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ABSTRACT

This thesis is devoted to the study of three problems in mathematical finance

which involve either transaction costs or model uncertainty or both.

In Chapter II, we investigate the Fundamental Theorem of Asset Pricing under

both transaction costs and model uncertainty, where model uncertainty is described

by a family of probability measures, possibly non-dominated. We first show that

the FTAP and super-hedging results of [25] can be extended to the case in which

only the options available for static hedging (hedging options) are quoted with bid-

ask spreads. In this set-up, we need to work with the notion of robust no-arbitrage

which turns out to be equivalent to no-arbitrage under the additional assumption

that hedging options with non-zero spread are non-redundant. A key result is the

closedness of the set of attainable claims, which requires a new proof in our setting.

Next, we look at the more difficulty case when the market consists of a money

market and a dynamically traded stock with bid-ask spread. Under a continuity

assumption, we prove using a backward-forward scheme that the absence of arbitrage

in a quasi-sure sense is equivalent to the existence of a suitable family of consistent

price systems.

In Chapter III, we study the problem where an individual targets at a given con-

sumption rate, and seeks to minimize the probability of lifetime ruin when she does

not have perfect confidence in the drift of the risky asset. Using stochastic control,

we characterize the value function as the unique classical solution of an associated

viii



Hamilton-Jacobi-Bellman (HJB) equation, obtain feedback forms for the optimal

investment and drift distortion, and discuss their dependence on various model pa-

rameters. In analyzing the HJB equation, we establish the existence and uniqueness

of viscosity solution using Perron’s method, and then upgrade regularity by working

with an equivalent convex problem obtained via the Cole-Hopf transformation. We

show the original value function may lose convexity and the Isaacs condition may

fail. Numerical examples are also included to illustrate our results.

In Chapter IV, we adapt stochastic Perron’s method to the lifetime ruin problem

under proportional transaction costs which can be formulated as a singular stochastic

control problem. Without relying on DPP, we characterize the value function as

the unique viscosity solution of an associated HJB variational inequality. We also

provide a complete proof of the comparison principle which is the main assumption

of stochastic Perron’s method.
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CHAPTER I

Introduction

This thesis is the study of three different problems in mathematical finance which

share the common ingredients of transaction costs or model uncertainty. The first

problem, which we examine in Chapter II, is concerned with the Fundamental The-

orem of Asset Pricing under both proportional transaction costs and model uncer-

tainty. The second and the third problems, discussed in Chapters III and IV, respec-

tively, fall into the field of robust or singular stochastic control. The importance of

transaction costs (or market friction in general) and model uncertainty not only lies

in that they are more realistic modelings of the financial market, but also in that

they require sophisticated mathematical treatments different from their frictionless

or fixed-model counterparts in each of the problems we study.

The Fundamental Theorem of Asset Pricing (FTAP), as suggested by its name,

is one of the most important theorems in mathematical finance and has been estab-

lished in many different settings: discrete and continuous, with and without trans-

action cost. It relates no-arbitrage concepts to the existence of certain fair pricing

mechanisms, which provides the rationale for why in duality theory, it is often rea-

sonable to assume that the dual domain is non-empty. In Chapter II, we study the

FTAP for a discrete-time, finite horizon market where trading is subject to propor-
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tional transaction costs and the price dynamics is modeled by a family of probability

measures, usually non-dominated. The theories with only transaction costs or only

model uncertainty are established in [56], [39], [71] and [25], [1], respectively. We at-

tempt to fill in the gap when both market friction and model uncertainty are present,

and when we are in the quasi-sure framework. Generalizing to the non-dominated

case means the usual separation argument does not work and we have to resort to

a local analysis followed by a pasting argument as in [25]. Adding transaction costs

on top of model uncertainty brings in the additional difficulty that the absence of

arbitrage in a multi-period market is not equivalent to the absence of arbitrage in

all single-period markets. As a consequence, the pasting of single-period dual ele-

ments can be problematic. We design a backward-forward scheme to address this

issue. In particular, the backward part corresponds to replacing the original mar-

ket by a new market which embeds future price information into the current prices.

This chapter is based on [17] and [20]. Part of the work has been presented in the

Financial/Actuarial Mathematics Seminar at the University of Michigan (Septem-

ber 4, 2013), and the Labex Louis Bachelier - SIAM-SMAI Conference on Financial

Mathematics at University Paris Diderot (June 20, 2014).

The problem of how an individual, usually a retiree, with a target consumption

rate, should invest in a risky financial market to minimize the probability of lifetime

ruin was first studied in [82] and later in a series of extensions [14], [15], [16], [7], all

in a fixed-model setting. In reality, there may be some good estimates of the price

volatility, but drift estimation is almost impossible; it would require centuries of data

to obtain a reliable estimate. A natural approach is to extract from the available

data a reference model, and penalize other models based on their deviation from the

reference model. How hard to penalize depends on how averse the agent is to model

2



uncertainty, also called ambiguity or Knightian uncertainty. This leads to a robust

lifetime ruin problem which we solve in Chapter III using the theory of stochastic

control and viscosity solutions. In analyzing the associated Hamilton-Jacobi-Bellman

(HJB) equation, we do not rely on the dynamic programming principle (DPP) which

is very complicated when the optimization problem resembles a stochastic differential

game. Instead, we use Perron’s method to obtain the existence and uniqueness of a

viscosity solution, and then upgrade regularity by working with an equivalent convex

problem obtained through the Cole-Hopf transformation. Chapter III is based on

[18]. Part of this work has been presented in the Financial/Actuarial Mathematics

Seminar at the University of Michigan (February 19, 2014), the 2014 SIAM Confer-

ence on Financial Mathematics and Engineering (November 15, 2014), the Statistics

and Actuarial Science Department Seminar at the University of Waterloo (January

26, 2015) and the ORFE Colloquium at Princeton University (February 12, 2015).

Stochastic Perron’s method is introduced in [9], [10] and [11] as a way to obtain a

PDE characterization of the value function of a stochastic control problem, without

relying on the DPP. It is a direct verification approach in that it first constructs a

solution to the HJB equation, and then verifies such a solution is the value func-

tion. But unlike the classical verification, it does not require regularity; uniqueness

acts as a substitute for verification. The method has been applied to linear prob-

lems, Dynkin games, HJB equations for regular control problems, (regular) exit time

problems and zero-sum differential games. In Chapters IV, we adapt the method to

another type of problems: singular control problems. In particular, we focus on the

specific problem of minimizing the probability of lifetime ruin when buying and sell-

ing stocks incurs proportional transaction costs, and demonstrate how to take care of

jumps and gradient constraints in the adaption of stochastic Perron’s method. Chap-

3



ter IV is based on [19]. Part of the work has been presented in the 7th European

Summer School in Financial Mathematics at the University of Oxford (September 4,

2014), the Financial/Actuarial Mathematics Seminar at the University of Michigan

(November 5, 2014), and the IMS PDE Seminar at the Chinese University of Hong

Kong (December 18, 2014).
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CHAPTER II

Fundamental Theorem of Asset Pricing Under

Transaction Costs and Model Uncertainty

2.1 Introduction

In this chapter, we investigate the FTAP and in some cases, the super-hedging

theorem, for a discrete time, finite horizon financial market under both proportional

transaction costs and model uncertainty. When the market is frictionless and mod-

eled by a single probability measure, the classical result by Dalang-Morton-Willinger

[30] asserts there is no-arbitrage if and only if there exists a martingale measure.

With proportional transaction cost, martingale measure is replaced by the concept

of consistent price system (CPS) or strictly consistent price system (SCPS). Equiv-

alence between no-arbitrage and existence of a CPS is established by Kabanov and

Stricker [56] for finite probability space Ω, and by Grigoriev [39] when the dimension

is two. Such equivalence in general does no hold in higher dimensions and when

Ω is infinite (see Section 3 of [71] and page 128-129 of [55] for counter examples).

For such an equivalence one needs the notion of robust no-arbitrage introduced by

Schachermayer [71], where he showed it is equivalent to the existence of an SCPS.

Alternatively, robust no-arbitrage can be replaced by strict no-arbitrage plus efficient

friction (see Kabanov et al. [54]). There exist a few different proofs of the FTAP un-
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der transaction costs. Besides the proof in [71] and [54] which rely on the closedness

of the set of hedgeable claims and a separation argument, there is a utility-based

proof by Smaga [75] and proofs based on random sets by Rokhlin [66].

In recent years, model uncertainty has gained a lot of interest since it corresponds

to a more realistic modeling of the financial market. By model uncertainty, we mean

a convex family P of probability measures, usually non-dominated. Each member

of P represents a possible model for the asset price behavior. One should think

of P as being obtained from calibration to the market data. We have a collection

of measures rather than a single one because we do not have point estimates but

confidence intervals. The non-dominated case is generally much harder because the

classical separation argument used to construct the dual element does not work.

Without transaction costs, the recent work by Bouchard and Nutz [25] used a local

analysis to establish the equivalence between the absence of arbitrage in a quasi-sure

sense and the existence of an “equivalent” family of martingale measures. Acciaio

et al. [1] obtained a different version of the FTAP by working with a different

no-arbitrage condition which excludes model-independent arbitrage, i.e. arbitrage

in a sure sense only. The two different frameworks are often referred to as the

“quasi-sure” framework and the “model-free” framework, respectively. The former

correspond to P being an arbitrary convex collection of probability measures, and

the later corresponds to P being the collection of all probability measures.

We attempt to generalize some results on FTAP with proportional transaction

costs from the case when there is a dominating measure to the case when a domi-

nating measure may be absent, under the quasi-sure framework. On a related note,

Dolinsky and Soner [35] proved a frictional super-hedging theorem (by first discretiz-

ing the state space and then taking a limit) and stated the FTAP as a corollary in
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the model-free framework. We follow a different methodology, and are able to work

with a more general structure on the proportional transaction costs instead of taking

it a constant, which is useful as this proportion in real markets is likely to change

with changing market conditions over time.

We begin in Section 2.2 with a simpler setting where the financial market consists

of a zero-interest money market, some dynamically traded stocks and some statically

traded options. We assume that stocks are liquid and trading in them does not incur

transaction costs, but that the options are less liquid and their prices are quoted

with a bid-ask spread. Our first goal is to obtain a criteria for deciding whether the

collection of models represented by P is viable or not. Given that P is viable we

would like to obtain the range of prices for other options written on the stocks. The

dual elements in these result are martingale measures that price the hedging options

correctly (i.e., consistent with the quoted prices). As in classical transaction costs

literature, we need to replace the no-arbitrage condition by the stronger robust no-

arbitrage condition which we later prove to be equivalent to no-arbitrage under an

additional assumption that hedging options with non-zero spread are non-redundant,

i.e. not replicable by other hedging options. As a result, we obtain two versions of

the FTAP and super-hedging theorem, one with robust no-arbitrage (Section 2.2.1),

the other with the non-redundancy assumption (Section 2.2.2).

In Section 2.3, we consider the more difficult problem when dynamic trading

incurs transaction costs, but restrict ourselves to the case when there is a single stock

and no hedging options. In the absence of a dominating measure, the main idea, as

initiated in [25], is to proceed in a local fashion: first obtain dual elements for each

single-period and then do pasting using a suitable measurable selection theorem.

However, the multi-period case turns out to be quite different when transaction

7



costs are added. A distinct feature for frictionless markets is that the absence of

arbitrage for the multi-period market is equivalent to the absence of arbitrage in all

single-period markets. So it is enough to look at each single period separately and

paste the martingale measures together. This equivalence, however, breaks down

in the presence of transaction cost. A simple example is the two-period market:

S0 = 1, S0 = 3, S1 = 2, S1 = 4, S2 = 3.5, S2 = 5 where St, St are the bid and

ask prices, respectively. Each period is arbitrage-free, but buying at time 0 and

selling at time 2 is an arbitrage for the two-period market. So we cannot in general

paste two one-period martingale measures to get a two-period martingale measure;

in particular, the endpoints of the underlying martingales constructed for each single

period may not match. We need to solve a non-dominated martingale selection

problem. The martingale selection problem when P is a singleton was studied by

Rokhlin in a series of papers [65, 67, 66] using the notion of support of regular

conditional upper distribution of set-valued maps. In our case, it is difficult to talk

about conditional distribution due to the lack of dominating measure. Nevertheless,

we got some inspiration from [67, 66] and [75] and developed a backward-forward

scheme:

Backward recursion

Modify the original bid-ask prices backward in time by potentially more favor-

able ones to account for the missing future investment opportunities.

Forward extension

Extend the dual element forward in time in the modified market.

Unfortunately, when there is no dominating measure, the backward recursion

brings some measurability issues. We overcame these issues by making a suitable

8



continuity assumption. The necessity of this assumption is briefly discussed in Sec-

tion 2.3.3. Our contribution can be seen as a particular extension (in the two-

dimensional case and under the additional continuity assumption) of the FTAP in

[25] to the frictional case, as well as a generalization of [66] on the martingale selection

problem to the non-dominated case. We also give an existence result of the opti-

mal super-hedging strategy when NAr(P) holds. The challenges of a super-hedging

duality and multi-asset extension is discussed in Section 2.4.

We end the introduction with a mathematical description of model uncertainty

which will be used throughout this chapter. The notations are taken from [25].

2.1.1 The uncertainty set P

Let T ∈ N be the time horizon and let Ω1 be a Polish space. Let Ωt := Ωt
1 be

the t-fold Cartesian product with the convention that Ω0 is a singleton. Denote by

B(Ωt) the Borel sigma-algebra on Ωt, and by Ft the universal completion of B(Ωt).

We write (Ω,F) for (ΩT ,FT ). Let P(Ω1) denote the set of all probability measures

on (Ω1,B(Ω1)). For each t ∈ {0, . . . , T − 1} and ω ∈ Ωt, we are given a nonempty

convex set Pt(ω) ⊆ P(Ω1), representing the set of possible models for the (t + 1)-

th period. We assume the graph of Pt (considered as a set valued map from Ωt to

P(Ω1)) is analytic. This assumption ensures that Pt admits a universally measurable

selector, which we will denote by Pt. Define the uncertainty set P ⊆ P(Ω) of the

multi-period market by

P := {P0 ⊗ · · · ⊗ PT−1 : each Pt is a universally measureable selector of Pt},

where for A ∈ F ,

P0 ⊗ · · · ⊗ PT−1(A) =

∫
Ω1

· · ·
∫

Ω1

1A(ω1, . . . , ωT )PT−1(ω1, . . . , ωT−1; dωT ) · · ·P0(dω1).

9



2.2 When bid-ask spread is on hedging options only

2.2.1 Fundamental theorem with robust no-arbitrage

Let St = (S1
t , . . . , S

d
t ) be the prices of d traded stocks at time t ∈ {0, 1, . . . , T} and

H be the set of all predictable Rd-valued processes, which will serve as our trading

strategies. Let g = (g1, . . . , ge) be the payoff of e options that mature at time T , and

can be traded only at time zero with bid price g and ask price g, with g ≥ g (the

inequality holds component-wise). g1, . . . , ge will be referred to as hedging options.

We assume St and g are Borel measurable, and there are no transaction costs in the

trading of stocks. We also assume the risk-free rate is zero.

Definition 2.2.1 (No-arbitrage and robust no-arbitrage). We say that condition

NA(P) holds if for all (H, h) ∈ H × Re,

H • ST + h+(g − g)− h−(g − g) ≥ 0 P − quasi-surely (-q.s.)1

implies

H • ST + h+(g − g)− h−(g − g) = 0 P-q.s.

where H • St =
∑t

u=1Hu(Su − Su−1) is the discrete-time integral, and h± are the

usual (component-wise) positive/negative part of h.2

We say that condition NAr(P) holds if there exists g′, g′ such that [g′, g′] ⊆ ri[g, g]

and NA(P) holds if g has bid-ask prices g′, g′.3

Definition 2.2.2 (Super-hedging price). For a given a random variable f , its super-

1A set is P-polar if it is P -null for all P ∈ P. A property is said to hold P-q.s. if it holds outside
a P-polar set.

2When we multiply two vectors, we mean their inner product.
3“ri” stands for relative interior. [g′, g′] ⊆ ri[g, g] means component-wise inclusion.
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hedging price is defined as

π(f) := inf{x ∈ R : ∃ (H, h) ∈ H × Re such that

x+H • ST + h+(g − g)− h−(g − g) ≥ f P-q.s.}

Any pair (H, h) ∈ H × Re in the above definition is called a semi-static hedging

strategy.

Remark 2.2.3. [1] Let π̂(gi) and π̂(−gi) be the super-hedging prices of gi and −gi,

where the hedging is done using stocks and options excluding gi. NAr(P) implies

either

−π̂(−gi) ≤ gi = gi ≤ π̂(gi)

or

(2.1) −π̂(−gi) ≤ (g′)i < gi and gi < (g′)i ≤ π̂(gi)

where g′, g′ are the more favorable bid-ask prices in the definition of robust no-

arbitrage. The reason for working with robust no-arbitrage is to be able to have the

strictly inequalities in (2.1) for options with non-zero spread, which turns out to be

crucial in the proof of the closedness of the set of hedgeable claims in (2.3) (hence

the existence of an optimal hedging strategy), as well as in the construction of a dual

element (see (2.6)).

[2] Clearly NAr(P) implies NA(P), but the converse is not true. For example,

assume in the market there is no stock, and there are only two options: g1(ω) =

g2(ω) = ω, ω ∈ Ω := [0, 1]. Let P be the set of probability measures on Ω, g
1

=

g1 = 1/2, g
2

= 1/4 and g2 = 1/2. Then NA(P) holds while NAr(P) fails.

For b, a ∈ Re, let

Q[b,a] := {Q≪ P : Q is a martingale measure and EQ[g] ∈ [b, a]}

11



where Q≪ P means ∃P ∈ P such that Q � P .4 Let Q[b,a]
ϕ := {Q ∈ Q : EQ[ϕ] <

∞}. When [b, a] = [g, g], we drop the superscript and simply write Q,Qϕ. Also

define

Qs := {Q≪ P : Q is a martingale measure and EQ[g] ∈ ri[g, g]}

and Qsϕ := {Q ∈ Qs : EQ[ϕ] <∞}.

Theorem 2.2.4. Let ϕ ≥ 1 be a random variable such that |gi| ≤ ϕ ∀i = 1, . . . , e.

The following statements hold:

(a) (FTAP): The following statements are equivalent

(i) NAr(P) holds.

(ii) There exists [g′, g′] ⊆ ri[g, g] such that ∀P ∈ P, ∃Q ∈ Q[g′,g′]
ϕ such that

P � Q.

(b) (Super-hedging) Suppose NAr(P) holds. Let f : Ω → R be Borel measurable

such that |f | ≤ ϕ. The super-hedging price is given by

(2.2) π(f) = sup
Q∈Qsϕ

EQ[f ] = sup
Q∈Qϕ

EQ[f ] ∈ (−∞,∞]

and there exists (H, h) ∈ H×Re such that π(f)+H•ST+h+(g−g)−h−(g−g) ≥

f P-q.s..

Proof. It is easy to show (ii) in (a) implies that NA(P) holds for the market with

bid-ask prices g′, g′, Hence NAr(P) holds for the original market. The rest of our

proof consists two parts as follows.

Part 1: π(f) > −∞ and the existence of an optimal hedging strategy in

4EQ[g] ∈ [b, a] means EQ[gi] ∈ [bi, ai] for all i = 1, . . . , e.

12



(b). Once we show that the set

(2.3) Cg := {H • ST + h+(g − g)− h−(g − g) : (H, h) ∈ H × Re} − L0
+

is P − q.s. closed (i.e., if (W n)∞n=1 ⊂ Cg and W n → W P − q.s., then W ∈ Cg), the

argument used in the proof of ([25], [Theorem 2.3]) would conclude the results in

part 1. We will demonstrate the closedness of Cg in the rest of this part.

Write g = (u, v), where u = (g1, . . . , gr) consists of the hedging options without

bid-ask spread, i.e, gi = gi for i = 1, . . . , r, and v = (gr+1, . . . , ge) consists of those

with spread, i.e., gi < gi for i = r + 1, . . . , e, for some r ∈ {0, . . . , e}. Denote

u := (g1, . . . , gr) and similarly for v and v. Define

C := {H • ST + α(u− u) : (H,α) ∈ H × Rr} − L0
+

Then C is P − q.s. closed by ([25], [Theorem 2.2]).

Let W n → W P − q.s. with

(2.4) W n = Hn • ST + αn(u− u) + (βn)+(v − v)− (βn)−(v − v)− Un ∈ Cg

where (Hn, αn, βn) ∈ H × Rr × Re−r and Un ∈ L0
+. If (βn)n is not bounded, then

by passing to subsequence if necessary, we may assume that 0 < ||βn|| → ∞ and

rewrite (2.4) as

Hn

βn
• ST +

αn

||βn||
(u− u) ≥ W n

||βn||
−
(

βn

||βn||

)+

(v − v) +

(
βn

||βn||

)−
(v − v) ∈ C

where || · || represents the sup-norm. Since C is P − q.s. closed, the limit of the right

hand side above is also in C, i.e., there exists some (H,α) ∈ H × Rr, such that

H • ST + α(u− u) ≥ −β+(v − v) + β−(v − v), P − a.s.

where β is the limit of (βn)n along some subsequence with ||β|| = 1. NA(P) implies

that

(2.5) H • ST + α(u− u) + β+(v − v)− β−(v − v) = 0, P − a.s.

13



As β =: (βr+1, . . . , βe) 6= 0, we assume without loss of generality (w.l.o.g.) that

βe 6= 0. If βe < 0, then we have from (2.5) that

ge +
H

β−e
• ST +

α

β−e
(u− u) +

e−1∑
i=r+1

[
β+
i

β−e
(gi − gi)− β−i

β−e
(gi − gi)

]
= ge, P − a.s.

Therefore π̂(ge) ≤ g
e
, which contradicts the robust no-arbitrage property (see (2.1))

of ge. Here π̂(ge) is the super-hedging price of ge using S and g excluding ge. Similarly

we get a contradiction if βe > 0.

Thus (βn)n is bounded, and has a limit β ∈ Re−r along some subsequence (nk)k.

Since by (2.4)

Hn • ST + αn(u− u) ≥ W n − (βn)+(v − v) + (βn)−(v − v) ∈ C

the limit of the right hand side above along (nk)k, W − β+(v − v) + β−(v − v), is

also in C by its closedness, which implies W ∈ Cg.

Part 2: (i) ⇒ (ii) in part (a) and (2.13) in part (b). We will prove the

results by an induction on the number of hedging options, as in ([25], [Theorem 5.1]).

Suppose the results hold for the market with options g1, . . . , ge. We now introduce

an additional option f ≡ ge+1 with |f | ≤ ϕ, available at bid-ask prices f < f at time

zero. (When the bid and ask prices are the same for f , then the proof is identical

to [25].)

(i) =⇒ (ii) in (a): Let π(f) be the super-hedging price when stocks and

g1, . . . , ge are available for trading. By NAr(P) and (2.13) in part (b) of the induction

hypothesis, we have

(2.6) f > f
′ ≥ −π(−f) = inf

Q∈Qsϕ
EQ[f ] and f < f ′ ≤ π(f) = sup

Q∈Qsϕ
EQ[f ]

where [f ′, f
′
] ⊆ (f, f) comes from the definition of robust no-arbitrage. This implies

that there exists Q+, Q− ∈ Qsϕ such that EQ+ [f ] > f ′′ and EQ− [f ] < f
′′

where f ′′ =

14



1
2
(f + f ′), f

′′
= 1

2
(f + f

′
). By (a) of induction hypothesis, there exists [b, a] ⊆ ri[g, g]

such that for any P ∈ P , we can find Q0 ∈ Q[b,a]
ϕ satisfying P � Q0 ≪ P . Define

g′ = min(b, EQ+ [g], EQ− [g]), and g′ = max(a,EQ+ [g], EQ− [g])

where the minimum and maximum are taken component-wise. We have [b, a] ⊆

[g′, g′] ⊆ ri[g, g] and Q+, Q− ∈ Q
[g′,g′]
ϕ .

Now, let P ∈ P . (a) of induction hypothesis implies the existence of a Q0 ∈

Q[b,a]
ϕ ⊆ Q[g′,g′]

ϕ satisfying P � Q0 ≪ P . Define

Q := λ−Q− + λ0Q0 + λ+Q+

Then Q ∈ Q[g′,g′]
ϕ and P � Q. By choosing suitable weights λ−, λ0, λ+ ∈ (0, 1), λ−+

λ0 + λ+ = 1, we can make EQ[f ] ∈ [f ′′, f
′′
] ⊆ ri[f, f ].

(2.13) in (b): Let ξ be a Borel measurable function such that |ξ| ≤ ϕ. Write

π′(ξ) for its super-hedging price when stocks and g1, . . . , ge, f ≡ ge+1 are traded,

Q′ϕ := {Q ∈ Qϕ : EQ[f ] ∈ [f, f ]} and Q′sϕ := {Q ∈ Qsϕ : EQ[f ] ∈ (f, f)}. We want

to show

(2.7) π′(ξ) = sup
Q∈Q′sϕ

EQ[ξ] = sup
Q∈Q′ϕ

EQ[ξ]

It is easy to see that

(2.8) π′(ξ) ≥ sup
Q∈Q′ϕ

EQ[ξ] ≥ sup
Q∈Q′sϕ

EQ[ξ]

and we shall focus on the reverse inequalities. Let us assume first that ξ is bounded

from above, and thus π′(ξ) <∞. By a translation we may assume π′(ξ) = 0.

First, we show π′(ξ) ≤ supQ∈Q′ϕ E
Q[ξ]. It suffices to show the existence of a

sequence {Qn} ⊆ Qϕ such that limnE
Qn [f ] ∈ [f, f ] and limnE

Qn [ξ] = π′(ξ) = 0.

(See page 30 of [25] for why this is sufficient.) In other words, we want to show that

{EQ[(f, ξ)] : Q ∈ Qϕ} ∩
(
[f, f ]× {0}

)
6= ∅
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Suppose the above intersection is empty. Then there exists a vector (y, z) ∈ R2 with

|(y, z)| = 1 that strictly separates the two closed, convex sets, i.e., there exists b ∈ R

s.t.

(2.9) sup
Q∈Qϕ

EQ[yf + zξ] < b and inf
a∈[f,f ]

ya > b

It follows that

(2.10)

y+f−y−f+π′(zξ) ≤ π′(yf+zξ) ≤ π(yf+zξ) = sup
Q∈Qϕ

EQ[yf+zξ] < b < y+f−y−f,

where the first inequality is because one can super-replicate zξ = (yf + zξ) + (−yf)

from initial capital π′(yf + zξ)− y+f + y−f , the second inequality is due to the fact

that having more options to hedge reduces hedging cost, and the middle equality is

by (b) of induction hypothesis. The last two inequalities are due to (2.9).

It follows from (2.10) that π′(zξ) < 0. Therefore, we must have that z < 0, oth-

erwise π′(zξ) = zπ′(ξ) = 0 (since the super-hedging price is positively homogenous).

Recall that we have proved in part (a) that Q′ϕ 6= ∅. Let Q′ ∈ Q′ϕ ⊆ Qϕ. The

part of (2.10) after the equality implies that yEQ′ [f ] + zEQ′ [ξ] < y+f − y−f . Since

EQ′ [f ] ∈ [f, f ], we get zEQ′ [ξ] < y+(f −EQ′ [f ])− y−(f −EQ′ [f ]) ≤ 0. Since z < 0,

EQ′ [ξ] > 0. But by (2.8), EQ′ [ξ] ≤ π′(ξ) = 0, which is a contradiction.

Next, we show supQ∈Q′ϕ E
Q[ξ] ≤ supQ∈Q′sϕ E

Q[ξ]. It suffices to show for any ε > 0

and every Q ∈ Q′ϕ, we can find Qs ∈ Q′sϕ such that EQs [ξ] > EQ[ξ]− ε. To this end,

let Q′ ∈ Q′sϕ which is nonempty by part (a). Define

Qs := (1− λ)Q+ λQ′

We have Qs≪ P by the convexity of P , and Qs ∈ Q′sϕ if λ ∈ (0, 1]. Moreover,

EQs [ξ] = (1− λ)EQ[ξ] + λEQ′ [ξ]→ EQ[ξ] as λ→ 0
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So for λ > 0 sufficiently close to zero, the Qs constructed above satisfies EQs [ξ] >

EQ[ξ] − ε. Hence, we have shown that the supremum over Q′ϕ and Q′sϕ are equal.

This finishes the proof for upper bounded ξ.

Finally, when ξ is not bounded from above, we can apply the previous result to

ξ ∧ n, and then let n→∞ and use the closedness of Cg in (2.3) to show that (2.13)

holds. The argument would be the same as the last paragraph in the proof of [25,

Thoerem 3.4] and we omit it here.

2.2.2 A sharper fundamental theorem with a non-redundancy assump-
tion

We now introduce the concept of non-redundancy. With this additional assump-

tion we will sharpen our result.

Definition 2.2.5 (Non-redundancy). A hedging option gi is said to be non-redundant

if it is not perfectly replicable by stocks and other hedging options, i.e., there does

not exist x ∈ R and a semi-static hedging strategy (H, h) ∈ H × Re such that

x+H • ST +
∑
j 6=i

hjgj = gi P-q.s.

Remark 2.2.6. NAr(P) does not imply non-redundancy. For Instance, having only

two identical options in the market whose payoffs are in [c, d], with identical bid-ask

prices b and a satisfying b < c and a > d, would give a trivial counter example where

NAr(P) holds yet we have redundancy.

Lemma 2.2.7. Suppose all hedging options with non-zero spread are non-redundant.

Then NA(P) implies NAr(P).

Proof. Let g = (g1, . . . , gr+s), where u := (g1, . . . , gr) consists of the hedging options

without bid-ask spread, i.e, gi = gi for i = 1, . . . , r, and (gr+1, . . . , gr+s) consists of

17



those with bid-ask spread, i.e., gi < gi for i = r + 1, . . . , r + s. We shall prove

the result by induction on s. Obviously the result holds when s = 0. Suppose

the result holds for s = k ≥ 0. Then for s = k + 1, denote v := (gr+1 . . . , gr+k),

v := (gr+1, . . . , gr+k) and v := (gr+1, . . . , gr+k). Denote f := gr+k+1.

By the induction hypothesis, there exists [v′, v′] ⊂ (v, v) be such that NA(P)

holds in the market with stocks, options u and options v with any bid-ask prices b

and a satisfying [v′, v′] ⊂ [b, a] ⊂ (v, v). Let vn ∈ (v, v′), vn ∈ (v′, v), f
n
> f and

f
n
< f , such that vn ↘ v, vn ↗ v, f

n
↘ f and fn ↗ f . We shall show that for

some n, NA(P) holds with stocks, options u, options v with bid-ask prices vn and

vn, option f with bid-ask prices f
n

and fn. We will show it by contradiction.

If not, then for each n, there exists (Hn, hnu, h
n
v , h

n
f ) ∈ H×Rr×Rk×R such that

(2.11)

Hn•ST+hnu(u−u)+(hnv )+(v−vn)−(hnv )−(v−vn)+(hnf )+(f−fn)−(hnf )−(f−f
n
) ≥ 0, P−q.s.

and the strict inequality for the above holds with positive probability under some

Pn ∈ P . Hence hnf 6= 0. By a normalization, we can assume that |hnf | = 1. By

extracting a subsequence, we can w.l.o.g. assume that hnf = −1 (the argument when

assuming hnf = 1 is similar). If (hnu, h
n
v )n is not bounded, then w.l.o.g. we assume

that 0 < cn := ||(hnu, hnv )|| → ∞. By (2.11) we have that

Hn

cn
• ST +

hnu
cn

(u− u) +
(hnv )+

cn
(v − vn)− (hnv )−

cn
(v − vn)− 1

cn
(f − f

n
) ≥ 0, P − q.s.

By ([25], [Theorem 2.2]), there exists H ∈ H, such that

H • ST + hu(u− u) + h+
v (v − v)− h−v (v − v) ≥ 0, P − q.s.

where (hu, hv) is the limit of (hnu/c
n, hnu/c

n) along some subsequence with ||(hu, hv)|| =

1. NA(P) implies that

(2.12) H • ST + hu(u− u) + h+
v (v − v)− h−v (v − v) = 0, P − q.s.
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Since (hu, hv) 6= 0, (2.12) contradicts the non-redundancy assumption of (u, v).

Therefore, (hnu, h
n
v )n is bounded, and w.l.o.g. assume it has the limit (ĥu, ĥv).

Then applying ([25], [Theorem 2.2]) in (2.11), there exists Ĥ ∈ H such that

Ĥ • ST + ĥu(u− u) + ĥ+
v (v − v)− ĥ−v (v − v)− (f − f) ≥ 0, P − q.s.

NA(P) implies that

Ĥ • ST + ĥu(u− u) + ĥ+
v (v − v)− ĥ−v (v − v)− (f − f) = 0, P − q.s.

which contradicts the non-redundancy assumption of f .

We have the following FTAP and super-hedging result in terms of NA(P) instead

of NAr(P), when we additionally assume the non-redundancy of g.

Theorem 2.2.8. Suppose all hedging options with non-zero spread are non-redundant.

Let ϕ ≥ 1 be a random variable such that |gi| ≤ ϕ ∀i = 1, . . . , e. The following state-

ments hold:

(a’) (FTAP): The following statements are equivalent

(i) NA(P) holds.

(ii) ∀P ∈ P, ∃Q ∈ Qϕ such that P � Q.

