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Abstract 

 Spliceosomes are multi-megadalton RNA-protein complexes that catalyze the removal of 

introns from pre-messenger RNAs (pre-mRNAs) yielding a continuous protein-coding segment 

of RNA (mRNA). As a finely tuned process of great complexity and critical importance to the 

diversification of the proteome, it is thought that up to 50% of all mutations connected to human 

disease act through disruption of the splicing code.  

 The structure and conformation of the RNA components of the spliceosome are central to 

its function. Proper assembly and catalytic activation of the spliceosome require an elaborate 

sequence of RNA:RNA and RNA:protein rearrangements as well as specific pre-mRNA 

substrate structures that serve as a scaffold upon which splicing factors and regulators bind to 

ensure splicing fidelity. Despite 30 years of study, critical questions about the specific structure 

and conformational rearrangements utilized by pre-mRNA substrates remain unanswered. We 

have developed a number of biochemical and biophysical approaches that have begun to shed 

light on pre-mRNA structure during splicing. Using single-molecule immunopurification, we 

have isolated the activated yeast spliceosome for investigation by single-molecule fluorescence 

resonance energy transfer (smFRET). Tracking the dynamics of the pre-mRNA during the first 

catalytic step of splicing revealed a mechanism in which the spliceosome utilizes specific protein 

cofactors to promote pre-mRNA dynamics in favor of the catalytic conformation. Furthermore, 

we have dissected the conformational changes at each step of spliceosome assembly and 

catalysis. Efficient interpretation of the data required development of a single-molecule 

clustering tool capable of distinguishing FRET states and kinetics. Next, we sought to translate 
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smFRET trajectories into 3-dimensional RNA structures. Incorporating biochemical footprinting 

and smFRET data into RNA structure determination, we have begun to model the pre-mRNA 

structure at each stage of spliceosome assembly. Finally, we have developed a biochemical 

method that allows for the isolation of in vivo assembled spliceosomes and used it to identify a 

number of new pre-mRNA substrates in yeast. Through the establishment of new biochemical, 

biophysical, and computational tools for the investigation of splicing, we have finally begun to 

reveal new molecular mechanisms by which the spliceosome utilizes RNA structure to achieve 

high efficiency and fidelity.    
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CHAPTER 1: Introduction 

 

1.1 The RNA Revolution 

1.1.1 Redefining the Rules Describing RNA Function 

DNA makes RNA makes protein
1
. For far too long these have been the words used to describe 

what is known as the “central dogma of molecular biology” and the words that have been most 

universally accepted as the way to describe cellular function. Up until the years after the 

discovery of the double helical structure of DNA by Francis Crick in 1953, very little evidence 

supported the notion of nucleic acids, particularly RNA, being anything but the carriers of 

genetic information. Researchers seemed to accept that there are messenger, transfer, and 

ribosomal RNAs but beyond that, proteins are the workhorse of the cell and responsible for the 

regulation and execution of all biological processes. Due to this misconception, much of the 

human genome has often been regarded as “fly over country,” regions that are not protein-coding 

and thus most likely overlooked by the cellular machinery. With these assumptions about the 

existence and function of RNA came a number of rules by which RNA was governed, the most 

significant being that only proteins can serve as enzymes
2
. These and other rules about the 

function of RNA were heavily disputed by those in favor of the RNA world hypothesis, an 

answer to the origin-of-life problem in which all material originated from RNA precursors and 

that were responsible for carrying out all chemical reactions required for cellular function. It 

wasn’t until the 1980s that the first renegade non-coding RNAs emerged as a major contradiction 
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to these long accepted rules. The first of these was the small nuclear RNAs (snRNAs) as 

potential players in the splicing of introns from pre-messenger RNA
3
. Other abundant classes of 

non-coding RNA such as small nucleolar RNA (snoRNA) quickly emerged, and achieved great 

momentum with the discovery of micro RNAs (miRNAs) and the RNA interference pathway
4
, 

revealing a perception of RNA that has evolved from a very primitive role to a complex 

involvement in nearly every biological process.  

The non-coding RNA revolution gained further energy with the completion of the Human 

Genome Project in 2001
5
. Taking over 13 years and three billion dollars to complete, what 

resulted was the very first complete sequence of the 3 billion base pairs within the human 

genome and a plethora of new information that is still being analyzed today
6
. Most interesting 

was the realization that our genome may contain just over 20,000 protein-coding genes, a mere 2 

% of our genome
7,8

 and a far smaller number than the 100,000 genes once predicted to code for 

protein
9
. An obvious question must quickly come to mind: what is the other 98% of the genome 

responsible for? Recognizing the immense potential modern sequencing techniques have to offer 

in answering this question, a vast shift in research has begun to focus on the development of 

methods capable of more cheaply and rapidly investigating the human genome using deep 

sequencing and has rejuvenated the interest of the scientific community in RNA biology.  

1.1.2 RNA: the most versatile biomolecule 

The discovery of new non-coding RNAs has uncovered roles for RNA that extend from deep 

within the nucleus where it assists with chromatin remodeling all the way to the extracellular 

environment where it can act as a signaling molecule
10,11

. We now know that RNA is one of the 

most structurally and functionally diverse macromolecules, having the ability to serve as a 

structural scaffold for the assembly of proteins as is the case with the long non-coding RNA 
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HOTAIR in the ubiquitination pathway
12

, interact in a structure- and/or sequence-specific 

manner with other RNA molecules and individual proteins, and even serve as a small molecule 

biosensors as is the case with metabolite-responsive ribozymes
13

. In addition, RNA can serve as 

the mediator of our genetic material from DNA in the nucleus to formation of a functional 

protein and, in a similar manner, even act as the carrier of genetic material rather than DNA as is 

the case with many viruses
14

. Furthermore, RNA can serve a catalytic function
15,16

 participating 

in processes requiring RNA cleavage as well as protein biosynthesis. 

1.1.3 RNA Achieves Function through Secondary Structure 

The chemical properties of RNA, specifically the assortment of secondary and tertiary structures, 

enable it to perform such a diverse range of functions
17

. A single RNA transcript from the same 

genetic locus can often use a common sequence to carry out multiple roles, or switch between 

active and inactive forms, simply by altering and mediating its structural features
18,19

. But while 

the sequence of RNA is the most important determinant of structure, the nucleotide sequence 

alone is usually not sufficient to specify a unique structural output due to the complex RNA 

folding pathway. In addition, multiple RNAs with drastically different sequences can form the 

same or similar structures and thus serve similar functions. Currently, there is a poor 

understanding of RNA-driven molecular mechanisms in regard to the structure and dynamics of 

the RNA within biomolecular machines, hindering the development of a proper understanding of 

how RNA can be modulated and controlled. 

1.2 The Spliceosome 

The spliceosome, a multi-megadalton complex responsible for the majority of RNA splicing, is 

an ideal example of a macromolecular machine that utilizes nearly all of RNA’s many structural 

and functional features to carry out its purpose. The RNA elements of the spliceosome serve as a 
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scaffold upon which a multitude of proteins assemble to form the mature snRNP components. 

These snRNPs utilize sequence specificity to recognize the pre-mRNA substrate splice sites and 

carry out both chemical steps of splicing through what is thought to be an RNA catalyzed 

mechanism
20

. A thorough understanding of how the spliceosome utilizes and modulates RNA 

structure to ensure catalytic efficiency is central to understanding its role in gene expression, 

regulation, and disease. Additionally, mechanisms utilized by the spliceosome are common 

among RNA-based machines and could thus provide us with a more complete understanding of 

all cellular processes.  

1.1.1 Introns: the ‘Where’s Waldo’ of our genetic code 

Traditionally it was thought that mRNA was simply a direct copy of the DNA gene encoding a 

particular protein, and that one gene denotes only one protein output. It was not until the 1970s 

that Philip Sharp and Richard Roberts, utilizing RNA-DNA hybridization and electron 

microscopy, discovered that large segments of the adenovirus 2 genome remain un-base paired 

when hybridized with the purified mRNA product
21,22

. This revealed that transcribed messenger 

RNAs are not necessarily a copy of continuous segments of a DNA gene, but rather pieced-

together bits of coding region with large gaps in the sequence. The removed fragments of 

genomic code were later termed introns, with the coding segments termed exons.  

Today, it has become increasingly clear that the presence of introns is crucial to the 

function of eukaryotic organisms, as removal of all introns from yeast has extremely deleterious 

effects
23

. Upon completion of the human genome project, we now know that nearly 95% of the 

human transcriptome consists of introns
24

 and that approximately 92-95% of multi-exon genes in 

humans are alternatively spliced
25,26

. Because alternative splicing allows for the expression of 

multiple protein isoforms from a single RNA transcript, the human genome can be compacted 
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into a much smaller sequence than would be expected given our much increased complexity 

compared with lower eukaryotic organisms. In addition, alternative splicing provides multiple 

points of regulation over gene expression.  

Aside from self-splicing group II introns, all introns are recognized and spliced by the 

spliceosome in what is thought to be primarily a co-transcriptional manner
27,28

. Spliceosomes are 

assigned the task of very rapidly finding the short, often divergent, RNA sequences designating 

important splice sites within an RNA transcript that can be up to tens of thousands of nucleotides 

long. The spliceosome must then rapidly assemble and remove only specific introns in order to 

achieve cell- and tissue-specific expression of certain protein isoforms. Interestingly, and 

perhaps not surprisingly, these introns are not simply discarded segments of RNA junk without a 

future purpose or function
29

. Often introns are debranched and processed into other RNAs such 

as small nucleolar RNA (snoRNA), microRNAs, and long noncoding RNAs where they serve 

functions in translation, transcription, and gene regulation. Given their presence in eukaryotic 

genomes and their persistence through evolution, it is clear that introns and the splicing process 

serve an important role in cellular biogenesis. Having a thorough understanding of intron 

structure, dynamics, and sequence elements that enhance or inhibit the splicing process is crucial 

to fully understanding how large RNA machines like the spliceosome function and how it can be 

fine-tuned for therapeutic purposes.  

1.1.2 The Complexity of Spliceosome Assembly and Catalysis 

The budding yeast Saccharomyces cerevisiae spliceosome is composed of nearly 80 proteins and 

5 small nuclear RNAs (snRNAs) referred to as U1, U2, U4, U5 and U6. The spliceosome 

recognizes the pre-mRNA substrate utilizing three conserved regions, namely the 5’ splice site 

(5’SS), branch site (BS), and the 3’ splice site (3’SS) (Figure 1.1). The first chemical step of 
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Figure 1.1 The Conserved Yeast pre-mRNA Substrate 

The yeast pre-mRNA 5’ splice site (5’SS), branch site (BS), 3’ splice site (3’SS) are all highly 

conserved regions required for splicing. The branch point adenosine is underlined.  
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splicing involves the nucleophilic attack of the 5’SS by the 2’ hydroxyl (2’OH) of the BS 

adenosine residue, yielding a free 5’ exon and an intron lariat structure containing a 2’-5’ 

phosphodiester bond at the branch site adenosine immediately upstream of the 3’ exon. The 

spliceosome is then rearranged to allow the free 5’ exon to undergo a nucleophilic attack on the 

3’SS in the second catalytic step, resulting in release of the ligated exons (mRNA) and the intron 

lariat (Figure 1.2).   

In contrast to other macromolecular machines such as the ribosome, the spliceosome does 

not have a pre-formed catalytic core. Rather, each of the five small nuclear ribonucleoprotein 

complexes (snRNPs, denoted U1, U2, U4, U5, and U6), which are themselves composed of one 

of the five snRNAs and several associated proteins, assemble upon a single pre-mRNA substrate 

in a stepwise fashion, carry out both chemical steps of splicing, and then disassemble to carry out 

further rounds of splicing on other pre-mRNAs. Such a stepwise assembly process allows for 

tight regulation of the splicing process by providing multiple checkpoints before, during, and 

after both steps of splicing. Assembly begins with the recognition of the 5’SS by the U1 snRNP 

complex in an ATP-independent fashion through specific base pairing of the U1 snRNA with the 

5’SS
30

 (Figure 1.3), followed by the sequence specific recognition of the BS by the branchpoint 

binding protein (BBP)-Mud2 dimer (Commitment Complex 2, CC2). In the first ATP-dependent 

assembly step, the U2 snRNP is loaded onto the BS with the assistance of the Sub2 and Prp5 

ATPases (A complex). The U4, U5, and U6 snRNPs bind to this A complex structure as a 

preformed complex known as the tri-snRNP to form the B complex. Large RNA-RNA and 

RNA-protein rearrangements occur at this point such that the RNA-RNA base pairing between 

the 5’SS and U1 snRNA is disrupted, resulting in destabilization and removal of the U1 and U4 

snRNPs and binding of the U6 snRNP to the 5’SS. Assembly proceeds with the joining of the 
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Figure 1.2 The Two Chemical Steps of Splicing 

Pre-mRNA splicing takes place in two subsequent catalytic steps. The first step involves the 

nucleophilic attack of the 2’OH of the BS adenosine on the 5’SS releasing a free 5’ exon (exon 1) 

and an intron lariat intermediate. The second step proceeds with the attack of the free 3’OH of the 

5’ exon on the 3’SS, releasing ligated mRNA   
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Figure 1.3 The Canonical Spliceosome Assembly Pathway 

Schematic representation depicting the stepwise assembly of the spliceosomal subunits on a 

pre-mRNA substrate. Assembly, activation, catalysis, and disassembly steps are highlighted 

as are ATP-dependent steps in assembly. The heat-sensitive Prp2 mutation used in a majority 

of this thesis is indicated, resulting in accumulation of the yeast B
act

 complex
36,37,59,65

. 
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snRNA-free NineTeen Complex (NTC) yielding the fully activated spliceosome (B
act

). Although 

entirely assembled and activated, catalysis requires the addition of Prp2 in order to carry out a 

significant reorganization of the catalytic core. Together with its cofactor Spp2, Prp2 utilizes 

ATP in order to form the B* complex which is now capable of carrying out the first step of 

splicing. Association of Cwc25 then stabilizes the C complex, a highly reactive conformation of 

the spliceosome capable of efficient first step catalysis, yielding the free 5’ exon and lariat 

intermediate. The catalytic core is then reorganized such that the 5’SS and 3’SS are placed into 

close proximity, allowing the spliceosome to carry out efficient ligation of the free 5’ exon to the 

3’ exon in the second chemical step of splicing. Lastly, Prp43 and Prp22 are utilized to 

completely disassemble the spliceosome, resulting in release of the ligated mRNA and intron 

lariat, as well as recycling of the spliceosomal components.        

1.1.3 The role of ATP and Dynamics in Splicing 

Although both chemical steps of splicing are isoenergetic, ATP is consumed by at least 8 known 

RNA-dependent ATPases responsible for the complex RNA-RNA and RNA-protein 

rearrangements crucial to substrate identification and accurate spliceosome assembly (Figure 

1.4). These ATPases are most similar to the DExD/H box family of helicases with targets and 

mechanisms of action that are often still unknown. 

The earliest ATP-dependent step is the Prp5- and Sub2-mediated association of the U2 

snRNP with the BS through base pairing between the U2 snRNA and BS to form the A complex. 

Such an association requires the removal of the BBP-Mud2 heterodimer from the BS by Sub2. 

Interestingly, Sub2 has been shown to first help stabilize this interaction in an ATP-independent 

manner, but then ultimately uses ATP hydrolysis to remove Mud2 and BBP prior to U2 

assembly
31,32

. While Sub2 frees up the BS for U2 snRNP binding, Prp5 is responsible for 



11 

 

stabilizing the U2 snRNA interaction with the BS and does so in a multidimensional fashion. The 

U2 snRNA possesses two conserved regions that must adopt specific conformations to stably 

bind the pre-mRNA. The first is a stem loop known to transition between a Cus2 stabilized, 

inactive conformation (IIc) and a Cus2-free, binding-active conformation (IIa). In its first 

proposed ATP-dependent role, Prp5 hydrolyzes ATP to bring about removal of Cus2, formation 

of stem loop IIa, and stable binding of U2 to the BS. Given a recent study that showed evidence 

for Prp5 presence throughout the splicing cycle
33

, Prp5 may even perform further rounds of stem 

loop IIa-IIc interconversion to promote proper assembly and catalysis throughout the splicing 

process
19

. The second is the evolutionarily conserved branchpoint-interacting stem loop (BSL), a 

U2 RNA structural element that displays the BS interacting region of U2 through formation of 

base pairing between the adjacent regions
34

. The BSL is thought to play an important role with 

Prp5 in splicing assembly during U2 snRNP recruitment. Prp5 again utilizes ATP hydrolysis to 

disrupt the BSL and allow complete recognition of the intron by the U2 snRNA. Prp5 has been 

proposed to be involved in proofreading the substrate at this stage as hyperstabilization of the 

BSL slows the ATP-dependent unwinding of the BSL, allowing for suboptimal intron BS 

sequences to be utilized for splicing
34,35

. 

Upon incorporation of the U4/U5/U6 tri-snRNP, an extensive network of RNA-RNA and 

RNA-protein interactions must be broken and then reformed such that the U1 snRNP becomes 

displaced from the 5’SS allowing for the U6 snRNP to take its place, a process that utilizes the 

ATPase activity of Prp28 and Brr2 (Figure 1.4)
36

. Prp28 hydrolyzes ATP in order to remove or 

at least destabilize the U1 snRNP from the 5’SS. The U6 snRNA joins the spliceosome tightly 

base paired to the U4 snRNA, which serves more of a shuttling role, preventing U6 snRNA from 

prematurely recognizing and binding the 5’SS. Brr2 is the helicase responsible for unwinding the 
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Figure 1.4 RNA-RNA Rearrangements during Spliceosome Activation 

Extensive RNA-RNA rearrangements are required with the snRNA components of the 

spliceosome as well as with the pre-mRNA substrate to allow catalytic activation of the 

spliceosome. Figure adapted from Lührmann et al.
36
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U4/U6 duplex, allowing U6 to bind the now accessible 5’SS and the U1 and U4 snRNPs to 

completely dissociate from the spliceosome, resulting in formation of the activated conformation 

of the spliceosome (B
act

).  

Prp2 was first identified as one of several temperature-sensitive mutations in yeast that 

resulted in a splicing defect
37

. As their name implies, pre-mRNA precursor mutants, or prp 

mutants, accumulate precursor or splicing intermediates, suggesting that the specific mutation 

results in the protein being incapable of carrying out a specific function and thus certain step(s) 

of splicing. Although this particular prp2-1 allele was found to result in accumulation of pre-

mRNA upon shift to the non-permissive temperature, it was later found that Prp2 mutant alleles 

completely assemble into catalytically active spliceosomes (B
act

) whose activity can be restored 

upon addition of recombinant proteins Prp2, Spp2, Cwc25, and ATP
38

. The ATPase Prp2 

required at this step was found to cause a dramatic shift in spliceosome sedimentation coefficient 

upon ATP hydrolysis, suggesting either a significant loss of protein or a dramatic change in 

spliceosome conformation
39

. Proteomic and fluorescence microscopy analysis later revealed 

there is indeed no significant loss of protein, suggesting that the change in sedimentation 

coefficient is more than likely due to a change in conformation
40

. This new conformation, termed 

the B* complex, is capable of carrying out low levels of first step splicing, indicating that the 

action of Prp2 allows the spliceosome to experience conformations suitable for splicing. Only 

upon addition of Cwc25 does this first-step-capable conformation become stabilized and the first 

step of splicing can efficiently take place. The mechanism by which Prp2, Spp2, and Cwc25 

carry out their function is discussed in Chapter 2. Following the first step of splicing, the 

spliceosome core must be reorganized to allow attack of the 5’ exon on the 3’SS for exon 

ligation. This begins with ATP hydrolysis by Prp16 to remove Cwc25 from the BS so that the 
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second step factors can bind
41

. Like Prp2, Prp16 is thought to allow for a significant amount of 

proofreading at this stage, a discovery made when Prp16 mutants allowed mutated substrates to 

proceed through splicing in what was later termed the kinetic proofreading model
42

. It is 

hypothesized that the mutant Prp16 allows a suboptimal substrate to spend ample time in a 

conformation that promotes first step splicing with Prp2, Spp2, and Cwc25 present, consequently 

allowing splicing to occur even with a mutation in the BS. Conversely, normal Prp16 shifts the 

catalytic core towards the second step conformation upon ATP hydrolysis before a mutated 

substrate has the time to be spliced so that instead it is rejected.  

Further spliceosomal proofreading is provided by Prp22, which is thought to operate 

using a similar mechanism but detect mutations that affect exon ligation
43

. Prp22 hydrolyzes 

ATP to promote mRNA release following exon ligation. When an optimal 3’SS is detected, exon 

ligation will occur faster than Prp22 can hydrolyze ATP and, as a result, Prp22’s ATPase activity 

will release ligated mRNA from the spliceosome. However, the presence of a mutated 3’SS in 

the catalytic core will stall splicing immediately prior to the second step of splicing. ATP 

hydrolysis by Prp22 now occurs faster than exon ligation, resulting in the release of unspliced 

RNA from the spliceosome instead of the ligated mRNA. Given Prp22’s high in vitro helicase 

activity, it is thought that this release occurs through unwinding of the mRNA from the U5 

snRNA. Lastly, Prp43 utilizes ATP hydrolysis to completely dissociate the spliceosome allowing 

for further rounds of assembly and catalysis.  

1.2 Visualizing RNA Structure and Dynamics  

1.2.1 Single molecule FRET 

Any technique used to study a large, dynamic macromolecular complex such as the spliceosome 

must be sufficiently sensitive to detect low concentrations of sample, sufficiently specific to 
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address a particular location of interest amid a large background of other protein and RNA 

components, and sufficiently information-rich to allow rigorous testing of mechanistic 

hypotheses. One technique that meets these requirements is single-molecule fluorescence (or 

Förster) resonance energy transfer (smFRET)
44-47

. In a FRET experiment, a sample is labeled 

with a pair of fluorophores, chosen so that the emission spectrum of one (the “donor 

fluorophore”) overlaps with the absorption spectrum of the other (the “acceptor fluorophore”). 

When the donor is excited, a dipole-dipole interaction between it and the acceptor permits the 

transfer of energy between the two, with the efficiency of this process depending on the distance 

and relative orientation between the two fluorophores, the fluorescence quantum yield of the 

donor, and the extent of spectral overlap between the donor’s emission and the acceptor’s 

absorption (Figure 1.5a). This distance dependence, which has a sensitivity range of ~10-100 

Ångstroms, makes FRET a valuable technique for probing the conformations and conformational 

dynamics of biological macromolecules by monitoring changes in FRET efficiency
46-48

. In 

single-molecule FRET, the molecule of interest is immobilized sparsely on a microscope slide so 

that the donor and acceptor fluorescence intensities, and thereby the FRET efficiency, can be 

measured for individual molecules (Figure 1.5b,c)
45

. This is valuable because complex 

biological macromolecules often exist in multiple different conformations, and single-molecule 

FRET allows these conformations and their transitions to be observed, rather than reporting an 

ensemble average, which loses most of the information on transition kinetics, transient 

intermediates, and rare conformational states
45,49

.  

In recent years, smFRET has been applied to a number of protein-RNA complexes, 

including but not limited to the bacterial ribosome
50-52

, the yeast spliceosome
53-55

, and human 

telomerase
56,57

. In most smFRET work, purified nucleic acid and protein components have been 
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Figure 1.5 Using single molecule FRET to observe RNA dynamics 

(a) Distance-dependent changes in FRET utilizing donor (D) and acceptor (A) fluorescent dyes. 

(b) Typical smFRET trajectory depicting the anti-correlated nature of the donor (Cy3) and 

acceptor (Cy5) fluorophores. The corresponding FRET trajectory is fit to a Hidden Markov 

Model (HMM) using vbFRET software. (c) Monitoring time- and ATP-dependent changes in 

pre-mRNA conformation as the spliceosome assembles and carries out both steps of splicing on 

an immobilized substrate. (d) SiMPull-FRET immobilization of the B
act

 complex 
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immobilized on slides through biotin-streptavidin linkages. Even the comparably small yeast 

spliceosome contains so many different components (five different snRNAs and ~40 different 

proteins, depending on the stage of splicing)
58,59

 that it is not practical to purify every protein and 

RNA component in the spliceosome and reconstitute splicing “from scratch”. Conversely, when 

working in cell extract, splicing can be stalled at many different stages of the splicing cycle 

using, for example, genetic manipulations that are readily available in yeast, leading to 

accumulation of certain intermediate complexes that can then be isolated and subjected to 

biochemical analysis. The gap between these two areas of inquiry (single molecule observation 

of purified components and biochemical analysis of complexes isolated from cell extracts) was 

bridged by the technique of single-molecule pull-down (SiMPull), which was first demonstrated 

in 2011
60,61

. In this approach, a streptavidin-coated slide is incubated with a biotinylated 

antibody, and extract is prepared from cells bearing a matching epitope, for example, a TAP or 

FLAG tag, on a protein of interest. This extract is incubated on the slide, allowing a particular 

complex to be “pulled down” from the extract onto the slide through the interaction between the 

antibody and the epitope. An extension of this approach termed single-molecule pull-down 

FRET (SiMPull-FRET) allows complexes to be studied via smFRET that otherwise may be 

difficult to purify, immobilize and/or reconstitute, and offers the potential for them to be studied 

in cell extract (Figure 1.5d)
55

. This work will be thoroughly discussed in Chapter 2. 

A current challenge in the single molecule field is the proper and thorough analysis of 

complex datasets containing a large number of FRET states from several conditions with 

intricate kinetics. The classical analysis methods utilizing histogram and TODP analysis work 

great for understanding the average FRET behaviors within a population but fall short when 

subpopulations of molecules show distinct kinetics and more than two reversibly interchanging 
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states. An alternative analysis technique termed single molecule cluster analysis (SiMCAn)
62

 that 

allows for the complete interpretation of complex smFRET data will be discussed in Chapter 3.  

There is also a great interest in the smFRET and RNA fields to be able to project the 

FRET states and trajectories found for a particular RNA into predicted 2D and 3D structural 

pathways in the RNA folding landscape. Current theoretical research in RNA folding kinetics 

lacks support from experimental data. In addition, structure prediction software that is available 

can only incorporate biochemical footprinting data to modify predictions. The ability to translate 

a time series of FRET states and transitions into predicted changes in RNA structure would help 

give a more real picture of the structure of Ubc4 in each of the assembly and catalytic stages of 

splicing based solely on gathered smFRET data. A detailed description of a new method we have 

developed is provided in Chapter 4. 

1.2.2 Multiplexing through deep sequencing-coupled footprinting 

When measuring by smFRET the conformational dynamics of the Ubc4 pre-mRNA
53,62

, it was 

noticed that the RNA dynamically folds into long-lived high-FRET states even in splicing buffer 

alone, suggesting that the fluorophore-labeled exons are readily positioned much closer than 

expected from their linear sequence separation imposed by the 95-nt long intron. This 

observation is in accord with recently accumulating evidence that supports the hypothesis that 

intron secondary structure has a functional role in splicing. Unfortunately, smFRET 

measurements of a pre-mRNA’s structure only report on the relative distance between segments 

of a single RNA substrate, making the verification of such a hypothesis very difficult and time-

consuming. Recently, a significant amount of effort has been put forth to develop cheaper and 

more high-throughput approaches that allow for the investigation of RNA structure by 

combining RNA structure probing techniques (SHAPE, DMS, enzymatic probing) with 
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massively parallel sequencing to read out the results of a single RNA as well as entire 

transcriptomes. One such approach, selective 2’-hydroxyl acylation analyzed by primer 

extension and mutational profiling (SHAPE-MaP)
63

, utilizes an RNA modifying reagent to 

produce 2’-modified RNA within accessible, single-stranded regions of the RNA. These 

modifications are detected during deep sequencing and used as restraints in RNA structure 

prediction algorithms. A detailed description of first steps toward the use of SHAPE-MaP to 

investigate the intron structure hypothesis is provided in Chapter 5. 
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CHAPTER 2: Biased Brownian Ratcheting leads to pre-mRNA Remodeling and Capture 

prior to the First-Step of Splicing
1
 

 

2.1 Introduction 

Introns are removed by the spliceosome, a large ribonucleoprotein (RNP) complex, in a two-step 

transesterification process. In the first step, the 2’OH of the branchpoint adenosine (BP) attacks 

the phosphodiester bond at the 5’ splice site (5’SS), releasing the 5’ exon and creating the 

branched, lariat structure; in the second step, the 3’ hydroxyl of this exon attacks the 

phosphodiester bond at the 3’ splice site (3’SS), releasing the lariat intron and creating the 

spliced mRNA product
64

. The most conspicuous feature of this enzyme is that it lacks a 

preformed catalytic core, which is created in a stepwise fashion, beginning with the assembly of 

the U1 and U2 small nuclear RNPs (snRNPs) at the 5’SS and BP, respectively, to form the pre-

spliceosome (A complex)
59

. The U4–U6.U5 tri-snRNP then binds to create the mature 

spliceosome (B complex)
59

. Notably, however, U1 and U4 snRNPs must be removed before 

catalysis, creating first the activated B (B
act

) complex and then, after additional rearrangements, 

the catalytically active B* complex. The resulting post-first-step (C) complex then undergoes 

further remodeling required for the second step of splicing and the formation of mature mRNA
59

. 

                                                 
1 Adapted from Krishnana, R., Blanco, M., Kahlscheuer, M., Abelson, J., Guthrie, C., Walter, N.G. “Biased 

Brownian ratcheting leads to pre-mRNA remodeling and capture prior to first-step splicing. Nat. Struct. Mol. Biol. 

20, 1450-1457 (2013). Matthew Kahlscheuer performed all protein expression, purification, and fluorescent 

labeling, biochemical experimentation and validation of SiMPull-FRET, and smFRET experiments and data analysis 

involving labeled Cwc25. Ramya Krishnan performed all other smFRET experiments and data analysis. Mario 

Blanco performed biochemical experimentation and developed the MATLAB scripts used in this work.  
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The highly dynamic process of spliceosome assembly and catalysis is guided by a set of 

RNA-dependent ATPases of the DExD/H-box helicase family that collectively function to insure 

the fidelity of splicing
65

. A major experimental challenge has been to understand the precise 

conformational rearrangements of RNA and protein that accompany each ATP-dependent step. 

DExD/H-box helicase Prp2 is required for the first chemical step of splicing, and recent 

proteomic analyses of the B
act

, B* and C complexes revealed that its action results in the 

destabilization of the U2 snRNP-associated proteins SF3a and SF3b
38-40,66

. An attractive 

hypothesis is that SF3b sequesters the BP adenosine
67

 to prevent a premature attack on the 5’SS, 

in which case the ATP-dependent action of Prp2, together with its cofactor Spp2, would be 

required to initiate catalysis. In a biochemical tour de force, successful reconstitution of both 

steps of splicing with the addition of recombinantly expressed proteins to immunopurified 

splicing complexes has been demonstrated
38,68,69

. In particular, first-step chemistry could be 

achieved with the addition of ATP, Prp2, Spp2 and Cwc25
38

.  

We set out to investigate the roles Prp2, Spp2, and Cwc25 have in activating the 

spliceosome for  the first step of splicing, developing an approach that couples the purification of 

specific splicing complexes with single-molecule fluorescence resonance energy transfer 

(FRET). We used the resulting single-molecule pulldown FRET (SiMPull
70

-FRET) technique to 

analyze a functional B
act

 complex assembled on a pre-mRNA with fluorophores near the scissile 

bonds. When this complex is assembled in an extract with a temperature-sensitive allele of Prp2 

(prp2-1)
37

, the B
act

 spliceosome is stalled and can catalyze the first step of splicing only through 

formation of the B* complex, upon addition of ATP, Prp2 and Spp2, and then the C complex, 

upon further addition of Cwc25. Using SiMPull-FRET, we show that ATP-dependent action of 

Prp2 and its cofactor Spp2 unlocks reversible switching of the intron between splicing-active and 
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splicing–inactive conformations. Cwc25 then rectifies this thermal Brownian ratcheting by 

stabilizing the conformation in which the 5’SS and BP are in close proximity, driving the 

equilibrium toward catalysis. 

2.2 Materials and Methods 

2.2.1 Affinity purification of the B
act

 complex 

Extracts were prepared from a prp2-1 cef1-TAP yeast strain (ATCC 201388: 

MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0
71

), heated at 37 °C for 40 min to inactivate Prp2 and stall 

the spliceosome at the B
act

 complex. In a final volume of 135 μl, 40% (v/v) of this heat treated 

extract was incubated with ~50 pmoles FRET labeled Ubc4 pre-mRNA
53

 in the presence of 2 

mM ATP in splicing buffer (8 mM HEPES-KOH, pH 7.0, 2 mM MgCl2, 0.08 mM EDTA, 60 

mM Ki(PO4), 20 mM KCl, 8% (v/v) glycerol, 3% (w/v) PEG, 0.5 mM DTT) and incubated at 23 

°C for 35 min. For biochemical experiments, streptavidin-coated magnetic beads (Dynabeads® 

MyOne™ Streptavidin C1, Invitrogen) were handled as per the manufacturer’s recommendation. 

