[66] R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant

mapping. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, pages 1735–1742, New York, NY, June 2006. (p. 59, 61, 62)

[67] D. Hähnel, R. Triebel, W. Burgard, and S. Thrun. Map building with mobile robots in

dynamic environments. In Proceedings of the IEEE International Conference on Robotics

and Automation, pages 1557–1563, Taipei, Taiwan, Sept. 2003. (p. 14, 79)

[68] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge

University Press, ISBN: 0521540518, second edition, 2004. (p. 7, 14, 71)

[69] G. Hinton and S. Roweis. Stochastic neighbor embedding. In Proceedings of the Advances

in Neural Information Processing Systems Conference, pages 1–8, Vancover, Canada, Dec.

2002. (p. 60)

[70] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of data with neural

networks. Science, 313:504–507, 2006. (p. 59)

126



[71] F. S. Hover, R. M. Eustice, A. Kim, B. Englot, H. Johannsson, M. Kaess, and J. J. Leonard.

Advanced perception, navigation and planning for autonomous in-water ship hull inspec-

tion. International Journal of Robotics Research, 31(12):1445–1464, 2012. (p. 9, 36)

[72] G. Hua, M. Brown, and S. Winder. Discriminant embedding for local image descriptors. In

Proceedings of the IEEE International Conference on Computer Vision, pages 1–8, Rio de

Janeiro, Brazil, Oct. 2007. (p. 14, 59, 60, 64)

[73] G. Huang, M. Kaess, and J. J. Leonard. Consistent sparsification for graph optimization. In

Proceedings of the European Conference on Mobile Robotics, pages 150–157, Barcelona,

Spain, Sept. 2013. (p. 13, 22, 23, 24, 43, 44, 47, 52, 54)

[74] P. J. Huber. Robust statistics. Springer, 2011. (p. 13)

[75] V. Ila, J. M. Porta, and J. Andrade-Cetto. Information-based compact pose SLAM. IEEE

Transactions on Robotics, 26(1):78–93, 2010. (p. 13, 20, 82, 97)

[76] W. Jeong and K. M. Lee. CV-SLAM: A new ceiling vision-based SLAM technique. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 3195–3200, Edmonton, Canada, Aug. 2005. (p. 9)

[77] Y.-D. Jian and F. Dellaert. iSPCG: Incremental subgraph-preconditioned conjugate gradient

method for online SLAM with many loop-closures. In Proceedings of the IEEE/RSJ In-

ternational Conference on Intelligent Robots and Systems, pages 2647–2653, Chicago, IL,

USA, Sept. 2014. (p. 11)

[78] H. Johannsson, M. Kaess, M. Fallon, and J. J. Leonard. Temporally scalable visual SLAM

using a reduced pose graph. In RSS Workshop on Long-term Operation of Autonomous

Robotic Systems in Changing Environments, Sydney, Australia, July 2012. (p. 13)

[79] H. Johannsson, M. Kaess, M. Fallon, and J. J. Leonard. Temporally scalable visual SLAM

using a reduced pose graph. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 54–61, Karlsruhe, Germany, May 2013. (p. 16, 19, 20,

21, 22, 79, 84)

[80] E. Johns and G.-Z. Yang. Feature co-occurrence maps: Appearance-based localisation

throughout the day. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 3212–3218, Karlsruhe, Germany, May 2013. (p. 15, 58, 79)

[81] E. Johns and G.-Z. Yang. Generative methods for long-term place recognition in dynamic

scenes. International Journal of Computer Vision, 106(3):297–314, 2013. (p. 15, 58, 79)

[82] M. Johnson-Roberson, O. Pizarro, S. B. Williams, and I. Mahon. Generation and visual-

ization of large-scale three-dimensional reconstructions from underwater robotic surveys.

