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ABSTRACT 

 Nervous system injuries remain significant clinical issues that affect hundreds of 

thousands of individuals each year. Spinal cord injuries are especially difficult since the wound 

healing process results in a glial scar, inhibiting regeneration. Current strategies for dealing with 

spinal cord injuries focus on stabilization and rehabilitation with minimal likelihood of any 

significant functional regeneration. The outlook for peripheral injuries is not quite as dire as 

peripheral nerve has the capacity to regenerate. However, if the defect is beyond a critical size of 

around 1cm, that ability is compromised. The gold standard for treating large defects is an 

autologous nerve graft, but there are significant drawbacks. Clearly there is room for 

improvement.  

In this study, conducting composite electrospun nanofibrous substrates were fabricated to 

investigate if topography and electrical stimulation could control embryonic stem cell (ESC) 

differentiation. First, it was determined that poly (l-lactic acid) (PLLA) nanofibers of at least 

900nm promoted neuronal differentiation and neurite outgrowth. ESCs interacted with these 

fibers through integrin α6β1 and induced differentiation via early ERK activation. Fiber size did 

not have a significant effect on p38 activity. Next, PLLA was doped with polypyrrole (PPy) to 

improve its electrical properties. Nerve conduits fabricated with PPy/PDLLA were successful at 

promoting the regeneration of a rat sciatic nerve defect on par with an autologous graft. The 

sciatic function indices (SFI), nerve conduction velocities, triceps surae weights, and nerve fiber 



 

 

xi 

 

morphologies were all comparable between the PPy/PDLLA conduits and autografts, and both 

significantly better than the PDLLA conduits. Finally, PPY/PLLA was electrospun into random 

and aligned nanofibers. ESCs seeded on these aligned nanofibers were stimulated with 100mV 

for 2hrs, which induced a higher percentage of neurite-bearing cells, from around 13% to around 

23%, and longer neurites, from around 80µm to around 130µm. Thus, it is clear that conducting 

aligned fibers combined with electrical stimulation improves ESC neurite growth. Determining 

the links between nanofiber-stimulated differentiation and neurogenesis allow for a better 

understanding of the application of ESCs in neural tissue engineering. These results provide 

guidance to neural tissue engineering scaffold design and insight into how ESCs interact with 

different topographies. 
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CHAPTER 1  

Introduction 

  

Background and Motivation 

Nerve injuries in both the peripheral nervous system (PNS) and central nervous system 

(CNS) are extremely difficult clinical issues that affect a large population. Around 270,000 

people in the US have a spinal cord injury (SCI), including 12,000 new cases each year [1]. SCI 

costs those individuals as much as $5M over their lifetime [2], and that does not even include 

indirect costs such as lost wages and productivity. The majority of SCIs arise from a traumatic 

injury, usually from an auto crash or an accidental fall [3].  

Currently, there is no clinical treatment that has successfully regenerated an SCI. While 

the majority of tissues in the body have the capacity to regenerate, the wound healing process in 

the spinal cord after an injury prevents full recovery. When the spinal cord is injured, the damage 

disrupts the integrity of nerve fibers in the white matter and their cell bodies in the grey matter. 

While this primary injury is devastating, secondary degeneration results in inflammation, 

bleeding, and scarring [4-6]. Macrophages and reactive astrocytes are recruited to the wound site 

to clean up the debris, but the astrocytes become hypertrophic and form a glial scar. The 

formation of a glial scar prevents the surrounding nerve from regenerating across the wound site, 

resulting in a permanent state of dysfunction. 
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Treatment regimens now are broken down into two stages. In the early stage, the focus is 

on preventing any further injury through immobilization and surgery. Some medications exist, 

such as methylprednisolone, but their benefit is very mild. Thus, significant work is being done 

on new pharmacologic candidates to administer post-injury [7, 8]. After the initial trauma, later 

stage treatments focus on rehabilitation, including physical therapy, occupational therapy, and 

quality of life adaptations. There are also medications to alleviate some long term SCI effects 

such as pain, muscle spasticity, bladder control, and bowel control. With no options available to 

fully regenerate an SCI, tissue engineering provides some promise. 