For each splicing reaction, 200 μl of the suspended beads were equilibrated in 200 μl of T50 

buffer (50 mM Tris-HCl, pH 7.5, 50 mM NaCl). An equal volume of 0.5 mg/ml biotin-IgG 

(ZyMAX™ Rabbit Anti-Mouse IgG (H+L) - BT (ZyMAX™ Grade)) in T50 was added and 

incubated in a tube rotator at 23°C for 30 min. The beads were then pulled down using a magnet 

and the supernatant was discarded. To block any streptavidin not bound by biotin-IgG, the beads 

were incubated with excess free biotin at 1.5 mg/ml in T50 buffer in a tube rotator at 23°C for 20 

min. After equilibration in splicing buffer, the independently assembled splicing reaction were 

added and incubated in a tube rotator for 30 min at 23°C to allow the protein A of the Cef1-TAP 

tag in the spliceosome complex to bind the biotin-IgG. Upon removal of the supernatant, the 

beads were further washed three times with buffer A (20 mM HEPES-KOH, pH 7.9, 120 mM 
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KCl, 0.01% NP40, 1.5 mM MgCl2, 5% (v/v) glycerol) and once with splicing buffer to further 

purify the B
act

 complex. The reactions are scaled up for reconstitution reactions pursued in 

parallel and split at this step. Prp2, Spp2 and Cwc25 were added at 90-120 nM final 

concentration in splicing buffer in the presence or absence of 2 mM ATP or AMPPNP or UTP 

and incubated in the tube rotator for 30-40 min for various levels of reconstitution. RNA was 

isolated and products of splicing were analyzed on a denaturing, 7 M urea, 15% polyacrylamide 

gel and scanned on a Typhoon variable mode imager (GE Healthcare). Normalized product for 

Ubc4 was calculated by taking the amount of free 5’ exon and dividing that by the total amount 

of pre-mRNA and free 5’ exon. Normalized product for Actin was calculated by taking the 

amount of lariat intermediate and dividing that by the total amount of pre-mRNA and lariat 

intermediate. 

2.2.2 Cloning, expression, and purification of splicing factor proteins 

The full-length PRP2 gene was PCR-amplified and ligated into plasmid pRSETa (Invitrogen) 

with a C-terminal hexahistidine tag. The N-terminally truncated form of SPP2 (coding for amino 

acids 37-185) containing a C-terminal hexahistidine tag, and the full-length Cwc25 gene were 

obtained from Reinhard Lührmann (Max Planck Institute for Biophysical Chemistry, Germany). 

Cwc25 was subcloned into a pRSETa plasmid containing a single cysteine residue and 

hexahistidine tag at the C-terminus. The constructs were then transformed into Escherichia coli 

strain Rossetta II (Novagen). Cultures were grown in 2-4 L of TB medium and induced with 125 

μM IPTG. Cultures were then incubated at 20 ºC for 18 h. Cells were harvested, washed, and the 

pellets stored at -80 ºC.  
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Figure 2.1 Binding specificity of B
act

 complex and purified proteins used for 

reconstitution 

(a) Field of view showing direct binding of the 5’ biotinylated pre-mRNA to the streptavidin 

on the slide surface saturated with biotin-IgG and free biotin. (b) Field of view showing the 

binding of the immunopurified B
act

 spliceosome (with Cef1-TAP) to the streptavidin on the 

slide surface saturated with free biotin and biotin-IgG. (c) Field of view showing the binding of 

the immunopurified B
act

 spliceosome (with Cef1-TAP) to the streptavidin on the slide surface 

saturated with free biotin in the absence of IgG-biotin. Left and right panels are the Cy3 and 

Cy5 channels, respectively. A 532 nm and 635 nm laser was used for excitation under all 

conditions. (d) Quantification of number of molecules under conditions a-c. (e) Protein 

expression and purification confirmed by SDS-PAGE analysis. Histidine-tagged Cwc25, Prp2 

and Spp2 are shown in lanes 1, 2 and 3, respectively. Cy5-fluorophore labeled single-cysteine 

Cwc25 is shown in lane 4. 
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Table 2.1 Sequence information of oligonucleotides used in this study 

The Ubc4 intron is italicized, and the allyl-amine modified uridines are denoted as (5-N-U). 

The red and green colors represent positioning of the Cy5 and Cy3 fluorophores, respectively. 

In the 3’SS mutant, the two bold and underlined cytosines replace guanines in the wildtype 3’ 

splice site. The bold and underlined A is the BP adenosine. dSplint is the DNA splint used for 

templated ligation to synthesize the pre-mRNA as described
53

. Sp9 denotes a 9-carbon linker. 
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Purification of Cwc25-His and Spp2-His was performed as described
38

. Protein purity 

was confirmed by 16% SDS-PAGE (Figure 2.1) and proteins were either first fluorescently 

labeled or directly aliquoted, flash frozen in liquid nitrogen, and stored at -80 ºC. Protein 

concentrations were determined by Bradford assay and measurement at A280
72

. His-tagged Prp2 

obtained from E.coli cell lysate was purified as described. Protein purity was confirmed by 10% 

SDS-PAGE (Figure 2.1) and the final product aliquoted, flash frozen in liquid nitrogen, and 

stored at -80 ºC. Protein concentrations were determined by Bradford assay and measurement at 

A280. RNA sequences used in the study are reported in Table 2.1. 

2.2.3 Single-molecule FRET of purified spliceosomal complexes 

For the single molecule FRET experiments on affinity-purified complexes, we prepared slides 

using previously published procedures
73

. In short, the surface of a quartz slide was amino 

functionalized, PEGylated and reacted with 0.2 mg/ml streptavidin in T50 buffer for 15 min at 

23°C. 100 μl of 0.5 mg/ml biotin-IgG in T50 was flowed onto the slide and incubated for 20 min, 

followed by free biotin at 1.5 mg/ml in T50 buffer for 15 min. B
act

 spliceosomal complexes were 

assembled and stalled as described above by incubation of FRET labeled Ubc4 pre-mRNA with 

heat treated prp2-1 cef1-TAP yeast splicing extract in splicing buffer supplemented with 2 mM 

ATP and an oxygen scavenger system (OSS) composed of protocatechuate dioxygenase, 

protocatechuate and Trolox
53

. These complexes were then flowed onto the slide surface and 

incubated for 15-20 min to allow the Cef-1-TAP on the spliceosome to bind biotin-IgG. The 

slide surface was washed rigorously and reconstituted (in the presence of OSS) as described for 

the biochemical purification and incubated for 10-40 min before acquiring data. A home-built 

prism-based TIRF microscope was used to collect data as described
53,74,75

. To obtain FRET data, 

we directly excited the Cy3 donor near the BP adenosine with a 532-nm laser, and we recorded 
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emission by Cy3 and Cy5 fluorophores at 100-ms time resolution using an intensified CCD 

camera (I-Pentamax, Princeton Instruments). 

2.2.4 Fluorescent labeling of Cwc25 and distance estimation from FRET 

The single-cysteine mutant of Cwc25 was labeled with Cy5-maleimide (GE Healthcare). 

Labeling was performed using 0.150 μmol of Cwc25 in storage buffer and 0.5 mg of dye 

containing 10 μM reducing agent Tris(2-carboxyethyl)phosphine (TCEP) (Sigma). Reactions 

were incubated at 23°C for 1 h followed by overnight at 4 ºC. Free dye was removed by re-

purification of protein on a Ni
2+

 column and dialysis back into storage buffer. The degree of 

labeling was determined using GE Healthcare’s protocol and was found to be 70%. Protein 

functionality was confirmed using an ensemble pull down assay as described above. The 

fluorophore distance, R, and the apparent FRET efficiency, Eapp, were calculated as 

described
74,76,77

 from the equations 16

0 ])/(1[  RRcEapp , where c = 0.69, R0 = 54 Å, and 
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 . φ and η signify the fluorophores quantum yields and detector 

channel efficiencies, respectively. The donor and acceptor intensities ICy3 and ICy5, respectively, 

were corrected for leakage of donor photons into the acceptor channel. 

2.2.5 Single-molecule data analysis 

Cross-correlation analysis was carried out utilizing customized MATLAB scripts with built-in 

xcorr function. Time lags for the cross-correlation ranged from 0-5 s (0-50 frames of each 0.1 s 

integration time). Quality control for the raw smFRET trajectories obtained from the 

experimental conditions were performed as described
73

. Histograms for data sets measuring pre-

mRNA dynamics were constructed by sampling 100 frames of data from each molecule.  
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Figure 2.2 Single molecule clustering and cross correlation analysis 

(a) Histogram of HMM-idealized states for each of the K-means derived clusters L1, L2, M and 

H obtained by clustering single molecule trajectories from all the experimental conditions (B
act

, 

B* and C). (b) Representative molecule showing the FRET states assigned by HMM upon K-

means clustering. (c) The number of states for clustering was selected through the use of the 

Bayesian Information Criterion (BIC). (d) The mean and standard deviation of the FRET states 

from the four K-means derived clusters is shown. *** indicates an extremely significant 

(p<0.001) difference between all pairwise comparisons as determined by the Tukey test. (e) 

Sample static trajectory from the B
act 

condition with the raw donor (Cy3, green), acceptor (Cy5, 

red), FRET (black) trajectories, and idealized HMM models (cyan).The corresponding cross 

correlation analysis of donor and acceptor trajectories with time lags from 0-50 is shown to the 

right of each panel. (f) Sample dynamic trajectory from the B
act  

 condition and corresponding 

cross correlation analysis. 
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Table 2.2 K-means clustering parameters used on the HMM assigned FRET states 

Segment number (first column), the mean raw FRET value (second column), HMM state 

(third column), and normalized difference of mean acceptor and mean donor intensities for 

each segment (fourth column).  
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Histograms for Cwc25-Cy5 and BP-Cy3 FRET experiments were constructed by sampling the 

entire length of data. Hidden Markov Modeling (HMM) was performed on trajectories utilizing 

the vbFRET software suite
73

. Each trajectory was individually fit with models ranging from 1-5 

states with the optimal number of states determined by the vbFRET algorithm. The inherent 

experimental variations of the FRET signal between single molecules leads to a slightly different 

state assignment for similar states across different molecules. A K-means clustering approach 

was therefore performed in MATLAB to group similar states into larger macro states (L1, L2, M 

and H). A matrix cataloging the HMM assigned FRET state, raw FRET level, and difference in 

donor and acceptor intensities for each HMM derived event was utilized as input for the K-

means algorithm (Figure 2.2 and Table 2.2). Four macro states were identified whose 

boundaries were used to re-assign the original HMM idealized FRET states. The number of 

macro states was determined using the Bayesian Information Criterion (BIC) as a model 

selection tool. K-means and BIC have been used previously to group and accurately determine 

the number of clusters in single molecule data
78-80

. The BIC score was calculated in MATLAB as 

follows:  

                                            

where LLF is the log-likelihood function, NumParams the number of parameters, and NumObs 

the number of observations. The number of clusters (K) was varied from 2-8. The lowest BIC 

score was achieved for k = 4 (Figu re  2 .2 c). Once identified, the clusters were tested for 

similarity using the multi-comparison Tukey test in the software package PRISM-GraphPad. The 

results of this analysis indicate that there is a significant difference (p<0.001) for the pairwise 

comparison of all four clusters (Figu re  2 .2 d).  
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Transition Occupancy Density Plots (TODPs) were used to plot the fraction of molecules 

that contain any given HMM transition at least once
73

. Molecules that did not exhibit any 

transitions were plotted along the diagonal at their respective positions. For kinetic rate 

calculations, Transition Density Plots (TDPs) that are scaled by the number of times a transition 

occurs irrespective of how many molecules exhibit that transition were used as described
73

. A 

cumulative histogram scatter plot was then fit with a double-exponential association equation in 

MicroCal Origin (Figu re  2 .3 ). A weighted average (kw,observed) of the two rate constants from 

the double-exponential fits was calculated based on the amplitude values of the exponential 

equation. To correct for bias introduced by the limited observation window used to measure 

dwell times, the measured kw,observed values were corrected by subtracting the photobleaching rate 

constant and the reciprocal of the observation window to yield kw,actual as described
81

. 

Equilibrium constants (Keq) were calculated by taking a ratio of the forward and backward rate 

constants for a set of state-to-state transitions. Post-synchronized histograms (PSHs) were 

constructed by synchronizing individual FRET events to the time where one of the macro-states 

(M, H) was achieved. The scale bar represents the fraction of FRET events which exhibit a 

certain FRET state at a given time.  

2.3 Results 

2.3.1 Purifying B
act

 in complex with FRET-labeled Ubc4 pre-mRNA 

It has been known for almost 25 years that a Prp2-1 yeast splicing extract can be heat 

inactivated
37

. In this extract, the spliceosome is fully assembled but cannot carry out the first step 

of splicing. The immature Prp2-1 spliceosome purified by gradient centrifugation (B
act

) was 

shown to proceed through the first step of splicing only upon the addition of Prp2 protein and 

heat-stable factor(s)
68

. More recently, this experiment was repeated with 
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Figure 2.3 Post-first step splicing signature and single molecule kinetic analysis 

(a) FRET probability distribution for molecules stalled by the addition of Prp16 (K379A) 

dominant negative (DN) mutant. (b)TODP for Prp16DN mutant. (c) Transition Density Plots 

(TDPs) for the B* and C complex molecules scaled to the number of transitions determined 

by HMM. (d) Cumulative distribution plot of dwell times extracted for the indicated transition 

and fit with either a single- or double-exponential rate equation. (e) Parameters for the double-

exponential equations fitted to the dwell time data. To reduce the dimensionality of the data, a 

weighted average rate constant kw was calculated by utilizing the amplitudes associated with 

each time constant as weighting factors. kw was used for Keq calculations and rate 

comparisons between B* and C complex conditions. 
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purified Prp2, Spp2 and the (since identified) heat stable factor Cwc25
38

. Such a purified system 

is ideal for exploring substrate dynamics using single-molecule FRET. To this end, we 

constructed a yeast strain containing the prp2-1 mutation and a tandem affinity purification 

(TAP) tag derivative of one of the NTC components, Cef1, known to be present in the 

spliceosome at this stage
38,39

. This approach allowed us to purify the stalled B
act

 complex via the 

Cef1-TAP tag using biotin-IgG bound to streptavidin. 

 The Ubc4 pre-mRNA used in this study was synthesized chemically and labeled with the 

FRET donor Cy3, which is 6 nucleotides downstream from the BP adenosine, and with the 

FRET acceptor Cy5, which is 7 nucleotides upstream from the 5’SS (Table 2.1). Splicing 

reactions were assembled for 30 minutes using heat-inactivated Prp2-1 extract containing the 

fluorophore-labeled pre-mRNA in the presence of 2 mM ATP. We bound the pre-catalytic B
act

 

spliceosome either to streptavidin-coated magnetic beads (for biochemical analysis) or to a PEG-

passivated slide coated with streptavidin, biotin-IgG, and excess free biotin (for single molecule 

analysis) (Figure 2.4a). Free biotin was added to block any biotin binding sites not associated 

with biotin-IgG and prevent direct binding of the 5’ biotinylated pre-mRNA to the slide. Surface 

binding of the pre-mRNA alone was at least 11-fold lower than that of the Cef1-TAP-tagged B
act

 

complex containing the pre-mRNA (Figure 2.1a,b,d). We detected similarly minimal 

nonspecific binding of the Cef1-tagged complex when we omitted biotin-IgG (Figure 2.1c) or 

when a TAP tag was present on Prp4, a protein that was recently shown to be absent from the 

B
act

 complex (data not shown)
39

. To verify that our purification yielded functional B
act

 pre-

spliceosome, we added micrococcal nuclease (MNase)-treated (and thus RNA-free) whole cell 

extract to the stalled, bead-purified B
act

 complex and incubated the mixture for 40 min at 23 ºC 

under splicing conditions. We found that both steps of splicing were reconstituted (Figure 2.5), 
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Figure 2.4 The SiMPull-FRET approach used to interrogate active splicing complexes 

(a) Schematic showing the affinity purified B
act

 complex immobilized to a streptavidin coated 

quartz slide via biotinylated-IgG. The green and red stars on the pre-mRNA represent Cy3 

and Cy5 fluorophores, respectively. (b) A 15% urea-polyacrylamide gel scanned using a 

variable mode Typhoon imager shows pre-mRNA and first-step products (the top panel shows 

intron-lariat, the middle panel shows pre-mRNA, and the bottom panel shows the 5’-exon, in 

each case rendered using an overlay of the Cy3 and Cy5 scans). Error bars indicate the 

standard deviation obtained from triplicate experimental sets. 
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demonstrating that only proteins are needed to chase B
act

 into splicing the substrate. In addition, 

we bead-purified the B
act

 complex and found that the recombinant proteins Prp2 and Spp2 

(Figure 2.6) are sufficient to yield an amount of first-step splicing products (Figure 2.4b) that is 

slightly higher than that observed for the previously characterized actin pre-mRNA
38

 (Figure 

2.5b,c). Additionally when we added Cwc25, we observed a two- to ten-fold enhancement of 

first-step splicing (Figure 2.4b). Our fluorophore-labeled Ubc4 construct showed a first-step 

splicing efficiency ranging from 12% to 40% when incubated at 23 °C for 30-40 min, within 

two-fold of that of other labeled and unlabeled Ubc4 constructs
53

. Taken together, these 

experiments establish that FRET labeling the pre-mRNA substrate is compatible with the 

expected assembly and splicing activity of the immunopurified B
act

 complex, paving the way for 

SiMPull-FRET interrogation. 

2.3.2 B
act 

complex holds the pre-mRNA 5’SS and BP in a distal conformation  

To obtain mechanistic insight into pre-mRNA splice-site juxtaposition during the Prp2-driven 

restructuring of the B
act

 complex into the catalytically activated B* complex, we carried out 

SiMPull-FRET on the slide-bound B
act

 complex (Figure 2.4a) in standard splicing buffer. After 

verifying that each selected pre-mRNA molecule contained one Cy3 and one Cy5 fluorophore, 

we collected FRET values over the first 100 video frames (at 100-ms time resolution) from 297 

molecules. Histograms of the FRET values indicated a single Gaussian distribution with an 

average FRET value of 0.3±0.15 (s.d.) (Figure 2.7a). Given the background noise inherent to 

any single-molecule experiment, we used hidden Markov modeling (HMM) to find the 

underlying FRET states
73

. Using a K-means approach, we then clustered the HMM-assigned 

states using all the experimental conditions from this study into four macro states with FRET 

values of 0.0-0.23 (state L1), 0.23-0.42 (L2), 0.42-0.60 (M), and 0.6-1.0 (H) (Figure 2.2 and 
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Figure 2.5 Confirmation of B
act

 complex specificity and activity 

(a) 15% Urea-polyacrylamide gel scanned with a variable mode Typhoon imager. The intron 

and intron-lariat products are observed in the Cy3 scan (left) and the mature mRNA product is 

visualized in the Cy5 scan (right). Lanes 1, 2 and 3 represent fractions wash, unbound and 

bound, respectively. Conditions a and c represent wild-type Ubc4 pre-mRNA assembled in 

B
act

 complex and immobilized on magnetic beads with biotin-IgG. Condition b is wild-type 

pre-mRNA assembled in the absence of extract. Bound molecules were reconstituted with or 

without Micrococcal Nuclease (MNase) treated extract. (b) 6% Urea-polyacrylamide gel 

scanned using a variable mode Typhoon imager. Affinity purified B
act

 complex formed with 

Cy5-actin pre-mRNA supplemented with Prp2, Spp2 and 2 mM ATP (lane 1) and Prp2, Spp2, 

Cwc25 (lane 2). (c) Quantification of lanes 1 and 2 from panel b. 
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Figure 2.6 Confirmation of B
act

 complex activity using recombinant proteins 

15% polyacrylamide gel scanned with a variable mode Typhoon imager. Ubc4 pre-mRNA 

assembled in B
act

 complexes and supplemented with or without recombinant proteins Prp2, 

Spp2, Cwc25. This represents the uncropped unedited form of the gel presented in Figure 2.4 
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Figure 2.7 In the Prp2-stalled B
act

 complex, the pre-mRNA is predominantly 

restricted to a static low FRET state 

(a) FRET probability distribution of the raw single molecule FRET trajectories from the 

purified B
act

 complex. (b) Representative time traces of the B
act

 complex with raw donor 

(Cy3, green), acceptor (Cy5, red), and FRET (black) trajectories and their idealized HMM 

(cyan). The right panel of each molecule is the corresponding cross-correlation of donor 

and acceptor intensities. (c) Transition Occupancy Density Plot (TODP) showing the 

fraction of B
act

 complex molecules that either lack a transition and thus lie on the diagonal 

(dotted white line) or transition from one indicated FRET state to another. L1, L2, M, or H 

refers to the four states resulting from clustering analysis. 
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Table 2.2). The dominant behavior in the B
act

 complex is a static low-FRET state L2 (Figure 

2.7b). Transition Occupancy Density Plots (TODPs), which are scaled to emphasize the 

transitions found to be most common among a molecule population
73

, indicate that the static L2 

state represents the only behavior in ~52% of all B
act

 molecules (Figure 2.7c and Table 2.3). In 

addition, molecules in this state have few transitions (Figure 2.7b, HMM fit, cyan line). To test 

for dynamics that would be too fast for detection by HMM, we performed cross-correlation 

analysis between the donor and acceptor trajectories of each molecule, and in the resulting 

scatter around 0, found no evidence for rapid transitions (Figure 2.7b and Figure 2.2). Although 

splice site recognition begins in the splicing cycle as early as the commitment complex
82

, our 

results suggest that the 5’SS and BP in the B
act

 complex are kept stably apart, probably not close 

enough for splicing chemistry to occur. 

2.3.3 Prp2 mediates an NTP-dependent remodeling of the pre-mRNA 

The ATPase action of Prp2 has been shown to catalyze a large conformational change that 

activates the spliceosome for the first step of splicing
38,39,68

. Spliceosomal binding of Prp2 is 

dependent on its interaction with the G patch domain of its cofactor protein Spp2
83,84

. The 

addition of Prp2, Spp2 and ATP transforms the pre-catalytic B
act

 complex into the catalytically 

active, distinctly sedimenting B* complex and results in low levels of first-step splicing
38

. To 

investigate the role of Prp2 in pre-mRNA remodeling during this step, we incubated the B
act

 

complex assembled on the slide surface with Prp2, Spp2 and 2 mM ATP (henceforth referred to 

as B* complex conditions). B* complex conditions resulted in a substantial shift in the FRET 

histogram toward a new ~45% population with a mean FRET value of 0.71±0.01 (s.d.), 

diminishing the lone 0.33±0.01 FRET distribution observed for the B
act

 complex (Figure 2.8a). 

In contrast to the predominantly static L2 state of the B
act

 complex, molecules under B* 
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Table 2.3 TODP quantification for all data sets 

Molecules with at least one occurrence of the FRET transition given by the Initial and Final 

FRET states in columns one and two are counted and divided by the total number of 

molecules in that transition. Molecules that only occupy one state are accounted for in rows 

where the Initial and Final FRET states are equal. 

 



41 

 

conditions show  dynamic (reversible) excursions to high-FRET states, indicating that the 5’SS 

and BP can now reach the close proximity required for first-step chemistry. More specifically, 

the B* condition comprises the L2, M and H FRET states, where the H state is accessed from 

either the L2 or M states (Figure 2.8b). TODP plots show that only ~11% of molecules retain 

the static L2 state characteristic of the B
act

 complex, whereas ~39% of molecules exhibit at least 

one L2-to-H transition (Figure 2.8c and Table 2.3). Notably, transitions into the H state were 

short lived in the majority of molecules (Figure 2.8b). However, 12% of molecules showed a 

static high-FRET state (Figure 2.8c), indicating that they made a transition through the low 

levels of first-step splicing observed under B* conditions, after which the labeled 5’SS and BP 

become covalently linked (Figure 2.4b). To verify that this static high-FRET state corresponds 

to the pre-mRNA substrate configuration after the first step of splicing, we trapped this 

configuration using a dominant-negative Prp16 mutant (Prp16DN; K379A)
39,85,86

 added to the 

(non-heat-inactivated) Cef1-TAP-tagged Prp2-1 yeast extract in the presence of 2 mM ATP. This 

protocol is expected to enrich for the post-first-step C complex, which was then immobilized on 

the slide surface, washed and imaged. The resulting histogram showed a dramatic enrichment to 

~76% of a high-FRET population with a mean FRET value of 0.7±0.01 (s.d.) (Figure 2.3 and 

Table 2.3). TODP analysis revealed that ~70% of all molecules adopt the same static high-FRET 

state first observed under B* conditions, strongly supporting the notion that these molecules 

indeed have undergone the first chemical step of splicing. 

 Prp2 can directly bind a region in the pre-mRNA downstream of the BP adenosine, even 

in the absence of ATP
87,88

. To investigate whether Prp2 alone can induce the observed pre-

mRNA remodeling, we omitted Prp2 or Spp2 from our B* conditions and found the resulting 

FRET histograms to be indistinguishable from those of the starting B
act

 complex (Figure 2.8d, 
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Figure 2.8 Upon the addition of ATP, Prp2, and Spp2, the pre-mRNA is able to explore 

splice site proximity 

(a) FRET probability distribution of the raw single molecule FRET trajectories upon the 

addition of Prp2, Spp2, and ATP to the B
act

 complex, leading to formation of the B* complex. 

(b) Representative single molecule FRET time trajectories from the B* condition with the raw 

donor (Cy3, green), acceptor (Cy5, red), FRET (black) trajectories, and idealized HMM models 

(cyan). (c) TODP generated from the idealized HMM for molecules in the B* condition. L1, 

L2, M, or H refers to the four states resulting from clustering analysis. (d) FRET probability 

densities generated from molecules in B
act

 incubated with various combinations of components 

required for formation of B* (Prp2, Spp2, and ATP). In addition, B
act

 was incubated with Prp2, 

Spp2, and one of two NTP analogs, non-hydrolysable AMP-PNP or UTP. 
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average FRET value of 0.31±0.16 and 0.33±0.13 (s.d.), respectively). Next, we studied the role 

of ATP in the remodeling of the B
act

 complex. For most spliceosomal DExD/H-box helicases, 

both ATP-dependent and ATP-independent roles have been proposed
89-93

. Prp2 in particular has 

been shown to cause extensive conformational remodeling of the spliceosome in the absence of 

ATP, whereas the displacement of SF3b is ATP dependent
39

. To determine whether the pre-

mRNA remodeling observed here requires ATP, we incubated the B
act

 complex with Prp2 and 

Spp2 in the absence of ATP and observed no appreciable change in the FRET histogram (Figure 

2.8d, average FRET value of 0.33±0.12 (s.d.)). When the non-hydrolysable ATP analog 

AMPPNP was used instead of ATP, the FRET histogram was again similar (average FRET value 

of 0.37±0.11) to that of the B
act

 complex, with no notable excursion to higher FRET states, 

showing that ATP hydrolysis is required for these excursions to occur (Figure 2.8d). (We note 

that the minor upwards shift observed in the histogram may be due to binding of AMPPNP to 

Prp2, resulting in a slight conformational change.) Finally, the DExD/H box helicases involved 

in spliceosomal reorganization are either integral components of snRNPs or extrinsic 

components, as is Prp2. MS studies have shown that the stalled B
act

 complex contains 

stoichiometric amounts of the DExD/H-box helicase Brr2, the integral component of the U5 

snRNP responsible for U4-U6 unwinding
94

. Direct interactions between Prp2 and the C-terminus 

of Brr2 have recently been discovered
88

, suggesting a possible role for Brr2 in first-step catalytic 

activation. To test this possibility, we exploited the fact that Brr2 is a strict ATPase
95

 whereas 

Prp2 is a broad NTPase
96

, and supplemented the B
act

 complex under B* conditions with UTP 

instead of ATP. The resulting FRET efficiency histogram is clearly distinct from that of B
act

 and 

overlays well with that of the ATP-mediated B* condition, with a slightly less-efficient shift 

toward the higher FRET population (Figure 2.8d). This lower efficiency is consistent with the 
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~2-fold reduction in activity of Prp2 in the presence of NTPs other than ATP
96

. Collectively, 

these results indicate that the NTP-driven helicase activity of Prp2 in complex with its activator 

Spp2 causes a large structural reorganization of the pre-mRNA that allows the distal 5’SS and 

BP of the B
act

 complex to reversibly access proximal conformations, which in turn enable first-

step splicing. 

2.3.4 Cwc25 enhances first-step splicing by H state stabilization  

Although the pre-mRNA is remodeled by the NTPase action of Prp2–Spp2, it does not undergo 

efficient first-step catalysis. Further enhancement of first-step splicing efficiency requires 

addition of Cwc25 to the B
act

 complex incubated with Prp2, Spp2 and ATP (Figure 2.4b). 

Cwc25 was identified as one of a group of proteins in complex with Cef1–Ntc85 of the NTC 

complex
97

. To determine the role of Cwc25 in remodeling of the pre-mRNA, we performed 

SiMPull-FRET on the purified B
act

 complex supplemented with Prp2, Spp2, ATP and Cwc25 

(henceforth referred to as C complex conditions). This resulted in a FRET histogram with an 

enhanced ~73% population with a mean FRET value of 0.75±0.01 (s.d.) (Figure 2.9a). We 

found the FRET states under C complex conditions to be the same as those under B* conditions, 

with the L2-to-H and M-to-H transitions prevalent; however, the occupancy in the H state was 

considerably enhanced under C conditions (Figure 2.9b). TODP analysis revealed the fraction of 

molecules displaying at least one L2-to-H and M-to-H transition to be similar under B* and C 

conditions, whereas the static H state occupancy (35%) was ~3-fold increased (Figure 2.9c and 

Table 2.3). This shift is similar in magnitude to the enhancement in first-step splicing induced by 

Cwc25 (Figure 2.4b), consistent with the static H state representing the pre-mRNA in the C 

complex after the first chemical step of splicing. Post-synchronized histograms (PSHs) created 

by aligning the HMM-fitted traces to start at the M state show that the molecules under C 
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Figure 2.9 Under C complex conditions, the pre-mRNA accesses dynamic and stabilized 

high-FRET states 

(a) FRET probability distribution of the raw single molecule FRET trajectories upon the 

addition of Prp2, Spp2, Cwc25, and ATP to the B
act

 complex. (b) Representative single 

molecule FRET trajectories of molecules from the C complex condition with the raw donor 

(Cy3, green), acceptor (Cy5, red), FRET (black) trajectories, and idealized HMM models 

(cyan). (c) TODP generated from the idealized HMM for molecules in the C complex 

condition. L1, L2, M, or H refers to the four states resulting from clustering analysis. 
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conditions both transition more frequently to the H state and exhibit a higher residence time once 

in the H state (Figure 2.10a). A similar comparison of transitions starting at the H state further 

emphasizes the stabilization of this state by Cwc25 under C conditions (Figure 2.10a). To rule 

out that a change in photostabilty of molecules in the C complex affects the relative prevalence 

of the H state, we analyzed the average photobleaching time under B
act

, B* and C conditions and 

found them to be comparable (Table 2.4). To quantitatively characterize the effects of Cwc25 on 

the conversion of the B* to the C complex, we plotted the cumulative dwell times for the forward 

and backward L2-to-H and M-to-H transitions under both conditions and fit them with double-

exponential functions (Figure 2.3). A comparison of the weighted average rate constant for the 

L2-to-H transition showed similar forward and backward rate constants under both conditions, 

yielding equivalent equilibrium constants Keq = kforward/kbackward of ~0.80 (Figure 2.3c). In 

contrast, the presence of Cwc25 accelerates the forward and reduces the backward rate constant 

of the observed M-to-H transition, leading to a Keq that is ~3-fold more favorable for the 

dynamic H state under C conditions than under B* conditions (Figure 2.10b). Notably, the 

molecules in the static H state, which results from the chemical bond formed after first-step 

catalysis, do not contribute to this kinetic effect. State dwell times cannot be calculated for such 

molecules, which are only in one state of poorly defined duration during the entirety of our 

observation window. The effect of static H molecules is therefore more appropriately represented 

by the increase in molecules of high FRET on the TODP diagonal (compare Figure 2.8 and 

Figure 2.9). We also note that both dynamic and static H state molecules, however, do 

contribute to the enhanced high-FRET peak of the histogram in Figure 2.9a. 

 To show that the same pre-mRNA molecule can be converted from B* to C complex, we 

observed the same field of view before and after shifting from B* conditions (excluding Cwc25) 
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Figure 2.10 Cwc25 enhances the first step of splicing by stabilizing the H state 

(a) A comparison of the aggregate molecular behavior before (B* condition) and after (C 

condition) Cwc25 addition through post-synchronized histograms (PSH) with all trajectories 

synchronized to start from either the M (top) or H state (bottom). (b) A comparison of the rate 

constants of the observable transitions under B* and C conditions. The thickness of arrows 

corresponds to the relative rate constants. (c) Representative single molecule FRET trajectories 

showing transition dynamics from the same molecules imaged before (B* condition) and after 

(C condition) Cwc25 addition with the raw donor (Cy3, green), acceptor (Cy5, red), and FRET 

(black) trajectories. The axis breaks represent 10 min of incubation after Cwc25 addition. 
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Table 2.4 Comparison of average photobleaching times and number of molecules per 

condition 
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to C conditions (including Cwc25) and incubating for 10 min in the dark. Before the dark period, 

molecules were dynamically shuttling between the L2 and H states. A subset of molecules were 

observable after the dark period and of those, ~50% shifted to the stabilized H state (Figure 

2.10c and Table 2.5). Taken together, our results suggest that Cwc25 acts kinetically to stabilize 

the catalytically favorable conformation, thereby effecting an enhancement of the first chemical 

step of splicing. 

2.3.5 Cwc25 dynamically interacts near the BP upon B* formation 

Previous studies have shown that Cwc25 binds stably to the spliceosome after Prp2-mediated 

SF3a–SF3b destabilization
40

. It seems likely that Cwc25 enhances first-step chemistry by 

binding to the pre-mRNA, as mutation at the BP abolishes this interaction
41

. Cwc25 was also 

recently shown to cross-link near the BP of the pre-mRNA
98

. To directly observe the binding of 

Cwc25 to the pre-mRNA, we labeled the protein’s C-terminus with Cy5. The Cy5 near the 5’SS 

of the pre-mRNA was pre-bleached so that the pre-mRNA had a single fluorescent Cy3 label 

near the BP. We tested the activity of the Cy5-tagged Cwc25 (Cwc25-Cy5) using our bead 

pulldown assay and found it to be fully functional. SiMPull-FRET experiments were then carried 

out with Cwc25-Cy5 added to the B
act 

complex with and without Prp2, Spp2 and ATP (Figure 

2.11a). We observed repeated binding and dissociation of Cwc25-Cy5 and resulting FRET with 

the BP under B* condition (Figure 2.11b,c). On the basis of the FRET distribution of these 

binding events, centered around 0.37±0.03 (s.d.), we estimate that Cwc25 binds within FRET 

distance of the Cy3-Cy5 pair (<100 Å), roughly ~52 Å from the BP adenosine (Figure 2.11b). 