(b’) (Super-hedging) Suppose NA(P) holds. Let f : Ω → R be Borel measurable

such that |f | ≤ ϕ. The super-hedging price is given by

(2.13) π(f) = sup
Q∈Qϕ

EQ[f ] ∈ (−∞,∞]

and there exists (H, h) ∈ H×Re such that π(f)+H•ST+h+(g−g)−h−(g−g) ≥

f P-q.s..
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Proof. (a’)(ii) =⇒ (a’)(i) is trivial. Now if (a’)(i) holds, then by Lemma 2.2.7, (a)(i)

in Theorem 2.2.4 holds, which implies (a)(ii) holds, and thus (a’)(ii) holds. Finally,

(b’) is implied by Lemma 2.2.7 and Theorem 2.2.4(b).

Remark 2.2.9. Theorem 2.2.8 generalizes the results of [25] to the case when the

option prices are quoted with bid-ask spreads. When P is the set of all probabil-

ity measures and the given options are all call options written on the dynamically

traded assets, a result with option bid-ask spreads similar to Theorem 2.2.8-(a) had

been obtained by [28]; see Proposition 4.1 therein, although the non-redundancy

condition did not actually appear. (The objective of [28] was to obtain relationships

between the option prices which are necessary and sufficient to rule out semi-static

arbitrage and the proof relies on determining the correct set of relationships and then

identifying a martingale measure.)

However, the no arbitrage concept used in [28] is different: the author there

assumes that there is no weak arbitrage in the sense of [31]; see also [33] and [1].5

(Recall that a market is said to have weak arbitrage if for any given model (probability

measure) there is an arbitrage strategy which is an arbitrage in the classical sense.)

The arbitrage concept used here and in [25] is weaker, in that we say that a non-

negative wealth (P-q.s.) is an arbitrage even if there is a single P under which the

wealth process is a classical arbitrage. Hence our no-arbitrage condition is stronger

than the one used in [28]. But what we get out from a stronger assumption is the

existence of a martingale measure Q ∈ Qϕ for each P ∈ P . Whereas [28] only

guarantees the existence of only one martingale measure which prices the hedging

options correctly.

5The no-arbitrage assumption in [1] is the model independent arbitrage of [31]. However that
paper rules out the model dependent arbitrage by assuming that a superlinearly growing option
can be bought for static hedging.
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2.3 When bid-ask spread is on one dynamically traded asset

2.3.1 The market model and main results

Consider a financial market consisting of a money market account with zero

interest rate, and a stock with bid price St and ask price St.
6 St, St : Ωt → R are

assumed to be positive, universally measurable for all t. Later on, we will replace

universal measurability by continuity. We shall often use square and curly brackets to

denote the stock market: [S, S] refers to a multi-period market with bid price St and

ask price St for all t and for any ω ∈ Ωt, {[St(ω), St(ω)]; [St+1(ω, ·), St+1(ω, ·)]} refers

to the one-period market with bid price St(ω) and ask price St(ω) at time t, and

bid price St+1(ω, ·) and ask price St+1(ω, ·) at time t+ 1. When St(ω) = St(ω) = s,

we simply write {s; [St+1(ω, ·), St+1(ω, ·)]} for the one-period market. The solvency

cone Kt at time t is the closed convex cone in R2 spanned by the unit vectors e1, e2

and the vectors Ste1− e2,
1
St
e2− e1. That is, Kt is the cone of portfolios that can be

liquidated into the zero portfolio; it contains the nonnegative orthant R2
≥0. −Kt is

the cone of portfolios available at price zero.

A self-financing7 portfolio process is an R2-valued predictable process φ = (φ0, φ1)

satisfying 4φt+1 := φt+1 − φt ∈ −Kt for all t = 0, . . . , T . We always define φ0 = 0.

An equivalent expression for 4φt+1 ∈ −Kt is 4φ0
t+1 ≤ −(4φ1

t+1)+St + (4φ1
t+1)−St.

Denote by H the set of self-financing portfolio processes. Let AT be the set of all

R2-valued, FT -measurable functions which P-q.s. equal to φT+1 for some φ ∈ H. AT

is interpreted as the set of hedgeable claims (in terms of physical units) from zero

initial endowment. It is easy to see that AT is solid in the sense that if f ∈ AT and

6Generally, if there are two dynamically traded assets having exchange rates π12π21 ≥ 1 where
πij is the number of physical units of the i-th asset needed to exchange for one unit of the j-th
asset, then one can treat asset 1 as the numérare, and define the bid and ask prices of asset 2 in
terms of asset 1 as S = 1/π21 and S = π12, respectively.

7We allow agents to throw away non-negative quantities of the assets.

21



g ≤ f P-q.s. (the inequality holds componentwise), then g ∈ AT .

Definition 2.3.1.

(i) Condition NA(P) holds if for all f ∈ AT , f ≥ 0 P-q.s. implies f = 0 P-q.s..

(ii) Condition NAr(P) holds if there exist bid-ask price processes S ′t, S
′
t with the

same measurability and continuity property as St, St such that [S ′t, S
′
t] ⊆

ri[St, St] and NA(P) holds for the [S ′, S
′
]-market.8

It is clear that NAr(P) implies NA(P) since any hedgeable claim is also hedge-

able in markets with smaller friction, and they are equivalent when the market is

frictionless on a P-q.s. set.

Remark 2.3.2. NA(P ) ∀P ∈ P implies NA(P). Indeed, let f ∈ AT be such that

f ≥ 0 P-q.s. hence P -a.s. for all P ∈ P . For each P , NA(P ) implies f = 0 P -a.s..

Since this holds for all P ∈ P , f = 0 P-q.s. and NA(P) holds. The reverse direction

is not true. Consider a one-period market with S0 = 2 and S1(ω) = 1, S1(ω′) = 3.

Let P1 = δω, P2 = δω′ be the Dirac measures concentrated on ω and ω′, respectively.

Then it is easy to see that there is arbitrage under both P1 and P2, but not under

P := conv{P1, P2}.9

A similar statement can be made for robust no-arbitrage, but under the extra

condition that P has finite cardinality. Suppose NAr(P ) holds ∀P ∈ P with |P| <∞.

Then for each P , there is a less frictional market [SP , S
P

] ⊆ ri[S, S] satisfying NA(P ).

Define S
′

:= supP∈P S
P

and S ′ := infP∈P S
P . Since P is finite, it is easy to check

that the [S ′, S
′
]-market has the desired measurability, lies in the relative interior of

the original market, and satisfies NA(P).

8“ri” stands for relative interior.
9“conv” stands for convex hull.
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Definition 2.3.3. A pair (Q, S̃) is called a consistent price system (CPS) (resp.

strictly consistent price system (SCPS)) if S̃ is a Q-martingale and S̃t ∈ [St, St]

(resp. S̃t ∈ ri[St, St]) Q-a.s.. Denote the set of all consistent price systems (resp.

strictly consistent price systems) by Z (resp. Zs)

When a market M other than [S, S] is in discussion, we shall write ZM,ZsM

to indicate the underlying market. We now state a continuity assumption under

which our main theorems hold. Recall that for each ω ∈ Ωt, Pt(ω) ⊆ P(Ω1) is the

collection of models for the (t+ 1)-th period starting at position ω. The support of

Pt(ω), denoted by suppPt(ω), is the smallest closed set in Ω1 whose complement is

Pt(ω)-polar. This gives us a set-valued map ω 7→ suppPt(ω).

Assumption 2.3.4. For each t ∈ {0, . . . , T − 1}, St+1(·), St+1(·) are continuous

functions, and suppPt(·) is continuous as a set-valued map.10

The necessity of this assumption is briefly discussed in Section 2.3.3. It holds

trivially when Ω1 is a discrete space. It also covers many examples in the non-

dominated case.

Example 2.3.5. Let Ωt = Rt
≥0 be equipped with the uniform norm. Let S0 > 0 and

St(ω) = ωt (the t-th component of ω) for t ≥ 1, ω ∈ Ωt, representing the mid-price

of the stock. Then St := (1− κ)St, St = (1 + κ)St for some positive constant κ are

continuous for each t. (1) Pt ≡ P(Ω1), i.e. model-free. suppPt ≡ Ω1 is obviously

a continuous set-valued map. (2) Pt consists of all probability measures on Ω1 such

that St+1/St lies inside a given interval [a, b], i.e. there is uncertainty in the log-

increment of the mid-price. In this case suppPt(ω) = [aωt, bωt], which is continuous

in ω.

10See Appendix A.2 for the definition of continuity of a set-valued map.
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The main theorems of this section are given below.

Theorem 2.3.6. Under Assumption 2.3.4, the following are equivalent:

(i) NA(P) holds.

(ii) ∀P ∈ P ,∃(Q, S̃) ∈ Z such that P � Q≪ P.11

Theorem 2.3.7. Under Assumption 2.3.4, the following are equivalent:

(i) NAr(P) hold.

(ii) There exist bid-ask price processes [S ′, S
′
] ⊆ ri[S, S], continuous for each t,

and satisfying

(2.14) ∀P ∈ P , ∃(Q, S̃) ∈ Z ′ ⊆ Zs such that P � Q≪ P ,

where Z ′ = Z[S′,S
′
].

Once we prove Theorem 2.3.6, the proof of Theorem 2.3.7 is easy. So we focus

on the former and skip the latter in the one-period case. [25, Theorem 3.1] and [71,

Theorem 1.7] suggest that it may be natural to formulate (ii) of Theorem 2.3.7 as:

(2.15) ∀P ∈ P ,∃(Q, S̃) ∈ Zs such that P � Q≪ P ,

which is weaker than condition (2.14) and implies NA(P). Under the weaker condi-

tion, we get a pair (QP , S̃P ) for every P . When P is finite, in particular, a singleton,

the two conditions are equivalent, since one can construct S
′
, S ′ as the pointwise

maximum and minimum of all the S̃P ’s, respectively. However, when P has in-

finitely many elements, it is not clear how to construct a less frictional market that

is arbitrage-free with respect to P : taking pointwise supremum and infimum does

11The notation Q≪ P is taken from [25]. It means Q� P for some P ∈ P.

24



not necessarily produce a market that lies in the relative interior of the original one.

Finally, let Q (resp. Q′) be the collection of the first components of Z (resp. Z ′) that

are “strongly” absolutely continuous with respect to P . We remark that Theorem

2.3.6(ii) is equivalent to saying P ,Q are equivalent in terms of polar sets, and Theo-

rem 2.3.7(ii) says P ,Q′ are equivalent in terms of polar sets. When P is a singleton,

we recover the classical result of the existence of an equivalent measure.

2.3.2 The building block: the one-period case

In this subsection, we prove the FTAP for a one-period market. To prepare

for multi-period case, we also discuss how to construct martingales with certain

prescribed initial values. Throughout this section, we do not impose the continuity

assumption, since this assumption is required in carrying out the backward recursion,

which clearly is unnecessary when there is only one period.

Let (Ω,F) be a measurable space with filtration (F0,F1) and F0 = {0,Ω}. Let

P ⊆ P(Ω) be a nonempty convex set. The bid and ask price processes of the stock are

given by constants S0, S0 and F1-measurable random variables S1, S1, respectively.

For this one-period market, we write 4X for the difference X1 −X0 of any process

X. Finally, we note that NA(P) for this one-period market can be stated in the

following equivalent form: ∀y ∈ R, y+(S1 − S0) − y−(S1 − S0) ≥ 0 P-q.s. implies

y+(S1 − S0)− y−(S1 − S0) = 0 P-q.s..

For each P ∈ P , define

(2.16) ΘP := {R ∈ P(Ω) : P � R≪ P , ER[|S1 − S0|+ |S1 − S0|] <∞}.

ΘP is nonempty by Lemma A.3.1.

Lemma 2.3.8. Let NA(P) hold. Define S̃λ by S̃λ0 := λS0 + (1 − λ)S0, S̃λ1 :=
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λS1 + (1− λ)S1. Then ∀P ∈ P and ΘP defined by (2.16), we have

(2.17) 0 ∈ {ER[4S̃λ] : R ∈ ΘP , λ ∈ [0, 1]}.

If in addition, ∃P1, P2 ∈ P such that P1(S1 − S0 < 0) > 0 and P2(S1 − S0 > 0) > 0,

then (2.17) holds with λ ∈ (0, 1).

Proof. Let P ∈ P . We consider three cases:

Case 1. ∃R ∈ ΘP with ER[S1−S0] > 0. We claim that NA(P) implies ∃R′ ∈ ΘP

with ER′ [S1 − S0] < 0. To see this, first observe that we cannot have S1 − S0 ≥ 0

P-q.s. because NA(P) would then imply S1 − S0 = 0 P-q.s. and therefore R-a.s.,

contradicting ER[S1 − S0] > 0. So the set A := {S1 − S0 < 0} satisfies R1(A) > 0

for some R1 ∈ P . Similar to the first paragraph on page 13 of [25], we define

R2 := (R1 + P )/2, use Lemma A.3.1 to replace R2 by R3 ∼ R2 such that R3 ∈ ΘP ,

and further replace R3 by R′ ∼ R3 defined by dR′/dR3 := (1A + ε)/ER3 [1A + ε]. It

can be checked that ER′ [S1 − S0] < 0 for ε small enough. So with λ = 0, we have

found measures R,R′ ∈ ΘP such that ER[4S̃λ] > 0 and ER′ [4S̃λ] < 0. In fact,

any λ sufficiently close to zero will work since λ 7→ ER0 [4S̃λ] is continuous for any

R0 ∈ ΘP . By taking suitable convex combination of R and R′, we can find a measure

Q ∈ ΘP satisfying EQ[4S̃λ] = 0.

Case 2. ∃R ∈ ΘP with ER[S1 − S0] < 0. Similar to case 1, NA(P) implies

∃R′ ∈ ΘP with ER′ [S1 − S0] > 0. We can pick any λ ∈ [0, 1] sufficiently close

to 1, and a suitable convex combination of R and R′, denoted by Q, such that

EQ[4S̃λ] = 0.

Case 3. ∀R ∈ ΘP , ER[S1 − S0] ≤ 0 and ER[S1 − S0] ≥ 0. Pick any R ∈ ΘP . If

one of the inequalities is an equality, then we are done: λ = 0 or 1 will do. If both
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inequalities are strict, then we can always find a λ ∈ (0, 1) such that

ER[4S̃λ] = λER[S1 − S0] + (1− λ)ER[S1 − S0] = 0.

If ∃P1, P2 ∈ P such that P1(S1 − S0 < 0) > 0, P2(S1 − S0 > 0) > 0, then for

some Q ∈ ΘP , both inequalities can be made strict: we can find R1, R2 ∈ ΘP such

that ER1 [S1 − S0] < 0 and ER2 [S1 − S0] > 0 by a construction similar to that in

case 1. We then take Q := (R1 + R2)/2. Such a Q satisfies EQ[S1 − S0] < 0 and

EQ[S1 − S0] > 0.

Given P ∈ P , (2.17) immediately gives the existence of a CPS (Q, S̃) with P �

Q≪ P , which is the nontrivial implication of the FTAP. The additional claim in

Lemma 2.3.8 says the only case when we fail to have an SCPS is S1 ≥ S0 or S1 ≤ S0

P-q.s.. Under NA(P), this is only possible if S1 = S0 or S1 = S0 P-q.s.. Lemma

2.3.8 also has the following important implications for the multi-period case.

Remark 2.3.9. A consistent price process of the form S̃ = S̃λ inherits the measurabil-

ity of the given bid-ask prices. In multi-period case, the measurability also depends

on the measurability of λ. By focusing on consistent price processes of this special

form, for each single period, we can reduce the problem of finding a measurable

function S̃1 to finding a constant weight λ, which will be useful when pasting single-

period prices together using measurable selection in the multi-period case. Otherwise

we could encounter the problem of having S̃t+1(ω, ω′) being Ft measurable in ω and

F1-measurable in ω′, but not necessarily Ft+1-measurable in (ω, ω′).

Proposition 2.3.10. In a one-period market, the following are equivalent:

(i) NA(P) holds.

(ii) ∀P ∈ P ,∃(Q, S̃) ∈ Z such that P � Q≪ P.
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Proof. (i) ⇒ (ii) follows from Lemma 2.3.8. (ii) ⇒ (i) is a simplified version of its

multi-period counterparts (see the proof of Theorem 2.3.6).

Recall that when we go to the multi-period case, we cannot directly paste two

single-period CPSs, but to first make sure the starting point of the current-period

martingale matches the terminal point of its parent. In other words, we are interested

in constructing martingales with certain prescribed initial values. Proposition 2.3.11

gives the set of starting points that admits a martingale extension.

For a random variable S : Ω → R and a nonempty family R of probability

measures on Ω, suppRS denotes the smallest closed set A ⊆ R such that P (S ∈

A) = 1 ∀P ∈ R.

Proposition 2.3.11. Let s ∈ ri[inf suppPS1, sup suppPS1]. Then NA(P) holds for

the market {s, [S1, S1]}. And ∀P ∈ P, ∃(Q, S̃) ∈ Z such that P � Q≪ P, S̃0 = s,

and S̃1 = λS1 + (1− λ)S1 for some λ ∈ (0, 1).

Proof. If suppPS1 = suppPS1 = {s}, then NA(P) holds trivially and Q := P, S̃0 :=

s, S̃1 := (S1 +S1)/2 is the desired CPS. Suppose s ∈ (inf suppPS1, sup suppPS1) 6= ∅.

We can find x ∈ suppPS1 and y ∈ suppPS1 such that x < s < y. By definition of

support, ∃P1, P2 ∈ P satisfying P1(S1 < s) > 0 and P2(S1 > s) > 0. We now show

the market {s, [S1, S1]} satisfies NA(P). Let y ∈ R satisfy y+(S1−s)−y−(S1−s) ≥ 0

P-q.s.. If y > 0, then we must have S1 ≥ s P-q.s., contradicting the fact that

P1(S1 < s) > 0. If y < 0, then we must have S1 ≤ s P-q.s., contradicting the fact

that P2(S1 > s) > 0. Therefore, the only possibility is y = 0, thus y+(S1 − s) −

y−(S1 − s) = 0 P-q.s.. Applying Lemma 2.3.8 to the market {s, [S1, S1]} yields the

desired CPS and a λ ∈ (0, 1).

28



2.3.3 The multi-period case

In this subsection, we prove Theorem 2.3.6 for a multi-period market through a

backward-forward scheme. Back to the setup in introduction, the set P is defined

as the product, in the sense of (2.1.1), of the nonempty convex sets Pt(·) which

have analytic graphs, and St, St are positive, Ft-measurable. For a map f on Ωt+1,

we will often see it as a map on Ωt × Ω1 and write f = f(ω, ω′). Throughout this

section, Assumption 2.3.4 is in force. That is, we assume St(·), St(·) and suppPt(·) are

continuous. The reason for the extra assumption is that we wish to have a property

for price processes that can be preserved under the backward recursion (2.18). Both

Borel and universal measurability are lost under this backward scheme (see Remark

2.3.13). This problem does not exist in market without transaction cost since there

is no need to redefine the stock price and it is enough to assume the stock price is

Borel, nor does it matter when there is a dominating measure P , since we can always

modify a universally measurable map on a P -null set to make it Borel. Relaxation

of the continuity restriction is left for future research.

Define processes X, Y recursively by XT = ST , YT = ST and

(2.18)
Xt(ω) : =

(
inf suppPt(ω)Xt+1(ω, ·)

)
∨ St(ω) ∧ St(ω),

Yt(ω) : =
(
sup suppPt(ω)Yt+1(ω, ·)

)
∧ St(ω) ∨ St(ω)

for t = T − 1, . . . , 0.

Lemma 2.3.12. For each t, Xt, Yt : Ωt → R are continuous.

Proof. XT , YT are continuous by assumption. Suppose Xt+1, Yt+1 are continuous, we

deduce the continuity of Xt, Yt. Lemma A.1.3 yields the nice representation

(2.19)
suppPt(ω)Xt+1(ω, ·) = Xt+1(ω, supp(Pt(ω))),

suppPt(ω)Yt+1(ω, ·) = Yt+1(ω, supp(Pt(ω))).
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Since ω � suppPt(ω) is continuous, it is easy to check the set-valued map ω � {ω}×

suppPt(ω) is also continuous. Composing with the continuous function (ω, ω′) 7→

Xt+1(ω, ω′) ∨ St(ω) ∧ St(ω) and then taking closure, we get by [3, Lemma 17.22,

Theorem 17.23] a continuous map with non-empty compact values:

{Xt+1(ω, ω′) ∨ St(ω) ∧ St(ω)} : ω′ ∈ supp(Pt(ω))} := Φ(ω)

The Berge Maximum Theorem [3, Theorem 17.31] then implies that the value func-

tion infy∈Φ(ω) y = inf Φ(ω) is continuous. It remains to notice that

inf Φ(ω) = inf Xt+1(ω, supp(Pt(ω))) ∨ St(ω) ∧ St(ω) = Xt.

A symmetric argument gives the continuity of Yt.

Remark 2.3.13. If Xt+1, Yt+1 are Borel measurable, we can show Xt, Yt are univer-

sally measurable. Indeed, from [25, Lemma 4.3], we know the closed-valued maps

suppPt(ω)Xt+1(ω, ·), suppPt(ω)Yt+1(ω, ·) are universally measurable. Castaing repre-

sentation [3, Corollary 18.14] implies the infimum and supremum functions are also

measurable. However, universal measurability is not preserved in the next iteration.

See Remark 4.4 of [25] for a counter example.

Apart from preserving continuity, the recursively defined [X, Y ]-market has two

nice properties. First, its spread is not too wide: at least all points in the interior of

[Xt, Yt] admits a martingale extension to the next period P-q.s., although there are

delicate issues when the point lies on the boundary of the spread. Second, its spread

is not too narrow either, in the sense that it still satisfies NA(P) when the original

market does. In summary, other than requiring a strong continuity assumption in its

construction, this new market fits our needs perfectly. The general idea of proving

the nontrivial implication of multi-period FTAP is to replace the original market by
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the modified market [X, Y ], and do martingale extension in the modified market.

Interior extension is not too hard in view of Proposition 2.3.11; the challenging part

is boundary extension. It turns out that boundary extension is possible if we avoid

hitting boundaries as much as we can from the beginning.

Before proving the main theorem, we need three crucial lemmas.

Lemma 2.3.14. Let NA(P) hold for the original market [S, S]. Then NA(P) also

holds for the modified market [X, Y ].

Proof. We prove by backward induction. Suppose NA(P) holds for the market

Mt+1 := {[Sr, Sr]r=0,...,t, [Xr, Yr]r=t+1,...,T}. We show NA(P) holds for the market

Mt := {[Sr, Sr]r=0,...,t−1, [Xr, Yr]r=t,...,T}.

Let φ be a self-financing portfolio process in the market Mt with φ0 = 0 and

φT+1 ≥ 0 P-q.s.. Consider another portfolio process defined by ηr := φr ∀r = 0, . . . , t,

4η1
t+1 : = 1{Yt=St}(4φ

1
t+1)+ − 1{Xt=St}(4φ

1
t+1)−,

4η1
t+2 : = 4φ1

t+2 + 1{Yt 6=St}(4φ
1
t+1)+ − 1{Xt 6=St}(4φ

1
t+1)−,

4η1
r+1 : = 4φ1

r+1, r = t+ 2, . . . , T,

4η0
r+1 : = −(4η1

r+1)+Xr + (4η1
r+1)−Yr, r = t, . . . , T.

That is, we follow φ up to time t − 1, stick to its stock position whenever the

transaction at time t can be carried out in the market Mt+1, and postpone the

transaction to time t + 1 if it is not admissible in the market Mt+1, and follow the

stock position of φ again afterwards. Clearly, η is predictable, self-financing in the

market Mt+1, and η1
T+1 = φ1

T+1. We want to show η0
T+1 ≥ φ0

T+1 P-q.s.. It suffices to

show 4η0
t+1 +4η0

t+2 ≥ 4φ0
t+1 +4φ0

t+2. During the (t+ 1)-th and (t+ 2)-th periods,

η and φ are trading the same total number of shares, just at different times. So we
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only need to check that η faces a trading price as favorable as, if not more favorable

than the one faced by φ. By our construction of Xt, when Xt(ω) 6= St(ω), we must

have Xt(ω) ≤ Xt+1(ω, ·) Pt(ω)-q.s.. Fubini theorem implies the Ft+1-measurable set

{Xt 6= St} ∩ {Xt > Xt+1} is P-polar. Similarly, {Yt 6= St} ∩ {Yt < Yt+1} is P-polar.

Therefore, η has price disadvantage only on a P-polar set.

Lemma 2.3.15. Let [S, S] be any Borel market and let t ∈ {0, . . . , T − 1}. Then

Nt = {w ∈ Ωt : NA(Pt(ω)) fails}

is universally measurable. If NA(P) hold, then Nt is P-polar.

Proof. Set F ω(·) := St+1(ω, ·) − St(ω) and Gω(·) := St+1(ω, ·) − St(ω). By Lemma

4.3 of [25], ΛF (ω) := suppPt(ω)(F
ω) and ΛG(ω) := suppPt(ω)(G

ω) are universally

measurable. We claim that

N c
t = {ΛF = {0}} ∪ {ΛG = {0}} ∪ {ΛF ∩ R<0 6= ∅ and ΛG ∩ R>0 6= ∅},(2.20)

Nt = {ΛF ⊆ R≥0 and ΛF ∩ R>0 6= ∅} ∪ {ΛG ⊆ R≤0 and ΛG ∩ R<0 6= ∅}.(2.21)

Indeed, if ΛF (ω) = {0} or ΛG(ω) = {0}, ω ∈ N c
t trivially. If ΛF (ω) ∩ R<0 6=

∅ and ΛG(ω) ∩ R>0 6= ∅, let y ∈ R satisfy y+F ω − y−Gω ≥ 0 Pt(ω)-q.s.. Suppose

y > 0, then we get F ω ≥ 0 Pt(ω)-q.s., contradicting ΛF (ω) ∩ R<0 6= ∅. Suppose

y < 0, we get Gω ≤ 0 Pt(ω)-q.s., contradicting ΛG(ω) ∩ R>0 6= ∅. So we must have

y = 0, and consequently ω ∈ N c
t . Conversely, if ΛF (ω) ⊆ R≥0 and ΛF (ω) ∩R>0 6= ∅,

then F ω ≥ 0 Pt(ω)-q.s. and P (F ω > 0) > 0 for some P ∈ Pt(ω). In this case, any

y > 0 is an arbitrage. Similarly, if ΛG(ω) ⊆ R≤0 and ΛG(ω) ∩ R<0 6= ∅, then any

y < 0 is an arbitrage. Universal measurability of Nt then follows from the universal

measurability of ΛF ,ΛG. We now show Nt is P-polar.
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We only show that the set A := {ΛF ⊆ R≥0 and ΛF ∩ R>0 6= ∅} is P-polar.

The other set is treated similarly. Suppose ∃P∗ ∈ P such that P∗(A) > 0. To

produce a simple buy-and-sell arbitrage, we want a universally measurable selector

from Ξ(ω) := {P ∈ Pt(ω) : EP [F ω] > 0} for ω ∈ A, which can be done if the set-

valued map has an analytic graph. Define ψ(ω, P ) := EP [F ω]. ψ is Borel measurable

by [22, Propositions 7.25, 7.26, 7.29]. So graph(Ξ) = graph(Pt)∩{ψ > 0} is analytic,

and consequently, Ξ admits a universally measurable selector P (·) on {Ξ 6= ∅} ⊇ A by

the Jankov-von Neumann theorem (Theorem A.2.3). On the universally measurable

set Ac, redefine P to be any universally measurable selector of Pt. Let φ1
t+1 = 1A, φ

1
r =

0 for all r 6= t+1, and φ0
0 = 0,4φ0

r+1 = −(4φ1
r+1)+Sr+(4φ1

r+1)−Sr for r = 0, . . . , T .

Then φ ∈ H, φt+2(ω, ·) ≥ 0 Pt(ω)-q.s. for all ω ∈ Ω, and P (ω)(φ0
t+2(ω, ·) > 0) > 0

for ω ∈ A.

Since each measure in P admits a decomposition of the form (2.1.1), Fubini’s

theorem easily implies φT+1 = φt+2 ≥ 0 P-q.s.. On the other hand, P ∗ := P∗|Ωt ⊗

P ⊗ P̃t+1 ⊗ · · · ⊗ P̃T−1 where P̃r is any universally measurable selector of Pr, r =

t+1, . . . , T −1 is an element of P satisfying P ∗(φ0
T+1 > 0) = P ∗(φ0

t+2 > 0) > 0. This

violates NA(P). So A must be P-polar.

Lemma 2.3.16. Let [S, S] be any Borel market. Let t ∈ {0, . . . , T − 1} and P (·) :

Ωt → P(Ω1) be Borel. Given a Borel measurable function S̃t(·) ∈ [St(·), St(·)], let

(2.22)

Ξt(ω) := {(Q, λ, P̂ ) ∈ P(Ω1)× (0, 1)× Pt(ω) : P (ω)� Q� P̂ , EQ[Dλ(ω)] = 0},

where Dλ(ω) := λSt+1(ω, ·)+(1−λ)St+1(ω, ·)−S̃t(ω). Then Ξt has an analytic graph

and there exist Ft-measurable maps Q(·), λ(·), P̂ (·) such that (Q(ω), λ(ω), P̂ (ω)) ∈

Ξt(ω) if Ξt(ω) 6= ∅.
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Proof. The proof is almost the same as that of [25, Lemma 4.8]. So we shall be

brief. We first show Ξt has an analytic graph. Let Ψ(ω) := {(Q, λ) ∈ P(Ω1) ×

(0, 1) : EQ[Dλ(ω)] = 0}. Since the function (ω,Q, λ) 7→ EQ[Dλ(ω)] is Borel, Ψ

has Borel graph. Let Φ(ω) := {(R, R̂) ∈ P(Ω1) × P(Ω1) : P (ω) � R � R̂}.

Define φ(ω,R, R̂) := ER[dP (ω)/dR] + ER̂[dR/dR̂] where we choose a version of the

Radon-Nikodym derivatives (using absolutely continuous part) that are jointly Borel

measurable as described in [25, Lemma 4.7] (see also [34, Theorem V.58] and the

remark after it). [22, Propositions 7.26, 7.29] then imply φ is Borel. So graph(Φ) =

{φ = 2} is Borel. Hence, with minor abuse of notation, Ξt(ω) = (Ψ(ω) × Pt(ω)) ∩

(Φ(ω) × R) has an analytic graph. We can find a universally measurable selector

Q(·), λ(·), P̂ (·) for Ξ on the universally measurable set {Ξt 6= ∅}. Outside this set,

we simply define Q(·) = P̂ (·) = P (·) and λ to be any constant.

We are now ready to prove our main results.

Proof of Theorem 2.3.6. (i)⇒ (ii): We first replace the original [S, S]-market by the

modified [X, Y ]-market which lies inside [S,S], is still continuous (hence Borel) by

Lemma 2.3.12 and satisfies NA(P) by Lemma 2.3.14. It suffices to prove (ii) for the

modified market because any CPS for the modified market is a CPS for the original

market. Let us introduce and prove an auxiliary claim:

(ii’) ∀P ∈ P , ∃(Q, S̃) ∈ Z such that P � Q≪ P and S̃t = S̃λt = (1 − λt−1)Xt +

λt−1Yt, t = 1, . . . , T for some adapted process λ, valued in [0, 1]. Moreover,

define a sequence of stopping times:

τ 0
1 : = inf{t ∈ [0, T − 1] : λt = 0},

σ0
n : = inf{t ∈ (τ 0

n, T − 1] : λt > 0},

τ 0
n+1 : = inf{t ∈ (σ0

n, T − 1] : λt = 0},
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with the convention that inf ∅ = ∞. Then P-q.s. on the set {τ 0
n < ∞}, we

have Xτ0n
= Yτ0n = Xt for all t ∈ [τ 0

n, σ
0
n ∧ T ]. Similarly, define

σ1
1 : = inf{t ∈ [0, T − 1] : λt = 1},

τ 1
n : = inf{t ∈ (σ1

n, T − 1] : λt < 1},

σ1
n+1 : = inf{t ∈ (τ 1

n, T − 1] : λt = 1}.

Then P-q.s. on the set {σ1
n < ∞}, we have Xσ1

n
= Yσ1

n
= Yt for all t ∈

[σ1
n, τ

1
n ∧ T ].

We do induction on the number of periods in the market. When there is only one

period, for any P ∈ P , the existence of (Q, S̃λ) ∈ Z with P � Q≪ P is due to

Lemma 2.3.8. Moreover, we take λ = 0 when {X0} = {Y0} = suppPX1 6= suppPY1,

and λ = 1 when {X0} = {Y0} = suppPY1 6= suppPX1. In all other cases (under

NA(P)), Proposition 2.3.11 guarantees the existence of a λ ∈ (0, 1). We can check

that all the statements in (ii’) are satisfied.

Now, suppose (i) implies (ii’) for any market with t − 1 periods (t = 2, . . . , T )

and satisfies backward recursion (2.18). We will deduce the same property for such

recursively defined market with t periods.

Let NA(P) hold for the t-period market denoted by M. Its submarket up to time

t− 1, denoted by M′, satisfies NA(P ′) where

P ′ = {P0 ⊗ · · · ⊗ Pt−2 : each Pr is a universally measurable selector of Pr}

is the set of possible models for the first t−1 periods. Let P ∈ P have decomposition

P = P |Ωt−1⊗Pt−1. We can apply the induction hypothesis to obtainQ′, λ, S̃ described

in (ii’) up to time t−1 with P |Ωt−1 � Q′ � P̂ ′ ∈ P ′. Our goal is to extend Q′, λ, S̃, P̂ ′

to the t-th period.
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Step 1: We will show that the set

(2.23)
NM1 := {ω ∈ Ωt−1 :NA(Pt−1(ω)) fails for the one-period market

{S̃t−1(ω), [Xt(ω, ·), Yt(ω, ·)]}}

is universally measurable and P-polar. Let

ΛF (ω) : = suppPt−1(ω)Xt(ω, ·)− S̃t−1(ω),

ΛG(ω) : = suppPt−1(ω)Yt(ω, ·)− S̃t−1(ω).