While an SCI might be more difficult to treat, a PNS injury is more common and also 

challenging. Between the US and Europe, approximately 100,000 peripheral nerve repair 

procedures are performed every year [9]. These injuries can arise from trauma, cancer, or 

congenital defects [10, 11].  

Compared to SCI, there are more methods available to treat a peripheral nerve injury. 

Normally, short gaps can be reconnected surgically with microsutures [12] or various nerve 

guidance channels [13-15]. However, if the defect is longer than 10mm, it becomes much more 

challenging to treat. For the longer, critically-sized nerve defects, the current gold standard is an 

autologous nerve graft (often the sural nerve [16], a sensory nerve located along the calf), though 

there are severe drawbacks including donor side morbidity, multiple surgical sites, and possible 

size mismatch.  

Clinically, there is a need for a new approach to treating nerve injuries. Nerve tissue 

engineering provides a promising approach by attempting to create a synthetic implant.  
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Nerve Tissue Engineering Overview 

 Tissue engineering as a whole is a burgeoning field, bringing together myriad research 

areas including polymer chemistry, materials science, cell and molecular biology, and clinical 

medicine. At the base lie three components: a scaffold, cells, and soluble factors. Each plays a 

pivotal role in the healing and regeneration process, and each can be tailored to the specific 

application. 

Peripheral nerve scaffolds 

For the scaffold, the main role is to provide a structurally relevant 3D environment that 

defines the shape of the tissue and allows the cells to adhere. For peripheral nerve, that most 

commonly means a nerve guidance conduit [17]. The use of biological conduits dates back to the 

19
th

 century when an artery was explored [18], but it did not translate to the clinic until the early 

1900s when vein grafts were employed [19-21]. Veins are still used today for defects ranging 

from 2-70mm but success has been varied [22-25]. Denatured muscle tissue has also been 

explored, albeit less so than veins, because the basal lamina contains collagen IV and laminin, 

two extracellular matrix proteins known for promoting nerve growth [26, 27]. Muscle tissue has 

had some success [28, 29], though it does not control the regenerating nerve fibers very well. 

Combining it with a nerve guidance channel, however, is a more viable option [30, 31]. Though 

they are still being researched [32], the use of both vein and muscle has some drawbacks limiting 

their use. Structurally, veins are not strong so they have the propensity to collapse if the distance 

bridged is too great. Denatured muscle tissue has the ability to promote regeneration, but lacks 

the ability to control growth so nerve fibers can potentially grow out of the graft. In addition, 

since both are biologically sourced, they require an additional surgical site for an autologous 
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graft, or carry the risks of immune rejection and disease transmission as an allograft. For those 

reasons, synthetic grafts have been employed. 

 A wide variety of materials have been used as nerve conduits, both bioabsorbable and 

non-bioabsorbable. Biodegradable substrates are preferred to prevent the need for a second 

surgery. If not removed, non-degradable conduits run the risk of suppressing full regeneration 

through a chronic foreign body response [33, 34]. When silicone was first used [35], patients 

reported irritation after only 2 years, and that trend continued [33, 36]. Other non-biodegradable 

conduits that have seen use in the clinic include polytetrafluoroethylene (PTFE) [37], 

polyethylene, polyvinyl, and rubber [38]. Biodegradable conduits are a much more attractive 

option and more research has been done on such materials. In the clinic, poly (glycolic acid) 

(PGA) [39, 40] has been explored with some success. In the research labs, a wider variety of 

polymers and materials are being studied including poly (lactic acid) (PLA) [41-45], peptide 

amphiphiles [46], poly (lactic-co-glycolic) acid (PLGA) [43, 46-48], polycaprolactone (PCL) 

[49-51], polypyrrole (PPy) [52], carbon nanotubes [53],  silk [54, 55], collagen [51, 56-58], and 

chitosan [55, 59, 60], among others [61]. 