The lower FRET peak, centered around 0.15, represents background signal. By contrast, there 

was little observable FRET between Cwc25 and the pre-mRNA BP in the absence of Prp2–Spp2 
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Table 2.5 Classification of molecules from the observation of the same molecule chased 

from the B
act

 to the C complex with the inclusion of a dark period during Cwc25 

addition 
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Figure 2.11 Prp2-mediated spliceosome remodeling creates a binding site for Cwc25 

near the BP 

(a) Schematic of our SiMPull experiment to test for binding of Cy5-tagged Cwc25 near the 

BP of spliceosome-associated pre-mRNA containing a single active Cy3 fluorophore. (b) 

FRET probability distribution of the raw single molecule FRET trajectories under B* 

conditions (in the presence of Prp2-mediated remodeling). (c) FRET probability distribution 

of the raw single molecule FRET trajectories under B
act

 conditions (in the absence of Prp2-

mediated remodeling). (d) Representative single molecule FRET trajectories showing the 

binding and associated FRET between the Cy5 on Cwc25 and the Cy3 near the pre-mRNA 

BP under B
*
 conditions with the raw donor (Cy3, green), acceptor (Cy5, red), and FRET 

(black) trajectories. Arrows indicate binding events with close proximity to the BP. (e) 

Representative single molecule FRET trajectory showing the absence of FRET between the 

Cy5 on Cwc25 and the Cy3 near the pre-mRNA BP under B
act

 conditions with the raw donor 

(Cy3, green), acceptor (Cy5, red), and FRET (black) trajectories. 
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and ATP (Figure 2.11d,e, B
act

 condition). We conclude that Cwc25 activates the spliceosome for 

the first step by dynamically binding to the pre-mRNA near the BP.  

2.4 Discussion 

Here we have combined single molecule FRET between fluorophores attached near the 5’SS and 

BP of the pre-mRNA substrate with affinity purification, in a technique we term SiMPull
70

-

FRET, to study the spliceosomal B
act

 complex stalled by heat inactivation of Prp2. Stepwise 

addition of ATP and the recombinant proteins Prp2, Spp2 and Cwc25 revealed the role of each 

factor in pre-mRNA remodeling (Figure 2.12). We find that the pre-mRNA remains in the static 

low-FRET L2 state of the B
act

 complex (which, for clarity, we term L2
act

) with distal 5’SS and 

BP until the activation by Prp2–Spp2 in the presence of ATP produces the B* complex. Prp2-

mediated hydrolysis of ATP (or UTP) in this step weakens the binding of some seven proteins, 

including SF3a and SF3b
38-40,66

, that bind the pre-mRNA upstream and downstream of the BP 

adenosine, presumably preventing its premature nucleophilic attack on the 5’SS. Accordingly, 

the B*-associated low-FRET state (L2*) allows the pre-mRNA to transiently and reversibly visit 

two new states of either mid- (M*) or high-FRET (H*) and more proximal 5’SS and BP. First-

step splicing now proceeds with low efficiency, leading to post-catalytic C complex formation 

signified by a static high-FRET state (H
C
). This finding indicates that the increased proximity of 

the reactive sites is sufficient for catalysis. However, reaction chemistry is greatly enhanced by 

the addition of Cwc25, which binds the pre-mRNA substrate near the BP and slows particularly 

the rate constant of the high- to mid-FRET transition, leading to a longer dwell time in the pre-

catalytic, stabilized FRET state H
C-pre

. In turn, this event leads to enhanced progression to the 

static high-FRET state associated with the post-catalytic C complex (H
C
) (Figure 2.12). 
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Figure 2.12 Model for the conformational mechanism of first-step splicing. 

The 5’SS and BP of the pre-mRNA in the B
act 

complex reside predominantly in the static 

distal L2
act

 conformation with low FRET (i.e., high Cy3 and low Cy5 fluorescence, indicated 

by the green and red circles, respectively). Upon ATP hydrolysis and conversion into the B* 

complex, Prp2 along with its cofactor Spp2 unlocks the B*-associated low-FRET state L2* to 

reversibly sample the mid- and high-FRET (spatially proximal) conformations M* and H* 

(and H
C-pre

 under C complex conditions). Cwc25 binds near the BP of the pre-mRNA, thus 

reducing the rate constant of the high- to mid-FRET transition and enhancing first-step 

chemistry, upon which the pre-mRNA adopts the static high-FRET state H
C
. 
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Our data show that before the action of Prp2, Spp2, and ATP, the spliceosome keeps the 

reactive sites of the pre-mRNA strictly apart. This observation is consistent with and refines a 

recent report suggesting that stable splice-site juxtaposition occurs at some point after the NTC 

assembles on the pre-mRNA
54

. Furthermore, it has previously been speculated that the 

catalytically activated B* complex may shift back and forth between inactive and active 

conformations
38

. We have presented direct evidence for this hypothesis by showing that only in 

the B* state are dynamic excursions between low- and high-FRET states observable, and only 

the high-FRET state places the reactive 5’SS and BP in close enough proximity for subsequent 

catalysis, correlated with the appearance of the static high-FRET state H
C
. The same authors also 

proposed
38

 that Cwc25 binding may shift the equilibrium between inactive and active 

conformations towards the latter, which we directly observe and assign to a marked increase of 

the dwell time in the active conformation H
C-pre

 with proximal 5’SS and BP. 

 The behavior of the spliceosome resembles that of a classical biased Brownian ratchet 

machine that draws path directionality from the random thermal fluctuations, which it constantly 

experiences, through a form of directional ‘rectification’ or ‘biasing’
99,100

 (Figure 2.13). In fact, 

the ribosome has been described as a biased Brownian ratchet machine
101-103

 and our previous 

single molecule FRET probing of pre-mRNA dynamics in whole yeast cell extract suggested that 

the spliceosome, like the ribosome, works close to thermal equilibrium
53

. We therefore propose 

that the ATP-driven helicase activity of Prp2–Spp2 acts to remove SF3a–SF3b as an impediment 

to the intrinsic thermal fluctuations of the spliceosome-substrate complex, while Cwc25 provides 

directionality to the reaction pathway by then acting as a “pawl” to stabilize the catalytically 

competent conformation. Perhaps the closest known analogy is found in translocation of the 

ribosome, where the random conformational ratcheting between the two ribosomal subunits at  
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Figure 2.13 Biased Brownian ratcheting leads to the first step of splicing 

Biochemical (A) and mechanical (B) representations of the biased Brownian ratchet 

mechanism utilized by the spliceosome to promote first-step splicing. Binding of the SF3a/b 

complex (cyan) acts as a pawl to prevent docking of the BP and 5’SS in the B
act

 complex. 

Addition of Prp2, Spp2, and ATP results in the ATP-dependent release of SF3a/b from the 

spliceosome, allowing for dynamic docking and undocking of the 5’SS and BP and low levels 

of first-step splicing in the B* complex. Lastly, Cwc25 (yellow) acts as a new pawl, stabilizing 

proximal 5’SS and BP in the C complex and allowing for more efficient first-step splicing. 
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thermal equilibrium is rectified by GTP-bound EF-G in conjunction with the intercalation of a 

conserved two-nucleotide 16S ribosomal RNA “pawl” into the mRNA that appears to prevent it 

from ratcheting back
104

. We note that alternation of reversible thermal motion and irreversible 

NTP hydrolysis steps is thought to form the basis for repeated proofreading by the ribosome
105

, 

and may do so for the spliceosome. Future studies will likely further illuminate the molecular 

mechanisms of these events. 

 Finally, DExD/H-box helicases such as Prp2 are widespread enzymes that participate in 

many aspects of RNA processing
106,107

. In general, they are thought to use ATP hydrolysis to 

remodel RNA and RNP complexes by binding, unwinding and releasing the RNA. Unlike 

previous single molecule approaches
53,54,108-110

, our SiMPull-FRET approach has not only 

allowed us to unveil the dependence of pre-mRNA ratcheting on the NTPase activity of Prp2, 

which is then kinetically biased by Cwc25 binding, but to do so in a well-controlled purified 

system. Biased Brownian ratcheting may be widespread among helicase-driven RNPs, and 

SiMPull-FRET will allow us to test this hypothesis further. 
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CHAPTER 3: Single-Molecule Cluster Analysis Identifies Signature Dynamic 

Conformations along the Splicing Pathway
2
 

 

3.1 Introduction 

Conformational dynamics play a key role in every aspect of RNA biology, such as in RNA 

transcription, splicing and translation
111-113

. The quantitative measurement and interpretation of 

these dynamics are of great importance for an understanding of the common principles 

underlying the biological function of RNA
112-114

. Single molecule fluorescence approaches have 

recently emerged as a powerful toolset to dissect the structural dynamics that form the 

foundation of biomolecular machines functioning at the nanometer scale
49,53,55,73,115

. For 

example, single molecule fluorescence energy transfer (smFRET) has been implemented to 

dissect spliceosome dynamics
53-55

. The spliceosome is a multi-megadalton ribonucleoprotein 

(RNP) complex essential for the faithful removal of introns from eukaryotic precursor messenger 

RNAs (pre-mRNAs) during the two chemical steps of splicing (Figure 3.1a)
64

. The architectural 

reorganization of the pre-mRNA substrate required to accommodate these two catalytic steps in a 

single active site are thought to be accompanied by substantial rearrangements that ensure 

substrate proofreading
42,59,65,116

. To explore these rearrangements, we have labeled the efficiently 

splicing yeast pre-mRNA Ubc4
53,117

 with the FRET pair Cy5 and Cy3 seven nucleotides 

                                                 
2
 Nature Methods, in revision. Matthew Kahlscheuer performed most of the smFRET experiments and the 

corresponding data analysis. Mario Blanco performed a few of the smFRET experiments and the corresponding data 

analysis, as well as helped with the development of the SiMCAn software. Joshua Martin wrote the MATLAB 

scripts used in the SiMCAn software. 
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upstream of the 5’ splice site (5’SS) and six nucleotides downstream of the branch point (BP), 

respectively. This approach yields a substrate capable of detecting changes in intron 

conformation as a result of 5’SS and BP (un)docking (Figure 3.1a,b) that we previously used to 

show that one of several DExD/H-box ATPases, Prp2, unlocks intrinsic conformational 

dynamics in the isolated spliceosomal B
act

 complex, setting the stage for first-step catalysis 

through a biased Brownian ratcheting mechanism
55

.  

 Despite years of utilization, the quantitative methods available for an in-depth dissection 

of the dynamics observed in smFRET studies are still limited. In particular, the sheer complexity 

of the dynamics encountered in many molecular machines, such as the spliceosome, with often a 

large number of conformations, only limited and transient enrichment of any one species, and 

mostly asynchronous and often heterogeneous kinetics, render the current state-of-the-art 

analysis of individual state transitions as independent stochastic events insufficient for an in-

depth understanding of the mechanisms of action underlying biological function. To extract 

additional information, several recent studies have analyzed common smFRET metrics more 

thoroughly, specifically FRET probability histograms and state-to-state transition kinetics 

(Figure 3.1c,d)
73

. For example, it has been theoretically demonstrated that in certain favorable 

cases interstate dynamics can be extracted from histograms through an analysis of photon arrival 

times and lifetimes
118

, requiring sophisticated and less common pulsed-laser instrumentation. In 

addition, state-to-state transition kinetics have been extracted utilizing clustering algorithms to 

identify distinct kinetic behaviors
119,120

. All of these approaches have focused on small datasets 

with 2-3 FRET states and limited dynamics. Unfortunately, they are limited when more complex 

systems with multiple states and complex kinetic networks are examined under non-equilibrium 

conditions.  
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Figure 3.1 Single molecule fluorescence energy transfer (smFRET) of pre-mRNA 

splicing 

(a) The fluorescent substrate used to monitor pre-mRNA dynamics contains Cy5 and Cy3 

fluorophores seven nucleotides upstream of the 5’SS and six nucleotides downstream of the 

BP, respectively. The spliceosome assembly and catalysis pathway is thought to progress in a 

stepwise manner requiring ATP at several steps of assembly. The biochemical and genetic 

stalls utilized in this study are indicated by red blocks. (b) Prism-based TIRFM setup for 

smFRET. (c) FRET probability distribution analysis confirms diverse ensemble behaviors in 

the pre-mRNA conformation at various stages of spliceosome assembly; as example data 

from the ΔPrp2-WCE(3’SS) condition are shown. (d) Transition Probability Density Plots 

(TODPs) highlight the fraction of molecules that remain static (diagonal) or transition 

between two FRET states (off-diagonal); as example data from the ΔPrp2-WCE(3’SS) 

condition are shown. 
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We present here a method that utilizes hierarchical clustering as a means to group and 

sort smFRET trajectories and identify commonalities in a vast dataset of high complexity. We 

termed this tool Single Molecule Cluster Analysis (SiMCAn) and used it to characterize the pre-

mRNA dynamics associated with the assembly and catalytic steps of the yeast spliceosome. 

Exploiting eight independent depletion conditions and mutations to block the splicing cycle at 

specific points, dynamic behaviors were assigned to specific complexes. SiMCAn reduces every 

single molecule trajectory, regardless of its number of states, to an easily comparable unit of 

information, the FRET Similarity Matrix (FSM). By leveraging hierarchical clustering 

techniques adapted from evolutionary analysis, we identified common dynamic behaviors across 

10,680 different Ubc4 pre-mRNA molecules. Importantly, we accomplished an unbiased, model-

free identification of commonalities and differences between splicing complexes through a 

second level of clustering based on the abundance of dynamic behaviors exhibited by defined 

functional intermediates. Applying SiMCAn to selectively stalled splicing reactions thus allowed 

us to efficiently assign pre-mRNA FRET states and transitions to specific splicing complexes, 

including a heretofore undescribed low-FRET conformation adopted late in splicing by a 3’ 

splice site mutant. These results establish SiMCAn as an effective bioinformatics tool to 

characterize complex smFRET behavior of dynamic cellular machines. 

3.2 Materials and Methods  

3.2.1 Synthesis of pre-mRNA substrates 

The Ubc4 pre-mRNA substrates used in this study (Table 3.1) were synthesized as previously 

described
53

. Briefly, the 135-nucleotide pre-mRNA was ligated from two fragments: a 59-

nucleotide 3’ segment with 5-amino-allyl-uridine at the +6 position relative to the BP adenosine 

and a 76-nucleotide 5’ segment with 5-amino-allyl-uridine at the -7 position 
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Table 3.1 Sequence information of the oligonucleotides used in this study 

The Ubc4 intron is italicized, and the BP adenosine is bold and underlined. The red and green 

“(5-N-U)” denote the allyl-amine modified uridines used to attach the Cy5 and Cy3 

fluorophores. In the 3’SS mutant, the two bold and underlined cytosines replace guanines in 

the wild-type sequence. The DNA splint is the oligonucleotide used for templated ligation 

during synthesis of the WT and 3’SS pre-mRNA substrates. Sp9 denotes a 9-carbon linker. 
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relative to the 5’SS. The 3’SS mutant had the guanines at positions 115 and 117 on the 3’ 

segment replaced with cytosines. The 5’ and 3’ fragments were coupled to Cy5 and Cy3 N-

hydroxysuccinimidyl ester (GE Healthcare), respectively, by resuspending 4 nanomoles of RNA 

in 40 µl of 0.1 M sodium bicarbonate buffer, pH 9.0, and incubating for 30 min at 60 °C with the 

proper dye pack dissolved in DMSO. The conjugated fragments were ethanol precipitated and 

washed with 70% (v/v) ethanol to remove unconjugated dye. Unlabeled RNA was removed by 

purification on benzoylated naphthoylated DEAE (BND)-cellulose (Sigma) that was washed 

with 1 M NaCl containing 5% (v/v) ethanol. Fully labeled RNA fragments were eluted with 1.5 

M NaCl containing 20% (v/v) ethanol and further precipitated to remove excess salt. Labeled 

fragments were combined with an equal molar amount of DNA splint (Table 3.1) and ligated by 

incubating with RNA Ligase 1 (NEB) for 4 h at 37 °C as described
53,117

. Full length, labeled 

Ubc4 was then purified on a denaturing 7 M urea, 15% (w/v) polyacrylamide gel. 

3.2.2 Preparation of yeast whole cell extract 

Splicing active whole cell extract (WCE) was prepared from either yeast strain BJ2168 or a 

prp2-1 cef1-TAP yeast strain (ATCC 201388: MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0) as 

previously described
53,121

. Briefly, cells were grown in YPD medium to an OD600 of 1.6-2.0 

before they were harvested and washed in AGK buffer (10 mM HEPES-KOH, pH 7.9, 1.5 mM 

MgCl2, 200 mM KCl, 10% (v/v) glycerol, 0.5 mM DTT, 0.6 mM PMSF, and 1.5 mM 

benzamidine). A thick slurry of cells was dripped into liquid nitrogen to form small cell pellets 

that could be stored at -80 °C. The frozen pellets were disrupted by manual grinding with a 

mortar and pestle half-submerged in liquid nitrogen for 30 min. The resulting frozen powder was 

thawed in an ice bath and centrifuged at 17,000 rpm in a type 45 Ti Beckman rotor. The 

supernatant was then centrifuged at 37,000 rpm in a Ti-70 rotor for 1 h. The clear middle layer 



63 

 

was removed with a syringe and dialyzed for 4 h against 20 mM HEPES-KOH, pH 7.9, 0.2 mM 

EDTA, 0.5 mM DTT, 50 mM KCL, 20% (v/v) glycerol, 0.1 mM PMSF, and 0.25 mM 

benzamadine with one buffer exchange. 

3.2.3 Accumulation of splicing complexes 

Table 3.2 describes all experimental conditions by identifying the substrate and WCE used along 

with the complex formed. All splicing products were confirmed via in vitro splicing assays by 

incubating 4 nM fluorescent Ubc4 in splicing buffer (8 mM HEPES-KOH, pH 7.0, 2 mM MgCl2, 

0.08 mM EDTA, 60 mM Ki(PO4), 20 mM KCl, 8% (v/v) glycerol, 3% (w/v) PEG, 0.5 mM 

DTT) and 40% (v/v) WCE at 25 °C for 40 min. Products were analyzed by separation on a 7 M 

urea, 15% (w/v) polyacrylamide gel and scanned on a Typhoon variable mode imager (GE 

Healthcare, Figure 3.2). ATP depletion was performed by pre-incubating WCE with 1 mM 

glucose at 25 °C for 10 min prior to incubation with splicing buffer and substrate. Endogenous 

U6 snRNA was depleted by pre-incubation of WCE with 300 nM D1 oligodeoxynucleotide 

(Table 3.1) in splicing buffer, 50% (v/v) WCE, and 2 mM ATP at 33 °C for 30 min prior to 

incubation with substrate. Knockdown of endogenous Prp2 was performed by heating prp2-1 

cef1-TAP WCE to 37 °C for 40 min prior to incubation with splicing buffer, ATP, and pre-

mRNA substrate. Endogenous Prp16 was inactivated using 100 nM of a Prp16 dominant-

negative mutant (Prp16DN; K379A) added to the BJ2168 WCE for 10 min prior to incubation 

with splicing buffer, 2mM ATP, and pre-mRNA substrate. On-slide splicing assays were 

performed as the in vitro splicing assays with the exception that all materials were combined 

prior to flowing reaction mixtures onto a substrate-coated, PEG-passivated slide using 

established procedures
53,55

. 
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Table 3.2 Substrate and extract used to form each of the splicing complexes 
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Figure 3.2 Confirmation of blockage and reconstitution of splicing by in vitro splicing 

assays 

Denaturing, 7 M urea, 15% (w/v) polyacrylamide gels were scanned with a variable mode 

Typhoon imager. The intron and intron-lariat products are observed in the Cy3 scan (green) 

and the mature mRNA product is visualized in the Cy5 scan (red). (a) The optimized 

concentration of D1 required to deplete U6 snRNA (300 nM) was determined by titrating 

increasing amounts of the oligodeoxynucleotide into the in vitro splicing assay. (b) Using the 

previously determined optimal concentration of D1 (300 nM, a), extract viability was 

confirmed through reconstitution with in vitro transcribed U6 snRNA. (c) Incubation of 

extract at 37 °C for 40 min completely blocks splicing activity (ΔPrp2 lane). Addition of 

recombinant Prp2p to ΔPrp2 extract results in reconstitution of splicing, as expected. (d) 

Addition of recombinant dominant mutant Prp16DN to yeast extract stalls splicing after the 

first chemical step. (e) Incubation of WT-WCE with 3’SS mutant substrate stalls splicing after 

the first step while incubation with a WT substrate (f) results in efficient progression through 

both steps of splicing. 
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3.2.4 Single molecule FRET 

Single Molecule FRET was carried out in the same manner as previously described
53,55

. Using a 

prism-based TIRF microscope
45,49,122

, we collected data from single molecules incubated under 

the desired conditions (Table 3.2). Data were collected from two to three fields of view for each 

time period of 0-8 min (early), 18-23 min (middle), and 33-40 min (late) after addition of WCE. 

The donor (Cy3) and acceptor (Cy5) fluorophores were excited using a 532- and 635-nm laser, 

respectively, with the resulting emission recorded at 100 ms time resolution with a Princeton 

Instruments, I-PentaMAX intensified CCD camera. A FRET value was calculated by dividing 

the intensity of the acceptor emission by the total emission from both donor and acceptor.   

3.2.5 Single molecule cluster analysis – SiMCAn 

Each individual FRET trace was fitted with individual Hidden Markov Models (HMMs) of up to 

10 states using vbFRET
123

 in Mathwork’s MATLAB environment with no assumptions about the 

values or distributions. The resulting paths were then assigned to the closest of 10 evenly spaced 

states (0.05-0.95, increment of 0.10 as our resolution limit). Traces of less than 3 s (30 frames) 

length were discarded and a transition probability (TP) matrix was constructed for each of the 

remaining molecule traces. Each TP matrix was then combined with the vector describing the 

percent of the trace that occupies each FRET state to create a FRET similarity matrix (FSM). 

The FSMs were divided into categories containing static traces and dynamic traces, the dynamic 

traces identified and characterized by having at least one FRET transition between two FRET 

states. Static traces were identified automatically based on their unique signature with just a 

single FRET value and kept separate for the remaining analysis. Static molecules could arise due 

to fluorophores photobleaching prior to a transition taking place. On the other hand, formation of 

a particular complex may lead to a very stable, unchanging conformation that results in emission 
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of a single (static) FRET state. Dynamic traces were used as input for a hierarchical clustering 

analysis performed by MATLAB. The resulting hierarchical tree was then used to identify 

clusters of traces with similar behavior as identified from their FSM. The tree was pruned at a 

height that resulted in 25 dynamic clusters in addition to 10 static clusters as assigned by their 

FRET state. The height used to determine the clusters in the hierarchical tree was determined 

using an iterative measurement of the inter-cluster distances and a modified k-means algorithm. 

The specific cut-off was chosen at the first point where randomly assigned traces had a higher 

inter-cluster distance than the hierarchical clustering. The resulting clusters were analyzed and 

labeled according to their occupancy in the FRET states. All analysis and descriptions of the 

clusters were performed using MATLAB. 

3.2.6 Generation of simulated dataset 

Artificial HMMs containing the distinctions of interest were used to generate traces of 10
6
 time 

step length. These traces were used to generate 1,500 subtraces where the starting points were 

uniformly selected along the full trace and the length determined by a Poisson distribution with a 

lambda of 100. The resulting traces were treated exactly like experimentally acquired data for 

analysis by SiMCAn. 

3.3 Results 

3.3.1 Hierarchical clustering of complex smFRET behaviors  

State-to-state transitions in single molecule trajectories report on the accessibility of 

conformational states and their ability to interconvert. Hidden Markov Models (HMMs) are the 

most commonly utilized tools for identifying state-to-state transitions. To identify the 

commonalities and differences across hundreds or thousands of smFRET traces, SiMCAn 
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generates a FRET similarity matrix (FSM) for each trajectory by fitting it with a HMM to 

reliably identify the number of FRET states and their FRET values (Figure 3.3a). It should be 

noted that, although vbFRET
123

 was utilized for HMM analysis of our dataset, any HMM fitting 

tool can be utilized that satisfies the user’s fitting preferences. To enable a direct comparison 

across a large dataset, we binned each FRET state into one of ten evenly spaced FRET values 

(0.05-0.95, with increments of 0.10) (Figure 3.3b) that together evenly span the viable FRET 

range and are commensurate with typical signal-to-noise ratios. The resulting HMMs are used to 

construct transition probability (TP) matrices between states (Figure 3.3c). Each TP matrix is 

then combined with the occupancies of the individual FRET states to create the final FSM. Prior 

to clustering analysis, molecules with no transitions (static) are automatically identified and 

analyzed separately. The remaining dynamic molecule FSMs are used as input for hierarchical 

clustering analysis, an agglomerative clustering technique that aims to group data of similar 

characteristics
124,125

. The distance between FSMs is found using the Euclidean distance between 

any two matrices (Methods). The result of this clustering is a hierarchical tree, where each leaf 

on the tree represents the dynamics of an individual molecule. Branch points in the hierarchy 

indicate a split in dynamic behavior of the group of molecules at a given level of coarseness 

(Figure 3.3d). Throughout, each cluster is represented using the average TP matrix (Figure 

3.3e), a collection of traces (Figure 3.3f), and the probability distribution of FRET states within 

the cluster (Figure 3.3g). This model-free clustering of a combined large smFRET dataset is 

designed to enable an unbiased and quantitative classification of single-molecule dynamic 

behavior throughout the entire splicing pathway. 
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Figure 3.3 Single molecule cluster analysis (SiMCAn) sorts and clusters molecules that 

share common dynamic behaviors 

(a) Representative raw (red) and corresponding idealized FRET trace fit using the idealizing 

hidden Markov model (HMM, black). (b) Idealized FRET trace (black) and reassigned FRET 

trace (blue) to the closest of 10 evenly spaced states (0.05-0.95, increment of 0.10). (c) 

Transition probability (TP) matrix describing the transitions for the molecule in a. (d) 

Hierarchical tree as a result of hierarchical clustering analysis using all 6,079 dynamic 

molecules. Each colored branch describes a set of molecules that shares common FRET 

transition probabilities. The dashed line indicates the threshold of 25 clusters used to describe 

the data. (e to g) Cluster description for 2 of the 25 dynamic clusters of the full splicing 

dataset. Each representation shows the TP matrix of the cluster (e), the trace closest to the 

cluster center (magenta) and up to 200 s of random (black) traces from the cluster (f), and the 

probability of FRET states within the cluster (g). Grey and white backgrounds demarcate 

individual trajectories in (f). 
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3.3.2 Validation of SiMCAn using simulated datasets  

To evaluate whether SiMCAn is able to correctly identify and segregate trajectories with known 

FRET states, we applied it first to a simulated dataset containing 1,500 trajectories that reversibly 

transition from a 0.15 to a 0.45 FRET state and an equal number of trajectories that transition 

from the same 0.15 FRET state to a 0.85 state instead (Figure 3.4a), with average rate constants 

of k0.15→0.45 = 0.54 s
-1

, k0.45→0.15 = 0.53 s
-1

 and k0.15→0.85 = 0.53 s
-1

, k0.85→0.15 = 0.53 s
-1

, 

respectively. SiMCAn properly identified and separated these two molecular behaviors (Figure 

3.4b), demonstrating that trajectories can easily be clustered based on the identity of their FRET 

states. A second and more important feature of SiMCAn is the ability to segregate trajectories 

based on differing kinetics. We analyzed a second set of 3,000 simulated trajectories possessing 

two FRET states of 0.15 and 0.75, with half of the trajectories designed to have identical 

interconversion rate constants of 0.54 s
-1

 whereas the other half transition much more slowly 

with rate constants of 0.15 s
-1

 (Figure 3.4c). SiMCAn identified two clusters with distinct 

transition rate constants between the 2 states (Figure 3.4d). These results demonstrate 

SiMCAn’s ability to differentiate FRET trajectories based on their FRET states and kinetics. 

3.3.3 Validation of SiMCAn using purified spliceosomal complexes 

To benchmark SiMCAn against an experimental dataset with inherent limitations imposed by, 

e.g., signal noise and premature photobleaching, we chose to analyze a previously published 

dataset collected during the Prp2-mediated conformational transition immediately prior to the 

first step of splicing
55

. Briefly, the immobilized B
act

 complex containing FRET-labeled Ubc4 was 

monitored as it progresses through the B* to the C complex upon addition of recombinant 

proteins Prp2, Spp2 and Cwc25 (Figure 3.5a). Our previous FRET probability analysis indicated 

a dramatic shift from a 0.3- or low-FRET state in B
act

 to a 0.7- or high-FRET state in the C 
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Figure 3.4 Clustering of simulated datasets 

(a) Transition probability (TP) matrices possessing one shared FRET state (0.15) and one 

differing FRET state (0.45 or 0.85) that were used to generate the 1500 random traces for 

clustering by SiMCAn. (b) Hierarchical tree showing the two cluster threshold found by 

SiMCAn and the two resulting cluster probability histograms and TP matrices. (c) TP 

matrices possessing the same two FRET states but different rates of interconversion used to 

generate the 1500 random traces for clustering by SiMCAn. (d) Hierarchical tree showing the 

three cluster threshold found by SiMCAn and the three resulting cluster probability 

histograms and TP matrices. 
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Figure 3.5 Validation of SiMCAn using a previously analyzed dataset describing the 

transition from the purified B
act

 to the C complex 

(a) Protein requirements for the transition from the B
act

 complex through B* to the C 

complex. (b) Visually most representative FRET trajectories describing the dominant 

behavior of molecules in each complex found through manual sorting of traces. (c) The 

smFRET trajectories found using SiMCAn that are most similar to the cluster center of the 

four highlighted clusters (Figure 3.6c) that describe each of the splicing complexes. Dynamic 

clusters are labeled by the weighted average FRET value of the molecules within the cluster 

(e.g., 0.2563) while static clusters are labeled by the single state they describe (e.g., 0.1-S).  
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complex (Figure 3.6b), but revealed little about the underlying mechanism. Only upon months 

of manually sorting molecules did we find that the transition from the pre-catalytic B
act

 complex 

through the post-catalytic (C) complex requires, first, the ATPase activity of the DExD/H-box 

ATPase Prp2 to unlock the pre-mRNA from a static low-FRET state (Figure 3.5b), allowing it 

to make dynamic excursions into transient high-FRET conformations associated with the 

intermediate (B*) complex (Figure 3.5b). Second, we found that Cwc25 is required to enrich C 

complex formation as evident from a stabilized high-FRET state, indicative of first-step splicing 

(Figure 3.5b)
55

. In addition to this static high-FRET population, we observed a significant 

fraction of dynamic molecules transitioning between a long-lived high-FRET state and a shorter-

lived, 0.5- or mid-FRET state (Figure 3.5b). 

 Notably, SiMCAn was able to rapidly (within minutes) and correctly identify these 

previously only manually identified
55

 sub-populations of pre-mRNA molecules. To this end, the 

HMM-fitted FRET traces under B
act

, B*, and C complex conditions were combined and analyzed 

using SiMCAn to determine if the analysis could recapitulate the manual annotation of these 

traces. Maximizing the inter-cluster distances while minimizing the intra-cluster distances using 

SiMCAn revealed 9 dynamic and 4 static clusters as best fitting the data (Figure 3.7). These 

clusters were combined into a single bar graph to depict the fraction of molecules that occupy 

each cluster under each experimental condition (Figure 3.6c). Reproducing our previous 

analysis, a cluster of molecules adopting a static low-FRET state (0.3-S) was identified as 

dominant under B
act

 conditions (Figure 3.5c), whereas a static high-FRET cluster (0.7-S) was 

most abundant under C complex conditions (Figure 3.5c). In addition, SiMCAn identified two 

dynamic clusters significantly populated under B* and C complex conditions 
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Figure 3.6 Validation of SiMCAn using previously analyzed data  

Validation of SiMCAn using previously analyzed data describing the transition of the B
act

 

complex through the C complex and first step of splicing (a). (b) FRET probability analysis 

for molecules in the B
act

 (blue), B* (green), and C complexes (red). (c) Cluster occupancy 

histogram showing the fraction of molecules from each experimental condition that occupy 

the 9 dynamic and 4 static clusters found using SiMCAn. Dynamic clusters were labeled by 

the weighted average FRET value of the molecules within the cluster (e.g., 0.2563) while 

static clusters are labeled by the single state they describe (e.g., 0.1-S). (d and e) Dynamic 

clusters enriched in the B* (cluster 0.4267) and C (cluster 0.6478) complexes. Each 

representation shows the TP matrix of the cluster (left), the closest (magenta) and several 

random (black) traces from the cluster (middle), and the probability of FRET states within the 

cluster (right) 
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Figure 3.7 Cluster number determination for the B
act

 dataset 

Iterative measurement of inter-cluster distances using a modified k-means algorithm utilized to 

determine the number of clusters that best describes the previously analyzed B
act

 dataset. 
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 (Figure 3.6c). Cluster 0.4267 contains molecules with a short-lived high-FRET state and longer 

dwell times in the low-FRET state that are most abundant under B* conditions (Figure 3.5c). By 

contrast, cluster 0.6592 contains molecules with a longer-lived high-FRET state featuring rapid 

excursions back to a mid-FRET state that are significantly enriched upon addition of Cwc25 to 

form the C complex (Figure 3.5c), matching our previous manual analysis
55

. These results 

demonstrate that SiMCAn is not only able to segregate experimental molecule trajectories based 

on their FRET states in an unsupervised and consistent fashion, but also to classify differences in 

state-to-state interconversion kinetics accurately. 