These sets are universally measurable by [25, Lemma 4.3]. Equation (2.21) gives

(2.24) NM1 = {ΛF ⊆ R≥0 and ΛF ∩ R>0 6= ∅} ∪ {ΛG ⊆ R≤0 and ΛG ∩ R<0 6= ∅},

which implies NM1 is universally measurable. It remains to show NM1 is P-polar.

Since the market [X, Y ] satisfies NA(P), Lemma 2.3.15 implies that Nt−1 := {ω :

NA(Pt−1(ω)) fails for the one-period market {[Xt−1(ω), Yt−1(ω)], [Xt(ω, ·), Yt(ω, ·)]}}

is universally measurable and P-polar. So it suffices to show the set NM1 ∩N c
R−1 is

P-polar. For ω ∈ N c
t−1, we see from (2.20) and the definition of Xt−1, Yt−1 that

[Xt−1(ω), Yt−1(ω)] ⊆ [inf suppPt−1(ω)Xt(ω, ·), sup suppPt−1(ω)Yt(ω, ·)].

Observe that N c
t−1 ∩ {ΛF ⊆ R≥0 and ΛF ∩ R>0 6= ∅} ⊆ {λt−2 = 0} because if

λt−2(ω|Ωt−2) > 0 (here ω ∈ Ωt−1 and ω|Ωt−2 denotes the first t− 2 components of ω),

then either S̃t−1(ω) > Xt−1(ω) ≥ inf suppPt−1(ω)Xt(ω, ·) which would imply ΛF (ω) ∩

R<0 6= ∅, or Xt−1(ω) = Yt−1(ω) in which case if ΛF (ω) ⊆ R≥0 and ΛF (ω) ∩R>0 6= ∅,

then ω ∈ Nt−1. Similarly, N c
t−1 ∩ {ΛG ⊆ R≤0 and ΛG ∩ R<0 6= ∅} ⊆ {λt−2 = 1}. So

to show NM1 ∩N c
t−1 is P-polar, it suffices to show the Ft−1-measurable sets

A : = {ΛF ⊆ R≥0 and ΛF ∩ R>0 6= ∅} ∩ {λt−2 = 0},

B : = {ΛG ⊆ R≤0 and ΛG ∩ R<0 6= ∅} ∩ {λt−2 = 1}.
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are P-polar. We shall focus on set A; the other case is similar.

Suppose on the contrary, P∗(A) > 0 for some P∗ ∈ P . Define stopping times

τ̃n, σ̃n by

τ̃ 0
1 : = inf{r ∈ [0, t− 2] : λr = 0},

σ̃0
n : = inf{r ∈ (τ̃ 0

n, t− 2] : λr > 0},

τ̃ 0
n+1 : = inf{r ∈ (σ̃0

n, r − 2] : λr = 0}.

Induction hypothesis implies that P ′-q.s. on {τ̃ 0
n <∞}, we have

(2.25) Xτ̃0n
= Yτ̃0n = Xr ∀r ∈ [τ̃ 0

n, σ̃
0
n ∧ (t− 1)]

We now construct an arbitrage strategy. Define φ0 := 0. For r = 1, . . . , t,

φ1
r+1 :=

∑
n

1{τ̃0n≤r<σ̃0
n} − 1{τ̃0n<σ̃0

n=∞}∩Ac∩{r=t−1} − 1{τ̃0n<σ̃0
n=∞}∩A∩{r=t},

and

4φ0
r+1 = −(4φ1

r+1)+Xr − (4φ1
r+1)−Yr.

Then φ is predictable and self-financing in market M. Moreover, φt+1 ≥ 0 P-q.s..

Indeed, on the set {τ̃ 0
1 =∞}, no trade occurs. On the set {τ̃ 0

m < σ̃0
m =∞} for some

m ≥ 1, the strategy is to repeatedly buy one share at time τ̃ 0
n and sell it at time σ̃0

n

for all n < m. After that, buy one share at τ̃ 0
m and close our stock position at time

t− 1 if A is not observed, and at time t if A is observed. In the case where A is not

observed, (2.25) implies the selling price of every holding period is P ′-q.s. (hence

also P-q.s. since all trades occur on or before time t − 1) the same as the buying

price of that holding period. So we end up in zero position. In the case where A

is observed, (2.25) again implies P ′-q.s. perfect cancellation before the last holding

period; in the last holding period, we buy a share at time τ̃ 0
m, and sell it at time t
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at the price Xt which is P-q.s. larger than or equal to S̃t−1 = Xt−1 by the definition

of A. (2.25) then implies Xt ≥ Yτ̃0m P-q.s. on {τ̃ 0
m < σ̃0

m = ∞} ∩ A. So we can

close our position without loss. On the set {σ̃0
m < τ̃ 0

m+1 = ∞} for some m ≥ 1, all

trades happen on or before time t − 2 and we have P ′-q.s. (hence P-q.s.) perfect

cancellation.

To create an arbitrage opportunity, it remains to construct a measure P ∗ under

which {φ0
t+1 > 0} = A ∩ {Xt > Xt−1} has positive measure (notice that λt−2 = 0

implies ∃m ≥ 1 such that τ̃ 0
m < σ̃0

m =∞).

Let

Ξ(ω) := {R ∈ Pt−1(ω) : ER[Xt(ω, ·)−Xt−1(ω)] > 0}.

By [22, Propositions 7.25, 7.26, 7.29], the map defined by ψ(ω,R) := ER[Xt(ω, ·)−

Xt−1(ω)] is Borel measurable. Hence graph(Ξ) = graph(Pt−1) ∩ {ψ > 0} is analytic.

The Jankov-von Neumann theorem (Theorem A.2.3) implies Ξ admits a universally

measurable selector R(·) ∈ Ξ(·) on {Ξ 6= ∅}. Observe that A ⊆ {Ξ 6= ∅}. Out-

side A, we redefine R to be any universally measurable selector of Pt−1. We have

R(ω)(Xt(ω, ·)−Xt−1(ω) > 0) > 0 on A. Define P ∗ := P∗|Ωt−1 ⊗R. Then P ∗(A) > 0

and P ∗(φ0
t+1 > 0) > 0. So φ is an arbitrage, contradicting NA(P) for market M.

Therefore, A must be P-polar. A similar argument shows that B is P-polar. We

conclude that NM1 = (NM1 ∩Nt−1) ∪ (NM1 ∩N c
t−1) is P-polar.

Step 2: We will now extend Q′, λ, S̃, P̂ ′ to the t-th period. In view of step 1,

we only need to consider martingale extension on the P-q.s. set N c
M1

= {ΛF =

{0}} ∪ {ΛG = {0}} ∪ {ΛF ∩ R<0 6= ∅ and ΛG ∩ R>0 6= ∅}. On NM1 , we simply set

Qt−1 = P̂t−1 = Pt−1 and λt−1 = 1/2. We perform the extension on the following

universally measurable sets separately:

On {ΛF = {0} 6= ΛG}, set Qt−1 = P̂t−1 = Pt−1, λt−1 = 0.
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On {ΛG = {0} 6= ΛF}, set Qt−1 = P̂t−1 = Pt−1, λt−1 = 1.

On {ΛF = ΛG = {0}}, set Qt−1 = P̂t−1 = Pt−1, λt−1 = 1/2.

On {ΛF ∩ R<0 6= ∅ and ΛG ∩ R>0 6= ∅} := C, we have

inf suppPt−1(ω)Xt(ω, ·) < S̃t−1(ω) < sup suppPt−1(ω)Yt(ω, ·).

So the set Ξt−1(ω) defined by (2.22) with X, Y in place of S, S is nonempty by Propo-

sition 2.3.11. To obtain a universally measurable selector, we first modify Pt−1(·) and

S̃t−1(·) on a P̂ ′-nullset N̂ (hence Q′-null and P |Ωt−1-null) to make them Borel mea-

surable [22, Lemma 7.27]. Denote the resulting Borel kernel and random variable

by PB
t−1 and S̃Bt−1. We can then use Lemma 2.3.16 to obtain universally measur-

able maps Q0
t−1(·), λ0

t−1(·), P̂ 0
t−1(·) such that PB

t−1(ω) � Q0
t−1(ω) � P̂ 0

t−1(ω), and if

ω ∈ C\N̂ , then λ0
t−1(ω) ∈ (0, 1), P̂ 0

t−1(ω) ∈ Pt−1(ω) and EQ0
t−1(ω)[λ0

t−1(ω)Xt(ω, ·) +

(1− λ0
t−1(ω))Yt(ω, ·)] = S̃Bt−1(ω). Set (Qt−1, λt−1, P̂t−1) = (Q0

t−1, λ
0
t−1, P̂

0
t−1) on C\N̂ ,

and Qt−1 = P̂t−1 = Pt−1, λt−1 = 1/2 on C ∩ N̂ .

Then Qt−1(·), λt−1(·), P̂t−1(·) constructed above are universally measurable. In all

cases, define S̃t := (1−λt−1)Xt+λt−1Yt. Then S̃t is obviously universally measurable,

and we have EQt−1(ω)[S̃t(ω, ·)] = S̃t−1(ω) Q′-a.s.. Define Q := Q′ ⊗ Qt−1, P̂ = P̂ ′ ⊗

P̂t−1, we then have P � Q� P̂ ∈ P (notice that P = P |Ωt−1⊗Pt−1 = P |Ωt−1⊗PB
t−1)

and EQ[S̃t|Ft−1] = S̃t−1. That is, S̃ is a generalized martingale since we do not

necessarily have the integrability of S̃t under Q. But by [55, Proposition 5.3.2] and

[52, Theorem 1.1], we can replace Q by an equivalent probability measure under

which S̃ is a true martingale.

Step 3. We will now verify that the extended weight process (λr)r=1,...,t−1 and

the corresponding stopping times satisfies the property described in (ii’). We shall

denote those stopping times for market M by τ 0
n, σ

0
n, τ

1
n, σ

1
n. Notice that they differ
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from their counterparts τ̃ 0
n, σ̃

0
n, τ̃

1
n, σ̃

1
n for market M′ only possibly in the last trading

cycle. We check only the properties related to τ 0
n, σ

0
n since our extension in step 2 is

symmetric. In this step, to keep notation simple, we treat Fr-measurable functions as

defined on Ω for each r, i.e. if f is Fr-measurable and ω|Ωr is the first r components

of ω ∈ Ω, then we write f(ω) to mean f(ω|Ωr).

Let ω ∈ N c
M1
∩ {τ 0

n <∞}. Also assume ω belongs to the P ′-q.s. set where (2.25)

hold (the P ′-q.s. set is also P-q.s.).

Case 1. τ 0
n(ω) < σ0

n(ω) ≤ t− 2. In this case, τ 0
n(ω) = τ̃ 0

n(ω), σ0
n(ω) = σ̃0

n(ω), and

we have Xτ0n(ω)(ω) = Yτ0n(ω)(ω) = Xr(ω) for r ∈ [τ 0
n(ω), σ0

n(ω) ∧ t] = [τ̃ 0
n(ω), σ̃0

n(ω) ∧

(t− 1)] by the induction hypothesis.

Case 2. τ 0
n(ω) ≤ T − 2, σ0

n(ω) = t − 1. In this case, τ 0
n(ω) = τ̃ 0

n(ω) and

σ̃0
n(ω) = ∞. Again, induction hypothesis gives Xτ0n(ω)(ω) = Yτ0n(ω)(ω) = Xr(ω)

for r ∈ [τ 0
n(ω), σ0

n(ω) ∧ t] = [τ̃ 0
n(ω), t− 1] = [τ̃ 0

n(ω), σ̃0
n(ω) ∧ (t− 1)].

Case 3. τ 0
n(ω) ≤ t− 2, σ0

n(ω) =∞. In this case, τ 0
n(ω) = τ̃ 0

n(ω), σ̃0
n(ω) =∞ and

[τ 0
n(ω), σ0

n(ω) ∧ t] = [τ̃ 0
n(ω), t]. Induction hypothesis implies Xτ0n(ω)(ω) = Yτ0n(ω)(ω) =

Xr(ω) for r ∈ [τ̃ 0
n(ω), t − 1]. It remains to check Xt(ω) = Xt−1(ω) for P-q.s. such

ω. In terms of λ process, case 3 corresponds to λt−2(ω) = λt−1(ω) = 0. λt−2(ω) = 0

implies S̃t−1(ω) = Xt−1(ω). Based on our construction, λt−1(ω) = 0 only when

ΛF (ω) = {0} 6= ΛG(ω). Since any P ∈ P has the decomposition P = P |Ωt−1 ⊗ Pt−1,

we must have Xt(ω) = S̃t−1(ω) = Xt−1(ω) for P-q.s. ω that fall into case 3.

Case 4. τ 0
n(ω) = t− 1, σ0

n(ω) =∞. In this case, τ̃ 0
n(ω) = σ̃0

n(ω) =∞. We need to

check Xt−1(ω) = Yt−1(ω) = Xt(ω) for P-q.s. such ω. In terms of λ process, case 4 cor-

responds to λt−2(ω) > 0 = λt−1(ω). If Xt−1(ω) 6= Yt−1(ω), then λt−2(ω) > 0 implies

S̃t−1(ω) > Xt−1(ω) in which case ΛF (ω) ∩ R<0 6= ∅. But based on our construction,

λt−1(ω) = 0 only if ΛF (ω) = {0}. So we must have Xt−1(ω) = Yt−1(ω) = S̃t−1(ω).
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Similar to case 3, Xt(ω) = S̃t−1(ω) = Xt−1(ω) for P-q.s. ω that fall into case 4

follows from ΛF (ω) = {0}.

Statements about σ1
n, τ

1
n can be verified by a symmetric argument. We therefore

have proved that (i) implies (ii’) for the recursively defined markets [X, Y ] with t

periods.

Finally, we note that (ii’) clearly implies (ii).

(ii)⇒ (i): Let f ∈ AT be such that f ≥ 0 P-q.s.. To show f = 0 P-q.s., we

suppose on the contrary ∃P ∈ P such that P (‖f‖ > 0) > 0 and try to derive a

contradiction. Write f = φT+1 for some φ ∈ H. Let (Q, S̃) be the CPS given by (ii).

It is easy to see that (1, S̃) is a Q-martingale which lies in K∗ ∩ R2
>0 where for each

t and ω, K∗t (ω) := {y ∈ Rd : 〈x, y〉 ≥ 0 ∀x ∈ Kt(ω)} is the dual cone of the solvency

cone Kt(ω). According to Lemma A.3.1, we can pick Q′ ∼ Q such that 4φt+1 are

Q′-integrable for all t = 0, . . . , T . Then by a slight modification of [55, Lemma

3.2.4] (simply replace ri G∗ with K∗ ∩ R2
>0), there exists a bounded Q′-martingale

Z = (Z0, Z1) ∈ K∗ ∩ R2
>0.

Now, let 〈·, ·〉 denote the usual inner product. On one hand,

EQ′ [〈ZT , f〉] =
T∑
t=0

EQ′ [〈ZT ,4φt+1〉] =
T∑
t=0

EQ′ [〈Zt,4φt+1〉] ≤ 0

by the martingale property of Z under Q′ and that Zt ∈ K∗t , 4φt+1 ∈ −Kt. On

the other hand, Q′ ∼ Q � P implies Q′(‖f‖ > 0) > 0. Together with f ≥ 0 and

ZT ∈ R2
>0 we get the contradictory inequality:

EQ′ [〈ZT , f〉] > 0.

Proof of Theorem 2.3.7. NAr(P) holds implies that NA(P) holds for a less frictional

market [S ′, S
′
] ⊆ ri[S, S] where St, St are also continuous for each t. Then apply
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Theorem 2.3.6 to the [S ′, S
′
]-market. The reverse implication is similar to that of

Theorem 2.3.6 with [S ′, S
′
]-market as the NA(P) candidate.

2.3.4 Existence of an optimal superhedging strategy

In this subsection, we give an existence result of an optimal superhedging strategy

when the market satisfies NAr(P). The proof is based on the closedness of AT under

P-q.s. convergence. We begin with a quasi-sure version of [71, Lemma 2.6] the proof

of which is almost identical to its classical version and is included in Appendix A.4

for the readers’ convenience.

For a random set A ⊆ R2, write L0(A;Ft) for the set of Ft-measurable random

vectors taking valued in A. Also let K0
t := Kt∩(−Kt) be the linear space of portfolios

that can be converted to zero and vice versa.

Lemma 2.3.17. Suppose NAr(P) holds. Let ξt ∈ L0(−Kt;Ft), t = 0, . . . , T satisfy∑T
t=0 ξt = 0 P-q.s.. Then ξt ∈ K0

t for t = 0, . . . , T P-q.s..

Proposition 2.3.18. If NAr(P) holds, then AT is closed under P-q.s. convergence.

Proof. Let {W n} be a sequence in AT which converges to a random variableW P-q.s..

We want to show W =
∑T

t=0 ξt P-q.s. for some process ξ satisfying ξt ∈ L0(−Kt;Ft),

t = 0, . . . , T . We mimic the proof of Theorem 2.2 in [25] and do induction on the

number of periods in the market. In this proof, we do not assume Ω0 is a singleton.

When the market has zero period, each W n ∈ −K0 P-q.s.. Since K0 is closed-

valued, W ∈ −K0 P-q.s., and we are done. Suppose the claim is true for any

market with dates {1, 2, . . . , T}, we now deduce the case with dates {0, 1, . . . , T}.

Note that NAr(P) for market with dates {0, 1, . . . , T} clearly implies NAr(P) for

market with dates {1, . . . , T}. We can write W n =
∑T

t=0 ξ
n
t − (gn, 0) P-q.s. with
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ξnt ∈ L0(−Kt;Ft), ξn,0t = −(ξn,1t )+St+(ξn,1t )−St, t = 0, . . . , T , and gn ∈ L0(R≥0;FT ).

Here gn represents the total amount of cash thrown away up to time T .

Consider the F0-measurable set E := {lim infn|ξn,10 | < ∞}. We can find F0-

measurable random indices nk such that ξnk0 = (−(ξnk,10 )+S0 + (ξnk,1t )−S0, ξ
nk,1
0 ) con-

verges pointwise to a finite F0-measurable random vector ξ0 ∈ −K0.

On E, we have
T∑
t=1

ξnkt − (gn, 0)→ W − ξ0 P-q.s..

By induction hypothesis, ∃ξt ∈ L0(−Kt;Ft), t = 1, . . . , T such that

(2.26) W − ξ0 =
T∑
t=1

ξt P-q.s. on E.

If Ec = {lim infn|ξn,10 | = ∞} is P-polar, then we are done. Suppose Ec is not

P-polar, let Gn
0 :=

ξn0
1+|ξn,10 |

. Since |Gn,1
0 | ≤ 1 and |Gn,0

0 | =
|−(ξn,10 )+S0+(ξn,10 )−S0|

1+|ξn,10 |
≤ S0,

there exists F0-measurable random indices nk such that Gnk
0 converges pointwise

to an F0-measurable random vector G0 = (G0
0, G

1
0) with |G1

0| = 1 on Ec. G0 ∈

−K0 since −K0 is a (random) closed cone. Divide by 1 + |ξnk,10 | on both sides of∑T
t=1 ξ

nk
t − (gnk , 0) = W nk − ξnk0 and take limit as k →∞, we get

T∑
t=1

ξnkt
1 + |ξnk,10 |

− (gnk , 0)

1 + |ξnk,10 |
→ −G0 P-q.s. on Ec.

Clearly,
ξ
nk
t

1+|ξnk,10 |
∈ L0(−Kt;Ft), t = 1, . . . , T − 1 and

ξ
nk
T −(gnk ,0)

1+|ξnk,10 |
∈ L0(−KT ;FT ). So

we can apply induction hypothesis again to obtain ξ̃t ∈ L0(−Kt;Ft), t = 1, . . . , T

such that

(2.27) G0 +
T∑
t=1

ξ̃t = 0 P-q.s. on Ec.

Observe that K0
t is either a single point (the origin) if St < St, or a line passing

through the origin if St = St. By Lemma 2.3.17, we have that on Ec, G0 ∈ K0
0 and
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ξ̃t ∈ K0
t for all t = 1, . . . , T P-q.s.. Since G0 6= 0 on Ec by construction, we must

have K0
0 6= {0} P-q.s. on Ec. For each t = 0, . . . , T , write St = St := St whenever

K0
t 6= {0}. On Ec, we have P-q.s., G0

0 + G1
0S0 = 0, and for t = 1, . . . , T , either

ξ̃t ∈ K0
t = {0}, or ξ̃0

t + ξ̃1
t St = 0 whenever K0

t 6= {0}. Define

ηn0 := 1Eξ
n
0 ,

and for t = 1 . . . , T ,

ηn,1t := ξn,1t − 1Ec
ξn,10

G1
0

ξ̃1
t , ηn,0t := −(ηn,1t )+St + (ηn,1t )−St.

Then ηnt ∈ L0(−Kt;Ft), and

T∑
t=0

ηn,1t =
T∑
t=0

ξn,1t − 1Ec
ξn,10

G1
0

(
G1

0 +
T∑
t=1

ξ̃1
t

)
=

T∑
t=0

ξn,1t P-q.s.,

where the last equality holds by (2.27). On E, we have

T∑
t=0

ηn,0t = ξn,00 +
T∑
t=1

−(ξn,1t )+St + (ξn,1t )−St = ξn,00 +
T∑
t=1

ξn,0t =
T∑
t=0

ξn,0t .

On Ec, we have

T∑
t=0

ηn,0t =
T∑
t=1

−(ηn,1t )+St + (ηn,1t )−St

≥
T∑
t=1

−(ξn,1t )+St + (ξn,1t )−St −
(
−ξ

n,1
0

G1
0

ξ̃1
t

)+

St +

(
−ξ

n,1
0

G1
0

ξ̃1
t

)−
St

=
T∑
t=1

ξn,0t −
(
ξn,10

G1
0

ξ̃1
t

)−
St +

(
ξn,10

G1
0

ξ̃1
t

)+

St

=
T∑
t=1

ξn,0t −
ξn,10

G1
0

T∑
t=1

ξ̃0
t

=
T∑
t=1

ξn,0t +
ξn,10 G0

0

G1
0

=
T∑
t=1

ξn,0t − ξ
n,1
0 S0 =

T∑
t=0

ξn,0t .
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In the second line, we used that the function x 7→ −x+St + x−St is concave. In the

fourth line, we used ξ̃t = 0 when K0
t = {0}, and St = St = St, ξ̃

0
t + ξ̃1

t St = 0 when

K0
t 6= {0}. In the fifth line, we used (2.27). In the last line, we used G0

0 +G1
0S0 = 0.

So we have constructed ηnt ∈ L0(−Kt;Ft) such that ηn0 = 0 on Ec and

T∑
t=0

ηnt −

(
gn +

T∑
t=0

ηn,0t −
T∑
t=0

ξn,0t , 0

)
=

T∑
t=0

ξnt − (gn, 0)→ W P-q.s..

Now we can apply the induction hypothesis to obtain ξt ∈ L0(−Kt;Ft) such that

W =
∑T

t=1 ξt P-q.s. on Ec. Combining the result on Ec with that on E (see (2.26)),

we have proved that W ∈ AT .

Given an R2-valued random variable f which will be treated as a contingent

claim, define its superhedging price

π(f) := inf{x ∈ R : ∃φ ∈ H such that (x, 0) + φT+1 ≥ f P-q.s.}.

Theorem 2.3.19. Let NAr(P) hold and let f be an R2-valued random variable.

Then π(f) > −∞, and there exists φ ∈ H such that (π(f), 0) + φT+1 ≥ f P-q.s..

Proof. If π(f) = ∞, there is nothing to prove. If |π(f)| < ∞, then f − (π(f) +

1/n, 0) ∈ AT ∀n ∈ N. By closedness of AT , f − (π(f), 0) ∈ AT , meaning ∃φ ∈ H

such that (π(f), 0) + φT+1 = f P-q.s.. We now show that π(f) = −∞ violates

our no-arbitrage assumption. Suppose π(f) = −∞, then for each n ∈ N, ∃φn ∈ H

such that (−n, 0) +
∑T

t=04φnt+1 ≥ f P-q.s.. Fix 0 < ε < 1/S0 and define ηn0 :=

0,4ηn1 := 4φn1 + n(−εS0, ε) and 4ηnt := 4φnt for t = 2, . . . , T + 1. It is easy

to see that (−εS0, ε) ∈ −K0 and hence 4ηn1 ∈ −K0. So ηn ∈ H ∀n. Moreover,

f ≤ (−n, 0) +
∑T

t=04φnt+1 =
∑T

t=04ηnt+1 − n(1− εS0, ε) P-q.s.. So we get

T∑
t=0

4ηnt+1 ≥ f + n(1− εS0, ε) ≥ ((f 0 + n(1− εS0)) ∧ 1, (f 1 + nε) ∧ 1) P-q.s..
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It follows from the solidness of AT that ((f 0 +n(1−εS0))∧1, (f 1 +nε)∧1) ∈ AT . Let

n → ∞. Proposition 2.3.18 then implies (1, 1) ∈ AT , violating NA(P), and hence

NAr(P).

2.4 Further discussion

2.4.1 Challenges with multi-asset extension

When there are multiple dynamically traded assets with bid-ask spreads, the

market can be modeled by a so-called bid-ask matrix (πijt ) : Ωt →Md×d(R>0) whose

ij-th entry represents the number of physical units of the i-th asset needed to ex-

change for one unit of the j-th asset. In this set-up, and assuming the market has

efficient and bounded friction, Bouchard and Nutz proved in a recent paper [24] a

version of the FTAP with no arbitrage of the second kind, denoted by NA2(P). This

no-arbitrage notion, however, is quite strong. It means the market is already in a

good form for martingale extension, so that the backward recursion is avoided. A

simple one-period market S0 = 1, S0 = 3, S1 = 2, S1 = 4 which satisfies NA(P), thus

reasonable in our opinion, fails NA2(P).

Rather than assuming NA2(P), it is desirable to work with a weaker no-arbitrage

notion, e.g. strict no-arbitrage NAs(P), and obtain NA2(P) through backward re-

cursion. There seem to be three possible ways to define a modified market.

(i) Do backward recursion on the solvency cones via

K̃t = Kt + Λt where Λt(ω) =
⋂

ω′∈suppPt(ω)

K̃t+1(ω, ω′).

(ii) Do recursion on the dual cones via

K̃∗t = K∗t ∩ Λ∗t where Λ∗t (ω) = convK̃∗t+1(ω, suppPt(ω)).

Here “conv” stands for convex hull.
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(iii) Do recursion on the bid-ask matrix via

π̃ijt = γt ∧ πijt ∨
1

πjit
where γijt (ω) := sup suppPt(ω)π̃

ij
t+1(ω, ·),

and then generate the corresponding solvency cone K̃t.

The issue with methods (i) and (ii) is that the intersection of continuous set-valued

maps need not be continuous, not to mention that we generally have an uncountable

intersection in (i). Since measurability is preserved under countable intersection of

closed-valued maps, it may appear that one can work with measurable rather than

continuous set-valued maps in (ii). In fact, (ii) is similar to the recursion used in

[66]. However, the composition of two measurable set-valued map may fail to be

measurable unless the outer map K̃∗t+1 is of Carathéodory type, i.e. measurable in ω

and continuous in ω′.

Method (iii) shares the most similarity with Section 2.3. The nice thing with

doing recursion on the generators instead of the cones is that continuity is now

preserved. The modified market defined in this way does preserve the no-arbitrage

property of the original market, and is in some sense, least favorable, but it is not in a

very good form for martingale extension. For martingale extension, we want NA2(P)

to hold locally, which would be the case if the solvency cone generated by the worst

exchange rates γijt is equal to the worst solvency cone
⋂
ω′∈suppPt(ω) K̃t+1(ω, ω′). This

is true is dimension two, but problematic in higher dimensions.

2.4.2 Challenges with superhedging duality

In the quasi-sure framework, superhedging theorem without friction is proved in

[25] using a dynamic programming approach where the martingale measures serve

as the control. Compared with the frictionless case where everything is measured in
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cash, in the frictional case, we need to work with multi-dimensional positions mea-

sured in physical units. Then at each time t in the dynamic programming procedure,

instead of having a single point (the smallest initial capital) from which one can su-

perhedge the value function at time t + 1, we now have a set G of minimal points.

This means the dimension of the problem increases: there is an additional minimiza-

tion problem over G; we pick the element in G which has the smallest superhedging

price in the first t-period market.

We have an “inf sup” problem where we minimize over random variables in G and

maximize over consistent price systems. To make the inductive step work and use the

one-period result, we need the exchangeability of “inf” and “sup”, i.e. a minimax

theorem of some kind. But neither G (equipped with the topology of pointwise

convergence) nor the set of consistent price systems are compact.
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CHAPTER III

Minimizing the Probability of Lifetime Ruin

Under Ambiguity Aversion

3.1 Introduction

The problem of how individuals should invest their wealth in a risky financial

market to minimize the probability that they outlive their wealth, also known as the

probability of lifetime ruin (this terms was coined by [62]), was analyzed by Young

[82]. We mention that Jacka in an earlier work [47] considered a finite-fuel problem

of very similar form. Subsequent variants of Young’s work include but not limited to

adding borrowing constraints [14], assuming consumption is ratcheted [15], allowing

stochastic consumption [16] and stochastic volatility [7]. In all previous works, there

is a fixed risky asset model; that is, the investor is certain about the evolution and

distribution of the risky asset price. This is, however, not very realistic. There may

be good estimates of the price volatility, but drift estimation, as Rogers points out in

[64, Section 4.2], is almost impossible; it would require centuries of data to obtain a

reliable estimate. Therefore, it is desirable to have a robust investment strategy that

can perform well against drift misspecification. For a good introduction of robust

decision making theory, see [40].

Although drift estimation is difficult, one would still like to make use of the
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available data. A natural approach is to extract from the available data a reference

model, and penalize other models based on their deviation from the reference model.

How hard to penalize depends on how averse the agent is to ambiguity, also called

model uncertainty or Knightian uncertainty. Early works incorporating ambiguity

aversion into optimization (e.g. [60], [41]) are mostly done via a formal analysis of the

corresponding Hamilton-Jacobi-Bellman (HJB) equation. Among those that provide

more mathematical rigor, we mention a few that use different approaches. Jaimungal

solves a finite horizon irreversible investment problem [49], and a hybrid model of

default problem with Sigloch [50] using stochastic control. They work with a scaled

entropic penalty in order to get explicit solutions and rely on direct verification.

Bordigoni et al. [23] analyze a finite horizon utility maximization problem also by

control method, but provide a backward stochastic differential equation (BSDE)

characterization instead of an HJB characterization. Their results are generalized

to an infinite horizon setting by Hu and Schweizer [44]. Schied [72] and Hernández-

Hernández and Schied [42] treat robust utility maximization problems using duality

or a combination of duality and control.

In this chapter, we provide a complete and rigorous analysis of the robust lifetime

ruin problem

inf
π

sup
Q

{
Q(τb < τd)−

1

ε
hd(Q|P)

}
using stochastic control, where τb and τd are the ruin time and death time, respec-

tively, hd is a variant of the entropic penalty function which only measures entropy

up to the death time, ε specifies the penalization strength, π runs through a set

of investment strategies and Q runs through a set of possible models representing

drift uncertainty. When the hazard rate is zero, we obtain explicit formulas. In the

general case, we characterize the value function as the unique classical solution of
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an associated HJB equation satisfying two boundary conditions, and give feedback

forms for the optimal investment and drift distortion. In contrast to the non-robust

case or robust utility maximization problem, we show that the value function loses

convexity for a class of parameters, which suggests that the Isaacs condition may

fail. Same as the non-robust case, we also show that the optimally controlled wealth

process never reaches the so-called “safe level”. So the goal is to stay away from

the ruin level and to “win” the game by dying. When the hazard rate is zero, the

inaccessibility of the safe level is pointed out in [26]. Goal reaching problems without

a deadline goes back to the work of Pestien and Sudderth [63] (also see [5]). The

optimal strategy there is to maximize the ratio of drift to volatility squared. We

shall see that in terms of the optimal investment strategy, the robustness is only

non-trivial when death is added.

Our work extends the discussion in [82] to the robust case. Unlike [49] and [50]

where a scaled entropic penalty leads to explicit solutions, our random horizon robust

problem, even in the simple Black-Scholes framework, fails to have an explicit solution

in general, whether the penalty is scaled or not. Moreover, due to degeneracy and the

control space being unbounded, the classical nonlinear elliptic theory by Krylov [58]

cannot be applied directly. So we have to resort to the theory of viscosity solutions

and then upgrade regularity by bootstrapping. Our work differs from [23], [44], [72],

[42] in the methodology. The BSDE characterizations in [23] and [44] only focus

on the inner Q-maximization problem and do not describe the optimal investment

strategy or the saddle point. The duality approach of [72] requires the infimum

and supremum to be exchangeable, which does not hold in our case with certain

choice of parameters. The classical duality logE[eX ] = supQ∈Qabs{E
Q[X] − h(Q|P)}

between free energy and entropic penalty may look useful at a first glance, but the
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uncertainty set Qabs does not preserve the independence between asset price and

mortality, and does not leave room for varied confidence levels regarding different

model components.1 In addition, we are not using the exact entropic function h,

but its variant hd. Due to time-inconsistency issue, we do not consider uncertainty

in hazard rate. It could be an interesting extension to have uncertain Poisson jump

rate (see e.g. [59], [61], [27], [21]) and to allow varied positive levels of ambiguity

aversion (see e.g. [81], [49]).

