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ABSTRACT

Building Fully Adaptive Stochastic Models for Multiphase Blowdown Simulations

by

Isaac Asher

Chair: Krzysztof J. Fidkowski

A new method for uncertainty quantification (UQ) that combines adaptivity in the physi-

cal (deterministic) space and the stochastic space is presented. The sampling-based method

adaptively refines the physical discretizations of the simulations, along with adaptively build-

ing a stochastic model and adding samples. UQ studies can be very expensive due to complex

physics requiring large physical solutions and due to a large number of parameters which

results in a very large stochastic space to explore and model. The new UQ method can result

in lower errors and lower cost by balancing different sources of error. By adaptively refining

the physical and stochastic models, an overall prescribed error level can be reached without

overly excessive and costly accuracy in either space.

The UQ method takes advantage of an active linear subspace to reduce the dimensionality

of the stochastic space while retaining relevant interaction terms and anisotropy. Driven

by low-cost error estimates, a particle-swarm optimization method explores the stochastic

space and drives adaptation that results in an efficient stochastic approximation. The UQ

method is compared to to two modern methods for three test functions in a 100-dimensional

space. The current method is shown to result in up to three orders of magnitude lower

error and up to two orders of magnitude fewer samples. Next, a simulation is developed

using the discontinuous Galerkin method which is well-suited to adaptivity. A transient
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multiphase flashing flow model is used to simulate the Edwards-O’Brien blowdown problem

which is relevant for loss of coolant accidents in nuclear reactors. Details are included for

adjoint-consistent treatment of gradient dependent sources, non-linear equations of state,

and boundary conditions (including choking). The adjoint equations are successfully solved

and used to drive a space-time anisotropic adaptation based on a complex output of interest.

This results in an efficient phsyical discretization. Finally, the UQ method is used to assess

modeling and discretization errors in a modified multiphase flow simulation. Based on an

overall stochastic output of interest, the UQ method simultaneously drives adaptation of

the stochastic and deterministic discretizations in order to balance the two sources of error.

That is, terms are added to the stochastic model, samples are added, and the physical grid of

each individual simulation is refined simultaneously. Error estimates based on semi-refined

discretizations retain anisotropic accuracy, and a common grid is used to compare solutions

from samples. The method for combined adaptivity performs well on the test problem,

reducing the stochastic dimensionality from 20 to two and reducing deterministic errors on

select samples. For about the same computational time, the method results in an order of

magnitude less error and an order of magnitude fewer degrees of freedom compared to three

other methods.
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CHAPTER 1

Introduction

1.1 Motivation

Simulating physical systems offers many potential advantages over experimental methods

for design, optimization, and safety analysis. While allowing for cheaper data collection

and faster turnaround time, the transition from the real-world to the computational world

introduces errors due to inadequate modeling, imperfect numerics, and incomplete knowledge

of inputs and operating conditions. In addition, some problems are too large to handle on

even the biggest computers to date. While computing power does increase over time, so

does the complexity of problems tackled, and hence it is important to develop more efficient

simulations that give higher accuracy and run faster. One common problem is that we

simulate too much. That is, without knowing how much fidelity is needed in a simulation,

we add as many degrees of freedom as possible according to some a-priori insight, with the

constraint that the simulation finishes within a given time frame. In some problems, fewer

degrees of freedom could be arranged to provide much more accuracy if they are concentrated

in important regions of the solution domain. Adaptive methods that automatically and

appropriately distribute fidelity in a simulation have enjoyed much success in recent years.

A second problem is that we cannot trust the numerical accuracy of simulations. While

most simulations are convergent, meaning that the numerical solution approaches the true

solution of the model as the fidelity is increased, very few simulations provide error bars
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for each solution. The error in a solution due to insufficient fidelity is called discretization

error. In addition, many simulations rely on approximate models that introduce unknown

errors. The error in a solution due to imperfect models is called modeling error. In order to

trust a simulation result, one must quantify these two sources of error – discretization error

and modeling error. Perturbation methods, which analyze error propagation by linearizing

the problem, have been used with good results for quantifying discretization errors. This is

because many (most) simulations rely on a relatively simple, linear decompositions of the

solution, for example as a linear combination of basis functions. Applied to modeling error,

this is called sensitivity analysis. However, modeling errors need not obey any simple form.

Indeed, if modeling errors were linear, they would be easy to correct as one could simply

include another linear term in the model! Rather, modeling errors are generally complex

and non-linear, so sensitivity analysis is often inadequate. More accurate quantification of

modeling errors requires a fuller exploration of the behavior of the models.

One way to explore how models behave is to select a number of parameters in those

models and analyze how the solution changes with the parameters. Often, this analysis

is performed to statistically quantify variations due to uncertain inputs, so the parameters

are treated as random variables and the solution is a function of the random variables.

In any case, exploring how the solution changes with modifications to a large number of

parameters is a hard problem. Each parameter becomes a dimension and we must explore a

function of a high-dimensional space (sometimes called the stochastic space). As the number

of parameters increases, the size of this space grows exponentially, rendering most analysis

methods intractable. This is called the curse of dimensionality.

Many methods have been developed to quantify modeling errors by exploring (and mod-

eling) the stochastic space. Methods that perform the best for a large number of parameters

automatically and adaptively tailor their exploration and modeling to the simulation at hand.

For example, if the response of the simulation to the parameters only varies over a subset of

the parameters or over some region in the stochastic space, great savings can be achieved;
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otherwise intractable problems can become tractable.

In this work, we develop a new method that extends ideas of perturbation analysis and

adaptivity to build efficient models in the stochastic and physical spaces. This is done by

estimating and then balancing stochastic errors and discretization errors. By separating

the two sources of errors, the stochastic model and the physical grid(s) are simultaneously

adapted, each to the level required in order to balance out the sources of error. Having

balanced errors ensures that the approach is computationally efficient. It does not make

sense to have an extremely fine grid and just one or two samples in stochastic space –

even though the discretization error is small, the stochastic error would be very large and

the results almost useless. The same applies to a very coarse grid and many samples in

stochastic space – while the stochastic space may be fully explored, each sample has so much

error that little information is actually gained. Some work has been done to quantify both

sources of error in an uncertainty quantification study, and to reduce one or the other (e.g.

add samples until the stochastic error is about the same as the discretization error). However,

to the author’s knowledge, there has yet to be a fully adaptive UQ study that dynamically

balances both sources of error by adapting the stochastic and physical approximations. This

is the goal of the current work.

To this end, the current method combines previous methods for error estimation and

adaptation in both spaces. Most methods developed for one domain are not compatible

with those of a different domain, so many of the contributions of this work are related

to developing consistent, compatible error estimates. The output-based (or goal-oriented)

framework is used because all errors are measured by their effect on a single, scalar “output

of interest.” This output is assumed to be defined at the outset of the UQ study and serves as

a common basis for measuring errors1. The resulting error estimates also have the advantage

of being accurate but relatively inexpensive to evaluate.

In order to facilitate the adaptive process, we use a stochastic model and a physical dis-

1Alternatively, one can view the adaptive process as generating an approximation whose goal is to accu-
rately predict the output.
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cretization that allow for localized error estimates and localized adaptation. The stochastic

model is based on directions in stochastic space, and can be adapted by increasing fidelity

along certain directions (including adding samples along the directions). Since the number

of possible directions is very large, selecting just a few with the most error for adaption can

result in an efficient stochastic model. The physical discretization is discontinuous across el-

ements, which facilitates localizing errors to individual elements. Then, only those elements

with the most error can be refined, resulting (after a number of iterations) in an efficient

grid. Errors are balanced by allocating new degrees of freedom for adaptation in each space

according to the fraction of error due to that space (found from separate error estimates for

each space).

The method for stochastic modeling can be used with any parameters of the simulation,

not just those in approximate models. For example, using parameters that account for

variability in manufacturing or in operational conditions yields a better quantification of

performance of a device. Design parameters can be included to explore a design space. The

approach used here is quite general and applies equally to many situations once one defines

the goal of the analysis.

1.2 Background

Simulations of complex phenomena often require approximate models derived from ex-

perimentation or simplifications of physics. Most models have parameters that control their

behavior and have nominal values derived from experiments, analysis, or expert judgment.

Some simulations have few if any parameters; for example, direct numerical simulation of

fluids uses only governing equations derived from first principles. When approximate models

are used to decrease complexity, though, errors are introduced into the results of the sim-

ulation. Quantifying these errors is important for making engineering decisions based on

simulations. In order to quantify these errors, one must essentially re-run the simulation for

every possible combination of parameters. Another way to look at this is that the simulation

4



is a function of the parameters; the parameters become dimensions in a stochastic space. The

uncertainty quantification (UQ) study can be thought of as a way to model the simulation

output as a function of the parameters, i.e. as a high-dimensional function approximation.

Many UQ methods can be described in terms of high-dimensional function approxima-

tion. For example, Monte Carlo methods generate a random set of samples and use them to

approximate the function or its moments. Polynomial Chaos methods model the function as

tailored polynomials along the dimensions (or some subset of the directions for an adaptive

method) [119, 72]. Support Vector Regression models the function as a set of S-functions

(which transition from a low value to a high one, for example erf (x)) along the support vec-

tors [106]. The biggest challenge in UQ studies is that as the dimensionality of the stochastic

space increases (as the number of parameters one desires to consider increases), the number

of samples required and hence the computational time usually increases exponentially. This

is called the curse of dimensionality.

On the other hand, simulations usually also require a discretization of physical space into

computational elements (or cells). As the number of elements increases, so does the accuracy

and the cost. Any particular discretization and element size results in discretization error

(which would be zero if infinitely many elements were used). An efficient way to build

a discretization would be to have small elements in some parts of the domain (where the

solution is complex) and larger elements elsewhere (where the solution is simple). This

can be done by starting with a coarse grid (all large elements), computing localized error

estimates, and using them to selectively refine the grid.

The curse of dimensionality requires an approximate stochastic analysis (a full analysis

would require very many samples), resulting in stochastic error. The overall UQ study, thus,

has stochastic error (from the approximate stochastic model) and discretization error (from

the chosen grid). The goal of the current work is to balance these sources of error and

adaptively refine both the grid and the stochastic model. This can result in a UQ study with

higher accuracy that takes less time to execute compared with non-adaptive methods.
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The following two subsections describe the particular methods chosen for the stochastic

models and the physical discretization. The methods are put in context with other state-of-

the-art methods, and we give reasons why they were chosen for inclusion in the combined

adaptivity approach. The reasons are, generally, availability of accurate, localizeable error

estimates, ability to generate a compact but accurate model (when possible), and ease of

incremental adaptation. Next, we introduce the output-based or a-posteriori error estimation

framework. Finally, we give some background regarding the choice of simulation to which

we will apply the fully adaptive UQ study, namely a multiphase flow simulation.

1.2.1 Stochastic Modeling

Almost all modern UQ methods are predicated on finding some way to get around the

curse of dimensionality. This is also important in the current framework in order to have

a stochastic approximation that does not require a huge number of samples. Most UQ

methods are designed to overcome the curse by assuming that the underlying function has

some particular structure which, if it does, allows the computation to proceed much more

quickly. For example, Polynomial Chaos methods work very well if the underlying function

can be well-approximated by just a few of the selected polynomials [119]. As higher order

polynomials are required, the expense rises. One attractive class of methods is those that use

an active linear subspace. These methods assume that the function only varies within a linear

subspace of the full high-dimensional space. By assuming that the function does not vary

in the inactive subspace, the expense of the computation can be diminished considerably.

Examples of methods with an active linear subspace include Support Vector Regression [106],

where the support vectors define the active subspace, and Orthogonal Matching Pursuit [88,

87], where the atoms with nonzero coefficients define the subspace. Other related methods

are ridgelet regression [120, 15, 121] and subspace pursuit [30, 113] The contribution of the

current method is that it adaptively restricts modeling in two ways: by identifying an active

subspace and by restricting interactions within that space.
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The method developed in this work can also be viewed as a Reduced Order Model

(ROM) [101] with a reduction in the size of the input space and the state space. We follow

the methodology of adaptive model building to increase the accuracy of the ROM (while

also increasing the number of samples) until a desired tolerance is reached. This is different

than strategies such as that in [100, 10] where the full, high-order ROM is constructed all at

once. The adaptive methodology may result in a less optimal ROM, but has the advantages

of giving a partial answer with a restricted number of samples and providing a natural way

to update the model as new samples are added. The particular form of the ROM reduces the

input space to an active linear subspace. The state is also reduced to vary in a polynomial

way within the active linear subspace. This becomes a surrogate model [101] for the high-

fidelity simulations. Given enough terms (and samples), the surrogate model can grow to

become a full polynomial representation of the high-fidelity simulation over the parameters.

This ensures that the method will eventually produce a very accurate ROM, assuming that

the high-fidelity simulation, while non-linear, has a convergent Taylor series representation

in the stochastic space.

A second difference between the current method and that in [100, 10] is the way in which

the active linear subspace is detected. Their method uses a set of local gradient calcula-

tions to approximate the global gradient information. In this work, the same approach is

used except that we do not require gradients with respect to parameters to be calculated

directly. Instead, output-based (or other) error estimates are used to gather the same infor-

mation. The error estimates do require gradients to be calculated, but not with respect to

parameters2. This eliminates the need for either analytic differentiation (with respect to the

parameters) or approximate finite difference calculations that require many function evalua-

tions. Of course, if the analytic derivatives are available, both methods could use them and

2The adjoint requires gradients of the residuals of the governing equations with respect to the solution,
and the output with respect to the solution. However, we do not require gradients with respect to the
parameters. The major expense for the adjoint method is in calculating the gradients of the residuals with
respect to the solution, but this is also needed for implicit time stepping of the solution. Gradients with
respect to parameters may be difficult to implement when there are many parameters. Many UQ methods,
though, could be extended to take advantage of this information and be more efficient.
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incur approximately the same expense.

In order to identify directions in parameter space in which there is no variation, the cur-

rent method uses error estimates that approximate the gradient. This method of identifying

directions with no variation only models the function with linear terms, so it is not good at

identifying anisotropy within the active subspace. Projection pursuit methods are better at

finding a single direction in which there is large variation, that is, in identifying anisotropy

within the active subspace. Thus, directions of high variability are found by searching within

the active subspace using a projection pursuit approach. The resulting directions in which

variability is detected are added to the surrogate model. Thus, the current method combines

gradient sampling and projection pursuit to quickly neglect the inactive directions and focus

on anisotropic behavior within the active subspace.

The statistical model thus developed is essentially a surrogate model. Here we focus

on adaptively building a good surrogate model, without necessarily utilizing any statistics

(although many successful UQ methods work directly with statistical quantities). The sur-

rogate model approach is advantageous because it yields accurate error estimates for general

outputs. The adjoint-weighed residual formulation requires a functional form representation

of the state and adjoint. Having a functional form allows for accurate error estimates for any

output of interest, whereas statistical methods usually focus on accurately computing just a

few metrics of the output probability distribution (e.g. the mean and variance). In building

the surrogate model model, it is important not to take a greedy approach and strictly in-

crease the size of the active linear subspace. It is known [79, 32, 88] that errors due to the

projection into the active linear subspace require the algorithm to add and remove directions

from the active linear subspace3.

We develop a method in this work which adaptively seeks and models the active linear

subspace. The new method is based on a Matching Pursuit framework (see [53, 41] for early

3That is, given that the underlying function really does only vary in an active subspace, the subspace
can only be discovered if the algorithm is allowed to add and remove directions from its guess of the active
linear subspace.
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developments and [37] for a modern output-based method), similar to the active subspace

methods [100, 10, 28]. The function is modeled as a sum of terms, each term accounting

for variation in a single direction. Most projection pursuit methods search for a direction in

which the current model results in stochastic errors. That is, they search for large residuals

in stochastic space. The contribution of the current method is that we utilize physical and

stochastic error estimates to search for the active subspace and to optimize the model. Some

methods model the responses or the error in stochastic space, requiring them to be in some

functional form. In this work, modeling is restricted to the state (and adjoint), so fewer

assumptions on the functional form of the responses and other quantities are needed. The

model is built in an adaptive fashion so that the model is updated incrementally as more

samples are taken.

Sampling methods work with fully converged simulations at single points in parameter

space; with an existing simulation code, one simply fixes the parameters and runs the code.

Non-sampling based methods modify (and usually expand) the governing equations to solve

for behavior in the physical and parameter spaces at the same time. For example, stochastic

finite element methods [46] create a mesh in both the stochastic and physical domains and

solve in both. We focus on a sampling-based method so that the current method can be

readily applied to existing simulations. In addition, adaptivity is easy for sampling-based

methods as one can simply add more samples to improve accuracy. Since we are using error

estimates to drive the stochastic adaptivity, it is assumed that there is some available way of

computing an error estimate given a physical solution (parameters and sample values). For

example, this can be an adjoint-weighted-residual error estimate for a finite-element code

with some defined output of interest [114]. The method performs even better with an error

estimate that is fast to compute.

Overall, the stochastic modeling method developed in this work has the ability to get

around the curse of dimensionality by being compact (requiring few samples). The portion

of the stochastic domain that is modeled is found using error estimates, and in this way
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the model is adaptively built. Finally, sampling-based model is easily updated when new

samples or terms to the model are added. Thus, the active subspace method is a good choice

for inclusion in the fully adaptive UQ framework.

1.2.2 Multiphase Flow Discretization

Multiphase flow problems have been discretized with a variety of methods include finite

difference, finite volume, and finite element methods. The former two are low order methods

are advantageous because they execute quickly and are easy to couple with other methods

for simulating other parts of a domain. Higher order methods, for example finite element

methods, sometimes require more computational time for a given problem. However, they

are advantageous because they offer the promise of lower error with fewer degrees of free-

dom. This often must be achieved through both fast solution techniques and automatic grid

refinement. In the end, any discretization method can lead to a fast and accurate solution

if care is taken. In this work, a discontinuous Galerkin finite element discretization is used

because the author has experience with it and it is simple to use with adjoint-based error

estimation and adaptation.

The discontinuous Galerkin finite element method [25] (DG FEM) begins by breaking

up the domain into disjoint regions called elements. The solution to the governing equations

is approximated as a polynomial (of variable order p) inside of each element (of size ∆z).

The solution is not forced to be continuous across elements, so there may be a “jump” at

the element interfaces (hence discontinuous Galerkin). Residuals, R, are defined as weighted

integrals of the governing equations. This results in a non-linear system of equations R(u) =

0 (since the method is Galerkin, the test and basis functions are the same, yielding a unique

solution). An iterative method such as Newton-Raphson is used to solve the non-linear

system. The solution generally converges at a rate of O(∆zp+1) for viscous problems. Thus,

the advantage of a high-order discretization is faster mesh convergence. The discontinuous

nature of DG FEM, along with its interpretation as a variational method, lends itself to
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adaptive grid refinement.

Overall, the physical discretization has localizeable error estimates (due to the discontin-

uous nature of the approximation) that are known to be well-suited for grid adaptation. The

grid also allows for simple adaptation by splitting elements. With a coarse enough starting

grid and many iterations, the resulting adapted grids can be highly specialized and efficient

for a given problem and highly accurate. Thus, the discontinuous Galerkin method is a good

choice for inclusion in the fully adaptive UQ framework.

1.2.3 A-Posteriori Error Estimation

The fully adaptive approach to uncertainty quantification in this work is driven by a-

posteriori error estimates. That is, once a solution has been found, a post-processing step

is performed to determine how much numerical error is present in the solution. This error

is then localized to particular components of the solution approximation (e.g. mesh cells

or elements) which are modified (adapted) to give increased fidelity. Such error estimates

have been developed for a variety of problems and contexts [38, 4]. In some cases, simple

error estimates using residuals of the governing equations or interpolation error estimates are

sufficient for driving adaptation. In other cases, a more detailed analysis may be necessary.

One type of error estimate is developed by a perturbation analysis. Suppose we run a

simulation with the value of some parameter µ and get the result u, a [Nu × 1] vector of

field (or state) variables. The solution u satisfies the Nu governing equations R(u, µ) = 0.

Denote by K(u) a quantity or output that we are interested in computing to high accuracy.

We are interested in how different a solution with a modified parameter would be (denote

by µ̃ = µ + δµ the modified parameter). That is, we would like to estimate the parameter

sensitivity δK = K(u(µ+ δµ))−K(u(µ)).
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Begin by linearizing the governing equations and the output definition:

Gov. Eqns.: R(u, µ) = 0 → ∂R

∂u
Nu×Nu

δu

Nu×1

+δR = 0 (1.1)

Output: K = K(u) → ∂K

∂u
1×Nu

δu

Nu×1

= δK (1.2)

The linearized equations are matrix equations. Now, if one examines what happens after

perturbing the parameter µ → µ̃, there will be a perturbation in the residuals, δR =

R(u, µ̃)−R(u, µ) = R(u, µ̃) (since R(u, µ) = 0). The solution to the perturbed equations

is ũ ≡ u+ δu, and the perturbation in the quantity of interest is δK. The equations above

relate these perturbations to one another. Now we can formally compute the relationship of

δK to δR. First, rewrite Eqn. 1.1 as

δu = −∂R
∂u

−1

R(u, µ̃) (1.3)

Then substitute into Eqn. 1.2

δK =
∂K

∂u
δu = − ∂K

∂u
1×Nu

∂R

∂u

−1

Nu×Nu

R(u, µ̃)

Nu×1

(1.4)

This is the general sensitivity relationship. It can be used to calculate regular or “forward”

sensitivities by testing various parameters and computing δK for each one. This can be

computationally expensive for many parameters and few (e.g. one) quantities of interest,

due to the inversion of the residual Jacobian matrix ∂R/∂u.

Alternatively, one can pre-compute the first two parts to form a notional “∂K/∂R”

vector, which can then be applied to a large number of parameters. This can reduce the

computational expense because the Jacobian need only be inverted once per quantity of
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interest. The vector is called the adjoint solution, or simply the adjoint, ψ:

ψT ≡ −∂K
∂u

∂R

∂u

−1

→ δK = ψTR(u; µ̃) (1.5)

Rewriting the above definition as a matrix equation makes it clear how to solve for the

adjoint vector:

∂R

∂u

T

ψ = −∂K
∂u

T

(1.6)

Solving for the adjoint requires a regular matrix-vector solve, but with the transpose of the

Jacobian. The Jacobian is commonly both available and inverted when solving the original

equations with an implicit method. The adjoint solve then does not require much extra code

to be written. For explicit methods, or Jacobian-free implicit methods, automatic differen-

tiation or the complex step method [82] can be used to compute the required derivatives. In

fact, adjoint solutions are becoming available in commercial simulation software [91]. Nor-

mally, every time we solve for u, we also perform one more matrix inversion to solve for ψ.

Once the adjoint is computed, we arrive at the final method for calculating the perturbation

in the quantity of interest

δK = ψTR(u, µ+ δµ) (1.7)

The perturbation method applies equally well when the “parameter” is in fact the com-

putational grid and its perturbed value is a high-fidelity grid. In this case, δK gives an

estimate of the difference between the output on the original and high-fidelity grids, that is

an estimate of the discretization error. Practically speaking, once the adjoint is computed,

one must simply generate a finer grid and compute the high-fidelity residual of the known

(lower-fidelity) solution.

The adjoint approach just developed is based on a discrete system of equations but can be

extended to the underlying continuous governing equations. This results in the continuous
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adjoint equations which are PDEs in the same form as the governing equations (though they

are always linear). In fact, if the governing equations and the discretization satisfy certain

properties, then the discrete adjoint equation 1.6 is actually a consistent and convergent

discretization of the continuous adjoint equations [49, 6, 90]. In Section 3.4.2, we give

a sketch of the continuous adjoint derivation and use it to motivate an extension to the

stochastic space.

One advantage of the adjoint approach for error estimation is that it has a good theoret-

ical basis, at least for variational discretizations, and does not require heuristics. Another

advantage is that it can identify error propagation, where errors in the solution in one part of

the domain affect an output that may a function of states in a different part of the domain.

This can be especially important for simulations of transport phenomena.

A disadvantage of the adjoint approach is that it requires extra computational expense

and memory usage (especially for time-dependent problems). Sometimes, though, this can

be outweighed by the savings resulting from efficient computational grids generated through

adaptation. A second disadvantage is that the approach only takes into account first order

sensitivity information from the governing equations. For highly nonlinear equations and

solutions on very coarse grids, this can result in inaccurate error estimates and poor adaptive

choices. One solution is to use second order adjoints, which requires more analysis, coding,

and computation time. Still, in many instances the first order information is enough to drive

adaptation (which tolerates inaccurate error estimates to some extent). In this work, the

error estimates resulted in reasonable adaptation choices with good reduction in errors over

many steps of the process.

In this work, the adjoint approach requires defining one or more (scalar) statistical out-

puts of interest. That is, one must define the goal of the entire UQ study at the outset.

At each adaptive step, all of the approximations are refined in an attempt to minimize the

error in the stochastic output. This is essentially an extension of the adjoint techniques to

the stochastic domain [35]. The stochastic output serves as a consistent measure of error
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across the stochastic and physical domains. Separate (but comparable) error estimates for

each domain are used to decide whether to focus adaptation in the stochastic domain or the

physical domain.

1.2.4 Simulating Multiphase Flow

In order to demonstrate the fully adaptive UQ method, an application should include

many approximate models and parameters (whose effects will be quantified). This usually

results from simplified models of complex physical phenomena. The large range of physical

scales and complexity involved in multiphase flow, together with the need for simulations of

large systems like nuclear reactors, has driven much research into developing simple models

that are cheap and approximate and often have many parameters. One group of these

simplified models attempts to model flow through a pipe as a one-dimensional problem.

While some models simplify detailed, three-dimensional equations of motion, others rely

on correlations from large experimental data sets. This work focuses on a one-dimensional

“drift–flux” formulation, which is based on space and time averaging of the three-dimensional

flow field and includes empirical correlations for some parameters. Specific to two-phase drift-

flux models is the reduction of two momentum equations to one by specifying a correlation

for the relative velocity between the phases.

Ishii & Hibiki derived a four-equation drift-flux model and presented a number of cor-

relations for the resulting parameters for various void regimes for cylindrical, annular, rod

bundle, and pool boiling scenarios [56, 57]. The void fraction and inter-phase drift are re-

lated in this formulation, so correlations for drift velocity must also take into account boiling

regimes. A variety of models for drift velocity and void fraction have been proposed since

then. Eight models are compared in [23], and more mechanistic-based models are derived

in [51]. Various models are studied for the case of flashing flow in [80]. Thirteen models are

compared against a wide range of experimental data in [26]. In general, complex models were

found to be necessary for reasonable prediction accuracy. In this work, a more mechanistic
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approach is taken in which the drift velocity and void fraction correlations are decoupled,

as is done in some of the proposed models. The drift velocity is related solely to the flow

parameters, and the void fraction is related to the boiling parameters.

The numerical characteristics of the drift-flux formulation have also been investigated.

The loss of hyperbolicity in the governing equations is often a source of numerical instability.

In [105], stability was shown to be enhanced by special choices of some parameters, though

not proven in general. A special form for the drift velocity was derived in [47] such that the

first first order terms would always remain hyberbolic, ensuring stability for many standard

numerical schemes. An approximate Riemann solver for the drift-flux equations was proposed

in [40], and it conformed to two of the three conditions for a “Roe” type solver. The third

condition of hyperbolicity, though, was not proven in all cases. Others have used more

general Riemann solver formulations, which often involve more approximations, e.g. [17, 16].

In this work, a linearized exact Riemann solver is used to upwind the inviscid fluxes. This

requires solving a 4-by-4 eigenvalue problem at each interface, but the expense of this step

is quite minor, considering that the analytic flux-Jacobian is used. In addition, errors due to

the linearization are generally made small when adaptation and higher-order approximations

are used.

The large range of spatial (and temporal) scales inherent in multiphase problems often

demands methods that are accurate at many of these scales. All of the methods discussed

above are confined to the largest physical scales in order to make them computationally

inexpensive. Certainly much research has been done in more detailed (smaller scale) sim-

ulations, generally of smaller problem sizes due to limits on computational resources. The

possibility of attacking a large problem size with targeted small-scale simulation is attractive,

and would lead to improved predictability. The goal of adaptive and multiscale methods is

precisely this, and it is achieved by carefully combining methods for various spatial scales. In

this work the goal is to show the possible advantages of such methods on a model problem.

Using a basic adaptive method, the physics models are kept constant but the discretization
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is adapted to the solution. In particular, the adaptation is driven by a goal-oriented (or

adjoint) method, where a single “output of interest” is computed to a given accuracy. A

review of these methods is presented in [38], which highlights that full mesh convergence

of outputs is often not achieved on standard meshes used in industry. Indeed, this author

has found this to be the case in multiphase flow models as well, see [34] and Chapter 2. An

adjoint-based adaptation procedure is developed in Section 4.5 and applied to the multiphase

flow problem.

In the interest of simplifying the calculations, some correlations are used in ranges in

which they are invalid. We will use some correlations for the drift velocity and the interphase

mass transfer that assume bubbly liquid even when the void fraction is large and the flow

is in the churn or droplet regimes. The goal here is to demonstrate the potential savings

in computational time from adaptive methods. More complex and accurate simulations

(e.g. realistic 1D, full 3D including turbulence, etc) can often reap even more benefits from

adaptivity than are demonstrated here. This work is not concerned with developing a drift-

flux model that fits well with experimental data. Rather, we are looking to use a flow model

that is complex enough to capture interesting physics and include many parameters, yet

simple enough to have relatively quick execution. The one-dimensional drift-flux model of

multiphase flow fulfills these requirements.

In conclusion, a fully adaptive method for uncertainty quantification will use an active

subspace stochastic model and a discontinuous Galerkin discretization of one-dimensional

multiphase flow equations. Output-based error estimates from both models (and spaces) will

be separated to drive adaptivity in the models. Both models allow for targeted adaptation

which can lead to tailored, low-error approximations. As the adaptive iterations proceed,

stochastic errors will be balanced with discretization errors, resulting in a UQ study that is

relatively accurate yet inexpensive to execute.
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1.3 Contributions

The contributions of the adaptive method for uncertainty quantification developed in this

work are

� coupled adaptivity in the stochastic and physical spaces to control and balance stochas-

tic and discretization errors simultaneously, potentially leading to large cost savings

for UQ studies of complex simulations

� a UQ method that exploits functions with a small active subspace, a low level of

interaction within that subspace, and high anisotropy within that subspace

� utilization of both full solutions and low-cost error estimates to explore and model the

parameter space; in particular, adjoint-based error estimates are used to detect the

active subspace and explore it

� an output-based UQ method that only models the state and adjoint over the parameter

space, but does not assume any functional form of the physical output or the error

estimate

� a new stochastic error metric that is based on directions in the stochastic space, is

cheap to compute, and can be used for adaptation in the stochastic space

� an transient, multiphase, higher-order Discontinuous Galerkin simulation with adjoint

solutions, a-posteriori error estimates, and adjoint-based adaptation

� demonstration of the cost-savings of the fully adaptive UQ method for a relatively

simple multiphase flow simulation

1.4 Thesis Overview

This work is organized as follows. In Chapter 2, standard methods for uncertainty quan-

tification in multiphase flow are used to investigate subcooled boiling models in the widely
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available Star-CD and Nphase simulation packages. The results motivate the need for a

more adaptive and accurate method. In Chapter 3, a new method for adaptive uncertainty

quantification is developed based on active subspaces. The new method is compared against

other modern UQ methods. A transient, one-dimensional multiphase flow model is solved via

the discontinuous Galerkin method in Chapter 4. The solution method is extended to solve

for the adjoint and automatically adapt the grid. The Edwards’ blowdown problem is solved

with this method. In Chapter 5, the adaptive uncertainty quantification method is combined

with the adaptive multiphase simulation. The result is an uncertainty quantification method

that is fully adaptive in both deterministic and stochastic spaces. The method is applied to

assess model and experimental uncertainties in the blowdown simulation. Finally, Chapter 6

discusses conclusions and directions for future work.
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CHAPTER 2

UQ for Multiphase Flow Problems

2.1 Motivation

The objective of this chapter is to quantify sensitivities of computational thermalhy-

draulics outputs to parameters in boiling, multiphase flow, and turbulence models. The

motivation for this work comes from the observation that most CFD boiling and multiphase

models rely on correlations with empirically-determined parameters. These parameters of-

fer flexibility when matching theory to experimental data, which are generally limited and

available for only a handful of geometries and conditions. The parameters then become a

liability when simulating novel designs or conditions, as errors due to mistuning are generally

not quantified.

Knowledge of sensitivities of CFD results to these tunable parameters can aid uncertainty

quantification (UQ) studies by effectively reducing the dimension of the parameter space.

That is, parameters that do not strongly affect outputs may not need to be considered in

the UQ studies. In addition, combined with estimates of parameter variability, sensitivity

information can guide model improvement by identifying key parameters and associated

models to which outputs are most sensitive.

In this chapter, we examine two widely available multiphase simulation codes and their

ability to model an established benchmark problem that has experimental data (the DEB-

ORA experiments [44]). The two codes are Star-CD, a commercial package developed by CD-
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adapco [19], and Nphase, a research code developed at Rensselaer Polytechnic Institute [74].

UQ studies are performed for the various multiphase model parameters. Thousands of runs

of the simulations are required to complete the UQ studies, though the useful results have

relatively little quantitative data. This motivates the use of more precise and adaptive UQ

methods; we develop such a method in Chapter 3. In addition, difficulties with numerical

errors in the simulations are encountered. Numerical errors can go unquantified in Star-CD

and Nphase, potentially polluting the UQ study. This motivates the error estimation and

adaptive techniques used for the multiphase flow simulation in Chapter 4.

2.2 Star-CD Study

2.2.1 Approach

Numerous models exist for simulating multiphase flow, boiling, and turbulence. A com-

prehensive treatment of all possible formulations is beyond the scope of this work. Instead,

we choose to focus on a subset of models that are relatively standard and representative of

those used in thermalhydraulics applications. Specifically, we use the models implemented

in the commercial software package, STAR-CD from CD-adapco.

STAR-CD employs an Eulerian multiphase model that is representative of treatments

in other commercial codes. The model does rely on empirical correlations, and these are

included in the sensitivity study. Details on this model are given in the following section.

The boiling model is somewhat more contentious among codes, as many different theories

and correlations exist. To the author’s knowledge, however, the boiling model implemented

in STAR-CD has been validated for certain benchmark test conditions. This model also

relies on several empirical parameters, and the importance of these is investigated in the

sensitivity study. In addition, sensitivity to the form of the boiling model is assessed by a

parallel sensitivity study using a simpler model based on a single correlation.

Finally, the turbulence model implemented in STAR-CD is a high-Reynolds number k−ϵ
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model with a multiphase correction. Numerous closure parameters enter into this model,

but for generality and computational tractability, we consider only high-level effects due to

varying the computed turbulent eddy viscosity in both the fluid and the dispersed gas phase.

2.3 Star-CD Physical Models and Parameter Ranges

The physical models below are described as implemented in the STAR-CD program from

CD-adapco. Additional information can be found in the STAR-CD methodology docu-

ment [18].

2.3.1 Governing Equations

The equations governing mass, momentum, and energy transport in multiphase flow are

∂(αkρk)

∂t
+∇ · (αkρkvk) =

N∑
j=1

(ṁjk − ṁkj), (2.1)

∂(αkρkvk)

∂t
+∇ · (αkρkvkvk) = −αk∇p+ αkρkg +∇ · [αk(τ k + τ

t
k)] +Mk, (2.2)

∂(αkρkhk)

∂t
+∇ · (αkρkvkhk) = Qk +∇ ·

[
αk

(
λk∇Tk +

µt

σh
∇hk

)]
, (2.3)

where the phase-to-phase momentum and heat transfer sources are

Mk = FDk + FTDk + FLk + FVMk +
N∑
j=1

(ṁjkvj − ṁkjvk), (2.4)

Qk = αk
Dpk
Dt

+ αk(τ k + τ
t
k) : ∇vk +

∑
i̸=k

Qki +
∑
(ik)

Q
(ik)
k +

∑
i̸=k

(
ṁkih

(ik)
k − ṁikhk

)
.(2.5)

Quantities entering into these equations are defined as follows:

αk mass fraction of phase k

ρk density of phase k

vk velocity vector of phase k

ṁjk rate of mass transfer from phase j to phase k
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N number of phases

p pressure

g acceleration due to gravity

τ k laminar/turbulent viscous stress tensors for phase k

hk specific total enthalpy of phase k

λk thermal conductivity of phase k

Tk temperature of phase k

µt turbulent viscosity

σh turbulent thermal diffusion Prandtl number

Qki heat transfer rate from phase k to phase i

Q
(ik)
k heat transfer rate from phase k to the interface between i and k.

We restrict our attention to two-phase flows resulting from boiling, in which the two

phases are liquid (l) and vapor (g). Wall boiling is accounted for by two processes. First,

heat transfer from the wall to the liquid is added as a heat source. Second, the amount of

gas generated at the wall due to boiling is added to ṁlg. Details of the wall boiling model

are given in Section 2.3.5.

2.3.2 Phase-to-Phase Heat and Mass Transfer Parameters

When bubbles exist, heat and mass transfer between the liquid and vapor phases are

linked by the following equations, summarized in Figure 2.1.

Heat transfer from liquid to bubble interface = q̇l = HTClAi(Tl − Tsat) (2.6)

Heat transfer from vapor to bubble interface = q̇g = HTCgAi(Tg − Tsat) (2.7)

Liquid-to-vapor mass transfer rate = ṁlg = ṁ = (q̇l + q̇g) /∆hgl (2.8)
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Figure 2.1: Depiction of phase-to-phase heat and mass transfer

There is no coefficient to adjust the mass transfer rate directly in Eqn. 2.8, e.g. for the

purpose of a sensitivity study. Instead, the quantities that are available for adjustment are

the relationships for the interfacial area concentration and the individual heat fluxes.