3.3.4 Biochemical and genetic stalls of the spliceosome lead to distinct behaviors 

Having established that SiMCAn will reveal known dynamic behaviors in simulated (Figure 3.4) 

and experimental smFRET trajectories (Figure 3.5), we next utilized it on new single molecule 

trajectories enriched for specific stages of splicing through the use of biochemical and genetic 

stalls. smFRET data were collected upon incubation of FRET-labeled Ubc4 pre-mRNA with 

yeast whole cell extract (WCE), allowing for  spliceosomal assembly on and splicing of the 

fluorescent substrate. Time courses were performed during which smFRET was recorded within 

time windows 0-8 min (early), 18-23 min (middle) and 33-40 min (late) after addition of WCE. 

To assign dynamics to particular splicing intermediates without a need for cumbersome 

biochemical isolation, we chose to utilize eight biochemical, yeast genetic, and substrate 

mutation stalls, and combinations thereof, known to allow for efficient accumulation of specific 

splicing intermediates and thus particular FRET behaviors in WCE (Figure 3.1a and Table 3.2). 

Blockage and release by reconstitution were verified by bulk in vitro splicing assays in yeast 

WCE (Figure 3.2). smFRET data for each stall were then acquired using the same time lapse 

approach utilized for the WT-WCE(WT) condition. FRET probability distributions (Figure 3.8) 
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Figure 3.8 FRET probability distribution analysis  

FRET probability distribution analysis for each of the 8 experimental conditions over the time 

course of the smFRET experiments. 
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and transition occupancy density plots (TODPs, Figure 3.9) were utilized to broadly summarize 

the behavior of hundreds of molecule trajectories per condition
73

, confirming that the blocks lead 

to different ensemble averaged temporal behaviors. However, this far more complex data set is 

not amenable to standard analysis techniques as it includes an unprecedented number of traces 

from splicing complexes stalled by mutation throughout the splicing cycle. As such, it represents 

an ideal novel application for SiMCAn. 

3.3.5 Identifying biologically defined dynamics using SiMCAn 

Application of SiMCAn to this new comprehensive dataset allowed us to identify and cluster sets 

of molecules that share common dynamic behaviors. Prior to clustering, 4,601 static molecules 

were identified and analyzed separately. The hierarchical tree of the remaining 6,079 dynamic 

traces was pruned to a height that led to 25 distinct clusters (Figure 3.3d), determined through an 

iterative measurement of inter-cluster distances using a modified k-means algorithm (Figure 

3.10)
126

, so that each cluster represented a unique dynamic behavior (Figure 3.3e-g, Figure 

3.11). Static clusters were named by their sole FRET state (e.g., 0.05-S), whereas dynamic 

cluster names were assigned based on the first and second most occupied FRET states within the 

cluster (e.g., cluster 0.65-0.05 primarily occupies 0.65 and 0.05 FRET states). To determine the 

robustness of SiMCAn’s clustering approach, we performed bootstrapping by utilizing the 

transition probability matrices of four of the 25 SiMCAn-identified dynamic clusters to generate 

a new set of 4,500 randomized trajectories as input for clustering by SiMCAn (Figure 3.12a). As 

expected, SiMCAn identified four clusters of behaviors with FRET states and dynamic behaviors 

that can be directly mapped to each of the input HMMs (e.g. Cluster 0.05-0.25 maps to Cluster 

0.05-0.25, Figure 3.12b). This analysis supports the notions that SiMCAn robustly identifies 

FRET states and their interconversion kinetics in increasingly complex datasets, and that the 
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Figure 3.9 Transition Occupancy Density Plot (TODP) analysis 

TODP analysis for each of the 8 experimental conditions over the time course of the smFRET 

experiments. 
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Figure 3.10 K-means analysis of the optimal cluster number for the full dataset 

Iterative measurement of inter-cluster distances using a modified k-means algorithm utilized 

to determine the number of clusters that best describes the experimental data. 
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Figure 3.11 Cluster descriptions 

Transition probability matrix (left), the longest of the 10 traces whose HMM is most similar 

to the average HMM of the cluster (magenta) and 200 s of random traces (black, middle), and 

the probability of FRET states for each dynamic and static cluster (right). Grey and white 

backgrounds demarcate individual trajectories. 



84 

 

 

 

Figure 3.12 Clustering of simulated dataset produced from four of the dynamic clusters 

representing the large experimental dataset 

(a) The four transition probability (TP) matrices from clustering of the full splicing dataset 

that were used to generate 1500 random traces for each cluster (see online methods). These 

traces were pooled and used as input for clustering by SiMCAn. (b) Hierarchical tree showing 

the four cluster threshold found by SiMCAn and the four resulting cluster probability 

histograms and TP matrices. 
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SiMCAn-identified clusters for the large experimental dataset capture the molecular behavior 

exhaustively. 

Next, common FRET states and salient kinetic features at each step of the splicing 

reaction were identified by evaluating the fraction of molecules belonging to each cluster (i.e., 

the relative cluster occupancy) for each of the eight experimental conditions. We then sought to 

identify clusters whose occupancies are similarly either enriched or depleted for the same group 

of conditions, i.e., follow a similar pattern of high and low occupancies across conditions, 

suggesting they can be grouped into a ‘clade’ through a second round of hierarchical clustering 

(Figure 3.13b). Upon application of this second level of SiMCAn to the full dataset, a tree 

height of seven clades (Figure 3.14) allowed for the identification of clusters representative of 

particular splicing conditions, thus most naturally capturing the changes in dynamic behavior 

expected to occur as the pre-mRNA progresses through the splicing cycle (Figure 3.15 and 

Figure 3.13c). The fraction of molecules within each cluster for each of our three experimental 

time points (early, middle, and late) was normalized to a mean occupancy of zero to render 

differences and similarities among cluster occupancies for each splicing block most evident. A 

bar graph of all 35 (25 dynamic plus 10 static) clusters was also constructed, revealing the extent 

to which each cluster contributes to the overall dynamics for each condition (Figure 3.16 and 

Figure 3.17 and Figure 3.18). Statistical analysis found that the average length of molecules 

within each cluster was similar, indicating that SiMCAn does not segregate by trace length 

(Figure 3.19 and Table 3.3).  

3.3.6 Characterization of pre- and post-first step splicing blocks 

Application of SiMCAn revealed a disperse set of dynamics and cluster occupancies in the early 

splicing conditions ΔATP-WCE(WT) and ΔU6-WCE(WT) that stall at the Commitment 
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Figure 3.13 Clustering of clusters to identify ‘clades’ of similar behavior 

(a) Example clustering of smFRET trajectories from three experimental conditions into six 

clusters. A heat-map representation shows clusters with a large number of molecules (high 

occupancy) in green and small number of molecules (low occupancy) in red. (b) Example 

clustering of clusters to identify clusters that partition similarly among the three experimental 

conditions. Clusters that show similar occupancy among the conditions are grouped to form a 

clade. (c) Heat-map representation of the clustering of clusters for the 8 experimental 

conditions. 
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Figure 3.14 Clade cut-off determination 

Varying the tree cut-off heights upon grouping the cluster occupancy among the 8 

experimental conditions leads to distinct numbers of (color-coded) clades of clusters (as 

indicated on the right). 
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Figure 3.15 Clades of clusters are enriched in each splicing reaction condition 

Grouping clusters based on their occupancy among the experimental conditions reveals 7 

clades (labeled I-VII) of clusters enriched in particular splicing complexes. The fraction of 

molecules within each cluster for each experimental condition at each time was normalized to 

a mean of zero with unit variance. Green and blue colors indicate increased occupancy of a 

particular cluster while red indicates decreased occupancy. Rows identify the clusters and are 

ordered by increasing average FRET of the clade. Columns identify the cluster occupancy of 

each condition for the early, middle, and late time points. 
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Complex 2 (CC2) and A complexes, respectively (Figure 3.18). Interestingly, SiMCAn 

identified a time-dependent increase in clade I upon A complex formation (Supplementary Note 

1). This low-FRET behavior has been proposed to be sustained during incorporation of the 

U5·U4/U6 tri-snRNP into the B complex
54

, which further progresses through the removal of the 

U1 and U4 snRNPs upon formation of the activated spliceosome B
act

, a complex enriched 

through depletion of Prp2
38,68

 (Figure 3.1a). In our corresponding ΔPrp2-WCE(WT) and ΔPrp2-

WCE(3SS) datasets, SiMCAn recognized a pair of static clusters, 0.25-S and 0.15-S, found to be 

overrepresented and thus grouped to form clade II (Figure 3.15 and Figure 3.16). These clusters 

represent molecules that are stalled in a static low-FRET B
act

 conformation prior to activation of 

Prp2’s ATPase activity (Figure 3.5). These FRET states are of slightly different value than those 

previously determined
55

 using the isolated B
act

 complex lacking free extract (0.2 versus 0.3). This 

is possibly the result of the lower signal-to-noise ratio often associated with the presence of a 

high concentration of WCE. Alternatively, the proteins and RNAs within the WCE may be 

inducing a more open conformation of the spliceosome. Notably, SiMCAn was able to 

distinguish these clusters from the equally static, but even lower FRET cluster 0.05-S of the A 

complex, which is not resolvable in the FRET histograms (Figure 3.8). In addition to the static 

clusters of clade II, the dynamic cluster 0.05-0.25 (Figure 3.20a) is moderately enriched in these 

conditions relative to other conditions, suggesting that occasional excursions back into an A or 

B-like conformation occur. 

In contrast to Prp2 depletion, SiMCAn identified clade VII as particularly enriched upon 

addition of recombinant Prp16 dominant negative mutant ATPase (Prp16DN-WCE(WT) and 

Prp16DN-WCE(WT)), known to stall splicing within the post-first-step C complex
55,127,128

 

(Figure 3.15, Figure 3.16, and Figure 3.20). Within this clade were a static cluster 0.85-S and 
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Figure 3.16 Cluster occupancy histogram post-first step splicing blocks 

Cluster occupancy histogram showing the raw fraction of molecules occupying each cluster 

for the late assembly stages of the splicing cycle. Alternating gray and white backgrounds 

demarcate the clusters (bottom) comprising each of the 7 clades (top). Clusters of significant 

occupancy within a specified condition are highlighted in yellow. 
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Figure 3.17 Experimental datasets show vastly different cluster occupancies  

Histogram showing the raw fraction of molecules occupying each cluster of the 8 

experimental conditions. Alternating gray and white backgrounds demarcate the clusters 

(bottom) comprising each of the 7 clades (top). 



92 

 

 

Figure 3.18 Early splicing blocks show a dramatic shift in cluster occupancy  

Histogram showing the raw fraction of molecules occupying each cluster for the early splicing 

block conditions. Alternating gray and white backgrounds demarcate the clusters (bottom) 

comprising each of the 7 clades (top). Clusters of significant occupancy within a specified 

condition are highlighted in yellow. 
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three dynamic clusters, all containing the 0.85 FRET state (Figure 3.21), which is distinct from 

the 0.75-S/0.65-S conformational state of clade VI enriched in early splicing intermediates 

(Figure 3.13c and Figure 3.18). The dynamics of the clusters enriched at the Prp16DN stage 

indicate a preference for the 0.85 high-FRET state (Figure 3.21b), suggesting we are enriching 

for and identifying molecules just before catalysis or transiently sampling the first catalytic 

conformation before proceeding to the 0.85-S cluster characteristic of molecules that have 

undergone first-step splicing. Although the ΔPrp2-WCE(3’SS) stall did show a delay in B
act

 

complex formation (Supplementary Note 2), these observations suggest that only faithful 

spliceosome assembly leads to juxtaposition of the 5’SS and BP in a stable fashion, thus favoring 

first-step catalysis independent of the identity of the 3’SS. 

3.3.7 A 3’SS mutation leads to undocking late in spliceosome assembly  

Finally, SiMCAn identified differences in smFRET behavior between the WT and 3’SS mutant 

substrates upon incubation with WT WCE containing no blocks (WT-WCE(WT) and WT-

WCE(3’SS)), thus allowing for the unabated assembly towards the final step of splicing. The 

3’SS mutant is known to assemble in a complex that includes the splicing factors responsible for 

the second step of catalysis, yet the 3’SS mutant is not amenable to splicing (Figure 3.2). Since 

both substrates progress through most of the splicing cycle, it is not surprising that SiMCAn 

revealed a similar set of pre-mRNA conformations sampled (Figure 3.16). However, the 3’SS 

over time adopted an increasingly dominant 0.05-S cluster (Figure 3.16, clade I), indicating a 

large separation of the 5’SS and BP not found in the Prp16DN-WCE(3’SS) dataset. This 0.05-S 

state is thus stabilized to a much greater extent in the 3’SS mutant than the WT substrate, 

supporting the appearance of a conformation in which the 5’SS and BP become greatly separated 

only after the first step of splicing when the mutated 3’SS is detected. Our data suggest that the 
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Figure 3.19 Statistical analysis of all 35 (25 dynamic, 10 static) clusters  

(a-y) The left panel depicts every trace that contributes to a cluster with the heat map 

indicating the occupancy at the state (blue = 0, red = 1). The middle panel indicates the 

distribution of trace length in each cluster. The number of molecules in each cluster (N) and 

the average trace length (<L>, red line) are indicated in the top right corner. The right panel 

plots the distance of each trace’s HMM from the mean HMM of the cluster. The average 

distance (<D>, red line) and standard deviation (std) are indicated. 
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Table 3.3 Statistical analysis of each of the 35 clusters 
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3’SS is either unable to dock into the catalytic core or is unable to remain docked in the catalytic 

core after the ATP-dependent action of Prp16. This deficiency in docking may be a result of 

second-step factors preventing docking into the second-step conformation
129,130

. Alternatively, 

this open conformation may be caused by Prp22, an ATPase known to be involved in 

proofreading mutant substrates during the second step of splicing (Supplementary Note 3)
43,116

. 

In this latter case, the 3’SS may transiently dock into the second-step conformation, but Prp22 

rapidly recognizes and discards the mutated 3’SS. Either hypothesis would explain the 

accumulation of a discarded, undocked substrate unable to proceed through the second step of 

splicing. Taken together, our SiMCAn analysis suggests that the lack of a proper 3’SS sequence 

marker leads to robust proofreading against a substrate incompetent for the second step of 

splicing by undocking from the active site. 

3.4 Discussion 

We here have demonstrated the power of Single Molecule Cluster Analysis (SiMCAn) as applied 

to a large smFRET dataset collected on the spliceosome in the presence of various biochemical 

and genetic stalls. By coupling SiMCAn with multiple experimental conditions of defined impact 

on the splicing cycle, we show that such an smFRET dataset can be efficiently clustered and 

analyzed to reveal unique dynamic properties associated with specific splicing cycle 

intermediates that could not be identified using classical histogram and TODP analysis (Figure 

3.8 and Figure 3.9). Since SiMCAn does not make assumptions about the heterogeneity or 

completeness of the underlying biochemical reactions, it allows one to identify consistent 

molecular behaviors in model-free fashion. Through such unbiased and thorough analysis we 

were able to assign dynamic FRET states to specific complexes, identify molecules transitioning 

between complexes, and demonstrate that the 5’SS and BP undock completely after the first step 
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Figure 3.20 Clusters enriched in particular splicing conditions  

The occupancy of clusters within each of the 8 experimental conditions compared to that of 

WT-WCE(WT). Each occupancy value for every condition is subtracted from the occupancy 

of the cluster in the WT-WCE(WT) early condition. (a) Cluster enriched in the ΔPrp2-WCE 

condition (red). (b) Clusters enriched in the Prp16DN-WCE condition (red). 
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Figure 3.21 Dynamic clusters of clade VII enriched in the Prp16DN-WCE conditions 

show repeated excursions from the 0.85 state to lower FRET states. 

(a) Fraction of molecules within each late assembly stage for the clusters of clade VII. (b) 

Cluster description for each of the four clusters within clade VII. Each representation shows 

the TP matrix of the cluster (left), the trace closest to the cluster center (magenta) and up to 

200 s of random (black) traces from the cluster (middle), and the probability of FRET states 

within the cluster (right). Grey and white backgrounds demarcate individual trajectories. 
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of splicing when the spliceosome encounters a 3’SS mutation (Figure 3.16). SiMCAn thus can 

use exploratory datasets collected from complex reaction pathways to generate testable 

hypotheses, for example, that the spliceosome exploits similar undocked intermediates to 

proofread substrates along the splicing cycle, providing checkpoints that trap suboptimal 

substrates not meeting the criteria for cycle progression.  

 Single molecule FRET experiments provide a unique perspective into the dynamic 

behavior of complex reactions like splicing. Our experiments revealed a complex set of dynamic 

behaviors throughout the splicing cycle. SiMCAn was born of the necessity to classify common 

kinetic behaviors over a broad range of experimental states. Building hierarchical trees from 

disparate sets of data is the basis of most phylogenetic inference, and the methods presented here 

are inspired from evolutionary analysis
131

. The clades identified by SiMCAn allow us to define 

common subsets of relative dynamic behavior occurring at different biochemical blocks of the 

splicing cycle. Building on the phylogenetic analogy, the dynamic clades identified represent 

common kinetic pathways traversing the splicing cycle. We thus observed conserved pathways 

in the splicing cycle driven by a limited number of transitions. A limitation of our approach is 

that it does not allow us to unambiguously define conformations from FRET states. In a simpler 

system, like the P4-P6 subdomain of the T. thermophila group I intron, docking/undocking of the 

GNRA tetraloop could be assigned to specific FRET values, which enabled an unambiguous 

kinetic model to be developed
119

. Emerging approaches involving multiple probes such as the 

coincidence analysis of colocalization single-molecule spectroscopy (CoSMoS)
110

, combined 

with SiMCAn, are poised to resolve this ambiguity and facilitate the development of a complete 

kinetic model of the eukaryotic splicing cycle. As single molecule techniques are applied to 

increasingly complex biochemical processes, SiMCAn is an approach that will make it possible 
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to no longer limit the experimental strategy to one with a low number of states while still seeing 

the forest for the trees.  

 In summary, our results demonstrate that SiMCAn vastly improves the amount of 

information possible to extract from a large quantity of complex smFRET data. It is a powerful 

tool for the unbiased extraction of FRET states and kinetics from single molecule trajectories. By 

combining Hidden Markov Models with hierarchical clustering, we have utilized the strengths of 

both techniques to allow for the identification of biologically related dynamics. Beyond the 

identification of FRET states, SiMCAn helps distinguish molecules with similar FRET levels but 

differing rates of interconversion. By applying an additional layer of clustering based on the 

occupancy of behaviors across a systematic set of experimental conditions with known effects, 

we have created a tool for the identification of common and distinct behaviors among large 

numbers of single molecules. As such, SiMCAn can help generate hypotheses that drive focused 

experiments on isolated pathway intermediates. We anticipate that SiMCAn will be a powerful 

analysis tool that can be applied to any single molecule dataset, allowing for unprecedented in-

depth analyses of the dynamics of complex biomolecular machines. 

3.5 Supplementary Note 1 

We subjected the entire dataset of 8 experimental conditions to global analysis by SiMCAn. 

Application of SiMCAn revealed a disperse set of dynamics and cluster occupancies in the early 

splicing conditions ΔATP-WCE(WT) and ΔU6-WCE(WT) that stall at the CC2 and A 

complexes, respectively (Figure 3.13c and Figure 3.18). Starting with a condition that favors 

formation of commitment complex 2 (CC2) by depletion of ATP (ΔATP-WCE(WT)), SiMCAn 

revealed clusters 0.75-S and 0.65-S of clade VI as the dominant clusters representing a 

conformational state that increases over our time course (Figure 3.13c), indicating that the 5’SS 
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and BP of the substrate are in close proximity. Such a behavior is expected for Ubc4 pre-mRNA, 

which contains a highly secondary structured intron with proximal 5’SS and BP
53

. Given that 

Ubc4 is able to efficiently form CC2 upon incubation with extract depleted of ATP (Figure 

3.23), this also suggests that binding of U1 snRNP and BBP/Mud2 in CC2 is not sufficient to 

disrupt this secondary structure, which places the 5’SS and BP potentially close enough, but not 

properly positioned, for first-step catalysis. A group of dynamic clusters containing 0.75 and 

0.65 as the most dominant states (clades III and V) was also significantly enriched (Figure 3.18), 

potentially signifying reversible binding and unbinding of the U1 snRNP and BBP/Mud2 to the 

pre-mRNA. However, such binding remains transient without the availability of ATP to activate 

the DExD/H-box ATPase Prp5 and load the U2 snRNA-protein complex (snRNP) onto the BP.  

Accordingly, upon addition of extract containing ATP but depleted of U6 snRNA (ΔU6-

WCE(WT)) to favor the A complex, SiMCAn identified a time-dependent increase a low-FRET 

0.05-S cluster (clade I), indicating disruption of Ubc4’s secondary structure and undocking of its 

5’SS and BP (Figure 3.13c and Figure 3.18). This finding is consistent with the proposal that 

pre-mRNAs do not sample a proximal 5’SS-BP conformation until a later stage in spliceosome 

assembly after incorporation of the U5·U4/U6 tri-snRNP upon formation of the activated 

spliceosome (B
act 

complex)
55

. Notably, the preceding CC2 complex shows low occupancy in the 

0.05-S cluster (Figure 3.18), further supporting the notion that its adoption requires an ATP-

dependent assembly event. In this low-FRET state, the 5’SS and BP are stably undocked from 

one another, preventing premature catalysis prior to proper recognition and proofreading by the 

spliceosome. The dynamic clusters of clades III and V were again found to be moderately 

populated (Figure 3.13c). Interestingly, several clusters in clade III appear to decrease over time 

as a result of the increase in occupancy of the 0.05-S cluster. This most likely indicates that 
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reversible excursions are intrinsic to the complex, but can be biased towards a particular 

conformation upon activation of an ATPase. Furthermore, SiMCAn identified a significant 

population of molecules under A complex conditions that remained in the 0.75-S and 0.65-S 

clusters of clade II, characteristic of CC2 (Figure 3.18). It is likely that these molecules were not 

properly assembled into A complex and remain in a CC2-like state, consistent with the expected 

incomplete progression through the splicing cycle (Figure 3.2 and Figure 3.23). 

3.6 Supplementary Note 2 

Comparison of the WT with the 3’SS substrate under ΔPrp2-WCE conditions revealed 

enrichment not only of the 0.05-S cluster, characteristic of molecules in an A-like conformation, 

but also of the 0.65-S and 0.75-S clusters specifically in the case of the 3’SS mutant (Figure 

3.16). The latter two clusters are characteristic of the CC2 complex and decrease over time. 

Previous work on other substrates has suggested that the identity of the 3’SS does not affect 

assembly of the spliceosome and that recognition and proofreading do not occur until after the 

first step of splicing
85

. Our results indicate that Ubc4 may behave slightly differently, perhaps 

due to its altered secondary structured relative to the WT
55

. Deletion of Prp2 may give the 

spliceosome ample time in the B
act

 stage to detect and discard or reverse-assemble on the 3’SS 

mutant substrate. Yet, once assembly is allowed to proceed unimpeded past the first step to the C 

complex, the spliceosome no longer has sufficient time to detect and discard the mutant substrate 

or reverse-assemble on the substrate. As a result, the subtle differences in assembly become 

muted and the two substrates behave more similarly (Figure 3.16). 

3.7 Supplementary Note 3 

The initial set of experimentation used for input into SiMCAn involved smFRET data collected 

solely from incubation either the 3’SS or WT substrate with unmodified extract (WT-
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WCE(3’SS) and WT-WCE(WT), Figure 3.24). Clustering by SiMCAn resulted in formation of 

5 dynamic clusters in addition to the 10 static clusters. Interestingly, cluster 0.05-S became 

increasingly enriched with the 3’SS mutant but remained nearly constant with the WT substrate. 

This initial set of exploratory research led us to a hypothesis that the 3’SS substrate adopts a 

static, low FRET conformation after the Bact complex that we wanted to further test. We thus 

later added in the Prp16DN experiments to determine if this low FRET conformation is formed 

before or after the first step of splicing.  

With the now complete dataset, SiMCAn again identified a 0.05-S cluster (clade I) as 

particularly enriched in the 3’SS mutant substrate after the Prp16-dependent reorganization of 

the spliceosome. The ATPase Prp16 is known to crosslink to the 3’SS and is required for 

formation of a functional step 2 active site immediately following the first step of splicing
129

. In 

addition, one of the second-step splicing factors, Slu7, a protein known to also bind mutant 3’SS, 

was proposed to be involved with efficient docking of the 3’SS into the step 2 active site
130

. The 

deficiency in docking observed with the 3’SS may be the result of Slu7 and other second-step 

factors preventing docking, or the result of the ATPase activity of Prp22. In this latter case, the 

3’SS may transiently dock into the second step conformation, but Prp22 rapidly recognizes and 

discards the mutated 3’SS. Either hypothesis would explain the accumulation of a discarded, 

undocked substrate unable to proceed through the second step of splicing and also provides 

further justification for SiMCAn being an excellent form of exploratory analysis capable of 

providing further hypothesis driven experimentation. 
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Figure 3.22 Experimental datasets show vastly different cluster occupancies  

The occupancy of clusters within each of the 8 experimental conditions compared to that of 

WT-WCE(WT), as in Supplementary figure 13, for the remaining 30 clusters. 
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Figure 3.23 Native gel analysis of commitment complex formation upon Ubc4 in BJ2168 

extract 
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Figure 3.24 Clustering of substrates in WT extract reveals enrichment of the 0.05-S cluster 

with the mutant substrate 

Clustering of molecules belonging to the WT-WCE(3’SS) and WT-WCE(WT) conditions 

reveals enrichment of the 0.05-S cluster with the mutant substrate. Clustering resulted in 5 

dynamic and 10 static clusters. 
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CHAPTER 4: Translating Single-Molecule FRET Traces into the Trajectories of an RNA 

on its Folding Landscape
3
 

 

4.1 Introduction 

Proper RNA function relies on the multi-scale conformational dynamics and structure that occur 

during all RNA processing pathways, often in response to cellular signals. These dynamics vary 

in their complexity and function, but generally play a key role in every aspect of cellular RNA 

metabolism, such as in RNA transcription, splicing and translation
111-113

. Whether acting as a 

standalone RNA molecule, such as with a small ribozyme, or in a large ribonucleoprotein 

complex, such as with the spliceosome, RNA molecules achieve these diverse biological 

functions through proper folding into native conformations that properly display specific 

nucleotides and secondary structure features. As a result, many computational studies focus on 

predicting a single, native conformation. However, RNA folding can lead to multiple native-like 

structures, resulting in a great deal of conformational variability (heterogeneity) in the RNA 

folding landscape. Perhaps the greatest evidence for this comes from the study of self-cleaving 

ribozymes in which case these alternative conformations were attributed to misfolded, inactive 

structures. Unfortunately, our understanding of the RNA sequence-structure-function 

relationship is very limited, and the computational modeling frequently used for RNA structure 

                                                 
3
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footprinting of the RNA. Nikolai Hecker and Jing Qin at the Center for Non-coding RNA in Technology and Health, 

University of Copenhagen developed the FRETtranslator software. Peter Kerpedjiev at the Institute for Theoretical 

Chemistry, University of Vienna assisted in the prediction of RNA 3D sampling structures. A manuscript detailing 

this material is currently in preparation. 
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prediction is still in its infancy and often lacks experimental evidence in support of a predicted 

structure. In recent years, a great deal of work has gone into the development of reliable RNA 

structure predictions using biochemical footprinting approaches
132,133

 in which an RNA 

modifying reagent is added to an assumed homogenous population of folded RNA. The 

modifying reagent either cleaves the RNA backbone in accessible/base-paired regions or 

modifies the RNA backbone/nucleotide, but in both cases is detected as a stall in extension by a 

polymerase. Too often, however, heterogeneity present in a pool of RNA is overlooked with 

these techniques due to the fact that they are almost exclusively ensemble approaches that are 

only capable of capturing a snapshot of the average RNA structure within a solution. As a result, 

a true understanding of RNA structure prediction based on computational and biochemical 

footprinting data alone has thus far been insufficient. 

 Single molecule fluorescence approaches have recently emerged as a powerful toolset to 

dissect the structure and structural dynamics that form the foundation of biomolecular machines. 

In particular, single molecule fluorescence resonance energy transfer (smFRET) has been 

implemented to dissect the RNA dynamics and heterogeneity present in small systems, such as 

isolated riboswitches
134,135

, and large and more complex ones, such as spliceosome assembly and 

catalysis
53-55,62,110

. Unlike ensemble structure probing, smFRET allows for the observation of 

time-dependent changes in structure for individual molecules, providing information about 

subpopulations of behaviors or folding kinetics for a specific RNA. Unfortunately, methods 

capable of accurately translating smFRET traces into the trajectories of an RNA folding 

landscape are lacking. As a result, the FRET information of individual pre-mRNA molecules 

progressing through splicing, for example
62

, provides very little structural information for 

regions of the RNA other than the distance of the specific fluorophore attachment sites. 
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To address these shortcomings, we have developed the FRETtranslator algorithm, a 

computational approach capable of incorporating smFRET data for the experimentally supported 

prediction of RNA secondary structure. We first optimized the algorithm using smFRET data for 

a 76-nucleotide long RNA containing donor and acceptor dyes in a flexible region of the RNA. 

We then began to apply the FRETtranslator algorithm to two smFRET data sets from a 135 

nucleotide long RNA of which biochemical footprinting data was also gathered. In the future, we 

plan to use previously analyzed smFRET data
55,62

 and known binding sites of several 

spliceosomal components to better understand the structure of the Ubc4 pre-mRNA within the 

spliceosome as it progresses through spliceosome assembly. 

4.2 Materials and Methods 

4.2.1 Synthesis of truncated and full-length Ubc4 constructs 

The truncated, 76-nucletotide long Ubc4 substrate containing Cy3 and Cy5 used in this study 

was synthesized as previously described (Table 4.1)
53,136

. Briefly, the RNA was purchased 

containing 5-amino-allyl-uridine at position +14 relative to the 5’ end and a 5’ biotin for 

immobilization. The RNA was coupled to Cy3 N-hydroxysuccinimidyl ester (GE Healthcare) at 

the +14 position by resuspending 4 nanomoles of RNA in 40 µL of 0.1 M sodium bicarbonate 

buffer, pH 9.0, and incubating for 30 min at 60 °C with the dye pack dissolved in DMSO. The 

conjugated RNA was ethanol precipitated and washed with 70% (v/v) ethanol to remove 

unconjugated dye. Unlabeled RNA was removed by purification on Benzoylated naphthoylated 

DEAE (BND)-cellulose (Sigma) that was washed with 1 M NaCl containing 5% (v/v) ethanol. 

Fully conjugated RNA was eluted with 1.5 M NaCl containing 20% (v/v) ethanol and further 

precipitated to remove excess salt. The 3’ terminus of the RNA was subsequently labeled 
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Table 4.1 Sequence information of oligonucleotides used in this study 

The allyl-amine modified uridines are denoted as (5-N-U). The red and green colors represent 

positioning of the Cy5 and Cy3 fluorophores, respectively.  
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through oxidation using sodium periodate and conjugation with hydrazide-containing 

fluorophore. Briefly, 200 ng of RNA was incubated with 0.1 M sodium periodate in 0.01 M 

sodium acetate at room temperature for 2 hours in the dark. Precipitate RNA to remove sodium 

periodate and excess salt. For labeling, RNA was dissolved in 40 uL of 125 mM sodium acetate 

and combined with 10 µl of hydrazide dye in DMSO and incubated at room temperature for 4 

hours. Excess dye was removed through phenol chloroform extraction and ethanol precipitation. 

 Full length Ubc4 substrates Ubc4-1 and Ubc4-2 containing Cy3 and Cy5 was synthesized 

and labeled as previously described (Table 4.1)
53

. The 135-nucleotide pre-mRNA was ligated 

from two fragments: a 76-nucleotide 5’ segment with 5-amino-allyl-uridine at the -7 position 

relative to the 5’SS and a 59-nucleotide 3’ segment with 5-amino-allyl-uridine at either the +6 or 

+29 position relative to the BP adenosine (Table 4.1). The 5’ and 3’ fragments were coupled to 

Cy5 and Cy3 N-hydroxysuccinimidyl ester (GE Healthcare), respectively, by resuspending 4 

nanomoles of RNA in 40 µl of 0.1 M sodium bicarbonate buffer, pH 9.0, and incubating for 30 

min at 60 °C with the proper dye pack dissolved in DMSO. The conjugated fragments were 

ethanol precipitated and washed with 70% (v/v) ethanol to remove unconjugated dye. Unlabeled 

RNA was removed by purification on benzoylated naphthoylated DEAE (BND)-cellulose 

(Sigma) that was washed with 1 M NaCl containing 5% (v/v) ethanol. Fully labeled RNA 

fragments were eluted with 1.5 M NaCl containing 20% (v/v) ethanol and further precipitated to 

remove excess salt. Labeled fragments were combined with an equal molar amount of DNA 

splint (Table 4.1) and ligated by incubating with RNA Ligase 1 (NEB) for 4 h at 37 °C as 

described
53,117

. Full length, labeled Ubc4 was then purified on a denaturing 7 M urea, 15% (v/v) 

polyacrylamide gel.  
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 A clone of Ubc4 in pUC19 was used as template for DNA amplification prior to 

transcription. Purified, double-stranded DNA (ddDNA) was transcribed in vitro for 4 h at 37 °C 

using 2 µg of template in a buffer containing 120 mM HEPES-KOH (pH 7.5), 2 mM spermidine, 

30 mM MgCl2, 0.01% (v/v) Triton X-100, 0.1U PPiase, 40 mM DTT, 7.5 mM each NTP, and 

0.065 mg/ml homemade T7 RNA polymerase. RNA was purified on a denaturing 7 M urea, 10% 

(v/v) polyacrylamide gel and stored in water.  

