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ABSTRACT 

 

 Bisphenol A (BPA) is a high production-volume chemical with hormone-like properties 

that has been implicated as a potential carcinogen.  Early life exposure has been linked to 

increased risk for precancerous lesions in mammary and prostate glands and the uterus, but no 

prior study has shown a significant association between cancer development and exposure to 

BPA alone.  The overall goal of this dissertation was to test the central hypothesis that early life 

BPA exposure dysregulates the DNA methylome and thereby modifies risk for adult liver 

tumors. Chapter 2 describes a monotonic increase in hepatic tumors with increasing dose of 

perinatal BPA. Chapter 2 further characterizes the observed liver tumor phenotype in a murine 

model and notes a lack of sexual dimorphism in incidence, as well as a lack of regenerative 

response to injury, suggesting a solely proliferative response to BPA. Chapter 3 provides proof 

of principle for a novel method for identification of epigenetic biomarkers of exposure and 

outcome across the life-course and across species. One of three candidate genes that we tested 

with this method, Stat3, displayed dose-dependent DNA methylation changes in 10-month mice 

with liver tumors as compared to those without liver tumors, as well as dose-dependent 

methylation changes in 3-week sibling mice from the same exposure study, implicating Stat3 as 

a potential epigenetic biomarker of both early life BPA exposure and adult disease in mice. 

Chapter 4 demonstrates 
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that epigenome-wide discovery experiments in animal models are effective tools for 

identification and understanding of paralagous epimutations in cell signaling pathways salient to 

human disease. Pathway enrichment analysis revealed mouse and human genes linked to BPA 

exposure related to intracellular Jak/STAT and MAPK signaling pathways likely linked to sexual 

dimorphism of HCC. Taken together, these findings are indicators of the relevance of the hepatic 

tumor phenotype seen in BPA-exposed mice to human health. This work combines a state-of-

the-art epigenomic discovery approach with high resolution, quantitative epigenetic techniques 

to identify dose-dependent alterations in the fetal and adult epigenomes that correlate with HCC 

status.  As such, this research represents a critical link between early life environment and a 

specific phenotypic outcome in later life, necessary to the determination of human health risk 

assessment and human disease prevention, diagnosis, and treatment.
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CHAPTER 1 

Introduction 

 
 
1.1 Overview of Dissertation 
 

 Epidemiological studies and animal experiments have now critically established that 

environmental exposures during early embryonic development have the ability to induce 

aberrant epigenomic programs that influence adverse health outcomes in adulthood (Barker, 

2004; Sayer et al., 1997). Bisphenol A (BPA) is a high production volume monomer used in 

manufacture of polycarbonate plastic and epoxy resins. Prior animal studies have associated 

pre- or perinatal BPA exposure with a plethora of later life health outcomes, including liver 

damage (Moon et al., 2012), insulin resistance (Wei et al., 2014), decreased sperm 

production (Liu et al., 2013, Ma et al., 2013), and prostate (Prins, et al. 2008) and breast 

cancer development. Epidemiological data have linked BPA exposure with increased risks of 

metabolic and hepatic dysfunction (Rubin, 2011). The present study focuses on the role of 

early life BPA exposure in the development of hepatocellular carcinoma (HCC). The central 

hypothesis is that perinatal BPA exposure leaves stable imprints on the fetal epigenome that 

influence the development of hepatocellular carcinoma in adulthood in both mice and 

humans. First, I characterize the incidence and dose-relationship of hepatic tumors in mice 

perinatally exposed to 50 ng, 50 µg, or 50 mg BPA per kg maternal diet (Figure 1.1).  
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Second, I characterize putative early life epigenetic biomarkers across the life-course and 

across species. Third, I profile epigenome-wide changes in genes and pathways associated 

with perinatal BPA exposure in 10-month mice. This work combines a state-of-the-art 

epigenomic discovery approach with high resolution, quantitative epigenetic techniques to 

identify dose-dependent alterations in the fetal and adult epigenomes that correlate with HCC 

status.  As such, this research represents a critical link between early life environment and a 

specific phenotypic outcome in later life, necessary for the determination of human health 

risk assessment and human disease prevention, diagnosis, and treatment. 

1.2.  Background 

1.2.1. Epigenetics and Developmental Origins of Health and Disease  

 It is increasingly recognized that exposure to chemical, nutritional, and behavioral factors 

alters gene expression and affects health and disease by modifying the epigenome, formally 

defined as the heritable changes in gene expression not governed by underlying genotype  

(Barker, 2004; Dolinoy and Jirtle, 2008). These changes are moderated by epigenetic marks, 

including DNA methylation, histone modifications, and chromatin remodeling proteins; of 

these, DNA methylation is currently accepted as the most stable and well studied (How Kit et 

al., 2012). Epigenetic marks control the timing and magnitude of gene expression. Various 

cell types exhibit discrete epigenomic profiles, or genome-wide collections of epigenetic 

marks, that enable their unique cellular identities (Cheedipudi et al., 2014). Epigenetic marks, 

unlike the DNA sequence itself, are both dynamic, in that they undergo programmed 

temporal and spatial change, and plastic, in that they respond to fluctuations in the 

environment (Baccarelli and Bollati, 2009; Dolinoy et al., 2007). The period of greatest 

change, and therefore greatest vulnerability, is embryonic development, during which DNA 

methylation profiles are systematically erased and re-established (Oswald et al., 2000; Reik 
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et al., 2001; Surani et al., 1986). Environmental perturbations during embryogenesis may 

prevent faithful re-establishment of epigenetic marks, thereby inducing an aberrant program 

that may alter susceptibility to later adult disease (Barker 2004; Sayer et al., 1997). As such, 

differential exposures in early life may enable a single genotype to give rise to a range of 

adult phenotypes (Dolinoy et al., 2007; Waterland and Jirtle, 2003). These data underscore 

the plasticity of the epigenome and the need for identifying regions of dysregulation 

following toxicant exposure for potential mitigation via public health intervention. 

1.2.2. Hepatocellular Carcinoma (HCC) and Epigenetics 

 Hepatocellular carcinoma (HCC) is the sixth most common malignancy and the third 

most common cause of cancer-related deaths worldwide, with a prognosis of 10% survival 

five years after diagnosis (Giannitrapani et al., 2006). Risk factors for HCC include: 

cirrhosis, steatosis, obesity, diet, hepatitis B virus (HBV) infection, hepatitis C virus (HCV) 

infection, Helicobacter pylori infection, alcohol abuse, tobacco smoking, aflatoxin B1 

(AFB1) exposure, and oral contraceptive use (Blonski et al., 2010; Giannitrapani et al., 2006; 

Xuan et al., 2008).  Genetic risk factors for HCC have been well documented (Shimizu et al., 

1998; Tsuei et al., 2011). As the liver tumors described in Chapter 2 arose in an isogenic 

mouse population exposed perinatally to BPA, the mechanism of carcinogenesis is likely not 

solely genotoxic. Epigenetic mechanisms may explain the ability of non-mutagens to 

promote cancer phenotypes. 

 Aberrant promoter methylation is a major inactivation mechanism of tumor suppressor 

genes involved in progression of human cancers. Promoter hypermethylation and 

concomitant transcriptional downregulation has been reported in DNA damage response 

genes in human HCC tissues and cell lines (Li et al., 2012). Hypomethylation of repetitive 

element LINE-1 is prevalent in human HCC (Ramzy et al., 2011); Shitani et al. identified 
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four gene promoters that, together with the methylation profiles of LINE-1 elements,  

strongly discriminate between cancerous and non-cancerous tissue in primary clinical HCC 

samples (Shitani et al., 2012). Recent work suggests that molecular gene expression profiles 

of hepatocellular carcinomas in B6C3F1 mice are similar to those of humans (Hoenerhoff et 

al. 2011), supporting the utility of in vivo animal models to inform human HCC prevention 

and treatment. 