2.3.2.1 Interfacial Area (Bubble Size)

The interfacial area concentration is given by the Eqn. 2.9, where the representative

bubble diameter is obtained in a manner similar to Kurul and Podowski [63].

Ai =
6max(αg, 1− αg)

db
. (2.9)

The expression for the bubble diameter db, is given by Eqn. 2.10, with baseline values of

db,0 = 0.15mm, db,1 = 2mm,∆T0 = 13.5K, and ∆T1 = −5K.

db =
db,1(∆Tsub −∆T0) + db,0(∆T1 −∆Tsub)

∆T1 −∆T0
(2.10)

For the purpose of the sensitivity study, a physical basis to bound the interfacial area con-

centration has not been obtained. Additionally, Eqn. 2.9 is not an empirical correlation, but

is an exact expression for a domain consisting of bubbles of the same size. We therefore work

with Eqn. 2.10, and without additional information on the calibrated baseline coefficients,

we adjust these by ±30%.
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2.3.2.2 Interfacial Heat Transfer Coefficients

The liquid-to-interface and vapor-to-interface heat transfer rates are given in Eqns. 2.6

and 2.7, respectively. The heat transfer coefficient HTCl is obtained from a Nusselt-number

correlation due to Ranz and Marshall [97], which states

Nul = 2 +K1Re
0.5
d Pr0.3l , K1 = 0.6(baseline). (2.11)

A lower bound of 2 on this Nusselt number is physical (corresponding to pure conduction),

however it is unclear how to place an upper bound – large Nul are physically attainable

in certain flow conditions. Without such case-dependent in formation, for the sensitivity

study, the coefficient 0.6 in the Ranz-Marshall model in Eqn 2.11 was adjusted by ±30%. A

plot of the Ranz-Marshall correlation against data for evaporating water drops is shown in

Figure 2.2. This plot shows that adjusting the coefficient in the Ranz-Marshall correlation

by ±30% from 0.6 encompasses all of the data.

For the vapor-to-interface heat transfer coefficient, HTCg, a fixed Nusselt number of 26

is used in the base model. For the sensitivity study the range of 2 to 30 was chosen in order

to encompass the limit of pure conduction.

2.3.2.3 Summary

A summary of the heat and mass transfer parameters chosen for the sensitivity study, as

well as their ranges, is given in Table 2.2.

Table 2.2: Summary of phase-to-phase heat and mass transfer parameters

Parameter Adjustment Explanation
db ±30% None

K1 in Ranz-Marshall K1 = 0.6± 30% encompasses experimental data
Nug 2 ≤ Nug ≤ 30 Conduction sets lower bound, no ba-

sis for upper bound
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Figure 2.2: Ranz-Marshall correlation plotted against data for evaporating water drops.
Error bands at ±30%.
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2.3.3 Phase-to-Phase Momentum Transfer Parameters

The phase-to phase momentum transfer forces are given in Eqn. 2.4. These consist of

(with subscript k dropped),

FD : drag force

FTD : turbulent dispersion force

FL : lift force

FVM : virtual mass force

2.3.3.1 Drag Force

The bubble drag force is given by

FD =
3

4

αgρlCD

db
|vr|,

where vr = vl − vg is the relative velocity.

The bubble drag coefficient, CD, is obtained using the correlation of Wang [116], given by

Eqn 2.12 and the coefficients provided in Table 2.3. Note that Red is the Reynolds number

based on the bubble diameter. Without additional details on the basis for adjustment of

this correlation, for the sensitivity study, the drag coefficient is varied in a range of ±30%

from the baseline value.

CD = exp
[
a+ b lnRed + c(lnRed)

2
]

(2.12)

Table 2.3: Parameters entering into the drag coefficient correlation due to Wang [116].

Red a b c
Red < 1 ln(24) -1 0

1 < Red < 450 2.699 -0.3358 -0.07136
450 < Red < 4000 -51.772 13.167 -0.8236

Red > 4000 ln(8/3) 0 0
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2.3.3.2 Turbulent Dispersion Force

The turbulent dispersion force is given by a correlation derived by Burns [14],

FTD = −3

4

αgρlCD

db
|vr|

νtl
σα

[
∇αl

αl

− ∇αg

αg

]
, (2.13)

where σα is an empirical turbulent Prandtl number with baseline value of 0.9. In our sensi-

tivity study we chose to adjust the turbulent dispersion force by varying σα by ±30%.

2.3.3.3 Lift Force

The lift force is given by Eqn. 2.14

FL = CLαgρlvr × (∇× vr), (2.14)

where the lift coefficient is obtained from a correlation due to Tomiyama. Figure 2.3 plots

the result of this correlation for one choice of relative speed, |vr| = 25 cm/s, a conservatively

high value. As shown, the lift coefficient is bound between -0.3 and 0.3 for bubble diameters

up to 2mm.

Figure 2.3: Tomiyama correlation for |vr| = 25 cm/s.
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2.3.3.4 Virtual Mass Force

The virtual mass force is given by Eqn. 2.15

FVM = CVMαgρl

[
Dvl

Dt
− Dvg

Dt

]
. (2.15)

The coefficient of the virtual mass force, CVM , is a function of the void fraction, and a plot

of its variation is shown in Figure 2.4. Since the void fraction in the DEBORA test case

Figure 2.4: Virtual mass force coefficient as a function of void fraction. Figure taken from
Ishii and Mishima [55].

does not exceed 50%, the virtual mass coefficient can by adjusted from 0 to 1.

2.3.3.5 Summary

A summary of the momentum transfer parameters chosen for the sensitivity study, as

well as their ranges, is given in Table 2.4.

2.3.4 Multiphase Turbulence Model

In the present work, turbulence is modeled using the high-Reynolds number k− ϵ model.

The equations solved govern k and ϵ in the continuous phase, and turbulent viscosity in the

29



Table 2.4: Summary of phase-to-phase momentum transfer parameters

Parameter Adjustment Explanation
Cd ±30% None
σα ±30% None
CL −0.3 ≤ CL ≤ 0.3 Tomiyama correlation
CVM 0 ≤ CVM ≤ 1.0 Ishii and Mishima

dispersed (gas) phase is obtained through a correlation. Following the description in [18],

the governing equations in the continuous (c) phase are

∂(αcρckc)

∂t
+∇ · (αcρcvckc) = ∇ ·

(
αc(µc + µt

c)

σk
∇kc

)
+ αc(G− ρcϵc)

+Sk2 +
∑
i̸=c

(
ṁcik

(ic)
c − ṁickc

)
, (2.16)

∂(αcρcϵc)

∂t
+∇ · (αcρcvcϵc) = ∇ ·

(
αc(µc + µt

c)

σϵ
∇ϵc
)
+ αc

ϵc
kc
(C1G− C2ρcϵc)

+Sϵ2 +
∑
i̸=c

(
ṁciϵ

(ic)
c − ṁicϵc

)
, (2.17)

where the definitions of the new quantities are as follows:

kc continuous phase turbulent kinetic energy

µc continuous phase molecular viscosity

σk turbulent Prandtl number for the kc equation

ϵc dissipation rate of kc

σϵ turbulent Prandtl number for the ϵc equation

C1, C2 empirical constants

G µc(∇vc + (∇vc)
T ) : ∇vc

Sk2, Sϵ2 phase interaction terms

Turbulent stress in each phase k (not to be confused with the turbulent kinetic energy

used in the above equations) is modeled using the eddy-viscosity approach,
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τ t = µt
k

(
∇vk + (∇vk)

T − 2

3
∇ · vkδ

)
− 2

3
ρkkkδ, (2.18)

where the turbulent eddy viscosity in the continuous phase is given by

µt
k = Cµρk

k2k
ϵk
. (2.19)

The coefficient Cµ is treated as a parameter for the sensitivity study. The eddy viscosity

for the dispersed (d) gas phase is also required, and it is obtained according to

µt
d =

ρd
ρc
C2

t µ
t
c, (2.20)

where the response function Ct that relates the viscosities is treated as a parameter for the

sensitivity study. The baseline value of Ct is a constant of 1. Finally, the phase interaction

source terms used above are expressed as

Sk2 = −Ai
νtc

αcαdσα
vr · ∇αd + 2Ai(Ct − 1)kc, (2.21)

Sϵ2 = 2Ai(Ct − 1)ϵc. (2.22)

2.3.5 Wall-to-Flow Heat Transfer Models and Parameter Ranges

The wall-to-flow heat trasnfer model implemented in STAR-CD by default employs a

heat-partitioning formulation. The parameters governing this heat transfer are included in

the present sensitivity study, and hence the model basics are reproduced below. In addition,

we consider an alternate wall-to-flow heat transfer model not based on heat partitioning,
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Chen’s correlation, and we include this model in the sensitivity study.

2.3.5.1 Heat Partitioning

In a heat-partitioning formulation, the heat transfer from the wall to the fluid in sub-

cooled boiling consists of three parts: single phase convective heat transfer, evaporative heat

transfer, and the quenching heat transfer,

q̇w = q̇c + q̇e + q̇q (2.23)

The evaporative heat flux is obtained from

q̇e =
πd3b
6
pρg∆hglfn

′′, (2.24)

where n′′ is the nucleation site density and f is the bubble departure frequency, given by

n′′ = (m∆Tsup)
p, (2.25)

f =

√
4

3

g(ρl − ρg)
db,wρl

. (2.26)

The wall is divided into two regions: Ae is the area fraction where evaporative heat transfer

occurs and Ac = 1 − Ae is the area fraction where single phase convective heat transfer

occurs. Ae is obtained from

Ae = FA
π

4
d2b,wn

′′, FA = 2. (2.27)

The single-phase convective heat flux and quenching heat flux are obtained using

q̇c = HTCc(1− Ac)(Twall − Tl), (2.28)

q̇q = HTCqAe(Twall − Tl), (2.29)
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where the single-phase heat transfer coefficient is obtained using the k− ϵ turbulence model

with wall functions. The quenching heat transfer coefficient is obtained using the model of

Del Valle and Kenning,

HTCq = 2f
√
twρlCp,lλl/π, tw = 0.8/f. (2.30)

A bubble departure size is needed to determine the evaporative heat flux and evaporative

area fraction. The expression of Tolubinsky and Kostanczuk [109], obtained for water at a

liquid velocity of 0.2 m/s, is used,

db,w = db,w,0 exp(−∆Tsub/∆T0). (2.31)

In this expression, the coefficient db,w,0 is set to 0.6mm which is modified from the original

value of 1.4mm. A value for ∆T0 of 45K is consistent with the original reference.

To reduce the number of parameters for the sensitivity study, this heat-flux partitioning

model was analyzed at a high-level by introducing multiplicative factors, ±30%, in front of

the individual heat fluxes. Hence all of the detailed low-level parameters in the sub-models

for the heat fluxes were not uncovered.

2.3.5.2 Chen’s Correlation

In Chen’s model [21], we assume that the total surface heat flux is made up of a nucleate

boiling contribution and a single-phase forced-convection contribution,

q̇w = HTCnb(Twall − Tsat) + HTC1ϕ(Twall − Tfluid). (2.32)
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In the present implementation in STAR-CD, HTC1ϕ is obtained via wall functions from the

turbulence model and HTCnb is obtained using

HTCnb = Cchen

[
k0.79f c0.45pf ρ0.49f

σ0.5µ0.29
f i0.24fg

]
∆T 0.24

sat ∆p0.75sat S. (2.33)

In the above equation, kf , cpf are respectively the thermal conductivity and heat capacity

of the fluid phase. The suppression factor, S, is defined as the ratio of the mean superheat

(∆Te) to the wall superheat (∆Tsat),

S =

(
∆Te
∆Tsat

)0.99

. (2.34)

For pool boiling, S = 1. For convective boiling, the value of S is obtained from a correlation

matching experimental data, as illustrated in Figure 2.5. The value of F in the figure is the

Figure 2.5: Correlation of the suppression factor to Reynolds number in Chen’s model.
This is Figure 7 in Chen’s original paper [21].

defined as:

F =

(
Re2ϕ
Ref

)0.8

, (2.35)

where the fraction in parentheses is the ratio of the two-phase Reynolds number to the

single-phase liquid Reynolds number. For subcooled boiling the value for F is unity. Finally,
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Cchen is a constant with baseline value of 0.00122.

2.3.6 Summary of all Parameters

A summary of all of the parameters considered, and their ranges is given in Table 2.5.

We note that for most of the parameters, the imposed variation for the sensitivity study is

±30%. Without additional information, this is a reasonable range for most parameters. The

only exception is the lift coefficient, which can assume both positive and negative values, and

which starts out at a small baseline value. However, iterative convergence problems were

encountered when the entire range from the Tomiyama correlation, −0.3 to 0.3, was used

for imposing variation in the lift coefficient. Therefore for the present study we restricted

the variation to 30% around the baseline hard-coded value in STAR-CD.

Table 2.5: Summary of all parameters considered for the sensitivity study.

Parameter Baseline Variation Comments
db Kurul+Podowski ±30%
K1 0.6 ±30% Encompasses experimental data
Nug 26 [2, 30] Conduction sets lower bound
Cd Wang correlation ±30%
σα 0.9 ±30%
CL -0.03 ±30% Tomiyama correlation not used
CVM 0 [0, 1] Ishii and Mishima
Cµ 1.0 ±30% Scaling factor for turbulent eddy viscosity
Ct 1.0 ±30% Scaling factor for gas/liquid viscosity ra-

tio
Cη′′ 1.0 ±30% Scaling factor for nucleation site density
Cqe 1.0 ±30% Scaling factor for evaporative heat flux
Cqq 1.0 ±30% Scaling factor for quenching heat flux
Cchen .00122 ±30% Coefficient in Chen’s boiling correlation
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Figure 2.6: DEBORA problem setup.

2.4 The DEBORA Test Problem

2.4.1 Geometry and Flow Conditions

A prototypical test case, the DEBORA experiment [44], was chosen to assess the perfor-

mance of CFD in modeling subcooled boiling. In the DEBORA experiment, the refrigerant

R12 is used as the working fluid to simulate pressurized water reactor conditions under low

pressure. Liquid R12 flows upward inside a vertical pipe having an internal diameter equal

to 19.2mm. The whole pipe can be divided axially into three parts: the adiabatic inlet

section (1m in length), the heated section (3.5m in length), and the adiabatic outlet section

( 0.5m in length). The system pressure is 1.459 MPa with inlet conditions specified at an

inlet velocity of 1.72m/s and void fraction of 0.001. The wall heat flux is 76.24 kW/m2.

Vapor bubbles are generated by nucleation onto the wall surface and they condense into

the subcooled liquid when they are far from the wall. In this experiment, local measurements

can be performed with a sensor displaced in the radial direction only [43]. At the end of

the heated section, the radial profiles of the void fraction and bubble diameter have been

measured by means of an optical probe, and liquid temperature has been measured by

thermocouples.

2.4.2 Discretization

The STAR-CD model of the DEBORA experiment uses an axisymmetric mesh, a por-

tion of which is shown in Figure 2.7. Multiple meshes were constructed with different axial

and radial resolutions for the purpose of the convergence study discussed in Section 2.5.
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Ultimately one mesh was chosen for the study of physical parameter sensitivities. Imple-

mentation of the wall-to-fluid heat transfer models is accomplished through the use Fortran

subroutines that are incorporated into STAR-CD through user-defined “ufiles.”

z

r
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s
o

lu
ti

o
n

ra
d

ia
l

axial resolution

flow direction

Figure 2.7: Portion of the mesh used in the STAR-CD model, and the definition axial and
radial mesh resolutions.

2.4.3 Outputs

Four outputs of engineering relevance are considered for the sensitivity study. The first

output is pressure drop over the channel (equal to the inlet pressure because of the prescribed

outlet pressure poutlet = 0),

∆p = p̄(z = 5m)− p̄(z = 0m) = −p̄(z = 0m) = − 1

0.0192m

r=0.0192m∫
r=0m

p(r, z = 0m) dr.(2.36)

The second output is the average wall temperature in the heated section

T̄w =
1

3.5

z=4.5m∫
z=1m

Tw(z) dz. (2.37)

Third is the radially-averaged void fraction at the end of the heated section

ᾱg =
1

0.0192m

r=0.0192m∫
r=0m

αg(r, z = 4.5m) dr. (2.38)
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Finally, the fourth output is the centroid of the radial void fraction profile

r̄αg =
1

0.0192m ᾱg

r=0.0192m∫
r=0m

rαg(r, z = 4.5m) dr. (2.39)

2.5 Star-CD Convergence Studies

Convergence studies were performed on the STAR-CD DEBORA model with the goals

of:

� Achieving robust iterative convergence.

� Investigating whether asymptotic output convergence is attained.

The following subsections present the results of these studies.

2.5.1 Mesh Anisotropy and Iterative Convergence

During initial variations of the mesh resolution, iterative convergence problems were en-

countered for some of the finer meshes. A study was performed to determine whether the

axial or radial resolution, or both, were responsible for the iterative convergence problems.

In this study, the radial mesh resolution was varied from 10 points to 30 points, and the

axial resolution from 100 points to 800 points. The results of the study are shown in Fig-

ures 2.8, 2.9, and 2.10, in the form of residual norm histories versus iteration.

As shown in Figures 2.8, 2.9, and 2.10, convergence problems occur predominantly when

the radial mesh resolution is fine relative to the axial mesh resolution. In particular, an axial

resolution of 800 points shows no iterative convergence problems for any of the radial mesh

resolutions tested.

Given the anisotropy of the domain (length to diameter ratio of 260), meshes without a

large number of axial points will contain cells of moderate to high anisotropy. For example,

in the 100× 10 mesh, the cell aspect ratio is 26. In the 800× 10 mesh it becomes 3.3. The

data show that large cell anisotropy (greater than approximately 12) correlates to iterative
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(a) nz = 100, nr = 10 (b) nz = 200, nr = 10

(c) nz = 400, nr = 10 (d) nz = 800, nr = 10

Figure 2.8: Iterative convergence histories for low radial resolution, for various axial mesh
sizes.
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(a) nz = 100, nr = 20 (b) nz = 200, nr = 20

(c) nz = 400, nr = 20 (d) nz = 800, nr = 20

Figure 2.9: Iterative convergence histories for medium radial resolution, for various axial
mesh sizes.
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(a) nz = 100, nr = 30 (b) nz = 200, nr = 30

(c) nz = 400, nr = 30 (d) nz = 800, nr = 30

Figure 2.10: Iterative convergence histories for high radial resolution, for various axial
mesh sizes.
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convergence problems, and hence our recommendation is to work with meshes with suffi-

cient axial resolution to make the anisotropy relatively low. We point out that under this

definition, the 400× 20 mesh is just on the border of sufficient axial resolution.

2.5.2 Asymptotic Convergence

For a convergent discretization, output errors are expected to decrease at a rate of at

least first order with mesh refinement. A study was undertaken to determine whether such

rates were observed for the outputs of interest in this study. Specifically, three outputs were

considered: pressure drop, average wall temperature, and radially-averaged void fraction at

the end of the heated section. We note that for some meshes iterative convergence was not

attained, and these data were not included in the convergence study.

As the turbulent boundary layer treatment makes use of wall functions, which are not

applicable beyond a certain near-wall resolution, radial refinement was performed with a

fixed first node off the wall at y+ ≈ 40 − 50. Additional nodes were then spaced equally

in the remaining radial distance. We note that an initial version of this study did not keep

this distance fixed, and the refinement results did not show convergence, especially for the

pressure drop.

If the outputs were convergent, and if we were in the asymptotic regime in terms of

mesh resolution, we would expect the output values to asymptote/level-off with increasing

radial/axial resolution. More precisely, a first order convergence rate would dictate a halving

of the error with each doubling of resolution. Although without exact solutions the output

error is not directly available, convergence can still be assessed by monitoring output values

at three or more successive resolutions. Visually, this assessment is made easier by plotting

outputs versus a logarithmic scale of resolution.

Figure 2.11 shows the results of axial and radial refinement studies for the three outputs,

using the baseline Eulerian multiphase model in STAR-CD. We note that with the excep-

tion of average wall temperature versus radial resolution, none of the plots demonstrate
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asymptotic convergence. That is, the changes in the output do not decrease, and sometimes

increase, with additional mesh resolution.

The author’s first suspicion concerning the lack of asymptotic convergence fell on the

multiphase model. To investigate whether this model is responsible for the lack of conver-

gence, the same study was redone with the interfacial area concentration manually set to

zero in the code. This effectively turned off phase-to-phase heat transfer. The resulting plots

are shown in Figure 2.12. The plots showing outputs versus radial resolution appear qual-

itatively improved, inasmuch as changes in the output appear to decrease with additional

resolution. We note that at increased axial resolution, the convergence rate slows down.

Additional points at higher resolutions would help clearly determine the rate, but these were

not attainable due to iterative convergence problems.

More troublesome in Figure 2.12 is the behavior of the outputs with increasing axial

resolution. In this case, none of the outputs demonstrate convergence, and in most cases the

changes in the outputs grow with additional axial mesh resolution.

Based on the lack of observed convergence in these results, a single phase simulation

was performed to assess whether the lack of convergence arises from the multiphase/boiling

models, or from other factors such as turbulence modeling, mesh refinement strategy, etc.

Figure 2.13 shows the results of this study. Note that void fraction is no longer present as

an output. In addition, this case differs from the previous ones in that the wall flux was

reduced 10% to suppress boiling.

The results in Figure 2.13 show much improved convergence of the pressure drop output

with radial resolution. The average wall temperature also appears to be converging with

radial resolution, albeit at a slower rate. While convergence with axial resolution is not

demonstrated, we note that the changes in the outputs with axial resolution are small, and

nonzero residuals from imperfect iterative convergence could be partially responsible.

The above results show that asymptotic convergence with radial resolution is possible for

single phase and for sub-cooled boiling with no interfacial area transport. With multiphase
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(a) Average wall temperature (b) Average wall temperature

(c) Pressure drop (d) Pressure drop

(e) Average void fraction (f) Average void fraction

Figure 2.11: Mesh refinement convergence results for the base Eulerian multiphase model.
Note, in the radial refinement, the first point off the wall remains fixed.
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(a) Average wall temperature (b) Average wall temperature

(c) Pressure drop (d) Pressure drop

(e) Average void fraction (f) Average void fraction

Figure 2.12: Mesh refinement convergence results for the Eulerian multiphase model with
interfacial area manually set to zero. In the radial refinement, the first point
off the wall remains fixed.
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(a) Average wall temperature (b) Average wall temperature

(c) Pressure drop (d) Pressure drop

Figure 2.13: Mesh refinement convergence results for a single-phase simulation, with the
first point off the wall at a fixed location.
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heat transfer included, however, convergence in axial and radial mesh resolutions (indepen-

dently) does not exist for the mesh sizes tested. Based on this result, we advise caution

when using these models, as implemented in the software used, at comparable resolutions.

It is plausible that increased mesh resolution might help (i.e. that the above results are not

yet asymptotic). However, iterative convergence problems were encountered when attempt-

ing finer simulations, which also became significantly more demanding computationally. On

more complex geometries, such finer resolutions would likely become prohibitive.

Finally, we make the remark that mesh anisotropy could possibly be a factor in asymptotic

convergence as well. Refining only in the radial direction or only in the axial direction does

not preserve cell anisotropy. If the numerical scheme introduces errors that are not bounded

with increasing anisotropy, then lack of convergence in each individual refinement approach

might not imply lack of convergence with uniform refinement. Uniform refinement studies

with the baseline Eulerian multiphase model were performed, and the conclusion from those

studies was that the outputs were not convergent, most egregiously for the pressure drop.

Given plausible explanations for lack of convergence, but finite resources to investigate

all possibilities, we resolved to proceed with the sensitivity study on a baseline mesh of 400

radial by 21 axial resolution. This mesh is not the finest tested, yet changes in the outputs

with additional refinement were not large in magnitude from an engineering standpoint.

2.6 Star-CD Sensitivity Studies

2.6.1 Methods

A Monte-Carlo approach was used to perform to the sensitivity study. Latin-Hypercube

sampling, which attempts to ensure that the parameter space is fully explored, was used to

determine the appropriate values of the parameters to simulate.

For both boiling models tested, all of the parameters were varied together in a mono-

lithic sensitivity study. The complete list of parameters and associated ranges is given in
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Section 2.3.6. We note that due to the high-level treatment of some of the models, such as

heat-partitioning boiling, any magnification of uncertainties in sub-models was ignored. That

is, a variation in heat transfer of ±30% may imply a variation of some empirical constant

by 0.001%, or possibly 200%, depending on the structure of the sub-model.

For each parameter, a prior probability distribution was assumed. As noted in Section

2.3, fixed percentage variation was used in the absence of comprehensive a priori information

about the ranges or distributions of the model parameters. In addition, each parameter was

assumed to have a uniform probability density function within that range.

The Sandia DAKOTA sensitivity and uncertainty analysis software [3] was used to gen-

erate the Latin-Hypercube samples and execute STAR-CD with the modified parameters.

STAR-CD only provides point-wise outputs, and these were stored in text files that were

post-processed to yield the integrated outputs of interest. The integration was performed

using a third-order method for the evenly-spaced points in the axial direction. In the radial

direction, the mesh size varies, so the simpler midpoint method was used.

2.6.2 Parameter and Model Selection

The goal of the study was to find the most important uncertain parameters of approxi-

mate or empirical relations used in the STAR-CD two-phase flow model. Parameters were

chosen to split up the two-phase flow model into a few major components. During initial

prototyping, one parameter in each component was varied, and in subsequent studies the

models and sub-models in the important components were varied. Each of these components

may comprise a number of models, correlations, and empirical factors, but including all of

those parameters in a sensitivity study would be prohibitively expensive. The dimensional-

ity of the problem was reduced so that important components could be isolated for further

study. The components involving uncertain parameters were as follows:

� gas-liquid heat and mass transfer

� gas-liquid momentum transfer (drag, lift, virtual mass, and turbulent dispersion forces)
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� void fraction, interfacial area

� wall-to-flow heat transfer (heat partitioning model or Chen’s correlation)

� turbulence

It was not possible to vary all of the components directly. For example the user cannot

place a pre-multiplier on the drag force, FD, directly. However, the routine that calculates

CD can be altered by the user. Thus, we chose a set of parameters that were available for

user-specification such that each component was linearly related to at least one parameter.

The parameters actually varied and their ranges are described above in Section 2.3. They

were

Nug, K1, CD, CL, CVM , σa, db, µ
t
ℓ, Ct, {qe, n′′, qq} or {Cchen}

Figures 2.14 and 2.15 show how these parameters (boxed) are used in the various models. We

could not avoid the fact that some parameters affected multiple components simultaneously.

However, the effects of each component can be deduced from the effects of the parameters

and the relationships described in Figures 2.14 and 2.15.

2.6.3 Results

For each parameter, results of the sensitivity study yielded a correlation of that parameter

to the four outputs. This correlation is a measure of how strongly the output is dependent

upon the parameter. A correlation coefficient of almost one (or minus one) means that the

parameter is responsible for most of the variation in the output. It does not give information

about how sensitive the physical output is to that parameter.

The correlation coefficients between the parameters should be zero if DAKOTA chose

them independently. This is satisfied because all of the correlations were less than 0.1 in

absolute value. In the heat flux partitioning model study there were 12 parameters and 836
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Figure 2.14: Heat transfer models and parameters in STAR-CD.
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Gas-Liquid Momentum Transfer
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Figure 2.15: Momentum transfer models and parameters in STAR-CD.
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total runs, of which 336 did not converge to the pre-set residual tolerance of 10−7, but ran up

to the maximum 2500 iterations. The study with Chen’s correlation had 10 parameters and

600 total runs, of which 155 did not reach the residual tolerance. Figures 2.16 and 2.17 show

the histograms of the residuals for both studies, which indicates that most runs were well

converged, even if they did not reach the somewhat strict residual tolerance. Some of the data

points did contain large residuals, and these were manually removed before post-processing.

Figures 2.21 and 2.22 show that there are no major outliers in the outputs.

2.6.3.1 Heat partitioning model

Figure 2.18 shows, for each parameter, the correlation coefficients with respect to the four

outputs. From this figure we can make a few remarks. First, the most important parameters

are bubble diameter (db), liquid Nusselt number (K1), turbulent viscosity coefficients (Cµ

and Ct), nucleation site density (n′′), and evaporative heat flux (q̇e). The liquid turbulent

viscosity (Cµ) is mainly important for the pressure drop, and the virtual mass coefficient is

moderately important. The wall-to-flow model in Figure 2.14 shows that n′′ affects all of

the heat fluxes equally (since it is linearly related to each of them). From the correlation

coefficients, it is clear that n′′ and q̇e have the same effect, whereas q̇q has no effect. Thus

we conclude that n′′ is in this case acting only through q̇e, and q̇c has little effect.

Also, we note that the correlation coefficients with the void fraction (ᾱg) have the opposite

sign as those for the pressure drop (∆p) and the centroid of the void fraction profile (r̄αg).

Thus, in general higher void fractions implies lower ∆p (higher inlet pressure) and more

bubbles near the center of the pipe. Although the STAR-CD model cannot predict the void

fraction peak moving away from the wall, it does successfully model the fact that more

bubbles tend to be located in the middle of the pipe with higher temperatures and more

boiling [61]. We can further see this by looking at the correlations between the outputs. The

void fraction ᾱg has a correlation coefficient of −0.77 with respect to ∆p and −0.82 with

respect to r̄αg . Note that this trend is not true of the gas turbulent viscosity parameter Ct.
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When Ct increases, r̄αg decreases as expected, but ∆p increases. This may be due to the

increased mixing in the gas phase that occurs with higher Ct, which would lead to more and

larger bubbles further from the wall, which leads to a larger pressure drop.

The left plot of Figure 2.20 shows, for each output, the correlations of all of the param-

eters. First, the average wall temperature is almost exclusively affected by the evaporative

heat flux (as mentioned above, we can infer that n′′ acts only through q̇e).

Second, the gas Nusselt number Nug, the turbulent Prandtl number σα, and the lift

coefficient CL have little effect on any of the outputs. It is interesting to note that the liquid

Nusselt number has a relatively strong effect, although the gas Nusselt number does not. This

implies that there is little condensation going on, and heat is mostly being transferred from

the liquid to the gas. Also, the relative unimportance of σα implies that bubble drag due to

turbulent eddies is of little importance. The insignificance of CL can be partially attributed

to the fact that the values were quite small, but the other bubble forces (turbulent dispersion,

drag, and virtual mass) had relatively small effects on the outputs.

Third, the bubble diameter (db) has a strong effect on all of the outputs except the

average wall temperature. This observation has been made previously, most recently by Lo

et al [76].

Overall, we can give the following summary

1. Bubble diameter is the most important parameter overall.

2. Evaporative heat flux is the only important parameter for average wall temperature,

and is important for the other outputs as well.

3. Liquid-to-gas heat transfer and turbulence modeling are important.

4. Momentum transfer is overall not as important.

Figure 2.21 shows some scatter plots of the data. From these we can identify the physical

sensitivities as well. The variations of the outputs are shown in Table 2.6. From these vari-

ations we see that ∆p is not predicted well, and that ᾱg is predicted to a coarse engineering
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accuracy. The average wall temperature is predicted relatively well. Although r̄αg seems to

be predicted well here, we know that the void fraction profile is not accurate (see [61]). The

apparent small sensitivity of r̄αg implies that varying (or tuning) the parameters will prob-

ably not significantly improve the prediction of the void fraction profile. Again, a possible

exception to this is the lift coefficient, which was not varied significantly in this study, but

which could have a strong effect on the void fraction centroid.

2.6.3.2 Chen’s correlation

Output Approximate Range

∆p 2000-4000 Pa

T̄w 335-337 K

ᾱg 0.19-0.28

r̄αg 6-7.5 mm

Table 2.6: Overall variation of outputs for
Star-CD using the heat partition-
ing model.

The results for the Chen’s correlation

study are quite similar to those of the heat

partitioning model study. In particular, Fig-

ure 2.19 shows all of the same patterns as

Figure 2.18, with the Chen’s correlation pa-

rameter Cchen having a large impact on the

wall temperature T̄w. One exception is that

Cchen had little impact on the other outputs,

compared to the wall boiling parameters in

the heat partitioning model.

From Figure 2.20, we can see that Cchen is more strongly correlated to the wall tempera-

ture than q̇e was, which is consistent with the fact that Chen’s correlation is a simpler wall

boiling model than heat partitioning. Also, it is again clear that Cchen had less of an impact

on the other outputs than does q̇e. All other correlations are nearly the same between the

two studies.

Figure 2.22 shows a few scatter plots of the data. The strong correlation between Cchen

and T̄w can be seen, along with the overall ranges of the outputs, which are similar to those

in Table 2.6.

The heat partitioning model for wall boiling is complicated and therefore affects the

54



−8 −7 −6 −5 −4 −3 −2 −1
0

100

200

300

400

500

600

log10 of Resdiual

Histogram of residuals: Momentum

−11 −10 −9 −8 −7 −6 −5 −4 −3
0

50

100

150

200

250

300

log10 of Resdiual

Histogram of residuals: Mass

−12 −11 −10 −9 −8 −7 −6 −5
0

100

200

300

400

500

log10 of Resdiual

Histogram of residuals: Energy

−8 −7 −6 −5 −4 −3 −2
0

100

200

300

400

500

log10 of Resdiual

Histogram of residuals: Turbulence

−10 −9 −8 −7 −6 −5 −4
0

50

100

150

200

250

300

log10 of Resdiual

Histogram of residuals: Liquid Phase

Figure 2.16: Histograms of residuals for heat partitioning model

overall solution and the outputs ∆p, ᾱg and r̄αg . The simpler Chen’s correlation has less

interaction with the rest of the solution. Therefore, it strongly affects the wall temperature,

but does not affect the rest of the simulation.

As a final note, we have seen that small values of CVM tend to cause problems with

iterative convergence. This can be seen in the upper-middle plot of Figure 2.22, where the

cases that did not reach the residual tolerance tend to be clustered toward low CVM . Also,

many of the cases that did not converge at all had very low values of CVM . In addition,

Figures 2.16 and 2.17 show that the momentum equation generally has the largest residual,

probably due to the same problem.

55



−8 −7 −6 −5 −4 −3 −2 −1
0

100

200

300

400

500

log10 of Resdiual

Histogram of residuals: Momentum

−11 −10 −9 −8 −7 −6 −5 −4 −3
0

50

100

150

log10 of Resdiual

Histogram of residuals: Mass

−12 −11 −10 −9 −8 −7 −6 −5
0

50

100

150

200

250

300

350

log10 of Resdiual

Histogram of residuals: Energy

−8 −7 −6 −5 −4 −3 −2
0

50

100

150

200

250

300

log10 of Resdiual

Histogram of residuals: Turbulence

−10 −9 −8 −7 −6 −5 −4 −3
0

50

100

150

200

250

300

log10 of Resdiual

Histogram of residuals: Liquid Phase

Figure 2.17: Histograms of residuals for Chen’s correlation.
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Figure 2.18: Correlation coefficient between parameters and outputs, heat partitioning
model
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Figure 2.19: Correlation coefficient between parameters and outputs, Chen’s correlation
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Figure 2.20: Correlation coefficient between outputs and parameters for heat partitioning
model (left) and Chen’s correlation (right)
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Figure 2.21: Selected scatter plots, parameter values versus outputs for heat partitioning
model
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Figure 2.22: Selected scatter plots, parameter values versus outputs for Chen’s correlation

2.6.4 Conclusions

This chapter presents the results of a mesh convergence and a sensitivity study of boiling,

multiphase, and turbulence models in thermalhydraulics simulations. Most of the models

considered, with the exception of a new boiling correlation, are the defaults implemented in

the commercial software package chosen for this study, STAR-CD.

The target problem is a simulation of the DEBORA-10 experiment of R12 flowing through

a vertical pipe with a heated test section. Outputs of interest consist of axial pressure drop,

average wall temperature in the heated section, average void fraction at the end of the heated

section, and the centroid of the radial distribution of the void fraction at the end of the heated

test section. Sensitivity results for this problem demonstrate that bubble diameter is the

most important overall parameter affecting the chosen outputs. Parameters governing the

boiling model also show significant correlation with the outputs, with evaporative heat flux

dominating the other terms in the heat-partitioning model. Turbulence terms are relatively

important as well, but phase-to-phase momentum transfer terms do not show significant ef-
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fect on the outputs in this problem; however, regarding the lift coefficient, no firm conclusion

is possible as the baseline value is small in magnitude relative to the plausible range. Finally,

variations in the boiling model based on Chen’s correlation have a similar effect on the wall

temperature output and a reduced effect on other outputs when compared to variations in

the heat-partitioning model.

These conclusions are based on studies for one target problem. The extent to which the

results generalize to other geometries and flow conditions requires further study. Neverthe-

less, we expect that conclusions concerning some of the fundamental underlying processes,

specifically the importance of bubble diameter [76] and boiling models, to remain valid for

other simulations involving sub-cooled boiling.

2.7 Nphase Study

The overall goal of this work is to perform a sensitivity study of the multiphase fluid

dynamics models in Nphase [75]. First, we will describe the grid and model setup, which

was complicated by several factors. Following this, we discuss convergence and solution

verification. Further work was done to choose relevant parameters and their ranges for the

sensitivity study. Finally, the sensitivity study was performed and the results interpreted.