 In vitro transcribed Ubc4 was 5’ end labeled by first treating with Antarctic Phosphatase 

(NEB) for 1 h at 37 °C to remove any 5’ phosphate. Enzyme was then inactivated at 70 °C for 5 

min, phenol chloroform extracted, and the RNA ethanol precipitated. Labeling was performed 

with 25 pmoles of RNA in the presence of 20 U polynucleotide kinase (PNK, NEB) and 100 uCi 

[gamma-
32

P]ATP for 1 h at 37 °C. Labeled RNA was purified on a denaturing 7 M urea, 10% 

(v/v) polyacrylamide gel and stored in water at 500,000 cpm/ul.  

 In vitro transcribed Ubc4 was 3’ end labeled by combining 25 pmoles of RNA with 100 

uCi [
32

P]pCp and 10U T4 RNA Ligase (NEB) and incubating at 16 °C for 12-16 h. 

Unincorporated pCP and degradation products were removed by purification on a denaturing 7 

M urea, 10% (v/v) polyacrylamide gel and stored in water at 500,000 cpm/µl.  

4.2.2 smFRET analysis of RNA constructs  

Single molecule FRET was carried out using a prism-based TIRF microscope
45,49,122

, a 532-nm 

laser to excite the donor (Cy3), and a 635-nm laser to excite the acceptor (Cy5) with the emission 

recorded at 100 ms time resolution with a Princeton Instruments, I-PentaMAX intensified CCD 

camera. Biotinylated substrates were heated to 90 °C for 2 min and allowed to cool to RT for at 

least 10 min in imaging buffer (20 mM Tris-HCl (pH 7.0), 1 M NaCl, 1 mM EDTA). Folded 

RNA was then immobilized on biotin-PEG coated slides that were pre-reacted with streptavidin, 
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allowed to bind for 10 min, and then removed of excess RNA by washing with imaging buffer. 

Data were collected in the presence of imaging buffer containing an oxygen scavenging system 

(OSS) composed of protocatechuate dioxygenase, protocatechuate and Trolox though directly 

exciting of Cy3 and recording of Cy3 and Cy5 emission intensities. Histograms were constructed 

by sampling 100 frames of data from each molecule. The vbFRET software suite
73,123

 was used 

for Hidden Markov Modeling (HMM) in which each trajectory was individually fit with models 

ranging from 1-5 states with the optimal number of states determined by the vbFRET algorithm.    

4.2.3 Terbium(III) footprinting of Ubc4 

The structure of 
32

P labeled Ubc4 was probed essentially according to the method previously 

described
47,137-140

. Briefly, a pool of 
32

P-Ubc4 with 350,000 c.p.m. of end-labeled RNA per 

reaction was folded in the presence of 20 mM Tris-HCl (pH 7.0), 1 M NaCl, 0.5 mM EDTA by 

heating to 90 °C for 90 seconds and snap cooling on ice for 2 min. The folded RNA was then 

aliquoted into separate tubes and terbium(III)-mediated cleavage was initiated by addition of 1.0 

mM TbCl3. Reactions were allowed to proceed for 1 h at 30 °C before addition of 10 mM EDTA 

to quench the reaction. Cleaved RNA was diluted with 0.3 M NaOAc and precipitated for 

analysis on a denaturing 7 M urea, 10% (v/v) polyacrylamide sequencing gel. Cleavage product 

bands were visualized by exposing the gel to a phosphor screen and scanning on a Typhoon 

variable mode imager (GE Healthcare). The normalized extent of cleavage (Π) was calculated by 

substituting the peak intensities in the following equation:  
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where y is the terbium(III) concentration in a particular cleavage reaction and x is the nucleotide 

position of the RNA. 

4.2.4 Computational transformation of smFRET data into structural folding pathway 

The FRETtranslator algorithm requires an RNA sequence and smFRET trace as input to predict 

the most likely transitions between RNA secondary structures based on the Viterbi decoding 

algorithm, a dynamic programming algorithm for finding the most likely sequence of hidden 

states (Figure 4.1)
141

. The Viterbi algorithm requires 5 input parameters (the hidden states, 

transition rates, emission rates, and emission probabilities), the first three of which can be 

described using the recently developed Basin Hopping Graph (BHG)
142

. The BHG is a coarse-

grained model of the folding landscape for an RNA sequence where each node of the BHG is a 

local minimum that represents a basin in the landscape (a hidden state). Such local minima are 

computed from the set of all possible secondary structures that can be formed assuming that only 

canonical (GC, AU, GU) base pairs are formed, base pairs do not cross (no pseudoknots), and 

hairpin loops have a minimum length of three. The basins are then arranged as a graph by next 

creating the “move set” in which it is determined if specific secondary structures can be 

interconverted in a single step. The BHG edges connect basins when the direct transitions 

between them are energetically favorable with transition rates being based on the barrier heights 

within the BHG. The initial probability is the Boltzmann distribution of the free energy for each 
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Figure 4.1 Illustration of the computational framework of FRETtranslator 
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local minima of the BHG folding landscape. The sequence of FRET state observations for each 

single-molecule trajectory becomes the emission rates. Lastly, emission probability distributions 

are determined for each hidden state secondary structure. Several hundred predicted 3D 

structures are determined for each secondary structure for which the Euclidean distance between 

the atoms closest to the two fluorophore positions in sampled 3D space is determined yielding a 

distribution of distances for each secondary structure. Based on the distribution of distances, 

FRET efficiency values (E) can be calculated to yield a distribution of FRET states for each 

secondary structure using the Förster equation,       
 

  
 
 

 
  

, where R0 is the Förster 

radius for the Cy3-Cy5 FRET pair at which their FRET efficiency is 50% (54 Å) and R is the 

donor-acceptor distance as described
74,76,77

. The idealized FRET trace from vbFRET is then 

combined with the emission, initial, and transition probabilities and used as input for Viterbi-

decoding. Finally, the Viterbi path yields the most-likely sequence of secondary structures. 

4.3 Results 

4.3.1 Designing a suitable smFRET RNA substrate  

Rapid computational modeling of RNA secondary structures has greatly improved with the 

application of the nearest neighbor model to explain the thermal melting data for an RNA 

molecule
143

. It is well known that the number of predicted structures grows exponentially with 

the length of the RNA sequence due to the introduction of pseudoknots and other tertiary 

structural features which make the prediction process more difficult and time-consuming
144

. 

Unfortunately, there is little experimental data available with which to refine or confirm the 

computational predictions. In addition, the majority of RNA folding investigations treat RNA 

folding as a stochastic process that is defined by an RNA folding landscape containing one stable 
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structure. RNA folding, however, is known to be a dynamic process with often no one stable 

structure but many interconverting structures of similar energies in its folding landscape. Single-

molecule fluorescence resonance energy transfer (smFRET) is a biophysical technique capable 

of producing a time series of FRET signals and rates of exchange between them and can thus 

identify subpopulations of behaviors and structures that would become averaged in most 

biochemical structure analysis techniques
45,73,122

. We thus set out to improve current models for 

the pre-mRNA structure within the spliceosome by integrating smFRET data into RNA 

secondary structure predictions. In a subsequent step, this will allow us to refine current RNA 3D 

structure models for the spliceosome. 

Although the BHG algorithm has greatly enhanced our ability to sample relevant and 

sufficiently diverse secondary structures for RNAs that are 100s of nucleotides in length, 3D 

structure modeling of RNA beyond 100 nucleotides is time-consuming and inaccurate. The Ubc4 

pre-mRNA that has been previously characterized by smFRET throughout spliceosome assembly 

and catalysis has been shortened to allow investigation by smFRET and still be an efficient 

splicing substrate. Unfortunately, the resulting pre-mRNA substrate is still well over 130 nt in 

length and just beyond the capabilities of current 3D structure prediction. We therefore first 

synthesized and labeled a further truncated form of Ubc4 only 76-nts in length that would be 

more suitable for development and optimization of the FRETtranslator algorithm. Secondary 

structure prediction using the mFOLD web server
145

 revealed one dominant structure with a free 

energy of -14.4 kJ/mol (Figure 4.2a). This construct was synthesized containing a 5’ biotin for 

immobilization and an allyl-amine modified uridine residue for attachment of the Cy3 

fluorophore, while the Cy5 acceptor fluorophore was attached to the free 3’ end of the RNA 

using oxidation chemistry.  
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Figure 4.2 smFRET analysis of the further truncated Ubc4 substrate 

(a) The truncated Ubc4 substrate contains donor (green, Cy3) and acceptor (red, Cy5) dyes at 

the +14 and 3’ end positions, respectively. The structure shown is the lowest energy structure 

as predicted using mFOLD. (b) FRET probability distribution of the raw single-molecule 

FRET trajectories. (c) TODP showing the fraction of molecules that either do not show a 

transition (dotted white line) or transition from one indicated FRET state to another. (d and e) 

Cumulative distribution plot of dwell times extracted for the indicated transition and fit with a 

double-exponential rate equation (f) Parameters for the double-exponential equations fitted to 

the dwell time data. Weighted average rate constants (kw) were calculated by utilizing the 

amplitudes associated with each time constant as weighting factors.  
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4.3.2 Truncated Ubc4 adopts primarily a high FRET conformation 

To obtain real-time insight into the structure and conformational rearrangements of the folded, 

truncated Ubc4 RNA at equilibrium, we immobilized the substrate and carried out smFRET in a 

high salt buffer at neutral pH. RNA molecules were verified of containing both Cy3 and Cy5 

fluorophores prior to collection of Cy3 and Cy5 intensities over 3,000 video frames (at 100-ms 

time resolution) from 420 molecules. Histogram analysis of the FRET values indicated a bimodal 

Gaussian distribution with a dominant high FRET peak at 0.77±0.001 in ~82% of molecules and 

an unfolded structure centered at -0.01±0.005 in ~18% of molecules (Figure 4.2b). Hidden 

Markov model (HMM) analysis is well suited for smFRET analysis because of its ability to find 

discrete states within noisy time series data and reliably find the most probable path through 

these smFRET states. We therefore used the freely available software vbFRET
123

 to idealize the 

FRET states and series of states for each individual molecule. To enable a direct comparison 

across a large dataset, we binned each FRET state into one of ten evenly spaced FRET values 

(0.05-0.95, with increments of 0.10) that together evenly span the viable FRET range and are 

commensurate with typical signal-to-noise ratios. Transition occupancy density plots (TODPs), 

which are scaled to emphasize the most common transitions within a population
73

, indicate that 

the most common behavior is a static, unchanging high FRET state near 0.75 FRET and to a 

lesser extent, a static low FRET state around 0.05 FRET (Figure 4.2c, diagonal molecules are 

static). Additionally, a small fraction of molecules appear to show transitions between the low 

and high FRET states (Figure 4.2c). In order to identify the rate of transition between the high 

(~0.75) and low (0.05) FRET states, we performed kinetic analysis by building cumulative 

distribution plots of the dwell time data for each transition and fitting the data to an exponential 

equation. Interestingly, the low-to-high FRET transition appears to contain two similarly sized 
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populations, one fast and one slow transitioning (t1=0.92 and t2=6.23), while the high-to-low 

transition is dominated by a slow-transitioning population of molecules indicating that the high 

FRET state is the more stable conformation. Weighted average rate constants reveal that the low-

to-high FRET rate of transition is nearly 5-times faster and occurs much more frequently than the 

high-to-low transition rate (Figure 4.2d,e,f), demonstrating that although molecules are able to 

occupy an unfolded, low FRET state, they tend to quickly transition back to the much more 

stable high FRET conformation. 

4.3.3 FRETtranslator identifies folding trajectories of secondary structures 

The vbFRET-idealized smFRET trajectories for the short 76-nt long RNA substrate were next 

used as input for the FRETtranslator algorithm in order to identify potential 2D structures that 

could represent the observed high and low FRET states. FRETtranslator found ~2,900 possible 

secondary structures for each of which ~500 3D structures were predicted. More precisely, we 

used a distance geometry model that restrains Watson-Crick base pairs and A-RNA helices in 

typical geometry as input for the molecular modeling package TINKER to sample 3d 

structures
146-148

. FRETtranslator calculated the Euclidean distance between Cy3 and Cy5 at 

nucleotides 14 and 76, respectively, for each 3D structure, and converted the distances to FRET 

efficiencies to yield a distribution of FRET values for each 3D structure. These FRET probability 

distributions were then compared to the entire smFRET dataset for truncated Ubc4 in order to 

determine which structures best match each individual FRET trajectory. Finally, predicted 

structures were analyzed to determine how often a structure is assigned to a given FRET value 

(Table 4.2, top two structures shown per FRET state), as well as how often a predicted structure 

undergoes a ‘self’ (transitions to the same structure) or ‘non-self’ (transitions to another 

structure) transition (Table 4.3).  
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Table 4.2 The top two most commonly predicted structures for each FRET state 

Shown is the number of time steps a structure ID is predicted for each of the indicated FRET 

states. Red and green values indicate the first and second most common structure, 

respectively, for each FRET value. 
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Table 4.3 The top 10 ‘self’ transitions and top 4 ‘non-self’ transitions 

Counts indicate the number of time steps each transition occurs. The FRET value column 

indicates the FRET value most frequently associated with the indicated structure ID.   
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Perhaps not surprisingly, the most frequently predicted structure and transition was found 

to be the ‘self’ transition of structure 1732 (Table 4.3) with nearly 98% of these ‘self’ transitions 

assigned to molecules possessing a 0.75 FRET state (Figure 4.3a). These data match well with 

the previous histogram and TODP analysis that showed a static 0.75 FRET state as the most 

common FRET state and transition (Figure 4.2b,c). The second most predicted structure and 

transition was the ‘self’ transition observed for structure 6438 (Table 4.3) with nearly 93% of the 

‘self’ transitions assigned to molecules possessing a 0.85 FRET state (Figure 4.3a). 

Interestingly, this structure shows great similarity to structure 1732 describing the 0.75 FRET 

state, specifically in the very stable 5’ stem structure where the fluorophores are located. The 

same 5’ stem including dangling ends was also predicted by mFOLD. However, the mFOLD 

MFE structure differs in the size of the interior loops adjacent to the stem loop. Finally, the third 

most predicted structure and transition was found to be the ‘self’ transition of structure 7401 

(Table 4.3), a highly linear and unfolded form of the RNA that would allow for great separation 

of the donor and acceptor fluorophores and thus result in the formation of a low, 0.05 FRET state 

(Figure 4.3b), again matching the previous histogram and TODP analysis.  

Analysis of the most common ‘non-self’ transitions revealed two primary sets of 

transitions (Table 4.3), one between the second most predicted 0.75 FRET structure (Table 4.2, 

structure 2779) and the second most predicted 0.05 FRET structure (Table 4.2, structure 3115), 

and the other between the top two 0.05 FRET structures (Table 4.2, structures 3115 and 7401). 

Notably, these two most common sets of transitions (27793115 and 31157401) explain 

the occurrence of two populations of molecules transitioning from 0.05 to 0.75 FRET in the 

kinetic analysis (Figure 4.2e,f). One population of molecules transitions very rapidly from 

structure 3115 back to structure 2779, spending on average ~1.4 sec in the low FRET structure 



129 

 

 

Figure 4.3 The most common structures predicted by FRETtranslator are in stable high 

or low FRET states 

Example raw FRET trace (blue), idealized FRET trajectory (black), and corresponding most 

predicted structure for the three most common FRET states. (a) Structures 1732 and 6438 

describe molecules trapped in a static 0.75 or 0.85 high FRET state, respectively. (b) Structure 

7401 best describes molecules that exhibit long dwell times in the 0.05 low FRET state. 
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(Figure 4.4a). Conversely, an equally sized population of molecules that transitions from 2779 

to 3115 can transition very slowly back to the more stable high FRET conformation, but to do so 

must further unfold from structure 3115 to structure 7401. Once in the conformation of structure 

7401, molecules are able to stably reside in an unfolded conformation for an average of ~14 sec 

(Figure 4.4b). These data match the kinetic analysis of FRET states (Figure 4.2c,e,f) that found 

a population of molecules that transitions very slowly from the low FRET state back to the high 

FRET state (t1 = 0.92 s) and an equally sized population with longer dwell times in the low 

FRET state (t2 = 6.23 s). FRETtranslator has, therefore, identified three primary structures 

describing the high FRET state and two primary structures describing the low FRET state. 

Structures 1732 and 6438 contain nearly identical 5’ stems that result in a stable 0.75 or 0.85 

FRET state, respectively. Structure 2779 on the other hand is an alternative and less stable 

structure describing the high FRET behavior of truncated Ubc4 that is capable of more easily 

unfolding into structure 3115 possessing a 0.05 FRET state. Once unfolded, this low FRET 

structure can either very rapidly transition back to the high FRET 2779 structure or continue to 

unfold to structure 7401, a more stable unfolded form of truncated Ubc4 (Figure 4.4c). 

4.3.4 Full-length Ubc4 FRET distribution shows high and low FRET behaviors  

Having shown that the FRETtranslator algorithm yields reasonable secondary structure 

predictions for a short RNA substrate, we next sought to apply the same workflow to a 

biologically more relevant RNA. Ubc4 is a yeast pre-mRNA substrate that has been modified to 

be suitable for use in single molecule investigation of the mechanism of pre-mRNA 

splicing
53,55,62

. The 135 nt long pre-mRNA contains a short intron known to possess extensive 

secondary structure that place the splice sites in close proximity even in the absence of the 

spliceosome
62,73

. Because of Ubc4’s increased length, input into mFOLD for 
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Figure 4.4 Predicted substrate unfolding to an unstable or stable low FRET state 

(a) An example raw FRET (blue) and idealized FRET (black) trace for a molecule that 

transitions from a stable high FRET conformation (structure 2779) to an unstable low FRET 

conformation (structure 3115). (b) An example raw FRET (blue) and idealized FRET (black) 

trace for a molecule that transitions from a stable high FRET conformation (structure 2779) to 

a stable low FRET conformation (structure 7401). (c) FRETtranslator-predicted transition 

from a stable high FRET state to either an unstable low FRET state (3115) or to a stable low 

FRET conformation (structure 7401).  
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preliminary secondary structure analysis yields 8 predicted structures with very similar free 

energies (Figure 4.5). To more confidently predict the most stable structures and observe real-

time structural interconversions, we synthesized two Ubc4 constructs with different labeling 

positions of the Cy3 fluorophore. Ubc4-1 contains the Cy3 and Cy5 fluorophores at the +96 and 

+14 positions (Table 4.1), regions that had previously allowed for the observation of branchsite 

docking into the 5’SS during the 1
st
 step of splicing

55,62
.  The fluorophores are also near the base 

of a helical stem thought to undergo extensive rearrangements even in the absence of the 

spliceosome and would be predicted to provide valuable structure information for this unstable 

region of the substrate. The Ubc4-2 construct, on the other hand, has the Cy3 fluorophore 

positioned at residue +119 (Table 4.1), allowing for the surveillance of 5’SS and 3’SS proximity 

during the 2
nd

 step of splicing
53

. This region of the RNA is thought to be much more stable based 

on structure prediction and should thus serve as a good reference of correct structure prediction.  

Each substrate was individually immobilized for smFRET analysis in the same buffer 

conditions and experimental setup as with the truncated Ubc4 construct. Histogram analysis of 

the FRET values for the Ubc4-1 construct indicated a double Gaussian distribution with a high 

FRET population at 0.69±0.002 for ~57% of the molecules and a low 0.15±0.003 FRET state in 

~43% of molecules, indicating that a much larger fraction of molecules visit an alternative 

confirmation in which the fluorophores become greatly removed from one another (Figure 

4.6b). TODP analysis revealed a much smaller fraction of molecules exhibiting static behavior. 

Rather, the dominant behavior is a transition between the numerous high FRET state 

confirmations and several low FRET states (Figure 4.6c). In order to gain an approximate 

understanding of the transition kinetics between the high and low FRET populations, the 0.65 

and 0.75 FRET states were grouped together, as were the 0.15 and 0.25 FRET states, and dwell 
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Figure 4.5 The most stable predicted full-length Ubc4 structures 

The top 8 most stable predicted structures found using mFOLD. 
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Figure 4.6 smFRET analysis of full length Ubc4 substrate 

(a) Full length Ubc4-1 contains donor (green, Cy3) and acceptor (red, Cy5) dyes at the +14 

and +96 positions, respectively. The structure shown is the lowest energy structure as 

predicted using mFOLD. (b) FRET probability distribution of the raw single-molecule FRET 

trajectories. (c) TODP showing the fraction of molecules that either do not show a transition 

(dotted white line) or transition from one indicated FRET state to another. (d and e) 

Cumulative distribution plot of dwell times extracted for the indicated transition and fit with a 

double-exponential rate equation (f) Parameters for the double-exponential equations fitted to 

the dwell time data. Weighted average rate constants (kw) were calculated by utilizing the 

amplitudes associated with each time constant as weighting factors.  
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times analysis was performed. The resulting low-to-high FRET transition rate constant was 

found to be only slightly higher than the high-to-low FRET transition, indicating that, although 

molecules appear to be primarily dynamic in nature, they slightly prefer a more compact 

structure that places the regions of RNA containing the Cy3 and Cy5 fluorophores in close 

proximity (Figure 4.6c,d,e). 

 As expected, interpretation of the Ubc4-2 smFRET data was much more straightforward, 

with the histogram and TODP analysis supporting that this region of the RNA adopts primarily a 

stable, high FRET conformation. The FRET histogram of the data was fit best using a trimodal 

Gaussian, with a dominant ~57% population possessing a mean high FRET conformation of 0.95 

FRET as well as a lesser ~24% population with a mean FRET value of 0.84±0.02 (Figure 4.7b). 

Molecules have a tendency to remain in a static 0.95 FRET state, as indicated by the high 

probability on the diagonal 0.95 FRET, but occasionally make very fast transitions to a slightly 

lower 0.8 FRET state (Figure 4.7c). Interestingly, kinetic analysis shows that if molecules do 

transition out of the high FRET state to the 0.8 FRET state they very rapidly transition back to 

high FRET at a rate 5 times faster than the 0.950.80 transition (Figure 4.7d,e,f). These data 

would appear to indicate that the helix formed between these two regions of RNA where the 

FRET probes are incorporated is highly stable and unlikely to change in FRETtranslator 

secondary structure predictions. 

4.3.5 Biochemical footprinting of Ubc4 reveals single-stranded regions of RNA 

To provide further experimental data for input into the FRETtranslator algorithm, we performed 

terbium(III) footprinting with the folded full-length Ubc4 substrate. Terbium(III) is a metal ion 

that, at high concentrations, binds and cleaves RNA in single-stranded, flexible regions
139,140

. 

Biochemical footprinting, such as this, is an ensemble technique that can only provide an average 
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Figure 4.7 smFRET analysis of full length Ubc4-2 substrate 

(a) Full length Ubc4-2 contains donor (green, Cy3) and acceptor (red, Cy5) dyes at the +14 

and +119 positions, respectively. The structure shown is the lowest energy structure as 

predicted using mFOLD. (b) FRET probability distribution of the raw single-molecule FRET 

trajectories. (c) TODP showing the fraction of molecules that either do not show a transition 

(dotted white line) or transition from one indicated FRET state to another. (d and e) 

Cumulative distribution plot of dwell times extracted for the indicated transition and fit with a 

double-exponential rate equation (f) Parameters for the double-exponential equations fitted to 

the dwell time data. Weighted average rate constants (kw) were calculated by utilizing the 

amplitudes associated with each time constant as weighting factors.  
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protection pattern of all interconverting structures within a pool of RNA. However, it does 

provide nucleotide-resolution protection patterns that, depending upon the degree of protection, 

can provide a high level of confidence for specific nucleotides being single-stranded or base-

paired.   

 The full-length, in vitro transcribed and 
32

P-labeled Ubc4 was melted and re-folded in the 

same high-salt imaging buffer used during smFRET analysis of the fluorescent substrates. Ubc4 

was radioactively labeled on either the 5’ or 3’ end in order to gain a confident footprint for the 

entire RNA that could be used to further refine the predicted structures. The concentration of 

terbium(III) and incubation time was optimized and found to ideally be 1.0 mM terbium ion for 1 

h at 30 °C resulting in significant cleavage of the RNA backbone (Figure 4.8a,b). At least 3 

replicates were performed with each substrate and the normalized reactivity for each nucleotide 

position was determined. In Figure 4.8c nucleotides with low reactivity are highlighted in blue, 

with medium reactivity in yellow, and with high reactivity in red. This analysis revealed 11 

nucleotides that show high levels of reactivity with terbium(III) and thus can be predicted with 

confidence to be single-stranded. When re-inserted into mFOLD for structure determination 

forcing the nucleotides of high reactivity to be single-stranded now produces two primary 

structures with similar energy that differ in the length of the L4 stem (Figure 4.8d).  

4.4 Discussion 

Here we have combined single-molecule FRET and computational analysis techniques as input 

for FRETtranslator, an algorithm capable of utilizing smFRET and 3D structure predictions to 

predict a time-series of RNA structures. An approach such as FRETtranslator allows for the 

prediction of secondary structures for any RNA of which there are smFRET data available. 

Predicted secondary structure transitions can be used as input for computationally more 
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Figure 4.8 Terbium(III) footprinting of full length Ubc4 

Tb
3+

 footprinting analysis of full length Ubc4 labeled with 
32

P either on the 5’ end (a) or 
32

p-

pCp on the 3’ end (b) in the presence or absence of 1.0 mM terbium(III) for 1 hour at 30 °C. 

OH
-
: alkaline hydrolysis ladder. T1: G-specific RNase T1. (c) Quantification and 

normalization of the extent of cleavage for each nucleotide position from at least 3 separate 

experiments. Values above 2 are considered significant (*) and used as constraints in structure 

predictions. (d) Footprinting-modified structures of Ubc4 as determined by mFOLD. 

Reactivity values above 2 used as constraints in structure prediction are marked with a red 

circle.  
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demanding approaches to obtain more accurate models of the underlying RNA 3D structures. 

Accurate prediction of 3D structures is currently limited to smaller RNA molecules primarily 

due to the fact that biochemical data supporting the output structures is typically lacking. In 

addition, typical biochemical structure probing, such as footprinting, only reports the average 

structure of a population of RNA and as a result can mislead in structure prediction. 

As steps towards fully developing FRETtranslator, we first implemented the technique 

for the analysis of a short, 76-nucleotide long RNA containing donor and acceptor fluorophores 

for smFRET. By individually fitting each smFRET trajectory to idealized FRET states and 

inputting the resulting time-series FRET paths into FRETtranslator, we were able predict 

secondary structure trajectories that coincided with the collected smFRET data. FRETtranslator 

was able to identify alternative high FRET structures that explained the high FRET nature of the 

substrate. While FRETtranslator predicted the same local substructure for both high FRET states 

near the nucleotides where the fluorophores were attached, i.e., structure 6438 and structure 

1732, other parts of the structures differ in the prediction. The parts that differ do not modulate 

the donor and acceptor distances. Therefore, smFRET does not yield explicit information about 

this part of the structures. Nonetheless, we can assume that the 76-nucleotide truncated Ubc4 

substrate folds into an elongated shape similar to the predicted mFOLD MFE structure. 

Similarly, a near-zero FRET state does not provide any distance information. Hence, 

FRETtranslator could overestimate unfolding of an RNA into a structure like 7401. Still, 

FRETtranslator predicts that structure 2779 is more likely to show a transition into a low FRET 

state structure than expected for the high FRET structures discussed above, effectively using our 

kinetic information from smFRET to inform the predicted RNA folding landscape.  



140 

 

We next applied it to smFRET data of a 135-nucleotide pre-mRNA substrate, Ubc4, 

alternatively fluorophores labeled in two separate regions of the RNA. In addition to the 

smFRET information, we have also gathered terbium(III) footprinting data that can be used to 

further validate and refine the predicted structures. Moreover, the BHG modeling has now been 

extended to include pseudoknots that will be included for further computations of the full-length 

Ubc4 substrate. Unfortunately, structure prediction of longer RNA molecules using smFRET 

data as input for FRETtranslator is still quite time-consuming and has not yet completed the 

analysis process. However, given enough time, FRETtranslator should prove to be a useful tool 

for the accurate prediction of potential RNA structures for which smFRET data is known. 

We next plan to modify the FRETtranslator algorithm to enable incorporation of 

footprinting data with which to alter and modify the predicted RNA structures. As most 

footprinting techniques, such as terbium(III) footprinting, are time- and ensemble-averaged 

methods and thus can only capture a snapshot of the average RNA structure in solution, the most 

unreactive and thus most tightly base paired regions of the RNA will be used to modify the 

structures that are most representative of the most stable FRET conformation. Additionally, the 

most reactive and thus most single-stranded regions of the RNA will be used to modify these 

same structures that are most representative of the most stable FRET conformation. For example, 

the P1 stem of full length Ubc4 is significantly less reactive than the remainder of the structure 

and thus can be confidently assumed to be base paired. Considering Ubc4-2 primarily adopts a 

high FRET conformation, FRETtranslator will be programmed to favor high FRET conformation 

structures in which the P1 stem is formed. In more complex cases, we will develop 

computational algorithms that time- and ensemble-average the smFRET-guided structures 

derived from FRETtranslator to calculate partition functions for the base pairing probability of 
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each nucleotide, which then will be re-calibrated and optimized for convergence with the 

footprinting data on that nucleotide. 

Once the FRETtranslator algorithm has been fully optimized using the sample datasets, 

we next plan to use previously analyzed smFRET data describing the dynamics of 5’SS and 

branchsite docking throughout spliceosome assembly up to the first step of splicing
62

. In these 

experiments, smFRET data were collected using the Ubc4-1 construct in the presence of several 

mutant yeast splicing extracts that result in the accumulation of particular splicing complexes 

(Figure 4.9a). Interestingly, the Ubc4 substrate was found to undergo very large structural 

rearrangements, transitioning from a folded, high FRET conformation in CC2, to a near zero, 

low FRET conformation in the A complex, and then finally to the 0.2 FRET state in the B
act

 

complex. Beyond this, little is known about the exact conformation of the pre-mRNA within the 

spliceosome. To refine our understanding of the spliceosome core and how it changes throughout 

spliceosome assembly, we plan to use known snRNA and protein binding sites (Figure 

4.9b)
30,149-152

 and the gathered smFRET data for each splicing complex
62

 to predict potential 2D 

and 3D structures of Ubc4 at each stage of assembly. Since simply including the known 

protection regions for secondary structure prediction by mFOLD produces only one stable 

structure (Figure 4.9c), we expect that the ability to also incorporate smFRET information to 

refine our predictions will greatly enhance the accuracy of predicting the dynamic time sequence 

of conformations of Ubc4 as it is processed by the spliceosome. 
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Figure 4.9 Incorporating known 5’SS and BS protection patterns does not explain 

observed FRET behavior in several splicing conditions 

(a) Histogram analysis of smFRET data from several splicing conditions known to stall at 

either commitment complex 2 (CC2), A complex, or the B
act

 complex. A time series was 

performed in which FRET data was recorded 0-8 min (black), 18-23 min (red), and 33-40 min 

(green) after addition of the indicated extract condition. (b) Known snRNA and protein 

binding sites on the 5’ splice site and branchsite for CC2, A complex, and B
act

 complex. The 

pre-mRNA intron (orange) is lowercase while the exon is uppercase (c) mFOLD predicted 

structure of Ubc4 using the known protection pattern for each complex. Donor (green) and 

acceptor (red) dyes used in (a) are indicated as well as the 5’SS and branchsite regions. 
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CHAPTER 5: Identifying Novel Yeast Introns and Common Secondary Structure Features 

in an in vivo Assembled, Activated Spliceosome
4
 

 

5.1 Introduction  

The spliceosome is a large macromolecular machine responsible for removing non-coding 

segments of pre-mRNA (introns) and ligating the flanking coding sequences (exons) to produce 

the mature mRNA utilized by the ribosome as a template for protein synthesis. This crucial step 

in the maturation of mRNA allows for the cell- and tissue-specific expression of protein isoforms 

from a single gene sequence in higher eukaryotes such as humans. To this end, spliceosomes 

need to reliably identify intron-exon boundaries, excise introns with single-nucleotide precision, 

discard substrates carrying mutations, and accurately regulate alternative splicing events. Not 

surprisingly, up to 50% of all mutations leading to human disease are thought to be the result of 

splicing defects
153

. 

 In contrast to other macromolecular machines such as the ribosome, the spliceosome does 

not have a pre-formed catalytic core. Rather, each of the five small ribonucleoprotein complexes 

(snRNPs, denoted U1, U2, U4, U5, and U6), which are themselves composed of a single small 

nuclear RNA (snRNA) and several associated proteins, assemble on a single pre-mRNA 

                                                 
4
 Matt Kahlscheuer performed biochemical isolation and validation of the in vivo-assembled B

act
 complex as well as 

data analysis confirming the presence of known introns and investigating the presence of new splicing substrates. 