Journal of Field Robotics, 27(1):21–51, 2010. (p. 9)

127



[83] S. J. Julier and J. K. Uhlmann. A non-divergent estimation algorithm in the presence of

unknown correlations. In Proceedings of the American Control Conference, pages 2369–

2373, Albuquerque, NM, USA, June 1997. (p. 46)

[84] S. J. Julier and J. K. Uhlmann. A counter example to the theory of simultaneous localization

and map building. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 4238–4243, Seoul, South Korea, May 2001. (p. 10)

[85] M. Kaess and F. Dellaert. Covariance recovery from a square root information matrix for

data association. Robotics and Autonomous Systems, 57:1198–1210, 2009. (p. 36, 49, 85)

[86] M. Kaess, A. Ranganathan, and F. Dellaert. iSAM: Incremental smoothing and mapping.

IEEE Transactions on Robotics, 24(6):1365–1378, 2008. (p. 11, 19, 20, 24, 28, 32, 36, 78,

85)

[87] M. Kaess, H. Johannsson, D. Rosen, N. Carlevaris-Bianco, and J. Leonard. Open source

implementation of iSAM. http://people.csail.mit.edu/kaess/isam, 2010.

(p. 24, 30, 36, 49, 85)

[88] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. J. Leonard, and F. Dellaert. iSAM2: In-

cremental smoothing and mapping using the Bayes tree. International Journal of Robotics

Research, 31(2):216–235, Feb. 2011. (p. 11)

[89] A. Kim and R. M. Eustice. Real-time visual SLAM for autonomous underwater hull inspec-

tion using visual saliency. IEEE Transactions on Robotics, 29(3):719–733, 2013. (p. 9)

[90] A. Kim and R. M. Eustice. Active visual SLAM for robotic area coverage: Theory and

experiment. International Journal of Robotics Research, 2014. In Press. (p. 12)

[91] B. Kim, M. Kaess, L. Fletcher, J. Leonard, A. Bachrach, N. Roy, and S. Teller. Multiple

relative pose graphs for robust cooperative mapping. In Proceedings of the IEEE Interna-

tional Conference on Robotics and Automation, pages 3185–3192, Anchorage, AK, USA,

May 2010. (p. 11)

[92] D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.

MIT Press, 2009. (p. 53, 103, 107)

[93] K. Konolige and M. Agrawal. FrameSLAM: From bundle adjustment to real-time visual

mapping. IEEE Transactions on Robotics, 24(5):1066–1077, 2008. (p. 19, 78)

[94] K. Konolige and J. Bowman. Towards lifelong visual maps. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 1156–1163, St. Louis,

MO, USA, Oct. 2009. (p. 13, 14, 15, 16, 19, 21, 22, 58, 79, 80)

[95] K. Konolige, J. Bowman, J. Chen, P. Mihelich, M. Calonder, V. Lepetit, and P. Fua. View-

based maps. International Journal of Robotics Research, 29(8):941–957, 2010. (p. 80)

128

http://people.csail.mit.edu/kaess/isam


[96] K. Konolige, G. Grisetti, R. Kummerle, W. Burgard, B. Limketkai, and R. Vincent. Efficient

sparse pose adjustment for 2D mapping. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems, pages 1156–1163, St. Louis, MO, Oct. 2010.

(p. 11)

[97] H. Kretzschmar and C. Stachniss. Information-theoretic compression of pose graphs for

laser-based SLAM. International Journal of Robotics Research, 31:1219–1230, 2012.

(p. 13, 16, 19, 21, 22, 25, 26, 32, 36, 79)

[98] B. Kuipers. The spatial semantic hierarchy. Artificial Intelligence, 119:191–233, May 2000.

(p. 12)

[99] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o: A general

framework for graph optimization. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 3607–3613, Shanghai, China, May 2011. (p. 11, 24)

[100] H. Lategahn, J. Beck, B. Kitt, and C. Stiller. How to learn an illumination robust image

feature for place recognition. In IEEE Intelligent Vehicles Symposium, pages 285–291,

Gold Coast, Australia, June 2013. (p. 15, 58, 64, 68)

[101] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to docu-

ment recognition. Proceedings of the IEEE, 86(11):2278–2324, Nov. 1998. (p. 62, 63)