1.2.3. Bisphenol A (BPA) and Epigenetics  

 With over 6 billion pounds produced annually, bisphenol A (BPA), a monomer used in 

manufacture of plastic and epoxy resins, is one of the highest volume chemicals produced 

globally (Vandenberg et al., 2012). Early life BPA exposure in animal models is associated 

with liver damage, insulin resistance, decreased sperm production, and neoplastic 

development in rodent prostate and mammary glands (Acevedo et al., 2013; Liu et al., 2013; 

Ma et al., 2013; Moon et al., 2012; Prins et al., 2008; Wei et al., 2014). Human 

epidemiological data have linked BPA with metabolic and hepatic dysfunction (Rubin, 

2011). BPA is a non-steroidal, synthetic environmental estrogen, or xenoestrogen (Bromer et 

al., 2010) that may promote tumorigenic activity via epigenotoxic mechanisms (Bernal and 

Jirtle, 2010). Altered developmental programming following BPA exposure has been shown 

to dysregulate four classes of epigenetic marks: DNA methylation, histone tail modifications, 

non-coding RNA, and chromatin remodeling proteins (Avissar-Whiting et al., 2010; 

Baccarelli and Bollati, 2009; Dolinoy et al., 2007; Greathouse et al., 2012).  BPA exposure 

has been specifically linked to dysregulation of potential mediators of hepatic tumorigenesis, 

in both in vivo rodent and in vitro human studies. Holtzman rats exposed neonatally to 2.4 µg 

BPA/day injections exhibited significant hypermethylation of both nuclear estrogen receptors 

ERs (Doshi et al., 2011), which have been implicated in xenoestrogen-induced breast cancer 
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development (Pupo et al., 2012). Human developmental transcription factor HOXA10 has 

been shown to play a role in the progression of gastric, breast, and brain cancers (Chen et al., 

2012; Di Vinci et al., 2012; Sentani et al., 2012); protein and mRNA levels of Hoxa10 

increased in uterine tracts of CD-1 mice exposed prenatally to intraperitoneal injections of 5 

mg/kg BPA (Bromer et al., 2010). Concomitant promoter hypomethylation at 

Hoxa10/HOXA10 in mice and human breast carcinoma MCF-7 cells facilitated increased 

binding of ER-α to promoter estrogen response elements (ERE), leading to increased ERE-

driven expression (Bromer et al., 2010). Protein and mRNA levels of histone 

methyltransferase enhancer of Zeste homolog 2 (EZH2), an epigenetic regulator of 

tumorigenesis, were also increased 2- to 3-fold in adult mammary tissue of CD-1 mice 

injected with 5 mg/kg BPA during gestation and in BPA-treated (10-8 M and 10-6 M) human 

MCF-7 cells (Doherty al., 2010). BPA treatment of three human transformed placental cell 

lines (3A, TCL-1, HTR-8) induced changes in 21 miRNAs, most notably overexpression of 

miR-146a, which is involved in cellular proliferation (Avissar-Whiting et al., 2010). 

Literature-derived examples of BPA induction of dysregulated epigenetic marks associated 

with tumor development support the hypothesis of BPA-mediated carcinogenicity.  

 Cancer is classically characterized by global epigenomic changes, including 

hypomethylation, aberrant histone modifications, and altered non-coding RNA profiles 

(Herceg and Paliwal, 2011; Sandoval and Esteller, 2012). BPA has also been shown to 

induce global alterations to the epigenome. BPA-induced up-regulation of global epigenomic 

mediators is evident in both rodents and humans. Holtzman rats injected gestationally with 

2.4 µg BPA/day exhibited increased expression of repressive DNA methyltransferases 

Dnmt3a/b (Doshi et al., 2011). The same methyltransferases, as well as methyl binding 

proteins Mbd2/4 showed early overexpression in BPA (10 µg/kg)-exposed Sprague-Dawley 



	
  

6	
  
	
  

rat prostate glands (Tang et al., 2012). Interestingly, BPA (10-8 M and 10-6 M) increased 

expression of histones H2A, H2B, H3, and H4 in ER-α+/ER-β+ human MCF-7 cells, but not 

in cell lines negative for one or both ERs (Doherty et al., 2010; Zhu et al., 2009). Alterations 

in DNA methyltransferases,  histone proteins involved in nucleosome formation and 

regulation, and methyl binding proteins which bind and further repress expression at 

methylated gene promoters, have the potential to induce epigenome-wide changes such as 

those characteristic of epigenomic profiles found in cancer (Herath et al., 2006). 

1.2.4.  HCC and Endocrine Active Chemicals 

 HCC incidence is increasing in the U.S., particularly in young patients. Risk factor data 

suggest incidence is not only increasing, but also is likely under-represented in the literature 

(Shaw and Shah, 2011). HCC is classically sexually dimorphic. Male: female ratios are 

estimated to be between 2:1 and 4:1 (Giannitrapani et al., 2006). This skewed sex ratio 

indicates a primary role for sex-specific steroid hormones in carcinogenesis. However, data 

on the relative roles of endogenous estrogens, xenoestrogens, and androgens in HCC 

development are conflicting. Nuclear estrogen receptors, ER-α and ER-β, and androgen 

receptor (AR) are expressed in the liver. Some studies note that AR is overexpressed in HCC, 

and androgens promote hepatocarcinogenesis (De Maria et al., 2002). Further, elevated 

serum testosterone and an increased testosterone: estrogen ratio have been noted to increase 

HCC risk (Shimizu et al., 1998). In contrast, males with HCC typically present with a 

relative hyper-estrogenic state (De Maria et al., 2002; Farinati et al., 1995). However, liver-

specific ER expression is decreased in HCC, as compared to healthy samples, suggesting that 

estrogen sensitivity in the liver is decreased, as well. Endogenous estrogen estradiol has been 

implicated as both a potent endogenous antioxidant that protects against tumorigenic events 

and a carcinogen responsible for sexual dimorphism in HCC. Estradiol inhibits cellular 
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proliferation and lipid peroxidation, attenuates inflammatory target hepatic stellate cell 

(HSC) activation, and induces apoptosis (Huang et al., 2006; Omoya et al., 2001; Shimizu et 

al., 1998). Estrogen-mediated inhibition of IL-6 production in mice eliminated gender 

differences in HCC risk (Naugler et al., 2007), providing evidence that estrogen 

simultaneously drives sexual dimorphism in HCC and protects against tumor progression. 

Conversely, estradiol induces hepatocyte (Granata et al., 2002) and uterine cancer cell 

proliferation (Miyake et al., 2009) and produces free oxygen radicals (Robins et al., 2011).   

 Synthetic estrogens, or xenoestrogens, have also been associated with HCC pathogenesis. 

Metabolites of DDT, an organochlorine pesticide and endocrine disruptor, displayed dose-

dependent HCC risk in 346 HCC cases in China (Zhao et al., 2011). Most notably, strength 

and duration of oral contraceptive (OC) use, commonly as combinations of xenoestrogen 

17α-ethinylestradiol and synthetic progestin, have been associated with benign (liver 

hemangioma [LH], hepatic adenoma [HA], and focal nodular hyperplasia [FNH]) and, more 

controversially, malignant (HCC) hepatic tumors. Rare before widespread OC use, LH, HA, 

and FNH occur predominantly in young women, emphasizing their hormonal etiologies 

(Giannitrapani et al., 2006; Rosenberg, 1991).  Data from five case-controls studies in low 

risk populations (2 England, 2 U.S., 1 Italy) indicated an association between 5+ years OC 

use and HCC, but two studies in developing countries with high-risk (HBV-endemic) 

populations showed no association (Rosenberg, 1991). A 2007 meta-analysis of <5 years OC 

use and HCC yielded an adjusted pooled OR estimate of 1.45 (95% CI: 0.93-2.27, p=0.11). 

Although excluded from analysis, six of the 12 studies showed 2- to 20-fold increase in HCC 

risk with longer durations of OC use (Maheshwari et al., 2007). The International Agency for 

Research on Cancer considers the existing evidence sufficient to support the carcinogenicity 
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of OC use in populations with low HBV prevalence and chronic liver disease (Farges and 

Dokmak, 2010).  

 Interestingly, the risks of benign and malignant disease are not unrelated. The literature 

cites 17 cases of HA with focal malignant transformation to HCC in women taking OCs, with 

duration of use ranging from one month to >20 years (Blonski et al., 2010; Ferrell, 1993; 

Foster and Berman, 1994; Gordon et al., 1986; Gyorffy et al., 1989.; Korula et al., 1991; 

Micchelli et al., 2008; Perret et al., 1996; Tesluk and Lawrie, 1981). Several studies agree 

that approximately 5% of patients with resected HA presented pathological evidence of HCC 

(Farges and Dokmak, 2010). Therefore, even an anecdotal increase in transformation rates 

with OC use is notable. This summary body of evidence linking estrogen and estrogen-like 

chemicals with increased incidence of HCC illustrates the need to explore a possible 

connection between HCC and the endocrine disruptor BPA. 

1.3. Study Design Overview 

 Recent evidence indicates that components of the early life environment, such as 

nutrition, maternal care, and toxic exposures, affect adult phenotypic outcomes by altering 

epigenetic regulatory marks (Barker, 2004; Sayer et al., 1997). The epigenome is particularly 

vulnerable to environmental perturbations during embryogenesis because the elaborate DNA 

methylation patterning and chromatin structure required for normal growth is established early in 

development. Ubiquitous endocrine disruptor bisphenol A (BPA) is an example of a chemical 

that has been implicated in epigenetic developmental programming and subsequent increased 

susceptibility to multiple health endpoints. Preliminary data now indicate that perinatal exposure 

to BPA may epigenetically mediate the risk of hepatocellular carcinoma (HCC), a widespread 

disease with poor prognosis (Shaw and Shah, 2011). Thus, there is a critical need for 

identification of predictive biomarkers for epigenotoxic developmental programs induced by 
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high impact chemicals like BPA in diseases with global relevance and poor therapeutic options 

and prognostic outlooks, such as hepatocellular carcinoma (HCC). 

 Using rodent and human samples (Figure 1.2), this dissertation investigates epigenetic 

mechanisms associated with early life BPA exposure and the development of HCC later in life. 