Nguyen N. (Josh) Vo performed differential expression analysis and assisted with the initial read mapping. Brian 

Magnuson performed the Tophat and Bowtie analysis to map reads to the yeast genome. Michelle Paulsen 

performed cDNA synthesis and preparation. Sequencing of the cDNA library was performed by the staff at the 

University of Michigan Sequencing Core. 
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substrate in a stepwise fashion, carry out both steps of splicing, and then disassemble to carry out 

further splicing cycles on other pre-mRNAs (Figure 5.1b). Such a stepwise assembly process 

allows for tight regulation of the splicing process by providing multiple checkpoints before, 

during, and after both steps of splicing. The splicing cycle begins with the recognition of the 5’ 

splice site (5’SS) and branchpoint (BP) region by the U1 and U2 snRNP complexes, 

respectively. The U4, U5, U6 snRNPs bind to this A complex structure as a preformed complex 

known as the tri-snRNP to form the B complex
59

. Large RNA-RNA and RNA-protein 

rearrangements occur at this point such that the RNA-RNA base pairing between U1 and the 

5’SS is disrupted, resulting in the release of U1 from the spliceosome and binding of the U6 

snRNP to the 5’SS. These and other RNA and protein rearrangements throughout the cycle are 

catalyzed by at least eight RNA-dependent ATPases of the DExD/H-box subfamily and are 

thought to enhance the fidelity of splicing by acting through a kinetic proofreading mechanism 

such that mutant substrates can be discarded at multiple steps in the assembly pathway
55,65

. Once 

the U6 and U5 snRNP complexes are stably associated with the spliceosome, the U4 snRNP, 

which serves more of a cofactor role in preventing premature binding of U6 to the pre-mRNA, 

dissociates from the spliceosome. This activated form of the spliceosome (B
act

) contains the fully 

formed catalytic core that, with the help of several of the RNA-dependent ATPases, can carry 

out the two chemical steps of splicing (Figure 5.1a). In the first step, the BP adenosine executes 

a nucleophilic attack on the 5’SS, resulting in the release of the 5’ exon from the newly formed 

intron lariat structure. Following a further ATP-dependent rearrangement, the 3’ hydroxyl of the 

5’ exon nucleophilically attacks the 3’SS, resulting in formation of the mature mRNA and 

release of the intron lariat (Figure 5.1a).  
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Figure 5.1 The yeast splicing mechanism and spliceosome assembly pathway 

(a) The two chemical steps of splicing (b) The spliceosome assembly pathway highlighting 

the Prp2-inactivation resulting in accumulation of the B
act

 complex. The B
act

 complex can be 

further purified utilizing a TAP-tagged NTC component, Cef1, that associates only at the B
act

 

stage and remains throughout the rest of the splicing cycle. 
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Previous work has shown that, upon incubation with extract, the efficiently spliced Ubc4 

pre-mRNA traverses through a unique set of conformational dynamics as it progresses thorough 

the various stages of splicing. Only upon formation of the activated spliceosomal B
act

 complex 

do the BP and 5’SS of Ubc4 become stably positioned distal to one another
55

. Initially more 

surprisingly, in the absence of extract the 5’SS and BP regions are already found in close 

proximity to one another. This observation indicates that the intron secondary structure is such 

that these two points of first-step chemistry are brought to within splicing distance before any 

protein or RNA component of the spliceosome acts on the pre-mRNA, an idea that was first 

observed in yeast more than 20 years ago
154

. This idea initially is surprising given the large 

sequence distance between the 5’SS and BP and supports a model in which the intron plays a 

more active role in positioning the 5’SS and BP close to one another, ready for the first step of 

splicing, similar to the function of self-splicing group I and II introns
155

. Such a model is, 

however, in accord with recent studies that appear to support the hypothesis that intron 

secondary structure has a functional role in splicing. For example, recent in vitro 

experimentation has shown that the RNA secondary structure can influence 5’SS recognition by 

shortening the 5’SS-BS distance
156

. In addition, others have found that pre-mRNA secondary 

structure can maintain the 3’SS at the right distance from the BS and modulate the accessibility 

of the 3’SS to the spliceosome
157

. Lastly, only certain pre-mRNAs such as Ubc4 are efficient 

spliceosomal substrates in vitro, perhaps due to their inherent secondary structure
53

.  

There is, however, a great deal of resistance to this hypothesis, primarily due to the lack 

of quantitative studies that correlate RNA secondary structure predictions with experimental 

conformational dynamics and splicing activity of a specific pre-mRNA. In an effort to delineate 

the functional impact of intron secondary structure on splicing activity, we have isolated the in 
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vivo assembled, activated yeast spliceosome containing nearly all known yeast pre-mRNA 

substrates. Deep sequencing analysis of the RNA within the complex reveals >90% of the known 

pre-mRNA substrates to be present in significant abundance. Furthermore, we have identified a 

number of previously unknown pre-mRNA substrates that may be subject to cellular regulation 

by the spliceosome-mediated decay (SMD) pathway. With further investigation using the newly 

developed SHAPE-MaP technology, we plan to correlate common secondary structure features 

with splicing efficiency to rigorously test our hypothesis of a relationship between extent of pre-

mRNA secondary structure and inherent splicing activity. If common structural features are 

detected in efficiently spliced substrates, these could serve as future targets for small-molecule 

drugs to influence splicing outcomes as well as the downstream translation/degradation/transport 

of the resulting mRNAs
158

.  

5.2 Materials and Methods 

5.2.1 B
act

 complex enrichment and purification 

The in vivo-assembled B
act

 complex was isolated from a prp2-1 cef1-TAP yeast strain (ATCC 

201388: MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0
71

), heated at 37 °C for 40 min to inactivate Prp2 

and stall the spliceosome at the B
act

 complex essentially as described
39

. In brief, the mutant strain 

was grown at the permissive temperature of 25 °C to an OD (A600) of 1.0 and then shifted to the 

non-permissive temperature of 37 °C for 45 min to inactivate Prp2 and allow buildup of the B
act

 

complex. Cells were harvested by centrifugation, washed with buffer A (10 mM HEPES-KOH 

pH 7.9, 200 mM KCl, 1.5 mM MgCl2, 0.5 mM DTT, 10% (v/v) glycerol, 0.6 mM PMSF, and 1.5 

mM benzamidine), and resuspended in one volume (w:v) buffer A before freezing dropwise in 

liquid nitrogen to form small cell pellets that could be stored at -80 °C. 
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Frozen cells were then milled to make splicing active whole cell extract (WCE) as 

described
53,121

. Briefly, cell pellets were disrupted by manual grinding using a mortar and pestle 

half-submerged in liquid nitrogen for 20-30 min before thawing in an ice bath. ATP was depleted 

by addition of glucose to 2 mM. Insoluble material was pelleted at 17,000 rpm in a type 45 Ti 

Beckman rotor followed by a second centrifugation step at 37,000 rpm in a Ti-70 rotor for 1 h. 

The clear middle layer was removed with a syringe and dialyzed for 4 h against 20 mM HEPES-

KOH, pH 7.9, 0.2 mM EDTA, 0.5 mM EDTA, 150 mM KCl, 20% (v/v) glycerol, 0.1 mM 

PMSF, and 0.25 mM benzamidine with one buffer exchange. The resulting extract (~40 mL) was 

incubated with IgG-sepharose (500 µL) with rotation at 4 °C for 2 h. The resin was washed 

thoroughly with ~25 mL of wash buffer (10 mM Tris-HCl pH 8.0, either 150 mM (low salt 

sample) or 500 mM (high salt sample) NaCl, 0.1% NP-40, 1.5 mM MgCl2, 8% (v/v) glycerol, 1 

mM DTT, 0.2 mM PMSF). The resin-bound B
act

 complex was then eluted through incubation 

with a 500 µL reaction containing TEV protease and RNase inhibitor for 3 h at 16 °C. Eluted 

material was layered onto a 10%-30% glycerol gradient containing 20 mM HEPES-KOH, pH 

8.0, 150 mM KCl, 1.5 mM MgCl2, and 0.1% NP-40 and centrifuged for 10-14 h at 29,000 RPM 

in an SW41 rotor. Fractions (450 µL) were collected from the top with a pipette, 

phenol/chloroform extract to remove protein, and ethanol precipitated to isolate the bound RNA. 

RNA was analyzed by Northern blot analysis probing for U1, U2, U4, U5, and U6 snRNAs, RT-

PCR of the Act1 pre-mRNA, and deep sequencing analysis. 

5.2.2 Northern blot and RT-PCR analysis  

Precipitated RNA from the even glycerol gradient fractions was resolved on a 7M urea, 6% (v/v) 

polyacrylamide gel and transferred to BrightStar®-Plus Positively Charged Nylon Membrane 

(Life Technologies) for 60 min at 200 mA. Membranes were dried and pre-hybridized for 30 min 
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at 37 °C in RNA hybridization buffer (50% (v/v) formamide, 0.5% (w/v) SDS, 5X Denhardt’s 

solution (Life Technologies), 10 µg/µL Salmon sperm DNA, 750 mM NaCl, 50 mM NaH2PO4, 5 

mM EDTA). snRNA probes (Table 5.1) were 5’ end labeled with 
32

P using T4 Polynucleotide 

Kinase (NEB) and purified using Centri-spin columns (Princeton Separations). Labeled probes 

were added to membrane and rotated at 42 °C overnight. Membranes were washed with 3-4 

times at 37 C for 10-20 min each with 10 mL of wash buffer (30 mM sodium citrate, 300 mM 

NaCl, and 0.1% (w/v) SDS) before exposing to a phosphor screen and scanning on a Typhoon 

variable mode imager (GE Healthcare). 

 RT-PCR first strand synthesis was performed by mixing 2.5 µM of the RT primer with 

up to 5 µg of RNA, denaturing at 70 °C for 5 min, and cooling in an ice bath. The primer-RNA 

mixture was combined with Transcriptor reverse transcriptase (Roche Life Science) according to 

the manufacturer’s protocol.  

5.2.3 cDNA library preparation and Illumina Hi-Seq sequencing 

Isolated RNA contained within the B
act

 complex was converted into a strand-specific DNA 

library using the Illumina TruSeq Kit and size selected at around 200 base pairs as previously 

described
159,160

. Briefly, RNA was fragmented at 85 °C for 10 min prior to first strand cDNA 

synthesis in the presence of Actinomycin D to yield strand specific reads which were then 

purified using AMPure RNAclean beads (Beckman Coulter). The second strand cDNA was then 

synthesized and the resulting cDNA was purified with AMPure XP beads. An Illumina TruSeq 

RNA Sample Prep Kit was used to repair the purified cDNA ends, adenylate and ligate adaptors 

to the cDNA. The samples were then gel purified on a 3% agarose gel and size-selected by 

excising the 200 bp region of the gel and isolating the cDNA using the QIAEX II Gel Extraction 
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Table 5.1 snRNA and RT-PCR DNA oligonucleotides used in the study  

Primer m2_F binds opposite the Act1 5’UTR and the first five protein coding nucleotides 

(bold). Primers E4_R and L_R are used for Act1 cDNA synthesis using Reverse 

Transcriptase. Primer L_R is used to amplify first step splicing products: bold sequence is 

opposite the branchpoint adenosine; underlined is complementary to the region upstream of 

the branchpoint; italic sequence is complementary to the 5’SS. 
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Kit (Qiagen). Finally, TruSeq Kit PCR reagents were used to enrich the DNA fragments before a 

final purification steup using AMPure XP beads.   

Sequencing of the cDNA library was performed by the staff at the University of 

Michigan Sequencing Core using the Illumina HiSeq 2000 sequencer. Base calling was 

performed using Illumina Casava v1.8.2. and read mapping was performed by first mapping to 

ribosomal RNA using Bowtie analysis followed by mapping of the remaining reads to sacCer3 

reference genome using Tophat. Expression levels for exons, introns, and whole genes were 

calculated using the RPKM unit:      
       

   
, where C = Number of reads mapped to a 

gene, N = Total mapped reads in the experiment, and L = exon length in base-pairs for a gene. 

Data of mapped reads were plotted using a custom-built browser as previously described
160

. 

5.2.4 Differential expression analysis  

Differential analysis was performed using Cuffdiff essentially as described
161

. Cuffdiff is a 

statistical analysis tool that takes aligned reads from two or more experimental conditions and 

determines genes and transcripts that are differentially expressed using a linear statistical model. 

Cuffdiff uses several biological replicates from each condition being analyzed to learn how 

expression levels of genes vary across replicates and calculates a significance of observed 

changes using these variance estimates.   

 Following TopHat-mediated mapping of the RNA-seq reads, Cuffdiff was run using R 

Programming. Results were reported as a set of tab-delimited text files which were used for 

further analysis and plotting using Microsoft Excel.  
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5.3 Results 

5.3.1 Isolation of the in vivo assembled B
act

 complex 

In recently published work, a method was described which utilized two yeast genetic 

modifications for the purification of the yeast B
act

 complex containing a FRET labeled substrate 

Ubc4, a technique termed Single Molecule Pulldown FRET (SiMPull-FRET)
55

. The first 

modification is a heat-sensitive mutation in the ATPase Prp2 known to cause inactivation of the 

protein upon incubation at the non-permissive temperature
37

. Prp2 is a member of the DEAD/H 

box family of RNA-dependent ATPase known to function in an ATP-dependent manner 

immediately prior to the first step of splicing. As a result of its inactivation, spliceosome 

assembly stalls at the activated B
act

 complex (Figure 5.1b). The second modification is the 

insertion of a Tandem Affinity Purification tag (TAP-tag) into the protein Cef1. Cef1 is an 

essential splicing factor associated with the Nineteen complex that is known to associate with the 

spliceosome only upon formation of the B
act

 complex and remain bound through both steps of 

splicing
39

. Utilizing these mutations the authors were thus able to stall spliceosome assembly 

specifically at the B
act

 stage and then isolate this complex from the remaining immature splicing 

complexes by incubating the extract with magnetic beads coated with IgG, which specifically 

binds the TAP-tag.  

To adapt this purification method to isolating the B
act

 complex containing all yeast pre-

mRNA substrates, we made a number of modifications similar to the previously described 

biochemical approach
39

 (Figure 5.2a). Specifically, the Prp2 and Cef1 modified yeast strain was 

grown at the permissive temperature of 25 
°
C and then shifted to the non-permissive temperature 

of 37
 °

C for 40 min prior to harvesting to allow for the inactivation of Prp2 and trapping of 

endogenous pre-mRNAs in a first-step arrested spliceosome. RT-PCR analysis of the ACT1 
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Figure 5.2 Workflow of B
act

 isolation and SHAPE-MaP profiling 

(a) Workflow for the isolation of the in vivo assembled B
act

 complex and subsequent SHAPE-

MaP analysis (b) RT-PCR of Actin RNA confirming presence of primarily mRNA prior to 

heating of extract and the accumulation of pre-mRNA after shifting to 37 °C. 
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RNA, a highly abundant pre-mRNA substrate for the spliceosome, within the pre- and post-

inactivated culture revealed a small amount of accumulation of ACT1 pre-mRNA when heated 

to 37 °C (Figure 5.2b) indicating successful inactivation of splicing. Whole cell extract (WCE) 

was prepared from this growth, incubated with IgG-sepharose beads to allow binding of stalled 

spliceosomes, and the resin washed thoroughly with either a low salt (150 mM NaCl, LS) or high 

salt (500 mM NaCl, HS) buffer to remove unincorporated splicing factors and pre-mRNA. 

Bound complexes were removed using TEV protease and further purified by layering onto 

glycerol gradients as described
39

 (Figure 5.2a). RNA from the even gradient fractions was 

isolated and checked by Northern blot analysis for the presence of spliceosomal snRNAs known 

to be present in the activated spliceosome. A significant peak of U2, U5, and U6 snRNAs was 

detected near ~40S (Figure 5.3a), corresponding to the size of the yeast spliceosome
64

. In 

addition, RT-PCR analysis of the ACT1 RNA within the complex revealed elevated levels of 

pre-mRNA, indicating successful isolation of a fully assembled, pre-first step spliceosome 

(Figure 5.3b).   

5.3.2 The B
act

 complex contains nearly all known pre-mRNA substrates 

Recent microarray analysis has shown that more than 80% of the over 250 intron-containing pre-

mRNAs in yeast show elevated levels upon inactivation of Prp2
162

. Additionally, a number of 

studies utilizing RNA-seq have attempted to confirm or refute the presence of several predicted 

introns and also discover new intron-containing genes or genes associated with the 

spliceosome
163,164

. The first of the latter studies performed cDNA analysis (RNA-seq) of full-

length, 5’-capped mRNA in an effort to completely annotate the yeast transcriptome
163

. 

Sequencing of two cDNA libraries allowed for the identification of new transcription start sites 

(TSSs), open reading frames (ORFs), and 45 previously undescribed introns, including several 
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Figure 5.3 Purification of Prp2-arrested spliceosomes  

(a) Cef1-TAP-associated material was Northern blotted for spliceosomal RNAs. Splicing 

complexes sediment ~40S as indicated by the presence of U2, U5, and U6 snRNAs. (b) RT-

PCR analysis of RNA within the 40S fraction using primers designed to amplify ACT1 RNA. 

RT = reverse transcriptase.  
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affecting current ORF annotations. Many of the introns discovered have since been incorporated 

into the Yeast Genome Database
165

 as well as the Ares Lab Intron Database
166

. The second 

approach isolated SmD1-associated RNA from growing yeast and analyzed bound RNA using 

RNA-seq. SmD1 is a protein required for stabile binding of the U1 snRNA to the pre-mRNA
167

 

and thus is only expected to pull down the spliceosomal A complex. Such an approach allowed 

the authors to identify 60% of known spliced mRNAs, potentially showing under-enrichment of 

intron-containing genes due to rapid splicing of many transcripts. Unfortunately, this method is 

far too non-specific as nearly 200 non-intronic genes were identified in their complex, many of 

which potentially contain Sm-binding sites and thus have little association with the spliceosome. 

The authors did, however, discover a novel pathway by which some non-intronic genes (such as 

BDF2) are down-regulated in what they termed the Spliceosome Mediated Decay (SMD) 

pathway.  

To first confirm the presence of these known and predicted pre-mRNA substrates
165,166

 

we prepared and submitted the B
act

-associated RNA for deep sequencing analysis (RNA-seq). 

We first investigated whether the proposed and confirmed intron-containing genes (ICGs) were 

of higher abundance in our purified complex compared to that of the other ~6,600 known genes 

in yeast. Box plots of the RPKM values for either intron containing genes (ICGs) or genes 

without an intron (non-ICGs) were generated with the non-ICGs RPKM values taken from the 

low-salt purified B
act

 complex considering it is the only sample for which there is a replicate. As 

expected, the ICGs in both the high salt purified (HS) and low salt purified (LS) B
act

 complexes 

are of significantly higher RPKM values compared to that of the non-ICGs and appear to reliably 

overlap in RPKM values (Figure 5.4). This would support the notion that the ICGs within the 

B
act

 complex are actually tightly bound by the spliceosome and are thus not affected by the 
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Figure 5.4 Genes predicted to contain introns have elevated RPKM values relative to 

non-intron containing genes  

Box plot analysis highlighting the 95%, 75%, mean, 25%, and 5% quartiles for non-intron 

containing genes and intron containing genes within the purified B
act

 complex purified under 

low salt (150 mM NaCl) or high salt (500 mM NaCl) conditions. The 270 non-intron genes 

are those above the 1.6 RPKM (log10) threshold at the 95% quartile.  
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presence of increased ionic strength during the purification. Using a threshold RPKM value 

(log10) of 1.6 (the 95% quartile for the non-ICGs) encompasses 264 of the 328 (80%) known or 

predicted intron-containing genes gathered from all known sources
163-166,168

 indicating robust 

enrichment of ICGs in the B
act

 complex. Interestingly, a number of the predicted intron-

containing genes are meiotic genes known to be expressed primarily during meiosis and thus are 

not expected to be within our complex
169

. The majority of these meiotic genes are, in fact, absent 

from our B
act

 complex, further improving the percentage of intron-containing genes detected to 

86% (264/311). Furthermore, a majority of the remaining undetected intron-containing genes are 

either present in telomeric regions of the chromosome and thus scarcely transcribed, or are 

mitochondrial RNAs that were not mapped in this study, resulting in a final detection of 264 out 

of the 283 introns predicted to be in our sample (93%). The remaining intron-containing genes 

may be expressed at too low of a level in the conditions we are using to be identified in our 

assay.  

Several of the introns detected in the B
act

 complex have not yet been included on the 

Yeast Genome Database, possibly due to a lack of experimental confirmation. Our data support 

the inclusion of several predicted introns, including: YKL133C, YMR147W, YNL194C, 

YGL136C, YER167W, YGL063W, and YMR148W. In addition, the lack of detection of a 

number of introns, specifically the telomere pre-mRNAs and several introns only recently 

predicted
163

, may be evidence for their withdrawal from the list of genes possessing an intron.  

However, our detection might be specific to the experimental conditions used and thus further 

experimentation is required for their removal as intron-containing genes. 
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5.3.3 Small nucleolar RNAs dissociate from the spliceosome in the presence of high salt 

Analysis of the greater than 6,000 genes predicted to be without introns revealed over 270 genes 

with an RPKM value over 1.6 and thus showing significant detection in the B
act

 complex (Figure 

5.4). Among this group of genes are, interestingly, 35 of the 73 known small nucleolar RNAs 

(snoRNAs). snoRNAs are small, stable RNAs found within ribonucleoprotein complexes 

(snoRNPs) in the nucleoli of eukaryotic cells primarily responsible for the modification of 

ribosomal RNA (rRNA). Aside from snR17a and snR17b, the snoRNAs are not thought to 

contain introns and thus are not thought to be recognized as spliceosomal substrates. We thus 

looked for the presence of these snoRNAs in B
act

 complexes purified in the presence of high salt 

(HS purified), a condition that should remove any non-specifically bound RNA. Notably, the 

presence of 500 mM NaCl during purification results in near complete removal of all snoRNAs 

from the B
act

 complex (Figure 5.9), supporting the hypothesis that snoRNA association results 

primarily from weak interactions with other RNA molecules present in the preparation (such as 

the ribosomal RNA), not through association with the spliceosome. Removal of the snoRNAs 

from the statistics results in ~230 non-ICGs present in the B
act

 complex of similar abundance to 

those of the ICGs (Figure 5.6). 

5.3.4 Differential analysis identifies a number of novel pre-mRNA substrates 

Further investigation of the approximate 230 remaining non-ICGs with high RPKM 

values for the presence of potential splice sites would be tedious and time-consuming. In 

addition, the high RPKM values of many of these genes could simply be due to the fact that they 

are a highly expressed gene and thus there is a significant amount of the RNA present in the 

yeast cell prior to purification. We therefore employed the use of differential expression analysis 

to look for genes that are not only of high RPKM values, but that also show elevated levels 
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Figure 5.5 Washing the B
act

 Complex with high-salt buffer results in dissociation of the 

snoRNAs  

The B
act

 complex was washed with either 150 mM (green and red curves) or 500 mM NaCl 

(blue curve) during purification. Shown are the mapped reads for snR8 as an example of the 

removal of snoRNA during high salt purification. 
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Figure 5.6 Exclusion of snoRNAs yields ~230 genes not predicted to contain an intron 

with high RPKM values  

snoRNAs were removed from the list of non-ICGs yielding ~230 non-ICGs above the 1.6 

RPKM threshold. The dotted line indicates the 1.6 RPKM threshold at the 95% quartile. 
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within the B
act

 complex relative to the level of the gene within the cell. Differential expression 

analysis compares the relative levels of individual RNAs with the corresponding levels in a 

reference sample
161

. In the case of the B
act

 complex, the reference sample is the RNA from the 

extract from which the complex was isolated. For such an analysis, an algorithm calculates a 

fold-change in RNA levels and assigns a significance value (p value) when a number of 

replicates are used. Unfortunately, we currently only have a replicate for the LS purified B
act

 

complex but not for the extract total RNA sample or HS purified B
act

 complex. As a 

consequence, we are not able to confidently assign significance for any of the genes during this 

analysis. However, we are able to use the fold-change values as a method to narrow the number 

of candidate genes containing potential introns.  

Fold-change values were calculated for each detected gene in the sample by looking at 

the ratio of total RNA-to-B
act

 RNA. As a result, genes that show an increased presence in the B
act

 

complex sample will result in a very small fraction and thus produce a large, negative value 

when converted to a log2 scale as is conventionally done. Again, box plots were developed for 

either genes not predicted to contain introns or genes predicted to contain introns. As expected, 

intron-containing genes were found to possess a much larger negative fold change in both the HS 

and LS purified B
act

 complex relative to the non-intron containing genes (Figure 5.7). Using a 

threshold for the 0.95 percentile of non-intron containing genes (log2 of -1.49, ~2.81-fold 

enriched in the B
act

 complex over extract) encompasses 94% (265/283) of the intron-containing 

genes predicted to be within the B
act

 complex (again excluding mietotic, mitochondrial, and 

telomeric genes). Unfortunately, this analysis alone still predicts over 240 non-intron containing 

genes as being enriched in the B
act

 complex (Figure 5.7).  
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Figure 5.7 Intron-containing genes show strong enrichment in the B
act

 complex 

Differential expression analysis of the LS purified intron-containing genes and all other genes 

in the B
act

 complex relative to levels in a total extract RNA sample. snoRNAs were removed 

from the list of genes not predicted to contain an intron and a threshold of -1.5 (95% quartile, 

dotted line) was set yielding 245 non-intron coding genes showing significant enrichment in 

the B
act

 complex. 
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In an effort to further narrow down our search of new pre-mRNA substrates, we analyzed 

RNA transcripts that show both a high RPKM value across the gene and a significant increase in 

abundance (large -log2 value) in the B
act

 complex relative to yeast extract. Such an analysis 

shows clear enrichment of the intron-containing genes within the B
act

 complex (Figure 5.8, 

green dots). Utilizing the RPKM and fold change thresholds of 1.6 and -1.49, respectively, still 

accounts for 265 of the intron-containing genes. In addition, the number of non-ICGs is now 

reduced to a much more manageable ~70 genes (Figure 5.8, red dots in upper left quadrant). 

Interestingly, a large majority of the resulting non-ICGs overlap on the same strand with all or a 

significant portion of many of the proposed intron-containing genes (Figure 5.9a). It is most  

probable that these reads were actually incorrectly mapped and belong to the ICG that it 

overlaps. After removal of the non-ICGs that overlap with a known or predicted intron gene, we 

were left with 13 previously unidentified intron-containing genes (Figure 5.9b and Table 5.2). It 

should be noted that all of these genes, as well as the detected intron-containing genes, have 

similar or greater RPKM values in the high salt purification indicating tight association with the 

spliceosome.   

Interestingly, three of the B
act

-associated non-ICGs (YMR148W, YNL195C, and 

YJL206C) were recently shown to be involved in splicing with an upstream intron-containing 

gene
163

. YMR148W was previously found to have the potential to be expressed as a single 

transcript with the upstream ORF YMR147W, a known ICG. In addition, this work found that 

YMR147W appears to act more as an upstream exon for YMR148W and can be spliced to form a 

hybrid protein between YMR147W and YMR148W (Figure 5.10a). Our data appear to match 

these results as the two genes are detected in the B
act

 complex as a single transcript with strong 

peaks near the sites of potential transcription and splicing (Figure 5.10b). YNL195C encodes a 
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Figure 5.8 ICGs and several non-ICGs are enriched and have high RPKM in B
act

  

Scatter plot depicting RPKM and fold change relative to total extract RNA values for ICGs 

and non-ICGs. Vertical and horizontal lines indicate the fold change and RKPM thresholds of 

-1.5 and 1.6, respectively. snoRNAs have been removed from the possible non-ICGs. 
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Figure 5.9 Several highly abundant genes overlap with an intron-containing gene  

(a) A majority of the most highly abundant, non-intron genes overlap with known intron-

containing genes. Shown is a screenshot of a non-intron gene (YGL188C-A, RPKM value of 

3.89) overlapping with a highly abundant intron-containing gene (RPS26A, RPKM 4.43). (b) 

Scatter plot depicting the RPKM and fold change values relative to total extract RNA for 

ICGs and non-ICGs after removal of overlapping genes as in (a). Vertical and horizontal lines 

indicate the fold change and RKPM thresholds of -1.5 and 1.6, respectively.  
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Table 5.2 Top 13 non-ICGs  

Top non-ICGs showing significant association with the spliceosome (RPKM > 1.6 and fold 

change < -1.49) 
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gene of unknown function thought to share a promoter with the upstream YNL194C gene, a 

transcript with a predicted intron. Recent RNA-seq data detected YNL195C transcripts 

possessing the entire YNL194C gene as well as a shorter, spliced form possessing a small fraction 

of the 5’ end of YNL194C (Figure 5.11a)
163

. Interestingly, RNA can be detected in the B
act

 

complex for both the YNL195C and YNL194C transcripts. YNL195C is not predicted to contain 

an intron and thus, in order to be present in the spliceosome and detected in our sample, must 

either be transcribed as a single unit with YNL194C (“bleed-through”) or the predictions are 

incorrect and YNL195C does in fact contain an intron. The near equal abundance of both genes 

within the B
act

 complex supports their transcription as a single unit and would explain the 

presence of  YNL195C in the B
act

 complex.  Unfortunately, no reads were found in the intergenic 

region between the two genes as would be expected if these two genes are transcribed and 

spliced as a single transcript (Figure 5.11b)
163

. It is possible that this region of the RNA is 

subject to insufficient ligation or amplification during cDNA preparation resulting in the low 

read depth between the two genes. Alternatively, YNL195C may in fact contain an intron and 

become incorporated into the B
act

 complex independently of YNL194C. Further experimentation 

will be required to fully understand YNL195C’s detection at high levels within the spliceosome. 

Lastly, YJL206C was shown in the same publication to often act as a second exon with its 

upstream gene YJL205C (Figure 5.12a). YJL205C and YJL206C are often expressed as a 

single, long transcript that results in use of a 3’SS within the 5’ end of YJL206C and removal of 

a majority of the JYL206C gene. Alternatively, both genes have separate promoters and thus can 

be expressed as separate transcripts. This would allow YJL205C to be recognized and spliced by 

the spliceosome at its canonical, internal splice sites. Interestingly, both full-length and 

individually expressed transcripts are supported by our data (Figure 5.12b). The number of 
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Figure 5.10 YMR147W and YMR148W appear as a single transcript  

(a) Previously predicted spliced products from Miura et al. 2006. 
 

(b) Mapped reads from YMR147W and YMR148W in the B
act

 complex washed with either 

150 mM (green and red curves) or 500 mM NaCl (blue curve) during purification.  
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Figure 5.11 YNL194C and YNL195C comprise a single transcription unit 

(a) Previously predicted spliced products from Miura et al. 2006. 
 

(b) Mapped reads from YNL195C and YNL194C in the B
act

 complex washed with either 150 

mM (green and red curves) or 500 mM NaCl (blue curve) during purification. 
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Figure 5.12 YJL206C can be spliced to its upstream gene 

(a) Previously predicted spliced products from Miura et al. 2006. 
 

(b) Mapped reads from JYL206C and YJL205C in the B
act

 complex washed with either 150 

mM (green and red curves) or 500 mM NaCl (blue curve) during purification. 
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mapped reads within the YJL205C gene is nearly 100-times greater than the YJL206C gene 

indicating the separate YJL205C RNA is the primary transcript within the Bact complex. There 

is, however, a significant amount of reads mapped to YJL206C that also show connectivity to the 

upstream YJL205C gene. Therefore, although to a much lesser extent, YJL206C might be 

expressed as a single transcript with YJL205C and thus be incorporated into the B
act

 complex for 

splicing.  

YMR134W is a verified protein of unknown function involved in ergosterol biosynthesis 

and is located just downstream of a known intron-containing gene YMR133W. YMR133W is a 

meiotic gene and thus is present in very low levels in the B
act

 complex. The very 3’ end, 

however, shows a large number of mapped reads that start at the YMR133W intron and continue 

through the entire downstream YMR134W gene (Figure 5.13). Often, meiotic genes such as 

YMR133W have promoters that drive antisense transcription near their 3’ ends
170,171

. It thus 

could be that a 3’ promoter present just upstream of YMR133W’s intron becomes activated 

under our growth conditions and drives transcription in the other direction so that the very 3’end 

positioned YMR133W intron is transcribed and some of the transcripts extend into YMR134W. 

As such, the YMR134W transcript would appear to have a 5’UTR intron allowing for 

recognition and incorporation into the spliceosomal B
act

 complex. 

It was recently discovered that the spliceosome can participate in regulation of RNA and 

protein expression through a pathway known as Spliceosome-Mediated Decay (SMD)
164

. SMD 

involves the downregulation of genes not known to contain introns but that do contain canonical 

splice sites. Genes subject to SMD remain primarily unspliced and full-length in the yeast cell in 

order to yield the functional, full-length protein. However, these genes can be recognized by the 

spliceosome and proceed through one or both steps of splicing. By doing so, a truncated 
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Figure 5.13 YMR134W appears to contain a 5’UTR intron 

Shown are the mapped reads for the regions encoding the YMR133W and YMR134W genes. 

The B
act

 complex was washed with either 150 mM (green and red curves) or 500 mM NaCl 

(blue curve) during purification. 
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transcript is produced that is unusually unstable and thus is rapidly degraded by the nuclear RNA 

surveillance machinery. Such a mechanism allows for the maintenance of proper transcript levels 

for genes such as BDF2, a protein known to be toxic at elevated levels. Interestingly, BDF2 

(YDL070W) is one of the 13 new intron-containing genes detected in our Bact complex 

indicating that our assay is capable of detecting spliceosome-mediated decay targets (Figure 

5.14). Additionally, there is a significant peak in the number of mapped reads near the location 

of the proposed 5’SS. Peaks in the number of reads often occur near intronic regions due to 

protection from degradation by the spliceosome. Our data grant further support towards the 

existence of the SMD pathway and to BDF2 being subject to this type of regulation.   