For the construction of a viscosity solution to the HJB equation, we use a “com-

parison + Perron’s method” approach described in [29] instead of the usual route of

“dynamic programming principle (DPP) + value function is a viscosity solution +

comparison”. The reason is that robust optimization problems resemble stochastic

differential games in which nature can be regarded as the second player, and the DPP

for games is generally complicated because of measurability issues. One either has

to use the Elliott-Kalton formulation where one player uses controls and the other

player uses “strategies”, i.e. maps defined on a set of controls satisfying nonanticip-

itivity (see e.g. [38], [37], [12]), or restrict oneself to strategies of simple form, for

example, to what Ŝırbu [74] calls elementary strategies. Both ways to get around the

measurability issues are not ideal for us. In particular, it is a bit unnatural for us

to use the Elliott-Kalton formulation and assume nature is a strategic player against

us, because nature has no payoff and is disinterested. It turns out that the classical

Perron’s method yields a much simpler and more elegant construction. The only

drawback is that regularity now becomes very important, otherwise the constructed

solution cannot be related to the value function. Fortunately, we are able to upgrade

regularity and carry out a verification theorem. The approach outlined here was first

1Qabs denotes the set of measures that are absolutely continuous with respect to P and have
finite entropy.
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used by Janeček and Ŝırbu [51] in a pure stochastic control problem.

Convexity is usually key to upgrading regularity. One challenge introduced by

robustness, as we have pointed out, is the loss of convexity of the value function for

a class of parameters. In fact, even for non-robust lifetime ruin problems, a priori

convexity of the value function is not clear. For example, [16] obtains convexity

for a lifetime ruin problem with stochastic consumption by going to a controller-

and-stopper problem whose convex dual is related to the original problem through

a dimension reduction. We overcome this challenge by working with an equivalent

convex problem obtained through the Cole-Hopf transformation. Once we have con-

vexity, it is easy to upgrade to C1-regularity using convex analysis and the theory

of viscosity solutions. We further upgrade to C2-regularity by analyzing a Poisson

equation, where we borrow some techniques from [51] and [73]. One may try to

prove C2-regularity by the regularization method used in [83] and [36], but such

an approach requires us to prove the existence of a positive lower bound on π that

is independent of the regularization on compact intervals away from the safe level,

which we find to be difficult to establish.

The rest of this chapter is organized as follows. In Section 4.2, we set up the

problem, derive the HJB equation and feedback forms heuristically, and state the

main results. Section 3.3 provides an explicit solution when the hazard rate is zero,

which is not only interesting for its own sake, but serves as a useful upper bound

in the analysis of the general case. Sections 3.4 and 3.5 are devoted to establishing

the existence of a classical solution to the HJB equation, with Secitons 3.4 focusing

on Perron’s construction of a viscosity solution, and Section 3.5 on regularity. In

Section 3.6, we give a verification theorem and the proof of our main results. In

order to prove verification theorem, we also show the boundedness and Lipschitz
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continuity of the optimal investment strategy. Sections 3.7 collects some additional

properties of the optimal investment strategy and the value function. Sections 3.8

and 3.9 provides formulas for small ε-expansion and numerical examples.

3.2 Problem formulation

Let ΩM be the space of continuous functions ω : [0,∞) → R, equipped with

the topology of uniform convergence on compact subintervals of [0,∞). Let FM be

the Borel sigma-algebra on ΩM and PM be the Wiener measure on (ΩM ,FM). The

coordinate map Bt(ω) := ω(t) is a standard Brownian motion in this space. Here PM

serves as a reference measure which reflects an individual’s belief about the market.

Let N = (Nt)t≥0 be a Poisson process with rate λ defined on another probability

space (Ωd,Fd,Pd). Let τd be the first time that the Poisson process jumps, modeling

the death time of the individual. τd is an exponential random variable with parameter

λ which is known as the hazard rate in this context. Define

(Ω,F ,P) := (ΩM × Ωd,FM ⊗Fd,PM × Pd).

B and N are independent on this space, and remain a Brownian motion and a

Poisson process, respectively. Let F = (Ft)t≥0 be the (raw) filtration generated by

the Brownian motion B and G = (Gt)t≥0 be the filtration generated by B and the

process 1{τd≤t}. Assume both F and G have been made right continuous. However,

we do not complete the filtrations because later on, we would like to include measures

that are only locally equivalent to P as part of our consideration.2

The individual invests in a financial market consists of a risk-free bank account

with interest rate r > 0 and a risky asset whose price St follows a geometric Brownian

2By locally equivalent, we mean equivalent on Gt for all t ≥ 0. Although the filtrations in our
setup is not complete, stochastic integral can still be defined and has all the usual properties. In
particular, Itô’s lemma is still valid. See, for example, chapter 1 of [48].
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motion:

dSt = µSt + σStdBt, S0 = S > 0

where µ > r and σ > 0. Let πt be the amount that the individual invests in the

risky asset at time t. Apart from investment, the individual also consumes at a

constant rate c > 0 of her current wealth w.3 Her wealth Wt evolves according to

the stochastic differential equation (SDE):

dWt = [rWt + (µ− r)πt − c]dt+ σπtdBt, W0 = w.

An investment strategy π is admissible if it is F-progressively measurable and almost

surely bounded (uniformly in time).4 Denote by A the set of all admissible strategies.

Let τb := inf{t ≥ 0 : Wt ≤ b} be the first time the individual’s wealth falls to

or below a specified ruin level b. The individual aims at minimizing the probability

that ruin happens before death, i.e. τb < τd, in a robust sense. More precisely, she

suspects that the drift of the risky asset may be misspecified. So instead of optimizing

under the reference measure P, she considers a set Q of candidate measures that are

locally equivalent to P, and penalizes their deviation from P. Here we assume the

individual is only robust against the market model, but not the death time model, nor

the independence between them. So elements in Q should be of the form QM × Pd

so that τd remains an exp(λ) random variable under all candidate measures. Let

h(Q|P) := EQ[log dQ
dP ] be the relative entropic function. Denote by Qt the restriction

of a measure Q to Gt. We penalize the deviation from P using a variant of h:

hd(Q|P) := h(Qτd |Pτd)
3To simplify the discussion, we only work with constant consumption rate. But the main tech-

niques can be applied to proportional consumption rate, and more generally, to the case when the
consumption rate is a non-negative, Lipschitz continuous function of wealth.

4Almost sure boundedness can be relaxed as long as the best drift distortion in response to each
π defines an admissible measure Q ∈ Q where Q is the model uncertainty set to be introduced.
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which only measures the relative entropy on Gτd ; that is, the individual does not

care about drift uncertainty after death. She faces the following robust optimization

problem:

(3.1) ψ(w; ε) = inf
π∈A

sup
Q∈Q

{
Qw(τb < τd)−

1

ε
hd(Q|P)

}
,

where the subscript w represents conditioning on the event W0 = w. The parameter

ε measures the individual’s level of ambiguity aversion or preference for robustness.

ε ↓ 0 corresponds to the classical non-robust case since all measures other than

P would give a very negative value, thus not optimal for the inner maximization

problem. A larger ε means the individual is more ambiguity averse, has less faith in

the reference model and will consider larger drift distortion. ε→∞ corresponds to

the worst-case approach, i.e. the individual has equal belief in all candidate measures

and optimize again the worst-case scenario.

We now give the precise definition of the set Q of candidate measures. A proba-

bility measure Q ∈ Q if

(3.2)
dQt

dPt
= exp

(
−1

2

∫ t

0

θ2
sds+

∫ t

0

θsdBs

)
, t ≥ 0

for some F-progressively measurable process θ satisfying E[e
1
2

∫ t
0 θ2

sds] < ∞ for all

t ≥ 0, and EQ[
∫∞

0
e−λsθ2

sds] <∞. Conversely, given any F-progressively measurable

process θ satisfying E[e
1
2

∫ t
0 θ2

sds] <∞ for all t ≥ 0, we can define a consistent family of

measures Qt ∼ Pt on (Ω,Gt) by (3.2). By [77, Lemma 4.2] (also see [45, Proposition

1]), there exists a probability measure Q on (Ω,F) such that Q|Gt = Qt for all

t ≥ 0.5 Throughout this paper, we will use boldface greeks π,θ to denote controls

(as stochastic processes) and plain greeks π, θ to denote the values that the controls

can take. Since τd is independent of F, the distribution of τd is invariant under such

5The existence of such a measure is not guaranteed if the filtration has been completed w.r.t. P.
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change of measure. Under Q, St has drift µ+ σθt and Wt has dynamics:

dWt = [rWt + (µ+ σθt − r)πt − c]dt+ σπtdB
Q
t(3.3)

where BQ is a Q-Brownian motion independent of τd.

Let Q ∈ Q. We have

hd(Q|P) = EQ
[
−1

2

∫ τd

0

θ2
sds+

∫ τd

0

θsdBs

]
= EQ

[
−1

2

∫ τd

0

θ2
sds+

∫ τd

0

θs(dB
Q
s + θsds)

]
= EQ

[
1

2

∫ τd

0

θ2
sds

]
= EQ

[
1

2

∫ ∞
0

e−λsθ2
sds

]
<∞.

Remark 3.2.1. We can also compute the relative entropy process ht(Q|P) := h(Qt|Pt) =

EQ
[

1
2

∫ t
0
θ2
sds
]
. Observe that

EQ[hτd(Q|P)] = EQ
[∫ ∞

0

λe−λtht(Q|P)dt

]
= EQ

[∫ ∞
0

λe−λt
1

2

∫ t

0

θ2
sdsdt

]
= EQ

[
1

2

∫ ∞
0

θ2
s

∫ ∞
s

λe−λtdtds

]
= EQ

[
1

2

∫ ∞
0

e−λsθ2
sds

]
= hd(Q|P).

So we can also think of hd as penalizing the expected relative entropy at death time.

Substituting the expression for hd(Q|P) into (3.1), we rewrite the robust value

function as:

Definition 3.2.2 (Robust value function).

ψ(w; ε) = inf
π∈A

sup
Q∈Q

EQ
w

[
1{τb<τd} −

1

2ε

∫ τd

0

θ2
sds

]
,

where W has Q-dynamics (3.3).

When λ > 0, we may use the distribution of τd to further write

ψ(w; ε) = inf
π∈A

sup
Q∈Q

EQ
w

[∫ ∞
0

e−λs
(
λ1{τb<s} −

1

2ε
θ2
s

)
ds

]
.
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Denote by ψ0 the non-robust value function and by p the robust value function

when λ = 0, i.e. when the individual never dies. ψ0 has the explicit formula (see

[82]):

(3.4) ψ0(w) =



1, w ≤ b;(
c−rw
c−rb

)d
, b ≤ w ≤ c/r;

0, w ≥ c/r;

and the optimal investment strategy in feedback form is given by

π0(w) =
µ− r
σ2

c− rw
(d− 1)r

for w ∈ (b, ws), where

(3.5) d =
1

2r

[
(r + λ+R) +

√
(r + λ+R)2 − 4rλ

]
> 1, R =

1

2

(
µ− r
σ

)2

.

Throughout this paper, d and R will be reserved for the constants defined above.

We will also provide an explicit formula for p later. For now, we make the simple

observation:

(3.6) 0 ≤ ψ0 ≤ ψ ≤ p ≤ 1,

where the second inequality holds because P ∈ Q so that

ψ0 = inf
π∈A

Pw(τb < τd) ≤ inf
π∈A

sup
Q∈Q

{
Qw(τb < τd)−

1

ε
hd(Q|P)

}
= ψ,

the third inequality holds because ruin before death is no more likely than ruin before

infinity, and the last inequality holds because we are optimizing a real probability

minus a nonnegative penalty. This means we can treat the robust optimal value as

a conservative ruin probability. The penalty term will only cause a small distortion

on the ruin probability and will never drive it negative because only measures with
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small relative entropy are relevant, i.e. have the possibility of being worse than the

reference measure.

The definition of ψ(w; ε) implies it is non-decreasing in ε, since the penalty gets

smaller as ε gets larger. We will suppress the argument ε throughout the rest of this

paper unless we need to emphasize the ε-dependence. The limit as ε ↓ 0 gives us

the non-robust value function ψ0. The limit as ε→∞ gives us the worst-case value

function:

ψ∞(w) := inf
π∈A

sup
Q∈Q

Qw(τb < τd).

For the worse-case problem, the optimal investment strategy is not to invest at all

since the drift can be arbitrarily unfavorable (negative if one longs and positive if

one shorts) without incurring any penalty. The individual can only hope to “win”

the game by dying quickly enough before consumption drags her wealth down to

the ruin level. In this case, the agent’s wealth solves the deterministic differential

equation:

dWt = (rWt − c)dt, W0 = w.

Simple computation leads to τb = 1
r

ln c−rb
c−rw and Q(τb < τd) = e−λτb =

(
c−rw
c−rb

)λ
r for

w ∈ [b, ws] and for all Q ∈ Q. So

(3.7) ψ∞(w) =

(
c− rw
c− rb

)λ
r

, w ∈ [b, ws].

Alternatively, we can obtain the above formula for ψ∞ by solving (3.12) with ε set

to infinity; a verification theorem has to be done then.

Back to the general case. ψ(w) is non-increasing in w since the individual is clearly

better off with a larger initial wealth. When w ≤ b, τb = 0 and ψ(w) = 1 because the

inner supremum can always be attained by the reference measure P. Notice that by

(3.6), we have continuity of ψ at w = b since 1 ≥ limw→b ψ(w) ≥ limw→b ψ0(w) = 1.
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Let ws := c/r. ws gives a “safe” wealth level at which the individual can sustain

her consumption by putting all her money in the bank and consuming the interest.

This means ψ(w) = 0 when w ≥ ws. Drift uncertainty is irrelevant here since the

individual can always play safe by not investing in the risky asset. We also have

continuity of ψ at w = ws because 0 ≤ limw→ws ψ(w) ≤ limw→ws ψ∞(w) = 0.

The associated HJB equation for ψ in the interval (b, ws) is

(3.8) λψ(w) = inf
π

sup
θ

{
− 1

2ε
θ2 + (rw − c+ (µ+ σθ − r)π)ψ′(w) +

1

2
σ2π2ψ′′(w)

}
,

with boundary conditions ψ(b) = 1 and ψ(ws) = 0. Notice that the expression inside

the braces is quadratic in θ with negative leading coefficient. By the first order

condition, the optimal θ given π equals σεπψ′. Substituting θ = σεπψ′ back into

(3.8), we get

(3.9) λψ = inf
π

{
1

2
σ2
(
ε(ψ′)2 + ψ′′

)
π2 + (µ− r)ψ′π + (rw − c)ψ′

}
.

Suppose ε(ψ′)2 + ψ′′ > 0, we use first order condition again to find the candidate

optimizer

(3.10) π∗ = −µ− r
σ2

ψ′

ε(ψ′)2 + ψ′′
.

It follows that

(3.11) θ∗ = −µ− r
σ

ε(ψ′)2

ε(ψ′)2 + ψ′′
.

Substituting (3.10) into (4.4), we obtain the following Dirichlet boundary value prob-

lem:

λψ = − R(ψ′)2

ε(ψ′)2 + ψ′′
+ (rw − c)ψ′(3.12a)

ψ(b) = 1, ψ(ws) = 0(3.12b)
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where R is the positive constant defined in (3.5). When ε = 0, we recover the non-

robust value function ψ0 whose formula is given in (3.4). When ε = ∞, we get the

worst-case value function ψ∞ whose formula is given in (3.7).

Remark 3.2.3. The Isaacs condition does not hold for our robust problem without

further restrictions on model parameters. Suppose ψ′′ < 0 but ε(ψ′)2 +ψ′′ > 0, then

maximizing over θ first and minimizing over π second in (3.8) will lead to a finite

Hamiltonian, but minimizing over π first and maximizing over θ second will lead to

an unbounded Hamiltonian. From another perspective, we expect the value function

of each fixed-measure lifetime ruin problem to be convex, otherwise the Hamiltonian

would explode. Maximizing over these convex functions will yield a convex function.

On the other hand, our robust value function may be concave in certain region.

When r > λ, the worst-case value function ψ∞ is concave. Since ψ(w; ε) increases to

ψ∞(w) as ε→∞, ψ(w; ε) cannot be convex everywhere for ε sufficiently large. See

Proposition 3.7.1 for a more detailed discussion on how convexity depends on λ, r

and ε.

Rigorous analysis of equation (4.4) will be done in Sections 3.4 and 3.5. Sec-

tion 3.3 provides an explicit solution to the Dirichlet problem (3.12) when λ = 0.

We end this section with our main result the proof of which is given at the end of

Section 3.6.

Theorem 3.2.4. The robust value function ψ satisfies ψ(w) = 1 for w ≤ b, ψ(w) = 0

for w ≥ ws. For w ∈ (b, ws), ψ(w) is the unique C1[b, ws]∩C2[b, ws) solution to (3.8)

or (4.4) satisfying the boundary conditions ψ(b) = 1 and ψ(ws) = 0. The optimal

investment policy is

π∗t = −µ− r
σ2

ψ′(Wt)

ε(ψ′(Wt))2 + ψ′′(Wt)
1(b,ws)(Wt),
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and the optimal drift distortion is σθ∗ where

θ∗t = −µ− r
σ

ε(ψ′(Wt))
2

ε(ψ′(Wt))2 + ψ′′(Wt)
1(b,ws)(Wt).

3.3 Explicit solution in the zero-hazard rate case

Setting λ = 0 in (3.12), we get

(3.13)
0 = − R(ψ′)2

ε(ψ′)2 + ψ′′
+ (rw − c)ψ′

ψ(b) = 1, ψ(ws) = 0.

Using the exponential transformation φ = eεψ, also called Cole-Hopf transformation

in PDE theory, the nonlinearity in the denominator is removed and (3.13) becomes

0 = −R(φ′)2

φ′′
+ (rw − c)φ′

φ(b) = eε, φ(ws) = 1.

Suppose φ′ 6= 0 and let u = φ′. The second order ordinary differential equation

(ODE) is further reduced to

u′ =
R

rw − c
u,

the general solution of which is given by

u(w) = AeR
∫ w
b

1
rz−cdz = A

(
c− rw
c− rb

)R
r

, A ∈ R.

It follows that

φ(w) = eε + A

∫ w

b

(
c− rz
c− rb

)R
r

dz = eε − Ac− rb
R + r

[(
c− rw
c− rb

)R
r

+1

− 1

]
.

Using the boundary condition at the safe level, we can determine the constant A and

obtain

φ(w) = 1 + (eε − 1)

(
c− rw
c− rb

)R
r

+1

.
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So the solution to the Dirichlet problem (3.13) is

(3.14) ψ(w) =
1

ε
ln

[
1 + (eε − 1)

(
c− rw
c− rb

)R
r

+1
]
.

The feedback forms (3.10), (3.11) become

$ =
2(c− rw)

µ− r
,

ϑ = −2σ(R + r)

µ− r
(eε − 1)

(
c−rw
c−rb

)R
r

+1

1 + (eε − 1)
(
c−rw
c−rb

)R
r

+1
.

The solution given by (3.14) is a C1[b, ws] ∩ C2[b, ws) function. $ and ϑ are

bounded, Lipschitz continuous functions of the state variable on [b, ws]. So a veri-

fication theorem can be easily done, showing the function given by (3.14) is indeed

the robust value function p on the interval [b, ws], and $,ϑ are the optimal feedback

controls. We summarize the results in the following theorem.

Theorem 3.3.1. When λ = 0, the robust value function is given by

p(w) =
1

ε
ln

[
1 + (eε − 1)

(
c− rw
c− rb

)R
r

+1
]

for b ≤ w ≤ ws, p(w) = 0 for w ≤ b and p(w) = 1 for w ≥ ws. The optimal

investment policy is

$t =
2(c− rWt)

µ− r
1(b,ws)(Wt),

and the optimal drift distortion is σϑ where

ϑt = −2σ(R + r)

µ− r
(eε − 1)

(
c−rWt

c−rb

)R
r

+1

1 + (eε − 1)
(
c−rWt

c−rb

)R
r

+1
1(b,ws)(Wt).

One observation is the loss of convexity of the value function compared with the

non-robust case. This is caused by the nonlinear term ε(ψ′)2. When ε is zero, ψ′′ must

be non-negative (in fact, strictly positive if ψ′ 6= 0) for the Hamiltonian in (4.4) to be
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finite. When ε is nonzero, ψ′′ is allowed to take negative values as long as ε(ψ′)2+ψ′′ is

non-negative. The larger the ε, the more concave the value function could potentially

be. Another interesting feature is that when hazard rate is zero, the pre-ruin optimal

investment policy is independent of both the ambiguity aversion parameter ε and the

ruin level b. Also, we see that for w ∈ (b, ws), limε→∞ ϑ(w) = −2σ(R+r)
µ−r . In terms of

the optimally distorted Sharpe ratio, we have

lim
ε→∞

(
µ− r
σ

+ ϑ(w)

)
= − 2σr

µ− r
.

Figure 3.1 shows plots for the robust ruin probability p and the optimally distorted

Sharpe ratio µ−r
σ

+ ϑ with parameters c = 1, b = 1, r = 0.02, µ = 0.1, σ = 0.15 and

ε = 0, 1, 5, 10, 50. We leave out the plot for $ since it is a simple downward sloping

linear function, and is independent of ε. It is worth mentioning that $ ≥ π0 (in

fact, $ dominates the optimal robust policy with death by Lemma 3.6.1), i.e. the

individual adopts a more aggressive investment strategy when life is perpetual.
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Figure 3.1: Robust ruin probabilities and distorted Sharpe ratios when λ = 0.

Before we move on to the general case, let us make one more remark regarding

differentiability at the safe level.
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Remark 3.3.2. From the explicit formula for p, we see that p has zero derivative at

the safe level. Since p bounds any general ψ from above, this property is also shared

by ψ. Indeed,

0 ≥ lim
w→ws−

ψ(w)

w − ws
≥ lim

w→ws−

p(w)

w − ws
= p′(ws) = 0.

3.4 Existence and uniqueness of viscosity solution

Our goal in this section is to show the nonlinear degenerate elliptic Dirichlet

problem

F (w, u, u′, u′′) = 0,(3.15a)

u(b) = 1, u(ws) = 0,(3.15b)

where

F (w, u, u′, u′′) := λu− inf
π

{
1

2
σ2
(
ε(u′)2 + u′′

)
π2 + (µ− r)u′π + (rw − c)u′

}
has a unique viscosity solution satisfying certain properties. Notice that F can be

written as the supremum of a family of continuous functions, hence is lower semi-

continuous (l.s.c.). The strategy is to first prove a comparison principle, and then

use Perron’s Method introduced by Ishii [46] (also described in [29]) to construct a

viscosity solution as the supremum over a class of viscosity subsolutions.

3.4.1 Comparison principle

The proof of the comparison principle uses a standard doubling of variable tech-

nique together with Crandall-Ishii’s lemma. The classical argument is slightly mod-

ified to take care of the unboundedness of the control space. It turns out, luckily,

that the nonlinear term ε(u′)2 does not add any difficulty.
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Proposition 3.4.1. Let u, v be an upper semi-continuous (u.s.c.) viscosity subso-

lution and a l.s.c. viscosity supersolution of F = 0, respectively. Suppose u, v are

bounded, and either v ≥ 0 or u > 0 in (b, ws). If u ≤ v on ∂(b, ws), then u ≤ v on

[b, ws].

Proof. Suppose that, on the contrary, δ := supx∈(b,ws)(u − v)(x) > 0. δ < ∞ since

u and v are assumed to be bounded. By the upper semi-continuity of u − v, there

exists x∗ ∈ (b, ws) such that u(x∗)− v(x∗) = δ. For every α > 0, define

Ψα(x, y) := u(x)− v(y)− α

2
|x− y|2.

It is clear that supx,y∈(b,ws) Ψα(x, y) ≥ δ since we can always choose x = y. By the up-

per semi-continuity of u(x)−v(y), there exists x̂α, ŷα such that supx,y∈(b,ws) Ψα(x, y) =

Ψα(x̂α, ŷα). We have

u(x∗)− v(x∗) ≤ u(x̂α)− v(ŷα)− α

2
|x̂α − ŷα|2.

This implies

(3.16)
α

2
|x̂α − ŷα|2 ≤ u(x̂α)− v(ŷα)− (u(x∗)− v(x∗)).

Since [b, ws] is compact, we can find a sequence αn → ∞ such that (x̂n, ŷn) :=

(x̂αn , ŷαn) converges to (x̂, ŷ) as n → ∞. Replacing α by αn and letting n → ∞ in

(4.35), we obtain

(3.17)
lim sup

n

αn
2
|x̂n − ŷn|2 ≤ lim sup

n
(u(x̂n)− v(ŷn))− (u(x∗)− v(x∗))

≤ u(x̂)− v(ŷ)− (u(x∗)− v(x∗)),

where the second inequality is due to the upper semi-continuity of u(x)−v(y). Since

the right hand side of (4.36) is finite and αn →∞, we must have x̂ = ŷ, and (4.36)

yields

0 ≤ lim sup
n

αn
2
|x̂n − ŷn|2 ≤ u(x̂)− v(x̂)− (u(x∗)− v(x∗)) ≤ 0,
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which implies u(x̂)− v(x̂) = u(x∗)− v(x∗) = δ, αn|x̂n − ŷn|2 → 0 and

(3.18) δ ≤ sup
x,y∈(b,ws)

Ψαn(x, y) = u(x̂n)− v(ŷn)− αn
2
|x̂n − ŷn|2 → u(x∗)− v(x∗) = δ

as n→∞. Now, since u ≤ v on ∂(b, ws), we must have x̂ ∈ (b, ws). So x̂n, ŷn ∈ (b, ws)

for sufficiently large n. By Crandall-Ishii’s lemma, we can find sequences An, Bn

satisfying −3αn ≤ An ≤ Bn ≤ 3αn and

(αn(x̂n − ŷn), An) ∈ J̄2,+
(b,ws)

u(x̂n), (αn(x̂n − ŷn), Bn) ∈ J̄2,−
(b,ws)

v(ŷn),

where J̄2,+
(b,ws)

u(x̂n), J̄2,−
(b,ws)

v(ŷn) are the closure of the second order superjet and subjet,

respectively. Since u is a viscosity subsolution of F = 0 and F is l.s.c., we have by

[80, Proposition 6.11.i] that

(3.19) F (x̂n, u(x̂n), αn(x̂n − ŷn), An) ≤ 0.

The finiteness of F (x̂n, u(x̂n), αn(x̂n− ŷn), An) implies either εα2
n(x̂n− ŷn)2 +An > 0

or εα2
n(x̂n − ŷn)2 + An = αn(x̂n − ŷn) = 0. We consider each case separately.

Case 1. εα2
n(x̂n− ŷn)2 +An > 0. In this case, we also have εα2

n(x̂n− ŷn)2 +Bn > 0.

Since F (w, u, u′, u′′) is continuous in the region ε(u′)2 + u′′ > 0, the supersolution

property of v implies

F (ŷn, v(ŷn), αn(x̂n − ŷn), Bn) ≥ 0.

(See [80, Proposition 6.11.ii].) So we have

(3.20) F (x̂n, u(x̂n), αn(x̂n − ŷn), An) ≤ 0 ≤ F (ŷn, v(ŷn), αn(x̂n − ŷn), Bn) <∞.
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Using the expression of F , we obtain from (4.37) and (3.20) that

λδ ≤ λ(u(x̂n)− v(ŷn))

= F (x̂n, u(x̂n), αn(x̂n − ŷn), An)− F (x̂n, v(ŷn), αn(x̂n − ŷn), An)

≤ F (ŷn, v(ŷn), αn(x̂n − ŷn), Bn)− F (x̂n, v(ŷn), αn(x̂n − ŷn), An)

=
Rα2

n(x̂n − ŷn)2(An −Bn)

[εα2
n(x̂n − ŷn)2 +Bn][εα2

n(x̂n − ŷn)2 + An]
+ rαn(x̂n − ŷn)2

≤ rαn(x̂n − ŷn)2.

Letting n→∞, we arrive at the contradiction λδ ≤ 0.

Case 2. εα2
n(x̂n − ŷn)2 + An = αn(x̂n − ŷn) = 0. In this case, Equation (4.38)

reads

λu(x̂n) = F (x̂n, u(x̂n), αn(x̂n − ŷn), An) ≤ 0.

If u is strictly positive, this cannot happen. So assume we are in the case where v

is non-negative. But this implies u(x̂n) − v(x̂n) ≤ 0, contradicting u(x̂n) − v(ŷn) ≥

supx,y∈(b,ws) Ψαn(x, y) ≥ δ.

Corollary 3.4.2. There is at most one viscosity solution to the Dirichlet problem

(3.15) that is bounded, non-negative, and continuous at the boundary.

3.4.2 Perron’s method

We mimic the proof of [29, Theorem 4.1], and begin with a max-stability result

on the set of viscosity subsolutions.

Lemma 3.4.3. Let U be a non-empty family of u.s.c. viscosity subsolutions of F = 0.

Define

u(w) = sup
u∈U

u(w).

Let u∗ be the u.s.c. envelope of u and assume u∗(w) <∞ for w ∈ (b, ws). Then u∗

is a viscosity subsolution of F = 0.
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Proof. By Lemma 4.2 of [29]. Note that although their function F is R-valued, the

proof works exactly the same way when F is allowed to take ∞ as a value as long

as it is l.s.c. which is satisfied in our case.

Next, we need to find an (u.s.c.) viscosity subsolution whose l.s.c. envelope

satisfies the boundary conditions (3.15b), and a (l.s.c.) viscosity supersolution whose

u.s.c. envelope satisfies the boundary conditions (3.15b). Obviously, we should aim

at those functions that bound the robust value function from below and above, and

we have two natural candidates: ψ0 and p.6 Indeed,

F (w,ψ0, ψ
′
0, ψ

′′
0) = λψ0 − inf

π

{
1

2
σ2
(
ε(ψ′0)2 + ψ′′0

)
π2 + (µ− r)ψ′0π + (rw − c)ψ′0

}
= λψ0 +

R(ψ′0)2

ε(ψ′0)2 + ψ′′0
− (rw − c)ψ′0

≤ λψ0 +
R(ψ′0)2

ψ′′0
− (rw − c)ψ′0 = 0,

where in the second equality we used ψ′′0 > 0 in (b, ws), and

F (w, p, p′, p′′) = λp− inf
π

{
1

2
σ2
(
ε(p′)2 + p′′

)
π2 + (µ− r)p′π + (rw − c) p′

}
= λp ≥ 0.

Remark 3.4.4. If these natural candidates were not available, we could start with the

constant subsolution u ≡ 0 (resp. supersolution v ≡ 1), and modify it near the ruin

level (resp. safe level) by a construction similar to that on page 25 of [29] so that

the boundary conditions are satisfied.

Proposition 3.4.5 (Perron’s method). There exists a continuous viscosity solution

to the Dirichlet problem (3.15) that takes values in [0, 1]. More precisely, it is bounded

from below by ψ0 and from above by p.

6We can also use ψ∞ as the upper bound.
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Proof. Let u = ψ0 and v = p. Both are [0, 1]-valued continuous functions. Define

(3.21) u(w) := sup{u(w) : u ≤ u ≤ v and u is an u.s.c. subsolution of F = 0}.

For any function u, denote by u∗ and u∗ its u.s.c. envelope and l.s.c. envelope,

respectively. We have u = u∗ ≤ u∗ ≤ u ≤ u∗ ≤ v∗ = v. Since u and v agree on

the boundary, we know u is continuous at the boundary and satisfies the boundary

condition (3.15b). Since u∗ ≤ v < ∞, Lemma 3.4.3 implies u∗ is a viscosity subso-

lution of F = 0. If we can show u∗ is a viscosity supersolution of F = 0, we can

then apply comparison principle to get u∗ ≤ u∗, and conclude that u is a continuous

viscosity solution to the Dirichlet problem (3.15). The rest is devoted to the proof

of the supersolution property of u∗.

Suppose u∗ is not a viscosity supersolution of F = 0. Then there exists w0 ∈

(b, ws) and ϕ ∈ C2(b, ws) such that u∗ − ϕ has a strict minimum zero at w0 and

F (w0, ϕ(w0), ϕ′(w0), ϕ′′(w0)) < 0. Here F <∞ implies either ε(ϕ′(w0))2+ϕ′′(w0) > 0

or ϕ′′(w0) = ϕ′(w0) = 0. In the latter case, we get u∗(w0) = ϕ(w0) < 0 which cannot

happen because u∗ ≥ u ≥ 0. So we are in the former case. By continuity of F in the

region ε(u′)2+u′′ > 0, there exists δ, γ > 0 such that F (w,ϕ(w)+γ, ϕ′(w), ϕ′′(w)) < 0

for all w ∈ Bδ(w0) ⊂ Bδ(w0) ⊂ (b, ws). Let ϕγ(w) := ϕ(w)+γ. Then ϕγ is a classical

subsolution of F = 0 in Bδ(w0). Since u∗ > ϕ in (b, ws)\{w0}, we can choose γ small

so that u∗ > ϕ+ γ = ϕγ on ∂Bδ(w0). Define

U :=


u∗ ∨ ϕγ in Bδ(w0),

u∗ otherwise.