[102] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher, E. Frazzoli,

A. Huang, S. Karaman, O. Koch, Y. Kuwata, D. Moore, E. Olson, S. Peters, J. Teo, R. Truax,

M. Walter, D. Barrett, A. Epstein, K. Maheloni, K. Moyer, T. Jones, R. Buckley, M. Antone,

R. Galejs, S. Krishnamurthy, and J. Williams. A perception-driven autonomous urban vehi-

cle. Journal of Field Robotics, 25(10):727–774, Oct. 2008. (p. 9)

[103] J. Levinson and S. Thrun. Robust vehicle localization in urban environments using prob-

abilistic maps. In Proceedings of the IEEE International Conference on Robotics and Au-

tomation, pages 4372–4378, May 2010. (p. 9)

[104] D. Lowe. Distinctive image features from scale-invariant keypoints. International Journal

of Computer Vision, 60(2):91–110, 2004. (p. 7, 14, 56, 63, 68, 69, 90)

[105] F. Lu and E. Milios. Globally consistent range scan alignment for environment mapping.

Autonomous Robots, 4:333–349, 1997. (p. 11, 19, 78)

[106] M. Magnusson. The Three-Dimensional Normal-Distributions Transform – an Efficient

Representation for Registration, Surface Analysis, and Loop Detection. PhD thesis, Örebro

University, 2009. Örebro Studies in Technology 36. (p. 15, 81)

[107] J. Markoff. Google cars drive themselves, in traffic. The New York Times, 10:A1, Oct. 2010.

(p. 9)

129



[108] M. Mazuran, T. G. Diego, S. Luciano, and W. Burgard. Nonlinear graph sparsification

for SLAM. In Proceedings of the Robotics: Science & Systems Conference, pages 1–8,

Berkeley, CA, USA, July 2014. (p. 13, 22, 107)

[109] J. R. McBride, J. C. Ivan, D. S. Rhode, J. D. Rupp, M. Y. Rupp, J. D. Higgins, D. D. Turner,

and R. M. Eustice. A perspective on emerging automotive safety applications, derived from

lessons learned through participation in the DARPA grand challenges. Journal of Field

Robotics, 25(10):808–840, Oct. 2008. (p. 9)

[110] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid. RSLAM: A system for large-

scale mapping in constant-time using stereo. International Journal of Computer Vision, 94

(2):198–214, 2011. (p. 11)

[111] A. Mikulik, M. Perdoch, O. Chum, and J. Matas. Learning a fine vocabulary. In Proceedings

of the European Conference on Computer Vision, pages 1–14, Hersonissos, Greece, Sept.

2010. (p. 59)

[112] M. Milford and G. Wyeth. SeqSLAM: Visual route-based navigation for sunny summer

days and stormy winter nights. In Proceedings of the IEEE International Conference on

Robotics and Automation, pages 1643–1649, Saint Paul, MN, USA, May 2012. (p. 15)

[113] M. Milford, E. Vig, W. Scheirer, and D. Cox. Towards condition-invariant, top-down visual

place recognition. In Australasian Conference on Robotics and Automation, pages 1–10,

Sydney, Australia, Dec. 2013. (p. 15, 58, 108)

[114] M. J. Milford and G. F. Wyeth. Mapping a suburb with a single camera using a biologically

inspired SLAM system. IEEE Transactions on Robotics, 24(5):1038–1053, 2008. (p. 12)

[115] I. Miller, M. Campbell, D. Huttenlocher, F.-R. Kline, A. Nathan, S. Lupashin, J. Catlin,

B. Schimpf, P. Moran, N. Zych, E. Garcia, M. Kurdziel, and H. Fujishima. Team Cornell’s

Skynet: Robust perception and planning in an urban environment. Journal of Field Robotics,

25(8):493–527, 2008. (p. 9)

[116] T. P. Minka. Inferring a Gaussian distribution. Technical report, MIT Media Lab, 2001.

(p. 34, 35)

[117] H. Mobahi, R. Collobert, and J. Weston. Deep learning from temporal coherence in video.

In Proceedings of the International Conference on Machine Learning, pages 737–744, Mon-

treal, Canada, June 2009. (p. 59)

[118] J. Modayil and B. Kuipers. The initial development of object knowledge by a learning robot.