Numerous models exist for simulating multiphase flow, boiling, and turbulence. A com-

prehensive treatment of all possible formulations is beyond the scope of this work. Instead,

we choose to focus on a subset of models that are relatively standard and representative

of those used in thermalhydraulics applications. In this section, we compare the software

package Nphase-CMFD from Rensselaer Polytechnic Institute with the Star-CD software

from CD-Adapco, discussed previously. The boiling model is somewhat more contentious

among codes, and in the case of Nphase it is not yet implemented. We therefore “hard-wire”

data from the heat partitioning distribution obtained using Star-CD when using Nphase for

sensitivity studies.
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2.7.1 Simulation Codes

Star-CD employs an Eulerian multiphase model that is representative of treatments in

other commercial codes. Boiling is modeled by a variation of the Kurul-Podowski heat-

partitioning model. Star-CD serves as the baseline reference code for this work, and it

provides heat-partitioning data to Nphase,

Nphase-CMFD is a code developed at RPI. The finite volume, parallel code can handle

two- and three-dimensional unstructured grids. Many built-in multiphase models are avail-

able, and user defined C-subroutines, with access to all data structures in the code, allow

much flexibility. The code generally solves the same equations as Star-CD, see Section 2.3.

There are some terms in the governing equations that are modeled slightly differently. A

detailed comparison of the equation sets is given in Appendix B. Note, Nphase turbulent

treatment includes both high and low Reynolds number models. The low Reynolds number

model would presumably overcome some of the difficulties encountered with mesh refine-

ment in Star-CD, allowing much finer resolution near the wall, but at the cost of more

time-consuming simulations. In order to compare more directly with Star-CD, only the

high-Reynolds number model was used in the results presented here.

Some features that are necessary for the DEBORA case have not yet been implemented.

First, there is no wall boiling model. Thus, one must provide some input specification of how

the heat flux is partitioned among the liquid and vapor phases. Since this depends on the

problem being solved, we used the heat partitioning from the converged Star-CD solution.

Second, the bubble diameter is fixed for the entire domain. This could be overcome by

defining multiple populations of bubbles, each with its own fixed size. However, that would

require defining interactions between all of the bubble populations, which quickly becomes a

very complex task. Instead, we simply specify a fixed bubble diameter based on the Star-CD

solution.

Finally, there is no support for transferring solutions between meshes. This means that

we must solve on our mesh of interest, starting from a programmable initial condition. A
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coarser mesh cannot be used to initialize the solution. This makes it more difficult to reach a

converged solution and requires finding an initial condition with a stable path to the solution.

While investigating Nphase, it became necessary to document the major modeling differ-

ences between Nphase, Star-CD, and Star-CCM+ for later comparisons. The models used by

each code can be compared side by side, along with some information on other models devel-

oped by the multiphase community. This comparison also informs the choice of parameters

and ranges in the sensitivity studies. The comparison can be found in Appendix B.

The discretizations available in Nphase are first and second order upwind and hybrid finite

volume schemes. The mass and momentum equations are coupled and solved implicitly,

while other equations are treated explicitly. The solution process is controlled by under-

relaxation parameters and pseudo time stepping, along with some robustness enhancements

(e.g. capped turbulence production).

2.8 Nphase Problem Setup

2.8.1 Wall Boiling Model

Since wall boiling is not implemented, the user must set the heat partitioning program-

matically in a C-subroutine. That is, the user decides, for every cell, the fraction of the

wall heat flux that causes liquid heating and the fraction that causes bubble generation and

the remaining that causes gas heating. In this example, as in the Star-CD heat partitioning

model, we set the gas heating to zero. That is, any heat that does not cause liquid heating

will generate vapor. This can be a problem if the void fraction reaches 1.0, since then any

excess heat that goes into gas generation is ignored and effectively lost. Thus, we must

ensure that during the solution process, none of the cells near the heated wall have a void

fraction of 1.0.

In order to have a realistic solution, we set the heat partitioning profile to the profile

from the Star-CD DEBORA solution, which is shown in Figure 2.23. We took this approach
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because our overall goal is to calculate the model sensitivities in both Star-CD and Nphase,

and to compare the codes. The profile taken from Star-CD was run on a uniformly spaced

800x20 mesh with residuals converged as documented in previously. The profile, which

ranges from 0 to about 70% of the heat going to gas generation, was fitted by hand with

three quadratics. The resulting fit had an estimated L2 error of 2.25 percentage points.

Gas generation in Nphase requires specifying a porous wall and injecting the gas with a

small velocity. It precise velocity is not important, as long as it does not affect the overall

momentum balance. The actual condition that is enforced is the imparted mass flux. The

chosen velocity of 7.45 × 10−2 m/s was verified to not significantly affect the momentum

balance (contributes an additional 0.016% to the overall momentum at the wall).

2.8.2 Bubble Diameter

In the Nphase solution, the bubble diameter was fixed at 7 × 10−4m. This value was

chosen by visually inspecting the Star-CD solution. The converged temperature distribution

was used to calculate the bubble diameter that Star-CD would have used (i.e. the db(T )

correlation), which gave db ∈ [1.5 × 10−4, 18.46 × 10−4]m with an average of 6.35 × 10−4m.

Thus, the fixed value gives a relatively good estimate of the average bubble diameter. The

error was considered small compared to the large range of db in Star-CD. The sensitivity

study will determine if this range of db has a significant influence on the solution and the

outputs of interest.

2.8.3 Computational Mesh

The computational mesh to be solved on was a 2D, axisymmetric, structured mesh.

Solutions were found using both the low-Re and high-Re turbulence models, which require

different meshes. For the low-Re model, the mesh must resolve the entire viscous sublayer

near the wall. For the DEBORA test case, this results in a very small grid spacing near the

wall of 1.5× 10−6m which gives a y+ slightly below 1 for the converged solution.
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For the high-Re model, a much coarser mesh is possible, since we require the mesh spacing

near the wall to have a y+ ≳ 50. A spacing of 4 × 10−4 results in 50 ≲ y+ ≲ 80 for the

converged solution. The mesh had 30 cells in the radial direction and 400 axially, which was

deemed sufficient resolution by visual inspection. The only quantity that varies rapidly with

respect to mesh spacing is the radial velocity, where there seems to be a discontinuity at the

end of the heated section. In this work, we did not have time to investigate why this happens

or if resolving this feature significantly changes the solution. However, we have encountered

numerous cases in which the radial velocity distribution is strongly affected by parameters

that otherwise have little or no effect on the solution. Thus, we assume that resolving the

(relatively small) radial velocity would not significantly change the solution. We should also

note that the radial momentum equation almost always had the highest relative errors in

converged solutions.

Although a solution on the low-Re mesh was converged, it was prohibitively expensive

to do further tests or use it in the sensitivity study. Thus, all of the data and results in this

report are based on the high-Re solution.
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Figure 2.23: Heat partitioning profile from Star-CD DEBORA solution.
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2.8.4 Additional Code

In order to reach a converged solution, an extra block of code was written to dynamically

modify the false time step and relaxation factors. This was based on a simple strategy

to accelerate the solution process if the solution is converging, and to severely slow down

progress when the solution is degrading and becoming unstable. The only data available

to identify how the solution is converging are the state updates (residuals of the governing

equations are not computed). In addition, it would be advantageous to discard bad updates

and re-calculate them with a smaller time step. This was possible only for some of the

equations, since not all of the update values are available in the user-coded subroutines. In

the end, the added capability contributed only modestly to the results.

The recommended method for assessing convergence in Nphase is checking the magnitude

of the state updates, specifically the root-mean-squared update (not taking into account the

mesh spacing). Since each variable is scaled differently (e.g. pressure is on the order of

106Pa, velocity around 1m/s), the updates must be compared to the magnitude of the

state. To make this process easier, code was written to compute the root-mean-squared

state, and convergence was assessed using the ratio RMS(update)/RMS(state). Note, the

mesh spacing was not taken into account here. Also, rather than looking at each velocity

component separately, since some velocities could be close to zero, we look for convergence

of the magnitude of the velocity vector.

Another feature that was implemented was a ramping-up of the wall heat and mass fluxes

during the initial phases of the solution, in order to automate the process of reaching a

converged solution. As a result, it was necessary to add additional code to programmatically

set the wall boundary condition and change it during iterations.

2.8.5 Getting to a Converged Solution

In order to arrive at a converged solution, we took a number of steps from simple flows

to the final DEBORA case. At each stage, the solution from the previous stage was used
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as the initial condition. Before moving to the next stage, the solution at a given stage was

converged as much as possible. The stages were

1. Compute the approximate, fully developed turbulent pipe flow solution using known

profiles from the literature. Velocity and pressure fields were computed.

2. Solve for the single-phase, unheated pipe flow. The goal is to solve for the turbulent

quantities.

3. Solve for multi-phase, heated pipe flow with full heat flux but mass flux reduced to

10% of nominal.

4. Slowly increase to full mass flux.

If these steps are not followed (e.g. some were skipped), it is not possible to iteratively

converge a solution.

2.9 Nphase Baseline Solution

The convergence of the DEBORA solution while increasing the mass flux is shown in

Figure 2.24. The root-mean-square (RMS) of the state update, normalized by the RMS of

the state, is plotted for the eight states. Each spike in the plot represents an increase in the

mass flux and a restarting of the solution. The enthalpy (“h”, the yellow line) converges

quite quickly, since the energy equation is linear. The pressure and turbulent quantities (“p”,

“k”, and “e”) converge to the point where relative updates are ≈ 10−6. The void fraction

and velocity magnitude (“a” and “u”) do not converge as well, but relative updates are still

less than 0.1%. Finally, the radial velocity component (“v”, the green line) has constant

oscillations around 1%. This may be due to the discontinuous nature of the radial velocity

profile, as seen in Figure 2.25. Since the radial velocity component is not generally of much

interest, and its magnitude is quite small compared to the axial velocity, we did not attempt

to further address the issue.
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The final solution is plotted in Figures 2.25 and 2.26. The calculation was done with

an axisymmetric mesh, so only a cross section is shown. The top of the plot represents the

wall of the cylinder, and the bottom is the centerline, and the flow is from left to right. The

inlet effects, boundary layer, and radial velocity feature at the end of the heated section are

apparent in Figure 2.25. Even though the velocity at the cell adjacent to the wall is far

from zero, the wall functions in the High Re trubulence model enforce the correct boundary

conditions. The heat transfer from the wall and the bubbles generated are apparent in

Figure 2.26. The temperature exceeds the boiling point of 331.3K, so some bulk boiling

occurs near the end of the heated section.

The void fraction is nearly constant close to the wall because the lift force is set to zero

here. Further from the wall, the lift force causes the bubbles to migrate toward the center

of the pipe. The baseline solution shown in Figure 2.26 uses a lift coefficient of CL = −0.03

and the lift force is disabled within one bubble diameter from the wall (ŷwall = 1). The void

fraction distribution is highly dependent on the chosen lift model and varies considerably

between Nphase, Star-CD, and Star-CCM+. An experimentally determined void fraction

profile is available at the end of the heated section, and Figure 2.27 shows this along with

various computational models.

2.9.1 Checks and Verifications

The following checks were performed to ensure that the problem was set up correctly.

� Low- and High-Re models give similar solutions

� Verified energy conservation (modified due to gas injection)

� Negligible effect of added momentum due to gas injection

� Successful alternate implementation of mass and energy transfer,

similar to Star-CD implementation
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Figure 2.24: Convergence of Nphase baseline solution for DEBORA problem. Spikes are
when mass flux was increased and solution process restarted.

Figure 2.25: Nphase baseline solution for DEBORA problem. Top is axial velocity, bottom
is radial velocity of the liquid phase.
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Figure 2.26: Nphase baseline solution for DEBORA problem. Top is temperature of the
liquid, bottom is void fraction.

Figure 2.27: Comparison of void fraction profiles at the end of the heated section from
various simulations and experimental data. Note, the “step-ladder” effect for
Star-CCM+ is merely an artifact of the sampling method chosen; it is not a
part of the solution.
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� CL > 0 hinders convergence,

stabilized by setting CL(r > R− db) = 0

� Radial velocity artifact at end of heated section is grid-independent

and appears in Star-CD and Star-CCM+

2.9.2 Heat Partitioning Sensitivity Study

Since a sensitivity study was performed, it was necessary to see if parameter variations

modify the wall heat partitioning profile that was taken from the Star-CD solution. Param-

eters with the strongest effect on outputs were CL, db, and Cµ. A centered parameter study

was performed to assess variability in the heat partitioning profile. Although the values of

CL in the Star-CD sensitivity study were conservative (−0.03 ± 30%), we now wish to ex-

plore a larger range of CL. The literature survey suggests that CL ∈ [−0.3, 0.3], but Nphase

does not converge well for CL ≳ −0.01. Table 2.7 shows the parameters and ranges, and

Figure 2.28 shows the resulting profiles. If we define ql as the heat flux going into the liquid

and qg as the heat causing boiling, then the plot shows

(
qg

ql + qg

)
−
(

qg
ql + qg

)
baseline

= q̂g − q̂g,baseline.

Thus, parameter variations cause at most a 3 percentage point change in the profile. This is

the same order of magnitude as the interpolation error encountered in importing the profile

into Nphase.

Table 2.7: Parameters for sensitivity study of heat flux partitioning profile.

Parameter Range Reasoning
CL [−0.1,−0.01] required for convergence
db ±30% used in Star-CD sensitivity study
Cµ ±30% used in Star-CD sensitivity study

In order to see how much modified heat partitioning profiles affect the outputs of interest,
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Figure 2.28: Variation of heat partitioning profile from Star-CD DEBORA solution.

Nphase was then run with the (four) heat partitioning profiles for the modified db and CL.

The parameters in Nphase remained at baseline, only the heat partitioning was changed. The

resulting variation in the outputs is shown in Table 2.8. Previous work on the sensitivity

of Star-CD showed that these variations in the outputs are small compared to variations in

the outputs from directly altering parameters. Thus, it is sufficient to use the baseline heat

partitioning profile for all Nphase runs, provided that output variations less than ≈ 2% are

deemed insignificant.

Table 2.8: Variation in outputs for different heat partitioning profiles.

∆p Twall α rα

CL 0.03% 0.07% 2% 0.4%

db 0.005% 0.05% 0.4% 0.15%
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2.9.3 Preliminary Sensitivity Study

Using the baseline DEBORA solution as the initial condition, a preliminary sensitivity

study was performed to verify that the relevant physics were being captured by Nphase. In

addition, the study was done to test the link between Nphase and Dakota. Latin-Hypercube

samples were generated for four simple parameters that would have strong and obvious effects

on the solution. The parameters were acceleration due to gravity, overall magnitude of heat

flux, magnitude of mass flux, and inlet velocity. Each parameter was varied by ±30%. The

correlation coefficients between the parameters and outputs are shown in Figure 2.29.
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Figure 2.29: Correlation coefficients between parameters and outputs for the preliminary
sensitivity study.

The sensitivity shows that Nphase correctly identifies gravity as having a strong effect on

pressure drop and little effect on other parameters. The positive correlation of heat flux with

wall temperature and void fraction shows that increasing heat flux will make the wall hotter

and generate more gas, as expected. Also, it will move the centroid of the void fraction closer
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to the center of the pipe (where r = 0). The mass flux is shown to have a similar but weaker

effect, and it does not affect the wall temperature. Finally, a large inlet velocity reduces wall

temperature due to convective cooling, thereby also reducing void fraction. Large velocities

also enhance the lift force, keeping the bubbles near the pipe wall.

The solution behaved as expected for all of the parameters. Also, the correlation coeffi-

cients give reasonable insight into how the parameters affect the outputs. The next step was

to conduct a full sensitivity study on all of the parameters of interest.

2.10 Nphase Sensitivity Study

The full sensitivity study was performed using the same baseline solution as before. The

heat partitioning profile was fixed to the baseline profile from Star-CD. After a literature

survey, ten high-level parameters and appropriate ranges were chosen as shown in Table 2.9.

The study had 1474 useable data points, which is more than the 1024 required for a full 2k

design. Each run in the study had 4000 iterations, and less than 8% of the runs diverged.

The rest converged to the point where RMS(update)/RMS(state) < 1% for all states (except

the radial velocity, for which we had looser requirements as explained earlier).

Figure 2.30 shows the correlation coefficients for the full sensitivity study. The plots

clearly show that the bubble diameter and the turbulent dispersion coefficient have over-

whelmingly large effects on the outputs, compared to the other parameters in the study.

Interestingly, the bubble diameter has little effect on the average wall temperature. Both of

these models have relatively little experimental evidence, yet have significant impact on the

outputs.

By contrast, the lift, drag, and virtual mass forces, turbulence model, and wall heat

partitioning model have little effect on the outputs, although many of these models are also

lacking in experimental evidence. The heat partitioning model does indeed have a small

effect (accounting for only 1.3% variation in the wall temperature), so we can be confident

that it was reasonable to use a single heat partitioning profile for the entire study. The liquid
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Table 2.9: Parameters and ranges for full sensitivity study.

Parameter Symbol Nominal Range Reasoning
lift coefficient CL −0.03 [−0.1,−0.01] required for Nphase conver-

gence, [111]

drag coefficient CD Wang fit ±30% approximate experimental
variation (no data for Wang
fit itself) [58]

virtual mass coeffi-
cient

CVM 1.0 [0.5, 1.5] nominal values in Star-CD
(see also [33]) and Nphase,
and part of range from [78]

turbulent dispersion
coefficient

CTD 2/3 [0.3, 1.5] ecompasses much of range
from [122] and calculated
from Nphase solution using
formula in [52].

bubble diameter db 7× 10−4m [1.5, 20]× 10−4m range from Star-CD, Star-
CCM+, Nphase, and [122].

lift force wall distance ŷwall 1 [1, 4] range for Star-CD, Nphase,
and [52, 111, 5].

turbulent viscosity
scaling

Cµ 0.09 [0.07, 0.09] calculated for Nphase solu-
tion using formulas in [66,
67, 65, 98].

liquid to interface
Nusselt number

Nul Modified
Ranz-Marshall

±30% approximate range for many
experimental results [84, 22,
54, 123, 118].

gas to interface Nus-
selt number

Nug analytic
(see [102])

[0, 50] encompasses much of an-
alytic form in [102], data
from [89], and Star-CD.

heat flux partitioning q̂g from Star-CD
solution

±5% heat partitioning sensitivity
study (see above).
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Nusselt number seems to have a moderate effect on all of the outputs, but this model has

enough evidence that time would be better spent improving other models.

Figure 2.31 shows some scatter plots for the various outputs. Table 2.10 shows the ranges

of the various outputs, which are probably too large for many engineering applications. The

results from this study suggest that more sophisticated models for bubble diameter, such as

single or multi-equation interficial area transport models, are needed to accurately simulate

two-phase flow. Also, more experimental work should be done to more carefully characterize

the turbulent dispersion force.

2.11 Conclusions

The Star-CD and Nphase studies point to the large amount of uncertainty in multiphase

flow models and the need for more accurate UQ methods. For even more complex models

and larger simulations, each sample requires even more time and the simple UQ methods

used here become prohibitively expensive. However, it is clear that the model has simple or

even zero variation for some of the parameters. A more efficient UQ method would detect

this behavior and exploit it to reduce the number of required samples. Even if the simple

UQ methods are affordable, they do not result in much quantitative data – all one can say

is that a few parameters have a strong effect on the outputs. It was found that the response

is a non-linear function of some of the parameters. A better UQ method would also be able

to capture this behavior to improve accuracy of the UQ study results. The UQ method

developed in Chapter 3 addresses these challenges.

The UQ studies also show the numerical difficulties with simulating multiphase flows.

Solutions of very similar equations can be quite different, and the equations are generally

quite difficult to solve. Discretizations can suffer from too little or too much resolution, so

the idea of grid convergence (and with it verification) becomes poorly defined. Numerical

errors are rarely quantified and have an unknown effect on the UQ studies. For example,

some parameters could have a strong effect on the numerical error, or the numerical errors
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could be so large that the effects of parameters are masked by them. The error estimation

and adaptive techniques developed in Chapter 4 address these challenges.
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Figure 2.30: Correlation coefficients between parameters and outputs for the full sensitivity
study.

Table 2.10: Overall variation of outputs for full Nphase sensitivity study.

Output Approximate Range
∆p 57.5-61 KPa
Twall 326.5-330 K
α 0.2-0.45
rα 6.2-8.2 mm
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Figure 2.31: Example scatter plots for the full sensitivity study.
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CHAPTER 3

A New Method for Uncertainty Quantification

3.1 Motivation

A new UQ method is developed which is more adaptive than previous methods. That is,

under certain assumptions on the stochastic function, the current method can produce a more

compact representation of the function under consideration, requiring fewer samples to be

evaluated to fit the approximation. The assumptions enabling such a compact representation

are that the function varies along only a few directions in the stochastic space and that the

function has few interactions among those directions. This occurs in practice because the

choice of parameters is often somewhat arbitrary. Parameters may be correlated to each

other if they are not selected with great care. In this case, the function might vary along a

(linear) combination of the parameters (i.e. a vector in parameter space). Methods have been

developed for these types of problems which attempt to discover an active (linear) subspace

of the parameter space in which the function varies [100, 10, 28]. Other methods assume

that parameters are largely independent and reduce the number of interaction terms that

are modeled. This work combines these two types of adaptive model building to create even

more compact models for a wide class of functions. The result is more accurate uncertainty

quantification with fewer samples.
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3.2 Algorithm

We describe the prototypical algorithm for adaptive model building. This is the frame-

work of the current method, while details of each step are discussed in the following sections.

The goal is to compute a scalar, stochastic output J = J(u) to a specified tolerance with as

few samples as possible. The stochastic model for a function u(x⃗) is a sum of terms, each

term associated with a direction (d⃗) in stochastic space. The linear subspace in which the

model is active is Γ = span
(
d⃗
)
and the stochastic domain is assumed to be the hypercube

[−1, 1]nd .

ALGORITHM 3.1 Prototypical adaptive stochastic model building

1: Initialize d⃗0 = 0⃗, Γ = span
(
{d⃗}
)

2: Compute baseline sample utrue(⃗0)

3: while error < tolerance do

4: Fit the approximation for u to the samples

5: Compute error metrics

6: Find a new direction d⃗∗ and order p∗ for which the current model is inaccurate

7: Add the term with d⃗∗ to the approximation for u, update Γ← span
(
{d⃗, d⃗∗}

)
8: Remove a direction if doing so reduces error

9: Generate new samples utrue(x⃗k)

10: end while

11: Compute output J = J(u)

The model begins with a single sample and, if that is found to yield a sufficiently accurate

model because the function is nearly constant, can terminate there. The adaptive algorithm

continually updates the approximation u while samples are added. One advantage of this

form is that the process can be terminated at any point and a full model (including an

estimate of its accuracy) is available to the user. Another advantage is that the user can

interrupt the algorithm at any point and modify d⃗. For example, expert opinion may point

to one dimension as particularly important and as a result extra accuracy may be specified

along it.
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Figure 3.1: A diagram of the stochastic model u(x⃗). The model states that u varies only

along a specified set of directions d⃗0, d⃗1, . . .. Along a direction d⃗i, the variation
is a polynomial of order pi.

Section 3.2.1 describes the active linear subspace approximation and how it is fit to the

samples. Section 3.2.2 describes the error metrics used. Section 3.2.3 describes the way

in which new directions are chosen in order to balance exploration and exploitation. Sec-

tion 3.2.4 presents a method for removing directions from the approximation. Section 3.2.5

describes the simple way in which sample locations are chosen. Section 3.2.6 describes a

method for computing the output of the UQ study, J .

3.2.1 Active Linear Subspace Approximation

For clarity, we will restrict attention to developing a surrogate model for a scalar high-

dimensional function utrue(x⃗), where x⃗ ∈ Ωx⃗ is a point in the nd-dimensional space (i.e. a

set of parameter values). The surrogate model, called u(x⃗), will be informed by samples

utrue(x⃗k) that, for now, we assume are exact.

The active linear subspace approximation takes the form

u(x⃗) =
nterm∑
i=1

ui

(
d⃗Ti x⃗

)pi
(3.1)

Here, each term (indexed by i) has an associated direction d⃗i and polynomial order pi. Each

term accounts for variation along a single direction d⃗i and samples (utrue(x⃗k)) are used to

determine the ui coefficients in the expansion. The advantage of this form of a surrogate
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model is that it has the ability to capture any function with a Taylor series but, when the

number of terms is truncated, can efficiently represent high-dimensional functions. Many

high-dimensional functions that arise in practice are largely active in only some (relatively

small) linear subspace. In this form, variability within that subspace can be captured by

restricting d⃗ to lie within it. This restriction can significantly reduce the number of terms

in the model, thereby similarly reducing the number of function samples required for an

accurate fit. Further, some functions may have two or more linear subspaces that are active

but orthogonal, meaning that there are no interactions between the directions (or subspaces).

Compared to other active subspace models that capture full interactions within the active

subspace, this form naturally allows for (but does not require) restricting interaction terms

within the active subspace. Alternatively, functions with anisotropic behavior where a few

directions (within the active subspace) have more complex behavior than the others can

also be efficiently modeled by adding extra terms along the complex directions with higher

pi. By cutting out high-order terms and interactions, the model has the potential to use

fewer terms and thus require fewer samples than other stochastic approximations. Or, from

another point of view, this model can improve accuracy at a fixed number of samples. This,

in turn, makes the computation of the output of the UQ study, J , to the required accuracy

faster, which is the objective of the current method.

If the underlying function utrue(x⃗) has complex behavior in the entire stochastic space,

then the model will require many terms and many samples. By including
(
nd+pi−1

pi

)
terms

of order pi (with non-colinear d⃗i), the model will have as many coefficients ui as there are

terms in a general Taylor expansion. The model can then be fit to any function that has a

Taylor series expansion. This full model would require very many samples due to the curse

of dimensionality. For functions with a small active subspace and or anisotropic behavior,

the number of terms (and thus samples required) can be substantially reduced.

The directions in the approximation 3.1, d⃗i, need not be orthogonal, and in general there

will be many more d⃗i than dimensions. To see this, it is helpful to rewrite 3.1 in Taylor-series
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form. Consider for example a 2D approximation with the terms as shown in Table 3.1. In

this case, the Taylor expansion becomes

u(x⃗) = u0x
4
0 + u1

(
4x40 + 16x30x1 + 24x20x

2
1 + 16x0x

3
1 + 4x41

)
(3.2)

The goal is to fit this approximation to the true fourth order terms

utrue(x⃗) = a0x
4
0 + a1x

3
0x1 + a2x

2
0x

2
1 + a3x0x

3
1 + a4x

4
1 (3.3)

Now utrue is approximated by 5 terms in the Taylor expansion in Equation 3.2, but we do not

have independent coefficients for each term. Given that we take samples and perform some

fitting to solve for the ui, the goal in choosing the directions d⃗i is to find those that yield a

good approximation to utrue. When optimizing the d⃗i (finding better values than [1, 0] and

[
√
2,
√
2]), we can really only modify two values: the angle of d⃗0 and the angle of d⃗1. In

principle the goal is to match the Taylor expansion in Equation 3.3, so there are in reality

up to 5 independent values for the fourth order terms (a0, . . . , a4). Choosing two directions

and the two values of u lets us fit only 4 of the ai. Thus, another direction d⃗2 must be added

to the approximation in order to fit all the fourth order terms of an arbitrary function (i.e.

all five ai’s). Note that d⃗2 cannot be orthogonal to d⃗0 and d⃗1, since this is merely a 2D space.

Table 3.1: Example of terms in the approximation 3.1

i d⃗i pi
0 [1,0] 4

1 [
√
2,
√
2] 4

Thus, the d⃗i act as a way to collect terms of the full Taylor expansion together. When

fitting the Taylor series terms, a relatively small number of parameters ((nd − 1)nterm) is

used to jointly vary a large number of Taylor terms (
(
p+nd−1

p

)
for all of the pth order terms).

This is one way to view the dimensionality reduction of the approximation.

The stochastic domain is assumed to be the hybercube [−1, 1]nd , so x⃗, d⃗ ∈ Rnd . The
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directions have two additional restrictions: they are normalized (|d⃗| = 1) and, since d⃗ is

essentially the same as −d⃗ (only the sign of u will change), d⃗T e⃗j ≥ 0. Here, e⃗j is the vector

with 1 in the jth component and zero elsewhere and j is chosen as the smallest index for

which the jth component of d⃗ is nonzero. The polynomial orders pi must be non-negative

integers. Note that if the ui are fitted from the samples utrue(x⃗k) using a non-exact method,

it may be true that u(x⃗k) ̸= utrue(x⃗k).

The approximation 3.1 yields a function u that varies only along the d⃗i; there is no

variation along any direction orthogonal to span
(
d⃗i

)
. Thus, the active linear subspace

is Γ = span
(
d⃗i

)
. A good approximation will result if Γ coincides with the actual linear

subspace in which utrue(x⃗) varies.

3.2.1.1 Basis

Each term in the approximation 3.1 is a monomial along d⃗. It is well known [11] that

fitting a function to a series of monomials of increasing order becomes ill-conditioned. Better

conditioning is achieved with a Legendre basis, so 3.1 becomes

u(x⃗) =
nterm∑
i=1

ui ϕ
pi
i

(
d⃗Ti x⃗

)
(3.4)

where ϕp(x) is the pth order univariate Legendre polynomial. The Legendre polynomial can

be generated from the recurrence relation [103]

ϕ0(x) = 1, ϕ1(x) = x, (p+ 1)ϕp+1(x) = (2p+ 1)xϕp(x)− pϕp−1(x) (3.5)

The canonical Legendre functions are orthogonal for x ∈ [−1, 1]. In the current approxi-

mation, the arguments to the basis functions are scaled so that they range from −1 to 1

as x⃗ spans the stochastic domain in the direction d⃗. For example, in 2D with nd = 2 the

polynomial ϕpi
i associated with d⃗i = [

√
2,
√
2] is scaled by

√
2 so that its domain extends

from x⃗ = [−1,−1] to x⃗ = [1, 1].

85



The order of the polynomials generally increases as terms are added to 3.1. As stated

above, the problem of optimizing 3.1 is simplified by defining a fixed relation p = p(d⃗). Given

a current approximation and a new direction d⃗, we simply choose the minimum possible order

pmin such that the new term adds information to the approximation. One simple way to do

this is to guess a low value of p and check if the approximation yields unique values of u1.

The assumption behind using the minimum possible p is that the Taylor series repre-

sentation of u includes nonzero coefficients for every term. If this is true, then adding

the next higher-order term will generally give a better approximation of u. There are, of

course, functions for which this is not true. For example, even functions have no terms with

order=1, 3, 5, .... The problem can be partially ameliorated by testing, for a given d⃗, both

pmin and pmin + 1. In order to test which order is better, we compare the direction-based

error metrics discussed in Section 3.2.2.

3.2.1.2 Least Squares Fitting

A natural way to find ui in 3.1 is to perform least-squares fitting over the sample points.

This is done by inverting the least-squares matrix

ALS
k,j = (d⃗Tj x⃗k)

pj u⃗ =
(
ALS

)−1
u⃗true (3.6)

where x⃗k are the sample locations, u⃗ is the vector of coefficients and u⃗true is the vector of

sample values. The system is over-determined since there are generally many more samples

than terms, nsamp ≫ nterm (so A−1 is a pseudo-inverse). This results in a non-exact fit, so

u(x⃗k) ̸= utrue(x⃗k).

Another method of fitting based on the output error will be developed in Section 3.2.2.4

1This can be done by forming the least-squares matrix Ai,j = ϕpi

i (d⃗Ti x⃗j) evaluated at the sample points

x⃗j = x⃗k. Here we include the new direction d⃗ as one of the d⃗i. Then we force A to be invertible so

p(d⃗) = minp≥0,|A|̸=0 p. Forcing A to be invertible means that a new direction is either independent of
previous ones, or its associated polynomial order is increased. When the active subspace is modeled to
increasingly high order, the same direction may be included many times in the model, but with sequentially
higher pi.
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after the error metric has been introduced.

3.2.2 Error Metric

To decide which direction to add to the approximation 3.1, we would like some measure

of how adding that direction will improve the approximation. To that end, we develop a

direction-based error metric. Further, by specifying a scalar output of the UQ study of

interest, the error metric can be targeted to that output so that it is predicted with high

confidence. The following details the development of a targeted, direction-based error metric,

∆J(d⃗).

First, suppose the output of the UQ study J , is some functional of the approximation

J =

∫
Ωx⃗

j(u, x⃗)dΩx⃗ (3.7)

This could be, for example the variance in u or some marginal statistical quantity. The

function j(u, x⃗) defines the output; for example, if a point output is desired J = u(x⃗k), then

j = δ(x⃗− x⃗k)u. As another example, if the average of u is desired, then j = u.

Next, a “cheap” error estimator is assumed. This could be, for example, a residual

calculation in a finite element simulation or an interpolation error estimate. Both of these

error estimates are much faster to compute than a full solution. Given some guess of the

value at x⃗, u(x⃗), we assume an estimator of the form

R(u) ≈ u− utrue (3.8)

which is much faster to compute than finding utrue itself. The extra speed comes at the

expense of accuracy. At this time, we do not have a bound on the required accuracy, but

the output-based error estimates developed in Section 3.4.2 work well in practice.

The error in J due to the approximation u can be computed (approximately) using the
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error estimate R

∆J = J − Jtrue =
∫
Ωx⃗

∂j

∂u
(u− utrue)dΩx⃗ ≈

∫
Ωx⃗

∂j

∂u
R(u)dΩx⃗ (3.9)

If R is exact and the full integral over Ωx⃗ is performed, this will yield an exact value for ∆J

with the same expense as computing Jtrue itself.

..

x0

.

x1

. x⃗k.

d⃗

.

smin

.

s = 0

.

smax

.

Ω

Figure 3.2: Diagram of the targeted, direction-based error metric. The stochastic space
here is 2D. The error is integrated from sample points (blue dots) along the

direction d⃗ (red dotted lines).

Next we make more concrete the idea of a direction-based metric. Consider a single

sample point x⃗k where both u and utrue (and thus R(u)) are known2. Now traverse the

stochastic space from the sample point along a direction d⃗. As one moves further from x⃗,

the approximation u becomes less accurate and R(u) will increase. Thus, integrating R(u)

along a line defined by d⃗ (which passes through a sample point x⃗k) gives an indication of the

error due specifically to the approximation along d⃗

smax∫
smin

∂j

∂u

[
R(u(x⃗k + sd⃗))−R(u(x⃗k))

]
ds (3.10)

2In general, the error at a sample point is non-zero, R(u(x⃗k)) ̸= 0.
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Here, the limits of integration smin and smax constrain the integral to lie inside of Ωx⃗

smin = s : s ≤ 0, |x⃗k + sd⃗|∞ = 1

smax = s : s ≥ 0, |x⃗k + sd⃗|∞ = 1 (3.11)

These are straightforward to compute analytically. The integral 3.10 can easily be performed

with 1D Gaussian integration with a high enough order to capture the variation in u and R.

The sample points xk are where a full model is executed (potentially requiring considerable

computational expense), but the integral along d⃗ only requires evaluating the surrogate

model for u and the residual R(u), which is often much less expensive. For convenience,

denote

∆R(u(x⃗k + sd⃗)) = R(u(x⃗k + sd⃗))−R(u(x⃗k)) (3.12)

Since the integral in Equation 3.10 is an estimate of the error along d⃗ for one sample point

x⃗k, a better estimate is achieved by averaging over x⃗k

1

nsamp

nsamp∑
k=1

smax,k∫
smin,k

∂j

∂u
∆R(u(x⃗k + sd⃗))ds (3.13)

Figure 3.2 shows this schematically. This set of line integrals can be re-cast as an approx-

imation to a volume integral, similar to the decomposition of the Radon transform [15].

By multiplying the line integrals by the volume of the perpendicular hyperplane, the error

metric becomes an approximation of the global integral in Equation 3.9. The volume of a
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perpendicular hyperplane is approximately3 2nd−1.

∆J(d⃗) = 2nd−1 1

nsamp

nsamp∑
k=1

smax∫
smin

∂j

∂u
∆R(u(x⃗k + sd⃗))ds (3.14)

This is the targeted, direction-based error estimate. Because it is an approximation of a

global integral, different values of ∆J(d⃗) are directly comparable. If the underlying function

utrue is constant along some direction d⃗′ (and the approximation u is also constant), then

clearly ∆R = 0 and ∆J(d⃗′) = 0. Alternatively, if u is a perfect representation of utrue, then

once again zero error is detected. In general, ∆J(d⃗) yields the error in J due to errors in u

along d⃗.

3.2.2.1 Modifications for Speed

The average over samples in Equation 3.14 may converge to a constant without consid-

ering every sample. We compute the value of ∆J(d⃗) for an increasing number of samples

until the percentage change in ∆J(d⃗) is below a tolerance τ∆J (here, 1%). The minimum

number of samples to consider is nsamp,min = 90, and the change in ∆J is checked after

each additional nsamp,step = 20 samples. These values were chosen by trial and error and are

implementation-dependent.

3.2.2.2 Post-Modification Error Metric

The error metric as discussed measures the error in a current approximation u along a new

direction d⃗, not necessarily a part of u. Two other versions of the error metric are possible.