This novel approach differs from classic cancer studies in its focus on perinatal exposure and 

early origins of disease, as opposed to a priori interrogation of a chosen phenotype. Here, I test 

the central hypothesis that perinatal BPA exposure leaves stable imprints on the fetal epigenome 

that lead to development of hepatocellular carcinoma in adulthood. First, I characterize the 

incidence and dose-relationship of various hepatic lesions, including hepatocellular carcinomas 

and hepatic adenomas, in 10-month mice perinatally exposed to 50 ng, 50 µg, or 50 mg BPA per 

kg maternal diet (Figures 1.1 and 1.2).  Second, I characterize putative early life epigenetic 

biomarkers across the life-course and across species via bisulfite sequencing within agnostically-

identified regions within functionally-relevant murine and human candidate genes in BPA-

exposed 10-month-old mice, sibling 3-week mice from the same exposure study, and human 

fetal livers (Figures 1.1 and 1.2).  Third, I perform and validate promoter DNA methylation 

tiling microarray experiments to profile epigenome-wide changes in genes and pathways 

associated with perinatal BPA exposure in 10-month mice that are both relevant to the lack of 

sexual dimorphism in our observed hepatic tumor phenotype and linked to human BPA exposure 

(Figures 1.1 and 1.2).   This work combines a state-of-the-art epigenomic discovery approach 

with high resolution, quantitative epigenetic techniques to identify dose-dependent alterations in 

the fetal and adult epigenomes that correlate with HCC status.   

1.4. Significance  

 BPA is a high production volume chemical that has been implicated in cardiovascular, 

immune, reproductive, and cancer endpoints (Rubin, 2011). However, BPA’s toxicity remains 
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controversial, as several studies display inconsistent or contradictory results and concerns about 

laboratory contamination remains an issue (Vom Saal, Nagel, Coe, Angle, & Taylor, 2012). In 

addition, the dose-response curve has not been fully determined, making the incorporation of 

various physiologically-relevant doses of BPA a crucial aspect of experimental design 

(Vandenberg et al., 2010). BPA has been shown to be present in 93% of 394 human urine 

samples collected during a recent Centers for Disease Control and Prevention (CDC) study 

(Calafat et al., 2005) supporting the chemical’s environmental ubiquity and the relevance of BPA 

exposure studies to U.S. population health. BPA has been classified as an endocrine disruptor 

due to its ability to bind nuclear estrogen receptors ER-α and ER-β; however, BPA has been 

reported to bind nuclear ERs with ~10-fold lower affinity than endogenous estradiol. Further, 

past studies showing deleterious effects of BPA exposure have been criticized for exposing 

model organisms to levels higher than environmentally-relevant human doses (Sekizawa, 2008; 

Vandenberg et al., 2008). Newer evidence indicates that BPA is as potent an inductor of 

estrogenic effects in mice and humans as estradiol, perhaps via nongenomic intracellular 

signaling mediated by membrane-bound estrogen receptor GPER (Vandenberg et al., 2010). 

Perinatal exposure to environmentally-relevant doses of BPA has also been shown to induce 

aberrant developmental and epigenetic programs in mice (Kundakovic and Champagne, 2011).  

 Data presented in this dissertation indicate that BPA may epigenetically mediate the risk 

of hepatocellular carcinoma (HCC) (Shaw and Shah, 2011). This dissertation represents a first 

step toward identifying potentially modifiable epigenetic risk factors associated with multiple, 

environmentally-relevant BPA exposures and hepatocellular carcinoma, a disease with high 

global burden and few effective treatments. Characterization of epigenetic biomarkers indicative 

of early BPA epigenotoxicity and predictive of HCC development will allow at-risk individuals 

to be identified long before they develop disease, opening new avenues for potential disease 
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prevention strategies, such as dietary supplementation or pharmaceutical intervention (Dolinoy et 

al., 2007; Kalra et al., 2008). Further, therapeutic modification of these epialleles in individuals 

with existing HCC may facilitate reversal of disease progression, due to the plasticity of the 

epigenome (Waterland and Jirtle, 2003).  

1.5. Innovation 

 Despite the importance of identifying epigenetic biomarkers of exposures and diseases, 

biomarker studies reported in the literature are limited in design.  Past studies have 

characterized biomarkers in the context of either exposure or disease (Kundakovic and 

Champagne, 2011; Pogribny and Rusyn, 2012; Stein, 2012). Few studies have followed 

individuals positive for exposure biomarker(s) over time to evaluate the power of these 

markers to predict later disease in the same individuals.  This project is therefore innovative 

because it represents a proof of concept of predictive epigenetic biomarkers that are both a 

consequence of early environmental exposure and present in the adult phenotype. 

 Further, many past studies have either focused exclusively on rodent models; few studies 

have incorporated in vitro experiments in primary human cell lines (Baccarelli and Bollati, 

2009; Pogribny and Rusyn, 2012), which are often derived from diseased human tissue and 

cannot inform human responses to early life chemical exposures prior to disease 

development. Therefore, this research is innovative in its translational implications to human 

health by coupling the use of an experimentally-relevant mouse model with analyses of 

human fetal tissue samples with known tissue BPA levels. Technologically, epigenome-wide 

arrays are a relatively new addition to the epigenomic experimental toolbox. In this 

dissertation, I use an innovative ‘tiered focus approach’: epigenome-wide DNA methylation 

promoter tiling arrays that function as broad discovery tools for epigenetic biomarkers of 

perinatal BPA exposures and adult hepatic tumors, followed by focused validation of altered 
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methylation candidate loci. Prior studies in our research group have successfully utilized 

similar epigenome-wide discovery scans (Bakulski et al., 2012; Kim et al., 2014; Sartor et al., 

2011) supporting the approach’s feasibility and utility in identifying candidates. As a 

consequence of the innovative design described above, this project is expected to yield one or 

more candidate epigenetic biomarkers of both perinatal BPA exposure and HCC with 

preliminary translation to human disease. 
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Figure 1.1 Experimental Exposure Scheme 
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Figure 1.2 Conceptual Overview of Dissertation Aims 
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CHAPTER 2 
Dose-Dependent Incidence of Hepatic Tumors in Adult Mice following Perinatal 

Exposure to Bisphenol A 
 
 

2.1  Abstract  

 Bisphenol A (BPA) is a high production-volume chemical with hormone-like properties 

that has been implicated as a potential carcinogen.  Early life exposure has been linked to 

increased risk for precancerous lesions in mammary and prostate glands and the uterus, but no 

prior study has shown a significant association between BPA exposure and cancer development.   

We explored the effects of exposure to BPA during gestation and lactation on adult incidence of 

hepatic tumors in mice. Isogenic mice were perinatally exposed to BPA through maternal diets 

containing one of four environmentally relevant doses (0, 50 ng, 50 µg, or 50 mg of BPA per kg 

diet) and approximately one male and one female per litter were followed until 10 months of age. 

Animals were tested for known risk factors for hepatocellular carcinoma, including bacterial and 

viral infections.  We report dose-dependent incidence of hepatic tumors in exposed 10-month 

mice. 23% of offspring presented with hepatic tumors or preneoplastic lesions.  A statistically 

significant dose-response relationship was observed, with an odds ratio for neoplastic and 

preneoplastic lesions of 7.23 (95% CI: 3.23, 16.17) for mice exposed to 50 mg BPA per kg diet 

compared with unexposed controls. Observed early disease onset, absence of bacterial or viral 

infection, and lack of characteristic sexual dimorphism in tumor incidence support a non-
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classical etiology. To our knowledge, this is the first report of a statistically significant 

association between BPA exposure and frank tumors in any organ. Our results link early life 

exposure to BPA with the development of hepatic tumors in rodents, with potential implications 

for human health and disease.  

2.2  Introduction 

 Bisphenol A (BPA) is an environmentally ubiquitous, high production-volume chemical 

that has been linked to cardiovascular, immune, neuroendocrine, and reproductive endpoints 

(Diamanti-Kandarakis et al. 2009). Biomonitoring studies routinely detect levels of BPA in urine 

in greater than 90% of adults in the United States, indicating that exposure to BPA is widespread 

(Calafat et al. 2008).  BPA has been classified as an endocrine disruptor, and has been implicated 

in alterations in tissue enzyme and hormone receptor levels, interaction with hormone response 

systems, and cellular changes suggestive of carcinogenic potential (vom Saal et al. 2007).  

 The last large-scale evaluation of BPA’s potential carcinogenicity in multiple target 

organs was a National Toxicology Program (NTP) 2-year chronic feed study conducted in 1982, 

which employed doses ranging from 1,000-10,000 ppm BPA. Results provided inconclusive 

evidence for BPA’s carcinogenicity in the context of adult exposure. Non-significant incidences 

of liver tumors were reported in both sexes of rats and mice (National Toxicology Program 

(NTP) 1982). Subsequent early life BPA exposure studies that examined mammary (Vandenberg 

et al. 2007) and prostate (Prins et al. 2008) glands and the uterus (Bergeron et al. 1999) reported 

precancerous lesions following perinatal BPA exposure, but none have shown direct tumor 

development. Thus far, research on BPA and cancer has focused on reproductive estrogen-target 

organs, despite the ability of non-reproductive organs, such as the liver, to express estrogen 

receptors and respond to steroid hormone signaling (Cui et al. 2013) . Here we evaluate the 
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effects of perinatal exposure to BPA at three environmentally relevant levels and show dose-

dependent incidence of hepatic tumors in adult mice at 10 months of age. To our knowledge, this 

is the first statistically significant report of frank tumors, in addition to precancerous lesions, in 

any organ following perinatal or adult BPA exposure. Classically, both male humans and rodents 

are two to four times as likely to develop hepatocellular carcinoma (HCC) as compared to 

females (Hoenerhoff et al. 2011). Liver tumors are uncommon in rodents prior to 12 months of 

age and often present at or later than 20 months (Maronpot 2009). The combination of observed 

early disease onset and lack of characteristic sexual dimorphism in tumor incidence support a 

non-classical etiology. 