YBR099C is a dubious or putative open reading frame unlikely to encode a functional 

protein based on comparative sequence data. This gene was not detected as being spliced or even 

transcribed in previous work that sought to determine all transcription start sites and splice sites 

in yeast
163,164

. Like YMR148W, YNL195C, and YJL206C, YBR099C is directly downstream of 

a known intron-containing gene FES1 and appears to show mapped reads that connect FES1 with 

the YBR099C transcript (Figure 5.15). If FES1 possesses a weak transcription terminator, the 

detection of YBR099C could simply be a result of transcript bleed-through. However, the large 

number of reads near the middle of YBR099C suggests that the RNA is strongly protected from 

degradation by the spliceosome and thus that YBR099C might contain an intron-like sequence in 

this region of the gene. One explanation could be that the FES1 gene is subject to an abortive 

splicing event such as 3’ end cleavage. Abortive splicing is used to make the mature 3’ end of S. 

pombe and some fungal telomerase RNAs
172

. Additionally, SMD can be an abortive splicing 

event used to reduce the levels of particular RNA transcripts. Another explanation is that, like 

YMR148W, YNL195C, and YJL206C, YBR099C may contain an alternative 3’SS for splicing 
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Figure 5.14 A SMD target YDL070W is detected in the B
act

 complex 

YDL070W (BDF2), a SMD target, is detected in the B
act

 complex with a significant peak near 

the proposed 5’SS. The B
act

 complex was washed with either 150 mM (green and red curves) 

or 500 mM NaCl (blue curve) during purification. 
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Figure 5.15 FES1 may undergo an abortive splicing event 

FES1 was previously-predicted to contain an intron near the peak in mapped reads near its 5’ 

end. YBR099C, however, is also detected in high abundance in the B
act

 complex and shows a 

large peak in mapped reads in the middle of the gene indicating protection by the 

spliceosome. The B
act

 complex was washed with either 150 mM (green and red curves) or 500 

mM NaCl (blue curve) during purification. 

 



177 

 

with FES1. Attachment of additional protein sequence to FES1 may change the function or 

localization pattern of FES1 as is thought to be the case for YNL239W
173

. Either scenario would 

explain the presence of a strong peak in the mapped reads downstream of the FES1 gene and 

requires further experimentation to validate the finding. 

Finally, genes YDL048C, YDR077W, and YDR055W may also be subject to regulation 

by SMD. All three RNAs show significant mapped reads across the entire gene and even appear 

to have peaks near their 5’ ends, indicative of protection from degradation by the spliceosome 

(Figure 5.16a-c). It was found that a key feature of the SMD pathway is the recruitment of the 

spliceosome to the BDF2 transcript by its paralog BDF1
164

. BDF1 is known to  have a 

connection of spliceosome recruitment to pre-mRNA transcripts as deletion of BDF1 reduces 

splicing of a large subset of intron-containing transcripts
174

. However, aside from BDF2, 

recruitment of the spliceosome to genes lacking introns has not been further investigated. In 

addition, it is estimated that up to 1% of yeast intronless genes may be subject to regulation by 

the SMD pathway
164

. Therefore, it is entirely conceivable that YDL048C, YDR077W, and 

YDR055W transcripts may be recruited to the spliceosome by BDF1 or some other unknown 

factor for regulation of cellular protein levels by the SMD pathway. 

5.4 Discussion 

Here we have isolated the in vivo-assembled yeast activated spliceosome (B
act

 complex) 

containing nearly all known pre-mRNA substrates for future RNA secondary structure analysis 

using SHAPE-MaP. The current understanding is that the primary components of the 

spliceosome are the five snRNA molecules and all the associated protein factors. The snRNP 

complexes assembly upon a pre-mRNA substrate in order to carry out both steps of splicing and 

produce the mature RNA coding sequence that is translated into protein. Unfortunately, the pre-
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Figure 5.16 Several candidate pre-mRNA targets could be under regulation by the SMD 

pathway 

Candidate pre-mRNA substrates possessing strong signals at the 5’ end and significant reads 

over the entire length of the gene. The B
act

 complex was washed with either 150 mM (green 

and red curves) or 500 mM NaCl (blue curve) during purification. 
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mRNA is all too often regarded as just a substrate for the spliceosome and as a result ignored as 

an active participant in splicing catalysis and regulation. There is, however, increasing evidence 

that the pre-mRNA substrate and specifically its secondary structure can influence splicing and 

splicing efficiency
154-157

 supporting the hypothesis that intron secondary structure does play a 

functional role in splicing. Therefore, our goal is to delineate the functional impact of intron 

secondary structure on splicing activity by determining the secondary structure of all pre-mRNA 

substrates within in vivo-assembled spliceosomes. 

 Proper isolation of the yeast B
act

 complex was achieved using a temperature-sensitive 

strain carrying a TAP-tagged Cef1 protein (Prp2-1,Cef1-TAP) and confirmed by RT-PCR and 

Northern blot analysis. To first confirm the presence of known pre-mRNA targets and possibly 

identify new splicing substrates, the RNA from the complex was isolated and submitted for RNA 

sequencing (RNA-seq). To ensure enrichment of RNA relative to levels in a total RNA control, 

RNA from the yeast whole cell extract from which the complex was isolated was also sequenced. 

Additionally, spliceosomes were either washed with a low salt (150 mM NaCl, LS) or high salt 

(500 mM NaCl, HS) buffer during purification to identify any RNA substrates loosely associated 

with the spliceosome and that are thus most likely not splicing targets. Computational analysis of 

the data revealed significant enrichment of over 90% of the known pre-mRNA targets that would 

be predicted to be present in the B
act

 complex isolated during vegetative growth. Nearly half of 

the known snoRNAs were also detected in the LS-purified complex but were nearly completely 

removed in the HS-purified complex indicating loose association probably through base pair 

interactions with the co-purified ribosomal RNA. Upon removal of overlapping gene reads, the 

B
act

 complex was found to contain an addition 13 genes that were previously not predicted to 

contain an intron. Remarkably, three of these genes were previously predicted to be expressed as 
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a single transcript with the upstream intron-containing gene (YMR148W, YNL195C, YJL206C) 

and involved in an alternative splice site usage mechanism
163

. Additionally, the isolated B
act

 

complex contains significant levels of an RNA recently shown to be subject to regulation by the 

spliceosome-mediated decay (SMD) pathway (YDL070W), signifying that our assay is capable 

of detecting and potentially predicting SMD targets. As such, three of the remaining RNA 

transcripts (YDL048C, YDR077W, YDR055W) show significant enrichment in the B
act

 complex 

and also possess a large number of reads near their 5’ ends, similar to YDL070W. It is possible 

that these genes possess canonical splice signals within the 5’ ends of the RNA and are also 

subject to regulation by the SMD pathway. 

 With a high-confidence list of known pre-mRNA substrates found within the B
act

 

complex, we next plan to carry out RNA structure prediction using SHAPE-MaP analysis
63

 in 

collaboration with the Laederach lab at the University of North Carolina. HS-purified Bact 

complexes will be prepared and incubated in the presence or absence of 1M7 SHAPE reagent
175

. 

Additionally, a denatured control will be included in order to allow for efficient normalization of 

the SHAPE reactivity data. Specific secondary structure features will then be identified for each 

pre-mRNA substrate. We will keep track of the location of these structural features relative to the 

splice sites, the linear distance between splice sites as a result of the structures, as well as the 

splicing efficiency of each substrate in order to identify pre-mRNA structural features that either 

promote or delay splicing. If a correlation is found between specific structural features and 

splicing efficiency, we will take this as support of our hypothesis that the pre-mRNA substrate 

can actively participate in splicing through intrinsic adoption of an optimal secondary structure. 

Following thorough SHAPE-MaP analysis, we will also continue to identify potential 

explanations for incorporation into the spliceosome of RNA transcripts for which there is no 
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predicted intron. Similar to previous studies, we will test for regulation via the SMD pathway 

using Northern blot and RT-PCR analysis to identify full length and potentially spliced RNA 

transcripts. Potential spliced products will be enriched through use of mutant strains of yeast in 

which either the debranching enzyme or exosome is inactivated. Finally, we will test if BDF1 

has an impact on the splicing levels of these candidate RNA targets through use of a BDF1 

deletion strain. 
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CHAPTER 6: Conclusions and Outlook 

6.1 Conclusions  

Identification and characterization of protein and RNA structures is fundamental to achieving a 

thorough and complete understanding of all cellular processes. Oftentimes, specific structures or 

folds are more conserved than the sequence of building blocks that make up a macromolecule. 

Therefore, structural, as well as dynamic, information has the great potential to provide a more 

meaningful way to characterize cellular function than sequence conservation and similarity 

alone. This is especially true for RNA, with its central roles in transcription initiation, elongation, 

and termination, pre-mRNA splicing, translation, and retroviral infection of eukaryotic cells. 

RNA molecules typically possess a diverse array of complex secondary and tertiary structures 

that give rise to intricate and fluid 3-dimensional architectures that allow for specific interactions 

with other nucleic acids, proteins, and small molecules. 

 Current work in structural biology primarily utilizes X-ray crystallography and electron 

microscopy (EM) for the characterization of large and small biomolecular machines. These 

techniques typically use specific mutations or chemical modifications in or drugs against the 

enzyme of interest or its substrate to stall the biomolecule in a pre- or post-catalytic 

conformation. Depending upon the resolution, detailed structural analysis can reveal vital 

information about substrate binding or product release, allowing for an educated guess about the 

predicted mechanistic pathway that powers the biological function at the catalytic sites. As a 

result, a significant attempt has been made in the last 15 years to identify the structure of the 

spliceosome and its components using these techniques
36,176

. For example, low resolution 
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structures have been determined for the human B and C complexes
177

, several individual 

snRNPs
30,178-180

, and a number of crucial proteins known to be in the heart of the spliceosome 

during the catalytic steps of splicing
181

. Only recently have high resolution pictures of key 

components of the spliceosome, such as Prp8, become available
182

. Prp8 is a key component of 

the U5 snRNP showing extensive crosslinks to the RNA catalytic core of the spliceosome. 

Through crystallization of Prp8, the authors revealed a structure of the ‘heart of the spliceosome’ 

showing great similarity to a bacterial group II intron reverse transcriptase. Interestingly, known 

suppressors of splice-site mutations mapped to a region of Prp8 large enough to accommodate 

the catalytic core of group II intron RNA. These higher resolution images of the individual 

components have aided in producing better estimations of the intact spliceosome by mapping 

these structures into the low resolution structures of intact spliceosomes. Furthermore, work has 

begun to map the exact location of particular regions of the pre-mRNA substrate within the 

spliceosome’s active site
183,184

. Unfortunately, our knowledge about the structure-function 

relationship is limited with these before and after images of biological machines such as the 

spliceosome. EM and crystal structures provide great starting points but reveal very little about 

the dynamic mechanisms associated with most biological machines. Only upon meticulously 

working to understand how structural dynamics produce a given functional outcome can we 

properly fine-tune and manipulate macromolecular sequence, and therefore structure, to obtain a 

desired effect. In this thesis, we have started to address these challenges utilizing smFRET and 

deep sequencing-mediated structure prediction (SHAPE-MaP) to directly investigate the time 

series of pre-mRNA structures and the dynamics between them required to efficiently catalyze 

splicing. 
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Single-Molecule Pull-down FRET (SiMPull-FRET) to dissect the mechanism of first-step 

splicing catalysis 

Single-molecule fluorescence resonance energy transfer (smFRET) has recently emerged as an 

invaluable technique capable of monitoring pre-mRNA splice-site proximity throughout splicing 

assembly and catalysis
53

. This approach revealed a large set of reversible time- and ATP-

dependent conformational dynamics as the spliceosome assembles upon a fluorescent substrate 

and carries out both steps of splicing. While real-time structural information like this is crucial to 

our understanding of the splicing mechanism, the associated multiple FRET states with varying 

kinetics are increasingly difficult to understand and assign to particular splicing complexes. 

 As a means to enrich for and investigate a particular step of the splicing cycle, we 

developed a technique that couples purification of specific splicing complexes with smFRET in a 

method we termed SiMPull-FRET
55

. Utilizing a Prp2-1,Cef1-TAP yeast strain and a fluorescent 

pre-mRNA containing donor and acceptor fluorophores near the BP and 5’SS, respectively, 

SiMPull-FRET allowed for the isolation and investigation of the protein-dependent pre-mRNA 

transitions associated with the first chemical step of splicing. smFRET analysis of the purified 

B
act

 complex revealed a static, unchanging low FRET state indicating a large separation in 

distance of the reactive 5’SS and BP. Such a conformation is thought to be induced by the SF3 

complex, a small protein complex known to bind the BS sequence in the B
act

 complex and 

prevent premature attack of the BS adenosine on the 5’SS
39

.  Addition of Prp2, Spp2, and ATP to 

the purified B
act

 complex, conditions shown to destabilize association of the SF3 complex, 

rearranged the substrate to reversibly explore conformations with a proximal 5’SS and BP that 

are capable of carrying out low levels of first step splicing. Only upon addition of Cwc25, 

however, does this equilibrium become strongly biased towards the proximal conformation, 
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promoting efficient first-step splicing. Such a mechanism is reminiscent of the biased Brownian 

ratcheting mechanism utilized by the ribosome in which a helicase unlocks thermal fluctuations 

that are subsequently rectified by a cofactor ‘pawl’. We have, therefore, not only discovered a 

mechanism used by the spliceosome to achieve efficient first-step splicing, we have also shown 

that smFRET, coupled with single-molecule pull-down, is an invaluable tool for the investigation 

of the spliceosome and other RNA-based machines. 

Assigning conformational dynamics to specific splicing complexes using Single-Molecule 

Cluster Analysis (SiMCAn) 

Many of the dynamic processes required for the proper assembly, catalytic activation, and 

disassembly of the spliceosome as it acts on its pre-mRNA substrate remain poorly understood. 

The enrichment and purification of all spliceosomal complexes for study by SiMPull-FRET, as 

utilized to study the Prp2 and Cwc25-mediated enhancement of the first step of splicing
55

, would 

be tedious and time-consuming. We have therefore implemented the use of several, well-

established biochemical stalls to enrich for specific splicing complexes throughout spliceosome 

assembly and catalysis. Through incubation of an immobilized WT or 3’SS mutant yeast 

substrate containing the same donor and acceptor fluorescent dyes near the BP and 5’SS with 

yeast whole-cell extract (WCE) containing the mutation of interest, we were able to monitor the 

pre-mRNA dynamics associated with spliceosome assembly up to a defined endpoint in the 

splicing cycle. In order to dissect the manifold conformational dynamics of the pre-mRNA in 

each of the splicing block conditions we developed Single Molecules Cluster Analysis 

(SiMCAn), a bioinformatics clustering tool capable of grouping and sorting single-molecule 

FRET data based on common dynamic behavior. Through the implementation of a second round 

of clustering that grouped clusters based on their occupancy across the set of experimental 
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conditions, SiMCAn was able to identify signature conformations and dynamic behaviors of 

multiple ATP-dependent intermediates. In addition, it identified a conformation adopted late in 

splicing by a 3’SS mutant substrate in which the 5’SS and BS become stably removed from one 

another, invoking a mechanism for substrate proofreading.  

 We have, therefore, developed an alternative method using simple biochemical stalls and 

bioinformatics clustering analysis capable of assigning FRET states and dynamics to specific 

splicing complexes that does not require purification of individual splicing complexes. The 

SiMCAn method presents a novel framework for interpreting complex single molecule behaviors 

that should prove widely useful for the comprehensive analysis of a plethora of dynamic cellular 

machines.    

Assigning RNA structural pathways to real-time, FRET-based conformational dynamics 

Single-molecule FRET has allowed for the real-time observation of changes in RNA, protein, 

and complex structure that are beyond the capabilities of conventional structure prediction 

analysis. Such experimentation revealed an unprecedented glimpse into the heart of both simple 

and complex RNA machines, such as the spliceosome, revealing specific details about the 

changes in structure required to carry out a function. While these strategies have exposed much 

about common and often complex mechanisms, there is a gap in our ability to reliably translate 

time-resolved smFRET data into a temporal sequence (‘movie’) of secondary structures that an 

RNA molecule adopts throughout smFRET observation. 

 In an effort to circumvent these limitations, we have developed FRETtranslator, an RNA 

structure prediction software capable of confidently predicting RNA secondary structures 

through incorporation of both smFRET and biochemical footprinting data. To first optimize and 
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validate our approach, we applied FRETtranslator to smFRET data gathered from a short, 76-

nucleotide long RNA containing the Cy3-Cy5 FRET pair near the base of a highly variable 

region of the RNA. Intriguingly, FRETtranslator predicted several secondary structures that 

efficiently mirror the FRET states and kinetics observed during smFRET analysis. Specifically, 

FRETtranslator identified a compact structure describing the dominant high FRET conformation 

as the most common observed structure. This structure shows great similarity to an alternative 

high FRET structure most common to molecules exhibiting a slightly higher, 0.85 FRET state. 

While one specific path was observed for substrate unfolding to a low FRET state, two 

populations of behaviors were observed for substrate refolding as determined through kinetic 

analysis as well as by FRETtranslator. These results indicate that FRETtranslator can efficiently 

predict RNA secondary structures from a series of interconverting FRET states containing 

varying transition kinetics. 

 To further apply FRETtranslator to a biologically relevant system, we collected smFRET 

and footprinting data for the full length Ubc4 splicing substrate. We next plan to use 

FRETtranslator to predict the most likely secondary structures of Ubc4 in buffer as well as in 

several splicing complexes with the hope of creating a sequence of secondary structures adopted 

by single pre-mRNA molecules during spliceosome assembly and catalysis.    

Identifying a structure-function relationship in yeast pre-mRNA substrates  

In several initial studies, it was found that the efficiently spliced Ubc4 intron exhibits significant 

secondary structure that places the points of first and second step chemistry much closer together 

than would be expected from their linear sequence distance. This would suggest that the 

secondary structure is such that it places the reactive sites in close proximity before the 

association of any protein or RNA components. Such an orientation shows great similarity to that 
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of group II introns that are capable of splicing in the absence of all protein cofactors and supports 

a model where the intron plays an active role in splicing.  

 To further test the hypothesis that specific intron secondary structures dominate in 

spliceosomal cycle intermediates, we have isolated the in vivo assembled, yeast B
act

 complex 

containing over 250 of the known yeast pre-mRNA substrates for RNA structure analysis using 

selective 2’-hydroxyl acylation analyzed by primer extension and mutational profiling (SHAPE-

MaP). Northern blot and RT-PCR analysis confirmed the presence of only the expected snRNAs 

(U2, U5, and U6) as well as predominantly unspliced Act1 pre-mRNA. We further confirmed the 

purity of the complex through RNA-seq analysis of the RNA contained in the complex, revealing 

a significant enrichment of genes previously predicted to contain introns. Additionally, we 

purified the B
act

 complex under high salt conditions to further remove non-specifically associated 

RNA such as snoRNAs. Interestingly, we were able to show that our assay is capable of 

detecting the spliceosome-mediated decay (SMD) target YDL070W, as well as several 

bicistronic genes recently found to undergo alternative splicing events. Furthermore, we 

identified a number of new potential intron-containing genes or SMD targets within the complex. 

 We next plan to perform SHAPE-MaP analysis on the confirmed pre-mRNA targets 

within the spliceosome in order to determine the secondary structure of all RNA within the 

complex. We will then cluster the consensus secondary structures found among all introns to test 

the hypothesis that certain intrinsic secondary structures correlate with high splicing efficiency.  

6.2 Outlook 

Proper RNA folding is crucial to cellular function. In doing so distinct regions of an RNA 

molecule with a potentially large separation in their primary sequence can now interact to 

provide structural integrity, increase the accessibility of a protein or RNA binding site, or allow 
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proper formation of a catalytic active site. In addition to potentially changing a catalytic residue, 

alterations in nucleic acids (mutations) can also lead to changes in folding and thus prevent 

proper cellular function. Such could be the case for the up to 50% of all mutations that lead to 

human disease that act through disruption of the splicing code
153,185-188

. These mutations often 

result in disruption of the exon-intron boundaries and prevent recognition and splicing by the 

splicing machinery leading to formation of aberrant mRNAs that are unstable or lead to 

formation of defective protein isoforms. Interestingly, over 400 intronic single-nucleotide 

variations (SNVs) that are more than 30 nucleotides from any splice site were recently 

discovered that induce changes in splicing patterns far more severe than common variants
189

. 

This same study revealed thousands of exonic mutations and tens of thousands of other disease-

causing mutations that have a great potential to alter splicing. In order to fully understand how 

these mutations affect splicing and the downstream function requires a thorough understanding 

of how the mutations affect RNA structure through direct, single-molecule and single-nucleotide 

resolution visualization of these structures.   

In recent years, single molecule FRET has begun to shed light on mechanisms used by 

the spliceosome to achieve high catalytic efficiency and specificity. In particular, the RNA 

helicases found throughout the splicing cycle are thought to utilize the energy from ATP 

hydrolysis to bind, unwind, and release RNA, thus remodeling inter- and intra-molecular RNA 

structures and dissociating associated proteins. The study of RNA helicases has primarily been 

performed in highly purified in vitro systems leaving many unanswered questions regarding the 

precise kinetics and mechanism of DExD/H-box RNA helicase function within the complex RNP 

machines they are most typically known to operate. In this thesis, we describe our pioneering 

work on the processive DEAH-box helicase Prp2 and its involvement in the first step of splicing 
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using SiMPull-FRET. A rather straightforward extension of this is the investigation of Prp16’s 

ATP-dependent and –independent roles before, during, and after the first step of splicing using 

SiMPull-FRET. Prp16 is a second-step factor known to catalyze the ATP-dependent removal of 

Cwc25 after the first step of splicing, allowing for the formation of the second step 

conformation
85

. Prp16 is also thought to facilitate a kinetic proofreading mechanism wherein 

Prp16 acts as a timer to ensure that suboptimal branchsites are deprived of the possibility to 

react
127

. If splicing is slow, ATP hydrolysis by Prp16 will result in the premature removal of 

Cwc25 prior to catalysis and thus discard of the substrate. Interestingly, two separate studies 

have found that Prp16 is capable of assisting with the first step of splicing in both an ATP 

dependent and independent manner
41,190

. In the first study, it was found that a mutated branchsite 

(AC) normally unable to proceed through the first step of splicing could achieve first step 

catalysis upon incubation with an ATPase-deficient mutant of Prp16
41

. It was found that the 

mutant Prp16 facilitates the stabilization of Cwc25 with the branchsite, resulting in stabilization 

of a proximal BS-5’SS capable of achieving efficient first-step splicing. Incubation with WT 

Prp16, however, results in discard of the substrate. In contrast, the second publication discovered 

that if a deoxyribose branchsite adenosine is encountered, first-step splicing can be permitted 

through addition of WT Prp16 and ATP but not through use of a mutant Prp16
190

. Utilizing 

primer extension, the authors discovered that Prp16 can actually unwind the U2-BS interaction 

allowing for alternative BS adenosine selection and first-step catalysis. Unfortunately, neither of 

these studies was able to report on the mechanistic relationship between Prp16 action and pre-

mRNA conformational changes, information that can easily be achieved via SiMPull-FRET, and 

thus could not determine the proofreading mechanism of Prp16. 
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 In order to advance the use of smFRET and SiMPull-FRET for the study of splicing, 

future studies will be required to extend these approaches to the labeling of snRNAs and 

numerous proteins within the spliceosome. The five snRNAs work together to efficiently 

recognize and hand off the pre-mRNA splice sites during spliceosome assembly. Several studies 

have revealed discrete changes in snRNA structure at multiple stages of assembly and catalysis 

that are thought to be required for splicing. Having the ability to site-specifically incorporate 

fluorescent dyes into the snRNAs for visualization using smFRET would greatly improve our 

understanding of the roles snRNAs have in splicing. We have already demonstrated successful 

depletion and reconstitution of yeast splicing extracts with labeled U2 snRNA and observed 

significant preliminary binding in the presence of extract and ATP, conditions that allow 

complete assembly of all splicing components on the labeled pre-mRNA (Figure 6.1b,c). Such a 

setup allows for observation of snRNA assembly, but the fluorophores are not yet in FRET 

distance to provide additional information about snRNA-pre-mRNA dynamics. This is primarily 

due to a lack of available methods with which to internally label snRNA. The internal 

modification and labeling of RNA is greatly limited to short (<140 nt) RNAs due to our inability 

to efficiently synthesis RNA. Even so, synthesis and internal labeling of these short RNAs still 

requires synthesis of two RNA pieces that can be labeled and ligated as described in this thesis. 

One alternative for internally labeling RNA is the use of terbium-assisted deoxyribozymes
191

. 

This approach has already been used for the efficient labeling of in vitro transcribed U6 snRNA 

but should be amenable to either the U2 or U5 snRNAs. Once labeled, incorporation of the 

modified snRNA into yeast splicing complexes can be achieved through well-established snRNA 

depletion and reconstitution methods (Figure 6.1a)
192

. One immediate application would be to 

label the U2 BS-interacting region and incorporate the snRNA, along with BS-labeled dA Ubc4, 
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Figure 6.1 Labeled U2 snRNA assembles on immobilized pre-mRNA  

(a) General protocol for the depletion of spliceosomal snRNAs using a DNA oligonucleotide 

complementary to an accessible region of the snRNA and the extract endogenous RNaseH 

activity to degrade the RNA. Introduction of fluorescently labeled snRNA then allows for 

successful reconstitution activity. (b) smFRET investigation of U2 snRNA binding to the pre-

mRNA in the presence of extract and ATP. (c) example traces showing short and long lived 

association of U2 snRNA with the pre-mRNA in the presence of extract and ATP. 
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into the B
act

 complex for SiMPull-FRET as previously described. Such an experimental setup 

would allow for the direct observation of the Prp16 and ATP-dependent unwinding of the U2-BS 

duplex during alternative branchsite selection.  

In addition to labeling of snRNA factors, the emergence of several new protein labeling 

techniques will allow for the observation of specific protein cofactors associating or dissociating 

with the spliceosome in response to progression through a particular splicing complex (Table 

A.1). By site-specifically labeling the pre-mRNA target or yeast snRNAs, binding proximity can 

be estimated as well as visualization of protein translocation across or through an RNA-RNA or 

RNA-protein duplex. Such experiments will be especially useful for investigating the 

mechanisms of action for the yeast ATPases, particularly Prp16 that is thought to possess 

multiple ATP-dependent and ATP-independent roles during and after the first step of splicing. 

One immediate application could be to label Cwc25 and monitor its Prp16-dependent 

stabilization with the spliceosome that is thought to occur in the presence of mutated branchsite 

sequences
41

. Other combinations of various pre-mRNA-snRNA, snRNA-snRNA, pre-mRNA-

protein, and snRNA-protein labeling schemes, further combined with the specificity of SiMPull-

FRET and computational power of SiMCAn, will allow for a bird’s eye view of changes in RNA 

and protein conformation and thus reveal other mechanisms utilized by the spliceosome to 

achieve a high degree of specificity and efficiency during spliceosome assembly and catalysis. 

Furthermore, the use of more different colors in single-molecule experimentation will increase 

the amount of information extracted by, for example, using Pacific Biosciences SMRT 

Technology.  

Implementation of the SHAPE-MaP approach to characterize the secondary structure of 

all yeast pre-mRNA transcripts within the B
act

 and C complex will provide a nucleotide-
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resolution picture of the pre-mRNA structure for nearly every yeast intron containing gene. Such 

knowledge will allow us to compare the structural changes of Ubc4 upon its profound 

remodeling from the distal B
act

 to the proximal (and possibly more structure) C complex with 

that of all other actively spliced pre-mRNAs revealing any correlation between intron secondary 

structure and relative efficiency of splicing. Once established, this technique can in principle be 

applied to any purifiable RNA-protein complex, likely finding broad applications in the 

biomedical sciences.  

Given the conservation of the splicing components between yeast and humans, the 

structure-function relationships and dynamics discovered in this thesis have the potential to also 

be utilized in humans and other higher eukaryotes. As protein and RNA labeling strategies 

become more accessible and broadly applicable, the number of potential targets for single 

molecule experiments will expand as will the complexity of the experiments and varieties of 

organisms capable of being studied, ultimately leading to a complete understanding of RNA 

structure and dynamics that can be properly and successfully targeted for therapeutic purposes.  
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APPENDIX A: Identifying a mechanism of RNA unwinding by Prp22 in isolation and 

within the spliceosome using single-molecule FRET 

 

A.1 Introduction 

Throughout the splicing cycle, numerous RNA-RNA and RNA-protein conformational 

rearrangements are required to ensure proper assembly, regulation, and catalysis. In the budding 

yeast Saccharomyces cerevisiae, these rearrangements are facilitated by a set of at least 8 known 

RNA helicases/ATPases of the DExD/H-box family of helicases that include Prp5, Prp28, Brr2, 

Prp2, Prp16, Prp18, Prp22, and Prp43
65

. Four of the known ATPases have been shown to possess 

in vitro helicase activity
92,193-195

 and at least four are thought to allow for spliceosomal 

proofreading
42,116

. These proofreading events are thought to be one of the primary ways by 

which mutated substrates are detected and rejected and thus it is of great importance that we have 

a thorough understanding of how these rearrangements occur. The RNA helicases have been 

characterized primarily through observation of effects wild-type or mutant versions of the 

proteins have on yeast viability. Additionally, the in vitro helicase activities of Prp22 and Prp16 

have been extensively characterized biochemically using model substrates. Despite all of this 

work, it remains unclear how the helicase of these enzymes are utilized in the spliceosome. We 

therefore have started to characterize the role of Prp22 in the late stages of the spliceosome by 

applying the tool of single-molecule fluorescence resonance energy transfer (smFRET).  

Prp22 is a known RNA helicase responsible for mRNA release after the second step of 

splicing. It is thought that Prp22 uses its helicase activity to disrupt base-pairing between the 



196 

 

mRNA and the U5 snRNA. In order to first characterize mRNA-dependent unwinding and 

release from the spliceosome, we designed a short DNA probe that binds to the pre-mRNA Ubc4 

to serve as a model substrate with which to study Prp22 helicase activity (Error! Reference 

source not found.a). By fluorescently labeling Prp22 and the DNA probe at its 3’end, we will be 

able to monitor Prp22 association with the duplex, ATP-dependent unwinding of the duplex by 

Prp22 (as seen through an increase in FRET), and the eventual complete dissociation of the 

labeled DNA oligonucleotide. In addition, by lowering the concentrations of ATP within the 

solution, the Prp22 helicase activity will be slowed, allowing for the observation of a stepwise 

increase in FRET as Prp22 unwinds the duplex. Such an approach has been successfully utilized 

to study a well-characterized DNA helicase T7 gp4
196

. These experiments will provide valuable 

information about the specific mechanism of Prp22-mediated unwinding using a model substrate 

with which we can then begin to use to study Prp22 activity in the context of the spliceosome 

(Error! Reference source not found.b).  

 A major hurdle with such an experiment is acquiring single, site-specific labeling of 

Prp22. Site-specific functionalization and labeling of proteins are central aims in protein 

engineering, allowing for the visualization of living systems in their native environments. Until 

recently, optical imaging of proteins in cells or cell extract has relied heavily on the utilization of 

fusion proteins such as GFP to successfully complete this task. Due to their large size (~230 

amino acids), the use of fusion proteins to study the role of proteins in living systems is often 

difficult, giving the tendency for fusion proteins to interfere with protein folding, activity, and 

localization
197

. We therefore set out to investigate a variety of previously-established labeling 

approaches in order to identify the most universal technique capable of labeling a variety of 

splicing protein cofactors for use in single-molecule experimentation. 
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Figure 6.2 Single molecule observation of Prp22-mediated unwinding using an 

optimized DNA-RNA hybrid and in the spliceosome  

Proposed single-molecule experiments to investigate Prp22’s mechanism and function in 

unwinding a model duplex (a) and influencing mRNA release after both steps of splicing (b). 
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A.2 Materials and methods 

A.2.1 Expression and purification of intein-containing piece 1 and piece 2 

Plasmids encoding the N-terminal piece 1 containing either Prp5, Prp2, Prp22, Cwc25, or Cus1 

genes, as well as a 3’ sequence encoding a hexahistidine tag, were produced through two rounds 

of PCR, restriction enzyme digestion, and ligation that first placed the gene of interest into the 

pRSETa plasmid and second the N-terminal portion of the SSP GyrB intein and hexahistidine 

tag. A plasmid encoding the C-terminal piece 2 containing the gene sequence for GB1 was made 

through PCR amplification of the GB1 gene using primers encoding the C-terminal portion of 

the intein and a single cysteine residue in the forward primer and a TEV cleavage site and 

hexahistidine tag in the reverse primer. The PCR product was cloned into the pRSETa plasmid 

for overexpression, purification and labeling (Figure A.2).   

 The five N-terminal piece 1 constructs and the C-terminal piece 2 protein were expressed 

and purified as previously described
92

. Briefly, cell pellets were resuspended in buffer A (50 mM 

Tris pH 7.5, 250 mM NaCl, 10% sucrose) and incubated with 0.2 mg/ml lysozyme with gentle 

stirring for 40 min. The suspension was adjusted to 0.1% Triton X-100 and subsequently 

removed of insoluble material through centrifugation at 18,000 rpm for 40 min. The supernatant 

was then incubated with Ni-NTA resin (Qiagen) with rotation for 1 h. The mixture was added to 

a column for removal of unbound material with repetitive washes with buffer E (50 mM Tris pH 

7.5, 250 mM NaCl, 10% glycerol) containing 10 mM imidazole. Bound material was eluted with 

buffer E containing 20, 50, 100, and 500 mM imidazole. Peak protein fractions for Prp2, Prp22, 

and Prp5 were pooled and diluted with buffer D (50 mM Tris pH 7.5, 2 mM DTT, 1 mM EDTA, 

10% glycerol) to adjust salt concentrations to 50 mM for purification on polyuridylic acid-

agarose (Sigma). Resin was washed extensively with buffer D containing 50 mM NaCl and 
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Figure 6.3 Intein-mediated labeling strategy for Prp22 

Proposed single-molecule experiments to investigate Prp22’s mechanism and function in 

unwinding a model duplex (a) and influencing mRNA release after both steps of splicing (b). 
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subsequently eluted with buffer D containing 100, 200, 300, and 500 mM NaCl. Finally, all 

proteins were dialyzed against buffer D containing 50 mM NaCl, concentrated, aliquoted, and 

flash frozen in liquid nitrogen. Protein concentrations were determined using the Bradford dye 

reagent (Bio-Rad). 