First, the error due to a direction d⃗ can be calculated after adding d⃗ to the approximation

or, second, after removing d⃗ from the approximation. These “post-facto” versions of ∆J(d⃗)

3Though the actual volume depends on the sample location and direction under consideration, it would
be very difficult to compute the actual volume for any given scenario. Instead, we give equal weight to each
sample. In a sense, we are using a Monte-Carlo method to sample the integral on the nd − 1-dimensional
subspace that is perpendicular to d⃗, with the sample locations being the original samples x⃗k projected onto
this subspace. Note, if d⃗ = e⃗i is a cardinal direction, then the volume is exact.
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can be a more accurate representation of how the error in J will actually change if d⃗ is added

to or removed from the approximation, but they are also more expensive to compute. In

this work, the latter version is used to find directions that can be safely removed from the

approximation. The modified error metric ∆J̄(d⃗) uses the fact that u(x⃗+ sd⃗) = u(x⃗) if d⃗ is

removed from the approximation:

∆J̄(d⃗) = 2nd−1 1

nsamp

nsamp∑
k=1

smax∫
smin

∂j

∂u

[
R(u(x⃗k + sd⃗))−R(u(x⃗k))

]
ds

≈ 2nd−1 1

nsamp

nsamp∑
k=1

smax∫
smin

∂j

∂u

[(
u(x⃗k)− utrue(x⃗k + sd⃗)

)
−
(
u(x⃗k)− utrue(x⃗k)

)]
ds

= 2nd−1 1

nsamp

nsamp∑
k=1

smax∫
smin

∂j

∂u

[
utrue(x⃗k + sd⃗)− utrue(x⃗k)

]
ds (3.15)

The modified error metric measures how much utrue deviates from a constant along d⃗. This

can be used to detect the active and inactive subspaces and remove directions from the

approximation (see Section 3.2.4).

3.2.2.3 Approximation of ∂j
∂u

The error metric is targeted to the output J via the weighting ∂j
∂u
. This weight is a scalar

function of the stochastic space. One way to think of this is as a stochastic “adjoint” where

the governing equation is simply u − utrue = 0 and the output is J . It can be computed

exactly at every interrogation point, but a potentially cheaper option is to use a surrogate

model. In this work we use the same approximation as for u, namely Equation 3.1. The

suitability of this surrogate model depends on the complexity of the definition of J . If J is

simply the average, J = ū, then ∂j
∂u

= 2−nd is a constant4. The surrogate model will be exact

as long as it includes a term with order p = 0 (constant term). If J is the variance of u,

j(u) = (u− ū)2 and ∂j
∂u

= 2(u− ū)2−nd . In this case the surrogate model will do just as well

4Here 2−nd is the inverse of the volume of the stochastic domain Ωx⃗ = [−1, 1]nd
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for ∂j
∂u

as for u. The surrogate model is less accurate for higher order moments of u. In the

extreme case, it is possible to utilize a different set of directions for the approximation of ∂j
∂u

than for u; in this work we will not add this level of complexity.

3.2.2.4 Output Error Fitting

Another way to fit the approximation to the data is to use a targeted error-based ap-

proach. This approach is inspired by the error metric developed in 3.2.2. Two modifications

are made to the standard least-squares method presented in Section 3.2.1.2. First, the points

where the fit is tested (i.e. where u ≈ utrue) are not just the sample locations x⃗k, but also

a few points along the directions d⃗i (starting at x⃗k). The idea behind this is that a stan-

dard least-squares fit attempts to spread out errors evenly among the sample points. In the

context of a direction-based approximation, though, we would like a good (i.e. low error)

approximation along the directions d⃗i because this leads to a lower error metric and thus

lower true error. Another way of looking at this is that including points along the directions

d⃗i yields a kind of weighted least squares, where the weights penalize errors along d⃗i more

than other directions. For simplicity we take four additional points x⃗k + sd⃗i at s = 0, 1
3
, 2
3
, 1.

This yields 5ntermnsamp total points where the fit is tested (called collectively x⃗m).

Second, the standard error metric that is minimized in least-squares, ||Au⃗ − u⃗true||22, is

switched to a targeted error metric5

∆Jfit =

5nsamp∑
m=1

[
∂j

∂u
R(u(x⃗m))

]2
=

∥∥∥∥∂j∂u(u⃗− u⃗true)
∥∥∥∥2
2

=

∥∥∥∥∂j∂u(Au⃗− u⃗true)
∥∥∥∥2
2

(3.16)

By utilizing the error estimate R, we avoid solving for utrue at the extra points along d⃗i. In

this form, we can simply solve a weighted least squares problem with the weights ∂j/∂u. If we

extend the method to physical simulations (where u becomes a state vector over the physical

space), this can become a non-linear least-squares problem which requires iterations6.

5In a slight abuse of notation, in this formula, u⃗ is u evaluated at x⃗m, and similarly for u⃗true
6See Section 3.4.2 for the extension to physical space. The least-squares objective function becomes
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3.2.3 Optimizing the Approximation

There are two goals in optimizing the approximation in Equation 3.1. The first is to find

the d⃗ and p that result in an accurate approximation. The second is to have a small dim (Γ)

so that relatively few samples are required (only as many as are needed to explore the active

linear subspace Γ). By succeeding at this goal, the curse of dimensionality is ameliorated

(provided u has an active linear subspace) and the output J is calculated to high accuracy

with as few samples as possible.

The first goal is difficult to approach in general because it is essentially an optimization

problem with both integer (p) and real (d⃗) values. In many cases, though, it is sufficient to

fix p = p(d⃗) such that when directions are added, the next highest polynomial order is used.

By “next highest” we mean the lowest possible p that results in a well-conditioned system7.

This simplification can fail if u has a Taylor representation where the terms of some order

are all zero (e.g. if u is an even function so the terms of order 1, 3, 5, ... are all zero). Later

a modification will be described that lets the method deal with the problem when only a

single order is skipped (but not if, e.g., the terms of order 3 and 4 are all zero). By fixing

p = p(d⃗), the optimization problem is over the nd − 1 independent components of d⃗.

The second goal is approached by adaptively adding directions to the approximation

based on error estimates. By starting with only d⃗0 = 0 and carefully adding directions one

at a time, dim (Γ) can be kept small. New directions that lie within Γ are added to increase

the complexity of the model within the active subspace, potentially without requiring more

samples. New directions that lie outside of Γ enlarge the active subspace and usually require

more samples. As mentioned above, we must also occasionally remove directions from the

approximation; this can reduce dim (Γ). An error metric will be derived which is used to

∆Jfit =
∥∥∥ ∂j
∂K (K(Au⃗)−Ktrue)

∥∥∥2
2
. The problem will remain linear if the physical output K(u) is a linear

functional. If not, Newton iterations are performed to minimize ∆Jfit. The starting guess for u is the
least-squares solution (see 3.2.1.2).

7For example, if we already have a quadratic approximation along d⃗, then adding another term with the
same d⃗ and p = 1, 2 would result in an underdetermined system; p = 3 is the smallest term that results in
a fully determined system. When the approximation has many d⃗’s with various p, the lowest possible p is
determined by trial and error.
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decide which directions to add or remove.

The error metric is not inherently smooth due to how the line segments along direc-

tions vary in length. As the number of samples considered in the average in Equation 3.13

increases, though, it becomes smoother. Still, many local optima are present, so a global

optimization method is needed to discover the true optimum. Examples of the value of

∆J(d⃗) are plotted in Figure 3.3. The function is active in a three-dimensional subspace, so

there are two angles that specify d⃗ within that space. The error metric is plotted over the

values of the angles (each varies in [0, π]). Each plot has a different value of nsamp used in the

calculation of ∆J(d⃗). As the value of nsamp increases, the plots show that ∆J(d⃗) approaches

a relatively constant distribution over the angles. In particular, the optimal angles, around

the values (1, 2), is approximately constant. This motivates the use of the particle swarm

optimization method, discussed next.

3.2.3.1 Particle Swarm Optimization of the Direction

The search for a new direction to add to the approximation is formulated as an optimiza-

tion problem:

d⃗∗ = argmax
d⃗∈D, |d⃗|=1, d⃗T e⃗j≥0

∆J(d⃗) (3.17)

That is, we search for the direction with maximum error. The search is split between

searching within the active linear subspace (D = Γ) and outside of it (D = Γc = Ωx⃗\Γ).

Searching within Γ looks for directions that further refine the approximation and result in

increasing its order. This is an “exploitation”-type of search. Searching in Γc looks to expand

the active linear subspace, i.e. “exploration”. By choosing the direction with maximum ∆J

at each adaptive step, the algorithm decides whether exploitation or exploration is more

valuable for improving the accuracy of the stochastic output J . In the exploration step, the

optimizer looks for the largest error in the un-modeled space Γc. In the exploitation step,
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Figure 3.3: Plots of the error metric ∆J(d⃗) as a function of two angles that specify the

direction d⃗. Large values of |∆J(d⃗)| correspond to optimal directions. Each
plot has a different value of nsamp. Starting from the upper left and going
clockwise, nsamp = 2, 5, 10, 20.
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the optimizer looks for the largest error in the modeled space Γ. Thus, the algorithm takes

into account both types of error and either refines the model or enlarges the active subspace.

The function ∆J(d⃗) has many local optima due to the numerous approximations in its

definition. A particle-swarm optimization method is a good choice for optimizing ∆J(d⃗)

since it is robust to local optima [24, 94]. The optimization should only be performed over

the variables that truly modify the direction of d⃗ (i.e. not the actual components of the vector

d⃗, since these are restricted by |d⃗| = 1, d⃗ ∈ D, and the fact that d⃗ is equivalent to −d⃗).

To accomplish this, the vector d⃗ is transformed to a set of angles inside D and only those

angle are optimized. There are dimD− 1 angles and they all range in [0, π]8. The boundary

conditions of the optimization are periodic since an angle of 0 is equivalent to an angle of π.

This results in a compact domain for the swarm optimization: Ωswarm = [0, π]dimD−1. The

optimization problem can be rewritten as

d⃗∗ = argmax
ξ⃗(d⃗)∈Ωswarm

∆J(d⃗) (3.18)

The actual swarm mechanics follow a simple version of the algorithm, see [94]. The

particles are initialized with random locations and velocities. In this case, we take a nominal

time step of unity, so the maximum particle velocity need not exceed π at any point (otherwise

the particle will just “wrap around”). The jth particle’s position (ξ⃗j) and velocity (η⃗j) is

updated according to


η⃗j ← χ

(
η⃗j +Unif(0, Ccognitive)

[
ξ⃗j,best − ξ⃗j

]
+Unif(0, Csocial)

[
ξ⃗best − ξ⃗j

])
ξ⃗j ← ξ⃗j + η⃗j

(3.19)

Here, Unif(a, b) is random number (one for each component of ξ⃗j). The positions ξ⃗j,best

8In general, a n-vector in spherical coordinates is represented by its length (here always 1) and n − 1

angles denoted ξ⃗(d⃗). There is one angle with the range [0, 2π] (say ξ⃗0) and the other n− 2 angles have the

range [0, π]. Since d⃗ is equivalent to −d⃗, we can cut off half of the transformed domain. This is done by

simply assuming that ξ⃗0 is equivalent to ξ⃗0 + π, effectively reducing the range of ξ⃗0 to [0, π]. Thus, all n− 1
angles in the spherical coordinates range in [0, π]
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and ξ⃗best are the locations where the maximum value of the objective function was seen by

particle j and every particle, respectively. These terms balance local and global exploration

with refinement of the current best estimate. The restriction coefficient χ prevents the

velocities from growing too large. After each step, particle positions are reset to lie within

Ωswarm to enforce the boundary conditions. Nominal values are taken for the constants

Ccognitive = 2.05, Csocial = 2.05, and χ ≈ 0.73. The parameters npso,pop, npso,maxiter, and

npso,samp respectively denote the number of particles, number of iterations, and number of

samples to consider in the error metric (Equation 3.14) respectively. These are heuristically

set to 100, 80, and 5, respectively. Larger numbers may result in finding a better optimum,

but also increase the expense of the optimization.

3.2.3.2 SQP Optimization

The particle swarm optimization method is good at finding the global optimum for ∆J(d⃗)

among many local optima. However, PSO is known to be slow to converge to the a local

optimum with high accuracy [94]. To further refine the optimum, Sequential Quadratic

Programming (SQP) is used. In this method, a single guess of the optimum solution is

successively refined by approximating the function as a quadratic. The method is initialized

with the best direction found by PSO and the optimization is again performed over the

angles ξ⃗. As steps are taken toward the optimum, approximations to the gradient (g∆J) and

hessian (H∆J) of ∆J are created and updated. At each step i, the current quadratic model

is

∆J̃(ξ⃗) = ∆J(ξ⃗) + gT∆J ξ⃗ +
1

2
ξ⃗TH∆J ξ⃗ (3.20)

and the step ξ⃗i+1 = ξ⃗i +∆ξ⃗i brings the current point to the minimum of the quadratic

∆ξ⃗i = − (H∆J)
−1 g∆J (3.21)
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The hessian is updated as

H∆J,i+1 = H∆J,i +
qiq

T
i

qTi ∆ξ⃗i
−
H∆J,i∆ξ⃗i∆ξ⃗

T
i H

T
∆J,i

∆ξ⃗Ti H∆J,i∆ξ⃗i
(3.22)

with qi = g∆J,i+1 − g∆J,i. The gradient is computed at each step via finite differences. Note,

this is the gradient of ∆J with respect to the angles ξ⃗. It was mentioned in Chapter 1 that

derivatives (of the function u) with respect to parameters are not needed by the current

method. This is still true. It would be quite difficult to compute the gradient of ∆J(ξ⃗)

analytically (one would need to compute the derivative of the adjoint with respect to pa-

rameters). In SQP, we make a quadratic approximation to the function ∆J(ξ⃗), including

approximating the derivatives, but this does not require (and indeed would not be served

by) analytic gradients of u(x⃗). Also note that we may make a linear or quadratic model of

u, whose gradients are essentially estimated via least-squares fitting from the samples. Still,

direct evaluation of ∇u(x⃗) is not required. The implementation of the SQP algorithm is that

built in to Matlab [83].

3.2.4 Removing a Direction

The first and simplest way to remove directions from the approximation 3.1 is to re-

move any d⃗i where the associated ui ≈ 0. This is done every time the u are fitted to the

approximation.

Another way to remove directions is due to Russi [100]. The function u(x⃗) is approximated

as a linear function with the gradient varying over the stochastic space. The basic idea is

that if a vector d⃗r is found that is orthogonal to every possible gradient vector of the solution,

then it must be true that u never varies along d⃗r. Mathematically, suppose Γ = span (∇u(x⃗))

is the space that spans every possible gradient vector. Then, if null
(
Γ
)
̸= 0, the nullspace

of Γ contains vectors (d⃗r) that satisfy

d⃗Tr∇u(x⃗) = 0 ∀x⃗ (3.23)
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That is, u has no variation along d⃗r. Thus, the stochastic space can be partitioned into

the active subspace Γ = span (∇u) and its complement, the inactive subspace. Russi does

this by forming a matrix whose columns are various evaluations of ∇u (via finite differences

at the sample points). In this work, a matrix with the same column space is formed by

evaluating the error estimate. Consider the following combination of error estimates, in the

spirit of the post-modification error estimate in Section 3.2.2.2

δJ̄(d⃗, x⃗) =
−1
2∆s

[
R(u(x⃗+∆sd⃗))−R(u(x⃗−∆sd⃗))

]
≈ −1

2∆s

[
u(x⃗)− utrue(x⃗+∆sd⃗)− u(x⃗) + utrue(x⃗−∆sd⃗)

]
=

1

2∆s

[
utrue(x⃗+∆sd⃗)− utrue(x⃗−∆sd⃗)

]
≈ (∇utrue)T d⃗ (3.24)

In the second line, we assume that the direction d⃗ has been removed from the approximation,

so u is constant along d⃗ and u(x⃗+ sd⃗) = u(x⃗). Thus, evaluating the output error with slight

perturbations ∆s results in an estimate of the derivative. This can be used to calculate

gradients and is less expensive than the method of Russi, which requires nd full solutions for

each gradient9.

Evaluating the δJ̄ along the directions e⃗ yields an approximation to the gradient10. As in

9If analytic derivatives are available, both codes could use them to speed this process. However, analytic
differentiation with respect to arbitrary parameters can be difficult and is rarely available on commercial
simulations.

10The error metric can include the weighting ∂j/∂u, which will lead to detecting the union of the active
subspaces of ∂j/∂u and utrue. Note, if J is a combination of averages and variances, the active subspace of
∂j/∂u is contained in the active subspace of u.
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Russi’s method, the gradient evaluations at various sample points are collected into a matrix

G =



δJ̄(e⃗0, x⃗0) δJ̄(e⃗0, x⃗1) · · · δJ̄(e⃗0, x⃗nsamp)

δJ̄(e⃗1, x⃗0) δJ̄(e⃗1, x⃗1) · · · δJ̄(e⃗1, x⃗nsamp)

...
...

. . .
...

δJ̄(e⃗nd
, x⃗0) δJ̄(e⃗nd

, x⃗1) · · · δJ̄(e⃗nd
, x⃗nsamp)


(3.25)

The active subspace is detected using the singular value decomposition of G = USV −1. In

order to form a full matrix G, we require nsamp ≥ nd samples (or full model runs). In contrast,

Russi’s method requires nsamp ≥ nd
2 samples to get a full matrix G. If there is a clear drop-off

in the singular values (from large to near zero) between the active subspace and the inactive

space, then the number of columns of G required can be reduced to dim (() Γ) by using a

sequential SVD approach [10]. In this case, the current method requires nsamp ≥ dim (() Γ)

and that of Russi requires nsamp ≥ nddim (() Γ). Finally, if gradients with respect to the

parameters are available without expense, both methods require only nsamp ≥ dim (() Γ). A

basis for the inactive subspace is found in the columns of U for which the associated singular

values are small. In this work, a tolerance of τremove = 10−9 is sufficient to detect the truly

inactive subspace. In particular, if the jth direction is removed if sj/max(si) < τremove, where

sj is the singular value associated with direction j11. Once a basis for the inactive subspace

is found, the current directions in the approximation 3.1 are projected onto its complement,

the active subspace12.

Compared to the original method in Russi (using finite difference evaluations of the

gradient), this method utilizes relatively cheap error estimates rather than full function

evaluations. In the current method, full function evaluations are only needed at sample

11Note that the calculation could be done faster by building up the matrix G as samples of the gradient
are calculated and terminated if the size of the singular values drops, as in Russi [100]. However, since the
error estimates are relatively inexpensive to compute, there is not too much gained by this. In addition, as
Russi mentions, particular choices of samples can in theory lead to premature termination.

12Note that the approximation within the active subspace need not be a full polynomial approximation.
Also, if a direction lies completely in the inactive subspace, the term associated with that direction is
completely removed from the approximation in Equation 3.1.
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points and can be as few as dim (Γ)+1. The current method will also target the subspace to

the output J , which could reduce its size even further. Removing directions should be done

periodically as the model is built. The error estimate R(u) is not exact, so it is possible that

incorrect directions are removed at any given step. Also, additional samples that are taken

as the model is built may uncover active or inactive directions. It is possible that particular

choices of the samples will cause a failure to detect the full active subspace. This is true

in Russi’s method and the current work. Thus, detection is only guaranteed in probability.

See [48] for more details on randomized algorithms.

3.2.5 Generating Samples

After a new direction d⃗ is added to the approximation, more samples utrue(x⃗k) are usually

required in order to capture more variation in u. The samples could be added based on the

orientation of the active subspace [100], but in this work they are essentially added randomly

with a constant number added for each additional term in Equation 3.1. In this work, the

total number of samples is taken to be nsamp = 2nterm. In order to help spread out the

distribution of points, they are randomly chosen from a Latin Hypercube design with 10

divisions per dimension [85].

3.2.6 Stochastic Domain Integration

Due to the form of the error metric (see Section 3.2.2), the current method requires

mostly line integrals to be computed. Some integrals over the entire stochastic domain may

be required for a few reasons. Note that these are integrals of the surrogate model u, so they

do not require any more samples of the true function to be generated.

� Computing the stochastic output J . This can be done only once, when the adaptive

process has converged to the prescribed tolerance. The integral can be computed with

a sparse-grid approximation and can, to some extent, take advantage of the known

active linear subspace.
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In addition, an approximation to J in the spirit of Equation 3.14 can be computed

faster than a full integral:

J(d⃗) = 2nd−1 1

nsamp

nsamp∑
k=1

smax∫
smin

j
(
u(x⃗k + sd⃗)

)
ds (3.26)

The direction is arbitrary, and more accuracy can be obtained by averaging over mul-

tiple directions. Another option is to simply take latin-hypercube points x⃗k and use

the sample average of j(u(x⃗k)).

� Computing a certification for J , i.e. a high-resolution error estimate ∆J (see 3.9). This

is never required by the current method, but can be done occasionally to check that

the method is performing as expected and after convergence to give a more accurate

final error estimate.

� Computing the stochastic output linearization ∂j
∂u
. If the stochastic output is a known

and simple function of u, then ∂j
∂u

can be found analytically and the integral is avoided.

This is the case if J is some combination of means, variances, or other moments of u.

An example in which the integral is required is if the output is the probability that u

is above some threshold, J = P (u > uthresh).

If required, such an integral is computed with an adaptive sparse-grid approximation [60, 45].

The standard Smolyak sparse-grid integration is modified to allow for dimension-adaptivity

(note, not direction-adaptivity). An interpolant of u is built with hierarchical polynomials

and dimensions are flagged for extra refinement based on a hierarchical error indicator. The

refinement choice also takes into account the cost of computing samples. A user-specified

“degree of adaptivity” compromises between a conservative (non-adaptive) strategy and a

greedy (fully-adaptive) one. The algorithm has shown good performance for a variety of

problems, see [60].
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The adaptive sparse-grid integration can be more expensive in terms of function eval-

uations than any of the other integrals required for Algorithm 3.1. In the worst case, the

integration could require exponential time even though the algorithm terminates with only

a few terms. This may occur if the inherent dimensionality of the problem is very small and

not aligned with any of the dimensions x⃗. In this work, we avoid developing a special inte-

gration rule for the active linear subspace. Such an integration rule would likely help in this

situation, but it is a complex endeavor due to the potentially irregular shape of the domain.

Russi in [100] develops a method for this with mixed results. The integration rules must be

created on the fly, require a significant amount of time to achieve reasonable accuracy and

suffer from clustering of sample points.

3.2.6.1 Linear Functionals

The approximation in Equation 3.1 can be analytically integrated in the domain since it

can be expanded into a polynomial form. For a given term, the multinomial theorem yields

the expansion

(d⃗T x⃗)p =
∑

i1+i2+···+ind
=p

n!

i1!i2! · · · ind
!

∏
1≤m≤nd

(dmxm)
im (3.27)

where xm denotes the mth component of x⃗. Each term in the above summation can be

integrated analytically in the domain [−1, 1]nd . This can become expensive to compute as

the number of terms in the above sum is
(
p+nd−1

p

)
.

Since the approximation in Equation 3.1 is a linear combination of terms, we can compute

any linear or polynomial function of u analytically. Thus, if j(u) is polynomial in u, we can

compute J(u) and ∂j/∂u analytically. Depending on p and nd, this can be significantly

faster and more accurate than the sparse-grid integration described above.
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3.3 Results

As a first and simple example, consider modeling a function with a four-dimensional

active subspace within a 100-dimensional stochastic space. To illustrate the contributions of

the current method, we consider three such functions:

1. (u1true) The subspace is spanned by e⃗0, e⃗1, e⃗2, e⃗3. That is, the function does not vary

along the input parameters x4 through x99. All possible interaction terms within the

subspace are non-zero and the function is purely quadratic.

2. (u2true) The subspace is spanned by four arbitrary vectors d⃗0, d⃗1, d⃗2, d⃗3. None of the

components of the vectors are zero (they are “diagonal” in the stochastic space). All

possible interaction terms within the subspace are non-zero and the function is purely

quadratic.

3. (u3true) The subspace is spanned by four arbitrary vectors d⃗0, d⃗1, d⃗2, d⃗3, but there are no

interaction terms. The function is higher order along d⃗0, but purely quadratic along

the other vectors (the four vectors are orthogonal). In particular, the function is

u3true(x⃗) = 0.1818(d⃗T0 x⃗)
2 − 0.0812(d⃗T1 x⃗)

2 − 0.8993(d⃗T2 x⃗)
2

− 0.5426(d⃗T3 x⃗)
2 + sin(0.321 + 0.21455(d⃗T0 x⃗+ 0.3)2) (3.28)

We attempt to model the function up to fifth order for each method.

The actual numbers of terms in the Taylor expansions13 are 10, 5050, and 91,962,520 for

u1true, u
2
true and u

3
true, respectively. The first two functions are somewhat contrived but serve

to highlight the advantage of using subspaces rather than adapting on the dimensions. When

parameters are chosen ad-hoc, they can easily be correlated and result in a “diagonal” active

subspace. The third function represents a more realistic case where some complex behavior

is present but it is mostly a function of a single variable. For example, the direction d⃗0 could

13The number of terms in a pth order expansion of dimension nd is
(
nd+p−1

p

)
.
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represent the amount of boiling occurring in a nuclear reactor simulation. The amount of

boiling is affected by many parameters (hence d⃗0 is diagonal), while other directions may

have little or no impact on the output.

The performance of the current method is compared to the performance of an adaptive

Polynomial Chaos (PC) method [12] and the method developed in Russi [100]. The output of

interest, J , is set to the average value of utrue. The adaptive PC method tests a set of higher

order terms for possible inclusion in the model followed by a selective removal of terms. In

each case, the classic least-squares error (sometimes called R2) is used to test terms. The

process is repeated for various polynomial orders and levels of interaction. Since we are not

interested in precise statistics, it is sufficient to use a monomial basis for the PC expansion.

Russi’s method searches for the active subspace using gradient evaluations. We assume that

analytic gradients with respect to the parameters are not available, so finite differences are

used. The sequential SVD approach of [10] used to reduce the number of gradients required

to just five (= dim (() Γ) + 1). Within the active subspace, Russi models the function with

all interaction terms.

3.3.1 Function 1

For u1true, all methods find a (relatively) compact representation of the function and can

represent it exactly with second order terms. Russi’s method detects the active subspace by

making gradient calculations (each requires nd + 1 samples) until the subspace spanned by

the gradients does not grow. Since we have a four-dimensional active subspace, this requires

at least five gradients, for a total of 5×101 = 505 samples. We assume that whatever method

is used for modeling within the active subspace, it does not require any more samples to

be taken. Note that Russi uses a full-term model within the subspace, but in fact all of

the linear terms are zero. Thus, Russi’s method produces a model with 15 terms, while the

current method produces a model with only 11.

The adaptive PC method tests a large number of second order terms and proceeds to
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include them in the model and then discard most of them from the model. There are many

terms to consider because each term in the Taylor expansion is treated separately. Since

the function includes all interaction terms within the active subspace, each of these terms

does need to be modeled separately, so the adaptive PC method produces a model of the

same size as the current method. However, the adaptive PC method includes many terms

(in the inactive subspace) that are later discarded. In order to model these terms in the

intermediate step, many more samples are required.

3.3.2 Function 2

For u2true, the current method and Russi’s method perform well again. Now that the

active subspace is “diagonal,” that is, the basis vectors of the subspace have all non-zero

components, many more terms exist in the Taylor expansion. Thus, the adaptive PC method

requires keeping many terms, thus requiring many more samples than the other methods.

Still, the function is represented exactly with all methods.

3.3.3 Function 3

For u3true, there is a strong difference between all of the methods. The function is very

anisotropic, with high-order variation along one direction, quadratic variation along three

directions, and no variation in other directions. The current method exploits this anisotropy

to build a high order model focused on the direction d⃗0. Russi’s method builds a full ap-

proximation in the subspace with many terms, so one would assume that the error would be

small. However, the method uses samples that are not well spread out – they are the finite

difference samples that are clustered. This leads to relatively large error, which could be

diminished by taking additional samples that are more spread out.

The goal was to use the adaptive PC method with interaction order and polynomial

order up to 5, since terms of that order are represented by the other two methods. However,

this would be prohibitively expensive since it would require millions of samples and model
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Table 3.2: Results for three test functions with four-dimensional active subspaces in a 100-
dimensional stochastic space. Comparison of the current method with an adap-
tive Polynomial Chaos method and Russi’s method. Error is the median of the
error metric among all of the directions in the model. For the third function,
ranges are given for ∆J(d⃗) of the various d⃗ in the model. ∗Note, the adaptive
PC method for u3true was only run with terms up to second order.

Method Function Number of samples Number of terms Error
Adaptive PC

u1true

5115 15 10−12

Russi 505 15 10−12

Current 101 11 10−12

Adaptive PC
u2true

5115 5034 10−12

Russi 505 15 10−12

Current 101 11 10−12

Adaptive PC∗

u3true

5115 5041 0.0039 [1.56× 10−4, 0.0188]
Russi 505 126 40.7 [13.96,599.04]
Current 101 40 0.015 [0.0034,0.1386]

evaluations. With 7 cores, even the third order terms (171,700 of them) took over 36 hours to

compute; clearly a full 5th order model with over 91 million terms would take far too long to

build. Instead, we compare a quadratic polynomial chaos model. The model is surprisingly

accurate given its low order, but still requires a very large number of samples.

The iterative convergence history of the current method is shown in Figure 3.4. For the

first two functions, the error decreases slowly until the true active subspace is found and

modeled up to second order. Once that occurs, the error is essentially zero. The error for

the third function slowly decreases as the iterations progress, though the number of samples

still remains at 101. The stochastic approximation becomes enriched with up to 5th order

terms. The current method results in intermediate approximations to the functions that

have successively increasing complexity and decreasing errors. This can be useful because

the accuracy can be closely tailored to the resources available. The other methods require

many more terms and samples each time the order is increased and have fewer intermediate

results.

Overall, the current method produced approximations with up to 3 orders of magnitude

lower error and up to 2 orders of magnitude fewer samples. This is a significant reduction
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Figure 3.4: Error convergence of the current method applied to three test functions. The
median of the error metric among all of the directions in the model is plotted.
The number of samples remains fixed at 101 for all iterations. Right plot is a
close-up of the left plot.

in computational time, especially when samples are expensive to generate (requiring a full

model run).

For a typical run, the current method produces on the order of 20-50 terms in the model,

thus requiring perhaps 40-100 samples (full model runs) for a decent least-squares fit. The

current way that directions are removed requires nsamp ≥ nd, so the method requires at

least as many samples as parameters14. Of course, more complex functions with high order

behavior, larger active subspaces, and tighter error tolerances would result in more terms

and require more samples.

3.4 Extensions

3.4.1 Input/prior PDFs

The UQ method models the functional link between input parameters x⃗ and the model

output u. Extending this to deal with probability distributions on the input parameters

is quite simple. Indeed, an input (or prior) PDF results in certain values of x⃗ being more

14We assume that the matrix G is full and do not use the sequential SVD approach of [10]. However, for
the comparison in Table 3.2, we do assume that Russi’s method uses the sequential SVD approach to reduce
the number of samples.
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“interesting” or relevant than others. Similarly, the output J is a stochastic quantity that

determines which values of u are most relevant to the user. These two pre-specified PDFs are

linked by the model u(x⃗). Separating out the PDFs from the more deterministic behavior

u(x⃗) allows modeling (and therefore modeling errors) to be restricted to u(x⃗), so quite

accurate statistics can be computed with the surrogate model.

Practically speaking, any input or prior PDFs are incorporated into the model by mod-

ifying the definition of the output J . For example, if the inputs x⃗ have a joint probability

distribution px⃗(x⃗), and the desired output is the average value of u, then

J = E[u] =

∫
Ωx⃗

upx⃗(x⃗) dΩx⃗ (3.29)

Comparing this with 3.7, we simply have j(u, x⃗) = px⃗(x⃗)u (for a uniform input distribution,

j(u, x⃗) = u). As another example, take the output to be the variance of u, we have

J = E
[
(u− E[u])2

]
=

∫
Ωx⃗

(u− E[u])2 px⃗(x⃗) dΩx⃗ (3.30)

so j(u, x⃗) = px⃗(x⃗) (u− E[u])2.

For a more complicated example, suppose we partition x⃗ into noise variables x⃗n and

design variables x⃗d. This may represent uncertainty due to operating conditions (noise) and

manufacturing (design). Take the output to be the expected variance of a design during

operation in the noisy environment, J = E[var (u|x⃗d)]. We have

J = E [var (u|x⃗d)] =
∫

Ωx⃗d


∫

Ωx⃗n

(u− E[u|x⃗d])2 px⃗n|x⃗d
(x⃗n|x⃗d)dΩx⃗n

 px⃗d
(x⃗d)dΩx⃗d

(3.31)

It may be assumed that the noise is independent of the design so that px⃗n|x⃗d
(x⃗n|x⃗d) = px⃗n(x⃗n),

which may simplify the calculation.
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3.4.2 Physical Space

Extending the UQ method to analyze simulations with uncertain parameters is straight-

forward. The method becomes a Reduced Order Model where the state u, which now is a

field variable in the physical domain Ωz⃗, is modeled in the parameter space. We seek an

approximation to the state u(x⃗, z⃗) ∈ Ωx⃗ × Ωz⃗. A simple way to extend 3.1 is as follows

u(x⃗, z⃗) =
nterm∑
i=1

ui(z⃗)
(
d⃗Ti x⃗

)pi
(3.32)

As before, each term accounts for variation along a single direction d⃗i in parameter space.

Samples are denoted utrue(x⃗k, z⃗) and are solutions to a physical model so they satisfy some

residual equation R(utrue(x⃗k, z⃗), z⃗) = 0. The samples are used to determine the coefficients

ui(z⃗) which are similar to physical solutions (they are field variables over Ωx⃗), except that

they do not satisfy any physical equations. They are analogous to POD or PCA bases

which may not be solutions on their own but, when combined properly, generate a good

approximation to the solution behavior in parameter space.

We also assume a physical output of interest K, i.e. a relevant scalar quantity for a given

simulation. This is in general a functional of the physical solution, and a scalar function of

the parameters. K = K(u) = K(x⃗) : Ωx⃗ × Ωz⃗ → Ωx⃗. For example, the physical output

of a simulation of a nuclear reactor core might be the maximum temperature or the power

output.

K = K(u) =

∫
Ωz⃗

k(u(x⃗, z⃗)) dΩz⃗ = K(x⃗) (3.33)

Note, the function k(u) should not be confused with the index (·)k; the distinction will be

made clear by context. The stochastic output J will be assumed to be a function of K only,
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J(u) = J(K(u)). We can write J : Ωx⃗ → R

J =

∫
Ωx⃗

j(K(u)) dΩx⃗ (3.34)

While many physical error estimators are able to drive the adaptation, we focus on an

adjoint-based error estimator. To this end, the physical adjoint is defined and extended

to the parameter space. Such an extension has been investigated in [35], though there a

meshing approach is used in the stochastic domain. The current method uses the same

adjoint extension but with the active subspace stochastic approximation, which is expected

to perform better for high-dimensional problems.

First define the physical weighed residual (e.g. a finite element residual)

R(u,v) =

∫
Ωz⃗

v · r(u) dΩz⃗ (3.35)

where v is the weight or test function. The adjoint or dual state, ψ, is defined as the solution

to

R′[u](u,ψ) = K ′[u](u) (3.36)

The bracket notation indicates Fréchet linearization. The adjoint varies in the physical and

parameter space just like u. Indeed, we approximate it with the same active subspace model

ψ(x⃗, z⃗) =
nterm∑
i=1

ψi(z⃗)
(
d⃗Ti x⃗

)pi
(3.37)

Again, the coefficients ψi(z⃗) are defined in Ωz⃗, like solutions to Equation 3.36, but do not

satisfy that equation. The coefficients are computed from samples, ψtrue(x⃗k), which are

presumably available at each sample point x⃗k. We assume that whenever a physical solution

utrue is calculated, we also compute the associated adjointψtrue. For linear physical problems,
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this is a doubling of the amount of work required, but for non-linear problems the adjoint is

usually less expensive to compute than u since it satisfies a linear equation (Eq. 3.36)15.

The output error of a single simulation, ∆K, can be estimated with the dual-weighed

residual approach (details can be found in Section 4.4 and in [114]).

∆K =

∫
Ωz⃗

∂k

∂u
∆u dΩz⃗ =

∫
Ωz⃗

ψ · r(u) dΩz⃗ = R(u,ψ) (3.38)

The physical discretization error can be estimated by computing this integral on a fine

physical mesh. For each sample, the resulting ∆K(utrue) is akin to “sampling error” from the

perspective of the UQ method. For the approximated solution, ∆K(u) estimates stochastic

errors. This form of error metric is therefor advantageous because physical and stochastic

errors can be separated. Separating the sources of error enables anisotropic adaptation which

can be much more efficient than isotropic adaptation, depending on the problem.

The error metric for adaptation in the parameter space becomes

∆J(d⃗) = 2nd−1 1

nsamp

nsamp∑
k=1

smax∫
smin

∂j

∂K
∆R

(
u(x⃗k + sd⃗),ψ(x⃗k + sd⃗)

)
ds (3.39)

The term ∆R integrates over the physical domain and in full form is

∆R
(
u(x⃗k + sd⃗),ψ(x⃗k + sd⃗)

)
= ∆K(x⃗k + sd⃗)−∆K(x⃗k) (3.40)

=

∫
Ωz⃗

ψ(x⃗k + sd⃗) · r(u(x⃗k + sd⃗)) dΩz⃗ −
∫
Ωz⃗

ψ(x⃗k) · r(u(x⃗k)) dΩz⃗

(3.41)

Evaluating the error metric amounts to computing adjoint-based error estimates at various

points in the stochastic domain (new parameter values) based on the interpolated solution

15The adjoint is usually required to be calculated on a refined spatial discretization. A full adjoint solve on
the fine space can be very expensive. However, an interpolated or smoothed version of the original (coarse)
space adjoint is often sufficient for error estimation and adaptation.
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u and the interpolated adjoint ψ. The term ∂j/∂K is akin to ∂j/∂u in the scalar case –

it can be computed analytically for several classes of functionals or can be computed via a

stochastic domain integral.
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CHAPTER 4

Multiphase Flow Simulation

In this chapter we focus on solving the drift-flux multiphase flow equations in the physical

domain. The goal is to simulate water and steam flowing in a pipe under various conditions

including depressurization and heating. This is a relatively simple model of coolant flow

inside of a nuclear reactor core. A realistic 3D flow can be quite complicated due to mixing

vanes and radiative heating from the nuclear fuel rods, among other phenomena. The one-

dimensional transient simulation developed here is complicated enough to capture some of

the relevant physics, but still simple enough to be a good platform for testing the UQ method

developed previously (see Chapter 3).