2.3  Materials and Methods 

2.3.1  Animals and Diets 

 Mice were obtained from a colony that has been maintained with sibling mating and 

forced heterozygosity for the viable yellow Agouti (Avy) allele, resulting in a genetically invariant 

background (Waterland and Jirtle  2003). The Avy mutation initially arose spontaneously in 

C3H/HeJ mice; animals carrying the mutation were backcrossed with C57BL/6J mice, followed 

by >220 generations of sibling mating. Based on these crosses, animals are calculated to be 

genetically 6.25%-25% C3H/HeJ and 75%-93.75% C57BL/6J (Waterland and Jirtle  2003). The 

reported rate of spontaneous or induced hepatocellular carcinoma in C57BL/6J mice is variably 

reported as 2%-10%. The C57BL/6J strain as been classified in numerous publications as 

“relatively resistant” to hepatocellular carcinoma (Maronpot 2009). The incidence rate observed 

in our control animals is consistent with the reported rate in C57BL/6J mice. 

 Virgin wild-type a/a dams were randomly assigned to phytoestrogen-free AIN-93G diets 

(diet 95092, with 7% corn oil substituted for 7% soybean oil) supplemented with one of four 
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doses of BPA (0, 50 ng, 50 µg, or 50 mg BPA per kg diet). All diet ingredients were supplied by 

Harlan Teklad, except BPA, which was supplied by the National Toxicology Program (NTP, 

Durham, NC). Diet composition is available online at www.harlan.com.    

 Wildtype (a/a) , 6-week-old, virgin dams were exposed to their assigned BPA diets for 

two weeks prior to mating and housed in polycarbonate-free cages with ad libitum access to diet 

and BPA-free water. At eight weeks of age, virgin dams were mated once to Avy/a sires and were 

impregnated within 0.5 to 5 days following co-housing with males.  Sires were briefly exposed 

to diets containing BPA during the mating period (0.5 to 5 days). Pups were housed with their 

respective dams and fed their respective BPA diets until weaning at postnatal day 22. Pups were 

then housed with a same-sex Avy/a sibling on standard phytoestrogen-free control diet until 10 

months of age (Anderson et al. 2012, Anderson et al. 2013). 

 This mating scheme produces ~50% wildtype (a/a) offspring and ~50% heterozygous 

(Avy/a) offspring. For this study, a subset of wildtype animals, approximately 1 male and 1 

female per litter, was followed until 10 months of age: control diet (n=19 offspring; n=10 males 

and n=9 females), 50 ng BPA/kg diet (n=20 offspring; n=10 males and n=10 females), 50 µg 

BPA/kg diet (n=21 offspring, n=10 males and n=11 females), or 50 mg BPA/kg diet (n=18 

offspring, n=9 males and n=9 females).  This subset of offspring mice was assessed for 

metabolic and activity outcomes (Anderson et al. 2013). 

 Associated estimates of daily BPA exposure levels, based on a dam weighing 25 g 

consuming 5 g chow daily, are 0, 10 ng BPA/kg body weight/day, 10 µg BPA/kg body 

weight/day, and 10 mg BPA/kg body weight/day, respectively. These diets were chosen to 

capture both mean and maximum human environmental exposures to BPA, reported recently to 

range from 0.1-5 µg /kg body weight/day (Vandenberg et al., 2013). BPA exposure within 
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human relevant ranges was confirmed with direct measurements in liver tissue of a subset of 

exposed and control animals (Anderson et al. 2012). For example, total liver BPA measurements 

in animals fed the highest dose of 50 mg BPA /kg chow ranged from 9.5-870 µg BPA /kg liver, 

which captures the maximum human environmental exposure indicated by human fetal liver 

measurements ranging from below the limit of detection to 96.8 µg BPA /kg liver (Anderson et 

al. 2012). Livers from mice fed diets containing 50 µg BPA /kg chow and 50 ng BPA /kg chow 

exhibited  <LOQ-11.3 µg BPA /kg liver (mean 2 µg /kg; median 0.6 µg /kg) and <LOQ-13 µg 

BPA /kg liver (mean 2.8 µg /kg; median 0.3 µg/kg), respectively (Anderson et al. 2012). To 

prevent possible BPA contamination, animals were singly housed in polypropylene cages, no 

polycarbonate plastics were used in animal management, and animal drinking water was tested 

once prior to the beginning of the exposure study by an independent, accredited public health and 

safety organization (NSF International, Ann Arbor, Michigan, www.nsf.org). These mice were 

housed in an AAALAC –approved facility with a 12-hr light cycle, ~50% relative humidity, 

72±2 °C.  Animals used in this study were maintained in accordance with the Institute of 

Laboratory Animal Resources guidelines (ILAR 1996) and were treated humanely and with 

regard for alleviation of suffering. The study protocol was approved by the University of 

Michigan Committee on Use and Care of Animals.   

2.3.2 Histopathologic Evaluation 

 Upon dissection at 10 months of age, liver tissue was flash frozen in liquid nitrogen and 

later formalin fixed and paraffin embedded; for each mouse, 2-3 slides containing liver sections, 

both with and without grossly visible masses, were evaluated for histopathology. Liver lesions 

were classified by light microscopy by an exposure-blinded, board-certified veterinary 

pathologist (ILB), according to recently revised, standardized guidelines established by the 
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International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and 

Mice (INHAND) project (Thoolen et al. 2010). This project represents consensus criteria for 

histopathological lesions in rodents as established by the North American, European, British, and 

Japanese Societies of Toxicologic Pathology. Hyperplastic nodules were not classified as 

“regenerative” or “non-regenerative,” as specified in INHAND, because hepatopathic lesions, 

such as inflammation and oval cell hyperplasia, were present, but no significant markers of liver 

injury, such as necrosis or fibrosis were observed. Representative photomicrographs were taken 

using an Olympus DP72 12.5 megapixel digital camera mounted on an Olympus BX45 light 

microscope with manufacturer’s software (DP2-BSW, Olympus). Photo processing and 

composite plate construction were performed in Adobe Photoshop CS4. 

2.3.3 Bacterial and Viral Screens 

 A total of 8 animals from our colony (n=4 10-month-old mice and n=4 post-natal day 22 

(PND22) mice) were tested by PCR for infection with H. hepaticus or H. mastomyrinus using 

previously published primers and positive controls obtained from Judith S. Opp in the laboratory 

of Vincent Young at University of Michigan, under published PCR conditions (Eaton et al. 

2011). Four of the eight animals tested were 10-month animals included in the present study (one 

from each exposure group: two with hepatic tumors, one each from the medium and high dose 

groups; two without hepatic tumors, one each from the control and low dose groups.) The 

remaining four animals were siblings of the animals in the present study euthanized at PND22 

(Anderson et al. 2012); one animal from each exposure group was tested. Testing was performed 

after the completion of the present study. We confirmed our animal selection and screening 

protocol with a board-certified veterinary pathologist (ILB). 
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 Serology testing for murine hepatitis virus (MHV) was performed via enzyme-linked 

immunosorbent assay (ELISA) every 6-8 weeks on sentinel animals not included in the present 

study (3 animals per 50-70 experimental cages) housed in cages with small amounts of soiled 

bedding from randomly sampled experimental cages, changed once weekly (Wunderlich et al. 

2011).  Sentinel animals were co-housed in our animal facilities during our exposure study. 

2.3.4 SNP Genotyping 

 DNA was isolated from spleens of three male animals 200 days old [one Avy/a, one wild-

type a/a, which were provided by Dr. Jirtle (Duke University) and one C57BL/6J purchased 

from The Jackson Laboratory (stock #000664) as a 21-day old weanling]. These mice were 

maintained in an AAALAC –approved facility with a 12-hr light cycle, ~50% relative humidity, 

72±2 °C, and fed Purina LabDiet 5001 in shoebox-style polycarbonate cages (27 cm x 15 cm x 

13 cm) with corn cob bedding (Bed-O’ Cobs ¼Ⓡ, Maumee, OH). The DNA was purified using a 

standard protocol of phenol/chloroform extraction followed by ethanol precipitation and 

dissolved in water. The mice were genotyped by Geneseek (Neogen) on the Mega Mouse 

Universal Genotyping Array (MegaMUGA) for 74,800 microsatellite markers, spaced at ~33 KB 

intervals throughout the mouse genome. Data were processed in PLINK (v1.07, 

pngu.mgh.harvard.edu/~purcell/plink/) and SAS (v9.3, SAS Institute, Cary, NC). Genotypes are 

available from the Mouse Phenome Database, MPD:484 at http://phenome.jax.org.	
  