In addition to the variety of materials, there are several different architectural archetypes 

employed, including solid-walled conduits and nanofibrous conduits. Solid-walled conduits are 

the simplest to fabricate, but do not mimic the natural fibrous extracellular matrix that cells 

adhere to in the body. Nanofibers do a much better job and mimicking natural cellular 

environments and have been shown to have a positive effect on adhesion and differentiation [62-

64]. Having favorable cellular interactions is one of the most desirable traits in designing a 

scaffold so nanofibrous architecture is vital. Currently, electrospinning and self-assembly are the 
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two dominant techniques used to create nanofibers for nerve tissue engineering [65], though 

thermally-induced phase separation (TIPS) has also been employed [66].  

Spinal cord scaffolds 

  Spinal cord tissue engineering has not been explored as much as peripheral nerve tissue 

engineering, but some scaffolds have been investigated [67] in an attempt to provide a bridge 

across the wound site, preventing the formation of the glial scar and allowing regenerating axons 

to cross the gap. 

 Natural polymers collagen [68, 69] and alginate have been used to treat spinal cord 

injuries with very limited success. The use of collagen is controversial since as a component of 

the glial scar, it could inhibit nerve growth [70], though as long as the collagen tube is aligned 

with the spinal cord, axons were able to grow through it [71]. Alginate also has mixed results. On 

one hand, it inhibited dorsal root ganglia neuron growth [72], while on the other hand, it was 

used to make an anisotropic hydrogel and successfully increased the growth of regenerating 

axons [73]. Other naturally-derived materials, including fibrin [74], Matrigel [75], fibronectin 

[76, 77], and agarose [78], most of which were applied in gel form, have also been studied with 

extremely limited success. Synthetic gels have been developed, including poly [N-2-

(hydroxypropyl) methacrylamide] (PHPMA, NeuroGel
TM

) [79] and poly (2-hydroxyethyl 

methacrylate-co-methyl methacrylate) (PHEMA-MMA) [80], both of which have similar 

mechanical properties to the spinal cord [81-83].  NeuroGel was able to promote some level of 

functional recovery [84], while PHEMA-MMA channels promoted neuronal regeneration 

without functional recovery [80]. While promising, both of these polymers are non-

biodegradable, limiting the amount of regeneration that can occur. Synthetic biodegradable 
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options include PLGA [85] and poly (l-lactic acid) PLLA [86-88], and while both can promote 

axonal regeneration, neither has been able to achieve functional recovery.  

 Development of spinal cord scaffolds has been slow compared to peripheral nerve 

scaffolds, but work is gradually accelerating as more advances are made. 

Cell source 

 The scaffold is just one component of the tissue engineering picture. Incorporating cells 

can greatly increase the performance of many strategies by jump-starting the tissue regeneration 

process. Finding an appropriate cell source, however, has been a struggle for nerve tissue 

engineering. Options include adult cells and stem cells, and both have their advantages and 

disadvantages. 

 The use of adult cells can be challenging for both spinal cord and peripheral nerve since 

they can be difficult to harvest and grow in clinically relevant numbers. Schwann cells have been 

used for both applications with more success in peripheral nerve [44, 48, 49, 52, 89]. They have 

the ability to remyelinate regenerating axons [90, 91], produce extracellular matrix proteins [92, 

93], and secrete trophic factors [94, 95]. However, they must be isolated from healthy nerve, 

commonly the sciatic nerve in animal models. In addition, there are several issues with their use 

in treating SCI, such as their inability to properly guide regeneration and their poor results when 

compared with olfactory ensheathing cells (OECs) [96]. OECs are similar to Schwann cells in 

that they are a type of glial cell. They are derived from the olfactory bulb or nasal mucosa and 

have been primarily used to treat SCIs with good success even in humans [97, 98], but have also 

been applied to peripheral nerve [32]. Other cell sources for the CNS include macrophages [99, 