In terms of notation, this section will deal with the physical solution u which consists

of state variables (e.g. density, pressure, velocity) defined over space and time. The spatial

domain is identified by z (e.g. Ωz, zk) while temporal is identified by t. Generally, scalar

quantities will be denoted with normal script (e.g. ρ, p) while vector (or matrix) quantities

will be in bold (e.g. u,R).

4.1 Drift-Flux Formulation of the Governing Equations

The area and time averaged drift-flux equations for flow in a one-dimensional channel are

derived in [57]. The four equations are conservation of mass for the mixture, conservation

of mass for the gas phase alone, and conservation of momentum and energy for the mixture.
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The equations as used in this work are:

∂ρm
∂t

+
∂

∂z
(ρmvm) = 0 (4.1)

∂(αρg)

∂t
+

∂

∂z
(αρgvm) = ṁg −

∂

∂z

(
αρgρl
ρm

Vdj

)
(4.2)

∂(ρmvm)

∂t
+

∂

∂z
(ρmv

2
m) = −

∂

∂z
pm +

∂

∂z

(
µm

∂vm
∂z

)
− ρmgz −

fm
4rpipe

ρmv
2
m

− ∂

∂z

(
αρgρl

(1− α)ρm
V 2
dj

)
− ∂

∂z
COVm (4.3)

∂(ρmhm)

∂t
+

∂

∂z
(ρmhmvm) = −

∂

∂z

(
λm
cpm

∂hm
∂z

)
+
qwP

A
+
∂

∂t
pm

− ∂

∂z

(
αρgρl
ρm

(hg − hl)Vdj
)
+

(
vm +

α(ρl − ρg)
ρm

Vdj

)
∂pm
∂z

(4.4)

The subscript m denotes a mixture-averaged quantity, while g and l denote the gas phase

and liquid phase, respectively. The void fraction, or volume fraction of gas, is denoted by α.

The gravitational acceleration along the channel is −gz. Thermodynamic properties (λl, λg,

cpg, cpl, µl, µg) are fixed to a reference state. The mixture-averaged properties are defined

as

λm = αλg + (1− α)λl cpm = αcpg + (1− α)cpl µm = µl(1 + α) (4.5)

The separate gas and liquid velocities can be obtained from the mixture velocity and the

void fraction by inverting the averaging procedure to obtain

vg = vm +
ρl
ρm

Vdj (4.6)

vl = vm +
α

1− α
ρg
ρm

Vdj (4.7)

where Vdj is the drift velocity. For the enthalpy, it is assumed that each individual bubble has

approximately the same enthalpy, hgas. This occurs if heat sources from the wall contribute

to evaporating liquid but not to subsequently heating the gas, which is reasonable when α
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is small. The gas and liquid enthalpies are then obtained from

hg = hgas (4.8)

hl =
ρmhm − αρghgas

(1− α)ρl
(4.9)

Calculation of the gas and liquid densities is discussed in Section 4.1.1.

The wall friction term fmρmv
2
m/4rpipe is modeled in a very approximate way by neglecting

the void fraction distribution in the pipe’s cross section. Depending on the flow regime, the

void fraction may peak at the wall (upward, heated flow) or may go to zero there (downward,

non-heated flow), strongly affecting the wall friction. For a rough approximation, however,

the mixture properties can be used in a standard wall friction model. Here, the Darcy friction

factor fm(Rem, ϵ/rpipe) is calculated via an explicit equation given in [99].

1√
fm

= −2.0 log
(
ϵ/2rpipe
3.7065

− 5.0272

Rem
log

(
ϵ/2rpipe
3.827

− 4.567

Rem

× log

((
ϵ/2rpipe
7.7918

)0.9924

+

(
5.3326

208.815 + Rem

)0.9345
)))

(4.10)

The mixture Reynolds number along the pipe is taken as Rem(z) = ρm|vm|z/µm. Note that

rpipe is the pipe radius and ϵ is a roughness factor.

The covariance term COVm arises due to the averaging procedure, and relates the average

of a product to the product of the averages (in this case of velocities). In most cases, the

term can be approximated well via [57]

COVm = (Cvm − 1)

[
ρmv

2
m +

ρlρgα

(1− α)ρm
V 2
dj

]
(4.11)

Cvm = 1 + 0.3

(
1−

√
ρg/ρl

)[
1− e−18α(1−α)

]
(4.12)

The wall heat flux term qwP/A varies along the channel with some prescribed function

qw(z) (in Watts/m2). Here, P is the (heated) perimeter of the pipe, and A is the cross-
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sectional area. The above equations are fully specified once models for pressure (pm), drift

velocity (Vdj), and boiling mass flux (ṁg) are specified. These will be detailed below. Equa-

tions 4.1 - 4.4 can be written in a general conservation form where the unknowns are the

conserved quantities ρm, (αρg), (ρmvm), (ρmhm). Denoting these unknowns as a vector u, the

equations become

∂u

∂t
+

∂

∂z

[
Finv(u) + Fvis

(
u,
∂u

∂z

)]
= S

(
u,
∂u

∂z
,
∂u

∂t

)
(4.13)

Here the inviscid fluxes, which depend only on the state, are separated from the viscous

fluxes that also depend on the gradient of the state ∂u/∂z. The two types of fluxes will be

treated separately because they have quite different mathematical structures. The source

term requires special treatment as well because it depends on the gradient of the state.

4.1.1 Kieffer/Tait Equation of state

A formulation for two-phase equations of state, which matches well with some experi-

ments, is given in [59]. The gas phase is assumed to be isentropic, while the liquid utilizes an

equation of state similar to the famous one by Tait [50], which ignores temperature changes.

The equations of state are

ρg = ρg,ref

(
p

pref

)1/γ

, ρl = ρl,ref exp

(
p− pref
Kl

)
, (4.14)

where Kl is the bulk modulus of the liquid (2.2×109 Pa for water). If one assumes that void

fraction is known, it is simple to compute all of the other quantities from this and the state

variables ρm and (αρg):

ρl(α) =
ρm − (αρg)

1− α
, p(α) = pref

(
1 +

Kl

pref
log

[
ρl

ρl,ref

])
, ρg(α) = ρg,ref

(
p

pref

)1/γ

(4.15)
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However, finding the void fraction from the input states requires a numerical root finder.

Therefore a relaxed Newton method is set up to solve for the void fraction. The equation

being solved is

Reos(α) = [α · ρg(α)− (αρg)]
p∗(α)

pref
= 0 (4.16)

where the first term is computed from the guessed void fraction. Normally a solution is

found in which α · ρg(α) = (αρg) for some α in the range [0, 1]. The residual is scaled by the

pressure to ensure that in the limit of p = 0, a solution is found with Reos = 0. The pressure

p∗ is a modified version of the pressure calculated from α. If the input to the equation of

state has (αρg) < 0, the pressure can be negative or even imaginary. So, we use the modified

pressure

p∗/pref = 10−3 log
(
1 + exp

(
103p/pref

))
(4.17)

A similar transformation is used in [86] to ensure a positive value of turbulent working

variable1.

The relaxation factor for the Newton iterations is set to enforce positivity of the pressure

and to ensure that 0 ≤ α ≤ 1. Since analytic derivatives are desired for the solver, the

derivatives of the computed quantities (pressure, void fraction, etc) with respect to the state

must take into account the fact that Reos = 0 as follows:

dα

du
= −

(
∂Reos

∂α

)−1
∂Reos

∂u
,

d(·)
du

= −∂(·)
∂α

T (∂Reos

∂α

)−1
∂Reos

∂u
+
∂(·)
∂u

=
∂(·)
∂α

T dα

du
+
∂(·)
∂u

(4.18)

1The scale factor 103 results in modifications of less than 1% for p/pref > 4× 10−3 and less than 0.01%
for p/pref > 8× 10−3. The changes in the solution due to the modified pressure are very small because the
lowest pressure encountered in this work is around 20× 10−3. For numerical stability, it is necessary to set
p∗ = p for p/pref ≳ 10−2.
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Figure 4.1: Two-phase speed of sound calculated with the Kieffer-Tait equation of state.

The iterations required for this method make it somewhat costly, but it is necessary for

an accurate solution. The state variables resulting from the iterations are needed at each

integration point and at the element interfaces. The iterations are generally stable since the

iterate (void fraction) is known to lie in the interval [0, 1]. The speed of sound computed by

this method is shown in Figure 4.1 and is in good agreement with some of the experimental

data in [59]. However, it is important to note that in that paper there is a complex range of

behavior for similar models at very low void fractions (α < 0.1) and even the “true” physical

behavior there is not well understood.

4.1.2 Drift Velocity

Of the many drift velocity correlations that have been studied, this work will focus on

just three representative ones. Some authors pair drift velocity correlations with boiling

correlations but here they are treated as separate. A drift velocity correlation relates Vdj

and C0 only to flow parameters. C0 is called the distribution parameter – it is a property of

the flow that arises from averaging.

The first and simplest model is essentially no model at all. The drift velocity is assumed

zero (Vdj = 0) and the distribution parameter is assumed unity (C0 = 1). These values are
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actually attained when the fluid is static.

The second model is due to Ishii and is relatively coarse. The drift velocity assumes a fully

developed vertical flow with spherical bubbles and Vdj is modeled directly. The distribution

parameter is basically constant except at low void fractions, where it reduces to zero.

Vdj =

(C0 − 1)vm +
2

9

g

µl

d2b(1− α)3(ρl − ρg)

1− (C0 − 1)(1− ρl/ρm)
, C0 =

(
1.2− 0.2

√
ρg
ρl

)(
1− e−18α

)
(4.19)

Here, db is the bubble diameter, which, in this work, is assumed constant for the entire flow.

The third model is due to Chexal and Lellouche and is quite involved; a full description

can be found in [80] and in Appendix A. Analytic derivatives were taken and confirmed to

be accurate via finite-difference testing.

4.1.3 Flashing Model

The most basic type of boiling in pipes occurs when the pressure reduces below the

saturation pressure or the temperature rises above the boiling point. This is called flashing

because the change from liquid to gas can happen quite quickly. Other boiling pheonomena,

including subcooled boiling, nucleation, and the critical heat flux, are not modeled here for

simplicity. The model presented here is derived from [9].

The flashing model employs heat transfer correlations to determine heat flux from the

gas to the liquid and from the liquid to gas. These are

Nug = 26, Nul = 2 +
(
0.4Re1/2 + 0.06Re2/3

)
Pr0.4 (4.20)

The Reynolds number pertains to the gas bubbles in bulk liquid

Re =
ρlV

2
djdb

µl

(4.21)

Note, in the inviscid limit we take Nul = 2. The heat transfer coefficients are then computed
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from the Nusselt numbers as HTC = Nuλ/db, where λ is the thermal conductivity. In

addition to the heat transfer from the liquid and gas, a third “flashing coefficient” is used

in [9] to stabilize the model. The flashing coefficient causes a large amount of gas to be

generated when the liquid enthalpy exceeds saturation. We use a modified form with a

cosine (instead of a hyperbolic tangent)

FC =


0, hl < hl,sat

104 1
2

(
1− cos

(
π
δh
(hl − hl,sat)

))
, hl,sat ≤ hl < hl,sat + δh

104, hl ≥ hl,sat + δh

(4.22)

This form allows direct control over the distance over which flashing occurs. The numerical

solution will be difficult to converge if the enthalpy grows from hl,sat to hl,sat+ δh in one grid

cell or less. Thus, δh can be set to

δh >
∂h

∂z
∆z (4.23)

for a given grid cell or to the maximum value of (∂h/∂z)∆z over all spatial cells. In this

work, we will use a safe value of δh = 10kJ/kg for all solutions. The value was chosen by

experimentation and observation of the mixture enthalpy. Problems with high heat transfer

rates may require a larger constant or another way of setting δh.

The total heat transfers qg, ql, qflash are then computed2

qg = Ai HTCg
hg − hg,sat

cpg
, ql = Ai HTCl

hl − hl,sat
cpl

, qflash = FC
hl − hl,sat

cpl
(4.24)

Here, Ai is the interficial area density. A simple correlation for this assumes spherical bubbles:

2These are defined as the heat transfer from the gas (or liquid) to the interface (some will be negative).
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Ai = 6α/db. Finally, the mass transfer is related to the heat transfer imbalance

ṁg =
qg + ql + qflash

∆h
(4.25)

The normalizing factor ∆h is the difference between the enthalpies of the gas and liquid

during boiling or condensation. As documented in [9], for boiling the term accounts for the

extra heat needed to bring the liquid to saturation, and vice versa

∆h =


hg,sat − hl, hl > hl,sat boiling

hg − hl,sat, hl ≤ hl,sat condensation

(4.26)

The above model for flashing generally performs well except at low void fractions. When

α is very small (i.e. 10−5, 10−6), a tight feedback between the gas generation and temperature

equations causes uncontrolled oscillations which can lead to α < 0 and a lack of convergence.

In reality, hardly any boiling or condensation occurs with α ≲ 10−5, so it makes sense to

simply turn off the source term in this case. We turn off the gas generation gradually by

reducing Ai. The modified interficial area density is

Ai =
6Z(a1, a2, α)

db
(4.27)

The function Z(a1, a2, α) is equal to zero for α < a1 (causing Ai = 0) and equal to the void

fraction for α > a2 (reproducing Ai = 6α/db). A cubic polynomial interpolates between a1

and a2, matching the value and derivative at the endpoints. This is shown schematically in

Figure 4.2. For this work, we will use the values a1 = 10−5, a2 = 10−4.

4.1.4 Physical Properties

Approximate equations of state are used for most calculations (see Section 4.1.1) which

are referenced to water at saturation at 5 MPa. The physical properties of water and steam
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Figure 4.2: Modification for interficial area density to force zero mass transfer for α < a1.

are imported from NIST data [73]. Thermal conductivity, specific heat, and viscosity are

kept constant at their reference values since they do not affect the solution significantly. It is

important to have an accurate saturation curve, though, so this is imported from NIST data

ranging from 0.05 to 12 MPa. The saturation curve should be smooth and differentiable

because otherwise it can cause oscillations in the solution. The oscillations can cause the

adaptive method to focus on resolving the saturation curve rather than the output of interest,

and in the extreme case can prevent convergence. Therefore, a cubic spline is fit to the gas and

liquid enthalpies as functions of the pressure, hg,sat(p), hl,sat(p). For this, the Matlab® spline

utility is used [83]. The derivatives of the fit are also available (dhg,sat/dp and dhl,sat/dp)

for calculating analytic derivatives. Using 75 data points for the fit, the maximum relative

error for both the gas and liquid enthalpy fits is 0.047%.

4.2 Spatial Discretization

We use the Discontinuous Galerkin Finite Element Method to solve the governing equa-

tions because the method lends itself particularly well to the adaptation scheme presented

later. The domain Ωz is first divided into Ne,z segments or elements, Ωk. Each element is

the segment between z = zk−1 and z = zk, as shown in Figure 4.3. Note, the element sizes

need not be uniform. For now the discussion will focus on convective problems with simple
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source terms. Section 4.2.1 will describe the treatment of the viscous terms. Sections 4.2.3

and 4.2.8.1 will describe the treatment of the complex sources that depend on ∂u/∂z and

∂u/∂t.

The method assumes a solution which is a polynomial within each element. The solution

is allowed to jump from one element to the next, as shown in Figure 4.3. Mathematically,

we say that the solution is a member of the function space V = {u|Ωk
∈ [Pp(Ωk)]

4, 1 ≤ k ≤

Ne,z}, where Pp are pth order polynomials. The solution is represented as a set of coefficients

of elementary functions which, when linearly combined, yield the desired polynomial. One

example of such elementary, or basis, functions is the monomial basis {1, z, z2, z3, · · · }. A

Legendre basis is used here because it results in better conditioning of the resulting discrete

equations.

The finite element method finds the solution which best satisfies the governing equations

by doing a series of tests. Given a guess of the solution, each test consists of multiplying the

governing equations by a test function, say v(z), and integrating over the domain. This is

called the weak form of the governing equation, and the scalar value of this test is called a

residual:

R =

∫
Ωz

vT

[
∂u

∂t
+
∂F(u)

∂z
− S(u)

]
dz (4.28)

The portion in brackets should be zero for the correct solution u, no matter what v is used

(i.e. R(u,v) = 0 ∀v ∈ V). In fact, we test with a set of functions vi that span the space

V and get a vector of residuals R = {Ri}. The solution that best satisfies the governing

equations is found by driving the residuals to zero with a root finding algorithm:

R(u,v) = {0} (4.29)

A unique solution is obtained by choosing as many test functions vi as there are degrees

of freedom of the solution u. For example, if u consists of quadratic polynomials (p = 2)

on Ne,z = 10 elements with four state variables, there are (2 + 1) × 10 × 4 = 120 degrees
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Figure 4.3: The discontinuous finite element approximation is a polynomial within each
element but may jump between elements.

of freedom for u, so we need 120 test functions vi. Since the solution is broken up into

separate pieces on each element, we choose test functions that are localized to each element.

Mathematically, a Galerkin method is obtained by choosing vi to be the same basis that is

used to represent the solution u. This is a simple choice which results in well conditioned

system.

In the finite element method, the integrals in Eqn. 4.28 are broken up into separate

integrals over each element for ease of computation:

Ri =

Ne,z∑
k=1

∫
Ωk

vT
i

[
∂u

∂t
+
∂F(u)

∂z
− S(u)

]
dz

Then, integration by parts is performed on the spatial flux term, yielding

Ri =

Ne,z∑
k=1

∫
Ωk

vT
i

∂u

∂t
dz −

∫
Ωk

∂vi

∂z

T

F(u) dz + vT
i F̂|zk−1

− vT
i F̂|zk −

∫
Ωk

vT
i S(u) dz

 (4.30)

Almost all of the terms above are straightforward to compute. The test functions vi are

defined analytically, so their derivatives are known. The source and flux functions can be

evaluated simply and integrated using Gaussian integration rules on the elements. What
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remains to be defined are the interface fluxes F̂. In general, the interface flux is a function

of the two values of the solution at the interface, see Figure 4.3

F̂|zk = F̂
(
uL
k ,u

R
k

)
(4.31)

This flux should be stablized and consistent. Upwind methods are commonly used and give

good accuracy. Due to the nonlinear nature of the problem, many choices are possible for

stabilized, upwind interface fluxes. In general, these are all approximate solutions to the

Riemann problem at the interface; a full solution would require iterations.

4.2.0.1 Riemann Solver Method

One formulation of an upwind flux uses an approximate Riemann solver to define a single

set of waves [70]

F̂|zk =
1

2

[
F(uL

k ) + F(uR
k )
]
− 1

2
V |Λ|V −1

[
uR
k − uL

k

]
(4.32)

Here, V and Λ make up the eigen-decomposition of the average flux Jacobian ∂F/∂u, and

|Λ| denotes the absolute value of the eigenvalues λi.

V ΛV −1 = F′
(
uL
k + uR

k

2

)
, Λ = diag(λi), |Λ| = diag(|λi|) (4.33)

The stabilized flux can also be thought of as composed of right-moving waves from the left

state and left-moving waves from the right state.
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4.2.0.2 Double-upwind Method

Another possible definition of an upwind method uses the flux computed from two “mid-

dle,” upwinded states û
′
and û

′′
:

F̂|zk =
F
(
û|∗zk

)
+ F

(
û|∗∗zk

)
2

, û|∗zk = uL
k + V H(−Λ)V −1

(
uR
k − uL

k

)
û|∗∗zk = uR

k + V H(Λ)V −1
(
uL
k − uR

k

)
(4.34)

Here, V and Λ make up the eigen-decomposition of the average flux Jacobian. H(Λ) is a

matrix of ones wherever Λ > 0 (H is used to denote the Heavyside function). The matrix of

ones picks out the right-moving waves.

V ΛV −1 = F′
(
uL
k + uR

k

2

)
, Λ = diag(λi), H(Λ) = diag(H(λi)) (4.35)

The middle states are composed of right-moving waves from the left side of the interface and

left-moving waves from the right side. The two middle states may not identical because the

governing equations are non-linear and not homogeneous.

The two methods for the upwind flux are identical for linear problems. Both perform

adequately, though in test runs the second was found to result in fewer oscillations. In this

work, the double-upwind method is used.

For convective problems, the method is fully defined up to boundary conditions. Correct

treatment of boundary conditions can be found in the literature [25] and details on the current

implementation are in Section 4.2.4. It should be noted that the eigen-decomposition of F′

can be done quickly because there are only four states and there is a closed form solution

for the eigen-decomposition of a 4× 4 matrix. In addition, it has been reported [47, 16] that

multiphase problems can lose hyperbolicity, meaning that the eigenvalues become imaginary.

If this is the case, we switch to the Lax-Friedrichs method, which essentially assumes that
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all waves travel at the fastest wave speed

F̂|zk =
1

2

[
F
(
uL
k

)
+ F

(
uR
k

)]
− 1

2
|Λ|max

[
uR
k − uL

k

]
(4.36)

where |Λ|max is the eigenvalue matrix where all values are replaced by the maximum absolute

eigenvalue. In our experience, however, the Lax-Friedrichs method is rarely, if ever, required.

4.2.1 Extension to Viscous Problems

There are many successful extensions of the Discontinuous Galerkin Finite Element

method to viscous problems. We will use the Local Discontinuous Galerkin (LDG) method [25],

which has good properties for our adaptation method. In the viscous setting, the fluxes are

functions of both the solution and its gradient, so the governing equations are

∂u

∂t
+

∂

∂z
F

(
u,
∂u

∂z

)
− S(u) = 0 (4.37)

The LDG method begins by converting this second order system to a larger first order system.

The solution gradient is a new unknown q that will be solved for at the same time as u,

∂u

∂t
+
∂F(u,q)

∂z
− S(u) = 0

q− ∂u

∂z
= 0 (4.38)

In particular, we assume that u,q ∈ V . Now, we treat this entire first order system in the

same manner as before - multiply by test functions, integrate, and perform integration by

parts. The test functions for the first equation are denoted wi, while those for the second

are still vi (the wi are simply copies of vi, since the solutions to both equations lie in the
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same space V). Two residuals result from the equations:

Ru
i =

Ne,z∑
k=1

∫
Ωk

vT
i

∂u

∂t
dz −

∫
Ωk

∂vi

∂z

T

F(u) dz + vT
i F̂|zk−1

− vT
i F̂|zk −

∫
Ωk

vT
i S(u) dz

 (4.39)

Rq
i =

Ne,z∑
k=1

∫
Ωk

wT
i q dz +

∫
Ωk

∂wi

∂z

T

u dz −wT
i û|zk−1

+wT
i û|zk

 (4.40)

In this formulation, inviscid fluxes (terms that only depend on u) are computed exactly as

for the convective case above. For viscous fluxes, the LDG method defines the interface flux

as a function of interface states F̂ = F(û, q̂). The method computes the interface states û

and q̂ as

q̂|zk =
1

2

(
qR
k + qL

k

)
− C11

(
uR
k − uL

k

)
+ C12

(
qR
k − qL

k

)
û|zk =

1

2

(
uR
k + uL

k

)
− C12

(
uR
k − uL

k

)
− C22

(
qR
k − qL

k

)
(4.41)

Here, the constants C11, C12 and C22 are defined by the LDG method and arise from a

specific choice of a 2 × 2 “C” matrix. Taking C22 = 0 leads to a convenient method where

the solution procedure can be split into two stages: 1) solve Equations 4.40 for q(u), and

2) solve Equations 4.39 for u. For this 1D problem, we can then simply take C12 = 0.5 and

C11 = 0 except on the boundary, where C11 = 1/∆z and ∆z is a measure of the element

size. For 2D and 3D problems, the choice becomes slightly more complicated, see [25, 92].

Now that all the terms are defined, we can use a root finding algorithm to solve for both

unknowns u and q. In fact, the choice of the LDG method simplifies the problem because

the û only depend on u, but not on q. This allows us to symbolically solve the first equation

for q = q(u) and substitute it into the second equation, so that u is the only unknown.
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4.2.2 Variable Area Formulation

For pipes with variable area A(z), we have modified governing equations in conservative

form

∂(Au)

∂t
+
∂(AF(u))

∂z
− AS(u) = 0 (4.42)

Assuming the area does not change in time, we can divide by the area and only the flux

term remains affected

∂u

∂t
+

1

A

∂(AF(u))

∂z
− S(u) = 0 (4.43)

Solving this form results in an asymptotically conservative method. Note, however, that the

flux Jacobian (and therefore the speed of sound) remains correct. When multiplied by test

functions v and integrated, the modified flux term becomes

∫
Ωk

vT
i

1

A

∂(AF(u))

∂z
dz = −

∫
Ωk

∂(vT
i /A)

∂z
AF(u) dz + vT

i F̂|zk−1
− vT

i F̂|zk

= −
∫
Ωk

[
∂vi

∂z

T

F(u)−
(
1

A

∂A

∂z

)
vT
i F(u)

]
dz + vT

i F̂|zk−1
− vT

i F̂|zk

= −
∫
Ωk

∂vi

∂z

T

F(u) dz +

∫
Ωk

(
1

A

∂A

∂z

)
vT
i F(u) dz

︸ ︷︷ ︸
new term

+vT
i F̂|zk−1

− vT
i F̂|zk

There is one additional term that arises in the variable area formulation of the momentum

equation. The modified momentum equation actually includes one additional term due to

the way in which pressure is treated as a “flux” (the actual area-weighted pressure term in

conservative form is A∂p/∂z, not ∂(Ap)/∂z). The extra term, after dividing by the area and

130



integrating, is added to the residual:

∫
Ωk

(
− p
A

∂A

∂z

)
vi,MOMFMOM(u) dz (4.44)

where vi,MOM and FMOM are the test functions and fluxes for the momentum equation.

4.2.3 Auxiliary Variables

When the source terms depend on gradients of the solution, they require special treat-

ment because they act very much like fluxes. We treat these source terms using a “mixed”

formulation (details can be found in [90]). The source terms depend on the pressure gradient

∂p/∂z. In the mixed formulation, the pressure gradient is computed in the same way as the

solution gradient q. The intermediate approximation to the gradient, p′, solves the auxiliary

equation

p′ − ∂

∂z
p(u) = 0

(4.45)

Here, p(u) is computed via the equation of state. The equation is discretized in the same

way as the q equation (see Section 4.2.1) and is solved along with it. The auxiliary variable

p′ is a member of the same space V and is multiplied by test functions wi and integrated:

Rp
i =

Ne,z∑
k=1

∫
Ωk

wip
′ dz +

∫
Ωk

∂wi

∂z
p(u) dz − wip̂|zk−1

+ wip̂|zk


(4.46)

The interface quantity p̂ is calculated via the natural extension to the LDGmethod, p̂ = p(û).

Driving the residuals to zero results in the auxiliary variable p′. The residuals are linear and

local, so this can be done quickly and in parallel. The gradient p′ is then used in the
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source terms in the governing equations. Symbolically, we are solving for p′(u) and q(u) and

substituting these into the equations for u.

4.2.4 Boundary Conditions

Generally, boundary conditions are imposed by ghost states and gradients. That is, the

boundary is like any interior interface between elements except that the left and right states

are replaced by interior and ghost states. The LDG method [25] specifies the boundary

quantities

û = ughost, q̂ = qinterior − C11(uinterior − ughost) not supersonic outflow (4.47)

û = uinterior, q̂ = qghost supersonic outflow (4.48)

Equation 4.47 is used whenever there are some characteristics entering the domain and ughost

specifies the values of those characteristics. The value of ughost depends on the particular

type of boundary condition, as described in the following sections. Equation 4.48 is used

only for supersonic (or choked) outflow where no information enters the domain. In this case,

a value of the gradient must be specified. For this work we take the simplest case qghost = 0.

4.2.5 Inflow Void Fraction and Enthalpy

In order to set the void fraction and enthalpy in ughost, we first calculate the inflow

pressure either from the interior (if ṁspec is specified) or from a specified inlet pressure.

From this known pressure and the boundary values αspec and hm,spec, the equation of state is

used to determine the density of the ghost state. This determines three of the components

of the ghost state, namely ρm, (αρg) and ρmhm. The final ghost state component ρmvm is

taken as the current guess of ṁin if the inflow mass flow is specified (see Section 4.2.5.1) or

taken from the interior if the inflow pressure is specified.
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4.2.5.1 Inflow Mass Flow

For a subsonic inflow boundary condition three independent quantities need to be spec-

ified for each of the three incoming characteristic waves. The void fraction and enthalpy

are always specified. The third quantity can be either the mass flow or the pressure. We

will focus on a specified mass flow, but the same ideas can be used for the pressure. The

boundary condition is enforced via a modified ghost state method. We extend the entire

system to include as an extra unknown the inflow mass flow (ṁin). For the system to be

solvable, an extra residual equation is added

Rbc = ṁin − ṁspec (4.49)

here, ṁspec is the user-specified mass flow. When Rbc is driven to zero (with all of the other

residuals), the specified mass flow will be achieved. For a similar iterative procedure for

enforcing mass flow, see [31]. The ghost state is then computed from the specified void

fraction and enthalpy; the current guess of the mass flow; and the interior state (for the

characteristic wave coming from the interior)

ughost = ughost(αspec, hspec, ṁin,uinterior) (4.50)

The reason we do not use the specified mass flow directly in ughost is that it can cause the

system to be under-specified when the flow is choked3. The ghost state is used as a Dirichlet

boundary condition in the standard LDG method [92].

To simplify the solution of the extended system, the Schur complement decomposition

is used to solve for ṁin and substitute it back [29, 42]. For a single Newton step, we are

interested in computing the update δu = −(∂R/∂u)−1R(u). If we separate out the residual

3When the flow is choked, the mass flow is always constant, so it cannot be used to set inflow conditions.
Instead an inflow pressure must be used. Indeed, if the inflow pressure is specified, we can just use this
directly in ughost without adding an extra unknown to the system
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and unknown due to the boundary condition, the system to solve, in block form, is

 ∂R
∂u

∂R
∂ṁin

∂Rbc

∂u
∂Rbc

∂ṁin


 δu

δṁin

 = −

 R

Rbc

 (4.51)

Now we can formally solve for the boundary state

δṁin = −∂R
bc

∂ṁin

−1(
Rbc +

∂Rbc

∂u
δu

)
(4.52)

This is substituted back to get a matrix equation for the interior states only

[
∂R

∂u
− ∂R

∂ṁin

(
∂Rbc

∂ṁin

)−1
∂Rbc

∂u

]
δu = −

[
R− ∂R

∂ṁin

∂Rbc

∂ṁin

−1

Rbc

]
(4.53)

Forming this equation requires only matrix-vector multiplications and inversion of the a

scalar. From Equation 4.49, we have ∂Rbc/∂ṁin = 1 and ∂Rbc/∂u = 0, giving

[
∂R

∂u

]
δu = −

[
R− ∂R

∂ṁin

Rbc

]
(4.54)

Thus, the residual Jacobian does not change and all that is needed is a simple modification

of the residual vector.

4.2.5.2 Pressure Outflow

A fixed pressure (subsonic) outflow boundary condition is set with the ghost cell method.

A ghost state is determined from the specified pressure (for the one characteristic wave

entering the domain) and the interior state

ughost = ughost(pspec,uinterior) (4.55)
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Normally the ghost state would be set by examining the eigen-decomposition of the state to

separate the characteristic waves. For the multiphase equations with a complex drift-velocity

correlation, this decomposition is not known. Instead, the ghost state can be set iteratively.

Three of the ghost states are set to the interior and one is adjusted to match the specified

pressure. The pressure is only a function of the first two states ρm and αρg. In this work,

we find the mean density ρ∗m that enforces

Rpout(ρ∗m) = pspec − p(ρ∗m,uinterior) = 0 (4.56)

This is done using Newton’s method, with under-relaxation to ensure positive pressure4. The

ghost state is then computed as

ughost = ughost(ρ
∗
m,uinterior) (4.57)

That is, the first component of ughost, the average density, is taken as ρ∗m, while the other

three components are taken from the interior state.

4.2.5.3 Choked, Supersonic Outflow

A choked outflow boundary condition is simple to set when the outflow is supersonic,

since all information comes from the interior. The ghost state is simply

ughost = uinterior (4.58)

One difficulty with choked flow is detecting choking. One way to detect choking is to compute

the wave speeds (the eigenvalues of ∂F/∂u) throughout the domain. The wave speeds

4Here, p(ρ∗m,uinterior) denotes the pressure computed by upwinding the ghost state (i.e. the current
guess of it) and interior state. “Upwinding” means computing a “middle” state that takes the right-moving
waves from the state to the left of the boundary and vice-versa. Investigations showed that linearizing the
flux about the external state for the upwinding produced the least oscillations in the adjoint, though other
linearizations still produced convergent methods. When applying the boundary conditions, the interface flux
F(uinterior,ughost) is also computed by linearizing about the external state for consistency.

135



are approximately of the form v − a, v, v, v + a where v is the local velocity and a is the

local speed of sound. This is only approximate because the drift velocity model affects the

eigenvalues [40, 17]. The flow is choked if the wavespeeds are all positive at any point. In

practice, the bulk speed of sound is approximated instead by

asound =

√
∂p

∂ρm
(4.59)

which is inspired by the single-phase relationship. This formula for the sound speed was

found to be much more reliable and stable than using the eigenvalues of the flux Jacobian5.

The flow is considered choked whenever vm ≥ asound, which is checked at all of the integration

points.

4.2.6 Sonic Outflow

Although rare, there are cases where a precisely sonic condition should be set at the

outflow. Sonic outflow is detected when the velocity is close to the speed of sound, specifically

when

∣∣∣∣vm − asoundvm

∣∣∣∣ ≤ τsonic (4.60)

The sonic condition is enforced by an iterative procedure for calculating ughost, similar to

the procedure for the outflow pressure. For a sonic condition, the residual to be satisfied is

Rsonic = asound(ρ
∗
m,uinterior)− vm(uinterior) (4.61)

5The minimum eigenvalue in practice never reaches zero even when the flow is sonic or supersonic. The
minimum eigenvalue peaks at around -50, which is small compared to the liquid speed of sound (e.g. 1088
m/s at the reference condition). One must choose a tolerance for the minimum eigenvalue, and this tolerance
was found to have a strong effect on the solution.
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The density ρ∗m which satisfies Rsonic = 0 is used in the ghost state

ughost = ughost(ρ
∗
m,uinterior) (4.62)

A small value of the tolerance τsonic results in the sonic condition being applied sparingly,

which can lead to rapid switching between sub- and super-sonic conditions. This can occur

because of the discontinuous nature of the approximation in time. The switching results in

large oscillations in the adjoint and hence degrades the adaptation metrics. A large value

of τsonic results in the sonic condition being applied for a possibly large time interval. While

this may not be physically accurate, it results in a smoother adjoint and better adaptation

metrics. Ideally, the value of τsonic would depend on the range of velocities in the solution

and the grid size. In this work, a value of τsonic = 0.05 was found to give good results for all

grids.

4.2.6.1 Reflecting Wall

A solid wall boundary condition can be enforced by using the mass flow condition above

and setting ṁspec = 0. Another possibility is to set the boundary fluxes directly, which avoids

adding the extra unknown to the system. At a reflecting wall, all fluxes are zero except for

the momentum flux, which is equal to the local pressure.

4.2.6.2 Gradient and Auxiliary Variable Boundary Conditions

The initial solve for q(u) also requires boundary conditions which are specified by the

LDG method (see Equations 4.47 and 4.48). The auxiliary variable solve also requires

boundary conditions. It was found that using just the interior state is sufficient for good

convergence.

137



4.2.7 Physicality Penalization

Numerical multiphase flow problems can suffer from oscillations that cause the solution

to be unphysical and degrade or prohibit convergence. This can occur when the initial guess

is far from the steady state solution. Oscillations can also occur if the grid is too coarse. One

solution is to guide the Newton iterations away from unphysical regions of the state space.

This can done by including a physicality penalty in the residuals [20]. In the two-phase flow

context, a number of constraints could be imposed. The following four perform well in the

current method

α ≤ 1, α ≥ 0, p > 0, ρm > 0 (4.63)

These are normalized and converted to the form ci(u) > 0, where ci is a constraint

1− α > 0, α > 0,
p

pref
> 0,

ρm
αρg + (1− α)ρl

> 0 (4.64)

The final penalty term on an element is

Pk,phys = µpen

4∑
i=1

ng∑
j=1

1

ci(u(zj))
(4.65)

here, j indexes the ng integration points inside an element, zj. The residuals in element k

are scaled by the penalty term Pk,phys. For more details on the method, see [20].