2.3.5 Data Analysis 

 We histologically identified 16 total tumors, benign and malignant, as well as four 

hyperplastic nodules, two of which co-occurred with tumors.  Neoplastic and pre-neoplastic 

lesions were grouped in four different binary variables (present/absent): (1) malignant 

hepatocellular carcinomas (HCC) only (n=13); (2) benign hepatic adenomas (HA) only (n=3); 
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(3) all tumors combined (HCC and HA; n=16); and (4) combined tumors and hyperplastic 

nodules (n=18). Additional hepatic lesions analyzed as binary variables included: steatosis, 

inflammation, Kupffer cell hyperplasia, oval cell hyperplasia, multinucleated hepatocytes, 

hepatocyte hypertrophy, and lipofuscin deposition. Total hepatic lesions (including tumors and 

all additional lesions listed) were evaluated as summary scores (1 point for presence of each 

lesion, summed across lesions). As steatosis and inflammation may represent non-specific 

background lesions whose inclusion may mask a true association, each score was tested in three 

ways: (1) inclusion of all hepatic lesions; (2) inclusion of all hepatic lesions, except steatosis; and 

(3) inclusion of all hepatic lesions, except steatosis and inflammation. Associations between dose 

groups and hepatic lesions (9 variables) and summary scores (3 variables) were tested in the 

models below. 

 To facilitate comparison of results in our data with those of the 1982 NTP carcinogenicity 

bioassay on BPA, a nearly identical statistical strategy was employed. A total of 15 associations 

were tested between BPA exposure level and hepatic lesion(s); all associations were tested with 

both exact tests and logistic regression models, to account for bias inherent in each method, for a 

total of 30 models. Fisher’s exact tests and Cochran-Armitage exact tests of trend were used to 

detect associations between dose groups and hepatopathic lesions listed above, and trends in 

those lesions by dose, respectively. Fisher’s exact tests and Cochran-Armitage exact tests of 

trend were were run using the PROC FREQ statement with the EXACT option in SAS v9.3. 

Exact tests allow for conservative estimation of association significance given small cell counts, 

as compared to potential overestimation of significance by Chi-squared tests of association; 

therefore, we stratified data by sex in exact test analyses only, to prevent exacerbation of this 

bias. Logistic regression models, adjusted for clustering of mice within litters using generalized 
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estimating equations (GEE), were used to test the same associations and trends. Poisson 

regression models, adjusted for clustering by litter, were run on summary score variables. 

Clustering prevents overestimation of association significance due to errant assumption of 

animal independence. Neither exact tests nor logistic regression models allow for simultaneous 

adjustment for small cell counts and litter; bias inherent in both methods tends to overestimate 

significance.  Statistical significance was defined as p-value < 0.05 for all analyses. All statistical 

analyses were completed using SAS (v9.3, SAS Institute, Cary, NC).   

2.4 Results 

2.4.1 Histopathologic evaluation 

 We exposed mice during gestation and lactation through maternal diets containing one of 

four environmentally relevant doses of BPA (0, 50 ng, 50 µg, or 50 mg of BPA per kg diet) and 

followed approximately one male and one female offspring per litter until 10 months of age 

(n=19, n=20, n=21, and n=18, respectively). Upon dissection, 23.08% (n=18/78) of offspring 

presented with neoplastic lesions (hepatocellular carcinomas or hepatic adenomas) or pre-

neoplastic lesion (hyperplastic nodules), with an odds ratio of 7.23 (95% CI: 3.23, 16.17; 

p=0.014) for the 50 mg group compared with controls, and a significant dose-response on both 

Cochran-Armitage exact (p=0.014) and logistic regression (p=	
   0.022) tests of trend (Figures 

2.1A-C, 2.2, and 2.3; Tables 2.1-2.3). As murine hepatic adenomas and carcinomas are related 

pathologies (Hoenerhoff et al. 2011), and preneoplastic lesions, including hyperplastic nodules, 

are often included in risk calculations following short-term carcinogenicity studies (Allen et al. 

2007), we grouped benign adenomas, malignant carcinomas, and hyperplastic nodules for 

analysis. Results remained significant when preneoplastic lesions were excluded from analysis 

(Figure 2.3; Tables 2.1-2.3). Upon stratification by offspring sex, we report a significant linear 
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dose-response in a combination of neoplastic and preneoplastic lesions in female animals 

(Figures 2.2A and 2.3D; Table 2.2). The presence of a statistically significant dose-response in 

females but not in males does not necessarily indicate that the dose-responses were significantly 

different between males and females. 

 Almost half of animals presented with oval cell, or hepatobiliary stem cell, hyperplasia 

(43.95%, n=34/78), with significant odds ratios for the two highest dose groups (50 µg OR=5.40; 

95% CI: 3.26, 8.93, p=0.001; 50 mg OR=2.67; 95% CI: 1.75, 4.06, p=0.020) (Figure 2.1D; 

Tables 2.1-2.3). Approximately one-third of animals presented with hepatocyte hypertrophy 

(32.05%, n=25/78), with a significant OR for the highest dose group (50 mg OR=5.66; 95% CI: 

2.57, 12.50, p=0.028) (Figure 2.1E; Tables 2.1-2.3). Incidences of oval cell hyperplasia and 

hepatocyte hypertrophy were significantly associated with increasing dose (Figure 2.4A and 

2.4C; Tables 2.2 and 2.3). Animals with neoplastic lesions were significantly more likely to co-

present with oval cell hyperplasia, hepatocyte hypertrophy, and Kupffer cell hyperplasia, 

suggesting a proliferative response to perinatal BPA exposure (Tables 2.4 and 2.5). We 

observed multinucleated hepatocytes in 8 animals (10.26%, n=8/78), primarily in males in low-

dose groups, although the association with BPA exposure was not statistically significant 

(Figures 2.1F, 2.2B, and 2.4D; Table 2.1). Inflammation (50.00%, n=39/78) and steatosis 

(50.00%, n= 39/78) may represent non-specific markers of liver damage with age, rather than 

markers of chemical toxicity, as these lesions were distributed fairly uniformly across doses and 

controls, without any apparent pattern (Figure 2.1E, Table 2.1). Notably, no evidence of liver 

injury, such as fibrosis or necrosis, was present, suggesting that the proliferative lesions noted 

were not a regenerative response to injury. When inflammation and steatosis were excluded from 

analysis, the total number of hepatic lesions increased with dose, indicating that hepatic lesions 
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that were significantly associated with perinatal BPA exposure co-presented in the same animals 

(Tables 2.6 and 2.7). Exposed dams did not present with any overt signs of obesity or other 

adverse health outcomes. 

2.4.2 Bacterial and viral screens 

 In order to rule out known bacterial and viral disease risk factors, we performed a 

representative PCR screen for potential bacterial infection with Helicobacter hepaticus or 

Helicobacter mastomyrinus and assessed murine hepatitis viral load via serology measurements. 

All animals evaluated tested negative on all bacterial and viral screens.  

2.4.3  SNP genotyping 

 The mouse strain used in these experiments was previously calculated to contain 6.25%-

25% of the C3H/HeJ genome and 75%-93.75% of the C57BL/6J genome (Waterland and Jirtle, 

2003). C3H/HeJ mice are prone to spontaneous hepatocellular neoplasms and C57BL/6J are 

relatively resistant (Maronpot 2009). Up to 85% of the greater susceptibility of the C3H mouse to 

hepatocellular carcinomas can be attributed to the Hcs7 (Hepatocarcinogenicity sensitivity 7) 

locus, located on the distal arm of chromosome 1 (Bilger et al. 2004; Drinkwater 1994). In order 

to empirically confirm the overlap between our strain’s genome and the C57BL/6J genome, we 

genotyped 74,830 SNPs in two male mice derived from our colony and one male C57BL/6J 

mouse purchased from The Jackson Laboratory. Our strain’s genome differed from the 

C57BL/6J genome at 5,247 SNPs in total, and at only six of 5,416 SNPs on chromosome 1, 

indicating that our mice are genetically 93% C57BL/6J overall and >99% C57BL/6J on 

chromosome 1 (Table 2.8). Thus, our strain is genetically C57BL/6J at the Hcs7 locus and, 

therefore, likely relatively resistant to spontaneous hepatocellular carcinoma.  

2.5 Discussion 
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 Here, we report findings of dose-dependent incidence of hepatic tumors following 

perinatal exposure to BPA in an isogenic mouse model.	
   	