Robotics and Autonomous Systems, 56:879–890, Nov. 2008. (p. 14, 79)

[119] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to

the simultaneous localization and mapping problem. In Proceedings of the AAAI National

Conference on Artifical Intelligence, pages 593–598, Edmonton, Canada, July 2002. (p. 12)

130



[120] M. Montemerlo, S. Thrun, and W. Whittake. Conditional particle filters for simultaneous

mobile robot localization and people-tracking. In Proceedings of the IEEE International

Conference on Robotics and Automation, pages 695–701, Washington, D.C., May 2002.

(p. 14, 79)

[121] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM 2.0: An improved particle

filtering algorithm for simultaneous localization and mapping that provably converges. In

Proceedings of the International Joint Conference on Artifical Intelligence, pages 1151–

1156, Acapulco, Mexico, Aug. 2003. (p. 12)

[122] H. Moravec and A. Elfes. High resolution maps from wide angle sonar. In Proceedings of

the IEEE International Conference on Robotics and Automation, volume 2, pages 116–121,

Mar. 1985. (p. 12)

[123] A. Murarka, J. Modayil, and B. Kuipers. Building local safety maps for a wheelchair robot

using vision and lasers. In The 3rd Canadian Conference on Computer and Robot Vision,

pages 25–31, Quebec, Canada, June 2006. (p. 9)

[124] A. Murarka, S. Gulati, P. Beeson, and B. Kuipers. Towards a safe, low-cost, intelligent

wheelchair. In Workshop on Planning, Perception and Navigation for Intelligent Vehicles,

pages 42–50, St. Louis, MO, Oct. 2009. (p. 9)

[125] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann machines. In

Proceedings of the International Conference on Machine Learning, pages 807–814, Haifa,

Israel, June 2010. (p. 63)

[126] T. Naseer, L. Spinello, W. Burgard, and C. Stachniss. Robust visual robot localization across

seasons using network flows. In Proceedings of the AAAI National Conference on Artifical

Intelligence, pages 1–7, Quebec, Canada, July 2014. (p. 15, 108)

[127] J. Neira and J. Tardos. Data association in stochastic mapping using the joint compatibility

test. IEEE Transactions on Robotics and Automation, 17(6):890–897, 2001. (p. 6, 37)

[128] P. Neubert, N. Sunderhauf, and P. Protzel. Appearance change prediction for long-term

navigation across seasons. In Proceedings of the European Conference on Mobile Robotics,

pages 198–203, Barcelona, Spain, Sept. 2013. (p. 15, 58)

[129] K. Ni and F. Dellaert. Multi-level submap based SLAM using nested dissection. In Proceed-

ings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages

2558–2565, Taipei, Taiwan, Oct. 2010. (p. 11)

[130] K. Ni, D. Steedly, and F. Dellaert. Tectonic SAM: Exact; out-of-core; submap-based SLAM.

In Proceedings of the IEEE International Conference on Robotics and Automation, pages

1678–1685, Rome, Italy, Apr. 2007. (p. 11)

131



[131] K. Ni, D. Steedly, and F. Dellaert. Out-of-core bundle adjustment for large-scale 3D recon-

struction. In Proceedings of the IEEE International Conference on Computer Vision, pages

1–8, Rio de Janeiro, Brazil, Oct. 2007. (p. 9)

[132] D. Nistér and H. Stewénius. Scalable recognition with a vocabulary tree. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition, volume 2, pages 2161–

2168, 2006. (p. 15, 59, 108)

[133] E. Olson and P. Agarwal. Inference on networks of mixtures for robust robot mapping.

International Journal of Robotics Research, 32(7):826–840, July 2013. (p. 13, 82)

[134] E. Olson, J. Leonard, and S. Teller. Fast iterative alignment of pose graphs with poor initial

estimates. In Proceedings of the IEEE International Conference on Robotics and Automa-

tion, pages 2262–2269, Orlando, FL, USA, May 2006. (p. 11, 19, 20, 78)

[135] P. Ozog and R. M. Eustice. Toward long-term, automated ship hull inspection with visual

SLAM, explicit surface optimization, and generic graph-sparsication. In Proceedings of

the IEEE International Conference on Robotics and Automation, pages 3832–3839, Hong