4.2.8 Transient Simulations

Time-accurate transient simulations can be computed using a variety of time stepping

methods. The basis for these is the coupled set of ordinary differential equations which

arise from the finite element discretization in space. We begin by restating the test function
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weighted governing equations for a transient problem

∫
v(z)

[
∂u

∂t
+
∂F(u)

∂z
− S(u)

]
dz = 0 (4.66)

Here, the v are spatial basis functions. For a steady state computation, we assume that

∂u/∂t = 0 and set the resulting residuals to zero. For a test function vi, the corresponding

residual is

Rss
i (u,vi) =

∫
vi(z)

[
∂F(u)

∂z
− S(u)

]
dz = 0 (4.67)

For a transient computation, we separate the time and space dependence:

∫
vi(z)

∂u

∂t
dz +

∫
vi(z)

[
∂F(u)

∂z
− S(u)

]
dz =

∫
vi(z)

∂u

∂t
dz +Rss

i (u,vi) = 0 (4.68)

We split the solution u(z, t) into time and space parts in a tensor product fashion,

u(z, t) =
∑
m,n

gm,nvm(z)νn(t) (4.69)

where vm are spatial basis function and νn are temporal basis functions. This splitting

simplifies the first term in Equation 4.68 to

∫
vi(z)

∂u

∂t
dz =

∑
m,n

gm,n
dνn(t)

dt

∫
vi(z)vm(z) dz (4.70)

Next, we apply the LDG method to the time domain. The time span of interest is broken

up into elements Ωl bounded by tl−1 and tl. Temporal basis functions, νj(t) are essentially

the same as for the spatial discretization. The governing equations are multiplied by both

spatial and temporal basis functions and integrated. This yields the transient residuals Rtr
i,j

139



for spatial test function vi and temporal test function νj

Rtr
i,j =

∫
Ωt

∫
Ωz

viνj

[
∂u

∂t
+
∂F(u)

∂z
− S(u)

]
dz dt

=

∫
Ωt

νj(t)
∑
m,n

gm,n
dνn(t)

dt

∫
Ωz

vi(z)vm(z) dz dt+

∫
Ωt

νj(t)R
ss
i dt (4.71)

The notation is simplified by taking
∑

m,n gm,nνn(t)
∫
Ωk

vi(z)vm(z) dz = Mz,i,:g(t). The

vector Mz,i,: essentially the ith row of the spatial mass matrix6 and g(t) = {
∑

m,n gm,nνn(t)}

can be interpreted as a time-dependent vector of coefficients of the spatial basis functions

vm. Integrating by parts in time and restricting to the space element Ωk and time element

Ωl yields

Rtr
i,j =

∑
k,l

−∫
Ωl

dνj(t)

dt
Mz,i,:g(t) dt+

∫
Ωl

νj(t)R
ss
i dt

+ νj [Mz,i,:g(t)]tl−1
− νj [Mz,i,:g(t)]tl

 (4.72)

The quantities evaluated at the temporal interfaces tl−1 and tl can be simply upwinded

from the previous time point because the simulation must be deterministic

[Mz,i,:g(t)]tl = Mz,i,:g
L(tl) (4.73)

This fully specifies the time integration scheme. The full set of space-time residuals, Rtr =

{Rtr
i,j}, is driven to zero via Newton’s method

Rtr = 0 (4.74)

Due to the pure upwinding in the time axis, it is possible to drive the residuals to zero in a

6The 1D spatial mass matrix is Mz with elements Mz,i,j =
∫
vivjdz. The version used here is replicated

for each temporal point.
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sequential manner starting with the first time element. This may have to be done in order

to keep memory requirements low. For smaller problems, we can solve for the entire time

span at once.

An effective way to initialize the solution is with a time stepping procedure based on the

discontinuous Galerkin discretization. Since each time element only depends on the solution

at the end of the previous time element, the whole space-time solution can be built up one

time element at a time. Converging each time element requires Newton iterations. The initial

guess for the solution in an element is just the value of the solution at the end of the previous

element (i.e. assume a constant in the current element). The advantage of this procedure

is that the time steps can be adaptively increased or decreased. This generates a space-

time solution that is convergent; getting an accurate solution requires further adjoint-based

adaptation of the spatial and temporal grids.

The time step ∆t is adaptively increased or decreased based on the convergence of the

Newton iterations within the time step. If ndtgrowth time steps converge successfully7, the

time step is increased (∆t ← fdtgrowth∆t). If the Newton iterations fail to converge, the

time step is decreased (∆t ← fdtshrink∆t) and the Newton iterations are restarted. For this

work, it suffices to take fdtgrowth = 5, ndtgrowth = 5, fdtshrink = 0.2. After initializing with the

time stepping procedure, the full space-time solution is checked for residual tolerance and

the adjoint can be calculated.

4.2.8.1 Auxiliary Variables in Time

The governing equations include a source term in the enthalpy equation, Eqn 4.4, which

depends on ∂p/∂t. This term must be calculated in a similar way to how the ∂p/∂z term

is calculated (see Section 4.2.3) in order to preserve adjoint consistency. In this case, the

7Successful convergence means that either residuals reached small values or the iterations stalled out, see
Section 4.2.9
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auxiliary variable p̃′ solves the equation

p̃′ − ∂

∂t
p(u) = 0 (4.75)

The equation is multiplied by test functions and integrated in time and space to yield the

residual

Rp̃
i,j =

∑
k,l

∫
Ωl

∫
Ωk

wiωj p̃
′ dz dt+

∫
Ωl

∫
Ωk

wi
∂ωj

∂t
p(u) dz dt−

∫
Ωk

wiωj p̂|tl−1
dz +

∫
Ωk

wiωj p̂|tldz

(4.76)
Here wi(z) is a spatial basis function and ωj(t) is a temporal basis function. The interface

quantity p̂ is computed as p(û). In this case, the value of û on the borders of the time

elements is simply the value at the previous time. The gradient p̃ is computed by driving

the residuals to zero. The residuals are linear and local, so this can be done quickly and in

parallel. The solution p̃ is then used in the source term in the energy equation.

4.2.9 Numerical Root-Finding with Newton-Raphson

A few details about the Newton iterations are as follows. For a residual R(u) = 0, the

kth Newton step is defined as [7]

uk+1 = uk − ω
(
∂Rk

∂uk

)−1

Rk(uk) (4.77)

A full update corresponds to ω = 1, and a relaxed update has ω < 1. The residual is

measured by |R|

|R| = max
i

||Ri(ui)||2
||ui||2

(4.78)

where i indexes over the equations and states. For example, i = 1 corresponds to the

conservation of mass equation and state ρm. The measure |R| compensates for the different
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scales in each equation. Newton iterations start with u0,R0 and convergence is found if

|R|/|R0| < τnewtonrel or |R| < τnewtonabs. Usually the residuals will stall out before reaching

machine precision because of the wide range of scales8. If the residual stays almost constant

for a few iterations, stalling is detected and the iterations are stopped. Specifically, stalling

occurs if max(Rk)−min(Rk) < τnewtonstall for k ranging over the last nnewtonstall iterations. In

addition, the Newton relaxation factor ω is be reduced by dω during iterations if |R|/|R0| >

τnewtonrelax or increased if |Rk|/|Rk−1| < τnewtonunrelax. The total number of Newton steps is

capped at nnewtonmax. Finally, failure is reported if the residual grows too much, |R|/|R0| >

τnewtonbig. In this work, values for the various tolerances and criteria were chosen by trial and

error. They are: τnewtonrel = 10−8, τnewtonabs = 10−6, dω = 0.1, τnewtonstall = 102, nnewtonstall =

6, τnewtonrelax = 5.0, τnewtonunrelax = 10−2, nnewtonmax = 16, τnewtonbig = 103.

4.3 Adjoint Discretization

The term adjoint as used here is essentially the same as that used in the neutronics

community for perturbation analysis. There, the adjoint is usually derived in the continuous

framework. This leads to adjoint operators that complement “regular” operators (e.g. the

adjoint of “grad” is “-grad”). Sensitivities are then computed by discretizing the adjoint

operators. The same analysis can be performed on the governing equations of multiphase

fluid flow. However, another approach is to derive the adjoint operators after the equations

have been discretized. Suppose the (linear) governing equations Lu = f are discretized,

yielding the matrix equation Lhuh = fh. Then, the discrete adjoint operator can be shown

to be L†
h = LT

h , simply the transpose of the original matrix. If the discretization is an

adjoint consistent one (the LDGmethod can be shown to be, subject to appropriate boundary

conditions, see [6]), then LT
h is a good (consistent and stable) discretization of the continuous

adjoint operator L†. The derivation is slightly more involved for a nonlinear discrete system,

and is presented in Section 1.2.3. A sketch of the derivation for a continuous system is used

8The equations are not normalized for ease of implementing the empirical models
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in 3.4.2 to motivate the stochastic error estimate.

The canonical discontinuous Galerkin method is adjoint consistent, so the simple discrete

approach can be used to solve for the adjoint. That is, for a given output K(u), the adjoint

satisfies

∂R

∂u

T

ψ = −∂K
∂u

T

(4.79)

Note, variations on the above development, for example different treatment of the pressure

gradient or boundary conditions, can lead to an adjoint inconsistent method. In fact, the

method for computing the pressure gradient is only asymptotically adjoint consistent [90].

The solution of the adjoint equations results in an adjoint with four components, one asso-

ciated with each equation being solved. These are the mixture-mass component, gas-mass

component, mixture-momentum component, and the mixture-enthalpy component. Each

component represents the sensitivity of the output to errors in satisfying the associated

equation (i.e. residuals of that equation). Finally, note that in the ideal case, the adjoint

solution converges to the true solution to the continuous adjoint equations at the same rate

as u, in the case of DG FEM the error decays as O(∆zp+1).

4.4 Error Estimation

The adjoint can be used in a special way to estimate discretization errors, or errors

associated with the grid resolution. Essentially, the adjoint computes the sensitivity to the

“parameter” of grid resolution. When the sensitivity is sufficiently small, we can say that

the quantity of interest has converged and perhaps no further grid refinement is necessary.

In order to do this, we compute the difference between the output on the current grid and

on a grid that is uniformly refined, called δKunif
H . Information on the “fine” grid (denoted
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by h) can uncover inaccuracies in the original or “coarse” grid solution (denoted by H).

uH satisfies RH(uH) = 0

ψH satisfies
∂RH

∂uH

T

ψH = −∂KH

∂uH

T

error due to resolution: KH(uH)−Kh(uh) ≈ δKunif
H = ψT

hRh(IHh uH) (4.80)

Here, we are looking at the error of the coarse solution (uH) as seen by the fine grid (ψh and

Rh). The injection operator IHh simply generates a representation of the coarse solution uH

on the fine grid (this can sometimes be done by sampling or in general by projection). It is

straightforward to compute the second term Rh(IHh uH) by setting up the refined grid and

taking the solution uH as, e.g., a first guess of the fine solution.

Eqn. 4.80, though, also requires the adjoint solution on the fine grid, ψh. In general, we

would have to solve for the full fine grid solution uh in order to then solve for ψh, making

this option potentially quite time consuming. However, it can be shown that it is often

sufficient to simply interpolate and smooth the coarse adjoint ψH as an approximation of

ψh. This assumes that the adjoint is smooth and converges to the continuous adjoint as

the grid is refined. The discontinuous Galerkin method used here is asymptotically adjoint

consistent, so the rate of convergence of the adjoint to the continuous adjoint approaches p+1

(assuming space and time are discretized to order p). When the adjoint has sharp changes,

the interpolation results in a less accurate error estimate. Still, for the current problem

interpolation was found to have sufficient accuracy for driving the adaptive process9. For

the purposes of obtaining an highly accurate estimate of discretization error, the full fine

adjoint would be more appropriate.

In multiple dimensions, interpolating the coarse adjoint can be done with various recon-

struction or interpolation methods. In this work, a patch reconstruction method is used [95].

The solution in element k and its two neighbors is projected to the higher-order space

9Some inaccuracy in the error estimate is tolerated when using it to drive adaptation because, in the end,
the information is used to decided which elements to be refined.
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Pp+1(Ωk). The higher-order solution is then projected via least squares onto the mesh of

interest10.

4.5 Adaptation

If grid convergence is defined by the user to be an absolute error tolerance on some

part of the solution (or quantity of interest, Kh), then the adjoint-based error estimation

technique can be used to reliably measure grid convergence. By the same token, the grid

can be dynamically refined (adapted) such that the quantity Kh is quickly computed to

high accuracy by targeting regions that contribute most to the error. Notice that the error

estimate is an inner product between two field quantities, ψh and Rh. The value of ψT
hRh

in each element can be interpreted as how much error that element contributes to the overall

error:

ϵk =
∑
i∈k

ψh,iRh,i(IHh uH) or
∑
i∈k

|ψh,iRh,i(IHh uH)| (4.81)

Here, the notation i ∈ k picks out the fine-grid elements i that lie within the coarse grid

element k. The second expression is a more conservative one in which error cancellation does

not occur. Here, the sum is over all components relevant to an element.

Next we must choose a strategy for adapting the elements. One of the simplest strategies

is to uniformly refine a fixed percentage of the elements (those with the highest error) at

each adaptation step. That is, the elements are sorted by ϵk and the top γnum percent are

flagged for refinement. The strategy works well when the error is moderately concentrated

in one part of the domain.

When errors are highly concentrated in, e.g., one element, then the above strategy is

slow because excess refinement will occur outside of that one “bad” element. There are two

ways to remedy this problem. One strategy is multi-level refinement, where some elements

10At cell interfaces, the projected solutions from both sides are averaged.
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are flagged for multiple uniform refinements (all in a single adaptation step). This requires

another heuristic to decide the level of refinement. A second strategy is to reduce the number

of flagged elements to those that contain γerr percent of the total error. That is, we refine

either a fixed fraction of the number of elements, γnum×Ne,z, or a fixed fraction of the total

error, γerr × δKH , whichever is smaller. This strategy also results in single “bad” elements

being refined many times (over many adaptation steps), but requires evaluating the error

estimate more often. In the results below we use the second strategy.

4.5.1 Anisotropic Adaptation

Grid adaptation is most beneficial when small regions of the domain require a large

number of elements to resolve the solution due to complex behavior. In multiple dimensions,

one must consider element size in each dimension. An element’s aspect ratio is a measure

of how the element’s size varies with direction11. If the region is near a single point, then

isotropic refinement, where element aspect ratios are kept approximately constant, is good

at capturing the complex behavior. However, if the region is, say, a line (e.g. a boundary

layer), then isotropic refinement will lead to a sub-optimal grid. In the case of a line, the

solution has complex behavior perpendicular to the line, but not along it. An efficient grid

therefore has long, thin elements along the line. This is called anisotropic refinement because

different amounts of refinement are needed in different directions [68].

In the context of space-time (and a tensor-product grid), anisotropic adaptation requires

a decision to be made between spatial and temporal refinement. The same basic method

can be used to decide between refinement in the physical and stochastic domains. Indeed,

our approximation to u can be thought of as a tensor product between the stochastic and

physical spaces.

We use the anisotropic adaptation scheme presented in [39]. The output error is computed

on semi-refined spaces and compared. The regular isotropic error metric and the total error

11One way to define the aspect ratio of an element is the ratio of the largest to smallest principle axes of
the smallest enclosing ellipsoid of the element.
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Figure 4.4: Diagram of original coarse space VHH (upper left), full fine space Vhh (lower
right), and semi-refined spaces in space VhH (upper right) and semi-refined in
time VHh (lower left).

are

ϵklhh =
∑
i∈(k,l)

ψhh,iRhh,i(IhhHHu), δKHH =
∑
k

∑
l

ϵklhh (4.82)

where (·)hh indicates a quantity evaluated on a grid refined both in time and space. The

notation i ∈ (k, l) indicates the components of ψ and R relevant to the spatial element k

and temporal element l. The semi-refined spaces are denoted VhH (spatial refinement only)

and VHh (temporal refinement only). A diagram of the various spaces is shown in Figure 4.4.

The error estimates on these spaces are

ϵklhH =
∑
i∈(k,l)

ψhH,iRhH,i(IhHHHu) ϵklHh =
∑
i∈(k,l)

ψHh,iRHh,i(IHh
HHu) (4.83)

The adjoint is easily interpolated onto either of these spaces using one-dimensional patch-

reconstruction. Next, fractions of error are constructed by comparing the semi-refined error

estimates. The grid is a tensor-product between space and time, so refinement can occur in

space (a spatial element is refined for all time) or in time (a temporal refinement is the same

for all spatial elements). The error fractions are normalized to remove any scaling differences

and the result is a measure of anisotropy in the solution as described in Table 4.1. The
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Table 4.1: Anisotropy measures for adaptation.

Error due to spatial resolution Error due to temporal resolution

In space element k : fk
space =

∑
l ϵ

kl
hH∑

l(ϵklhH+ϵklHh)
fk
time =

∑
l ϵ

kl
Hh∑

l(ϵklhH+ϵklHh)

In time element l : f l
space =

∑
k ϵklhH∑

k(ϵklhH+ϵklHh)
f l
time =

∑
k ϵklHh∑

k(ϵklhH+ϵklHh)

fraction f l
space, for example, denotes the fraction of the error in (time) element l due to spatial

inaccuracy. This is a slight modification from the method presented in [39], which keeps the

error fractions separate for each space-time element. Next we compute the error that is

targeted for each refinement choice.

ϵk = fk
space

Ne,t∑
l=1

ϵklhh ϵl = f l
time

Ne,z∑
k=1

ϵklhh (4.84)

An error-per-cost metric is used to decide where to refine. Assuming the polynomial orders

are pz and pt in space and time, respectively, the cost of refining a spatial element by splitting

it in half is the number of additional unknowns, 4(pt + 1)Ne,t and similarly for splitting a

temporal element12. The overall refinement metric for a spatial or temporal element is

Ek =
ϵk

4(pt + 1)Ne,t

El =
ϵl

4(pz + 1)Ne,z

(4.85)

The values Ek and El are sorted. The largest values correspond to elements that contain

a large amount of error but that are not expensive to refine. For fixed-fraction refinement,

the first γnum(Ne,z + Ne,t) elements are flagged for refinement. For fixed-error refinement,

elements are greedily chosen based on the refinement metric until a fraction of the overall

error, γerr(δKHH), has been targeted.

12In this work we only consider splitting elements, or h-refinement. The polynomial orders will remain
fixed for the entire simulation
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Figure 4.5: Diagram of the Edwards’ blowdown experiment [36].

4.6 Edwards’ Blowdown Problem

The multiphase model is applied to the Edwards’ blowdown problem, illustrated in Fig-

ure 4.5. Experiments were carried out in [36] and the data have been used as a benchmark

problem to validate multiphase simulations [112]. The setup consists of a long pipe filled

with hot, pressurized water. At time t = 0, a glass disk at one end of the pipe is burst

and the water begins to flow out. During the depressurization, the water in the pipe boils

(or flashes) and eventually only steam is left by t ≈ 0.6 seconds. The experiment is used

as a benchmark for simulations codes because the same phenomena are at play in a loss of

coolant accident (LOCA). It is important to know how quickly the depressurization takes

place so that safety mechanisms like pressure sensors and pumps can be properly designed.

The following settings are used to simulate the blowdown problem.
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� Liquid is set to water with reference and saturation data imported from NIST

� Gravity is off, walls are set to adiabatic. Pipe wall roughness is set to 0.001. All other

source terms are on.

� Gas enthalpy is fixed to slightly above saturation, hgas = (1 + τhgas)hg,sat

� Covariance term is turned off to enhance stability

� Drift velocity is set to the Chexal-Lellouche model

The gas enthalpy parameter τhgas is set to 10−4, similar to the value used in Nphase [75].

The tube radius is set to rpipe = 0.0366m except at the outlet. Reports from the experiment

indicated a 10-15% blockage from a piece of the burst disk at the pipe outlet. We model this

with a radius that decreases to Ablock = 12% using a cosine from the point z = zblock = 3.8m

to the outlet z = 4.096m. The radius as a function of z is

rpipe(z) =


0.0366, 0 ≤ z < zblock

0.0366− 0.0366Ablock

[
1− cos

(
π

z − zblock
4.096− zblock

)]
, zblock ≤ z ≤ 4.096

(4.86)

The initial condition is water at rest with enthalpy hl = 980.67kJ/kg, pressure p = 7Mpa,

and void fraction α = 10−6. Although the initial temperature distribution is known to

be slightly non-uniform, for simplicity we take an average value. The small positive void

fraction is required to keep the multiphase model stable and the value is chosen so that

the gas generation source term will initially be inactive (see Section 4.1.3). The boundary

conditions are set to a reflecting wall at the left end of the pipe. The right end (outlet) is

set to a pressure outflow if the flow is unchoked or a supersonic outflow if the flow is choked.

The pressure outflow condition should simulate the action of breaking the burst disk. We

adopt a simple boundary condition which exponentially decreases from the initial pressure

(7 MPa) to atmospheric pressure (0.1 MPa). The time over which the decrease occurs is
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controlled by a time constant τpout

pspec = 0.1 + (7− 0.1)e
− t

τpout (4.87)

Initially we set τpout = 500−1s, which gives a decrease to atmospheric pressure in about 10

milliseconds. The long time constant was chosen due to numerical difficulties with shorter

time constants. According to data in [107], measurements showed a decrease to atmospheric

pressure in about 1 millisecond.

The Edwards’ problem results in nearly all of the water initially in the pipe flowing out.

At some point, the pressure at the outlet reduces to atmospheric and even below. Water

(actually steam since α ≈ 1) begins to flow back into the pipe until a steady state is reached.

In order to make the boundary conditions easier to implement, we do not allow the outlet

to become an “inlet” at this point. Rather, the simulation is aborted when the mass flow at

the outlet becomes negative and only the region with positive outflow is retained.

4.6.1 Outputs

Two outputs of the Edwards blowdown problem that are of interest to nuclear engineers

are the time to reach a fixed pressure, tpfix and the total mass flow out of the pipe up to

that time, ṁpfix. During a loss of coolant accident, pressure sensors will trigger once the

pressure has dropped to some fixed pressure pfix, after which pumps may be activated to

re-fill the pipe with water. The pumps are sized based on the amount of water required to

re-fill the pipe. The outputs are computed by examining the outlet pressure over time. A

few iterations are used to pinpoint the time tpfix by driving the following residual to zero

Rout(tpfix) = p(u(z = 4.096, t = tpfix))− pfix (4.88)

where pfix is the fixed pressure. In this work we take pfix = 0.5MPa so that the time tpfix is

about halfway through the blowdown transient. For this output, it is difficult to construct the
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output linearization ∂tpfix/∂u since the output is only implicitly a function of the solution.

Thus, the linearization is computed via finite differences. We assume that only the values

of u in the space-time cell in which tpfix was found have an effect on tpfix
13. Therefore, the

finite difference calculation is quite fast. The second output is computed by integration

ṁpfix =

tpfix∫
0

ṁ(u(z = 4.096, t)) dt (4.89)

The full linearization is

dṁpfix

du
=
∂ṁpfix

∂u
+
∂ṁpfix

∂tpfix

∂tpfix
∂u

(4.90)

The first term is easy to compute via analytic differentiation since it assumes that tpfix re-

mains constant. The second term can be computed using finite differences14. Since ∂tpfix/∂u

is only non-zero in the space-time cell in which p = pfix, the finite differences calculation of

the second term can again be computed quickly.

4.7 Results

We solve the Edwards’ blowdown problem to demonstrate the multiphase phenomena

that the drift-flux formulation can simulate and to demonstrate the grid adaptation scheme.

The spatial discretization has 21 elements15 with pz = 2 and the adaptive time stepping

scheme (using pt = 1) resulted in 33 time steps. Newton iterations on the full space-time

grid were then performed to obtain a fully converged solution. Figures 4.6, 4.7, 4.8, and 4.9

13This assumption rules out “mulit-modal” p(t) curves, where tpfix could jump between two or more places
in the time domain when the solution is perturbed. In fact, the solution does have two dips in the pressure,
but analyzing this case would require far more finite differences, and thus more time to compute, while only
yielding a more accurate adjoint when the location of tpfix is about to jump.

14In the finite difference calculation, ṁpfix is re-calculated with a modified u. Thus, we actually compute
the entire linearization (not just the second term) for the space-time cell in which p = pfix with finite
differences. A fixed step size of 0.01 is used.

15This was constructed by taking 16 evenly spaced elements followed by splitting the last element in half
twice and the second to last element into three to capture the outlet behavior. The grid size and polynomial
order was decided based on trial and error and computational effort.
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show the pressure, void fraction, and enthalpy of the solution in space-time. The solution

is smooth but exhibits strong gradients at the initial time (t ≲ 10ms) and near the outlet

(z ≳ 4m). The result is a good candidate for adaptive grid refinement.

The output is set to ṁpfix, the mass flux leaving the pipe until p = pfix. The point in time

at which the pressure reaches pfix = 0.5 MPa is tpfix ≈ 0.4 seconds. Figures 4.10, 4.11, 4.12,

and 4.13 show the four components of the adjoint with respect to this output. The color

scales indicate that the second component of the adjoint, corresponding to the conservation

of mass for the gas phase, is the most important for the output of interest. This confirms

that accuracy of the boiling model directly impacts the accuracy of the output ṁpfix.

It should be noted that there has been relatively little attention paid to solving for the

adjoint in the multiphase-flow context. We demonstrate here that smooth, realistic adjoints

can be obtained for multiphase problems. While the amount of coding required can be

large, the major expense is computing analytic derivatives. Analytic derivatives, though,

are quite useful for implicit solution methods which are often need for the stiff problems

encountered in multiphase flow. In addition, the computational cost is relatively small once

the code has been implemented and automatic differentiation can reduce the coding burden.

Adjoints enable faster evaluation of sensitivities and error estimates and are useful for driving

adaptation.

Figures 4.14, 4.15, and 4.16 compare the time histories of pressure and void fraction with

experimental data [107, 36]. The initial value of τpout = 500−1s gave poor agreement for

short times near the outlet. As a comparison, the code is run with a faster time constant

τpout = 2000−1s which gave good agreement with the data for the first few milliseconds. The

plots compare the two values with the experimental data. The shorter time constant only

significantly affects the behavior at the outlet for the first few milliseconds; otherwise, the

simulation does not fit the data any better than with the longer time constant. In general,

the level of agreement with experiments is only approximate. This is expected due to the

uncertainties, approximations, and model fidelity used. The agreement is acceptable since
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Figure 4.6: Solution to the Edwards’ blowdown problem. Space-time plots are shown; the
pipe is horizontal with the outlet on the right (at z = 4.096), time increases
upward. Pressure is plotted.

the goal is not to faithfully replicate the experiment, but rather to demonstrate the capability

of simulating realistic multiphase flow with adaptive methods.

The adaptive methodology presented in Section 4.5 was used to automatically refine the

grid. The adaptive thresholds were set at γnum = 0.15 and γerr = 0.9 based on trial and

error. The original grid from the adaptive time stepping procedure and the adjoint-adapted

grids are shown in Figure 4.17. A large amount of refinement is focused on the initial time,

the outlet, and a few other points in time. Interestingly, the region near t = [0.15, 0.2]s has

a large value of the adjoint (see Figure 4.11) and is refined, even though this is not near

tpfix. This demonstrates the potentially non-intuitive nature of what regions of the domain

affect a given output and the ability of the adjoint to detect these. Figure 4.18 shows the

convergence of the output over the adaptive iterations. Overall, the error converges at an

increasing rate as the grid is refined. The error is much smaller than is achieved with uniform

refinement. Only one uniform refinement could be performed due to memory constraints.

The adaptive method resulted in a significantly better solution (over an order of magnitude

lower output error) with fewer degrees of freedom (about one half) for approximately the
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Figure 4.7: Solution to the Edwards’ blowdown problem. Space-time plots are shown; the
pipe is horizontal with the outlet on the right (at z = 4.096), time increases
upward. Pressure for the first 10 milliseconds is plotted.
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Figure 4.8: Solution to the Edwards’ blowdown problem. Space-time plots are shown; the
pipe is horizontal with the outlet on the right (at z = 4.096), time increases
upward. Void fraction is plotted.
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Figure 4.9: Solution to the Edwards’ blowdown problem. Space-time plots are shown; the
pipe is horizontal with the outlet on the right (at z = 4.096), time increases
upward. Enthalpy is plotted.

Figure 4.10: Adjoint for the Edwards’ blowdown problem. Space-time plots are shown; the
pipe is horizontal with the outlet on the right (at z = 4.096), time increases
upward. The output is the total mass flux until p = pfix. The mixture-mass
component of the adjoint is plotted.
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Figure 4.11: Adjoint for the Edwards’ blowdown problem. Space-time plots are shown; the
pipe is horizontal with the outlet on the right (at z = 4.096), time increases
upward. The output is the total mass flux until p = pfix. The gas-mass
component of the adjoint is plotted.

Figure 4.12: Adjoint for the Edwards’ blowdown problem. Space-time plots are shown; the
pipe is horizontal with the outlet on the right (at z = 4.096), time increases
upward. The output is the total mass flux until p = pfix. The mixture-
momentum component of the adjoint is plotted.
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Figure 4.13: Adjoint for the Edwards’ blowdown problem. Space-time plots are shown; the
pipe is horizontal with the outlet on the right (at z = 4.096), time increases
upward. The output is the total mass flux until p = pfix. The mixture-
enthalpy component of the adjoint is plotted.

same computational time compared to standard uniform refinement16.

The outflow boundary is particularly interesting in this simulation. The outlet is the

point at which the area is minimum, so it is in a sense a throat. As the water depressurizes,

the outlet transitions from subsonic to supersonic. In addition, the mass flow at the outlet

is the quantity of interest. Figure 4.19 shows the outflow velocity for the initial (black)

and adapted (blue) grids. Clearly, the adaptation uncovered a much smoother solution with

significant differences from the initial grid. First, the peak velocity moves from t ≈ 0.2s to

t ≈ 0.3s and becomes much sharper. This change has a significant impact on the output of

interest, and this is why refinement of the temporal grid is seen around this time interval

in Figure 4.17. In addition, we clearly see the the transition from subsonic to supersonic

(the speed of sound on the adapted grid is plotted in red), which is clearer in the close-up

in Figure 4.20. The speed of sound plummets as the pressure reduces below saturation and

eventually meets the increasing velocity at t ≈ 0.01s. Interestingly, the two curves follow each

16Both the adaptive and uniform refinement took about one day (in parallel on 40 processors).
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Figure 4.14: Solution to the Edwards’ blowdown problem. Comparison of experimental
data with two values of τpout. Pressure at the outlet (GS1). Below, a close-up
of the first 15 milliseconds.
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Figure 4.15: Solution to the Edwards’ blowdown problem. Comparison of experimental
data with two values of τpout. Pressure at the closed end (GS7). Below, a
close-up of the first 15 milliseconds.
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Figure 4.16: Solution to the Edwards’ blowdown problem. Comparison of experimental
data with two values of τpout. Void fraction in the center of the pipe (GS5).

other for a finite time interval of about 0.01 seconds. During this time interval, the outflow

velocity increases but the outflow remains at the sonic condition. Further investigation is

needed to develop a physical explanation for this behavior.

162



0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

space, z (meters)

tim
e,

 t 
(s

ec
on

ds
)

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

space, z (meters)

tim
e,

 t 
(s

ec
on

ds
)

0 1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

space, z (meters)

tim
e,

 t 
(s

ec
on

ds
)

0 1 2 3 4
0

0.002

0.004

0.006

0.008

0.01

space, z (meters)

tim
e,

 t 
(s

ec
on

ds
)

Figure 4.17: Initial grid from time step initialization procedure (left) and adapted grid
(right). The bottom plots are close-ups of the first 10 milliseconds.
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Figure 4.18: Convergence of the output for the adaptive grid example compared to uniform
refinement. The output is the net mass flow out of the pipe until the pressure
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Figure 4.19: Plots of the velocity at the outlet of the pipe. Choked conditions occur when
the velocity (blue or black) is higher than the speed of sound (red). The black
line is the velocity for the initial grid and the blue line is for the final adapted
grid.
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Figure 4.20: Plots of the velocity at the outlet of the pipe. Choked conditions occur when
the velocity (blue or black) is higher than the speed of sound (red). The black
line is the velocity for the initial grid and the blue line is for the final adapted
grid. Note how sonic conditions are maintained for a finite time interval.
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CHAPTER 5

Combined Adaptivity in Stochastic and Physical

Domains

5.1 Introduction

In this chapter we combine the adaptive UQ method developed in Chapter 3 with the

adaptive multiphase flow simulation developed in Chapter 4. The UQ study requires a num-

ber of samples, each of which can be a dynamically adapted simulation. During the UQ

study, stochastic errors must be balanced with discretization errors in the physical space.

This leads to a fully adaptive framework where a set of simulations is evolved to yield an ac-

curate output of the UQ study by adding more simulations (“refinement in stochastic space”)

and adaptively refining existing simulations (“refinement in physical space”). The goal is

to equally distribute the stochastic and physical errors over all elements in all simulations,

giving an output with the best ratio of error per cost.

The overall algorithm for fully adaptive UQ is shown in Figure 5.1. The “true” subscript

denotes samples in the stochastic domain, i.e. simulations with a fixed set of parameters.

The regular u denotes the stochastic approximation over both the stochastic and physical

spaces. In general, the “flow solves” block is the most expensive part, but it is also the

easiest to do in parallel since the simulations are all independent. The stochastic model

fitting usually requires matrix operations with matrices of size nd × nd, where nd is the
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Figure 5.1: Diagram of solution process for fully adaptive UQ applied to a numerical sim-
ulation of a PDE.

number of stochastic variables. This block synthesizes the results from all of the simulations

into a model over the entire stochastic space. Next, the residual block R(u, ψ) involves some

extra analysis but no full solutions. This block is also easily done in parallel and is therefore

relatively fast. The block yields an overall error estimate (which is used for the convergence

criteria) and separate error estimates for the various types of refinement (stochastic, spatial,

temporal). These are fed into a heuristic “refinement choices” block which attempts to

target the most error with the least added expense. The simple two-dimensional example in

Section 5.2 will use this block diagram with simplified methods in each block. The Edwards

blowdown example in Section 5.3 uses the same procedure with more complicated flow solves

and stochastic models.

5.2 Two Dimensional Example

We begin with a simple example of equidistribution of errors where the physical and

stochastic spaces each have only one dimension. In physical space, the 1D model problem is
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a convection-diffusion-reaction problem

−x0
∂2u

∂z2
+ c

∂u

∂z
= S(z, x0) (5.1)

Here, the physical dimension is z and the stochastic parameter is x0. The source term is

chosen such that the exact solution is

utrue = sin

(
x0
z2

5

)
+ ln x0 (5.2)

The ranges are taken as 1 ≤ z ≤ 5, 1 ≤ x0 ≤ 3 to provide a complex function in both

physical and parameter space. The physical output is chosen to be the integral

K(u) =

3∫
2

u(z) dz (5.3)

The physical solution is found with the Discontinuous Galerkin method as in Section 4.2,

which can be considerably simplified for this simple, scalar problem. The discrete adjoint

equations are also solved using the discontinuous Galerkin discretization. An example so-

lution with c = 5, x0 = 2.0 is shown in Figure 5.2. The full stochastic-physical solution is

shown in Figure 5.3.

For simplicity we will use linear interpolation to represent the solution in stochastic

space. The stochastic grid initially consists of evenly distributed points, x0,j. As refinement

proceeds, new points in stochastic space are added adaptively. Note, this method works well

with only one stochastic dimension, but creating such a “grid” in the high-dimensional spaces

often encountered in UQ can be prohibitively expensive. This example serves to demonstrate

the benefits of combining adaptivity in the physical and stochastic spaces, while later we will

use the direction-based approximation in the stochastic space for a more realistic problem.
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Figure 5.2: Example solution and adjoint for the convection-diffusion-reaction problem.
The convection speed is c = 5 and the stochastic diffusion coefficient is x0 = 2.0.
The state variable u(z) (left) and the adjoint ψ(z) (right).

Figure 5.3: Exact solution for the example problem. Horizontal axis is the physical space,
vertical axis is the stochastic space. Color denotes the value of u(z, x0).
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5.2.1 Error Estimation

The dual-weighted residual approach is used to drive the adaptation. The physical resid-

ual from the Discontinuous Galerkin discretization of Equation 5.1 is deonted Rcdr
H (uH ; x0) =

0. The subscript H denotes the physical grid and the superscript cdr denotes the convection-

diffusion-reaction equation. The discrete adjoint is defined by

∂Rcdr
H

∂uH

T

ψH = −∂KH

∂uH

T

(5.4)

where KH(uH) is an approximation of the output, computed by Gaussian integration. For

a single simulation, the physical-space error estimate is

∆KH = ψT
hR

cdr
h (IHh uH) (5.5)

where ψh is either computed exactly or is a higher-order, smoothed interpolation of ψH . As

discussed in Section 4.4, taking ψh as an smoothed interpolation of ψH may degrade the

accuracy of the error estimate if the discretization is not fully adjoint consistent or there

are sharp changes in ψH . In this case, the discretization is fully adjoint-consistent and the

adjoint is smooth, so interpolation is a good option. In addition, the error estimate is only

used to drive adaptation, so some inaccuracy can be tolerated.

The injection operator in Equation 5.5, IHh , produces a representation of uH on the fine

grid h. That is, IHh uH is exactly the same function as uH , just represented on a different

grid. Thus, the residual measures the errors in uH that would be resolved by obtaining a

solution on the fine grid.

Now we add an extra subscript to denote the discretization level in stochastic space. For

example, uhH denotes the solution on the refined spatial grid and the coarse stochastic grid.

170



In addition, we define the overall output of the UQ study as

J =

∫
j(K) dx0 (5.6)

For the example in this section, we simply take j(K) = K. The output is computed with

Gaussian integration in stochastic space for a given stochastic grid: JHH =
∫
jH(KHH)dx0.

This leads to the adjoint-based error estimate

∆JHH =

∫
∂jH
∂KHH

∑
i

ψhh,iR
cdr
hh,i(IHH

hh uHH) dx0 (5.7)

The index i runs over all components of the adjoint and residual. The error estimate is in-

tegrated in stochastic space with a Legendre-Gausss-Lobatto (LGL) integration rule applied

within each interval [x0,j−1, x0,j]. The integration points of this rule include the endpoints

of the interval, so the adjoint and residual evaluations are easy and accurate there (no in-

terpolation in x0 space is necessary). At a general point x0, the solution uHH(x0) is simply

the value from linear interpolation. The adjoint ψhh is interpolated in physical space and

stochastic space.