  Although mammary carcinomas have 

been reported in rodents following perinatal BPA exposure (Acevedo et al. 2013), the link was 

not statistically significant. To our knowledge, this is the first study to demonstrate a statistically 

significant relationship between BPA exposure and frank tumors of any reproductive or non-

reproductive estrogen-target organ.	
  These tumors may be classified as early onset disease, as 

liver tumors are uncommon in all laboratory mouse strains prior to 12 months of age and often 

present at or later than 20 months (Maronpot 2009). We did not note any apparent sexual 

dimorphism in disease incidence, except in control animals. Classically, both male humans and 

rodents are two to four times as likely to develop hepatocellular carcinoma as compared to 

females (Hoenerhoff et al. 2011). The combination of observed early disease onset and lack of 

characteristic sexual dimorphism in tumor incidence support a non-classical etiology. These 

findings appear to be a function of dose and/or exposure timing, as the adult rats and mice in the 

National Toxicology Program’s 1982 carcinogenicity bioassay on BPA were exposed to doses 

estimated to be 20 times to 200 times higher than the doses employed in this study, but no 

significant increase in hepatic tumors was reported (NTP 1982). 

  Interestingly, we replicated the NTP study observation of dose-dependent multinucleated 

hepatocytes (NTP 1982); the association between this lesion and BPA exposure was not 

statistically significant in either study. These abnormal cells may be found in aged mice but 

appear at younger ages following xenoestrogen exposure and may be associated with increased 

hepatocyte proliferation (Hayashi et al. 2008; Scampini et al. 1993). These data represent 

increased ploidy in mice without visible liver masses. BPA has previously been shown to induce 

meiotic aneuploidy in female mice (Hunt et al. 2003).  Aneuploidy is the most common 
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characteristic of solid tumors in humans (Kops et al. 2005).  The presence of several proliferative 

lesions in exposed mice, including multinucleated hepatocytes and oval and Kupffer cell 

hyperplasia, in the absence of cellular necrosis or fibrosis, indicates an isolated proliferative 

response, and not a regenerative response following liver injury (Thoolen et al. 2010). Prior 

studies have noted a connection between BPA exposure and oxidative stress (Babu et al. 2013; 

Moon et al. 2012); perhaps an exposure-mediated increase in reactive oxygen species (ROS) led 

to a concomitant increase in cellular proliferation in exposed mice via ROS signaling (Goodson 

et al. 2011; Hassan et al. 2012).  

 Animals tested negative on all bacterial and viral screens for infectious agents known to 

be promoters of hepatocellular carcinoma in rodents. As previously reported, gestational BPA 

exposure in these animals did not significantly influence litter size, survival, genotypic ratio, or 

sex ratio in comparison to control offspring (Anderson et al. 2012). Obesity and diabetes are 

well-documented risk factors for hepatocellular carcinoma in both rodents and humans. 

However, at 9 months of age, the exposed offspring examined in this study, regardless of tumor 

presence, exhibited body weights and serum glucose and insulin measurements at or below levels 

found in control animals (Anderson et al. 2013).  

 Since rodents have a high capacity for hepatocellular proliferation in response to liver 

damage, non-genotoxic factors may or may not be relevant to human exposures, although recent 

work suggests that molecular gene expression profiles of hepatocellular carcinomas in B6C3F1 

mice are similar to those of humans (Hoenerhoff et al. 2011).  Hepatocellular carcinoma is the 

sixth most common malignancy and the third most common cause of cancer-related deaths 

globally. Mortality rates in the United States are increasing more rapidly than for any other 
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leading cancer, and age-adjusted incidence rates have doubled in the past thirty years, with an 

increase in early onset disease in both sexes (Shaw and Shah 2011).  

 Although the majority (80%) of hepatocellular carcinomas in humans can be attributed to 

hepatitis B virus (HBV) or hepatitis C virus (HCV) infection, further study of BPA’s role as a 

potential risk factor is warranted. Historically, use of first-generation oral contraceptives 

containing high doses of estradiol has been associated with increased rates of hepatic neoplasms, 

particularly hepatic adenomas (Giannitrapani et al. 2006). Recent studies have indicated that 

endogenous sex hormone levels can increase rates of carcinogenic conversion in HBV+ 

individuals (Wu et al. 2010).  Ramirez et al., demonstrated that female rats given daily 

subcutaneous injections of 50 or 500 µg BPA (equivalent to 2.5-6.25 mg/kg BW and 25-62.5 

mg/kg BW, respectively) from PND1-10 experienced a loss of growth hormone-dependent 

sexual dimorphism in the liver’s ability to metabolize toxicants (Ramirez et al. 2012). Moon et 

al., showed that intraperitoneal doses of 0.05-1.2 mg/kg BW/day administered to mice for five 

days induced hepatic mitochondrial dysfunction (Moon et al. 2012). An epidemiological study of 

1455 adults, aged 18-74, demonstrated a statistical association between increased urinary BPA 

and clinically abnormal concentrations of liver enzymes gamma-glutamyltransferase and alkaline 

phosphatase (Lang et al. 2008). Further, Betancourt et al., found that exposing lactating female 

rats to 250 µg/kg BW/day (estimated exposure to offspring 2.5-25 ng BPA/kg BW/day) led to an 

increase in offspring susceptibility to subsequent chemical carcinogenesis (Betancourt et al. 

2012). 

 Our study design has several notable strengths. We exposed mice to three doses that span 

several orders of magnitude, and the lower two doses are classified as ‘low dose’ by two well-

accepted definitions: a dose not exceeding the threshold of the EPA’s reference dose of 50 µg/kg 
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BW/day; and a dose within the range of observed human environmental exposure levels 

(Vandenberg et al. 2013).  Our model was an inbred rodent strain that is well accepted and 

relatively resistant to hepatic tumor development. We exposed animals through the diet, 

currently accepted as a dominant route of exposure to BPA in humans (vom Saal et al. 2007).  

Animals were exposed during the perinatal period, capturing outcomes that may depend on 

exposure during critical developmental time points. Finally, we statistically clustered our data by 

litter, a method not used in many earlier BPA studies, which represents a significant criticism of 

and barrier to interpretation of prior studies.  

 A limitation of this study is the absence of direct maternal and fetal internal BPA dose 

measurements. However, comprehensive maternal and fetal measurements have been previously 

described. Zalko et al. determined that fetal free BPA levels peaked at approximately 4 ng/g 30 

minutes following subcutaneous injection of pregnant CD-1 mice with 25 µg BPA/kg BW, 

indicating that fetuses were exposed to approximately 6.25% of the administered dose (Zalko et 

al. 2003).   Sieli et al. demonstrated that bioavailability of BPA is higher in adult female 

C57BL/6J mice following dietary exposure (100 mg BPA-d6/kg diet, similar to this study’s 

maximum dose of 50 mg BPA/kg diet), as compared to oral bolus administration, despite less 

efficient absorption of BPA when ingested (Sieli et al. 2011). In addition, mice exposed via diet 

exhibited higher maximum serum BPA concentrations and greater temporal delay in reaching 

maximum serum BPA concentrations as compared to those receiving oral bolus, indicating 

sustained circulating concentrations of BPA following dietary exposure (Sieli et al. 2011). 

 Our animal model and exposure scheme were initially chosen to evaluate the effects of 

perinatal BPA exposure on the mouse epigenome (Anderson et al. 2012) and adult obesity risk 

(Anderson et al. 2013), rather than liver tumorigenesis.  However, SNP genotyping performed in 
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this study confirms that our model is genetically similar to C57BL/6J mice at Hcs7, the locus 

reported to be associated with this strain’s resistance to hepatocellular carcinoma; thus the mice 

evaluated in this study represent a conservative model for liver cancer development.  The 

limitations of this model are similar to that of any animal model, in that no direct conclusions can 

be drawn from this study on human health risk, particularly as human populations are genetically 

diverse and our model is isogenic. The use of an isogenic model, however, also represents a 

study strength, in that we were able to detect statistically significant outcomes without 

potentially confounding effects of individual differences in genetic susceptibility. 

2.6 Conclusion 

 The significance of this study may be summarized as follows: (1) to our knowledge, these 

data represent the first report of frank tumors in any organ following perinatal or adult BPA 

exposure; (2) these findings underscore the critical importance of exposure timing when 

evaluating adverse outcomes, particularly in light of non-significant liver tumor data in 

peripubertally exposed rodents in the noted 1982 NTP study; and (3) these results implicate 

perinatal exposure to an environmentally ubiquitous chemical in the development of hepatic 

tumors, with potential implications for human health and disease.  
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Table 2.1 Frequency of hepatic lesions in mice exposed perinatally to BPA. Frequencies of hepatic lesions in mice exposed perinatally to a  
control diet or to one of three doses of BPA (50 ng/kg diet, 50 µg/kg diet, or 50 mg/kg diet), by dose and sex. All values are shown as  
percent (proportion) 

Hepatic lesion Dose (kg/diet) 
 

Total animals Males 
 

Females 
 

Hepatic adenoma Total 3.85 (3/78) 5.00 (2/40) 2.63 (1/38) 

 Control 0 (0/19) 0 (0/10) 0 (0/9) 

 50 ng BPA 0 (0/20) 0 (0/10) 0 (0/10) 

 50 µg BPA 0 (0/21) 0 (0/11) 0 (0/10) 

 50 mg BPA 16.67 (3/18) 22.22 (2/9) 11.11 (1/9) 

Hepatocellular carcinoma Total 16.67 (13/78) 17.50 (7/40) 15.79 (6/38) 