Kong, China, June 2014. (p. 30, 91)

[136] P. Ozog, N. Carlevaris-Bianco, A. Kim, and R. M. Eustice. Long-term mapping techniques

for ship hull inspection and surveillance using an autonomous underwater vehicle. Journal

of Field Robotics, 2015. Submitted, Under Review. (p. 9)

[137] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua. Fast keypoint recognition using random

ferns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(3):448–461,

2010. (p. 67)

[138] G. Pandey, J. R. McBride, S. Savarese, and R. M. Eustice. Visually bootstrapped generalized

ICP. In Proceedings of the IEEE International Conference on Robotics and Automation,

pages 2660–2667, Shanghai, China, May 2011. (p. 90)

[139] J. Philbin, M. Isard, J. Sivic, and A. Zisserman. Descriptor learning for efficient retrieval. In

Proceedings of the European Conference on Computer Vision, pages 677–691, Hersonissos,

Greece, Sept. 2010. (p. 59, 64)

[140] L. Polok, V. Ila, M. Solony, P. Smrz, and P. Zemcik. Incremental block cholesky factor-

ization for nonlinear least squares in robotics. In Proceedings of the Robotics: Science &

Systems Conference, pages 1–8, Berlin, Germany, June 2013. (p. 11)

[141] E. Prassler, J. Scholz, and P. Fiorini. A robotics wheelchair for crowded public environment.

IEEE Robotics and Automation Magazine, 8(1):38–45, 2002. (p. 9)

[142] A. Ranganathan, S. Matsumoto, and D. Ilstrup. Towards illumination invariance for vi-

sual localization. In Proceedings of the IEEE International Conference on Robotics and

Automation, pages 3791–3798, Karlsruhe, Germany, May 2013. (p. 14, 15, 58, 59)

132



[143] C. R. Rao and S. K. Mitra. Generalized Inverse of Matrices and its Applications. John

Wiley & Sons, 1971. (p. 29, 34, 45)

[144] P. Ridao, M. Carreras, D. Ribas, and R. Garcia. Visual inspection of hydroelectric dams

using an autonomous underwater vehicle. Journal of Field Robotics, 27(6):759–778, 2010.

(p. 9)

[145] R. Salakhutdinov and G. Hinton. Learning a nonlinear embedding by preserving class neigh-

bourhood structure. In Proceedings of the International Conference on Artificial Intelligence

and Statistics, pages 412–419, San Juan, Puerto Rico, Mar. 2007. (p. 60)

[146] R. Salakhutdinov and G. Hinton. Semantic hashing. International Journal of Approximate

Reasoning, 50(7):969–978, 2009. (p. 59)

[147] D. Scaramuzza, M. C. Achtelik, L. Doitsidis, F. Fraundorfer, E. Kosmatopoulos, A. Mar-

tinelli, M. W. Achtelik, M. Chli, S. Chatzichristofis, L. Kneip, D. Gurdan, L. Heng, G. H.

Lee, S. Lynen, L. Meier, M. Pollefeys, A. Renzaglia, R. Siegwart, J. C. Stumpf, P. Tanska-

nen, C. Troiani, and S. Weiss. Vision-controlled micro flying robots: From system design

to autonomous navigation and mapping in GPS-denied environments. IEEE Robotics and

Automation Magazine, 21(3):26–40, 2014. (p. 9)

[148] A. V. Segal, D. Haehnel, and S. Thrun. Generalized-ICP. In Proceedings of the Robotics:

Science & Systems Conference, Seattle, WA, June 2009. (p. 6, 15)

[149] G. Shakhnarovich. Learning Task-Specific Similarity. PhD thesis, Massachusetts Institute

of Technology, Sept. 2005. (p. 59)

[150] G. Sibley, C. Mei, I. Reid, and P. Newman. Vast-scale outdoor navigation using adaptive

relative bundle adjustment. International Journal of Robotics Research, 29(8):958–980,

2010. (p. 11)

[151] J. Sivic and A. Zisserman. Video Google: A text retrieval approach to object matching in

videos. In Proceedings of the IEEE International Conference on Computer Vision, volume 2,

pages 1470–1477, Nice, France, Oct. 2003. (p. 15, 59, 108)

[152] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relationships in robotics.