For the physical space interpolation, we fit a polynomial of degree pz + 1 to pz + 2 of

the solution nodes (each element has pz + 1 equally spaced solution nodes). This produces

a “sliding window” type of interpolation. Where these polynomials overlap, the average

is taken. For stochastic space, we use four neighboring points (x0,j−1, x0,j, x0,j+1, x0,j+2) to

create a quadratic function. If the point in stochastic space is near a boundary, only the

three nearest simulations are used. This is done separately for each region [x0,j, x0,j+1]. Note,

many types of interpolation are possible and equivalent for the purpose here, the methods

used here were chosen for ease of implementation.

A common splitting of the error estimate is based on two adjoints, first the coarse ad-

joint ψHH and then the fine, interpolated adjoint ψhh [114, 38]. The splitting reflects the

potentially much higher cost in computing fine adjoint compared to the coarse, and the po-

171



tential gain in accuracy in the resulting error estimates. Since the coarse adjoint is typically

available at little extra cost, it is used in the “computable correction” ∆J c
HH

∆J c
HH =

∫
∂jH
∂KHH

∑
i

IHH
hh ψHH,iR

cdr
hh,i(IHH

hh uHH) dx0 (5.8)

The fine adjoint requires extra work (interpolation or a full solve) and it contributes to the

“remaining error” ϵhh

ϵhh =

∫
∂jH
∂KHH

∑
i

(
ψhhi
− IHH

hh ψHH,i

)
Rcdr

hh,i(IHH
hh uHH) dx0 (5.9)

Since the computable correction is easy to compute (at least for one stochastic dimension),

we assume that the output can always be corrected as

J c
HH = JHH +∆J c

HH (5.10)

and the corrected output is reported in the results below. The remaining error is used to

drive the adaptation. We use the notation δψhh = ψhh − IHH
hh ψHH to indicate the adjoint

increment associated with the remaining error.

The error estimate can be localized as before

ϵ
k,j+1/2
hh =

x0,j+1∫
x0,j

∂jH
∂KHH

∑
i∈(k)

δψhh,iR
cdr
hh,i(IHH

hh uHH) dx0 (5.11)

Here, the sum in physical space is done for all degrees of freedom i within a coarse-grid

element k. That is, the coarse element k is subdivided to get the fine grid and i ∈ (k) indexes

over the subelements of k. The error estimate is treated as separate for each stochastic region

[x0,j, x0,j+1].

As the adaptation proceeds, some physical grids (at certain x0,j) may become more

refined than others. If this is the case, then the solutions on two neighboring grids cannot
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← Common mesh
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Figure 5.4: Diagram of construction of a common grid. Physical space is horizontal,
stochastic space is vertical. Two physical grids are shown at x0,j and x0,j+1.

be directly compared since they have different numbers of unknowns. However, we must

have some way to interpolate among various physical grids. To that end, we introduce the

notion of a “common grid,” i.e. a grid that is used for such comparisons. Each physical

solution is projected (without smoothing) onto the common grid and comparisons are done

on the common grid. A diagram of this is shown in Figure 5.4. In general, the common grid

should be at least as fine as any of the individual physical grids so that all of the physical

solutions can be precisely represented on it. If the physical grid starts out the same for all

x0,j at the beginning of the adaptive process, it is easy to keep track of the refinements (just

successive splitting of the elements) and to combine the refinements of all physical grids to

get a common grid. The common grid is what is denoted by H, while a uniformly refined

version of it is the fine physical grid, denoted by h.

In general, a separate common grid could be constructed for each comparison based on

the relevant physical grids that are being compared. Alternatively, a single common grid

can be used for the entire UQ study. In this section, comparisons are only done between

two physical grids at a time, so a global common grid is not needed. A new common grid is

constructed for each pair of simulations. When more stochastic dimensions are considered,

however, it is more convenient to use a single common grid for the entire stochastic space.
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5.2.2 Anisotropic Adaptation

The same framework for space-time anisotropic adaptation presented in Section 4.5 can

be used for the stochastic and physical spaces here. The error estimate in two “partially

refined” spaces is compared to decide between stochastic and physical refinement. The error

estimate for physical space is

ϵ
k,j+1/2
hH =

1

2

 ∂jH
∂KhH

∑
i∈(k)

δψhH,iR
cdr
hH,i(IHH

hH uHH)|x0,j
+

∂jH
∂KhH

∑
i∈(k)

δψhH,iR
cdr
hH,i(IHH

hH uHH)|x0,j+1

(5.12)
This is the physical error on physical element k for the stochastic region [x0,j, x0,j+1]. It

measures the amount of physical discretization error that is due to the physical element

Ωk (on the common grid). It is not affected by the stochastic parameter x0 because it is

evaluated at locations where the effect of x0 is known (i.e. the sample locations x0,j).

In contrast, the error estimate for the stochastic space is

ϵ
k,j+1/2
Hh =

∑
q

wq
∂jh
∂KHh

∑
i∈(k)

δψHh,iR
cdr
Hh,i(IHH

Hh uHH)|x0,q (5.13)

Here, the points x0,q are quadrature points for the LGL integration in stochastic space,

and wq are the associated weights. This measures the amount of error due to inaccurate

representation of u and ψ in the stochastic space. The solution and adjoint are evaluated

on the coarse common grid and (linearly) interpolated to the points x0,q. The injection

operator IHH
Hh performs the linear interpolation in stochastic space1. The adjoint increment is

the difference between the higher-order smoothed adjoint (ψHh) and the linearly interpolated

coarse adjoint: δψHh = ψHh−IHH
Hh ψHH . The residual at those points is zero if the parameter

x0 has only a linear effect on the solution. If the parameter affects the solution in a higher-

order way, there will be non-zero residuals and hence a nonzero ϵ
k,j+1/2
Hh . Since the error

estimate is evaluated on the coarse common grid, errors due to the physical discretization

1In a sense, we take the stochastic “discretization” to be interpolation, either linear (coarse, H) or
quadratic (fine, h).
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are not measured.

The fractions of error in the stochastic and physical spaces are computed using the

partially-refined error estimates. In this example, we use a slightly simpler approach than

the one presented for space-time adaptation. A fraction of stochastic error is averaged over

the entire space to give an overall stochastic-fraction and physical-fraction of the error

fphys =

∑
k,j ϵ

k,j+1/2
hH∑

k,j

(
ϵ
k,j+1/2
hH + ϵ

k,j+1/2
Hh

) , fstoch = 1− fphys (5.14)

Next, we must decide which elements of existing simulations to refine and where to add

new simulations2. We focus on fixed-fraction refinement, so at each adaptive step there is a

budget of new degrees of freedom which are allocated to different refinement choices. This

is a classic problem in computer science called the knapsack problem [13]. There are two

goals here. The first is to distribute the error evenly in both stochastic and physical space,

resulting in the fewest degrees of freedom for a given level of error. The second is to reduce

the number of simulations, since starting up and running a simulation incurs overhead. The

second goal helps to reduce the simulation time for a given amount of error. The overall cost

(in terms of expected computation time) of a given set of refinements, then, is non-linearly

related to the error targeted by that set of refinements. The overhead cost significantly

complicates the knapsack problem and renders an exact solution intractable3. Instead, a

heuristic method is used here with a tuning parameter γoh that is related to the overhead

cost of starting a simulation. A large value of γoh assumes significant overhead cost and will

refine many elements in only a few simulations. A small value of γoh will distribute refined

elements over many simulations (assuming the error is actually spread out like that). If

2In this example, we consider only splitting the x0 intervals in half by adding a new simulation at x0,j+1/2.
New simulations are assumed to be computed on the grid used to initialize the simulations (not the common
grid). This allows for a variety of coarse and fine grids, which can yield a more efficient approximation of the
stochastic space behavior than requiring a minimum level of refinement everywhere in the stochastic space.

3For space-time adaptation, there is no additional overhead cost for refining in space versus time. Thus,
the knapsack problem remains linear and is easy to solve. In Section 4.5, the problem is solved approximately
by refining the elements with the highest error-per-cost (a greedy method).
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much of the error is concentrated in only a few simulations, then the parameter will have

little or no effect.

The heuristic method uses a standard fixed-fraction parameter γnum to determine the

overall increase in degrees of freedom. The steps are:

1. Create new simulations where
∑

k ϵ
k,j+1/2
Hh is largest, using up to fstochγnumNdof new

degrees of freedom.

2. Refine elements of existing simulations where ϵk,jhH is largest, using up to (1−γoh)fphysγnumNdof

new degrees of freedom.

3. Add further refinements to existing simulations that have at least one element already

flagged for refinement from step 2, using up to γohfphysγnumNdof new degrees of freedom.

The total added degrees of freedom is γnumNdof , where Ndof is the number of degrees of

freedom in at the previous iteration.

An example of the adaptive solution process is shown in Figure 5.5. In the figure, simu-

lations are single rows and black dots represent degrees of freedom. The background color

shows the error. The heuristic method has chosen to add two new simulations (rows of red

dots) near the top and bottom where errors are large. In a few spots, large errors are seen

in red and existing simulations in that area are targeted for refinement.

5.2.3 Results

The results of the method are shown as error as a function of degrees of freedom and

compute time. The compute time is specific to the machine used (2xQuadcore Intel Xeon

E5630, 16Gb RAM), but the relative comparison between uniform and adaptive refinement

is useful. The error is measured by the difference between the corrected output and the

true output, computed on a very fine grid4. We compare two strategies for computing

4In this case, the “true” solution was computed using the adaptive method with pz = 3 and 7,168 total
degrees of freedom. The difference in the output between the final two adaptive iterations in this run was
< 3× 10−8.
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Figure 5.5: Example of stochastic and physical space adaptation. Horizontal axis is pnys-
ical space, vertical axis is stochastic space. Each row is a single physical simu-
lation. Black dots represent degrees of freedom at the previous iteration. Red
dots represent added degrees of freedom, either by adding new simulations
(rows) or by refining elements of existing simulations. In this case, two simu-
lations are added and seven existing simulations are refined. The background
color is the adjoint-weighted-residual error ϵ

k,j+1/2
hh . Note how each simulation

(row) has a different grid. The initial grid had eight physical elements and
three simulations at x0 = 1, 2, 3. The overhead factor is γoh = 0.5.
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the integrals in stochastic space (specifically the quadrature in Equation 5.13). The first

strategy uses only information at a single new point which is the midpoint between two

existing simulations, essentially integrating with the midpoint rule. This is inspired by

collocation methods in uncertainty quantification, which focus on point evaluations. The

second strategy uses a high order LGL integration that requires more residual evaluations.

This strategy incurs extra cost but brings in more information from the equations and could

result in better error estimates. The LGL integration is inspired by stochastic finite-element

methods, which attempt to perform domain integrations in stochastic space. Figure 5.6 shows

the performance of the adaptive method compared to uniform refinement in stochastic and

physical space. Note, the overhead parameter γoh is set to 0.5 and the refinement parameter

γnum = 0.2. The corrected output converges like O(Np
dof ) with p = −1, consistent with linear

approximation in stochastic space and pz = 1. If we look at the stochastic-physical element

size h ∝ 1/
√
Ndof , then the convergence is like O(h2). Note, however, that a single element

size or degree-of-freedom count hides the different costs of stochastic vs. physical refinements.

From the plot, the adaptive method performs better than uniform refinement with respect

to computation time, but it is not more efficient in terms of error per degree of freedom.

This is because the error is mostly evenly distributed in the physical and stochastic domains

(see the true solution in Figure 5.3). Nonetheless, the benefits of the current adaptation

scheme are twofold. First, sometimes a full uniform refinement is not possible for very large

simulations. The adaptive method creates an intermediate grid which has the same optimal

error distribution. Second, the adaptive method is clearly faster in terms of compute time,

despite the extra expense of solving the adjoint equation and calculating the error metrics.

The adjoint-based adaptive indicators require extra computational resources and it is

important to assess the benefit of using those resources. To that end, we compare the

adjoint-based indicators with adaptive indicators based on interpolation error, jumps in the

solution, and unweighted residuals. The interpolation error is the difference between an

interpolated solution (in stochastic and/or physical space) and the current solution. Third
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Figure 5.6: Convergence of the adaptive method for two integration strategies (“col” for
collocation, “fem” for full LGL integration), comparing adaptive to uniform
refinement. Since there are two dimensions (one physical, one stochastic), the

horizontal axis is 1/h = N
1/2
dof . The spatial polynomial order is pz = 1 and

γoh = 0.5.
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Figure 5.7: Convergence of the adaptive method for other adaptive indicators. Comparison
between collocation and LGL integration of the adjoint-based indicator with
indicators based on interpolation error, equation residuals, and jumps in the
solution across physical elements. The black dashed line indicates the “true”
value of the output. The spatial polynomial order is pz = 1 and γoh = 0.5.

order interpolation was used in the physical and stochastic spaces (see Section 5.2.1 for a

description of the interpolation procedure). The jump-based indicator takes the average of

the jumps on the left and right sides of a physical element as the indicator for that element.

For stochastic regions, the jumps in the two nearest simulations are averaged. The residual

indicator is simply the sum of the residuals in the physical element. For stochastic regions,

we use the residual of the interpolated solution at the midpoint x0,j+1/2. The results are

shown in Figure 5.7. The output-based methods perform the best even in terms of run-time.

The interpolation error indicator eventually converges to the correct value, but the jump and

residual-based indicators converge to the incorrect value. This behavior has been reported

before in [38] and shows the importance of using an adaptive indicator that is tied to the

output of interest.

Finally, we investigate the impact of the overhead factor γoh. Three different settings are

shown in Figure 5.8, γoh = 0.3, 0.5, and 0.8. The difference in performance is generally small,

though the large value of 0.8 leads to more erratic convergence because it concentrates extra

physical refinement on only a few simulations.
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Figure 5.8: Convergence of the adaptive method different values of γoh = 1−fx = 0.3, 0.5,
and 0.8. LGL integration is used to compute the error estimates. Since there
are two dimensions (one physical, one stochastic), the horizontal axis is 1/h =

N
1/2
dof . The spatial polynomial order is pz = 1.

This relatively simple study of combined adaptivity in physical and stochastic spaces

demonstrated the advantages of the current method. First, using output-based, anisotropic,

adaptive indicators results in faster convergence (in terms of computation time) compared

to simpler indicators. Second, a heuristic for deciding how to refine in the stochastic and

physical spaces is sufficient. Third, utilizing a common grid for comparing solutions on dif-

ferent grids was acceptable and enables a multi-fidelity UQ study. That is, some simulations

(samples) can be relatively coarse while others may be more highly refined. We expect that

for problems with more anisotropy, the methods developed here will be even more beneficial.

5.3 Full UQ Study

5.3.1 Parameters and Ranges

The full UQ study of the Edward’s pipe problem is a straightforward combination of

the UQ method developed in Chapter 3 and the multiphase flow simulation developed in

Chapter 4. Due to time and resource constraints, a demonstration run is done with six active

parameters as shown in Table 5.1. The parameter choices are based on some of the known
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uncertainties in the experimental setup as discussed in [36] and [112]. These include the

blockage area and the initial enthalpy and pressure. The roughness and gravitational accel-

eration (simulating a tilted pipe) are not at all known for the experiment, but representative

ranges are chosen. The large roughness value is included to help simulate valves and other

obstructions in the pipe.

The blockage location and outlet pressure time constant are known to some extent, but

the current model cannot accommodate more realistic values. The blockage location should

be at the very end of the pipe (zblock = 4.096). However, the model has only one spatial

dimension and the discontinuous Galerkin discretization assumes smoothness of the solution,

so the blockage must be “smeared out” over a finite length. The range of the blockage location

was chosen so that a solution could be obtained with the same spatial mesh for all values5.

The outlet pressure boundary condition is assumed to be an exponential decay. As discussed

in Section 4.6, the true outlet pressure behavior is not known, and the experimental data are

approximately consistent with the value τpout = 2000−1s. The range chosen for this study is

consistent with the values tested in Chapter 4.

Finally, the Prandtl number and gas enthalpy parameter are values that should not affect

the simulation much and many models assume these are constant. The Prandtl number varies

by about 10%, which is a convenient range that is loosely related to the actual variation in

the domain. At saturation, the Prandtl number ranges from 0.834 to 0.983 for pressures

between 1 and 10 MPa, which is representative of the pressures in the solution. The gas

enthalpy parameter does not have a known range, so a simple (and arbitrary) doubling of

τhgas is tested.

5.3.2 Discretization

In order to reduce computational expense, the UQ study is focused just on the initial

transient of the Edwards blowdown problem. The temporal domain is restricted to [0, 3 ×
5An alternative would be to specify some hueristic or a robustness-based adaptive procedure to adapt the

spatial mesh for a non-converged solution
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Table 5.1: Parameters and ranges for the full UQ study.

Parameter Symbol Range Notes
Roughness ϵ/rpipe [10−3, 1] logarithmic scale
Blockage area Ablock 10− 15%
Blockage location zblock [3.5, 3.8] m pipe length is 4.096m
Initial enthalpy hl,init [980.67, 985.67] kJ/kg
Outlet pressure time constant τpout [2000−1, 500−1] s−1 logarithmic scale
Initial pressure pinit 7 MPa ±5 Pa
Gravitational acceleration gz [−0.171, 0.171] m/s2 simulates a -1 to 1 degree tilt
Prandtl number Pr [0.7337, 0.9337]
Gas enthalpy parameter τhgas [10−4, 2× 10−4]
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Figure 5.9: Example of solution of the truncated Edwards blowdown problem for the UQ
study. Pressure is plotted.

10−3] seconds. This domain encompasses the initial sharp depressurization and is small

enough to enable inexpensive residual evaluations. An example of the pressure solution is

shown in Figure 5.9. The truncated time domain includes some strongly non-linear behavior.

In addition, Figure 4.20 shows that the domain also encompasses the switch from un-choked

to choked flow.

The spatial discretization is chosen to capture relevant flow features and reduce the

expense of solutions and residual evaluations. The spatial domain is first divided into eight

equal elements and the final element is then subdivided into four elements to resolve the
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Figure 5.10: Example initial mesh for the truncated Edwards blowdown problem for the
UQ study. Each box is a linear space-time element.

geometry of the outlet. The initial temporal discretization is determined by the adaptive

time-stepping procedure described in Section 4.2.8. All elements are linear, pz = pt = 1.

This initial grid has a resolution low enough to enable the UQ study on modest resources but

high enough to capture interesting physics and converge to a solution. A residual evaluation

on the truncated domain takes less than 20 seconds on a single processor compared to the

full domain used in Section 4.7 (with pz = pt = 2), which takes 8.7 minutes. This savings of

over an order of magnitude made the full UQ study feasible with the available computational

resources.

Each simulation (at each sample point in the stochastic domain) is initialized with the

same grid. The first solution is obtained at the point x⃗ = 0 and that solution is used to

initialize the other samples. If a sample does not converge from the initial guess, then the

adaptive time-stepping procedure is restarted for that sample (using the same spatial grid).

This results in a new temporal discretization which is usually finer in some parts than the

original one. The study is initialized with 20 samples in the stochastic space from a latin-

hypercube design, in addition to the point x⃗ = 0. In this study, three of the initial samples
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Figure 5.11: Common mesh for the truncated Edwards blowdown problem. Each box is a
linear space-time element.

required restarting the adaptive time-stepping, each arriving at a finer temporal grid.

A common grid is used for comparing solutions between simulations and evaluating

stochastic errors. Although the common grid should be at least as fine as the finest simula-

tion, this was found to be prohibitively expensive for the current study. Instead, a coarsened

grid is used to reduce cost. During the study the common grid was found to be sufficient to

evaluate stochastic errors accurately enough to enable anisotropic adaptation, though it is

too coarse to allow a convergent solution. The grid is shown in Figure 5.11. Residuals are

evaluated on the common grid hundreds of times during the optimization of the directions

in the stochastic model, so it is important to keep this step inexpensive.

As for the stochastic discretization, the only difference is a modified procedure for adding

samples. As discussed above, 20 latin-hypercube samples are taken to initialize the adaptive

process. Later, when new samples are needed, it is necessary to ensure that samples are

spread out along the important directions d⃗ (not just along the original dimensions as latin-

hypercube ensures). For ease of implementation, a simple strategy is developed. Suppose the

stochastic approximation is adding a term along the direction d⃗i while adding nadd samples.
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The procedure begins by dividing up the vector d⃗i into 10 divisions6 Each current sample

point is projected onto d⃗i and binned into the divisions. In order to spread out the new

samples along d⃗i, the next new sample is placed in the division with the fewest number of

samples in it. The value within the division is a uniformly distributed random number, say

r. This fixes the component of the new point, x⃗k+1, along d⃗i, so x⃗
T
k+1d⃗i = r. The components

perpendicular to d⃗i are set randomly. This is done by generating latin-hypercube samples

and projecting them onto the complement of d⃗i, resulting in x⃗⊥i. The final sample is then

x⃗k+1 = rd⃗i + x⃗⊥i
7. The entire procedure is repeated for each new sample, so the divisions

have approximately equal numbers of samples.

Ensuring that samples are spread out along the directions d⃗i is important because these

directions are precisely the directions in which the solution of the simulation changes most.

That is, the solution with x⃗T d⃗i ≈ −1 is very different from the solution with x⃗T d⃗i ≈ 1,

compared to other directions in the stochastic domain. The potentially complex behavior

along d⃗i cannot be accurately modeled without samples that are well-spread out along it.

And, regular latin-hypercube sampling cannot give samples spread out along an arbitrary

direction. Indeed, experience showed that the samples are generally clustered in the center

of the domain. This makes sense because as the dimension increases, the relative volume in

the corners of the domain increases, while latin-hypercube does not generate more samples

in corners of the domain. In fact, this approach can be thought of as a special case of the

orthogonal array sampling approach [108]. Orthogonal arrays are an improvement on latin-

hypercube designs where the samples are evenly spread out for all r-level interactions (where

r is the “strength” of the orthogonal array).

In order to reduce computational time, only least-squares fitting is used to compute u

(see Section 3.2.1.2). While output-based fitting (see Section 3.2.2.4) results in better fits, it

is much more expensive and requires much more working memory (storing the residual and

6The latin-hypercube procedure also uses 10 divisions per dimension.
7It is possible that this point will not lie within the stochastic domain [−1, 1]nd . If this occurs, the

procedure is attempted again with a new random number r and a different latin-hypercube sample until a
point is found within the domain.

186



residual Jacobian for every simulation).

5.3.3 Adaptation Scheme

The combined UQ study adapts both the physical grids to reduce discretization errors

and the stochastic approximation to reduce stochastic errors. The discretization error is es-

timated using δKhh at the samples, where hh refers to a refined version of the grid associated

with the sample (each sample as its own, unique, adapted grid). The discretization error

is only based on the solution at the samples, so it is not contaminated by stochastic error.

Separately, the stochastic error is estimated using δK(u(x⃗k + sd⃗)), which measures the error

of the surrogate model u at points in the stochastic space away from the samples. The

surrogate model is defined on the common grid, so the error estimate is calculated on the

common grid. The error estimate could be contaminated by discretization errors if the com-

mon grid is finer than the grids at the samples8, but this is expected to be small compared to

the true stochastic error for the current example. By evaluating δKhh and δK(u(x⃗k + sd⃗)),

the discretization and stochastic errors are split9. This results in a fraction of error due to

the two spaces and allocating degrees of freedom to enrich each space proportionately.

Anisotropic adaptation is enabled by computing separate error estimates for partially

refined discretizations in stochastic and deterministic space, analogous to the method used

for space-time adaptation in Section 4.5.1. The semi-refined error estimates are combined

into an overall global fraction of error due to the stochastic and deterministic discretizations.

While in Section 4.5.1 it was possible to create separate fractions for each element, there is no

8In addition, some discretizations, including the discontinuous Galerkin method used here, are so-called
“p-dependent,” meaning that the error estimate calculated on the same grid but with a different polynomial
order will be non-zero (the error estimate on the same grid, with the same order is zero becauseRH(uH) = 0).
Thus, if the common grid is fine or has a different polynomial order than the sample grids, some discretization
error will enter into the stochastic error estimate. The magnitude of this error is expected to be small,
especially for the current example where the stochastic error is in fact large. Estimating the magnitude of
the contamination and its effect on the adaptation scheme is left for future work.

9We perform essentially just a first order error analysis, and assume that errors from the two spaces do
not interact much. That is, we do not analyze how discretization errors vary over the stochastic space, or
vice-versa. This is done for simplicity and produces reasonable results. For some problems, a more involved
error analysis may be warranted.
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way to associate error with a certain “part” of the stochastic domain. All samples contribute

equally to the stochastic approximation during the fitting procedure (Section 3.2.1.2). Once

the global fraction is specified, added degrees of freedom are allocated to either new samples

(refinement in stochastic space) or refinement of existing simulations.

The error estimate for refinement in stochastic space is the regular direction-based error

estimate developed in Section 3.2.2. First, a new direction is found by optimization. In order

to reduce computational time, a modest reduction in the direction optimization is employed.

The population is reduced to npso,pop = nd = 20, the number of samples npso,samp is fixed to

5, the number of iterations is reduced to npso,maxiter = 50, an additional optimization with

SQP (Section 3.2.3.2) is not performed10. The stochastic error estimates associated with

the optimal directions inside and outside of the current subspace are ∆J(d⃗∗Γ) and ∆J(d⃗∗Γ
c
).

The direction to be added to the approximation is the one with the higher error estimate

(denoted d⃗∗).

Next, the error estimate for refinement in deterministic space is computed. In order to

eliminate error contamination, errors are evaluated at the simulation-level on each individual

grid (not on the common grid). The adjoint-weighted-residual error for the local output K is

computed on a grid with a higher polynomial order (pz = pt = 2). The errors are integrated

in the stochastic domain in a similar way to how ∆J is computed. When computing ∆J(d⃗),

the error is evaluated at a sample point and along the direction d⃗. For the deterministic error,

∆Jz⃗(d⃗), we assume that there is no change in the stochastic domain, so the deterministic error

is constant along d⃗. Thus the stochastic integration is quite simple and fast. For comparison

with the stochastic error, the stochastic integration is computed along the direction that will

be added to the approximation. The deterministic error is denoted ∆Jz⃗(d⃗
∗). During the

stochastic error calculation, the errors are also organized into semi-refined error estimates

for adaptation in space and time.

With the overall stochastic error ∆J(d⃗∗) and the deterministic error ∆Jz⃗(d⃗
∗) known, an

10See Section 3.2.3 for a discussion of these parameters, including plots comparing values of npso,samp.
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overall fraction of error due to the stochastic discretization is computed11

fstoch =
∆J(d⃗∗)

∆J(d⃗∗) + ∆Jz⃗(d⃗∗)
(5.15)

This fraction is used to allocate new degrees of freedom to stochastic refinement (new simu-

lations/samples) or deterministic refinement (space-time refinement of existing simulations).

In order to simplify the implementation, only fixed-fraction refinement is considered. The

number of samples is allowed to increase by a factor γstoch,num at each step and the deter-

ministic degrees of freedom are allowed to increase by a factor γdet,num. More specifically,

the number of samples added is

nstoch,add = ⌊fstochγstoch,numnsamp⌋ (5.16)

and the number of deterministic degrees of freedom added is

ndet,add = ⌊(1− fstoch)γdet,numndet⌋ (5.17)

where ndet is the total number of degrees of freedom in the current simulations.

When a new sample is requested, the point in stochastic space x⃗k+1 is generated by the

modified latin-hypercube method described in Section 5.3.2. The spatial-temporal grid for

the sample is taken from the nearest existing sample. The initial guess of the solution is

taken from the stochastic approximation u(x⃗k+1), interpolated onto the chosen grid. This

often results in good convergence, though sometimes the adaptive time-stepping procedure

needs to be restarted.

When deterministic refinement is requested, the error-per-cost metric developed in Sec-

tion 4.5.1 is used to determine which elements (spatial or temporal) are to be refined. All

refinement options (every element from every existing simulation) are sorted based on the

11Note that the local output error ∆K is computed with absolute value signs, so ∆K =
∑
|ψ ·R|. See

Section 4.5 for details.
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error-per-cost and refinements are taken until the maximum new degrees of freedom, ndet,add,

are exhausted. Note, for simplicity the overhead factor introduced in Section 5.2.2 is not

used in this study, though this may somewhat reduce the efficiency of the method in terms

of compute time. In addition, for simplicity, we do not compute error fractions for spatial

and temporal refinement, taking

ϵk =

Ne,t∑
l=1

ϵklhh ϵl =

Ne,z∑
k=1

ϵklhh (5.18)

This reduces computational expense by not computing the semi-refined error estimates for

space and time.

5.3.4 Output

The local output of interest is based on the output used in Section 4.6.1. Due to the

truncated time-domain, we take the fixed outlet pressure as pfix = 0.9786 MPa, which occurs

around t = 2.18 × 10−3 seconds for the simulation at 0. The output K is the integrated

mass flow up to the point at which p = pfix, denoted ṁpfix. Depending on the values of the

parameters, the outlet pressure may never reach pfix. In this case, we take K equal to the

integral of the mass flow over the entire time domain. The stochastic output J , for simplicity,

is taken as the average of K.

5.3.5 Results

The fully adaptive UQ method is compared with uniform refinement, Monte-Carlo, and

a simple heuristic method. The methods are described in the following sections along with

some results for each one.
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5.3.5.1 Fully Adaptive UQ Method

The fully adaptive uncertainty quantification study, with the output of interest J , ran for

13 iterations. After these iterations, there are a total of 53 sample locations, each with grids

ranging from 1,584 to 4,608 degrees of freedom, for a total of 110,688 degrees of freedom. An

example of a refined grid is shown in Figure 5.12. For this particular simulation, the pressure

reached pfix at tpfix = 1.07 × 10−3s. The refinement is clearly focused around this time and

at the end of the pipe in space. Figure 5.13 shows the gas-mass component of the adjoint

which is active in the same region. Since the adjoint is concentrated around a small region

in space-time, an adaptive unstructured discretization would perform even better than the

current structured discretization. The structured discretization requires refinement of a time

element for all of space, resulting in possibly unneeded refinement for x ≲ 3.5.

Of the 20 dimensions, the first nine corresponded to parameters that were varied. Of

those, only the first six produced measurable changes in the solution (the rest were removed

from the approximation, see Section 3.2.4). The stochastic approximation produced by the

method is active in a two-dimensional subspace (dim(Γ) = 2). While running the adaptive

studies, it was found that increasing the number of optimization iterations often leads to a

larger active subspace (the method is more likely to expand the active subspace). Quantifying

this effect is left for future work. A larger number of optimization iterations would likely

have led to a larger active subspace, though it is likely that the error behavior would be

similar because most of the accuracy would be focused on the important parameters.

In this particular study, the 2D active subspace was found to represent the behavior of

the solution well. A basis of the active subspace is shown in Table 5.2. The parameters

ϵ/rpipe, Ablock, hl,init, and τpout were found to be most important (the basis vectors have large

components in these dimensions). The friction parameter, when large, restricts the flow

velocity and flow rate, having a large impact on the mass flow ṁpfix. The blockage area

controls what the choked mass flow rate is, also heavily impacting the net mass flow. The

initial enthalpy affects how quickly the water flashes. Higher void fraction effectively chokes
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Table 5.2: Basis vectors for the 2D active subspace Γ discovered by the fully adaptive UQ
method.

x0 x1 x2 x3 x4 x5 x6 thru x19
ϵ/rpipe Ablock zblock hl,init τpout pinit -
0.0512 0.5517 -0.2573 0.5881 0.5296 0.0234 0
0.5247 0.5069 0.2988 0.1144 -0.5696 0.2023 0

the liquid flow, reducing the net mass flow. The outlet pressure parameter τpout strongly

affects how quickly the depressurization takes place. This has a strong affect on the net

mass flow when the output switches to the total mass flow over the entire time period (when

the pressure never reaches pfix). Otherwise, there is less of an effect because a delay in

depressurization just delays the location of p = pfix, but does not necessarily alter the mass

flow up to that point. The blockage location zblock does not have a strong effect because the

shape of the pipe is not important compared to the area ratios 12. The initial pressure

does not have a strong effect because the variation in pinit (1 MPa) is small compared

to the overall depressurization (e.g. a drop of 6.9 MPa). Interestingly, the gravitational

acceleration, Prandtl number, and gas enthalpy parameter had essentially no effect on the

simulation at all.

The current method shows that modeling variation along just two combinations of the

four important parameters is sufficient to describe much of the variation of the output. In

a sense, the current method has reduced the dimensionality of the problem from 20 to just

two.

The method uses a relatively high order approximation within the two-dimensional active

subspace. The importance of a high order approximation can be seen by comparing the

pressure and adjoint values for two sample points at either end of the direction d⃗1 (the first

direction in Table 5.2). Figure 5.14 shows the pressure and Figure 5.15 shows the adjoint

12This is especially true since the flashing model assumes equilibrium between the phases. In a non-
equilibrium model, the flashing is dependent on the time it takes the flow to accelerate (proportional to
zblock) compared to the time it takes bubbles to form.
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Figure 5.12: An example of a refined mesh from the UQ study. Each box is a linear
space-time element.

for points with x⃗T d⃗1 = −1.43 (left plot) and 1.51 (right plot). The stochastic approximation

must smoothly interpolate between these two different solutions. Some points in the domain,

when viewed “along” d⃗1, show a high-order variation. For example, the pressure drop shifts

up between the two samples. Thus, a point above the pressure drop on the left plot (e.g.

x = 3.5m, t = 10−3s) is below the pressure drop on the right plot. Even more complicated

behavior can be seen in the adjoint (note the difference in the scales of the plots). Thus, the

stochastic approximation focuses on building the order of the approximation (up to p = 4).

The range of solutions found in the samples is large but does not necessarily encompass

the experimental data. Figure 5.16 shows the maximum and minimum pressure profiles found

in the samples for the outlet and the closed end of the pipe. At the outlet, the range of

the prescribed exponential decrease in pressure is clearly visible13. The range of simulations

13The “baseline” solution here is taken as the parameter settings used to first solve the blowdown problem
in Chapter 4. The high and low limits (dotted lines) are taken from the solutions at the samples evaluated on
the common grid. The differences in grids between the high/low solutions and the baseline solution accounts
for the baseline solution being slightly above the high limit for outlet pressure at t ≲ 0.25ms.
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Figure 5.13: An example of the gas-mass component of the adjoint from the UQ study.
The output is the integrated mass flow up to t = tpfix = 1.07× 10−3.
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Figure 5.14: Two examples of the solution for sample points with large and small compo-
nents along d⃗1. Pressure is plotted.
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Figure 5.15: Two examples of the adjoint for sample points with large and small compo-
nents along d⃗1. The gas-mass component of the adjoint is plotted.

nearly encloses the experimental data. At the closed end, the simulations do not enclose

the experimental data, which has the pressure wave encountering the closed end around

t = 3.2ms. The fact that no values of the parameters can correctly predict this behavior

suggests two possibilities. First, there may be additional parameters (or wider ranges) that,

when added to the UQ study, could result in behavior more consistent with the experiment.

Second, the physical models may be too simplistic to produce more consistent behavior.

The current UQ study is meant to demonstrate the feasibility and cost savings of combined

adaptivity, so a full investigation comparing the simulations with experimental data is left

for future work.

The values of the stochastic error fraction, fstoch, serves as an indication of how well

the method is doing at balancing stochastic and deterministic errors. An error fraction of

fstoch = 0.5 indicates well balanced errors so that refinement in both spaces results in an

improved solution. The error fraction is plotted in Figure 5.17 and shows good behavior.

For the first nine iterations or so, the error is more concentrated in the deterministic space,

and more degrees of freedom are allocated to grid refinement (see, e.g., Figure 5.12). At this

point, the (relative) stochastic error grows and more samples are added (lower plot). Since

the error is not highly concentrated in either space, this plot indicates that the fixed-fraction

growth is sufficient for this study.
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Figure 5.16: Baseline solution and range of the samples from the uncertainty quantification
study compared to the experimental data. Left, pressure at the outlet. Right,
pressure at the closed end.
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Figure 5.17: The stochastic fraction of the error fstoch (upper plot) and the number of
samples (lower plot) for the UQ study.
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Figure 5.18: Timing data for the fully adaptive UQ study. Each bar represents one itera-
tion, with phases of the iteration in separate colors. The run shown here used
40 processors in parallel. Note that 10,000s≈2.8 hours.

The timing data from the fully adaptive UQ method is shown in Figure 5.18. The code

was run in parallel on 40 processes (Intel® Xeon® E5), each with up to 4Gb of memory14.

Clearly, finding the optimal direction d⃗∗ is the most time-consuming part of the calculation,

requiring hundreds of residual evaluations on the common grid. For the first three itera-

tions, the size of the active subspace Γ grows. Since the time taken to optimize the direction

is proportional to the size of the space being explored, a larger active subspace shifts the

computational burden from optimizing d⃗∗,Γ
c
(outside) to d⃗∗,Γ (inside). Thereafter, the bur-

den remains approximately evenly distributed because the subspaces remain the same with

dim(Γ) = 2 and dim(Γc) = 4. It is noteworthy that re-solving, which includes adding new

samples (new simulations) and re-solving existing ones with refined grids, takes relatively

little time. The adaption process could probably be made more efficient by being more

aggressive (i.e. increasing γdet,num and γstoch,num).

14It was found that a process could only store about 500Mb of raw data due to memory overhead.
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5.3.5.2 Uniform Refinement

In one step of uniform refinement, the deterministic grids are all fully refined. The

stochastic approximation is initially constant everywhere with 21 samples (Note, nd = 20).