Since u∗ < ∞ and ϕγ ≤ u∗ + γ < ∞ in Bδ(w0), by Lemma 3.4.3, U∗ is a viscosity

subsolution of F = 0. Since U∗ = u∗ ≤ v on ∂(b, ws), comparison principle (Propo-

sition 3.4.1) implies U∗ ≤ v on [b, ws]. So U∗ belongs to the set on the right hand
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side of (3.21), and thus u∗ ≤ U ≤ U∗ ≤ u ≤ u∗, where the second last inequality is

due to the maximality of u. Therefore, we obtain U = u∗.

On the other hand, by the definition of the semi-continuous envelope, there exists

a sequence (wn) ⊂ Bδ(w0) such that wn → w0 and u∗(wn)→ u∗(w0). It follows that

ϕγ(wn) − u∗(wn) = ϕ(wn) + γ − u∗(wn) → γ > 0. So for n sufficiently large,

U(wn) = ϕγ(wn) > u∗(wn) + γ/2. We get a contradiction. This completes the proof

that u∗ is a viscosity supersolution of F = 0.

Up to this point, we have established the existence and uniqueness of a continuous

viscosity solution to the Dirichlet problem (3.15). Denote this solution by û. We

have ψ0 ≤ û ≤ p. The next goal is to upgrade regularity.

3.5 Regularity

3.5.1 An equivalent convex problem

One difficulty of directly proving regularity for problem (3.15) is the lack of

convexity of û caused by the nonlinear term ε(u′)2. Motivated by how we solved the

λ = 0 case, we use the Cole-Hopf transformation v = eεu to obtain an equivalent

convex problem:

G(w, v, v′, v′′) = 0,(3.22a)

v(b) = eε, v(ws) = 1.(3.22b)

where

G(w, v, v′, v′′) := λv ln v − inf
π

{
1

2
σ2v′′π2 + (µ− r)v′π + (rw − c) v′

}
.

The solution to the transformed problem is expected to be convex, otherwise G would

explode. Although (3.22a) is only understood in viscosity sense for now, one can
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expect, intuitively, if at every interior point, every test function above the viscosity

solution (for the subsolution property) is convex in a neighborhood of that point,

then the viscosity solution should be convex as well.

Since we already have a continuous viscosity solution û of problem (3.15), it can

be easily verified that v̂ := eεû is a continuous viscosity solution of problem (3.22)

satisfying eεψ0 ≤ v̂ ≤ eεp. Moreover, the comparison principle for (3.15) immediately

yields a comparison principle for (3.22). We summarize these results in the following

two lemmas.

Lemma 3.5.1. Let u, v be strictly positive u.s.c. viscosity subsolution and l.s.c.

viscosity supersolution of (3.22a), respectively. Suppose u, v are bounded and bounded

away from zero and either u > 1 or v ≥ 1 in (b, ws). If u ≤ v on ∂(b, ws), then u ≤ v

on [b, ws].

Proof. It is easy to check 1
ε

lnu (resp. 1
ε

ln v) is an u.s.c. subsolution (resp. a l.s.c.

supersolution) of (3.15) satisfying all assumptions of Proposition 3.4.1.

Lemma 3.5.2. v̂ := eεû is the unique (continuous) viscosity solution to the Dirichlet

problem (3.22) among all viscosity solutions that are bounded, continuous at the

boundary and satisfy v ≥ 1 in (b, ws). Moreover, eεψ0 ≤ v̂ ≤ eεp.

3.5.2 From convexity to C∞

In the subsection, we prove regularity for the solution v̂ of the transformed prob-

lem. The regularity for û = 1
ε

ln v̂ immediately follows.

Lemma 3.5.3. v̂ is strictly convex and strictly decreasing on [b, ws].

Proof. First, let us show (non-strict) interior convexity. Suppose v̂ is not convex in

(b, ws). Then by [4, Lemma 1], there exists w0 ∈ (b, ws) and (p,A) ∈ J2,+v̂(w0) with
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A < 0. We therefore have G(w0, v̂(w0), p, A) =∞. But by the semi-jets formulation

of viscosity solution (see e.g. [80, Proposition 6.11.i]), we have G(w0, v̂(w0), p, A) ≤ 0.

We get a contradiction. Since v̂ is continuous, interior convexity can be extended to

the boundary.

The convexity of v̂ implies its left and right derivatives D±v̂ exists (in R for

interior points and in R∪{±∞} for boundary points) and are non-decreasing.7 Since

we have showed 0 ≤ û ≤ p and we know p′0(ws) = 0, an argument exactly the same as

Remark 3.3.2 yields D−û(ws) = 0. It follows that D−v̂(ws) = εD−û(ws)v̂(ws) = 0.

So D±v̂ ≤ v̂′(ws) = 0. Suppose D+v̂(w0) = 0 for some w0 ∈ [b, ws) (same if

D−v̂(w0) = 0). Then by monotonicity of D+v̂, D+v̂(w) = 0 ∀w ∈ [w0, ws). By

convexity,

0 = D+v̂(w) ≤ v̂(w)− v̂(ws)

w − ws
=
v̂(w)− 1

w − ws
≤ 0 ∀w ∈ [w0, ws).

We deduce v̂ ≡ 1 on [w0, ws], contradicting the property that v̂ ≥ eεψ0 > 1 in (b, ws)

(see Lemma 3.5.2). Therefore, we must have D±v̂ < 0 in [b, ws) which implies v̂ is

strictly decreasing.

Finally, if v̂ is convex but not strictly convex, then it is linear in some open

interval (x, y) ⊂ (b, ws). Since v̂ is strictly decreasing, the line has non-zero slope,

say p. But this cannot happen because G(w, v̂(w), p, 0) is unbounded.

Being a convex function, v̂ has many nice regularity properties. It is differentiable

almost everywhere (a.e.), and even twice differentiable a.e. by Alexandroff’s classical

result [2]. To show C2-regularity, we first show C1-regularity using properties of

viscosity solution and then upgrade to C2 by analyzing a Poisson equation with the

non-homogeneous term expressed in terms of v̂ and its first derivative.

7Here and in the sequel, at the left (resp. right) boundary point, D±v̂ only refers to the right
(resp. left) derivative.
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Lemma 3.5.4. (rw−c)D±v̂−λv̂ ln v̂ is non-negative for all w ∈ (b, ws), and strictly

positive if w is a point of twice differentiability of v̂.

Proof. By Lemma 2 in [4], G(w, v̂(w), v̂′(w), v̂′′(w)) ≤ 0 at every point w ∈ (b, ws)

of twice differentiability. Here we note that their lemma is stated for continuous G,

but it can be easily modify to accommodate our l.s.c. G. Let w ∈ (b, ws) be a point

where v̂ is twice differentiable. Since v̂′(w) < 0, G(w, v̂(w), v̂′(w), v̂′′(w)) ≤ 0 implies

v̂′′(w) > 0, and

λv̂(w) ln v̂(w) +R
(v̂′(w))2

v̂′′(w)
− (rw − c)v̂′(w) ≤ 0.

We get

(rw − c)v̂′(w)− λv̂(w) ln v̂(w) ≥ R
(v̂′(w))2

v̂′′(w)
> 0.

For arbitrary w ∈ (b, ws), since v̂ is twice differentiable a.e., we can find a sequence

of twice differentiability points (wn) ⊂ (b, ws) which converges to w from the right.

Using the monotonicity of D±v̂, we have

(rwn − c)D±v̂(w) ≥ (rwn − c)v̂′(wn) > λv̂(wn) ln v̂(wn)

We are done by letting n→∞ and using the continuity of v̂.

Lemma 3.5.5. v̂ ∈ C1[b, ws].

Proof. We first show interior C1-regularity. It suffices to show v̂ is differentiable since

a convex differentiable function is continuously differentiable. Suppose on the con-

trary, D−v̂(w0) 6= D+v̂(w0) at some point w0 ∈ (b, ws). Let p ∈ (D−v̂(w0), D+v̂(w0))

and ε > 0. The function

ϕ(w) = v̂(w0) + p(w − w0) +
1

2ε
(w − w0)2
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satisfies v̂ − ϕ has a local minimum at w0. By supersolution property of v̂, we get

G(w0, ϕ(w0), ϕ′(w0), ϕ′′(w0)) = λv̂(w0) ln v̂(w0) +Rεp2 − (rw0 − c)p ≥ 0.

Since ε is arbitrary, we get λv̂(w0) ln v̂(w0)− (rw0−c)p ≥ 0. In view of Lemma 3.5.4,

we must have λv̂(w0) ln v̂(w0)− (rw0− c)p = 0. But this cannot hold for every p. So

the subdifferential at every point must be a singleton.

Since v̂ is convex on [b, ws], to extend C1-regularity up to the boundary, we only

need to check D+v̂(b) > −∞ and D−v̂(ws) <∞. We have already seen in the proof

of Lemma 3.5.3 that D−v̂(ws) = 0. To bound D+v̂(b) from below, we make use of

the derivative of ψ0. Simply observe that D+v̂(b) = εD+û(b)v̂(b), and

D+û(b) = lim
w→b+

û(w)− 1

w − b
≥ lim

w→b+

ψ0(w)− 1

w − b
= D+ψ0(b) > −∞.

Proposition 3.5.6. v̂ ∈ C2[b, ws) and satisfies v̂′ < 0 and v̂′′ > 0 in [b, ws).
8 In

addition, v̂ solves the second order equation

(3.23) λv ln v = −R(v′)2

v′′
+ (rw − c)v′, w ∈ (b, ws).

Proof. v̂′ < 0 is due to Lemma 3.5.3. Let f(w) := (rw − c)v̂′(w) − λv̂(w) ln v̂(w).

By Lemmas 3.5.4 and 3.5.5, f is continuous, non-negative and a.e. strictly positive

in (b, ws). Let g(w) := R(v̂′(w))2/f(w). The proof of C2-regularity consists of two

steps.

Step 1. Show that for any interval [w1, w2] ⊂ [b, ws] such that f > 0 on [w1, w2],

v̂ ∈ C2[w1, w2]. Notice that g is continuous on [w1, w2].

First of all, we show v̂ is a viscosity solution of

(3.24) −v′′(w) + g(w) = 0, w ∈ (w1, w2).

8The derivatives at w = b is understood to be the continuous extension of interior derivatives.
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Let w0 ∈ (w1, w2) and ϕ ∈ C2(w1, w2) be any test functions such that v̂ − ϕ has a

local maximum at w0. Since v̂ is a C1 subsolution of G = 0, we have ϕ′(w0) = v̂′(w0)

and

G(w0, v̂(w0), v̂′(w0), ϕ′′(w0)) ≤ 0.

Since v̂′(w0) < 0, we must have ϕ′′(w0) > 0 for the above G to be finite. Writing out

the expression for G and optimizing over π, we get

−f(w0) +R
(v̂′(w0))2

ϕ′′(w0)
= λv̂(w0) ln v̂(w0) +R

(v̂′(w0))2

ϕ′′(w0)
− (rw0 − c)v̂′(w0) ≤ 0,

which, after multiplying by the positive quantity ϕ′′(w0)
f(w0)

, is precisely

−ϕ′′(w0) + g(w0) ≤ 0.

This shows v̂ is a subsolution of (3.24). Let w0 ∈ (w1, w2) and ϕ ∈ C2(w1, w2) be

any test function such that v̂−ϕ has a local minimum at w0. If ϕ′′(w0) ≤ 0, then we

immediately have −ϕ′′(w0) + g(w0) ≥ 0 since g is nonnegative. If ϕ′′(w0) > 0, then

we use v̂ is a C1 supersolution of G = 0 to obtain ϕ′(w0) = v̂′(w0) and

G(w0, v̂(w0), v̂′(w0), ϕ′′(w0)) ≥ 0.

Optimizing over π in the expression for G, we also get −ϕ′′(w0) + g(w0) ≥ 0. This

shows v̂ is a supersolution of (3.24).

Next, we follow the argument on page 652 of [73] and consider the Poisson equa-

tion

(3.25) −v′′ + g = ε

with Dirichlet boundary conditions v(w1) = v̂(w1), v(w2) = v̂(w2). Here ε is a real

number of our choice. We can integrate g − ε twice to get a C2[w1, w2] solution,

denoted by vε. To compare v̂ with vε, first take ε > 0 and suppose v̂ − vε has a local
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maximum at some point w0 ∈ (w1, w2). Since v̂ is a viscosity subsolution of (3.24),

we have

−v′′ε (w0) + g(w0) ≤ 0,

which contradicts (3.25). So the maximum must be attained on the boundary where

it is zero. This means v̂ ≤ vε. Letting ε → 0 yields v̂ ≤ v0. The reverse inequality

is obtained by taking ε < 0 and using v̂ is a viscosity supersolution of (3.24). This

finishes the proof that v̂ = v0 ∈ C2[w1, w2].

Step 2. Show f(w) > 0 for any w ∈ [b, ws).

We use an argument similar to that on page 811-812 of [51]. Pick any point

w1 ∈ (b, ws) where f(w1) > 0. Since f is continuous, f > 0 in a neighborhood of

w1. Suppose f vanishes at some point to the left of w1. Let w0 := sup{w ∈ [b, w1) :

f(w0) = 0}. By step 1, v̂ satisfies equation (3.24) in the classical sense in (w0, w1).

Let w ∈ (w0, w1). By mean value theorem,

(3.26)
f(w)− f(w0)

w − w0

= f ′(z) = (r − λ)v̂′(z) + (rz − c)v̂′′(z)− λv̂′(z) ln v̂(z)

for some z ∈ (w0, w). Let w → w0+. Notice that v̂′′(z) → ∞ because v̂′′(z) = g(z)

from equation (3.24), and g(z) has a strictly positive numerator and a denominator

that is going to zero from the positive side. So the middle term on the right hand side

of (3.26) is exploding to −∞ while the other two terms converge to finite numbers.

This contradicts the non-negativity of the left hand side. So f(w1) > 0 necessarily

implies f(w) > 0 for all w ∈ [b, w1). Since f > 0 a.e., we conclude that f > 0 in

[b, ws). Combining step 1 and 2, we have v̂ ∈ C2[b, ws).

From the proof of Lemma 3.5.4, we know v̂′′ > 0 in (b, ws). Optimizing over π in

(3.22a) leads to (3.23). Since v̂′(b) < 0, (3.23) implies v̂′′(b) > 0.

Once we have C2-regularity, we can further upgrade to infinite differentiability
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with little effort.

Corollary 3.5.7. v̂ ∈ C∞[b, ws).

Proof. Let g be defined as before. With v̂ ∈ C2[b, ws), we now have g ∈ C1[b, ws). It

then follows from v̂′′ = g that v̂ ∈ C3[b, ws). This in turn implies g ∈ C2[b, ws) and

so on. Inductively, we will get v̂ ∈ C∞[b, ws).

Remark 3.5.8. Since f(ws) = 0, only C1-regularity is guaranteed at the right bound-

ary. Even in the non-robust case, it is possible to have an unbounded second deriva-

tive at the safe level.

Going back to the original problem through û = 1
ε

ln v̂, we have the following

result.

Proposition 3.5.9. û ∈ C1[b, ws]∩C2[b, ws), and satisfies û′ < 0 and ε(û′)2 +û′′ > 0

in [b, ws). In addition, û solves the second order equation

(3.27) λu = −R (u′)2

ε(u′)2 + u′′
+ (rw − c)u′, w ∈ (b, ws).

3.6 Verification

3.6.1 Regularity of π∗

In order to relate û to the value function through verification, we first need to

show the feedback forms lead to a pair of admissible controls under which the SDE

for the controlled wealth process has a unique strong solution. The π attaining the

infimum in F (w, û, û′, û′′) is given by

π∗ = −µ− r
σ2

û′

ε(û′)2 + û′′
= −µ− r

σ2

v̂′

v̂′′
,

which is the same as the π attaining the infimum in G(w, v̂, v̂′, v̂′′). We already know

from the previous section that π∗ is smooth in (b, ws), thus locally Lipschitz. We will

show π∗ is also well-behaved near the boundary.
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Lemma 3.6.1.

0 < π∗(w) <
2(c− rw)

µ− r
, w ∈ [b, ws).

Proof. The lower bound is trivial. For the upper bound, rewrite equation (3.27) as

(3.28) λû =

(
µ− r

2
π∗ + rw − c

)
û′.

For w ∈ [b, ws), since û(w) > 0 and û′(w) < 0, we must have µ−r
2
π∗(w) + rw − c <

0.

Corollary 3.6.2. θ∗ := σεπ∗û′ is bounded and satisfies limw→ws− θ
∗(w) = 0. More

precisely,

2σε

µ− r
(c− rb)û′(b) ≤ 2σε

µ− r
(c− rw)û′(w) < θ∗(w) < 0, w ∈ [b, ws).

It will be verified later that π∗(w), θ∗(w) are the optimal controls for w ∈ (b, ws).

Observe that the upper bound for π∗ given by Lemma 3.6.1 is $. In fact, we can

tighten the bound to π0 and show π∗ is non-increasing with respect to ε.

Proposition 3.6.3. π∗(w; ε) is non-increasing in ε for ε ≥ 0. In particular, π∗(w; ε) ≤

π0(w).

Proof. Let 0 < ε1 < ε2 and write ûi(w) for û(w; εi), i = 1, 2. v̂i and π∗i are defined

similarly. First of all, by comparison principle for problem (3.22), we have v̂1 ≤ v̂2

and thus û1 ≤ û2. Since û1(b) = û2(b) = 1, we deduce

û′1(b) = lim
w→b+

û1(w)− 1

w − b
≤ lim

w→b+

û2(w)− 1

w − b
= û′2(b).

Let w → b+ in equation (3.28), we see that

λ =

(
µ− r

2
π∗(b; ε) + rb− c

)
û′(b; ε).
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Since û′1(b) ≤ û′2(b) < 0, we must have π∗1(b) ≥ π∗2(b). By Lemma 3.6.1, we also have

π∗1(ws) = π∗2(ws) = 0.9 Claim that π∗1(w) ≥ π∗2(w) for all w ∈ [b, ws].

From equation (3.23), we obtain

λv̂ ln v̂ =
µ− r

2
v̂′π∗ + (rw − c)v̂′, w ∈ (b, ws).

By Corollary 3.5.7, we can differentiate the above equation. After rearranging terms,

we get

(3.29)
µ− r

2
(π∗)′ = R + λ− r +

µ− r
σ2

rw − c
π∗

+ λ ln v̂, w ∈ (b, ws).

Suppose on the contrary, π∗1 − π∗2 attains negative minimum at a point w0 ∈ (b, ws).

By first order condition, we have (π∗1)′(w0) = (π∗2)′(w0). Equation (3.29) then yields

the contradiction:

0 =
µ− r
σ2

(rw0 − c)
π∗1(w0)− π∗2(w0)

π∗1(w0)π∗2(w0)
+ λ(ln v̂2(w0)− ln v̂1(w0)) > 0,

where we used π∗i > 0, v̂2 ≥ v̂1 in (b, ws), and the assumption π∗1(w0)− π∗2(w0) < 0.

Therefore, the claim holds.

If ε1 = 0, i.e. π∗1 = π0, then simple computation shows π∗1 satisfies (3.29) with

v̂1 := 1. Exactly the same comparison argument implies π∗1 ≥ π∗2 everywhere on

[b, ws].

Proposition 3.6.4. π∗ is Lipschitz continuous in (b, ws) and satisfies

(3.30) lim
w→ws−

(π∗)′(w) = − µ− r
σ2(d− 1)

= π′0(ws).

Proof. For Lipschitz continuity, it suffices to show π∗ has bounded first derivative

in (b, ws). Since π∗ > 0 in [b, ws), equation (3.29) implies (π∗)′ is bounded on

9By π∗(ws), we mean limw→ws− π
∗(w) since v̂′′(w) may not exist at w = ws.
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any subset of (b, ws) that is away from ws. It remains to show (3.30). Let ` :=

lim infw→ws−(π∗)′(w) and L := lim supw→ws−(π∗)′(w). By Proposition 3.6.3, we have

rw − c
π∗

≤ rw − c
π0

= −σ
2r(d− 1)

µ− r
.

The above inequality and (3.29) imply

µ− r
2

(π∗)′ ≤ R + λ− rd+ λ ln v̂.

Simple algebra shows R+ λ− rd = R/(1− d) < 0. Since v̂(w)→ 1 as w → ws−, we

know (π∗)′ is negative and bounded away from zero near ws. In particular, the limit

superior L satisfies

µ− r
2

L ≤ R + λ− rd =
R

1− d
< 0.

Now, apply generalized l’Hôpital’s rule [78, Theorem II] to (3.29). We deduce

µ− r
2

` ≥ R + λ− r +
µ− r
σ2

lim inf
w→ws−

r

(π∗)′(w)
= R + λ− r +

µ− r
σ2

r

L
.

This leads to a chain of inequalities which is in fact a chain of equalities:

0 >
R

1− d
≥ µ− r

2
L ≥ µ− r

2
` ≥ R + λ− r + r(1− d) =

R

1− d
.

So we have proved ` = L = 2R
(µ−r)(1−d)

= − µ−r
σ2(d−1)

.

3.6.2 Verification theorem

For any C2 function ϕ and π, θ ∈ R, define

Lπ,θϕ(w) := [rw − c+ (µ+ σθ − r)π]ϕ′ +
1

2
σ2π2ϕ′′(w).

Theorem 3.6.5 (Verification theorem). Suppose u : [b,∞)→ [0, 1], Π : [b,∞)→ R

and Θ : R× [b,∞)→ R are measurable functions satisfying the following conditions:

(i) u ∈ C1[b, ws] ∩ C2[b, ws);
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(ii) u is a solution of

(3.31) λu(w) = inf
π

sup
θ

{
− 1

2ε
θ2 + Lπ,θu(w)

}
, w ∈ (b, ws);

(iii) u(b) = 1 and u(w) = 0 for w ≥ ws;

(iv) Π(w) attains the infimum in (ii) for each w ∈ (b, ws); Θ(π,w) attains the

supremum in (ii) for each π ∈ R and w ∈ (b, ws);

(v) Π(w) = Θ(π,w) = 0 if w /∈ (b, ws);

(vi) Π is bounded and Lipschitz continuous in (b, ws); Θ is bounded on [π1, π2] ×

[b,∞) for any compact interval [π1, π2] ⊂ R.

Then ψ = u on [b,∞), and Π(·),Θ(Π(·), ·) are optimal Markovian controls.

Proof. Same as [14], we let ∆ be the “coffin state” and [b,∞)∪{∆} be the one point

compactification of [b,∞). Define the extension of u to [b,∞) ∪ {∆} by assigning

u(∆) = 0.

1. Let w > b. By conditions (v) and (vi), the SDE

dWt = [rWt + (µ− r)Π(Wt)− c]dt+ σΠ(Wt)dBt, W0 = w

has a unique strong solution Ww,Π w.r.t. the filtered probability space (Ω,F ,F,P).

Let π∗t := Π(Ww,Π
t ) and write Ww,π∗ := Ww,Π. π∗ ∈ A since Π is bounded and

measurable. Define τ ∗b := inf{t ≥ 0 : Ww,π∗ ≤ b} and τ ∗ := inf{t ≥ 0 : Ww,π∗ ≥

ws} ∧ τd.

Let Q ∈ Q be any candidate measure with corresponding drift distortion process

θ. By Girsanov theorem, BQ
t := Bt −

∫ t
0
θsds is a Q-Brownian motion. Ww,π∗
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satisfies

dWt = [rWt + (µ+ σθt − r)π∗t − c]dt+ σπ∗tdB
Q
t , W0 = w.

Recall that τd is the first jump time of the P-Poisson process N with rate λ that is

independent of F. The definition of Q ensures that N is also a Q-Poisson process

with the same rate. Let W
w,π∗

t := Ww,π∗

t 1{t<τd} + ∆1{t≥τd}. W
w,π∗

is a progressively

measurable process in the enlarged filtration H which includes information generated

by N . It is easy to see that W
w,π∗

satisfies:

dWt = [rWt + (µ+ σθt − r)π∗t − c]dt+ σπ∗tdB
Q
t − (∆−Wt−)dNt, W0 = w.

Applying Itô’s lemma to u(W
w,π∗

t ) and using that u(∆) = 0, we have

u(W
w,π∗

τ∗b ∧τ∗
) = u(w) +

∫ τ∗b ∧τ
∗

0

Lπ∗s ,θsu(Ww,π∗

s )− λu(Ww,π∗

s )ds

+

∫ τ∗b ∧τ
∗

0

u′(Ww,π∗

s )σπ∗sdB
Q
s − u(Ww,π∗

s− )d(Ns − λs).

Since u, u′ and Π are bounded on [b, ws], the Itô integral vanishes upon taking

Q-expectation and we get

EQ
[
u(W

w,π∗

τ∗b ∧τ∗
)
]

= u(w) + EQ
[∫ τ∗b ∧τ

∗

0

Lπ∗s ,θsu(Ww,π∗

s )− λu(Ww,π∗

s )ds

]
.

Conditions (ii), (iv) and that π∗ = Π(Ww,π∗) imply for 0 ≤ s < τ ∗b ∧ τ ∗,

0 = inf
π

sup
θ

{
− 1

2ε
θ2 + Lπ,θu(Ww,π∗

s )

}
− λu(Ww,π∗

s )

= sup
θ

{
− 1

2ε
θ2 + Lπ∗s ,θu(Ww,π∗

s )

}
− λu(Ww,π∗

s )

≥ − 1

2ε
θ2
s + Lπ∗s ,θsu(Ww,π∗

s )− λu(Ww,π∗

s ).

So we have

EQ
[
u(W

w,π∗

τ∗b ∧τ∗
)
]
≤ u(w) + EQ

[∫ τ∗b ∧τ
∗

0

1

2ε
θ2
sds

]
.
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Equivalently,

u(w) ≥ EQ
[
u(W

w,π∗

τ∗b ∧τ∗
)−

∫ τ∗b ∧τ
∗

0

1

2ε
θ2
sds

]
.

By condition (v), Ww,π∗ will stay constant once it reaches the safe level. This means,

if the safe level is reached, then death will definitely occur before ruin. So we have

{τ ∗b < τ ∗} = {τ ∗b < τ ∗d}. Since u(W
w,π∗

τ∗b ∧τ∗
) = 1{τ∗b<τ∗} = 1{τ∗b<τd} and τ ∗b ∧ τ ∗ ≤ τd, we

get

u(w) ≥ EQ
[
1{τ∗b<τd} −

∫ τd

0

1

2ε
θ2
sds

]
.

This holds for all Q ∈ Q. So

u(w) ≥ sup
Q∈Q

EQ
[
1{τ∗b<τd} −

∫ τd

0

1

2ε
θ2
sds

]
≥ inf

π∈A
sup
Q∈Q

EQ
[
1{τw,πb <τd} −

1

2ε

∫ τd

0

θ2
sds

]
= ψ(w),

where we put superscripts on τb in the last step to indicate its dependence on the

initial wealth and the control.

2. Let π ∈ A be any admissible investment strategy and Ww,π be the solution

to the SDE:

dWt = [rWt + (µ− r)πt − c]dt+ σπtdBt, W0 = w.

Let θ∗t := Θ(πt,W
w,π
t ). θ∗ is F-progressively measurable since both π and Ww,π

are, and Θ is a measurable function. Since πt is a.s. bounded uniformly in t,

condition (vi) ensures θ∗ satisfies all integrability conditions in the definition of Q.

So there exists a measure Q∗ ∈ Q satisfying
dQ∗t
dPt = E(

∫ t
0
θ∗sdBs) where E denotes the

stochastic exponential. It follows from Girsanov theorem that BQ∗
t := Bt −

∫ t
0
θ∗sds

is a Q∗-Brownian motion. So Ww,π satisfies:

dWt = [rWt + (µ+ σθ∗t − r)πt − c]dt+ σπtdB
Q∗
t , W0 = w.
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Define τb := inf{t ≥ 0 : Ww,π
t ≤ b} and τ := inf{t ≥ 0 : Ww,π

t ≥ ws} ∧ τd. Same

as before, we work with the larger filtration H and consider the process W
w,π

=

Ww,π
t 1{t<τd} + ∆1{t≥τd} which satisfies the SDE:

dWt = [rWt + (µ+ σθ∗t − r)πt − c]dt+ σπtdB
Q∗
t + (∆−Wt−)dNt, W0 = w.

Again, thanks to the drift distortion θ∗ being F-adapted, N remains a Poisson process

with rate λ under Q∗. By Itô’s lemma and that u(∆) = 0, we have for any t ≥ 0,

u(W
w,π

τb∧τ∧t) = u(w) +

∫ τb∧τ∧t

0

−λu(Ww,π
s ) + Lπs,θ

∗
su(Ww,π

s )ds

+

∫ τb∧τ∧t

0

u′(Ww,π)σπsdB
Q∗
s − u(Ww,π

s− )d(Ns − λs).

Taking Q∗ expectation yields

EQ∗ [u(W
w,π

τb∧τ∧t)
]

= u(w) + EQ∗
[∫ τb∧τ∧t

0

−λu(Ww,π
s ) + Lπs,θ

∗
su(Ww,π

s )ds

]
,

where the Itô integral vanishes because u, u′ are bounded and π is Q∗t -a.s. bounded

for all t ≥ 0. By conditions (ii), (iv), and our definition of θ∗, we know

(3.32)

0 = inf
π

sup
θ

{
− 1

2ε
θ2 + Lπ,θu(Ww,π

s )

}
− λu(Ww,π

s )

≤ sup
θ

{
− 1

2ε
θ2 + Lπs,θu(Ww,π

s )

}
− λu(Ww,π

s )

= − 1

2ε
(θ∗s)

2 + Lπs,θ
∗
su(Ww,π

s )− λu(Ww,π
s )

for s ∈ [0, τb ∧ τ). So

(3.33) EQ∗ [u(W
w,π

τb∧τ∧t)
]
≥ u(w) + EQ∗

[∫ τb∧τ∧t

0

1

2ε
(θ∗s)

2ds

]
.

Letting t→∞ and using bounded and monotone convergence theorems, we get

(3.34) EQ∗ [u(W
w,π

τb∧τ )
]
≥ u(w) + EQ∗

[∫ τb∧τ

0

1

2ε
(θ∗s)

2ds

]
.
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Since u(W
w,π

τb∧τ ) = 1{τb<τ} ≤ 1{τb<τd}, we obtain

(3.35) u(w) ≤ EQ∗
[
1{τb<τd} −

1

2ε

∫ τb∧τ

0

(θ∗s)
2ds

]
.

Let us first assume π is an admissible strategy such that π = 0 once ruin occurs

or safe level is reached, so that the wealth process will stay at the ruin or safe level

until death time. Denote by A0 the collection of such subclass of strategies. Then

by condition (v), we have θ∗s = 0 for τb ∧ τ < s < τd. Hence

u(w) ≤ EQ∗
[
1{τb<τd} −

1

2ε

∫ τd

0

θ∗sds

]
≤ sup

Q∈Q
EQ
[
1{τb<τd} −

1

2ε

∫ τd

0

θ2
sds

]
.

This holds for any π ∈ A0. So we have

u(w) ≤ inf
π∈A0

sup
Q∈Q

EQ
[
1{τw,πb <τd} −

1

2ε

∫ τd

0

θ2
sds

]
,

where we added superscripts to τb to indicate its dependence on the initial wealth and

the control. It remains to note that controls in A \A0 do not yield a smaller infimum

because once ruin occurs, it becomes a history that cannot be altered; once safe level

is reached, no policy can do a better job than zero ruin probability. Therefore, we

actually have

u(w) ≤ inf
π∈A

sup
Q∈Q

EQ
[
1{τw,πb <τd} −

1

2ε

∫ τd

0

θ2
sds

]
= ψ(w).

3. As in step 1, let Ww,Π be the unique strong solution of

dWt = [rWt + (µ− r)Π(Wt)− c]dt+ σΠ(Wt)dBt, W0 = w,

and π∗ := Π(Ww,Π) ∈ A . Let θ∗t := Θ(Π(Ww,Π
t ),Ww,Π

t ). Conditions (v), (vi)

and the measurability of Θ,Π ensures θ∗ is a bounded, F-progressively measurable

process. So there is a measure Q∗ ∈ Q having θ∗ as the corresponding drift distortion

process. Repeat the analysis in step 2 using controls π∗ and θ∗. (3.32) through
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(3.34) now hold with equality. For (3.35), since π∗ and θ∗ will both be zero and

remain zero until death time once the ruin level or the safe level is reached, we have

{τ ∗b < τ ∗} = {τ ∗b < τd} and

ψ(w) = u(w) = EQ∗
[
1{τ∗b<τd} −

∫ τd

0

1

2ε
(θ∗s)

2ds

]
,

where τ ∗b and τ ∗ denote the ruin time and the minimum of safe and death times,

respectively, when the wealth starts at w and is controlled by π∗. This proves the

optimality of the feedback forms.

3.6.3 Proof of Theorem 3.2.4.

Proof. The functions

u(w) := û(w)1{w≤ws}, Π(w) := π∗(w)1(b,ws)(w), Θ(π,w) := σεπû′(w)1(b,ws)(w)

satisfy all conditions of the verification theorem. (i) follows from Proposition 3.5.9.

(ii) and (iii) hold because û solves (3.15) and F = 0 is equivalent to (3.31). (iv)

follows from first order conditions and the definition of π∗ (see the beginning of

Section 3.6). (v) is clear from the definition of Π and Θ. (vi) holds by Propositions

3.6.4 and 3.5.9; the latter implies û′ is bounded on [b, ws].