In I. Cox and G. Wilfong, editors, Autonomous Robot Vehicles, pages 167–193. Springer-

Verlag, 1990. (p. 10, 21, 24, 26, 81, 119)

[153] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Exploring photo collections in 3D.

ACM Transactions on Graphics, 25(3):835–846, 2006. (p. 9)

[154] N. Snavely, S. M. Seitz, and R. Szeliski. Modeling the world from internet photo collections.

International Journal of Computer Vision, 80(2):189–210, 2008. (p. 9)

133



[155] S. S. Srinivasa, D. Ferguson, C. J. Helfrich, D. Berenson, A. Collet, R. Diankov, G. Gal-

lagher, G. Hollinger, J. Kuffner, and M. V. Weghe. HERB: A home exploring robotic butler.

Autonomous Robots, 28(1):5–20, 2010. (p. 9)

[156] C. Stachniss and W. Burgard. Mobile robot mapping and localization in non-static envi-

ronments. In Proceedings of the AAAI National Conference on Artifical Intelligence, pages

1324–1329, Pittsburgh, PA, July 2005. (p. 14, 80)

[157] D. Stavens and S. Thrun. Unsupervised learning of invariant features using video. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 1649–

1656, San Francisco, CA, June 2010. (p. 59, 64)

[158] N. Sunderhauf and P. Protzel. Switchable constraints for robust pose graph SLAM. In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems,

pages 1879–1884, Vilamoura, Portugal, Oct. 2012. (p. 13, 82)

[159] G. W. Taylor, I. Spiro, C. Bregler, and R. Fergus. Learning invariance through imitation. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

2729–2736, Providence, RI, June 2011. (p. 59, 60, 61)

[160] S. Thrun and M. Montemerlo. The graph SLAM algorithm with applications to large-scale

mapping of urban structures. International Journal of Robotics Research, 25(5-6):403–429,

2006. (p. 19, 78)

[161] S. Thrun, Y. Liu, D. Koller, A. Ng, Z. Ghahramani, and H. Durrant-Whyte. Simultaneous

localization and mapping with sparse extended information filters. International Journal of

Robotics Research, 23(7/8):693–716, 2004. (p. 10, 13, 21, 23, 26, 27)

[162] S. Thrun, W. Burgard, and D. Fox. Probabilistic robotics. MIT Press, Cambridge, MA,

Sept. 2005. (p. 23, 43)

[163] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale,

M. Halpenny, G. Hoffmann, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Stro-

hband, C. Dupont, L.-E. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. van Niekerk,

E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and

P. Mahoney. Stanley: The robot that won the DARPA Grand Challenge. Journal of Field

Robotics, 23(9):661–692, 2006. (p. 9)

[164] G. D. Tipaldi, D. Meyer-Delius, M. Beinhofer, and W. Burgard. Lifelong localization and

dynamic map estimation in changing environments. In RSS Workshop on Robots in Clutter,

2012. (p. 14, 79)

[165] E. Tola, V. Lepetit, and P. Fua. DAISY: An efficient dense descriptor applied to wide-

baseline stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):

815–830, 2010. (p. 14, 59, 63, 68)

134



[166] L. Toohey, O. Pizarro, and S. B. Williams. Multi-vehicle localisation with additive com-

pressed factor graphs. In Proceedings of the IEEE/RSJ International Conference on Intelli-

gent Robots and Systems, pages 4584–4590, Chicago, IL USA, Sept. 2014. (p. 23)

[167] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle adjustment – a modern

synthesis. In W. Triggs, A. Zisserman, and R. Szeliski, editors, Vision Algorithms: Theory

and Practice, LNCS, pages 298–375. Springer-Verlag, 2000. (p. 7, 9)

[168] T. Trzcinski, M. Christoudias, P. Fua, and V. Lepetit. Boosting binary keypoint descriptors.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

2874–2881, Portland, OR, USA, June 2013. (p. 14, 59)

[169] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark, J. Dolan, D. Duggins,