The stochastic approximation is enriched by doubling the number of samples and by in-

crementing the order of the approximation. The approximation includes all possible terms

up to the specified order (for example, 20 directions for a linear approximation). Due to

memory constraints, it was only possible to run one step of uniform refinement.

5.3.5.3 Monte-Carlo Method

For the Monte-Carlo method, we assume that the deterministic grid is “pre-converged”

at the nominal point x⃗ = 0, and the resulting grid is used for all samples. To find the grid, a

grid-convergence study was performed. The output for three uniform refinements is shown

in Figure 5.19. The output from the second grid was deemed suitably converged, with a

relative difference of 1.2 × 10−4 compared to the output from the third grid. The Monte-

Carlo method could be considered converged if the stochastic error is less than 10−4, since at

that point further Monte-Carlo samples cannot increase accuracy beyond the deterministic

errors. The stochastic output J is easily computed as the average of the sample outputs K

(sample mean). The convergence of the Monte-Carlo method, compared to the best guess

it returns, is shown in Figure 5.20. The convergence is “noisy” because it is only a single

Monte-Carlo run (ideally one would replicate the run multiple times and average the results).

Overall, there were 95 samples with a total of 164,736 degrees of freedom. The convergence

behavior suggests that the stochastic error is still large compared to the deterministic error,

and more samples are required to get a good estimate of J .

5.3.5.4 Heuristic Method

For the heuristic method, we consider interpolation error which is faster to calculate than

the adjoint-based error estimate. Separate deterministic and stochastic error estimates are
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is 95 with a total of 164,736 degrees of freedom.
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compared. The approximation is refined in either deterministic space if the deterministic

error is higher and vice versa. The deterministic interpolation error is computed on a grid

with a higher polynomial order (denoted h). The original solution uH is injected and inter-

polated onto the higher-order grid (see Section 4.4), resulting in IHh uH and uh, respectively.

That is, the solution is transferred to a fine grid (h) first without alteration (i.e. IHh uH is

just a different representation of the exact same function uH) and second with smoothing

(uh). The interpolation error is approximated as the difference between the unaltered and

smoothed versions. For the ith sample, the deterministic interpolation error is

ϵdeti =
||IHh uH − uh||2
||uH ||2

(5.19)

Note, since each state is not directly comparable, the interpolation error is computed sep-

arately for each state (ρ, (αρg), etc) and the maximum value among the states is taken

as ϵdeti . Finally, the overall deterministic error is the average among all samples, ϵdet =

1/nsamp

∑
i ϵ

det
i .

The stochastic interpolation error uses the mean-squared-error of the output at the sample

points. It is defined as

ϵstoch =

{∑
i

[K(u(x⃗i))−K(utrue(x⃗i))]
2

}1/2

(5.20)

Here, u(x⃗i) is the approximation of the solution at the sample point x⃗i, evaluated on the

common grid, and utrue(x⃗i) is the actual solution at the sample point on the sample’s grid.

Note that since the grids are different, this stochastic error estimate is somewhat “contami-

nated” by deterministic error. The heuristic method is meant to be simple, though, and this

form is used because it is easy to compute.

In the heuristic method, refinement of the deterministic space is a simple uniform re-

finement of all deterministic grids. Refinement of the stochastic space is accomplished by

increasing the order of the approximation and adding as many directions as possible within
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the active subspace (resulting in a full-order approximation of the active subspace, similar

to Russi’s method [100]). The number of samples is increased to satisfy a heuristic for the

appropriate number of samples,

nsamp = max (2(nterm − 1), nd + 1) (5.21)

This adds two samples for each new direction (beyond the initial d⃗0 with p0 = 0). Note that

the approximation requires nsamp > nterm to be able to solve for u.

For this problem, the heuristic method resulted in only deterministic refinement because

ϵdet was larger than ϵstoch at each step. Only three steps of the method were possible before

memory constraints were encountered. For this study, the stochastic error heuristic is too

simplistic to reveal the underlying stochastic errors. For example, none of the sample points

have a large value of x⃗T d⃗1, so the “corners” of the domain where d⃗1 is large15 are not

explored, though that is where the largest errors are. Without sufficient exploration inherent

in the error calculation, the heuristic cannot discover poorly modeled parts of the stochastic

domain. The advantage of the fully adaptive UQ method is an error metric that does a

better job exploring the large stochastic domain, though it is more expensive.

5.3.5.5 Comparison of Methods

The four UQ methods are compared in terms of error in the stochastic output J . The

value of J for a given stochastic approximation is expensive to compute since it requires a

stochastic domain integral16. This integral is approximated by taking a sample average of K

from a set of sample points. The set of sample points consists of two sub-sets: the samples

15In this study, d⃗1 has large components along x2,x4, and x5, corresponding to the parameters Ablock, hl,
and τpout. Each of these parameters are important, so there is large variation due to the combined effects

of the parameters. Further, the fully adaptive UQ results show high-order variation along d⃗1, suggesting
interaction effects beyond the simple additive main effects of each parameter. Thus, it is important to have
samples at points x⃗ such that x⃗T d⃗1 is large and small to capture the interaction effects.

16The solution and adjoint, u and ψ, are modeled in the stochastic domain, but the output K is not.
Thus, a full integral in stochastic space requires evaluating u at integration points in the six-dimensional
active subspace. The analytic method in Section 3.2.6.1 cannot be used since K(u) is not a linear functional.
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at which a full simulation is available17, and new sample points added along the relevant

directions18 as discussed in Section 5.3.2. The total number of samples used for the output

calculation, nJ , is heuristically set to nJ = 4nsamp
19 For the heuristic method, no directions

were added to the approximation, so the extra samples are simply latin-hypercube samples.

The same is true for uniform refinement, since for the single step taken here, the added

directions are simply e⃗0 through e⃗5. For the Monte-Carlo method, we just take the sample

average of the Monte-Carlo samples since there is no implicit stochastic approximation of u

to use.

The four methods are compared to a “true” value, Jtrue, computed on the finest dis-

cretization available. All of the samples computed by all of the methods were combined

into a single approximation (duplicate sample points were removed). The stochastic ap-

proximation is taken as the finest approximation from the fully adaptive UQ method with

additional directions to create a full fourth order approximation of the 2D active subspace,

plus four additional linear directions to ensure a good linear representation of the six active

parameters. The value of J from this approximation, also computed using nJ total samples,

was considered to be Jtrue.

Figure 5.22 shows the output error for the four methods. The Monte-Carlo method seems

to be converging to a different value than the other three. This is likely due to the fact that

classic latin-hypercube samples are not good at sampling the “corners” of a high-dimensional

domain [108]. While more advanced sampling methods try to sample these corners, one still

encounters the problem that there are so many corners in a hypercube that a huge number

of samples is still needed to explore them all. To see this, one can look at the component of

Monte-Carlo samples x⃗ along the important directions discovered by the fully adaptive UQ

method, for example d⃗1. For the 95 Monte-Carlo samples, the value x⃗T d⃗1 ranges between

17Since a full simulation is available, the deterministic output K is calculated from the full solution at this
point.

18The value of K at these new sample points is computed by evaluating the stochastic approximation of
u at this point and computing the output. This is done on the common grid

19The results are qualitatively the same for nJ ≳ 2.5nsamp. The parameter may be problem dependent.
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Figure 5.21: Components of samples along basis vectors d⃗1 and d⃗2 of the active subspace
Γ. Left, samples from the fully adaptive UQ method. Right, samples from
Monte-Carlo. The blue outline approximates the maximum values of x⃗T d⃗.

-1.20 and 1.28. The fully adaptive UQ method, in contrast, has samples with x⃗T d⃗1 ranging

from -1.43 to 1.51. The samples from both methods, in terms of their components along

d⃗1 and d⃗2, are shown in Figure 5.21. The fully adaptive UQ method does a better job at

exploring the far corners of the domain20.

The heuristic method generates successively better approximations of J , but the improve-

ment is slow compared to the number of degrees of freedom it uses. Again, the stochastic

error heuristic does not take into account the corners of the domain and therefore focuses

on deterministic errors.

The current method, while somewhat “noisy”, does reduce the error in the output and

does so more efficiently than uniform refinement. The compact active subspace reduces the

number of samples needed, resulting in an efficient method in terms of error for a given

number of degrees of freedom. For about the same computational time, the current method

results in approximately an order of magnitude lower error and an order of magnitude fewer

degrees of freedom compared to the other methods.

20The blue dotted outline is the outline of the domain ([−1, 1]nd) in the plane defined by d⃗1 and d⃗2. The
full projection of the hypercube onto this plane, though, is a larger outline, hence some of the points lie
outside of the blue line.
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204



CHAPTER 6

Conclusions

In practice, most simulations are run without quantifying errors from the discretization

or parameters. Often convergence is judged by how smooth a solution looks and parameter

dependence is characterized by vague percentages. With the increasing use of simulations

for important engineering decisions, accurate predictions are needed and errors must be

quantified. Simple methods for quantifying and reducing errors, as has been shown, can

lead to good results. These include grid convergence studies and parameter sensitivity stud-

ies. However, these simple methods often result in overly expensive calculations and slow

convergence.

More advanced methods tailor the discretization (in both the deterministic and stochastic

spaces) to the problem at hand. This can, in some cases, significantly reduce the computa-

tional burden. The process also naturally produces intermediate results at slowly increasing

levels of fidelity, allowing discretizations that are tailored to the resources available.

In the deterministic space, grids that have low error are often created by experienced

users and require much human input for each new problem. In addition, some features

in the solution may not be visible or deemed relevant at the outset, resulting in costly

iterations between grid generation and solution. The grid adaptation method presented

here automates this procedure at a fine-grained scale, allowing highly tailored grids to be

generated for any given problem. In addition, discretization error is quantified at each step,
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resulting in grids with a known accuracy. The cost is essentially writing the code needed to

generate refined grids, compare solutions between grids, and possibly compute derivatives.

Such an investment can be costly, but these features are already available in many simulation

codes and are useful for more than just adaptive UQ studies.

In the stochastic space, the biggest obstacle is the curse of dimensionality. That is, the

stochastic space that needs to be explored is typically vast, requiring a huge number of

costly simulations for simple methods. Given the large space, it is understandably difficult

to model behavior in that space with limited sampling. However, in some cases there is a

small “inherent” dimensionality to the stochastic space. That is, only a few parameters (or

combinations of them) have a strong effect on the simulation. Some advanced uncertainty

quantification (UQ) methods search for the inherent dimensionality with good success. A

second problem, though, is that the functional model of the behavior in stochastic space is

often very complex, requiring many samples just to fit the model. This often occurs when

high-level interaction effects are considered, since there are exponentially many of them.

The stochastic approximation used in this work is very compact since it groups interaction

effects together into a small number of active directions. These directions span an active

subspace, which is a small space compared to the full stochastic space. In this way, the

stochastic approximation reduces the number of samples required for high accuracy. Finally,

the stochastic approximation is built up adaptively, like the deterministic grid, resulting in

a sequence of approximations with increasing accuracy and cost.

A third problem with conventional methods for error quantification is that the methods

used for the deterministic and stochastic spaces are often not consistent with each other. For

example, one might use interpolation error in deterministic space and least-squares fitting

error in stochastic space. While these two measures seem similar, in fact their scales are not

necessarily consistent. In addition, anisotropic adaptation (deciding which space to refine

more) requires error estimates that are well separated for each space. This is not trivial

and many error estimates conflate errors from the two spaces. In this work, consistent error
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metrics are developed by targeting them to a single, scalar stochastic output of interest. Any

error estimate is then simply the effect that a certain grid size or sample has on that output,

so all errors are comparable to each other. In addition, care has been taken to isolate errors

from each space by using semi-refined error estimates. This results in a successful splitting

up of refinement between the two spaces.

The new uncertainty quantification method developed here produced good results for

test functions with small inherent dimensionality. While other methods loose efficiency

when other factors change, for example when high-level interactions are included or when

the behavior is anisotropic, the current method still gave good results. This is because the

method takes advantage of low-cost error estimates and tools from the field of optimization

to explore the stochastic space efficiently. This reduces the space that is modeled, resulting

in higher accuracy with fewer samples.

A few directions for future work in the UQ method are as follows. First, more realistic

problems require more complex outputs (i.e. J(u)) based on statistical measures. Second,

a more thorough study of the effects of the optimization parameters (number of iterations,

population size, number of samples, etc) on the resulting stochastic approximation and size

of the active subspace is warranted. Third, the method could be combined with parameter

optimization for solving the optimization under uncertainty problem.

In this work, a one-dimensional multiphase model was solved with the discontinuous

Galerkin method. This required developing smoothed versions of some relations and special

boundary conditions for convergence and adjoint consistency. The solution was of good

quality and a smooth adjoint solution was found, which is rare for multiphase flow problems.

In addition, the anisotropic adaptation resulted in good error reduction and targeting time

intervals that strongly affect the output. The adapted grid was quite specialized to the

output; error in the output was far smaller than for a large, uniformly refined grid. Some of

the locations where the method generated high-fidelity were not initially obvious as requiring

it. It is unlikely that a human would have been able to generate a grid with as good an error
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to cost ratio. The results promise to be even more exaggerated for 2D and 3D simulations

with unstructured grids. In such complex multiphase flows, features can be highly localized

so a well tailored grid can be very efficient. In addition, outputs as complex as the one used

in this work are rarely encountered as targets for adaptation, especially in the multiphase

context. The output, though, is important for engineers and good results were found for the

adjoint and error convergence with adaptation.

Some directions for further work in this area are as follows. First, applying the same

adaptive methods to more complex (e.g. full two-fluid), 2D and 3D simulations should reveal

even more savings. Further, multi-scale multiphase simulations would make the physics

adaptable as well, possibly further increasing accuracy while not reducing efficiency. In

such extensions, one must always be aware of extra code needed for derivatives (automatic

differentiation can help here) and possible problems with adjoint consistency (though these

can, to some extent, be smoothed out after the fact). Second, it is unclear why the flow at

the outlet of the pipe remains sonic for a finite time before becoming supersonic. This may

be an interesting problem for theoretical two-phase flow.

An uncertainty quantification study was performed that was adaptive in both the deter-

ministic space (by adapting the physical grids) and the stochastic space (by choosing new

sample points). This was done while balancing deterministic and stochastic errors. Such a

study has rarely been carried out but promises a substantially reduced computational burden

and increased the accuracy. The adaptive method discovered parts of the physical domain

where increased accuracy was necessary (near the time and location where the pressure

reached its critical value) and parts of the stochastic domain (the interaction between four

of the parameters). It built compact deterministic and stochastic models of the solution,

requiring fewer overall degrees of freedom and resulting in lower error than other methods.

And, this was accomplished with some modifications that sped up the computation, despite

some loss in accuracy.

There is much room for further work in the area of combined adaptivity in deterministic

208



and stochastic spaces. First, how coarse or fine should the common grid be? Could there be

different common grids for different parts of the domain or different calculations (e.g. multi-

fidelity optimization of the direction)? Second, how aggressively should degrees of freedom

be added? Can a fixed-error type of growth be devised? How fine should the physical grid of

new samples be? Third, could one use separate approximations for the solution and adjoint?

Should the direction optimization be separate? Would it be useful to build an approximation

of the error or the output in stochastic space as well? There are many more questions to ask.

For now, we have shown that the potential exists for cheaper, more accurate UQ studies.
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Appendix A: Chexal-Lellouche Drift Velocity Model

This model computes the a weighted drift velocity, ⟨⟨Vdj⟩⟩, and the distribution parameter

C0. The model can be found in various sources including [80].

C0 =
L

K0 + (1−K0)αr

⟨⟨Vdj⟩⟩ = 1.41

(
gzσ∆ρ

ρ2l

)1/4

C2C3C4C9

L =
1− e−C1α

1− e−C1
C1 =

4p2crit
p(pcrit − p)

K0 = B1 + (1−B1)

(
ρg
ρl

)1/4

r =
1.0 + 1.57ρg/ρl

1−B1

B1 = min

(
0.8,

1

1 + e−Re/6000

)
, Re = max (Rel,Reg)

C2 =



0.4757

(
ln

(
ρl
ρg

))0.7

,
ρl
ρg
≤ 18

1, C5 ≥ 1(
1− eC5/(1−C5)

)−1
, C5 < 1

ρl
ρg

> 18

C3 = max
(
0.5, 2e−|Re|/60000) (6.1)

C4 =


1 C7 ≥ 1(
1− e−C8

)−1
C7 < 1

C8 =
C7

1− C7

C5 =

√
150

ρg
ρl

C7 =

(
0.09144

2rpipe

)0.6

C9 = (1− α)B1 (6.2)

σ is the surface tension of water, here taken as constant at the reference condition σref =

0.02276 N/m. pcrit is the critical pressure of water, 22.0640 MPa.
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From Ishii [57], the relation

Vdj = ⟨⟨Vdj⟩⟩
[
1− (C0 − 1)

(
vm +

α (ρc − ρd)
ρm

)]
(6.3)

is used to form the drift velocity Vdj which appears in the governing equations. This relation

can be derived from the following definitions

Vdj = ⟨⟨Vdj⟩⟩+ (C0 − 1) j (6.4)

j = vm +
α (ρc − ρd)

ρm
Vdj (6.5)

The following modifications were made to ease implementation and correct for limiting

cases.

� C2 is computed using the reference densities.

� The Reynolds number is computed using mixture quantities, rather than the maximum

of the two phases. It is also capped at 1010 so that the model is valid in the inviscid

limit.

� Computation of C9 and L must be corrected for the limits α = 1 and α = 0, where

C9 = 0 and L = 1 respectively.

� The derivative of C0 with respect to r is set to zero for α = 0 since it is undefined

there.
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Appendix B: A Survey of Multiphase Models

B.1 Appendix Nomenclature

()g, ()v, ()d gas, dispersed phase

()l, ()f , ()c liquid, continuous phase

()r relative (between phases), gas - liquid

()i interface value

db bubble diameter

µt turbulent viscosity

µeff effective viscosity = µ+ µt

Ai interficial area concentration

Ag area fraction of wall in contact with gas

θ = T−Tsat

Twall−Tsat
, (θ) non-dimensional temperature (mean)

r∗ = r
R

non-dimensional radial distance (bubble)

Red dispersed phase Reynolds number (using vr and bubble diameter)

∆hgl latent enthalpy between liquid and gas (at saturation temperature Tsat)

λ thermal conductivity

k, ϵ turbulent kinetic energy and dissipation rate

∆Tsuper = Twall − Tsat wall superheat

∆Tsub = Tsat − Tl liquid subcooling

T+ = (T − Twall)ρCpu∗

qwall
non-dimensional temperature for use in wall functions

ywall distance to nearest wall

n⃗wall vector normal to wall (outward facing)

t⃗wall tangential vector along wall

Eod =
g(ρl−ρg)d2b

σ
bubble Eötvös number

σ surface tension
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This chapter outlines the differences between the multiphase flow models in Star-CD,
Star-CCM+, and Nphase, and gives references for other possible models in some cases.
In general, all three codes are in the Eulerian-Eulerian framework, where both liquid and
gas phases are considered to be interpenetrating continua. The codes generally solve the
conservation of mass, momentum, and energy for the liquid or continuous phase and at least
conservation of mass and momentum for the gas or dispersed phase. Turbulence equations
are solved for the liquid or continuous phase only. The small differences in implementation
of the three codes can lead to significant differences in the solutions.

B.2 Governing Equations

B.2.1 Dispersed Phase Stress

Nphase ∇ · (µg∇vl) [75] and talking with developers

Star-CCM+ ∇ · (µg∇vg) [1]

Star-CD ∇ · (µg∇vg) [2]

B.2.2 Turbulent Prandtl Number for Energy Equation

Nphase 0.91 standard in code

Star-CCM+ 0.90 standard in code

Star-CD 0.90 standard in code

B.2.3 Turbulence

The RANS equations are used to model turbulence. All codes have the capability of
using the high-Reynolds number k − ϵ model, which was used for the calculations and is
compared between the codes below. The k − ϵ model is a two-equation model. The codes
solve for two extra states, the turbulent kinetic energy (k) and dissipation rate (ϵ), along
with the other conservation equations.

Kinetic energy
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Nphase

Dc(αcρckc)
Dt

= ∇ ·
((
µc +

µt
c

σk
c

)
αc∇kc

)
+P − αcρcϵc

P = µeff
c ∇vc · (∇vc + vc∇) −2

3
(∇ · vc)(ρckc + µeff

c ∇ · vc)

[75]

Star-CCM+

Dr(αcρckc)
Dt

= ∇ ·
((
µc +

µt
c

σk
c

)
αc∇kc

)
+αcP − αcρcϵc + αcS

k
c + ṁiki

P = µt
c∇vc · (∇vc + vc∇) −2

3
(∇ · vc)(ρckc + µt

c∇ · vc)

[1]

Star-CD

Dc(αcρckc)
Dt

= ∇ ·
((

µc+µt
c

σk
c

)
αc∇kc

)
+αcP − αcρcϵc + Sk

c + ṁiki

P = µt
c∇vc · (∇vc + vc∇) −2

3
(∇ · vc)(ρckc +∇ · vc)

Sk
c = −Ai

νtc
αcαdσc

vr · ∇αd +2Ai(Ct − 1)kc

[2]

Note, the source term in Star-CD is their Turbulent Dispersion Force.

Dissipation rate

Nphase

Dc(αcρcϵc)
Dt

= ∇ ·
((
µc +

µt
c

σϵ
c

)
αc∇ϵc

)
+C1αc

ϵc
kc
P − C2αcρc

ϵc
kc

P = µeff
c ∇vc · (∇vc + vc∇) −2

3
(∇ · vc)(ρckc + µeff

c ∇ · vc)

[75]

Star-CCM+

Dr(αcρcϵc)
Dt

= ∇ ·
((
µc +

µt
c

σϵ
c

)
αc∇ϵc

)
+C1αc

1
T
P − C2αcρc

ϵc
T
+ αc

1
T
Sϵ
c + ṁiϵi

P = µt
c∇vc · (∇vc + vc∇) −2

3
(∇ · vc)(ρckc + µt

c∇ · vc)

T = max
(
k
ϵ
, Ct

√
ν
ϵ

) [1]

Star-CD

Dc(αcρcϵc)
Dt

= ∇ ·
((

µc+µt
c

σϵ
c

)
αc∇ϵc

)
+C1αc

ϵc
kc
P − C2αcρc

ϵ2c
kc

+ Sϵ
c + ṁiϵi

P = µt
c∇vc · (∇vc + vc∇) −2

3
(∇ · vc)(ρckc +∇ · vc)

Sϵ
c = 2Ai(Ct − 1)ϵc

[2]

The Star-CCM+ manual does not explicitly include the Ct model in the equations. The
formulation in the manual says that these source terms Sk

c and Sϵ
c are “user-specified”.
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B.2.4 Turbulence Closure Coefficients

Cµ C1 C2 σk
c σϵ

c

Nphase 0.09 1.44 1.92 1.0 1.3 standard in code
Star-CCM+ 0.09 1.44 1.92 1.0 1.3 standard in code
Star-CD 0.09 1.44 1.92 1.0 1.219 standard in code

B.2.4.1 Ranges

� Cµ: formula from [66] in Nphase DEBORA solution gives Cµ ∈ [0.02, 0.09], with most
of the domain at 0.09. Near the wall it goes down to around 0.08, and there is a
small area near the inlet where it goes down to 0.02. Formulas from [67] and [65, 98]
give similar results. Note, the “realisable” k-epsilon model was created to address this
problem and has Cµ = f(k, ϵ,v).

� C1: no information found.

� C2: formula from [66] in Nphase DEBORA solution gives C2 = 1.92 everywhere because
of the large turbulent Reynolds number RT ∈ [30, 8800].

� σk
c : no information found.

� σϵ
c: no information found.

B.3 Heat Transfer

B.3.1 Nusselt Number - Interface to Gas

Nphase −2 ∂θ
∂r∗

∣∣
r∗=1

(θ) see Figure 6.1. [102] (see ref for how to calculate Nug(θ))

Star-CCM+ 26 can be set to field function

Star-CD 26 [77]

B.3.1.1 Ranges

� Nug: in Nphase DEBORA solution, Nug ∈ [0, 23]. However, here the enthalpy is non-
dimensionalized with an arbitrary value hi (the fixed wall enthalpy, which is set but
never used in the solution since there is a known heat flux). By changing this value, any
range of Nug can be obtained. The “correct” non-dimensionalization is unclear from
the paper [102], since the formula is derived from unsteady bubble growth/collapse
and hi is the initial “average” enthalpy in some sense. Also, [89] has Nug = 10.

B.3.2 Nusselt Number - Interface to Liquid

The Ranz-Marshall correlation

215



0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

140

160

180

200

theta avg

N
u
ss

e
lt

n
u
m

b
e
r

Figure 6.1: Nphase correlation for interface to gas heat transfer.

Nphase 2 + (0.4Re0.5d + 0.06Re2/3)Pr0.4c Modified Ranz-Marshall (standard in code), [71]

Star-CCM+ 2 + 0.6Re0.5d Pr0.3c [1, 96]

Star-CD 2 + 0.6Re0.5d Pr0.3c [2, 96]

B.3.2.1 Ranges

� Nul: There are many other correlations besides the two given above. In the Nphase
DEBORA solution, with the Nphase model we have Nul ∈ [2, 33].

– Nul = 2+ 0.6Re0.6d Pr0.5c from [84, 22] which correlates with experimental data for
Nul to ±15− 20%

– Nul = 2 + 0.185Re0.7d Pr0.5c from [84, 22] which correlates with experimental data
for Nul to ±70%

– Nul = 1/(2π)Re0.5d Pr1/3c from [54]

– Nul = 2.09Re0.61d α0.328
d Ja−0.308 from [123], Ja = Jacob number

– Nul = 0.6Re0.5d Pr1/3c

[
1− 1.20Ja9/10Fo

2/3
d

]
from [118] which correlates with exper-

imental data for Nul to ±28%.

– see also [123] for yet more models

B.3.3 Wall Heat Partitioning

Heat flux qwall must be divided between liquid and gas phases. In all three codes, the
heat that goes into the gas phase only generates gas at saturation enthalpy and does not go
into heating the gas. Care must be taken that the resulting volume fraction of gas does not
exceed 1.
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Nphase: User input (boundary condition is specified gas mass flux) is the standard in
code.

Star-CCM+ and Star-CD: Twall is chosen to enforce ql + qg = (qc + qq) + (qe) = qwall, and
must be found iteratively.

B.3.3.1 Convective Heat Flux

qc = HTCc(1− Ag)(Twall − Tl)

The convective heat transfer coefficient HTCc is calculated from wall functions.

HTCc =
ρlCp,lu

∗
l

T+
l

Reference [1]

B.3.3.2 Quenching Heat Flux

qq = HTCqAg(Twall − Tl)
HTCq = 2Kqf

√
twρlCp,lλl

π

References [2, 1]

B.3.3.3 Evaporative Heat Flux

qe =
πd3w
6
ρg∆hglfn

′′

B.3.3.4 Auxiliary Relations

Kq =

{
1 Star-CD

FA
πd2w
4
n′′ Star-CCM+

With FA = 2 is taken as the standard. It is noted that some authors use FA = 4. Star-CD
reference [2, 77]. Star-CCM+ references [1, 62].

n′′ = (m∆Tsuper)
p , m = 185 p = 1.805

In Star-CD, if ∆Tsuper < 0, then no boiling is assumed to occur and n′′ = 0 (standard in
code). In Star-CCM+, ∆Tsuper is restricted to lie in the interval [0,∆Tmax], with a default
∆Tmax = 20.0K. References [1, 77, 69, 93].

f =

√
4

3

g(ρl − ρg)
dwρl

References [1, 77, 27]
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dw = dw,0 exp

(
−∆Tsub

∆T0

)
, dw,0 = 0.6mm ∆T0 = 45K

In Star-CCM+, dw is restricted to lie in the interval [0.025, 1.4]mm. References [1, 77, 115].

tw = 0.8/f

References [77, 1, 62].

B.4 Dispersed Phase

B.4.1 Bubble Diameter, Interficial Area Concentration

d Ai

Nphase user-specified constant 6αd

db
[75], standard in code

Star-CCM+ constant or same as Star-CD 6αd

db
[1]

Star-CD
db,1(∆Tsub−∆T0)+db,0(∆T1−∆Tsub)

∆T1−∆T0
6min(αd,(1−αd))

db
[2]

In Star-CD, db,0 and db,1 are the min and max bubble diameters. The formula is a linear
curve fit of db(∆Tsub). Standard parameters are

db,0 = 1.5× 10−4m db,1 = 2× 10−3m ∆T0 = 13.5K ∆T1 = −5K

Also in Star-CD, in the code we had (see user routine uevar.f), the formula for Ai that
was implemented was

Ai = 6
αd(1− αd)

db

Star-CD also has the ability to solve extra field equations for the void fraction distribution.
This is called the S − Γ model.

B.4.1.1 Ranges

� Star-CD DEBORA solution has db ∈ [0, 15.5×10−4]m, with the average of the non-zero
values around 7× 10−4m.

� Star-CD DEBORA solution with the S − Γ model has db ∈ [0, 13.7× 10−4]m.

� Star-CCM+ DEBORA solution has db ∈ [1.5× 10−4, 15.7× 10−4]m.

� Nphase DEBORA solution with fixed db = 7× 10−4m. If the temperature field is used
to calculate db(T ) (i.e. the Star-CD formula), it gives db ∈ [1.5× 10−4, 18.46× 10−4]m
with an average of 6.35× 10−4m.

� Experimental data reported in [122] has db ∈ [3.75 × 10−4, 11 × 10−4]m, with most of
the pipe at 10× 10−4m. Experimental error was around 12%.

218



B.5 Interficial Forces

B.5.1 Drag Force

Nphase −1
8
CDρc|vr|vrAi [75]

Star-CCM+ −1
8
CDρc|vr|vrAi [1]

Star-CD −1
8
CDρc|vr|vr6

αd

db
[2]

Note, in Star-CD a different correlation for Ai(αd) is used for other quantities (e.g. mass
and energy transfer), though here it is implicitly defined as Ai = 6αd/db.

B.5.2 Drag Coefficient

All codes are set up to use a range of curve fits for CD(Re), in this case the Wang curve
fit for drag on a single bubble is used [117]

CD(Re) = exp
[
a+ b ln (Red) + c ln2 (Red)

]
a b c

Red ≤ 1 ln(24) −1 0

1 ≤ Red ≤ 450 2.699467 −0.33581596 −0.07135617
450 ≤ Red ≤ 4000 −51.771717 13.1670725 −0.8235592

Red ≥ 4000 ln
(
8
3

)
0 0

B.5.2.1 Ranges

� CD: Access to the original paper by Wang was not available, and no comparison to
experiments has been found. However, other curve fits for bubble drag suggest that
±30% is a reasonable range (e.g. [58]).

B.5.3 Bubble Swarm

This factor is in the Star-CD ufiles (see uedrag.f) and multiplies CD to modify it for
large void fractions

(1− αd) [1−min (αd, α0)]
rswarm , α0 = 0.4325, rswarm = 3.0

The values above were implemented in Star-CD and in Nphase for the DEBORA calcula-
tions. Figure 6.2 shows some other models in the literature.
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Star-CD (1− αd) [1−min (αd, α0)]
rswarm

Notes: α0 = 0.4325, rswarm = 3.0, standard in code

Simmonet et al. (1− αd)
[
(1− αd)

m +
(
4.8 αd

1−αd

)m]−2/m

Notes: m = 25, [104]. valid for 0.15 ≲ αd ≲ 0.30

Dijkhuzizen et al.
(
1 + 18

Eo
αd

)
(1− αd)

Notes: [64]. Eo=
∆ρgd2b

σ
. Correlation from DNS, errors up to ≈ 25%

Marucci et al.
1−α

5/3
d

(1−αd)2

Notes: [81]. Exact result from laminar, irrotational flow near spheres (Re≲ 300).

Tomiyama et al. (1− αd)
3−2ℓ

Notes: ℓ = 1.75, [52, 110] Correlation with experiments.

Figure 6.2: Various bubble swarm models (drag coefficient multipliers for large void frac-
tions)

B.5.4 Lift Force

Force on dispersed phase/bubbles.
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Nphase −CLρcαdvr × (∇× vc) [75, 33]

Star-CCM+ −CLρcαdvr × (∇×−vr) [1]

Star-CD −CLρcαdvr × (∇× vc) [2, 33]

B.5.5 Lift Coefficient

Nphase

Originally, Nphase had the following lift coefficient

CL =


0 , ywall ≤ db
−0.03 (ywall/db − 1) , db ≤ ywall ≤ 2db
−0.03 , ywall ≥ 2db

The lift coefficient goes to zero near the wall, which simulates the wall lubrication force. In
addition, CL was set to zero below a void fraction of 10−3.

Built-in to Nphase are modified versions of the lift coefficient that set it to zero at high
values of void fraction and liquid vorticity.

Star-CCM+

There was no baseline in Star-CCM+. During testing, many values were attempted. The
baseline from Star-CD of −0.03 did not converge with positive virtual mass coefficient, and
gave very large void fractions in the center of the pipe. A value of −0.002 was found to give
void fractions similar to experimental results. Convergence was also obtained for a user-code
implementation of the Nphase model above (i.e. setting CL to zero near the wall).

Star-CD

CD-Adapco suggested using CL = −0.03 for the DEBORA case (constant everywhere
in the flow). A parameter sweep (with all other parameters at baseline) was performed for
CL = [−0.3, 0.3] as suggested by Tomiyama [111]. Convergence was obtained for −0.1 ≤
CL ≤ 0.3. However, for CL ≥ 0, the residuals “stalled out” at large values and some aspects
of the solution varied significantly between iterations. Figures 6.4 and 6.3 shows how the
heat partitioning calculated by Star-CD varies with CL (only a few representative positive
values of CL are shown).

None of the attempts at using the Tomiyama lift coefficient correlation for CL(Eod,Red)
converged. The correlation is

CL =

{
min [0.288 tanh (0.121Red) , f (Eod)] , Eod ≤ 4
f (Eod) , 4 ≤ Eod ≤ 10.7

f (Eod) = 0.00105Eo3d − 0.0159Eo2d − 0.0204Eod + 0.474
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Figure 6.3: Star-CD heat flux partitioning with various CL. Note, the solution for the two
lowest values of CL did not converge.

B.5.5.1 Ranges

From the above discussions, it is natural to take CL ∈ [−0.01, 0.1].

B.5.6 Wall Force

This force is available in Nphase and Star-CD, but was not used for the DEBORA case.
Below is the force on the dispersed phase.

Nphase Cwallf
1(ywall)αdρc|vr · t⃗wall|2n⃗wall [75]

Star-CCM+ -

Star-CD Cwallf
2(ywall)αdρc|vr · t⃗wall|2n⃗wall [2]

f 1(ywall) =

 1
db

[
1 +

(
ywall

db

)2 (
1
4
ywall

db
− 3

4

)]
, ywall/db ≤ 2

0 , ywall/db ≥ 2

f 2(ywall) = max

[
−0.0167

db
+

0.0667

ywall
, 0

]
By default, Nphase and Star-CD take Cwall = 1.0. The f function causes the wall force

to decrease to zero by ywall ≤ 2db for Nphase and ywall ≲ 4db for Star-CD. The two functions
are plotted in Figure 6.5.
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Figure 6.4: Star-CD void fraction profiles at the end of the heated section with various CL.
Note, the solution for the two lowest values of CL did not converge.

B.5.6.1 Ranges

� maximum ywall/db: for Star-CD and in [52, 111], this is set to 4.

� maximum ywall/db: varies in [1, 1.4] in [5].

B.5.7 Virtual Mass Force

Force on dispersed phase.
Nphase CVMρcαd

(
Dcvc

Dt
− Ddvd

Dt

)
[75, 33]

Star-CCM+ −CVMρcαd

(
Dcvc

Dt
− Ddvd

Dt

)
[1]

Star-CD CVMρcαd

(
Dcvc

Dt
− Ddvd

Dt

)
[2, 33]

Force was developed theoretically for motion of a body in an inviscid fluid in [8]. This
paper suggests that the force should be

FVM = ρcV
[
(1 + CVM)

Dcvc

Dt
− CVM

Ddvd

Dt

]
with CVM = 0.5 for a sphere. Here, V is the volume of the particle/bubble (thus, for the

force per unit volume in a multiphase flow V is replaced by αd).
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Figure 6.5: Wall force coefficient as a function of non-dimensional distance from the wall.

B.5.8 Virtual Mass Coefficient

Nphase 1.0 [75]

Star-CCM+ 0.5 [1, 33]

Star-CD 0.5 [2, 33]

B.5.8.1 Ranges

� CVM : Bertonado [78] suggests that CVM ∈ [1.2, 3.4] from previous experimental and
theoretical work.

B.5.9 Turbulent Dispersion Force

Nphase −CTDρck∇αd [75, 52]

Star-CCM+ −AD νtc
σα

(
∇αd

αd
− ∇αc

αc

)
[1]

Star-CD −AD νtc
σα

(
∇αd

αd
− ∇αc

αc

)
[2]
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B.5.10 Turbulent Dispersion Coefficient and Prandtl Number

CTD σα
Nphase 2/3 – [75]

Star-CCM+ −AD 1.0 [1]

Star-CD −AD 1.0 [2]

AD is the “linearized drag coefficient”:

AD =
3

4

αdρcCD

db
|vr|

B.5.10.1 Ranges

� CTD: experimental data in [122] suggests CTD ∈ [1, 2.5].

� CTD: the Nphase DEBORA solution, using the model from [52], gives CTD ∈ [0, 0.63].

B.6 Other Codes and References

See [52] for another multiphase code with some more complicated momentum transfer
models based on 6 bubble regimes/populations and correlations for non-spherical bubbles.
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