Remark 3.6.6. Verification can be carried out even if π∗ is only known to be locally

Lipschitz continuous, because the optimally controlled wealth process actually never

reaches the safe level (see Proposition 3.7.3). What Proposition 3.6.4 shows on top

of the global Lipschitz continuity is that π∗(w; ε) is tangent to π0(w) at w = ws for

all 0 < ε <∞.

In the remaining sections of this chapter, we will speak of π∗, θ∗ given by (3.10)

and (3.11) as the optimal Markovian controls. It is understood that they are optimal

in the interval (b, ws).
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3.7 Properties of the value function and the optimal invest-
ment policy

Let us first summarize some properties of ψ and π∗ that we have already seen.

(i) ψ ∈ C1[b, ws] ∩ C2[b, ws) and is strictly decreasing on [b, ws];

(ii) ψ is non-decreasing in ε, bounded from below by ψ0 and from above by ψ∞∧p;

(iii) 0 < π∗ ≤ π0 in [b, ws) and π∗ is non-increasing in ε;

(iv) π∗ is Lipschitz continuous in (b, ws) and is tangent to π0 at the safe level.

In this section, we prove two additional properties. The first one reveals how the

concavity of ψ depends on parameters. The second one addresses the question of

whether the safe level can be reached by the optimally controlled wealth process. In

the non-robust case, [82] shows it is never reached in finite time. Same phenomenon

exists for our robust problem; the individual either loses the game, or “wins” the

game by dying.

3.7.1 When does the value function lose convexity?

Proposition 3.7.1.

(i) If r ≤ λ, then ψ is convex on [b, ws]. If r < λ, ψ is strictly convex.

(ii) If r > λ, then ψ changes concavity at most once on [b, ws]. If 0 ≤ ε ≤ R
rd−λ ,

ψ is strictly convex on [b, ws]. If ε > R
r−λ , ψ is strictly concave in [b, w0) and

strictly convex in (w0, ws] where w0 is the unique point in (b, ws) satisfying

(rw0 − c)ψ′(w0)− λψ(w0) = R
ε

.

Proof. (i) When ε = 0, strict convexity holds regardless of the sign of r−λ. Assume

ε > 0. Let f(w) := (rw − c)ψ′ − λψ. When proving Proposition 3.5.6, we showed
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that (rw − c)v̂′ − λv̂ ln v̂ > 0 in [b, ws). In terms of ψ which equals û on [b, ws], we

have εeεψ[(rw−c)ψ′−λψ] > 0, which implies f > 0 on [b, ws). Recall that ψ satisfies

R
(ψ′)2

ε(ψ′)2 + ψ′′
= f.

Moving ψ′′ to one side and everything else to the other side, we obtain

(3.36) ψ′′ =

(
R

f
− ε
)

(ψ′)2.

We see that the sign of ψ′′ depends on the relative size of f to R/ε. Since ψ ∈

C2[b, ws), we can differentiate f and get

(3.37) f ′ = (r − λ)ψ′ + (rw − c)ψ′′ ≥ (rw − c)ψ′′,

where the inequality follows from ψ′ < 0 and the assumption that r ≤ λ. Since

f(ws) = 0, f attains maximum either at an interior point or at w = b. In both cases,

we have f ′(wm) ≤ 0 where wm ∈ [b, ws) is the point where maximum is attained. It

follows from (3.37) that ψ′′(wm) ≥ 0 and then from (3.36) that f(wm) ≤ R/ε. Since

wm is a maximum point, f(w) ≤ R/ε for all w ∈ [b, ws]. This in turn implies by

(3.36) that ψ′′(w) ≥ 0 for all w ∈ (b, ws). Since ψ is continuous, interior convexity

can be extended to the boundary. If r < λ, then the inequality in (3.37) becomes

strict and we have ψ′′(wm) > 0 at the point wm of maximality of f . Subsequent

inequalities all become strict and we obtain strict convexity of ψ.

(ii) First of all, equation (3.36) implies in any circumstances, regardless of the

sign of r − λ and the value of ε, ψ will be strictly convex in a neighborhood of ws.

This is because f(ws) = 0 so that R/f(w)− ε > 0 for w sufficiently close to ws. Let

r > λ. Then (3.37) becomes

(3.38) f ′ = (r − λ)ψ′ + (rw − c)ψ′′ < (rw − c)ψ′′, w ∈ [b, ws).
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If ψ changes concavity at w0, then ψ′′(w0) = 0 and the above inequality implies

f ′(w0) < 0. So f is strictly decreasing whenever ψ changes concavity.10 Looking at

(3.36), we deduce that ψ can only change from concave to convex if concavity changes

at all. Since we have already argued ψ is strictly convex in a neighborhood of ws,

we conclude that if ψ is not convex everywhere, then it changes concavity only once;

it is strictly concave up to the (unique) point w0 where f(w0) = R/ε and is strictly

convex afterwards. We also note that since f can only touch or cross the horizontal

line at R/ε in a decreasing fashion, f(w) > R/ε for w ∈ [b, w0) and f(w) < R/ε for

w ∈ (w0, ws].

Next, we identify some cases when ψ changes or does not change concavity. In

view of the way f intersect the horizontal line at R/ε, it suffices to check whether

f(b) > R/ε. We have

f(b) = (rb− c)ψ′(b)− λ.

If 0 ≤ ε ≤ R
rd−λ , then f(b) ≤ (rb− c)ψ′0(b)− λ = rd− λ ≤ R/ε and there will be

no concavity change for ψ.

If ε > R
r−λ , then we consider two cases. If ψ′(b) > 1

b−ws = r
rb−c , then ψ cannot

be convex everywhere. If it is convex everywhere, it will stay above its tangent line

passing through the point (b, 1). But the point (ws, 0) lies below this tangent line,

which means the right boundary condition is not satisfied. If ψ′(b) ≤ r
rb−c , then

f(b) ≥ r − λ > R/ε. In both cases, ψ will change concavity.

Remark 3.7.2. Based on the feedback form (3.11), θ∗ is bounded below by −µ−r
σ

whenever ψ is convex. If ψ is not convex, then its infection point is the unique

point where θ∗ = −µ−r
σ

. In other words, ψ changes concavity when the distorted

10ψ cannot be locally linear because otherwise on one hand, (3.38) implies f ′ < 0 and f is locally
strictly decreasing; on the other hand, (3.36) implies f is locally constant.
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Sharpe ratio µ−r
σ

+ θ∗ is zero. Moreover, since ψ changes from concave to convex,

the distorted Sharpe ratio is negative to the left of this inflection point and positive

to the right of this inflection point.

3.7.2 Reaching the safe level or not?

Proposition 3.7.3. Let b < w < ws and W ∗ be the optimally controlled wealth

starting at w. Let τ ∗s := inf{t ≥ 0 : W ∗
t ≥ ws} and τ ∗b := inf{t ≥ 0 : W ∗

t ≤ b}. Then

P(τ ∗s < τ ∗b ) = 0.

Proof. Since we are only interested in whether the safe level can be reached before

ruin, we may extend the domain of Π to R and set Π(w) := c−rw
µ−r for w ≤ b. Let W̃

be the solution to the SDE:

dWt = [rWt + (µ− r)Π(Wt)− c]dt+ σΠ(Wt)dBt, W0 = w.

W̃ equals W ∗ up to ruin time. It suffices to show W̃ does not exit the interval

(−∞, ws) in finite time, and we use Feller’s test for explosions (see section 5.5.C of

[57]). By Lemma 3.6.1, non-degeneracy and local integrability hold on this interval.

Let s(w) := σΠ(w) and b(w) := rw + (µ− r)Π(w)− c. Fix w0 ∈ (−∞, ws). Let

p(w) :=

∫ w

w0

exp

(
−2

∫ y

w0

b(z)

s2(z)
dz

)
dy

be the scale function, and

v(w) :=

∫ w

w0

p′(y)

∫ y

w0

2dz

p′(z)s2(z)
dy =

∫ w

w0

∫ y

w0

2

s2(z)
exp

(
−2

∫ y

z

b(x)

s2(x)
dx

)
dzdy.

We want to show v(−∞) = v(ws) =∞. v(−∞) =∞ is easy by the way we extend

Π. Let a ≤ w0 ∧ b. Since b(x) = 0 for x ≤ a, we have

v(−∞) =

∫ w0

−∞

∫ w0

y

2

s2(z)
exp

(
2

∫ z

y

b(x)

s2(x)
dx

)
dzdy ≥

∫ a

−∞

∫ a

y

2

s2(z)
dzdy

=

∫ a

−∞

∫ a

y

4R

(c− rz)2
dzdy =∞.
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To show v(ws) = ∞, we use Lemma 3.6.1 or Proposition 3.6.3 to obtain Π(w) ≤

K1(c − rw), w ∈ (b, ws) for some positive constant K1. It follows that |b(w)| ≤

[1+K1(µ−r)](c−rw), w ∈ (b, ws). Also observe that if b(w) > 0, then Π(w) > c−rw
µ−r .

So we have

b(w)

s2(w)
≤ 1{b(w)>0}

b(w)

s2(w)
≤ 1{b(w)>0}

2R[1 +K1(µ− r)]
c− rw

≤ K2

c− rw
,w ∈ (b, ws),

where K2 := 2R[1 + (µ− r)K1] > 0. Let (b ∨ w0) ≤ a′ < ws.

v(ws) =

∫ ws

w0

∫ y

w0

2

s2(z)
exp

(
−2

∫ y

z

b(x)

s2(x)
dx

)
dzdy

≥
∫ ws

a′

∫ y

a′

2

σ2K2
1(c− rz)2

exp

(
−2

∫ y

z

K2

c− rx
dx

)
dzdy

=

∫ ws

a′

∫ y

a′

2

σ2K2
1(c− rz)2

(
c− ry
c− rz

) 2K2
r

dzdy

=
2

σ2K2
1(r + 2K2)

∫ ws

a′
(c− ry)

2K2
r

[
(c− ry)−1− 2K2

r − (c− ra′)−1− 2K2
r

]
dy

=
2

σ2K2
1(r + 2K2)

[∫ ws

a′

1

c− ry
dy −

∫ ws

a′

1

c− ra′

(
c− ry
c− ra′

) 2K2
r

dy

]
.

The second integral is finite while the first integral diverges to ∞. So we obtain

v(ws) =∞. The rest is by Feller’s test for explosions.

3.8 Asymptotic expansion for small ε

In general, (3.12) does not have an explicit solution, but it turns out that for

small ε, there are explicit formulas for the leading term and the first order correction.

Rewrite (3.12a) as

(3.39) ((rw − c)ψ′ − λψ)
(
ε(ψ′)2 + ψ′′

)
= R(ψ′)2.

Let

f0(w) + f1(w)ε+ f2(w)ε2 + · · ·
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be an asymptotic expansion of ψ(w) as ε→ 0. Substituting the expansion into (3.39)

and collecting zero-th order terms in ε, we get

(3.40) ((rw − c)f ′0 − λf0) f ′′0 = R(f ′0)2

which is precisely the differential equation satisfied by the non-robust value function.

We impose the boundary conditions f0(b) = 1 and f0(ws) = 0. Then

f0(w) = ψ0(w) =

(
c− rw
c− rb

)d
.

Collecting first order terms in ε, we get

(3.41) [(rw − c)f ′1 − λf1]f ′′0 + [(rw − c)f ′0 − λf0][(f ′0)2 + f ′′1 ] = 2Rf ′0f
′
1.

Using the formula for f0, after some computation, we arrive at a linear second order

ODE for f1:

(3.42) f ′′1 + A(w)f ′1 +B(w)f1 + C(w) = 0

where

A(w) :=
r(d− 1)(2R− rd+ r)

R

1

c− rw
,

B(w) :=
−λr2(d− 1)2

R

1

(c− rw)2
,

C(w) :=
r2d2

(c− rb)2d
(c− rw)2d−2.

We require f1 to satisfy the homogeneous boundary conditions f1(b) = f1(ws) = 0.

Let x = c− rw and g(x) = f1(w). Equation (3.42) can be rewritten as

(3.43) x2g′′ − (d− 1)(2R− rd+ r)

R
xg′ − λ(d− 1)2

R
g +

d2

(c− rb)2d
x2d = 0

with boundary conditions g(0) = g(c− rb) = 0. This is a non-homogeneous Cauchy-

Euler equation. The corresponding homogeneous equation has general solution:

gh(x) = C1x
k1 + C2x

k2
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where k1 > 0 > k2 are the roots of

k2 −
(

2d− 1− r(d− 1)2

R

)
k − λ(d− 1)2

R
= 0.

It turns out that k1 = d. For a particular solution, we guess the form gp(x) = Cpx
2d.

Substituting gp into (3.43), we find

Cp =
−Rd2

(c− rb)2d [(d− 1)2(2dr − λ) + 2Rd]

The general solution to (3.43) is g = gh + gp. Since g(0) = 0, we must have C2 = 0,

otherwise the solution would explode at x = 0. The other boundary condition

g(c− rb) = 0 yields

C1 = −Cp(c− rb)d.

So we have obtained

f1(w) = g(c− rw) =
Rd2

(d− 1)2(2dr − λ) + 2Rd

[(
c− rw
c− rb

)d
−
(
c− rw
c− rb

)2d
]
.

Proposition 3.8.1.

ψ(w) = ψ0(w) +
Rd2 (ψ0(w)− ψ2

0(w))

(d− 1)2(2dr − λ) + 2Rd
ε+O(ε2)

as ε ↓ 0 uniformly in w, where the constants R, d are defined in (3.5).

Proof. We only give a sketch proof. Let ψ̃ := f0 + f1ε. We want to show ψ(w) =

ψ̃(w) + O(ε2) uniformly for w ∈ (b, ws). Using the formulas for f0 and f1, we can

show for ε sufficiently small,

(3.44) ε(ψ̃′)2(w) + ψ̃′′(w) ≥ C1

(
c− rw
c− rb

)d−2

> 0 ∀ w ∈ (b, ws).

for some positive constant C1 independent of ε and w. Next, we show

(3.45) F (w, ψ̃(w), ψ̃′(w), ψ̃′′(w)) = O(ε2) uniformly for w ∈ (b, ws).

94



In view of (3.44), we carry out the optimization over π in the expression for F . Using

equations (3.40) and (3.41), we obtain

F (w, ψ̃(w), ψ̃′(w), ψ̃′′(w)) =
D1(w)ε2 +D2(w)ε3 +D3(w)ε4

ε(ψ̃′)2(w) + ψ̃′′(w)
,

where

D1(w) := 2f ′0f
′
1[λf0 − (rw − c)f ′0] + [λf1 − (rw − c)f ′1][(f ′0)2 + f ′′1 ] +R(f ′1)2,

D2(w) := 2f ′0f
′
1[λf1 − (rw − c)f ′1] + (f ′1)2[λf0 − (rw − c)f ′0],

D3(w) := (f ′1)2[λf1 − (rw − c)f ′1].

It can be shown using (3.44) and the explicit formulas for f0, f1 that there exists a

positive constant C2 independent of ε and w, such that |Di(w)|/[ε(ψ̃′)2(w)+ψ̃′′(w)] ≤

C2, i = 1, 2, 3 for all w ∈ (b, ws) and for ε small enough. This proves (3.45). Conse-

quently, we can find a positive constant C3 such that for ε sufficiently small,

F (w, ψ̃(w)− C3ε
2, ψ̃′(w), ψ̃′′(w)) ≤ 0 and F (w, ψ̃(w) + C3ε

2, ψ̃′(w), ψ̃′′(w)) ≥ 0.

By comparison principle for the equation F = 0, we have ψ = ψ̃ +O(ε2).

3.9 Numerical examples

We solve the boundary value problem (3.12) numerically using finite difference

method. The model parameters used are c = 1, b = 1, µ = 0.1, σ = 0.15, λ = 0.04

and ε = 0, 1, 5, 10, 50. We choose a hazard rate of 0.04, i.e. an expected future

lifetime of 25 years, because the investment problem we considered is more relevant

to retirees. To demonstrate that the concavity of the value function is closely related

to how interest rate compares with hazard rate, we work with two values of interest

rate: r = 0.02 < λ and r = 0.06 > λ. We plot the robust ruin probability, the
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Figure 3.2: Robust ruin probabilities.
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Figure 3.3: Cole-Hopf transform of three non-convex curves in Figure 3.2.

optimal investment and the optimal distorted Sharpe ratio as functions of wealth

under different levels of ambiguity aversion.

From Figure 3.2, we see that the robust value function is increasing in ε. When the

interest rate is smaller than the hazard rate, all value functions are strictly convex.

When the interest rate is larger than the hazard rate, concavity depends on the level

of ambiguity aversion: the value function is convex when ε is small, and changes

from concave to convex when ε is large. The larger the ε, the closer the inflection

point is to the safe level. With this set of parameters, a sufficient condition for ψ to

be convex, as implied by Proposition 3.7.1, is 0 ≤ ε ≤ 0.4765. A sufficient condition

for ψ to change concavity is ε > 1.7778. ε = 5, 10, 50 all satisfy this condition and
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Figure 3.4: Optimal investments.
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Figure 3.5: Distorted Sharpe ratios.

exhibit concavity change. By Remark 3.7.2, the inflection points of ψ corresponds to

the points where the optimal distorted Sharpe ratio is zero. Despite that ψ may be

concave, its Cole-Hopf transform eεψ is always convex, as demonstrated by Figure

3.3.

Figure 3.4 shows the optimal investment level is decreasing in ε, which agrees

with Proposition 3.6.3. This means the more ambiguity-averse the agent is, the less

she is willing to invest in the risky asset. Different from the non-robust case, the
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Figure 3.6: Optimal investments with different ruin levels.

optimal investment, although goes to zero as wealth approaches the safe level, is not

necessarily a decreasing function of wealth. When interest rate is large (compared

with hazard rate), π∗ is decreasing and also concave in w. But when interest rate

is small, there is an interior point where π∗ achieves maximum. Moreover, as ε

increases, the maximum point moves to the right. In any case, adding ambiguity

aversion reduces the amount of borrowing when the wealth of the investor is small,

making the model more realistic than the non-robust model (without borrowing

constraint). Another interesting observation is that the optimal π∗ of all levels of

ambiguity aversion share the same tangent line at the safe level with their non-robust

counterparts, confirming equation (3.30) of Proposition 3.6.4.

Figure 3.5 shows that when the interest rate is small (compared with hazard

rate), the optimally distorted Sharpe ratio µ−r
σ

+ θ∗ is strictly positive, decreasing in

ε and increasing in wealth. But when interest rate is large, it can be negative, and

both monotonicities are lost. In both cases, the pictures suggest that the optimally

distorted Sharpe ratio is converging to zero pointwise as ε→∞. Moreover, observe

from Figure 3.4 that the optimal investment converges to zero pointwise as ε→∞,
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which is the investment behavior corresponding to ψ∞. This suggests that for ε very

large, the stock is losing its attractiveness as it becomes less favorable compared to

the money market account.

In the non-robust case, the optimal investment strategy is independent of the

ruin level b in the sense that if b1 < b2, then π∗(w; b1) coincides with π∗(w; b2) on

[b2, ws]. This holds not only for constant consumption rate, but also for any Lipschitz

continuous consumption rate (see [13, Corollary 2.3]). However, when ambiguity

aversion is present, the ruin level has a global impact on the investment decision

unless hazard rate is zero. When ε 6= 0, Figure 3.6 suggests π∗ is decreasing in b. In

other words, the individual will invest less if she is more likely to feel ruined.

3.9.1 Should the individual care about robustness?

Figure 3.2 shows robustness has a considerable impact on the minimum proba-

bility of ruin. However, this is not really informative as far as investment behavior is

concerned. A more important question is: how does the optimal non-robust invest-

ment strategy π0 perform in the robust market? In other words, will the individual

bear significantly more risk if she makes investment decisions as if there were no

model uncertainty? The answer to this question is partially affirmative; the individ-

ual should care about robustness for non-small ε. In our numerical example, ignoring

robustness increases the ruin probability by more than 10% for ε larger than 10. On

the other hand, for small ε, π0 turns out to be a good enough investment strategy.

For ε = 1, the difference between the ruin probability yielded by π0 and the optimal

ruin probability ψ(· ; 1) is on a scale of 0.1% which may be negligible for an individ-

ual, although the difference between ψ0 and ψ(· ; 1) can be as large as 10%. Table

3.1 illustrates the performance of π0 under various levels of ambiguity aversion in
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our numerical example.

Table 3.1: Maximum deviation from the minimum robust ruin probability if the in-
dividual uses the non-robust strategy π0.
ε = 1 ε = 2 ε = 3 ε = 4 ε = 5 ε = 10 ε = 20

r = 0.02 0.001 0.005 0.013 0.025 0.038 0.105 0.201
r = 0.06 0.002 0.013 0.033 0.059 0.087 0.198 0.324
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CHAPTER IV

Stochastic Perron’s Method for the Lifetime Ruin

Problem Under Transaction Costs

4.1 Introduction

Stochastic Perron’s method is introduced in [9], [11] and [10] as a way to show

the value function of a stochastic control problem is the unique viscosity solution

of the associated Hamilton-Jacobi-Bellman (HJB) equation, without having to first

go through the proof of the dynamic programming principle (DPP) which is usually

very long and complicated, and often incomplete. It is a direct verification approach

in that it first constructs a solution to the HJB equation, and then verifies such

a solution is the value function. But unlike the classical verification, it does not

require regularity; uniqueness acts as a substitute for verification. The basic idea is

to define, for each specific problem, a suitable family of stochastic supersolutions V+

(resp. stochastic subsolutions V−) which is stable under minimum (resp. maximum),

and whose members bound the value function from above (resp. below). So the

value function is enveloped from above by v+ = infv∈V+ v and from below by v− =

supv∈V− v. The key step is to show v+ is a viscosity subsolution and v− is a viscosity

supersolution by a Perron-type argument. A comparison principle then closes the

gap.
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Stochastic Perron’s method has been applied to linear problems [9], Dynkin games

[11], HJB equations for regular control problems [10], (regular) exit time problems

[68], zero-sum differential games [74], and after our paper came out, control problems

with state constraints [70], robust switching problems [6], stochastic target games [8]

and regular finite fuel problems [69]. This chapter adapts the method to another

type of problems: singular control problems. In particular, we focus on the specific

problem of how individuals should invest their wealth in a risky financial market to

minimize the probability of lifetime ruin, when buying and selling of the risky asset

incur proportional transaction costs. This problem can also be treated as an exit

time problem, but with singular controls. In the frictionless case, the probability

of lifetime ruin problem was analyzed by Young [82], and later studied in more

complicated settings such as borrowing constraints, stochastic consumption and drift

uncertainty (see Chapter III for a detailed introduction). The main goal in this

chapter is to exemplify how stochastic Perron’s method can be applied to singular

control problems, which has not been covered in the literature. It also serves as

the first step towards a rigorous analysis of the probability of lifetime ruin problem

under transaction costs. The techniques in this paper can be applied in a similar way

to other optimal investment problems under transaction costs, as long as there is a

comparison principle. For consumption-investment problems, uniqueness is proved

in [53] under certain conditions (also see [79, Theorem 1] and Section 4.3 of [55]).

The main idea of the proof is in line with [10] and [68], but there are some

nontrivial modifications. Similar to [32] and [73], our HJB equation takes the form

of a variational inequality with three components, one for each of the three different

regions: no-transaction, sell, and buy. This makes the proof of the interior viscosity

subsolution property of the upper stochastic envelope v+ more demanding: we have
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to argue by contradiction in three cases separately. Variational inequalities also

appear in [11] and the authors are able to rule out some of the cases by assuming

the existence of a stochastic supersolution (resp. subsolution) less than or equal

to the upper obstacle (resp. greater than or equal to the lower obstacle). But the

same idea does not work for gradient constraints. Another challenge posed by the

singular control is that the state process can jump outside the small neighborhood in

which local estimates obtained from the viscosity solution property are valid. This

issue arises in the proof of the interior viscosity supersolution property of the lower

stochastic envelope v−, and we overcome it by splitting the jump into two steps:

first to an intermediate point on the boundary of the neighborhood and then to its

original destination.

In proving the viscosity semi-solution property of v±, boundary property is usually

harder to show than interior property. In fact, most of the work in [68] is devoted to

proving the boundary viscosity semi-solution property of v±. In our case, we avoid

this hassle by constructing explicitly a stochastic supersolution and a stochastic

subsolution both of which satisfy the boundary condition. The boundary viscosity

semi-solution property then becomes a trivial consequence of the definition of v±.

This is very similar to classical Perron’s method in which one has to first come

up with a pair of viscosity semi-solutions satisfying the boundary condition (see

Theorem 4.1 and Example 4.6 of [29]). However, we point out that the construction

of such stochastic semi-solutions depends on the specific problem at hand and may

not always be possible.

Previous works on stochastic Perron’s method focus on methodology and take

comparison principle (which is crucial for stochastic Perron’s method to work) as an

assumption. Here we provide, in addition to stochastic Perron’s method, a complete
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proof of the comparison principle for our specific singular control problem. The

proof relies on the existence of a strict classical subsolution satisfying certain growth

condition, an idea we borrowed from [53].

The rest of this chapter is organized as follows. In Section 4.2, we set up the

problem, derive the HJB equation and some bounds on the value function, and state

the main theorem. In Section 4.3, we introduce the notion of stochastic supersolution

and show the infimum of stochastic supersolutions is a viscosity subsolution. In

Section 4.4, we introduce the notion of stochastic subsolution and show the supremum

of stochastic subsolutions is a viscosity supersolution. Finally, in Section 4.5 we prove

a comparison principle and finish the proof of the main theorem.

4.2 Problem formulation

Let (Ω,F ,P) be a probability space supporting a Brownian motion W = (Wt)t≥0

and an independent Poisson process N = (Nt)t≥0 with rate β. Let τd be the first

time that the Poisson process jumps, modeling the death time of the individual. τd

is exponentially distributed with rate β, known as the hazard rate in this context.

Denote by F := {Ft}t≥0 the completion of the natural filtration of the Brownian

motion and G := {Gt}t≥0 the completion of the filtration generated by W and the

process 1{t≥τd}. Assume both F and G have been made right continuous; that is,

they satisfy the usual condition.

The financial market consists of a risk-free money market with interest rate r > 0

and a risky asset (a stock) whose price Pt follows a geometric Brownian motion with

drift α > r and volatility σ > 0. Transferring assets between the money market and

the stock market incur proportional transaction costs specified by two parameters

λ, µ ∈ (0, 1). One can think of the stock as having ask price Pt/(1 − λ) and bid

104



price (1 − µ)Pt. Same as [73], we describe the investment policy of the individual

by a pair (B, S) of right-continuous with left limits (RCLL), non-negative, non-

decreasing and G-adapted processes, where B records the cumulative amount of

money withdrawn from the money market for the purpose of buying stock, and S

records the cumulative sales of stock for the purpose of investment in the money

market. We set (B0−, S0−) = 0, i.e. there is no investment history at time zero. Due

to transaction costs, it is never optimal to buy and sell at the same time. So we limit

ourselves to strategies (B, S) such that for all t,4Bt := Bt−Bt− and4St := St−St−

are not both strictly positive. Denote by A0 the set of all such pairs (B, S). Apart

from investment, the individual also consumes at a constant rate c > 0.

Denote by Xt and Yt the total dollar amount invested in the money market and

the stock at time t, respectively. Let L(x, y) := x + (1 − µ)y+ − 1
1−λy

− be the

liquidation function. For each a ∈ R, define

Sa := {(x, y) ∈ R2 : L(x, y) > a} = {(x, y) ∈ R2 : x+
y

1− λ
> a, x+ (1− µ)y > a}.

Given initial endowment (x, y) and a pair of control (B, S) ∈ A0, the pre-death

investment position of the individual evolve according to the stochastic differential

equations (SDE)

dXt = (rXt − c)dt− dBt + (1− µ)dSt, X0− = x,(4.1)

dYt = αYtdt+ σYtdWt + (1− λ)dBt − dSt, Y0− = y.(4.2)

Here we allow an immediate transaction at time zero so that (X0, Y0) may differ from

(x, y). Denote the solution by (Xx,y,B,S, Y x,y,B,S). Let

τx,y,B,Sb := inf{t ≥ 0 : (Xx,y,B,S, Y x,y,B,S) /∈ Sb}

be the ruin time. The individual aims at minimizing the probability that ruin hap-
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pens before death. The value function of this control problem is defined as

(4.3) ψ(x, y) := inf
(B,S)∈A0

P(τx,y,B,Sb < τd).

Clearly, ψ is [0, 1]-valued, and ψ(x, y) = 1 if (x, y) /∈ Sb. Same as in the frictionless

case, when L(x, y) ≥ c/r, the individual can sustain her consumption by immediately

putting all her money in the money market and consuming the interest. We shall

assume b < c/r, otherwise the problem is trivial.1 We have ψ(x, y) = 0 for (x, y) ∈

Sc/r. In other words, Sc/r is a “safe region”. The (open) state space for this control

problem is S := Sb\Sc/r, and the boundary consists of two parts: the ruin level ∂Sb

and the safe level ∂Sc/r.

For ϕ ∈ C2(S), define

Lϕ := βϕ− (rx− c)ϕx − αyϕy −
1

2
σ2y2ϕyy.

The HJB equation for the frictional lifetime ruin problem is

(4.4) max {Lu,−(1− µ)ux + uy, ux − (1− λ)uy} = 0, (x, y) ∈ S,

with boundary conditions

(4.5) u(x, y) = 1 if (x, y) ∈ ∂Sb, u(x, y) = 0 if (x, y) ∈ ∂Sc/r.

4.2.1 Upper and lower bounds on the value function

Let

(4.6) ψ(x, y) :=

(
c− rL(x, y)

c− rb

)β
r

, (x, y) ∈ S.

ψ is the probability of ruin if the agent immediately liquidate her stock position and

makes no further transaction throughout her lifetime. It is an upper bound for the

1If b ≥ c/r, then ψ(x, y) is either 0 or 1, depending on whether (x, y) belongs to Sb or not.
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value function since such a strategy may not be optimal. It is easy to see that ψ

satisfies the boundary conditions (4.5).

For k ∈ [1− µ, 1
1−λ ], let

(4.7) ψk(x, y) :=


(
c−r(x+ky)

c−rb

)d
, b ≤ x+ ky ≤ c/r,

0, x+ ky > c/r.

where

(4.8) d =
1

2r

[
(r + β +R) +

√
(r + β +R)2 − 4rβ

]
> 1, R =

1

2

(
α− r
σ

)2

.

That is, ψk(x, y) is the minimum frictionless probability of ruin when the initial

wealth is x + ky (the frictionless ruin probability is derived in [82]). ψk bounds

the frictional value function from below because each k corresponds to a stock price

inside the bid-ask spread, and trading at a more favorable frictionless price obviously

leads to smaller ruin probability. For a rigorous proof, one can refer to Remark 4.4.3

and Lemma 4.4.6. Since the value function ψ is bounded from below by ψk for each

k, it is bounded from below by their supremum:

(4.9) ψ(x, y) := sup
k∈[1−µ, 1

1−λ ]

ψk(x, y) = ψ1−µ(x, y) ∨ ψ 1
1−λ

(x, y) =

(
c− rL(x, y)

c− rb

)d
.

Since ψk is continuous in k, the above supremum remains unchanged if we replace

[1− µ, 1
1−λ ] by (1− µ, 1

1−λ) ∩Q. Clearly, ψ satisfies the boundary conditions (4.5).

The following lemma summarizes the results.

Lemma 4.2.1. For (x, y) ∈ S,(
c− rL(x, y)

c− rb

)d
≤ ψ(x, y) ≤

(
c− rL(x, y)

c− rb

)β
r

,

where d is defined in (4.8).
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Remark 4.2.2. It can be shown that ψ is a viscosity supersolution and ψ is a viscosity

subsolution of (4.4). With a comparison principle which we will prove in Section 4.5,

one can use (classical) Perron’s method (see Chapter III, [46] or [29]) to get the exis-

tence of a viscosity solution to (4.4), (4.5). But such a solution cannot be compared

with the value function unless one can prove regularity which is necessary for the

classical verification theorem. Instead, we will use stochastic Perron’s method which

amounts to verification without smoothness.

4.2.2 Random initial condition and admissible controls

For convenience in later discussion, we introduce a “coffin state” ∆. Let S∪∆ be

the one point compactification of S. Throughout this paper, all closures are taken

in R2. For any R2-valued vector z, we use the convention that ∆ + z = ∆. Set

(Xt, Yt) := ∆ for all t ≥ τd. For any function u defined on S, define its extension to

S ∪ {∆} by assigning u(∆) = 0.

A pair (τ, ξ) is called a random initial condition for (4.1), (4.2) if τ is a G-stopping

time taking values in [0, τd], ξ = (ξ0, ξ1) is a Gτ -measurable random vector taking

values in S ∪ {∆}, and ξ = ∆ if and only if τ = τd. Denote by (Xτ,ξ,B,S, Y τ,ξ,B,S)

the solution of (4.1) and (4.2) with random initial condition (τ, ξ) in the sense that

(Xτ−, Yτ−) = ξ. The exit time of (Xτ,ξ,B,S, Y τ,ξ,B,S) from S is defined by

στ,ξ,B,S := inf{t ≥ τ : (Xτ,ξ,B,S
t , Y τ,ξ,B,S

t ) /∈ S}.

Note that στ,ξ,B,S ≤ τd <∞ since (Xτ,ξ,B,S
τd

, Y τ,ξ,B,S
τd

) = ∆ /∈ S.

We also restrict ourselves to a subset of controls. Observe that when buying

stocks, we move northwest along the vector (−1, 1−λ); when selling stocks, we move

southeast along the vector (1− µ,−1). It is not hard to see by picture that starting

in S, one can never jump to Sc/r by a transaction. On the other hand, it is never
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optimal to jump across ∂Sb from S because such a jump immediately leads to ruin.