T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M. Howard, S. Kolski,

A. Kelly, M. Likhachev, M. McNaughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar,

P. Rybski, B. Salesky, Y. Seo, S. Singh, J. Snider, A. Stentz, W. Whittaker, Z. Wolkowicki,

J. Ziglar, H. Bae, T. Brown, D. Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang,

J. Struble, M. Taylor, M. Darms, and D. Ferguson. Autonomous driving in urban environ-

ments: Boss and the urban challenge. Journal of Field Robotics, 25:425–466, 2008. (p. 9)

[170] L. van der Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine

Learning Research, 9:2579–2605, 2008. (p. 72)

[171] L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review, 38(1):49–95,

1996. (p. 48)

[172] L. Vandenberghe, S. Boyd, and S.-P. Wu. Determinant maximization with linear matrix

inequality constraints. SIAM Journal on Matrix Analysis and Applications, 19(2):499–533,

1998. (p. 48)

[173] J. Vial, H. Durrant-Whyte, and T. Bailey. Conservative sparsification for efficient and con-

sistent approximate estimation. In Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, pages 886–893, San Francisco, CA, USA, Sept. 2011.

(p. 21, 23, 24, 43, 44, 47, 52)

[174] A. Walcott-Bryant, M. Kaess, H. Johannsson, and J. J. Leonard. Dynamic pose graph

SLAM: Long-term mapping in low dynamic environments. In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems, pages 1871–1878, Vilamoura,

Portugal, Oct. 2012. (p. 13, 16, 19, 21, 22, 79)

[175] J. M. Walls and R. M. Eustice. An origin state method for communication constrained

cooperative localization with robustness to packet loss. International Journal of Robotics

Research, 33:9, 2014. (p. 23)

135



[176] M. R. Walter, R. M. Eustice, and J. J. Leonard. Exactly sparse extended information filters

for feature-based SLAM. International Journal of Robotics Research, 26(4):335–359, 2007.

(p. 10, 21, 22, 23)

[177] C.-C. Wang, C. Thorpe, and A. Suppe. LADAR-based detection and tracking of moving

objects from a ground vehicle at high speeds. In IEEE Intelligent Vehicles Symp., pages

416–421, June 2003. (p. 14, 79)

[178] Y. Wang, R. Xiong, Q. Li, and S. Huang. Kullback-leibler divergence based graph pruning

in robotic feature mapping. In Proceedings of the European Conference on Mobile Robotics,

pages 32–37, Barcelona, Spain, Sept. 2013. (p. 13, 16, 19, 21, 22)

[179] S. B. Williams, O. Pizarro, J. M. Webster, R. J. Beaman, I. Mahon, M. Johnson-Roberson,

and T. C. L. Bridge. Autonomous underwater vehicle-assisted surveying of drowned reefs

on the shelf edge of the Great Barrier Reef, Australia. Journal of Field Robotics, 27(5):

675–697, 2010. (p. 9)

[180] S. Winder, G. Hua, and M. Brown. Picking the best DAISY. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 178–185, Miami, FL, June

2009. (p. 14, 59, 60, 64, 65, 68)

[181] S. A. J. Winder and M. Brown. Learning local image descriptors. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, pages 1–8, Minneapolis,

MN, 2007. (p. 14, 59, 60, 64)

[182] R. W. Wolcott and R. M. Eustice. Visual localization within LIDAR maps for automated

urban driving. In Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems, pages 176–183, Chicago, IL, USA, Sept. 2014. (p. 9)

[183] J. Ziegler, P. Bender, M. Schreiber, H. Lategahn, T. Strauss, C. Stiller, T. Dang, U. Franke,

N. Appenrodt, C. G. Keller, E. Kaus, R. G. Herrtwich, C. Rabe, D. Pfeiffer, F. Lindner,

F. Stein, F. Erbs, M. Enzweiler, C. Knoppel, J. Hipp, M. Haueis, M. Trepte, C. Brenk,

A. Tamke, M. Ghanaat, M. Braun, A. Joos, H. Fritz, H. Mock, M. Hein, and E. Zeeb. Making

Bertha drive—an autonomous journey on a historic route. IEEE Intelligent Transportation