 Control 10.53 (2/19) 20.00 (2/10) 0 (0/9) 

 50 ng BPA 15.00 (3/20) 14.29 (1/10) 22.22 (2/10) 

 50 µg BPA 14.29 (3/21) 18.18 (2/11) 12.50 (1/10) 

 50 mg BPA 27.78 (5/18) 22.22 (2/9) 33.33 (3/9) 

Neoplastic lesionsa Total 20.51 (16/78) 22.50 (9/40) 18.42 (7/38) 

 Control 10.53 (2/19) 20.00 (2/10) 0 (0/9) 

 50 ng BPA 15.00 (3/20) 10.00 (1/10) 22.22 (2/10) 

 50 µg BPA 14.29 (3/21) 18.18 (2/11) 10.00 (1/10) 

 50 mg BPA 44.44 (8/18) 44.44 (4/9) 44.44 (4/9) 

Neoplastic  and  Total 23.08 (18/78) 25.00 (10/40) 21.05 (8/38) 

preneoplastic lesionsb Control 10.53 (2/19) 20.00 (2/10) 0 (0/9) 

 50 ng BPA 15.00 (3/20) 10.00 (1/10) 20.00 (2/10) 

 50 µg BPA 23.81 (5/21) 27.27 (3/11) 20.00 (2/10) 

 50 mg BPA 44.44(8/18) 44.44 (4/9) 44.44 (4/9) 

Oval cell hyperplasia Total 43.95 (34/78) 45.00 (18/40) 42.11 (16/38) 

 Control 26.32 (5/19) 40.00 (4/10) 11.11 (1/9) 

 50 ng BPA 30.00 (6/20) 20.00 (2/10) 40.00 (4/10) 

 50 µg BPA 66.67 (14/21) 72.73 (8/11) 60.00 (6/10) 

 50 mg BPA 50.00 (9/18) 44.44 (4/9) 55.56 (5/9) 

Kupffer cell hyperplasia Total 12.82 (10/78) 7.50 (3/40) 18.42 (7/38) 

 Control 15.79 (3/19) 20.00 (2/10) 11.11 (1/9) 

 50 ng BPA 15.00 (3/20) 0 (0/10) 30.00 (3/10) 

 50 µg BPA 9.52 (2/21) 9.09 (1/11) 10.00 (1/10) 

 50 mg BPA 11.11 (2/18) 0 (0/9) 22.22 (2/9) 

Multinucleated  hepatocytes  Total 10.26 (8/78) 17.50 (7/40) 2.63 (1/38) 

 Control 0 (0/19) 0 (0/10) 0 (0/9) 

 50 ng BPA 20.00 (4/20) 30.00 (3/10) 10.00 (1/10) 
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 50 µg BPA 14.29 (3/21) 27.27 (3/11) 0 (0/10) 

 50 mg BPA 5.56 (1/18) 11.11 (1/9) 0 (0/9) 

Steatosis Total 50.00 (39/78) 47.50 (19/40) 52.63 (20/38) 

 Control 52.63 (10/19) 50.00 (5/10) 55.56 (5/9) 

 50 ng BPA 45.00 (9/20) 40.00 (4/10) 50.00 (5/10) 

 50 µg BPA 57.14 (12/21) 54.55 (6/11) 60.00 (6/10) 

 50 mg BPA 44.44 (8/18) 44.44 (4/9) 44.44 (4/9) 

Inflammation Total 50.00 (39/78) 42.50 (17/40) 57.89 (22/38) 

 Control 57.89 (11/19) 50.00 (5/10) 66.67 (6/9) 

 50 ng BPA 45.00 (9/20) 30.00 (3/10) 60.00 (6/10) 

 50 µg BPA 42.86 (9/21) 36.36 (4/11) 50.00 (5/10) 

 50 mg BPA 55.56 (10/18) 55.56 (5/9) 55.56 (5/9) 

Hepatocyte  hypertrophy Total 32.05 (25/78) 27.50 (11/40) 36.84 (14/38) 

 Control 15.79 (3/19) 20.00 (2/10) 11.11 (1/9) 

 50 ng BPA 30.00 (6/20) 20.00 (2/10) 40.00 (4/10) 

 50 µg BPA 33.33 (7/21) 27.27 (3/11) 40.00 (4/10) 

 50 mg BPA 50.00 (9/18) 44.44 (4/9) 55.56 (5/9) 

Lipofuscin deposition Total 16.67 (13/78) 7.50 (3/40) 26.32 (10/38) 

 Control 5.26 (1/19) 0 (0/10) 11.11 (1/9) 

 50 ng BPA 15.00 (3/20) 0 (0/10) 30.00 (3/10) 

 50 µg BPA 23.81 (5/21) 18.18 (2/11) 30.00 (3/10) 

 50 mg BPA 22.22 (4/18) 11.11 (1/9) 33.33 (3/9) 

aNeoplastic lesions are defined as a combination of benign adenomas and malignant carcinomas. 	
  
bNeoplastic and pre-neoplastic lesions include adenomas, carcinomas, and pre-neoplastic nodules. 
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Table 2.2 Exact tests of hepatic lesions by dose in mice exposed perinatally to BPA. Fisher’s exact tests and Cochran-Armitage exact tests of trend 
for hepatic lesions in mice exposed perinatally to control diet or to one of three doses of BPA (50 ng/kg diet, 50 µg/kg diet, or 50 mg/kg diet). 
 
    
 Total Males Females 
       
Hepatic lesion Fisher’s 

exact test 
(p-value) 

Cochran-
Armitage 
exact test of 
trend 
(p-value) 

Fisher’s 
exact test 
(p-value) 

Cochran-
Armitage 
exact test of 
trend 
(p-value) 

Fisher’s 
exact test 
(p-value) 

Cochran-
Armitage 
exact test of 
trend 
(p-value) 

       
Hepatic adenoma 0.011 0.011 0.046 

 
0.046 0.474 0.474 

Hepatocellular carcinoma 0.570 
 

0.218 0.946 
 

0.855 0.273 
 

0.162 

Neoplastic lesions 0.061 0.021 0.384 0.236 0.089 0.056 
 

Neoplastic and  preneoplastic lesionsa 
 

0.089 0.014 0.390 0.190 0.166 0.046 

Oval cell hyperplasia 0.036 
 

0.037 0.115 
 

0.392 0.133 
 

0.052 

Kupffer cell hyperplasia 0.939 
 

0.649 0.489 
 

0.288 0.734 
 

1.000 

Multinucleated hepatocytes 0.174 0.741 0.256 0.582 1.000 1.000 
 

Steatosis 0.840 0.918 0.972 1.000 0.970 0.884 
 

Inflammation 0.758 0.918 0.695 0.886 0.968 0.659 
 

Hepatocyte hypertrophy 
 

0.178 0.036 0.642 0.267 0.277 0.094 

Lipofuscin deposition 0.384 0.131 0.486 0.193 0.740 0.410 
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*p-values <0.05 are shown in italics. †Neoplastic and pre-neoplastic lesions include adenomas, carcinomas, and pre-neoplastic nodules.   
‡Risk ratios for hepatic adenoma and multinucleated hepatocytes were not estimated, due to low lesion counts and subsequent lack of model 
convergence. 

Table 2.3 Logistic regressions of hepatic lesions on dose in mice exposed perinatally to BPA.  Risk ratios for hepatic lesions in mice exposed 
perinatally to one of three doses of BPA (control, 50 ng/kg diet, 50 µg/kg diet, or 50 mg/kg diet) were generated using logistic regression models, 
adjusted for clustering of mice within litters using Generalized Estimating Equations (GEE). 
 
    

95% confidence interval 
  

 
Hepatic lesion 

 
Dose 
(per kg diet) 

 
Risk ratio 

 
Lower limit 

 
Upper limit 

 
Parameter 
p-value 

 
p for trend 

Hepatocellular carcinoma 
 

Control Reference     

 50 ng BPA 1.36 0.53 3.53 0.744  
 50 µg BPA 1.37 0.70 2.67 0.643  
 50 mg BPA 3.01 1.45 6.27 0.131  
      0.185 
Neoplastic lesions 
 

Control Reference     

 50 ng BPA 1.49 0.57 3.86 0.676  
 50 µg BPA 1.41 0.70 2.84 0.620  
 50 mg BPA 6.75 3.03 15.00 0.017  
      0.040 
Neoplastic and  
preneoplastic lesions† 

Control Reference     

 50 ng BPA 1.59 0.61 4.12 0.627  
 50 µg BPA 2.69 1.27 5.72 0.189  
 50 mg BPA 7.23 3.23 16.17 0.014  
      0.022 
Oval cell hyperplasia 
 

Control Reference     

 50 ng BPA 1.15 0.55 2.41 0.850  
 50 µg BPA 5.40 3.26 8.93 0.001  
 50 mg BPA 2.67 1.75 4.06 0.020  
      0.007 
Kupffer cell hyperplasia 
 

Control Reference     

 50 ng BPA 1.27 0.45 3.60 0.816  
 50 µg BPA 0.67 0.25 1.78 0.679  
 50 mg BPA 0.68 0.28 1.66 0.666  
      0.541 
Steatosis 
 