If we are on ∂Sc/r (resp. ∂Sb), jumping to its right is impossible and jumping to its

left is not optimal (resp. does not prevent ruin from happening). Therefore, we may

focus on those controls under which the controlled process exits S via its boundary

or the coffin state. The formal definition of admissibility is given below.

Definition 4.2.3. Let (τ, ξ) be a random initial condition. A control pair (B, S) ∈

A0 is called (τ, ξ)−admissible if

(Xτ,ξ,B,S
στ,ξ,B,S

, Y τ,ξ,B,S
στ,ξ,B,S

) ∈ ∂S ∪ {∆}.

Denote the set of (τ, ξ)−admissible controls by A (τ, ξ).

We have (B, S) ≡ 0 ∈ A (τ, ξ) for any random initial condition (τ, ξ). When τ = 0

and ξ = (x, y), we shall omit the τ -dependence in the superscripts of the controlled

process and relevant stopping times, and write A (τ, ξ) = A (x, y). As we have

argued, working with admissible controls does not change the optimal probability,

i.e.

ψ(x, y) = inf
(B,S)∈A (x,y)

P(τx,y,B,Sb < τd).

The following constructions of admissible controls will be used a few times in

Section 4.3. We list them here for future reference.

Lemma 4.2.4.

(i) If (Bi, Si), i = 1, 2 are (τ, ξ)-admissible and A is any Gτ -measurable set, then

(Bt, St) := 1{t≥τ}
[(
B1
t −B1

τ−, S
1
t − S1

τ−
)

1A +
(
B2
t −B2

τ−, S
2
t − S2

τ−
)

1Ac
]

is also (τ, ξ)-admissible.
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(ii) Let (B1, S1) be a (τ, ξ)-admissible control, τ1 ∈ [τ, στ,ξ,B
1,S1

] be a G-stopping

time, and ξ1 := (Xτ,ξ,B1,S1

τ1
, Y τ,ξ,B1,S1

τ1
). Then (τ1, ξ1) is a random initial condi-

tion. Furthermore, let (B2, S2) be a (τ1, ξ1)-admissible control. Then

(Bt, St) := 1{t<τ1}(B
1
t , S

1
t ) + 1{t≥τ1}(B

2
t −B2

τ1− +B1
τ1
, S2

t − S2
τ1− + S1

τ1
)

is a (τ, ξ)-admissible control.

Proof. (i) (B, S) is G-adapted by the definition of stopping time and stopping time

filtration, and the G-adaptedness of (Bi, Si), i = 1, 2. It is nonnegative because

(Bi, Si), i = 1, 2 are non-decreasing. Monotonicity, RCLL property and that4B and

4S are not both strictly positive also follow from the assumption that (Bi, Si) ∈ A0,

i = 1, 2. So (B, S) ∈ A0. By pathwise uniqueness of the solution to (4.1), (4.2), we

have

(Xτ,ξ,B,S
t , Y τ,ξ,B,S

t ) = 1A(Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t ) + 1Ac(X
τ,ξ,B2,S2

t , Y τ,ξ,B2,S2

t ), t ≥ τ.

It follows that

στ,ξ,B,S = 1Aσ
τ,ξ,B1,S1

+ 1Acσ
τ,ξ,B2,S2

,

and thus

(Xτ,ξ,B,S
στ,ξ,B,S

, Y τ,ξ,B,S
στ,ξ,B,S

) = 1A(Xτ,ξ,B1,S1

στ,ξ,B1,S1
, Y τ,ξ,B1,S1

στ,ξ,B1,S1
)+1Ac(X

τ,ξ,B2,S2

στ,ξ,B2,S2
, Y τ,ξ,B2,S2

στ,ξ,B2,S2
) ∈ ∂S∪{∆}

by the (τ, ξ)-admissibility of (Bi, Si), i = 1, 2.

(ii) Clearly, τ1 is a G-stopping time taking values in [τ, τd] and ξ1 is Gτ1-measurable.

Since τ1 ≤ στ,ξ,B
1,S1

, the (τ, ξ)-admissibility of (B1, S1) implies ξ1 ∈ S ∪ {∆}. More-

over, ξ1 = ∆ if and only if τ1 = τd. So (τ1, ξ1) is a valid random initial condition. It

is routine to check (B, S) ∈ A0. To show (B, S) ∈ A (τ, ξ), observe that

(Xτ,ξ,B,S
t , Y τ,ξ,B,S

t ) =


(Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t ), τ ≤ t < τ1,

(Xτ1,ξ1,B2,S2

t , Y τ1,ξ1,B2,S2

t ), t ≥ τ1.
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This, together with τ1 ≤ στ,ξ,B
1,S1

, imply στ,ξ,B,S = στ1,ξ1,B
2,S2 ≥ τ1. Since (B2, S2) ∈

A (τ1, ξ1), we have

(Xτ,ξ,B,S
στ,ξ,B,S

, Y τ,ξ,B,S
στ,ξ,B,S

) = (Xτ1,ξ1,B2,S2

στ1,ξ1,B
2,S2

, Y τ1,ξ1,B2,S2

στ1,ξ1,B
2,S2

) ∈ ∂S ∪ {∆}.

4.2.3 Main results

Theorem 4.2.5. The value function ψ is the unique (continuous) viscosity solution

to the HJB equation (4.4) satisfying the boundary condition (4.5).

The proof of Theorem 4.2.5 is deferred to the end of Section 4.5.

4.3 Stochastic supersolution

Definition 4.3.1. A bounded u.s.c. function v on S is called a stochastic superso-

lution of (4.4), (4.5) if

(SP1) v ≥ 1 on ∂Sb, v ≥ 0 on ∂Sc/r;

(SP2) for any random initial condition (τ, ξ), there exists (B, S) ∈ A (τ, ξ) such that

E[v(Xτ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≤ v(ξ)

for all G-stopping time ρ ∈ [τ, στ,ξ,B,S], where v is understood to be its extension

to S ∪ {∆}.

Denote the set of stochastic supersolutions by V+.

Remark 4.3.2. V+ 6= ∅ since the constant 1 ∈ V+. There is a more useful stochastic

supersolution: the upper bound function ψ defined in (4.6), which satisfies (SP1)

with equality. (See Lemma 4.3.4.) The existence of such a stochastic supersolution

automatically guarantees the the upper stochastic envelope (which will be introduced

shortly) satisfies the boundary condition (4.5).
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Remark 4.3.3. Any stochastic supersolution v dominates the value function ψ on

S. To see this, first note that v ≥ ψ on ∂S by (SP1). Then for any (x, y) ∈ S,

take τ = 0 and ξ = (x, y). Let (B, S) ∈ A (x, y) be given by (SP2) for v. Let

ρ = σx,y,B,S. To simplify notation, we write τb for τx,y,B,Sb and τs for τx,y,B,Ss :=

inf{t ≥ 0 : (Xx,y,B,S
t , Y x,y,B,S

t ) ∈ Sc/r}. We have

v(x, y) ≥ E
[
v(Xx,y,B,S

ρ , Y x,y,B,S
ρ )

]
≥ E

[
1{(Xx,y,B,S

ρ ,Y x,y,B,Sρ )∈∂Sb}

]
= P (τb < τd ∧ τs) .

where the first inequality holds by (SP2) and the second inequality holds by (SP1).

Now, let

(B′t, S
′
t) = (Bt, St)1{t<τs} + ((Xx,y,B,S

τs − c/r)+ +Bτs , (Y
x,y,B,S
τs )+ + Sτs)1{t≥τs}.

That is, (B′, S ′) follows (B, S) before hitting the safe region, and at the moment

when the safe region is hit (by diffusion), immediately liquidate all stock position

and do no more transaction afterwards. This ensures that once the safe region is

reached, death will definitely happen before ruin. It is easy to check (B′, S ′) ∈ A0

and P(τb < τd ∧ τs) = P(τx,y,B
′,S′

b < τd). We therefore have

v(x, y) ≥ P(τx,y,B
′,S′

b < τd) ≥ ψ(x, y).

Lemma 4.3.4. ψ ∈ V+.

Proof. We only show (SP2). Let (τ, ξ) be any random initial condition. Define

(Bt, St) := 1{t≥τ}

(
(ξ1)−

1− λ
, (ξ1)+

)
.

Intuitively, what (B, S) does is to immediately liquidate the stock position at time τ

and do no more transaction afterwards. It can be checked that (Xτ,ξ,B,S
στ,ξ,B,S

, Y τ,ξ,B,S
στ,ξ,B,S

) ∈

{(b, 0), (c/r, 0),∆}, thus (B, S) ∈ A (τ, ξ). We have

(Xτ,ξ,B,S
τ , Y τ,ξ,B,S

τ ) = 1{τ<τd}(L(ξ), 0) + 1{τ=τd}∆,
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and Y τ,ξ,B,S
t = 0 for all t ∈ [τ, τd). Let ρ ∈ [τ, στ,ξ,B,S] be any G-stopping time. Let

f(x) := ψ(x, 0) ∈ C[b, c/r] ∩ C2[b, c/r). With slight abuse of notation, we also write

Xτ,ξ,B,S
t = ∆ when t = τd, and set f(∆) = 0. Apply Itô’s formula to f(Xτ,ξ,B,S), we

get

f(Xτ,ξ,B,S
ρ )− f(Xτ,ξ,B,S

τ )

=

∫ ρ

τ

f ′(Xτ,ξ,B,S
t )(rXτ,ξ,B,S

t − c)dt+

∫ ρ

τ

(
f(∆)− f(Xτ,ξ,B,S

t− )
)
dNt

=

∫ ρ

τ

[f ′(x)(rx− c)− βf(x)]
∣∣
x=Xτ,ξ,B,S

t
dt+

∫ ρ

τ

−f(Xτ,ξ,B,S
t− )d(Nt − βt)

=

∫ ρ

τ

−f(Xτ,ξ,B,S
t− )d(Nt − βt),

where we used the explicit formula of f to kill the drift. Taking conditional expec-

tation yields

E[f(Xτ,ξ,B,S
ρ )|Gτ ] = f(Xτ,ξ,B,S

τ ).

It follows that

E[ψ(Xτ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] = E[1{ρ<τd}ψ(Xτ,ξ,B,S
ρ , 0)|Gτ ] = E[1{ρ<τd}f(Xτ,ξ,B,S

ρ )|Gτ ]

= E[f(Xτ,ξ,B,S
ρ )|Gτ ] = f(Xτ,ξ,B,S

τ ) = 1{τ<τd}f(L(ξ))

= 1{τ<τd}ψ(L(ξ), 0) = 1{τ<τd}ψ(ξ) = ψ(ξ).

In the second last equality, we used ψ(x, y) = ψ(L(x, y), 0) for (x, y) ∈ S.

Lemma 4.3.5. Let v1, v2 ∈ V+. Then v1 ∧ v2 ∈ V+.

Proof. The minimum of bounded u.s.c. functions is still bounded and u.s.c.. (SP1) is

clearly satisfied. For (SP2), let (Bi, Si) ∈ A (τ, ξ), i = 1, 2 be the admissible control

corresponding to vi and the random initial condition (τ, ξ). Put A := {v1(ξ) ≤

v2(ξ)} ∈ Gτ . The control

(Bt, St) := 1{t≥τ}
[(
B1
t −B1

τ−, S
1
t − S1

τ−
)

1A +
(
B2
t −B2

τ−, S
2
t − S2

τ−
)

1Ac
]
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serves the purpose. (τ, ξ)-admissible follows from Lemma 4.2.4.i, and the remaining

proof is very similar to that of [68, Lemma 1] except that the process Z is replaced

by v(X, Y ) and the direction of inequalities are reversed. So we omit the details.

Proposition 4.3.6. The upper stochastic envelope

v+(x, y) := inf
v∈V+

v(x, y)

is a viscosity subsolution of (4.4) satisfying v+ ≤ 1 on ∂Sb and v+ ≤ 0 on ∂Sc/r.

Proof. The boundary inequalities are satisfied because v+ ≤ ψ by Lemma 4.3.4.2 To

show interior viscosity subsolution property, let (x0, y0) ∈ S and ϕ ∈ C2(S) be a test

function such that v+−ϕ attains a strict local maximum of zero at (x0, y0). We need

to show

max {Lϕ,−(1− µ)ϕx + ϕy, ϕx − (1− λ)ϕy} (x0, y0) ≤ 0.

Assume on the contrary that

max {Lϕ,−(1− µ)ϕx + ϕy, ϕx − (1− λ)ϕy} (x0, y0) > 0.

There are three cases to consider: (i) Lϕ(x0, y0) > 0, (ii) −(1 − µ)ϕx(x0, y0) +

ϕy(x0, y0) > 0, and (iii) ϕx(x0, y0) − (1 − λ)ϕy(x0, y0) > 0. We will show that each

case leads to a contradiction.

Case (i). Lϕ(x0, y0) > 0. We can find, by continuity, a small closed ball

Bε(x0, y0) ⊆ S such that

Lϕ > 0 on Bε(x0, y0).

Since v+ − ϕ is u.s.c. and Bε(x0, y0)\Bε/2(x0, y0) is compact, there exists a δ > 0

such that

v+ − ϕ ≤ −δ on Bε(x0, y0)\Bε/2(x0, y0).

2In fact, equalities hold for v+ on the boundary; the reverse inequalities come from the simple
fact that (SP1) is preserved under pointwise infimum.
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By [9, Proposition 4.1] and Lemma 4.3.5, v+ can be approximated from above by a

non-increasing sequence of stochastic supersolutions vn. By [11, Lemma 2.4], there

exists a large enough N such that v := vN satisfies

v − ϕ ≤ −δ
2

on Bε(x0, y0)\Bε/2(x0, y0).

Choose η ∈ (0, δ/2) small so that ϕη := ϕ− η satisfies

(4.10) Lϕη > 0 on Bε(x0, y0).

We also have

(4.11) v ≤ ϕ− δ

2
< ϕ− η = ϕη on Bε(x0, y0)\Bε/2(x0, y0),

and

(4.12) ϕη(x0, y0) = ϕ(x0, y0)− η = v+(x0, y0)− η < v+(x0, y0).

Define

vη :=


v ∧ ϕη on Bε(x0, y0),

v on Bε(x0, y0)
c
.

If we can show vη ∈ V+, then (4.12) will lead to a contradiction to the (pointwise)

minimality of v+. Clearly, vη is u.s.c. since the minimum of u.s.c. functions is u.s.c.

and vη = v outside Bε/2(x0, y0). Boundedness is also easy. (SP1) is satisfied because

vη = v on ∂S. The remaining proof of case (i) is devoted to the verification of (SP2),

i.e. the supermartingale property.

Let (τ, ξ) be any random initial condition and (B0, S0) be the (τ, ξ)-admissible

control in (SP2) for the stochastic supersolution v. Let

A := {ξ ∈ Bε/2(x0, y0)} ∩ {ϕη(ξ) < v(ξ)} ∈ Gτ .
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Define a new control

(B1
t , S

1
t ) := 1Ac∩{t≥τ}(B

0
t −B0

τ−, S
0
t − S0

τ−).

(B1, S1) follows (B0, S0) starting from time τ when the position ξ satisfies vη(ξ) =

v(ξ), i.e. when it is optimal to use the control corresponding to v. By Lemma 4.2.4.i,

(B1, S1) ∈ A (τ, ξ). Let

τ1 := inf{t ∈ [τ, στ,ξ,B
1,S1

] : (Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t ) /∈ Bε/2(x0, y0)}

be the exit time of the ball Bε/2(x0, y0) and

ξ1 := (Xτ,ξ,B1,S1

τ1
, Y τ,ξ,B1,S1

τ1
) ∈ Gτ1

be the exit position. SinceXτ,ξ,B1,S1
and Y τ,ξ,B1,S1

are RCLL, we have ξ1 /∈ Bε/2(x0, y0).3

By Lemma 4.2.4.ii, (τ1, ξ1) is a valid random initial condition. Let (B2, S2) be the

(τ1, ξ1)-admissible control in (SP2) for v. Set

(Bt, St) := (B1
t , S

1
t )1{t<τ1} + (B2

t −B2
τ1− +B1

τ1
, S2

t − S2
τ1− + S1

τ1
)1{t≥τ1}.

Note that we allow “double transactions” at time τ1, first by (4B1
τ1
,4S1

τ1
), then

by (4B2
τ1
,4S2

τ1
). Lemma 4.2.4.ii also implies (B, S) ∈ A (τ, ξ). We now check the

supermatingale property (SP2) for vη with control (B, S).

Let ρ be any G-stopping time taking values in [τ, στ,ξ,B,S]. In the event A,

(B1, S1) = 0 so that (Xτ,ξ,B1,S1
, Y τ,ξ,B1,S1

) exits Bε/2(x0, y0) either by diffusion or

by death, giving ξ1 ∈ ∂Bε/2(x0, y0)∪{∆}. The control (B, S) is inactive before time

3If ξ /∈ Bε/2(x0, y0), it is possible for the process to immediately jump back to Bε/2(x0, y0) at

time τ . In this case, although we start outside the ball, τ1 6= τ because (Xτ,ξ,B1,S1

t , Y τ,ξ,B
1,S1

t ) gives
the post-jump position at time t which is inside the ball at t = τ , and will stay inside the ball for
some positive amount of time by the right continuity of its paths.
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τ1 and equals (4B2
τ1
,4S2

τ1
) at τ1. By Itô’s formula, we have in the event A

ϕη(Xτ,ξ,B,S
ρ∧τ1 , Y τ,ξ,B,S

ρ∧τ1 )− ϕη(Xτ,ξ,B,S
τ , Y τ,ξ,B,S

τ )

=

∫ ρ∧τ1

τ

−Lϕη(Xτ,ξ,B,S
t , Y τ,ξ,B,S

t )dt+

∫ ρ∧τ1

τ

(ϕη)′(Xτ,ξ,B,S
t , Y τ,ξ,B,S

t )σY τ,ξ,B,S
t dWt

+

∫ ρ∧τ1

τ

[
ϕη(∆)− ϕη(Xτ,ξ,B,S

t− , Y τ,ξ,B,S
t− )

]
d(Nt − βt)

+ 1{ρ≥τ1} [ϕη(ξ1 +4ξ)− ϕη(ξ1)] ,

where

4ξ := (−1, 1− λ)4B2
τ1

+ (1− µ,−1)4S2
τ1
.

Since (Xτ,ξ,B,S
t , Y τ,ξ,B,S

t ) ∈ Bε/2(x0, y0) for τ ≤ t < τ1 on A, and Lϕη > 0 in

Bε/2(x0, y0) by (4.10), the dt-integral is non-positive. The integrals with respect

to the Brownian motion and the compensated Poisson process vanish by taking Gτ -

conditional expectation. We therefore obtain

E[1Aϕ
η(Xτ,ξ,B,S

ρ∧τ1 , Y τ,ξ,B,S
ρ∧τ1 )− 1A∩{ρ≥τ1}(ϕ

η(ξ1 +4ξ)− ϕη(ξ1))|Gτ ]

≤ 1Aϕ
η(Xτ,ξ,B,S

τ , Y τ,ξ,B,S
τ ) = 1A∩{τ<τd}ϕ

η(ξ) + 1A∩{τ=τd}ϕ
η(∆)

= 1Aϕ
η(ξ) ≤ 1Av

η(ξ).

In the last equality, we used ξ = ∆ if τ = τd. Notice that

1Aϕ
η(Xτ,ξ,B,S

ρ∧τ1 , Y τ,ξ,B,S
ρ∧τ1 )− 1A∩{ρ≥τ1}(ϕ

η(ξ1 +4ξ)− ϕη(ξ1))

= 1A∩{ρ<τ1}ϕ
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1A∩{ρ≥τ1}ϕ

η(ξ1 +4ξ)

− 1A∩{ρ≥τ1}(ϕ
η(ξ1 +4ξ)− ϕη(ξ1))

= 1A∩{ρ<τ1}ϕ
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1A∩{ρ≥τ1}ϕ

η(ξ1).

So

E[1A∩{ρ<τ1}ϕ
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1A∩{ρ≥τ1}ϕ

η(ξ1)|Gτ ] ≤ 1Av
η(ξ).
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We have argued that ξ1 ∈ ∂Bε/2(x0, y0) ∪ {∆} on A. By (4.11) and the definition of

vη, we know vη ≤ ϕη in Bε(x0, y0). This allows us to replace ϕη by vη in the above

inequality and get

(4.13) E[1A∩{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1A∩{ρ≥τ1}v

η(ξ1)|Gτ ] ≤ 1Av
η(ξ).

By “optimality” of (B0, S0) (and thus (B1, S1) on Ac) for v with random initial

condition (τ, ξ), we have

E[1Acv(Xτ,ξ,B1,S1

ρ∧τ1 , Y τ,ξ,B1,S1

ρ∧τ1 )|Gτ ] ≤ 1Acv(ξ).

Since vη ≤ v everywhere, we can replace v by vη on the left hand side in the above

inequality. On Ac, either ξ /∈ Bε/2(x0, y0), or ξ ∈ Bε/2(x0, y0) and v(ξ) ≤ ϕη(ξ). In

both cases, v(ξ) = vη(ξ) since vη = v outside the ball Bε/2(x0, y0). So we can also

replace v by vη on the right hand side. Splitting the set Ac on the left hand side

according to the relation between ρ and τ1, and using the definition of (B, S), we

have

(4.14) E[1Ac∩{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1Ac∩{ρ≥τ1}v

η(ξ1)|Gτ ] ≤ 1Acv
η(ξ).

Combining (4.13) and (4.14) gives us

(4.15) E[1{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1{ρ≥τ1}v

η(ξ1)|Gτ ] ≤ vη(ξ).

By “optimality” of (B2, S2) for v with random initial condition (τ1, ξ1), we have

(by applying the supermartingale property to the stopping time ρ ∨ τ1)

E[1{ρ≥τ1}v(Xτ1,ξ1,B2,S2

ρ , Y τ1,ξ1,B2,S2

ρ )|Gτ1 ] ≤ 1{ρ≥τ1}v(ξ1).

Same as before, we can replace all v’s by vη in the above inequality because vη ≤ v

everywhere, v = vη outside Bε/2(x0, y0) and ξ1, being the exit position, is outside
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Bε/2(x0, y0). So

E[1{ρ≥τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ )|Gτ1 ] = E[1{ρ≥τ1}v

η(Xτ1,ξ1,B2,S2

ρ , Y τ1,ξ1,B2,S2

ρ )|Gτ1 ]

≤ 1{ρ≥τ1}v
η(ξ1).

Taking Gτ -condition expectation and using tower property yields

(4.16) E[1{ρ≥τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ )− 1{ρ≥τ1}v

η(ξ1)|Gτ ] ≤ 0.

Finally, we add (4.15) and (4.16) to get

E[vη(Xτ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≤ vη(ξ).

This completes the proof of (SP2) and hence of case (i).

Case (ii). −(1−µ)ϕx(x0, y0) +ϕy(x0, y0) > 0. The proof is in most part similar

to that of case (i). So we shall be brief on the similar parts. Same as in case (i), we

can find ε, η > 0 and v ∈ V+ such that ϕη := ϕ− η satisfies

(4.17) −(1− µ)ϕηx + ϕηy > 0 on Bε(x0, y0),

v ≤ ϕη on Bε(x0, y0)\Bε/2(x0, y0),

ϕη(x0, y0) < v+(x0, y0).

Define

vη :=


v ∧ ϕη on Bε(x0, y0),

v on Bε(x0, y0)
c
.

It suffices to show vη ∈ V+. And the only nontrivial part is to check vη satisfies

(SP2).

Let (τ, ξ) be any random initial condition and (B0, S0) be a (τ, ξ)-admissible

control in (SP2) for the stochastic supersolution v. Let

A := {ξ ∈ Bε/2(x0, y0)} ∩ {ϕη(ξ) < v(ξ)} ∈ Gτ .
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Observe that (4.17) implies for any (x, y) ∈ Bε(x0, y0) and h > 0 small such that

(x+ (1− µ)h, y − h) ∈ Bε(x0, y0), we have

(4.18) ϕη(x+(1−µ)h, y−h)−ϕη(x, y) = h[(1−µ)ϕηx−ϕηy](x+(1−µ)h′, y−h′) < 0

for some h′ ∈ (0, h) by Mean Value Theorem. This suggests selling stocks is

optimal on the set A. Given a point (x, y) ∈ Bε/2(x0, y0), denote by s(x, y) =

(s0(x, y), s1(x, y)) the intersection of the ray {(x + (1 − µ)h, y − h) : h ≥ 0} and

∂Bε/2(x0, y0), i.e. the unique point on ∂Bε/2(x0, y0) that can be reached by a sell.

Define a new control

(B1
t , S

1
t ) := 1A∩{t≥τ}(0, ξ

1 − s1(ξ)) + 1Ac∩{t≥τ}(B
0
t −B0

τ−, S
0
t − S0

τ−).

(B1, S1) says starting at time τ , if we are in A, we immediately jump to ∂Bε/2(x0, y0)

by a sell and do nothing afterwards; if we are in Ac, we follow (B0, S0). A slight

variation of Lemma 4.2.4.i shows (B1, S1) is (τ, ξ)-admissible. Let

τ1 := inf{t ∈ [τ, στ,ξ,B
1,S1

] : (Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t ) /∈ Bε/2(x0, y0)}

be the exit time of the ball Bε/2(x0, y0) and

ξ1 := (Xτ,ξ,B1,S1

τ1
, Y τ,ξ,B1,S1

τ1
) ∈ Gτ1

be the exit position. As in case (i), ξ1 /∈ Bε/2(x0, y0) and (τ1, ξ1) is a valid random

initial condition. Also notice that on A, τ1 = τ and ξ1 = s(ξ) if τ < τd. Let (B2, S2)

be a (τ1, ξ1)-admissible control in (SP2) for v. Set

(Bt, St) := (B1
t , S

1
t )1{t<τ1} + (B2

t −B2
τ1− +B1

τ1
, S2

t − S2
τ1− + S1

τ1
)1{t≥τ1}.

(B, S) ∈ A (τ, ξ) by Lemma 4.2.4.ii. It remains to check (SP2) for vη with control

(B, S).
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Let ρ be any G-stopping time taking values in [τ, στ,ξ,B,S]. In the event A (recall

that τ1 = τ), when τ < τd, (4.18) implies ϕη(ξ1) = ϕη(s(ξ)) < ϕη(ξ); when τ = τd,

ϕη(ξ1) = ϕη(ξ) = ϕη(∆) = 0. So

(4.19) 1Av
η(ξ1) ≤ 1Aϕ

η(ξ1) < 1Aϕ
η(ξ) = 1Av

η(ξ).

In the event Ac, we use that (B0, S0) is “optimal” for v to obtain

(4.20)

E[1Ac∩{ρ<τ1}v
η(Xτ,ξ,B1,S1

ρ , Y τ,ξ,B1,S1

ρ ) + 1Ac∩{ρ≥τ1}v
η(ξ1)|Gτ ]

= E[1Acv
η(Xτ,ξ,B1,S1

ρ∧τ1 , Y τ,ξ,B1,S1

ρ∧τ1 )|Gτ ] ≤ E[1Acv(Xτ,ξ,B1,S1

ρ∧τ1 , Y τ,ξ,B1,S1

ρ∧τ1 )|Gτ ]

= E[1Acv(Xτ,ξ,B0,S0

ρ∧τ1 , Y τ,ξ,B0,S0

ρ∧τ1 )|Gτ ] ≤ 1Acv(ξ) = 1Acv
η(ξ).

Combining (4.19) and (4.20), and using that (B, S) equals (B1, S1) on [τ, τ1), we get

(4.21) E[1{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1{ρ≥τ1}v

η(ξ1)|Gτ ] ≤ vη(ξ).

By “optimality” of (B2, S2) for v with random initial condition (τ1, ξ1), we have

E[1{ρ≥τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ )|Gτ1 ] = E[1{ρ≥τ1}v

η(Xτ1,ξ1,B2,S2

ρ , Y τ1,ξ1,B2,S2

ρ )|Gτ1 ]

≤ E[1{ρ≥τ1}v(Xτ1,ξ1,B2,S2

ρ , Y τ1,ξ1,B2,S2

ρ )|Gτ1 ]

≤ 1{ρ≥τ1}v(ξ1) = 1{ρ≥τ1}v
η(ξ1).

Taking Gτ -condition expectation yields

(4.22) E[1{ρ≥τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ )− 1{ρ≥τ1}v

η(ξ1)|Gτ ] ≤ 0.

Finally, we add (4.21) and (4.22) to get

E[vη(Xτ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≤ vη(ξ).

This completes the proof of case (ii).

Case (iii). ϕx(x0, y0) − (1 − λ)ϕy(x0, y0) > 0. This case is symmetric to case

(ii). Buying stock is optimal in a neighborhood of (x0, y0). We define the set A
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and the “optimal” (τ, ξ)-admissible control in the same way as in case (ii) except one

modification: in the definition of (B1, S1), (0, ξ1−s1(ξ)) is replaced by (ξ0−b0(ξ), 0),

where for (x, y) ∈ Bε/2(x, y), b(x, y) is defined to be the intersection of the ray

{x−h, y+ (1−λ)h : h ≥ 0} and ∂Bε/2(x0, y0), i.e. the unique point on ∂Bε/2(x0, y0)

that can be reached by a buy. The rest of the argument is almost the same.

4.4 Stochastic subsolution

Definition 4.4.1. A bounded l.s.c. function v on S is called a stochastic subsolution

of (4.4), (4.5) if

(SB1) v ≤ 1 on ∂Sb, v ≤ 0 on ∂Sc/r;

(SB2) for any random initial condition (τ, ξ), control pair (B, S) ∈ A (τ, ξ) and G-

stopping time ρ ∈ [τ, στ,ξ,B,S],

E[v(Xτ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≥ v(ξ),

where v is understood to be its extension to S ∪ {∆}.

Denote the set of stochastic subsolutions by V−.

Remark 4.4.2. V− 6= ∅ since the constant 0 ∈ V−. Similar to the stochastic super-

solution case, there is also a member of V− which satisfies (SB1) with equalities,

namely, the lower bound function ψ defined in (4.9). (See Lemma 4.4.6.)

Remark 4.4.3. Any stochastic subsolution v is dominated by the value function ψ

on S. Indeed, on ∂S, we clearly have v ≤ ψ by (SP1). For (x, y) ∈ S, take τ = 0,

ξ = (x, y), (B, S) be any (x, y)-admissible control, and ρ = σx,y,B,S. We have by
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(SB2) and (SB1) that

v(x, y) ≤ E[v(Xx,y,B,S
ρ , Y x,y,B,S

ρ )] ≤ E
[
1{ρ=τx,y,B,Sb }

]
= P(τx,y,B,Sb < τd ∧ τx,y,B,Ss ) ≤ P(τx,y,B,Sb < τd).

Since this holds for any (B, S) ∈ A (x, y), taking infimum yields

v(x, y) ≤ inf
(B,S)∈A (x,y)

P(τx,y,B,Sb < τd) = ψ(x, y).

Lemma 4.4.4. Let v1, v2 ∈ V−. Then v1 ∨ v2 ∈ V−.

Proof. The maximum of bounded l.s.c. functions is still bounded and l.s.c.. (SB1)

is clearly stable under maximum. For (SB2), simply notice that

E[(v1 ∨ v2)(Xτ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≥ E[vi(X
τ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≥ vi(ξ), i = 1, 2.

So

E[(v1 ∨ v2)(Xτ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≥ (v1 ∨ v2)(ξ).

Remark 4.4.5. The above proof can be easily generalized to the countable case. In

particular, the supremum of a countable family of stochastic subsolutions is bounded

from above because every stochastic subsolution is dominated by the value function.

In fact, it also generalizes to the uncountable case by [9, Proposition 4.1] which says

the supremum of an uncountable family of l.s.c. functions equals the supremum over

some countable subfamily.

Lemma 4.4.6. ψ ∈ V−.

Proof. Recall that ψ can be written as the supremum of all ψk’s with k ∈ (1 −

µ, 1
1−λ)∩Q where ψk is defined in (4.7). To show ψ ∈ V−, it suffices to show ψk ∈ V−
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for k ∈ (1 − µ, 1
1−λ) by Lemma 4.4.4 and the remark after it. To see (SB2) holds

for ψk, let (τ, ξ) be any random initial condition, (B, S) be any (τ, ξ)-admissible

control and ρ ∈ [τ, στ,ξ,B,S] be any G-stopping time. For brevity, we shall omit the

superscripts (τ, ξ, B, S) in all controlled processes and relevant stopping times in the

rest of this proof. For functions defined on [b,∞), we extend them to [b,∞) ∪ {∆}

by assigning zero to the function value at ∆. Define a new process

Zt :=


Xt + kYt, t < τd,

∆, t ≥ τd.

Observe that Zt ∈ [b,∞) ∪ {∆} for all t ∈ [τ, ρ]. We also have

dZt = (rZt+(α− r)kYt− c)dt+σkYtdWt+[k(1−λ)−1]dBt+(1−µ−k)dSt, t < τd.

Since 1 − µ < k < 1
1−λ , the dB and dS terms are non-positive. So for t ≥ τ , Zt is

bounded above by the process Z̃t defined by

dZ̃t = (rZ̃t + (α− r)kYt − c)dt+ σkYtdWt, Z̃τ = ξ0 + kξ1 for t < τd,

and Z̃t = ∆ for t ≥ τd. Z̃t is the wealth process if the amount invested in the

(frictionless) stock market is kYt. Let f(x) := ψk(x, 0) ∈ C1[b, c/r] ∩ C2[b, c/r). We

have ψk(x, y) = f(x+ ky). Since f is decreasing in [b,∞), we deduce

(4.23) E[ψk(Xρ, Yρ)|Gτ ] = E[1{ρ<τd}f(Zρ)|Gτ ] ≥ E[1{ρ<τd}f(Z̃ρ)|Gτ ] = E[f(Z̃ρ)|Gτ ].