Systems Magazine, 6(2):8–20, 2014. (p. 9)

[184] W. Y. Zou, S. Zhu, A. Y. Ng, and K. Yu. Deep learning of invariant features via simu-

lated fixations in video. In Proceedings of the Advances in Neural Information Processing

Systems Conference, pages 3212–3220, Lake Tahoe, NV, Dec. 2012. (p. 64)

136


	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	ABSTRACT
	Introduction
	SLAM Background
	SLAM Formulation
	Graphical Representation

	Data Association and the ``Front-End''
	LIDAR Scan Matching
	Vision
	Data Association Challenges


	Literature Review
	Applications of SLAM
	Solving SLAM
	Filtering Methods
	Optimization-based methods
	Additional SLAM Formulation and Methods

	Robust Optimization for SLAM
	Long-Term SLAM in Dynamic Environments
	Controlling the Computational Complexity of Long-Term SLAM
	Dealing with Dynamic Environments in SLAM

	Data Association for Vision and LIDAR
	Deriving Observations from Computer Vision
	Deriving Observations from LIDAR


	Thesis Objective and Contributions
	Long-Term Dataset Collection
	Complexity Control Through Node Removal
	Learning Robust Visual Feature Descriptors
	Long-Term SLAM in Dynamic Environments


	Generic Linear Constraint Node Removal
	Introduction
	Related Work
	Slowing the Growth of Long-Term SLAM
	Graph Sparsification: Removing Edges from the Graph
	Controlling Computational Complexity by Removing Nodes
	Guaranteed-Conservative Graph Sparsification


	Pairwise Composition is Not Marginalization
	Generic Linear Constraint Node Removal
	Building the Target Information
	Generic Linear Constraints
	Avoiding World-Frame Linearization in GLC
	Sparse Approximate Node Removal
	Chow-Liu Tree Factors

	Implementation Considerations
	Pseudo-Inverse
	Pinning

	Computational Complexity

	Experimental Evaluation of GLC Node Removal
	Dense GLC Node Removal
	CLT Sparse-Approximate GLC Node Removal

	Guaranteed Conservative GLC Node Removal
	Optimization Formulation
	Chow-Liu Tree Approximation
	Covariance Intersection
	Weighted Factors
	Weighted Eigenvalues
	Implementation Considerations


	Experimental Evaluation of Guaranteed Conservative GLC
	Discussion
	GLC Node Removal
	Guaranteed Conservative Sparse Approximations

	Chapter Summary

	Learning Visual Feature Descriptors for Dynamic Lighting Conditions
	Introduction
	Related Work
	Learning a Feature Descriptor
	Learning with a Siamese Network
	Feature Descriptor Models
	MNIST Example

	Training the Models
	Generating Training Data
	Tracking interest points in time-lapse videos
	Generating training pairs from tracks
	Augmenting the training data with viewpoint variation

	Training Descriptor Models

	Experimental Evaluation
	Webcam Dataset
	North Campus Long-Term Dataset
	Computation Time
	Qualitative Analysis

	Discussion and Future Work
	Chapter Summary

	Long-Term SLAM in Dynamic Environments
	Introduction
	Related Work
	Controlling the Computational Complexity of Long-Term SLAM
	Accounting for Dynamic Environments in SLAM


	Long-Term LIDAR-Based SLAM using GLC Node Removal
	Node Removal Schemes for LIDAR-Based SLAM
	Batch Multi-Session Node Removal
	Online Node Removal

	Experimental Evaluation of Long-Term LIDAR-Based SLAM 
	Error with Respect to Ground-Truth
	Computational Complexity
	Distribution Comparison

	Long-Term Visual SLAM in Dynamic Environments
	Exemplar Update Scheme

	Experimental Evaluation of GLC Long-Term Visual SLAM 
	Discussion
	Using GLC Node Removal to Control Long-Term SLAM Computational Complexity
	Long-Term Visual SLAM

	Chapter Summary

	Conclusion
	Future Directions
	Improving GLC Node Removal
	Long-Term Visual Data Association
	Systems for Long-Term Mapping and Navigation


	APPENDIX
	BIBLIOGRAPHY