Control Reference     

 50 ng BPA 1.07 0.47 2.49 0.929  
 50 µg BPA 1.20 0.55 2.63 0.815  
 50 mg BPA 1.11 0.51 2.43 0.890  
      0.857 
Inflammation 
 

Control Reference     

 50 ng BPA 0.59 0.28 1.26 0.489  
 50 µg BPA 0.54 0.32 0.93 0.254  
 50 mg BPA 0.90 0.50 1.63 0.862  
      0.849 
Hepatocyte hypertrophy 
 

Control Reference     

 50 ng BPA 2.40 0.93 6.22 0.358  
 50 µg BPA 2.78 1.33 5.82 0.165  
 50 mg BPA 5.66 2.57 12.50 0.028  
      0.031 
Lipofuscin deposition 
 

Control Reference     

 50 ng BPA 3.06 0.98 9.60 0.328  
 50 µg BPA 5.47 2.15 13.93 0.069  
 50 mg BPA 4.99 1.81 13.81 0.114  
      0.087 
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Table 2.4 Exact tests of associations between tumor status and hepatic lesions linked to cellular proliferation, in mice exposed perinatally to 
BPA. Fisher’s exact tests for associations between tumor status and hepatic lesions linked to cellular proliferation, in mice exposed perinatally to control 
diet or to one of three doses of BPA (50 ng/kg diet, 50 µg/kg diet, or 50 mg/kg diet), stratified by sex. Lesion percents and proportions are shown as the 
fraction of animals presenting with the lesion of interest among animals with neoplasms and among animals without neoplasms. 
 
   

Total 
 
Males 

 
Females 

 
Hepatic lesion 

 
Tumor status 

 
Percent 
(Proportion) 

 
Fisher’s  
exact test 
(p-value) 

 
Percent 
(Proportion) 

 
Fisher’s  
exact test 
(p-value) 

 
Percent 
(Proportion) 

 
Fisher’s  
exact test 
(p-value) 

        
Oval cell hyperplasia Neoplastic lesion 93.75 

(15/16)  
5E-6 88.89 (8/9) 0.006 100.00 (7/7) 9E-4 

 No neoplastic lesion 30.65 
(19/62) 

     

        
Kupffer cell 
hyperplasia 

Neoplastic lesion 37.50 (6/16) 0.004 22.22 (2/9) 0.122 57.14 (4/7) 0.013 

 No neoplastic lesion 6.45 (4/62)      
        
Hepatocyte 
hypertrophy 

Neoplastic lesion 93.75 
(15/16) 

1E-8 88.89 (8/9) 2E-5 100.00 (7/7) 3E-4 

 No neoplastic lesion 16.13 
(10/62) 

     

        
  *p-values <0.05 are shown in italics.  
  †Neoplastic lesions include hepatocellular carcinomas and hepatic adenomas.   
  ‡Multinucleated hepatocytes may be associated with hepatocyte proliferation but did not co-present with a hepatic tumor in any liver sample. 
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Table 2.5 Logistic regressions of hepatic lesions linked to cellular proliferation on tumor status in mice exposed perinatally to BPA.  Risk ratios 
for hepatic lesions predicted by tumor status in mice exposed perinatally to one of three doses of BPA (control, 50 ng/kg diet, 50 µg/kg diet, or 50 mg/kg 
diet) were generated using logistic regression models, adjusted for clustering of mice within litters using Generalized Estimating Equations (GEE). 
 
    

95% confidence interval 
 

 
Hepatic lesion 

  
Risk ratio 

 
Lower limit 

 
Upper limit 

 
Parameter p-value  

      
Oval cell hyperplasia No neoplastic lesion Reference    
 Neoplastic lesion 33.95 12.76 90.30 3E-4 
      
Kupffer cell hyperplasia No neoplastic lesion Reference    
 Neoplastic lesion 8.75 3.02 25.31 <1E-4 
      
Hepatocyte hypertrophy No neoplastic lesion Reference    
 Neoplastic lesion 78.16 27.02 226.08 <1E-4 
      

*p-values <0.05 are shown in italics.  
†Neoplastic lesions include hepatocellular carcinomas and hepatic adenomas.  
‡Multinucleated hepatocytes may be associated with hepatocyte proliferation but did not co-present with a hepatic tumor in any liver sample. 
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Table 2.6 Total hepatic lesion scores in mice exposed perinatally to BPA.  Frequencies of co-occurring hepatic lesions in mice exposed perinatally to control diet or to one of three doses 
of BPA (50 ng/kg diet, 50 µg/kg diet, or 50 mg/kg diet), by dose. 
 
  

Total number of hepatic lesions 
 
Total hepatic 
lesions score 
model* 

 
Dose 
 
(per kg 
diet) 

 
0 lesions 
 
Percent 
(Proportion) 

 
1 lesion 
 
Percent 
(Proportion) 

 
2 lesions 
 
Percent 
(Proportion) 

 
3 lesions 
 
Percent 
(Proportion) 

 
4 lesions 
 
Percent 
(Proportion) 

 
5 lesions 
 
Percent 
(Proportion) 

  
6 lesions 
 
Percent 
(Proportion) 

 
7 lesions 
 
Percent 
(Proportion) 

 
8 lesions 
 
Percent 
(Proportion) 

           
Summary score  Control 36.84 (7/19) 10.53 (2/19) 21.05 (4/19) 10.53 (2/19) 5.26 (1/19) 15.79 (3/19) 0 (0/19) 0 (0/19) 0 (0/19) 
(all lesions) 50 ng BPA 25.00 (5/20) 35.00 (7/20) 15.00 (3/20) 0 (0/20) 0 (0/20) 10.00 (2/20) 5.00 (1/20) 5.00 (1/20) 5.00 (1/20) 
 50 µg BPA 0 (0/21) 42.86 (9/21) 14.29 (3/21) 4.76 (1/21) 9.52 (2/21) 0 (0/21) 19.05 (4/21) 4.76 (1/21) 0 (0/21) 
 50 mg BPA 16.67 (3/18) 27.78 (5/18) 11.11 (2/18) 5.56 (1/18) 5.56 (1/18) 0 (0/18) 33.33 (6/18) 0 (0/18) 0 (0/18) 
 Total 20.51 (16/78) 29.49 

(23/78) 
15.38 (12/78) 5.13 (4/78) 5.13 (4/78) 6.41 (5/78) 14.10 

(11/78) 
2.56 (2/78) 1.28 (1/78) 

           
           
Summary score  Control 42.11 (8/19) 26.32 (5/19) 10.53 (2/19) 5.26 (1/19) 10.53 (2/19) 5.26 (1/19) 0 (0/19) 0 (0/19) - 
(less steatosis) 50 ng BPA 40.00 (8/20) 25.00 (5/20) 10.00 (2/20) 0 (0/20) 10.00 (2/20) 5.00 (1/20) 5.00 (1/20) 5.00 (1/20) - 
 50 µg BPA 19.05 (4/21) 38.10 (8/21) 4.76 (1/21) 14.29 (3/21) 0 (0/21) 19.05 (4/21) 4.76 (1/21) 0 (0/21) - 
 50 mg BPA 27.78 (5/18) 16.67 (3/18) 16.67 (3/18) 0 (0/18) 5.56 (1/18) 27.78 (5/18) 5.56 (1/18) 0 (0/18) - 
 Total 32.05 (25/78) 26.92 

(21/78) 
10.26 (8/78) 5.13 (4/78) 6.41 (5/78) 14.10 

(11/78) 
3.85 (3/78) 1.28 (1/78) - 

           
           
Summary score  Control 68.42 (13/19) 10.53 (2/19) 5.26 (1/19) 10.53 (2/19) 5.26 (1/19) 0 (0/19) 0 (0/19) - - 
(less steatosis and 50 ng BPA 55.00 (11/20) 15.00 (3/20) 5.00 (1/20) 10.00 (2/20) 5.00 (1/20) 5.00 (1/20) 5.00 (1/20) - - 
inflammation) 50 µg BPA 23.81 (5/21) 33.33 (7/21) 19.05 (4/21) 0 (0/21) 19.05 (4/21) 4.76 (1/21) 0 (0/21) - - 
 50 mg BPA 38.89 (7/18) 11.11 (2/18) 11.11 (2/18) 5.56 (1/18) 27.78 (5/18) 5.56 (1/18) 0 (0/18) - - 
 Total 46.15 (36/78) 17.95 

(14/78) 
10.26 (8/78) 6.41 (5/78) 14.10 (11/78) 3.85 (3/78) 1.28 (1/78) - - 

           
 

*Total summary scores included the following ten lesions: hepatic adenoma; hepatocellular carcinoma; hyperplastic nodule; oval cell hyperplasia; Kupffer cell hyperplasia; multinucleated hepatocytes; 
steatosis; inflammation; hepatocyte hypertrophy; lipofuscin deposition. No animal presented with greater than eight (8) lesions. Two additional scores were computed, excluding steatosis or both steatosis 
and inflammation, to avoid masking true effects with highly prevalent background lesions.