 The single-cysteine C-terminal piece two protein was labeled with Cy3-maleimide (GE 

Healthcare). Labeling was performed using 0.150 μmol of protein and 0.5 mg of dye containing 

10 μM reducing agent Tris(2-carboxyethyl)phosphine (TCEP) (Sigma). Reactions were 

incubated at 23°C for 1 h followed by overnight at 4 ºC. Free dye was removed by re-purification 

of protein on a Ni
2+

 column and dialysis back into buffer D. The extent of labeling was 

determined using A280 and A550 readings and found to be 90%. 

A.2.2 Protein trans-splicing reactions 

In vitro protein labeling reactions were performed as described
198

. Briefly, 1 uM N-terminal 

piece two protein containing Prp5 was incubated with 15 uM C-terminal piece two protein 

containing Cy3 in the optimized splicing buffer (oSB: 20 mM Tris-HCl pH 8.5, 250 mM NaCl, 1 

mM EDTA) in the presence of 0.1 mM TCEP for 16 h at room temperature. Reactions were 

allowed to incubate with Ni-NTA resin for 1 h before washing with buffer E. Bound protein was 

then eluted using buffer E containing 150 mM imidazole. Wash and elution fractions were 

resolved on a 10% SDS-PAGE gel and analyzed by scanning on a Typhoon variable mode 

imager (GE Healthcare) followed by coomassie staining. 

A.2.3 Prp22-Ald expression and purification  

Prp22-Ald was expressed and purified essentially as described
92

. Briefly, cell pellets containing 

over-expressed Prp22-Ald were resuspended in buffer A (50 mM Tris pH 7.5, 250 mM NaCl, 
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10% sucrose) and incubated with 0.2 mg/ml lysozyme with gentle stirring for 40 min. The 

suspension was adjusted to 0.1% Triton X-100 and subsequently removed of insoluble material 

through centrifugation at 18,000 rpm for 40 min. The supernatant was then incubated with Ni-

NTA resin (Qiagen) with rotation for 1 h. The mixture was added to a column for removal of 

unbound material with repetitive washes with buffer E (50 mM Tris pH 7.5, 250 mM NaCl, 10% 

glycerol) containing 10 mM imidazole. Bound material was eluted with buffer E containing 20, 

50, 100, and 500 mM imidazole. Peak Prp22 fractions were pooled and diluted with buffer D (50 

mM Tris pH 7.5, 2 mM DTT, 1 mM EDTA, 10% glycerol) to adjust salt concentrations to 50 

mM for purification on polyuridylic acid-agarose (Sigma). Resin was washed extensively with 

buffer D containing 50 mM NaCl and subsequently eluted with buffer D containing 100, 200, 

300, and 500 mM NaCl. Finally, Prp22 was dialyzed against buffer D containing 50 mM NaCl, 

aliquoted, and flash frozen in liquid nitrogen. Protein concentrations were determined using the 

Bradford dye reagent (Bio-Rad).  

A.2.4 Prp22-Ald fluorescent labeling 

Purified Prp22-Ald was fluorescently labeled with Cy5-hydrazide or CF640r as described
199

. 

Prp22-Ald was exchanged into labeling buffer (250 mM potassium phosphate, 500 mM KCl, and 

5 mM DTT) using Amicon Ultra-0.5 centrifugal filter units (Millipore). Protein was then mixed 

with dried fluorescent dye and incubated at 4 °C for 18 h. Unincorporated dye was removed 

using either Micro Bio-spin P-6 or P-30 columns (Bio-Rad), Centri-Spin 10 columns (Princeton 

Separations) or by re-purifying over Ni-NTA in the absence or presence of 2 M urea. Extent of 

labeling and dye removal was determined through analysis on 10% SDS-PAGE. 
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A.3 Results 

A.3.1 Intein-mediated protein labeling 

In recent years, several approaches have utilized the attachment of ‘reporter handles’ to target 

proteins followed by the modification with exogenously added probes (Table A.1)
200

. To qualify 

as a sufficient labeling method, these reporter handles should not perturb the folding and activity 

of the protein, require a high degree of specificity, be relatively small, undergo rapid highly 

chemoselective reactions, and should be able to occur in physiological conditions. One such 

approach is protein trans-splicing (PTS), also known as intein-mediated protein ligation. Protein 

splicing is a naturally occurring process in which a protein editor, called an intein, excises itself 

out of a host protein in which it is embedded creating a new peptide bond between its two 

flanking regions, the exteins
201

. In the 20 years since its discovery, protein splicing has been 

utilized for the development of several protein-engineering methods, one of these being protein 

trans-splicing (PTS). PTS uses an artificially or naturally split intein to create a new peptide bond 

between flanking exteins
202

. Split inteins are characterized by the fact that their primary amino 

acid sequence is cut into two polypeptides, an N-terminal fragment and a C-terminal fragment 

(Figure A.2). Unlike other protein splicing techniques such as expressed protein ligation (EPL) 

and native chemical ligation (NCL), PTS does not require extremely high concentrations of 

reactants, can occur in native conditions, and does not require a thioester or N-terminal cysteine 

on the target protein
201

. Additionally, inteins split very near the N- or C-terminus can utilize 

short, synthetic peptides as one component in the reaction allowing for the incorporation of many 

chemical modification groups into the synthesized peptide. One such split intein is the SSP GyrB 

mini-intein (DNA gyrase subunit B from Synechocystis species)
203

. This intein is known to 

contain a natural cleavage site, but has also been artificially split six amino acids in from the C-
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Table 6.1 Protein labeling approaches 

A list of pros and cons for several protein labeling strategies developed over the last 10-20 

years. Although it has been shown to possibly be the fastest and efficient form of labeling, the 

SNAP tag was not pursued due to its large size. 
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terminal end of the protein and shown to efficiently reconstitute protein splicing upon 

assemblage of the two subunits
198,204

.  

 In order to adapt the SSP GyrB split intein for labeling of splicing factors, the Prp22 gene 

of interest was cloned into an expression plasmid containing a region encoding the N-terminal 

portion of the SSP GyrB intein as well as a C-terminal hexahistidine tag known not to affect 

intein recognition and splicing (Figure A.2, N-terminal Piece 1). Furthermore, an additional 

plasmid was developed that encoded for the C-terminal portion of the intein (GVFVHN) 

followed by a unique cysteine residue, a TEV cleavage site (ENLYFQG), the GB1 stabilizing 

protein, and a hexahistidine tag (Figure A.2, C-terminal Piece 2). Upon expression and 

purification of both constructs, as well as labeling and TEV cleavage of the C-terminal intein 

piece 2, we anticipated that PTS would result in formation of a labeled splicing factor Prp22 

lacking a hexahistidine tag. Spliced, labeled product could then be purified away from unreacted 

starting material through a final purification on a Ni
+2

 column and passage through a gel 

filtration column. Similar constructs were developed encoding additional splicing factors 

including Prp2, Prp5, Cus1, and Cwc25. Unfortunately, it was found that many protein 

conjugates containing the N-terminal portion of the intein are very unstable, thus preventing 

purification and storage of highly concentrated protein required for PTS. Fortunately, Prp5-

containing N-terminal piece one was found to be stable enough at high concentrations for initial 

PTS trials using a Cy3-labeled C-terminal piece two. To initiate PTS, the two halves of the intein 

were combined with a 10-fold excess of labeled piece two and allowed to react for 18 hours at 

room temperature in the presence of 0.1 mM TCEP
198

. The splicing reaction mixture was then 

incubated with Ni-NTA resin to allow the unreacted Prp5 starting material to bind the column. 

Interestingly, washing the column with a mild buffer resulted in release of a significant amount 
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of protein around the expected molecular weight of 100 kDa that was also visible in a Cy3 scan 

of the gel (Figure A.3, Prp5-Cy3 band). Eluting bound material with high concentrations of 

imidazole resulted in release of a band around 120 kDa corresponding to the Prp5 starting 

material that was visible in the coomassie stain but not the Cy3 scan. This result would appear to 

indicate that the two pieces of the intein successfully reacted at low levels to release labeled Prp5 

lacking a hexahistidine tag that was only detectable in the wash fractions of the column; 

unlabeled starting material remained bound to the column and eluted only upon addition of 

imidazole.  

Although this approach does appear to work for the labeling of Prp5, intein-mediated 

protein labeling does not appear to be as universal of a labeling approach as needed to label other 

important yeast splicing factors such as Prp22 and Prp16. Future work will require the labeled, 

C-terminal piece 2 to be more efficiently purified to remove the many impurities that become 

more easily visible upon labeling with a fluorescent dye (Figure A.3). As a result, the PTS 

reaction and the downstream purification from unreacted C-terminal piece two using gel 

filtration will become much more efficient.  

A.3.2 Utilizing Formylglycine Generating Enzyme to Fluorescently Label Prp22 

Another promising protein labeling method is the use of the formylglycine generating 

enzyme (FGE)
205

. FGE is an enzyme that catalyzes the oxidation of a cysteine residue in a 6-12 

amino acid sequence
206

 of sulfatases to a formylglycine residue to form the mature active site of 

the sulfatase
207

. This recognition sequence, termed the ‘aldehyde tag,’ has been found to still be 

recognized and modified by FGE when cloned onto the ends or internal regions of various 

proteins (Figure A.4a)
208,209

. Additionally, the FGE labeling approach has recently been utilized 

for the labeling of a DNA modification enzyme for use in single-molecule studies
199

. Thus, we 
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Figure 6.4 Spliced and labeled Prp5 elutes in Ni-NTA wash fractions 

PTS reactions between Prp5-containing N-terminal Piece 1 and Cy3-labeled C-terminal Piece 

2 were loaded onto a Ni-NTA column for purification of spliced material. Spliced, labeled 

Prp5 (Prp5-Cy3, 100 kDa) came off the column in the wash fractions while the slightly larger 

starting material (Prp5 Piece 1, 120 kDa) remained on the column until elution with 

imidazole. The many impurities, primarily visible in the Cy3 scan, can be traced back to the 

C-terminal Piece 2-Cy3 starting material. 
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Figure 6.5 FGE-mediated fluorescent labeling strategy for Prp22  

(a) Co-expression of FGE and an aldehyde tagged protein of interest results in modification of 

the active site cysteine residue to formylglycine. Incubation of the modified protein with 

hydrazide-derivative fluorophores results in site-specific, fluorescent labeling. Shown is the 

Prp8 crystal structure as an example of a splicing protein to label (PDB accession number 

4I43). (b) Labeling of Prp22-Ald with Cy5-hydrazide dye is specific to Prp22 only when it is 

co-expressed with the modifying protein FGE. 

 

 



208 

 

speculated that the ‘aldehyde tag’ could be a valuable tool through which to modify and label 

spliceosomal proteins in isolation and potentially in yeast cell extract as described for the SNAP-

tag
110

. 

 To adopt the FGE-mediated labeling strategy for labeling of Prp22, we cloned a DNA 

sequence encoding the minimal six amino acid aldehyde tag onto the 3’ end of Prp22 along with 

a hexahistidine tag and placed the sequence into a ampicillin resistant plasmid containing an 

IPTG-inducible promoter for overexpression and purification in bacteria (from here on known as 

Prp22-Ald). Additionally, the gene sequence encoding the FGE protein was cloned into a 

kanamycin resistant, arabinose-inducible plasmid so that both plasmids could be selected for 

using the appropriate antibiotics and selectively-expressed using the desired inducing agents 

(Figure A.4a). Cell extracts were made from bacteria that were either incubated with just IPTG 

during growth or IPTG and arabinose to allow expression of Prp22 in the absence and presence 

or FGE. Interestingly, incubation of cell extracts with Cy5-hydrazide dyes resulted in fluorescent 

labeling of Prp22 only when FGE was co-expressed with Prp22 (Figure A.4b). The –FGE lane 

was completely absent of labeled protein and contained only unincorporated dye. These data 

demonstrate the specificity of the labeling strategy and also indicate that labeling of Prp22 might 

possibly be achieved in yeast splicing extract after modification by FGE. 

The proposed single-molecule experiments (Figure A.1) require a purified, labeled 

protein void of any traces of remaining free dye. We therefore co-overexpressed and purified 

Prp22-Ald for labeling with Cy5-hydrazide. Recent optimization of the aldehyde tag labeling 

strategy identified a more neutral pH buffer (250 mM potassium phosphate, 500 mM KCl, and 5 

mM DTT)
199

 than what was used in initial testing (100 uM MES pH 5.5, 1% SDS)
208

. Purified 

Prp22-Ald was buffer exchanged into the optimized labeling buffer and incubated with Cy5-
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Figure 6.6 Ni-NTA and gel filtration columns are not sufficient for removing free dye  
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hydrazide for 12 hours. We then attempted to remove the large excess of free dye through use of 

a number of gel filtration spin columns as previously reported (Figure A.5a) as well as through 

re-purification on Ni-NTA resin (Figure A.5b). Unfortunately, even after passing through 

multiple rounds of spin columns and after more than 15 mL of washing with a high-salt wash 

buffer, a significant amount of free dye remained stuck to the protein (Figure A.5a,b). Believing 

the cause of the remaining free dye to be through hydrophobic sticking of the dye to the protein, 

2 M urea was included in the wash buffer during purification on Ni-NTA resin. Interestingly, 

washing with over 15 mL of the strong denaturant still did not remove the remaining free dye. 

Lastly, we attempted labeling with CF640r, a much less hydrophobic dye than Cy5-hydrazide 

but with similar spectroscopic properties
210

. Surprisingly, use of the CF640r fluorophore and 

purification on Ni-NTA with 2 M urea still resulted in free dye sticking to Prp22 and coming out 

in the elution fractions (Figure A.5b, far right). 

A.4 Discussion 

Site-specific functionalization and labeling of proteins are central aims in protein engineering as 

well as single-molecule investigation of protein function in complex RNA-protein systems. 

Recently, several single-molecule groups have utilized the high specificity and catalytic 

efficiency of SNAP-tag-mediated protein labeling to monitor assembly of specific snRNP 

complexes
110

. This method has a great advantage in that it is very rapid and can also take place in 

yeast whole cell extract allowing for the incorporation of SNAP tags onto a variety of splicing 

protein cofactors directly in the yeast genome prior to purification of extract. Unfortunately, the 

large size of the SNAP tag may perturb protein function and, as a consequence, splicing 

assembly or catalysis will be defective. We thus set out to experiment a number of protein 

labeling strategies that result in the attachment of a small reporter handle (~6 amino acids) 
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containing a variety of fluorescent dyes to several essential spliceosomal proteins. The first of 

these was protein trans-splicing (PTS) using a split intein. The SSP GyrB intein was recently 

split six amino acids upstream from the C-terminus and found to still efficiently reconstitute PTS 

upon mixing of the two portions of the intein. The small size (six amino acids) of the C-terminal 

portion of the intein allows for synthesis of small peptides containing the C-terminal sequence 

with a variety of attached modifications (i.e., fluorophores). Unfortunately, peptide synthesis 

with Cy3 and Cy5 fluorophores, those most commonly used for single-molecule FRET, is 

difficult, expensive, and often results in production of an insoluble peptide. Therefore, we 

developed a plasmid encoding the C-terminal portion of the intein immediately upstream of a 

cysteine residue, a hexahistidine tag, and GB1, a small, stable, single domain protein that, most 

importantly, lacks cysteine residues. Expression of this construct allowed for the purification and 

labeling of large amounts of the protein containing a variety of fluorescent probes at a relatively 

low cost. Our strategy was also designed to easily separate spliced from unspliced material as a 

result of PTS. Unfortunately, the high concentrations (uM) of starting material became an issue 

for a majority of the spliceosomal proteins attempted, making the approach not as universal as 

needed to effectively study the protein components of the spliceosome by smFRET.  

 Second, we attempted labeling of Prp22 containing a six amino acid recognition sequence 

for the formylglycine generating enzyme (FGE). FGE binds and modifies a cysteine residue 

within the recognition sequence to a unique aldehyde that can subsequently be labeled with 

hydrazide-containing fluorophores. This labeling strategy was recently utilized to fluorescently 

label a DNA binding protein for analysis by smFRET
199

. The authors also revealed an optimized 

labeling buffer that allows for efficient labeling at neutral pH. Intriguingly, we were able to 

achieve efficient labeling of Prp22 carrying the short ‘aldehyde tag’ under the conditions 
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described. However, removal of free dye from such a large protein (~130 kDa) proved to be very 

difficult and impeded our ability to use labeled Prp22 in single-molecule experiments. Several 

fluorescent dyes and gel filtration strategies were attempted to remove unincorporated dye with 

little success. As a result, fluorescent labeling of large, and often hydrophobic, proteins may 

prove to be very challenging regardless of the labeling strategy.  

 An additional strategy we propose to utilize in the future is the use of nonsense 

suppression to incorporate unnatural amino acids (UAA) containing a variety of unique 

functional handles. Such a strategy has been successfully used for the site-specific incorporation 

of BPA and azide functional groups into yeast proteins
211-213

. Several fluorescent dyes containing 

the corresponding alkyne functional groups are commercially available that could allow for the 

labeling of spliceosomal proteins in yeast splicing extract or in an isolated solution of purified 

protein.      
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APPENDIX B: Observing Prp28-dependent Changes in pre-mRNA Conformation in Early 

Spliceosome Formation
5
 

 

B.1 Introduction 

The spliceosome is the megadalton protein-RNA complex responsible for the complex removal 

of nearly all noncoding RNA segments of precursor messenger RNA (pre-mRNA) transcripts. 

Spliceosome assembly is thought to take place in a stepwise manner in which the five small 

nuclear ribonucleoprotein (snRNP) complexes assemble and reorganize to form a complex 

network of RNA-RNA and RNA-protein interactions that comprise a catalytic core capable of 

carrying out both chemical steps of splicing. Central to the assembly process are the eight 

DExD/H-box ATPases responsible for catalyzing, in an ATP-dependent manner, several 

conformational rearrangement steps that are also thought to be points of spliceosomal 

proofreading. Interestingly, recent work has revealed that several of the conserved spliceosomal 

ATPases have additional ATP-independent roles vital to the assembly and catalytic processes 

throughout the splicing cycle. One recent example of this dual-role nature is Prp28, a DEAD-box 

ATPase that promotes U1 snRNP release prior to B
act

 complex formation. Prp28 was recently 

found to play a minor role during the ATP-independent formation of the commitment 

complexes
214

. The commitment complexes (CC1 and CC2) were originally identified as the 

earliest-forming stable complexes that commit the pre-mRNA to splicing and are resistant to 

                                                 
5
 Matthew Kahlscheuer and Ramya Krishnan performed the smFRET experiments on the Ubc4 pre-mRNA. Argenta 

Price prepared all yeast splicing extracts, Prp28 protein, and performed the native gel analysis of the Ubc4 pre-

mRNA substrate. 
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competition from addition of naked pre-mRNA
215

. These complexes form in the absence of ATP 

and contain either just the U1 snRNP bound to the 5’SS (CC1) or additionally contain the 

branchpoint binding protein (BBP) and Mud2 bound to the branchsite sequence (CC2). 

Interestingly, while depletion of BBP/Mud2 from extract does prevent CC2 formation, complete 

assembly, catalytic activation, and both steps of splicing can proceed unimpeded in the presence 

of ATP
216

. CC2 formation may, therefore, not be strictly required for splicing under optimal 

splicing conditions. Furthermore, recent native gel analysis of the commitment complexes 

revealed a dramatic loss of CC2 formation upon depletion of Prp28 from yeast splicing extract 

depleted of ATP while wildtype extracts depleted of ATP efficiently form CC2
214

. 

Unfortunately, native gel analysis may facilitate the stabilization of the commitment complexes 

with gel-caging interactions and thus do not allow for a thorough investigation of commitment 

complex stability or spliceosome and pre-mRNA conformation, preventing the determination of 

a specific role for Prp28 in CC2 formation.  

 Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful 

biophysical tool that has recently been utilized to study and monitor pre-mRNA conformation 

and dynamics throughout spliceosome assembly and catalysis
53,55,62

. Through labeling of the 

Ubc4 BS and 5’SS with donor (Cy3) and acceptor (Cy5) fluorophores, respectively, time- and 

ATP-dependent changes in proximity of the points of first step chemistry can be observed. Given 

the highly time-sensitive nature of smFRET to changes in donor-acceptor distance, smFRET is 

an ideal tool with which to identify a Prp28-dependent role in altering pre-mRNA structure 

during CC2 formation. We therefore set out to investigate a potential role for Prp28 remodeling 

of the pre-mRNA substrate during formation of CC2. Utilizing a Prp28-depleted extract and the 

parent, wildtype extract, we initially observed a dramatic shift in FRET conformation from a 
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primarily low FRET state in the absence of Prp28 (CC1) to a dominant high FRET state upon 

introduction of the wildtype extract (CC2). We further investigated this shift in FRET utilizing a 

BP mutant substrate incapable of forming CC2 and observed a similar, low FRET conformation. 

However, upon re-analysis of the smFRET data and upon extensive experimentation with a 

variety of Prp28 reconstitution conditions, we confirmed that there appears to be no significant 

change in pre-mRNA conformation during assembly of CC1 and CC2. In addition, the presence 

or absence of Prp28 does not appear to have a significant effect on pre-mRNA conformation 

early in spliceosome assembly.  

B.2 Materials and Methods 

B.2.1 Preparation of fluorescently labeled pre-mRNA substrates 

The Ubc4 pre-mRNA substrates used in this study (Table B.1) were synthesized as previously 

described
53

. Briefly, the 135-nucleotide pre-mRNA was ligated from two fragments: a 59-

nucleotide 3’ segment with 5-amino-allyl-uridine at the +6 position relative to the BP adenosine 

and a 76-nucleotide 5’ segment with 5-amino-allyl-uridine at the -7 position relative to the 5’SS. 

The BP mutant had the branchsite adenosine at position 89 on the 3’ segment replaced with 

cytosine. The 5’ and 3’ fragments were coupled to Cy5 and Cy3 N-hydroxysuccinimidyl ester 

(GE Healthcare), respectively, by resuspending 4 nanomoles of RNA in 40 µl of 0.1 M sodium 

bicarbonate buffer, pH 9.0, and incubating for 30 min at 60 °C with the proper dye pack 

dissolved in DMSO. The conjugated fragments were ethanol precipitated and washed with 70% 

(v/v) ethanol to remove unconjugated dye. Unlabeled RNA was removed by purification on 

benzoylated naphthoylated DEAE (BND)-cellulose (Sigma) that was washed with 1 M NaCl 

containing 5% (v/v) ethanol. Fully labeled RNA fragments were eluted with 1.5 M NaCl 

containing 20% (v/v) ethanol and further precipitated to remove excess salt. Labeled fragments 
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Table 6.2 Sequence information of the oligonucleotides used in this study 

The Ubc4 intron is italicized, and the BP adenosine is bold and underlined. The red and green 

“(5-N-U)” denote the allyl-amine modified uridines used to attach the Cy5 and Cy3 

fluorophores. In the BP mutant, the bold and underlined cytosine replaces adenosine in the 

wild-type sequence. The DNA splint is the oligonucleotide used for templated ligation during 

synthesis of the WT and 3’SS pre-mRNA substrates. Sp9 denotes a 9-carbon linker. 
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were combined with an equal molar amount of DNA splint (Table B.1) and ligated by incubating 

with RNA Ligase 1 (NEB) for 4 h at 37 °C as described
53,117

. Full length, labeled Ubc4 was then 

purified on a denaturing 7 M urea, 15% (w/v) polyacrylamide gel. 

B.2.2 Preparation of yeast splicing extract and Prp28 protein 

Splicing active whole cell extract (WCE) and Prp28 protein was prepared as described
214

. 

Wildtype extract was from Gal-driven Prp28 yeast (yPR88) grown in YEP+galactose (and 

shifted to fresh galactose for the final 3-5 hours). Prp28 depleted extract was the same strain 

shifted to YEP+glucose for 3-5 hours. Cells were then harvested and washed in AGK buffer (10 

mM HEPES-KOH, pH 7.9, 1.5 mM MgCl2, 200 mM KCl, 10% (v/v) glycerol, 0.5 mM DTT, 0.6 

mM PMSF, and 1.5 mM benzamidine). A thick slurry of cells was dripped into liquid nitrogen to 

form small cell pellets that could be stored at -80 °C. The frozen pellets were disrupted using a 

ball mill. The resulting frozen powder was thawed in an ice bath and centrifuged at 17,000 rpm 

in a type 45 Ti Beckman rotor. The supernatant was then centrifuged at 37,000 rpm in a Ti-70 

rotor for 1 h. The clear middle layer was removed with a syringe and dialyzed for 4 h against 20 

mM HEPES-KOH, pH 7.9, 0.2 mM EDTA, 0.5 mM DTT, 50 mM KCL, 20% (v/v) glycerol, 0.1 

mM PMSF, and 0.25 mM benzamadine with one buffer exchange. 

B.2.3 Native gel analysis of early commitment complex formation 

Commitment complex gels were run as previously described
214

 except the pre-mRNA used was 

P32 labeled Ubc4 pre-mRNA. Both wildtype and branchsite mutant substrates were transcribed 

with P32 UTP using the Ambion Megascript T7 kit. ATP was depleted from extract by treatment 

with Hexokinase and 2 mM glucose (Fisher) followed by a second round of dialysis before 

extracts were aliquoted and frozen.  
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B.2.4 Single-molecule FRET experiment  

Single Molecule FRET was carried out in the same manner as previously described
53,55

. Using a 

prism-based TIRF microscope
45,49,122

, we collected data from single molecules incubated with 

Prp28-depleted or wildtype extract. Data were collected from five to seven fields of view 15 

minutes after addition of extract. The donor (Cy3) and acceptor (Cy5) fluorophores were excited 

using a 532- and 635-nm laser, respectively, with the resulting emission recorded at 100 ms time 

resolution with a Princeton Instruments, I-PentaMAX intensified CCD camera. A FRET value 

was calculated by dividing the intensity of the acceptor emission by the total emission from both 

donor and acceptor. 

B.3 Results 

B.3.1 P32-labeled Ubc4 recapitulates previous commitment complex formation results 

The previous finding of a Prp28-dependent role in CC2 formation was performed using the RP51 

yeast pre-mRNA substrate
214

. Before performing the smFRET analysis of CC formation, we 

wanted to test whether Ubc4 behaves in a similar manner or if this result is substrate specific. 

Therefore, we in vitro transcribed and 32P labeled the modified Ubc4 substrate sequence for 

analysis in CC gels. Perhaps not surprisingly, the Ubc4 pre-mRNA behaved in a similar manner 

to the RP51 substrate (Figure B.1). Depletion of ATP (wt-Gal –ATP lane) results in about a 

50:50 mixture of CC1 and CC2 whereas depletion of Prp28 (28D –ATP lane) severely inhibits 

CC2 formation. Furthermore, the branchsite mutant Ubc4 substrate was found to only form CC1 

in both ATP-depleted conditions (wt-Gal –ATP BrC) and Prp28-depleted conditions (28D –ATP 

BrC). These results show that BrC pre-mRNA and Prp28-depleted extracts result in reliable 

formation of a CC1-like complex while addition of ATP-depleted extract to a wildtype substrate 

allows formation of an equal amount of CC1 and CC2. 
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Figure 6.7 Native gel analysis of commitment complexes using WT and branchsite 

mutant Ubc4  

WT or branchpoint mutant (BrC) 32P-labeled Ubc4 pre-mRNA was incubated with the 

indicated extract condition and resolved on native gels for identification of commitment 

complex formation. 
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B.3.2 Reconstitution of ΔPrp28 extract leads to a high FRET conformation 

To first identify a Prp28-dependent role in pre-mRNA remodeling upon CC2 formation, we 

performed smFRET experiments with either a WT or BP mutant Ubc4 substrate fluorescently 

labeled near the BS and 5’SS with the FRET pair Cy3 and Cy5, respectively. Our prediction, 

based on the cross-intron bridging interactions between BBP and the U1 factor Prp40
217

, was that 

the 5’SS and branch site should be brought into closer proximity in CC2. Substrates were 

immobilized on the slide surface and incubated with extract depleted of Prp28 (ΔPrp28-WCE 

(WT,BP)) and either reconstituted with recombinant Prp28 (+rPrp28) or with buffer (-Prp28) 

(Figure B.3a,b,c). Addition of Prp28 would be expected to result in CC2 formation with WT 

substrates but not with the BP mutant substrate which might result in a change in pre-mRNA 

conformation. Interestingly, these preliminary experiments revealed a dramatic shift to a 

dominant high FRET conformation in the presence of Prp28 with the WT substrate but not with 

the BP substrate (Figure B.3a,b). Extract depleted of Prp28 were characterized by a 50:50 

distribution of a low, 0.10 and a high, 0.70 FRET state. These initial data are consistent with our 

model that Prp28 would promote formation of a higher-FRET CC2. 

B.3.3 Repeat Prp28 reconstitution experiments were not able to reproduce our initial findings 

Given our promising initial findings, we proceeded to test a variety of Prp28 reconstitution 

conditions and concentrations to confirm the shift in FRET state was a Prp28-dependent affect. 

Again, immobilized wildtype Ubc4 pre-mRNA substrates were incubated with ΔPrp28 extracts 

in the presence of a titration of increasing Prp28 concentrations. Surprisingly, all reconstitution 

conditions appeared to result in a predominant high FRET conformation as did reconstitution 

with buffer alone (Figure B.3a). Addition of low and high concentrations of Prp28 had very 

little effect on the distribution of FRET states or the associated dynamics as determined by 



221 

 

 

Figure 6.8 Reconstitution with Prp28 appears to result in a high FRET conformation on 

WT pre-mRNA substrates 
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Figure 6.9 Titration of ΔPrp28 extract with increasing rPrp28 concentrations does not 

recapitulate previous analysis  
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TODP analysis (Figure B.3b). All conditions showed a large number of dynamics between the 

low and high FRET states with no obvious change upon addition of Prp28. These data contradict 

our initial findings that the depletion of Prp28 results in formation of a 50:50 mixture of low and 

high FRET conformation so we decided to go back and investigate the initial smFRET analysis. 

B.3.4 The BrC mutated substrate also results in formation of a high FRET conformation 

Feeling that there may have been a mistake during the initial smFRET investigation of the BP 

and WT pre-mRNA substrates, we went back to the previously collected smFRET data and re-

analyzed both the ΔPrp28-WCE (WT) and ΔPrp28-WCE (BP) datasets. Interestingly, re-

selection of suitable Ubc4 molecules containing both Cy3 and Cy5 fluorophores undergoing anti-

correlated interconversions and producing a new FRET probability histogram no longer 

displayed even sized populations of high and low FRET molecules but rather  a dominant high 

FRET peak with both the WT and BP mutant substrate (Figure B.4a,b). These data are logical as 

comparison of the selected molecules revealed a large number of high FRET molecules missing 

from the initial analysis (Figure B.4c).  

 To further confirm the BP mutant and WT substrates are both characterized by primarily 

a high FRET conformation when incubated with ΔPrp28-WCE, we repeated these experiments 

with the same Prp28-depleted extract and pre-mRNA substrates. Once again, as expected, both 

the mutant and WT pre-mRNA substrate were observed to adopt a primarily high FRET 

conformation with possibly a slight increase in a low FRET population in the WT substrate over 

the BP mutant (Figure B.4a,b). Given all these data, we concluded that the initial smFRET 

analysis of the mutant and WT substrates was incorrectly performed and that there is no 

detectable change in pre-mRNA conformation upon addition of rPrp28 to extract depleted of 

Prp28.  
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Figure 6.10 Reanalysis and repeat of the initial experiments reveals mistakes in the 

analysis 

(a-b) Re-analysis of the initial smFRET results (left) no longer showed an equal population of 

high and low FRET states but rather a dominant high FRET peak (middle). A repeat 

experiment further displayed a dominant high FRET population describing both the WT and 

BP mutant Ubc4 pre-mRNA in the presence of the indicated extract (right). (c) Example 

single-molecule trajectories showing acceptor (red, Cy5) and donor (green, Cy3) signals that 

were overlooked in the initial analysis and that might have contributed to the smaller than 

expected high FRET peak.  
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B.4 Discussion 

Here we have thoroughly investigated a potential Prp28-dependent change in pre-mRNA 

conformation early on in spliceosomal commitment complex formation. During the early stages 

of our analysis, there appeared to be a shift in pre-mRNA conformation towards high FRET upon 

addition of Prp28 to extracts depleted of Prp28 and ATP. Unfortunately, this result was not 

reproducible and was actually found to be due to a mistake during molecule selection during the 

original analysis. Repeat experiments further confirmed that both the BP mutant and WT 

substrates adopt dominant high FRET conformation in the absence and presence of Prp28. These 

data support a model in which Prp28 plays a role in BBP/Mud2 stabilization, but binding of the 

protein dimer to the substrate does not induce a change in pre-mRNA conformation or structure. 

Interestingly, these data agree with recent computational secondary structure prediction and 

smFRET data that show Ubc4 adopting a stable 5’ stem even in the absence of spliceosomal 

components
53

. Additionally, the Ubc4 substrate was recently found to adopt a high FRET 

conformation when extracts were depleted of ATP and a very low, zero FRET state when stalled 

at the A complex
62

. Considering native gel analysis revealed an equal population of CC1 and 

CC2, the prevalence of a high FRET conformation would support this being the primary 

structure for both CC1 and CC2. Furthermore, single-molecule FRET investigation in this thesis 

supported a high FRET pre-mRNA structure in the absence of yeast extract (Chapter IV). Taken 

together, these data support formation of a high FRET Ubc4 structure up until A complex 

formation when binding of the U2 snRNP induces a large change in pre-mRNA conformation in 

which the BS and 5’SS become separated from one another.  
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