In the event A := {Z̃τ ∈ [c/r,∞) ∪ {∆}} ∈ Gτ , we have f(Z̃ρ) ≥ 0 = f(Z̃τ ). In

the event Ac := {Z̃τ ∈ [b, c/r)}, we let ν := inf{t ≥ 0 : Z̃ρ ∈ [c/r,∞)}, and use f

is non-negative in [b,∞) and zero in [c/r,∞) to get f(Z̃ρ) ≥ f(Z̃ρ∧ν). We therefore

have

(4.24) E[f(Z̃ρ)|Gτ ] ≥ E[1Af(Z̃τ ) + 1Acf(Z̃ρ∧ν)|Gτ ].
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In the event Ac, we use Itô’s formula to obtain

f(Z̃ρ∧ν)− f(Z̃τ )

=

∫ ρ∧ν

τ

{
f ′(Z̃t)[rZ̃t + (α− r)kYt − c] +

1

2
f ′′(Z̃t)σ

2(kYt)
2 − βf(Z̃t)

}
dt

+

∫ ρ∧ν

τ

f ′(Z̃t)σkYtdWt +

∫ ρ∧ν

τ

[f(∆)− f(Z̃t−)]d(Nt − βt).

Notice that f is the frictionless value function which satisfies the HJB equation

βf(x) = inf
π

{
1

2
f ′′(x)π2 + (α− r)f ′(x)π + (rx− c)f ′(x)

}
in [b, c/r). It follows that the drift term is non-negative. For t ∈ [τ, ρ∧ν], the process

Z̃t ∈ [b, c/r]. So Zt ∈ [b, c/r] and the process (Xt, Yt) stays inside the bounded set

{(x, y) ∈ S : x + ky ≤ c/r}. Here it is crucial that k ∈ (1 − µ, 1
1−λ) for Yt to be

bounded. The integrals with respect to the martingales Wt and Nt − βt then vanish

upon taking Gτ -conditional expectation. This leads to

(4.25) E[1Acf(Z̃ρ∧ν)|Gτ ] ≥ E[1Acf(Z̃τ )|Gτ ].

Putting (4.23), (4.24) and (4.25) together, we get

E[ψk(Xρ, Yρ)|Gτ ] ≥ f(Z̃τ ) = 1{τ<τd}f(ξ0 + kξ1) = 1{τ<τd}ψk(ξ) = ψk(ξ)

which is the desired submartingale property.

Proposition 4.4.7. The lower stochastic envelope

v−(x, y) := sup
v∈V−

v(x, y)

is a viscosity supersolution of (4.4) satisfying v− ≥ 1 on ∂Sb and v− ≥ 0 on ∂Sc/r.

Proof. The boundary inequalities are satisfied because v− ≥ ψ by Lemma 4.4.6.4 To

show interior viscosity supersolution property, let (x0, y0) ∈ S and ϕ ∈ C2(S) be a

4In fact, equalities hold for v− on the boundary; the reverse inequalities holds because (SB1) is
preserved under pointwise maximum.
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test function such that v−−ϕ attains a strict minimum of zero at (x0, y0). We need

to show

max {Lϕ,−(1− µ)ϕx + ϕy, ϕx − (1− λ)ϕy} (x0, y0) ≥ 0.

Assume on the contrary that

max {Lϕ,−(1− µ)ϕx + ϕy, ϕx − (1− λ)ϕy} (x0, y0) < 0.

Similar to the proof of Proposition 4.3.6, we can find 0 < ε < 1, η > 0 and v ∈ V−

such that ϕη := ϕ+ η satisfies

(4.26) max
{
Lϕη,−(1− µ)ϕηx + ϕηy, ϕ

η
x − (1− λ)ϕηy

}
< 0 on Bε(x0, y0),

(4.27) ϕη ≤ v on Bε(x0, y0)\Bε/2(x0, y0),

and

ϕη(x0, y0) > v−(x0, y0).

The technique for constructing the lifting function ϕη is classical and similar to the

stochastic supersolution case. So we skip the details. Define

vη :=


v ∨ ϕη on Bε(x0, y0),

v on Bε(x0, y0)
c
.

It suffices to show vη ∈ V−. And the only nontrivial part is to check vη satisfies

(SB2).

Let (τ, ξ) be any random initial condition, (B, S) be any (τ, ξ)-admissible control

and ρ ∈ [τ, στ,ξ,B,S] be any G-stopping time. Let

A := {ξ ∈ Bε/2(x0, y0)} ∩ {ϕη(ξ) > v(ξ)} ∈ Gτ .
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Let

τ1 := inf{t ∈ [τ, στ,ξ,B,S] : (Xτ,ξ,B,S
t , Y τ,ξ,B,S

t ) /∈ Bε/2(x0, y0)}

and

ξ1 := (Xτ,ξ,B,S
τ1

, Y τ,ξ,B,S
τ1

) ∈ Gτ1 .

In the event A, because of a possible jump transaction at time τ1, ξ1 may not be

on ∂Bε/2(x0, y0) ∪ {∆}. This will bring some problem since (4.26) is only valid

locally. To overcome this issue, we define an intermediate position ξ′1 as follows: let

ξ1− := (Xτ,ξ,B,S
τ1− , Y τ,ξ,B,S

τ1− ). We have ξ1− ∈ Bε/2(x0, y0) on A. Define

ξ′1 := 1A∩{τ1<τd}
(
1{4Bτ1>0}b(ξ1−) + 1{4Sτ1>0}s(ξ1−)

)
+ 1Ac∪{τ1=τd}ξ1 ∈ Gτ1 ,

where b, s are the functions introduced in cases (ii) and (iii) of the proof of Proposition

4.3.6. On A ∩ {τ1 < τd}, ξ′1 is the intersection of ∂Bε/2(x0, y0) and the line segment

connecting ξ1− and ξ1. Also define (B1, S1) by

(4B1
τ1
,4S1

τ1
) :=1A∩{τ1<τd}

(
1{4Bτ1>0}(ξ

0
1− − b0(ξ1−), 0) + 1{4Sτ1>0}(0, ξ

1
1− − s1(ξ1−))

)
+ 1Ac∪{τ1=τd}(4Bτ1 ,4Sτ1)

and

(B1
t , S

1
t ) := 1{t<τ1}(Bt, St) + 1{t≥τ1}

[
(Bτ1−, Sτ1−) + (4B1

τ1
,4S1

τ1
)
]
.

That is, (B1, S1) agrees with (B, S) before time τ1, but at time τ1, the corresponding

controlled process only jumps to ξ′1 instead of ξ1. We have (B1, S1) ∈ A0 and

(Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t ) ∈ Bε/2(x0, y0) ∪ {∆} for all t ∈ [τ, τ1] on A. Apply generalized
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Itô’s formula to the RCLL semimartingale ϕη(Xτ,ξ,B1,S1
, Y τ,ξ,B1,S1

) on A, we get

ϕη(Xτ,ξ,B1,S1

ρ∧τ1 , Y τ,ξ,B1,S1

ρ∧τ1 )− ϕη(Xτ,ξ,B1,S1

τ , Y τ,ξ,B1,S1

τ )

=

∫ ρ∧τ1

τ

−Lϕη(Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t )dt

+

∫ ρ∧τ1

τ

(ϕη)′(Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t )σY τ,ξ,B1,S1

t dWt

+

∫ ρ∧τ1

τ

[−ϕηx + (1− λ)ϕηy](X
τ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t )dBc
t

+

∫ ρ∧τ1

τ

[(1− µ)ϕηx − ϕηy](X
τ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t )dSct

+

∫ ρ∧τ1

τ

[ϕη(∆)− ϕη(Xτ,ξ,B1,S1

t− , Y τ,ξ,B1,S1

t− )]d(Nt − βt)

+
∑

τ≤t≤ρ∧τ1
t<τd

ϕη(Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t )− ϕη(Xτ,ξ,B1,S1

t− , Y τ,ξ,B1,S1

t− )

where Bc, Sc denote the continuous part of B, S. By (4.26), the dt, dBc and dSc

integrals are non-negative. The dW integral and the integral with respect to the

compensated Poisson process vanish if we take Gτ -conditional expectation. We now

analyze the last term which represents contribution from jump transactions. Similar

to case (ii) of the proof of Proposition 4.3.6 (see (4.18)), we can use (4.26) and Mean

Value Theorem to deduce

ϕη(x− h, y + (1− λ)h) ≥ ϕη(x, y),

and

ϕη(x+ (1− µ)h′, y − h′) ≥ ϕη(x, y).

for all (x, y) ∈ Bε(x0, y0) and h, h′ > 0 such that (x − h, y + (1 − λ)h), (x + (1 −

µ)h′, y − h′) ∈ Bε(x0, y0). It follows that on the set A and for t ∈ [τ, τ1]\{τd}, if

4B1
t > 0, then

ϕη(Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t ) = ϕη(Xτ,ξ,B1,S1

t− −4B1
t , Y

τ,ξ,B1,S1

t− + (1− λ)4B1
t )

≥ ϕη(Xτ,ξ,B1,S1

t− , Y τ,ξ,B1,S1

t− ).

128



If 4S1
t > 0, then

ϕη(Xτ,ξ,B1,S1

t , Y τ,ξ,B1,S1

t ) = ϕη(Xτ,ξ,B1,S1

t− + (1− µ)4S1
t , Y

τ,ξ,B1,S1

t− −4S1
t )

≥ ϕη(Xτ,ξ,B1,S1

t− , Y τ,ξ,B1,S1

t− ).

Since4B1
t and4S1

t are not positive at the same time (see the definition of A0), each

summand in the last term is non-negative. Putting everything together, we obtain

by taking Gτ -conditional expectation of the expression given by Itô’s formula that

E[1Aϕ
η(Xτ,ξ,B1,S1

ρ∧τ1 , Y τ,ξ,B1,S1

ρ∧τ1 )|Gτ ] ≥ 1Aϕ
η(Xτ,ξ,B1,S1

τ , Y τ,ξ,B1,S1

τ ).

Again, we use that ϕη is non-decreasing if we move northwest along the vector

(−1, 1 − λ) and southeast along the vector (1 − µ,−1) inside the ball Bε(x0, y0) to

bound the right hand side from below by

1A∩{τ<τd}ϕ
η(ξ) + 1A∩{τ=τd}ϕ

η(∆) = 1Aϕ
η(ξ) = 1Av

η(ξ).

For the left hand side, we use vη ≥ ϕη in Bε(x0, y0) and that (B1, S1) = (B, S) before

τ1 to obtain

1Aϕ
η(Xτ,ξ,B1,S1

ρ∧τ1 , Y τ,ξ,B1,S1

ρ∧τ1 ) ≤ 1Av
η(Xτ,ξ,B1,S1

ρ∧τ1 , Y τ,ξ,B1,S1

ρ∧τ1 )

= 1A∩{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1A∩{ρ≥τ1}v

η(ξ′1).

Hence

(4.28) E[1A∩{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1A∩{ρ≥τ1}v

η(ξ′1)|Gτ ] ≥ 1Av
η(ξ).

Define

(B2
t , S

2
t ) := 1{t≥τ1}[(Bτ1 , Sτ1)− (B1

τ1
, S1

τ1
)].

Starting with the random initial condition (τ1, ξ
′
1), (B2, S2) immediately brings the

state process from ξ′1 back to ξ1 and stays inactive afterwards. It is easy to see that
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(Xτ1,ξ′1,B
2,S2

, Y τ1,ξ′1,B
2,S2

) either exit S at time τ1 with exit position ξ1, or at a later

time when the control is inactive so that the exit is caused by diffusion or death. In

both cases, the exit position belongs to ∂S ∪ {∆}. So (B2, S2) ∈ A (τ1, ξ
′
1). Using

the submartingale property of v(Xτ1,ξ′1,B
2,S2

, Y τ1,ξ′1,B
2,S2

), we have

vη(ξ1) = v(ξ1) = E[v(Xτ1,ξ′1,B
2,S2

τ1
, Y τ1,ξ′1,B

2,S2

τ1
)|Gτ1 ] ≥ v(ξ′1) = vη(ξ′1),

where the first and the last equalities hold because ξ1, ξ
′
1 /∈ Bε/2(x0, y0). (4.28) then

implies

(4.29) E[1A∩{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1A∩{ρ≥τ1}v

η(ξ1)|Gτ ] ≥ 1Av
η(ξ).

On the set Ac, we use the submartingale property (SB2) of v(Xτ,ξ,B,S, Y τ,ξ,B,S)

to get

E[1Acv
η(Xτ,ξ,B,S

ρ∧τ1 , Y τ,ξ,B,S
ρ∧τ1 )|Gτ ] ≥ E[1Acv(Xτ,ξ,B,S

ρ∧τ1 , Y τ,ξ,B,S
ρ∧τ1 )|Gτ ] ≥ 1Acv(ξ) = 1Acv

η(ξ),

or

(4.30) E[1Ac∩{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1Ac∩{ρ≥τ1}v

η(ξ1)|Gτ ] ≥ 1Acv
η(ξ).

Adding (4.29) and (4.30) yields

(4.31) E[1{ρ<τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ ) + 1{ρ≥τ1}v

η(ξ1)|Gτ ] ≥ vη(ξ).

Let

(B3
t , S

3
t ) := (Bt, St)− 1{t≥τ1}(4Bτ1 ,4Sτ1)

be the same control as (B, S), but with any jump transaction at time τ1 removed.

We have

(4.32) (Xτ,ξ,B,S
t , Y τ,ξ,B,S

t ) = (Xτ1,ξ1,B3,S3

t , Y τ1,ξ1,B3,S3

t ) ∀ t ≥ τ1.
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The reason for introducing another control is because our random initial condition

allows a jump at initial time. Since ξ1 already includes the possible jump transactions

specified by (B, S) at time τ1, we want to avoid doing the same transaction again

when using (τ1, ξ1) as the new random initial condition. That is, (B3, S3) is defined

to make (4.32) hold. To see (B3, S3) ∈ A (τ1, ξ1), first notice that στ,ξ,B,S ≥ τ1 by

the definition of τ1. (4.32) then implies στ1,ξ1,B
3,S3

= στ,ξ,B,S. Thus,

(Xτ1,ξ1,B3,S3

στ1,ξ1,B
3,S3

, Y τ1,ξ1,B3,S3

στ1,ξ1,B
3,S3

) = (Xτ,ξ,B,S
στ,ξ,B,S

, Y τ,ξ,B,S
στ,ξ,B,S

) ∈ ∂S ∪ {∆}

by the (τ, ξ)-admissibility of (B, S). The submartingale property (SB2) of

v(Xτ1,ξ1,B3,S3
, Y τ1,ξ1,B3,S3

) (applied to the stopping time ρ ∨ τ1) implies

E[1{ρ≥τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ )|Gτ1 ] = E[1{ρ≥τ1}v

η(Xτ1,ξ1,B3,S3

ρ , Y τ1,ξ1,B3,S3

ρ )|Gτ1 ]

≥ E[1{ρ≥τ1}v(Xτ1,ξ1,B3,S3

ρ , Y τ1,ξ1,B3,S3

ρ )|Gτ1 ]

≥ 1{ρ≥τ1}v(ξ1) = 1{ρ≥τ1}v
η(ξ1)

Taking Gτ -conditional expectation, we get

(4.33) E[1{ρ≥τ1}v
η(Xτ,ξ,B,S

ρ , Y τ,ξ,B,S
ρ )|Gτ ] ≥ E[1{ρ≥τ1}v

η(ξ1)|Gτ ].

Adding (4.31) and (4.33), we get

E[vη(Xτ,ξ,B,S
ρ , Y τ,ξ,B,S

ρ )|Gτ ] ≥ vη(ξ).

This completes the verification of (SB2) for vη, and hence of the viscosity supersolu-

tion property of v−.

4.5 Comparison principle

A comparison principle can be established following the idea of [53]. The key is

to show the existence of a strict subsolution which is then added to the penalty term

when applying the technique of doubling of variables.
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Lemma 4.5.1. There exists a strict subsolution ` of (4.4) satisfying

(1) ` ∈ C2(S) and ` < 0;

(2) `(x, y)→ −∞ as ‖(x, y)‖ → ∞ in S.5

Proof. Let h(z) := − (z−b+1)p

p
with 0 < p < 1. We have h < 0, h′ < 0 and h′′ > 0 in

(b−1,∞). Let 1−µ < k < 1
1−λ and define `(x, y) := h(x+ky). ` is well-defined since

x + ky ≥ b for all (x, y) ∈ S. Condition (1) is trivially satisfied. To see condition

(2) holds, observe that for each a > b, {(x, y) ∈ S : x+ ky ≤ a} is a bounded subset

of R2. Therefore if ‖(x, y)‖ → ∞ in S, then we must have x + ky → ∞. It follows

that `(x, y) = h(x+ ky)→ −∞. It remains to show ` is a strict subsolution of (4.4)

under a suitable choice of p.

Let (x, y) ∈ S. By our choice of k and that h′ < 0, we readily obtain

−(1− µ)`x + `y = [−(1− µ) + k]h′(x+ ky) < 0

and

`x − (1− λ)`y = [1− k(1− λ)]h′(x+ ky) < 0.

Let us now compute L`(x, y).

L`(x, y) = β`(x, y)− (rx− c)`x(x, y)− αy`y(x, y)− 1

2
σ2y2`yy(x, y)

= βh(x+ ky)− (rx− c+ αky)h′(x+ ky)− 1

2
σ2y2k2h′′(x+ ky).

By definition of the solvency region S, we have

x+ (1− µ)y <
c

r
if y > 0, and x+

y

1− λ
<
c

r
if y < 0,

which implies

rx− c+ αky ≤ r|y|
1− λ

+ αk|y| =
(

r

1− λ
+ αk

)
|y| := θ|y|.

5The function ` is referred to as a Lyapunov function in [53].
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Using h′(x+ ky) < 0 and h′′(x+ ky) > 0, we deduce

L`(x, y) ≤ βh(x+ ky)− θ|y|h′(x+ ky)− 1

2
σ2y2k2h′′(x+ ky)

= −1

2

[
σ2y2k2h′′(x+ ky) + 2θ|y|h′(x+ ky) +

θ2(h′(x+ ky))2

σ2k2h′′(x+ ky)

]
+ βh(x+ ky) +

1

2

θ2(h′(x+ ky))2

σ2k2h′′(x+ ky)

≤
(
β +

1

2

θ2

σ2k2

(h′)2

hh′′
(x+ ky)

)
h(x+ ky)

=

(
β − 1

2

θ2

σ2k2

p

1− p

)
h(x+ ky).

Choose p small such that β > 1
2

θ2

σ2k2
p

1−p . We then have by negativity of h that

L`(x, y) < 0.

Proposition 4.5.2. Let u, v be u.s.c. viscosity subsolution and l.s.c. viscosity su-

persolution of (4.4), respectively. Suppose u, v are bounded and u ≤ v on ∂S, then

u ≤ v in S.

Proof. Assume to the contrary that δ := u(x0, y0)− v(x0, y0) > 0 for some (x0, y0) ∈

S. Let ` be the strict classical subsolution given by Lemma 4.5.1. Let ε be a small

positive constant satisfying δ + 2ε`(x0, y0) > 0. For each θ > 0, define

Φθ(x, y, x
′, y′) :=u(x, y)− v(x′, y′)− θ

2
(|x− x′|2 + |y − y′|2) + ε`(x, y) + ε`(x′, y′).

Since u(x, y) − v(x′, y′) is u.s.c. and bounded, and `(x, y) → −∞ as ‖(x, y)‖ → ∞

in S, there exists (xθ, yθ), (x
′
θ, y
′
θ) lying in a compact subset of S such that

sup
(x,y),(x′,y′)∈S

Φθ(x, y, x
′, y′) = Φθ(xθ, yθ, x

′
θ, y
′
θ).

Compactness allows us to extract a sequence θn → ∞ such that (xn, yn, x
′
n, y

′
n) :=

(xθn , yθn , x
′
θn
, y′θn) → (x̂, ŷ, x̂′, ŷ′) as n→∞. Clearly, we have

(4.34) Φθn(xn, yn, x
′
n, y

′
n) ≥ sup

(x,y)∈S
Φ0(x, y, x, y) ≥ δ + 2ε`(x0, y0) > 0.
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It follows that

θn
2

(|xn − x′n|2 + |yn − y′n|2) ≤u(xn, yn)− v(x′n, y
′
n) + ε`(xn, yn) + ε`(x′n, y

′
n)

− sup
(x,y)∈S

Φ0(x, y, x, y).

Since the right hand side is bounded from above and θn → ∞, we must have |xn −

x′n|2 + |yn − y′n|2 → 0, hence (x̂, ŷ) = (x̂′, ŷ′). This further implies by u.s.c. of u− v

that

0 ≤ lim sup
n

θn
2

(|xn − x′n|2 + |yn − y′n|2) ≤ Φ0(x̂, ŷ, x̂, ŷ)− sup
(x,y)∈S

Φ0(x, y, x, y) ≤ 0.

So we conclude

(4.35) lim
n
θn(|xn − x′n|2 + |yn − y′n|2) = 0,

and

(4.36) lim
n

Φθn(xn, yn, x
′
n, y

′
n) = Φ0(x̂, ŷ, x̂, ŷ) = sup

(x,y)∈S
Φ0(x, y, x, y) > 0.

Now, since u ≤ v on ∂S and ` ≤ 0, we have Φ0(x, y, x, y) ≤ 0 for (x, y) ∈ ∂S. In

view of (4.36), we have (x̂, ŷ) ∈ S. So (xn, yn), (x′n, y
′
n) ∈ S for n sufficiently large.

By Crandall-Ishii’s lemma, we can find matrices An, Bn ∈ S2 such that

(4.37) (θn(xn − x′n), θn(yn − y′n), An) ∈ J̄2,+
S
(
u(xn, yn) + ε`(xn, yn)

)
,

(4.38) (θn(xn − x′n), θn(yn − y′n), Bn) ∈ J̄2,−
S
(
v(x′n, y

′
n)− ε`(x′n, y′n)

)
,

and An 0

0 −Bn

 ≤ 3θn

 I −I

−I I

 .

134



where J̄2,+
S and J̄2,−

S denote the closure of the second order superjet and subjet,

respectively. By Lemma 4.2.7 of [55], we have

(4.39) (yn)2An,22 − (y′n)2Bn,22 ≤ 3θn|yn − y′n|2.

Since ` is a C2(S) functions, we can rewrite (4.37) and (4.38) as

(pn, Xn) ∈ J̄2,+
S u(xn, yn), (qn, Yn) ∈ J̄2,−

S v(x′n, y
′
n)

where

pn := θn(xn − x′n, yn − y′n)− εD`(xn, yn), Xn := An − εD2`(xn, yn),

qn := θn(xn − x′n, yn − y′n) + εD`(x′n, y
′
n), Yn := Bn + εD2`(x′n, y

′
n).

By the semijets definition of viscosity solution, we have

max

{
βu(xn, yn)− (rxn − c)pn,1 − αynpn,2 −

1

2
σ2y2

nXn,22,

− (1− µ)pn,1 + pn,2, pn,1 − (1− λ)pn,2

}
≤ 0

and

max

{
βv(x′n, y

′
n)− (rx′n − c)qn,1 − αy′nqn,2 −

1

2
σ2(y′n)2Yn,22,

− (1− µ)qn,1 + qn,2, qn,1 − (1− λ)qn,2

}
≥ 0.

We consider three cases.

Case 1. −(1− µ)qn,1 + qn,2 ≥ 0 for infinitely many n’s. In this case,

0 ≥ −(1− µ)pn,1 + pn,2 − [−(1− µ)qn,1 + qn,2]

= −ε[−(1− µ)`x(xn, yn) + `y(xn, yn)]− ε[−(1− µ)`x(x
′
n, y

′
n) + `y(x

′
n, y

′
n)].

Letting n→∞ yields

0 ≥ −2ε[−(1− µ)`x(x̂, ŷ) + `y(x̂, ŷ)],
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or

−(1− µ)`x(x̂, ŷ) + `y(x̂, ŷ) ≥ 0.

This is a contradiction to the strict subsolution property of ` in the sell region.

Case 2. qn,1− (1−λ)qn,2 ≥ 0 for infinitely many n’s. Similar to case 1, this leads

to `x(x̂, ŷ)− (1− λ)`y(x̂, ŷ) ≥ 0, contradicting the strict subsolution property of ` in

the buy region.

Case 3. For n sufficiently large, βv(x′n, y
′
n)−(rx′n−c)qn,1−αy′nqn,2−1

2
σ2(y′n)2Yn,22 ≥

0. In this case,

0 ≤ βv(x′n, y
′
n)− (rx′n − c)qn,1 − αy′nqn,2 −

1

2
σ2(y′n)2Yn,22

−
[
βu(xn, yn)− (rxn − c)pn,1 − αynpn,2 −

1

2
σ2y2

nXn,22

]
= −β [u(xn, yn)− v(x′n, y

′
n)] + ε(L`− β`)(xn, yn) + ε(L`− β`)(x′n, y′n)

+ rθn(xn − x′n)2 + αθn(yn − y′n)2 +
1

2
σ2
[
y2
nAn,22 − (y′n)2Bn,22

]
≤ −β [u(xn, yn)− v(x′n, y

′
n) + ε`(xn, yn) + ε`(x′n, y

′
n)]

+

(
r + α +

3

2
σ2

)
θn(|xn − x′n|2 + |yn − y′n|2)

= −βΦθn(xn, yn, x
′
n, y

′
n) +

(
r + α +

3

2
σ2 − β

2

)
θn(|xn − x′n|2 + |yn − y′n|2)

≤ −β(δ − 2ε`(x0, y0)) +

(
r + α +

3

2
σ2 − β

2

)
θn(|xn − x′n|2 + |yn − y′n|2).

In the third step, we used the subsolution property of ` and (4.39). In the fourth

step, we used the definition of Φθ. In the last step, we used (4.34). Letting n→∞

and using (4.35), we arrive at the contradiction 0 ≤ −β(δ − 2ε`(x0, y0)) < 0. The

proof is complete.

4.5.1 Proof of Theorem 4.2.5.
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Proof. By Remarks 4.3.3 and 4.4.3, we have v− ≤ ψ ≤ v+. By Propositions 4.3.6

and 4.4.7, we know v+ is a viscosity subsolution and v− is a viscosity supersolution

of (4.4). Moreover, v+ ≤ v− on ∂S. It is also clear that v+ is u.s.c. and v− is

l.s.c.. Comparison principle (Proposition 4.5.2) then implies v+ ≤ v−. Therefore,

v+ = v− = ψ is a continuous viscosity solution to the Dirichlet problem (4.4), (4.5).

Uniqueness also follows from the comparison principle.
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APPENDIX A

A.1 Support of measures and random variables

Definition A.1.1. Let X be a topological space. The support of a nonempty family

of probability measuresR ⊆ P(X ), denoted by supp(R), is the smallest closedR-q.s.

set in X :

supp(R) :=
⋂
{A ⊂ X closed : R(A) = 1 ∀R ∈ R}.

Equivalently, supp(R) consists of the set of points x ∈ X such that for every open

neighborhood Nx of x, there is a measure R ∈ R with R(Nx) > 0.

Definition A.1.2. Let S : Ω → R be a random variable, and R ⊆ P(Ω) be a

nonempty family of probability measures on Ω. The support of S under R, denoted

by suppRS, is defined as the support of the law of S under R, i.e.

suppRS = supp{P ◦ S−1 : P ∈ R}.

One can show that suppRS, is the smallest closed set A ⊆ R such that P (S ∈

A) = 1 ∀P ∈ R. Equivalently, a point y belongs to suppRS if and only if every open

ball around y has positive measure under some member of {P ◦ S−1 : P ∈ R}.

The next lemma is used in the construction of the modified market in Sec-

tions 2.3.3.
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Lemma A.1.3. Let S : Ω → R be continuous and R ⊆ P(Ω) be a family of proba-

bility measures. Then

suppRS(·) = S(supp(R)).

Proof. Let y ∈ S(supp(R)). Then ∀r > 0, ∃ωr ∈ supp(R) such that S(ωr) ∈

Br(y). Since S is continuous, S−1(Br(y)) is an open neighborhood of ωr. Since

ωr ∈ supp(R), ∃Pr ∈ R such that Pr ◦ S−1(Br(y)) > 0. We therefore have

y ∈ suppPS(·). The other inclusion does not require S to be continuous. Suppose

y /∈ S(supp(R)). Then ∃r > 0 such that Br(y) ∩ S(supp(R)) = ∅, which implies

S−1(Br(y))∩supp(R) = ∅. It follows that ∀P ∈ R, we must have P ◦S−1(Br(y)) = 0,

otherwise P (supp(R)) would be strictly less than 1, contradicting the definition of

supp(R). So the neighborhood Br(y) is R-polar, meaning y /∈ suppRS(·).

A.2 Continuous and measurable set-valued maps

Definition A.2.1. Let Φ : Ω� X be a set-valued map between topological spaces.

We say Φ is

(i) upper hemicontinuous at ω if for every open neighborhood U of Φ(ω), the upper

inverse {ω ∈ Ω : Φ(ω) ⊆ U} includes an open neighborhood of ω. Φ is upper

hemicontinous (on Ω) if it is upper hemicontinuous at every ω ∈ Ω.

(ii) lower hemicontinuous at ω if for every open set U which meets Φ(ω), the lower

inverse {ω ∈ Ω : Φ(ω) ∩ U 6= ∅} includes an open neighborhood of ω. Φ is

lower hemicontinous (on Ω) if it is lower hemicontinuous at every ω ∈ Ω.

(iii) continuous if it is both upper and lower hemicontinuous.

Definition A.2.2. Let (Ω,Σ) be a measureable space and X be a topological space.

A set-valued map Φ : (Ω,Σ) � X is measurable (resp. weakly measurable) if
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Φ−1(B) := {ω ∈ Ω : Φ(ω) ∩ B 6= ∅}1 is measurable for each closed (resp. open)

subset B of X .

When X is σ-compact separable metrizable space X (e.g. Rn) and Φ is closed-

valued. Then measurable and weakly measurable are equivalent [43, Theorem 3.2(ii)].

We will use the words universally measurable when Σ = F and Borel measurable

when Σ = B.

In the proof of the FTAP, the construction of a dual element, under the local-

to-global philosophy, relies heavily on measurable selection theorems. We include a

version of the famous Jankov-von Neumann selection theorem here for the reader’s

convenience (see e.g. [76, Theorem 5.5.2] or [22, Proposition 7.49]).

Theorem A.2.3 (Jankov-von Neumann theorem). Let X, Y be Polish spaces and

A ⊆ X × Y be an analytic set. Then there exists a universally measurable function

φ : projX(A)→ Y such that graph(φ) ⊆ A.

A.3 A useful lemma on equivalent change of measure

The next lemma is taken from [34, Theorem VII.57] (see also [25, Lemma 3.2]). It

says integrability of a sequence of random variables can be obtained by an equivalent

change of measure.

Lemma A.3.1. Let P ∈ P(Ω) and fn be a sequence of (P -a.s. finite) random

variables. There exists probability measure R ∼ P with bounded density with respect

to P , such that all fn are R-integrable.

1This notion of inverse is sometimes called lower inverse or weak inverse.
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A.4 Proof of Lemma 2.3.17

Proof. Let τ := min{t : −ξt ∈ Kt\K0
t }. We are done if τ = ∞ P-q.s.. Suppose

∃P ∈ P such that P (τ < ∞) > 0. Let [S ′, S
′
] ⊆ ri[S, S] satisfy NA(P) and let K ′t

denote the solvency cone for the [S ′, S
′
]-market. We have Kt ⊆ K ′t. Let εt = εt(ω)

be the largest (nonnegative) number such that ξt(ω) + εt(ω)1 ∈ −K ′t(ω). We have

εt > 0 on {τ = t}. It can also be shown that εt ∈ Ft. Define

ηt :=


ξt, t 6= τ,

ξt + εt1, t = τ.

Then ηt ∈ L0(−K ′t;Ft). Since
∑T

t=0 ηt =
∑T

t=0 1{t=τ}εt1 ≥ 0 P-q.s., NA(P) for the

[S ′, S
′
]-market implies

∑T
t=0 1{t=τ}εt1 = 0 P-q.s., in particular, P -a.s., contradicting

the fact that P (τ <∞) > 0 and εt(ω) > 0 on {τ = t}.
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[74] M. Ŝırbu. Stochastic Perron’s method and elementary strategies for zero-sum
differential games. SIAM J. Control Optim., 52(3):1693–1711, 2014.

[75] M. Smaga. Utility-based proof for the existence of strictly consistent price pro-
cesses under proportional transaction costs. PhD thesis, Technischen Universität
Kaiserslautern, 2012.

148



[76] S. M. Srivastava. A course on Borel sets, volume 180 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1998.

[77] D. W. Stroock. Lectures on Stochastic Analysis: Diffusion Theory. Cambridge
University Press, 1987.

[78] A. E. Taylor. L’Hospital’s rule. Amer. Math. Monthly, 59:20–24, 1952.

[79] A. Tourin and T. Zariphopoulou. Portfolio selection with transaction costs.
In Seminar on Stochastic Analysis, Random Fields and Applications (Ascona,
1993), volume 36 of Progr. Probab., pages 385–391. Birkhäuser, Basel, 1995.
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