100] and dendritic cells [101-103] to promote recovery. 
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 Stem cells are an alternative to adult cells and can be expanded to a greater cell number 

in vitro. Stem cells come in a variety of flavors, from late stage neural stem cells (NSCs) to 

pluripotent embryonic stem cells (ESCs). NSCs are attractive since they are easier to 

differentiate than more pluripotent cells, though they suffer from similar drawbacks to adult 

cells. They need to be isolated from either developing spinal cord [104], cerebral cortex [105], 

and brain [106], or adult spinal cord [107], cerebral cortex [108], and subventricular zone of the 

lateral ventricle [109, 110], making them very difficult to harvest in a clinically relevant way. 

Mesenchymal stem cells and hematopoietic stem cells are much more accessible, easily isolated 

from bone marrow, but more difficult to differentiate into neural and glial cells. However, that 

has not deterred their use in both spinal cord [111-115] and peripheral nerve [47, 116]. ESCs are 

an attractive choice for tissue engineering as a whole since they can proliferate indefinitely and 

can differentiate into any cell type in the body [117]. Their pluripotency, however, also makes 

controlling their fate relatively difficult. Commonly, ESCs are used to derive NSCs in vitro, and 

then applied to nerve tissue engineering [118]. Separate from their scientific validity, ESCs incite 

moral and ethical concerns. For that reason, induced pluripotent stem cells (iPSCs) provide a 

promising alternative [119-121]. They are derived from adult somatic cells, commonly 

fibroblasts, and reprogrammed with genes, either Oct3/4, Sox2, c-Myc, and KLF4 [122, 123], or 

Oct3/4, Sox2, Nanog, and Lin28 [124]. Other cell sources explored include adipose-derived stem 

cells [57, 125-127] and amniotic fluid-derived stem cells [128]. 

 It is clear that pluripotent stem cells, with their wide variety of applications, have the 

most promise for use in tissue engineering. Controlling their differentiation is a critical step to 

prevent the formation of teratomas in vivo. If allowed to spontaneously differentiate in vitro, only 

a low level of neuronal differentiation takes place [129, 130], thus, methods were developed to 
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increase neuronal commitment. The two most successful methods are retinoic acid (RA) 

induction and lineage selection [131]. RA, a derivative of vitamin A, was able to greatly increase 

the neuronal differentiate rate when applied in high concentrations at early stages of 

development [129, 132-134]. Growth factor-mediated lineage selection of neuronal cells starts 

with the formation of all three germ layers, removes growth factors to selectively differentiate 

neuroectodermal cells, and then uses inductive factors such as epidermal growth factor (EGF) 

[135], fibroblast growth factor-8 (FGF8), and sonic hedgehog (Shh) [136] to maintain neural 

precursor cells before finally inducing terminal differentiation.  

Summary 

 Soluble factors for neuronal differentiation have been well established, but for tissue 

engineering, there is a desire to involve the scaffold in an active role in controlling cell behavior. 

The interactions between nanofibers and NSCs, MSCs, and other cells have been explored, but 

little has been done on exploring the interaction between nanofibers and pluripotent stem cells. 

Current strategies for neural tissue engineering are scattered with many researchers trying myriad 

materials and cells with high variable results. A better understanding of the interaction between 

ESCs and a nanofibrous substrate will help focus neural tissue engineering efforts and guide 

research moving forward. 

 

Thesis Outline 

With the current landscape of nerve tissue engineering as scattered as it is, this work 

delves into the interactions between ESCs and nanofibers in order to inform the design of tissue 

engineering scaffolds. 
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Chapter 2 describes the effect of fiber size on the neuronal differentiation of mouse D3 

ESCs. An array of electrospun PLLA fibers along with TIPS fibers were fabricated with fiber 

diameters ranging from 129nm up to 1,889nm. Mouse D3 ESCs were seeded on each 

nanofibrous matrix in three different medium conditions and their neuronal differentiation and 

neurite growth was assayed. This chapter encompasses a manuscript to be published. 

Chapter 3 discusses the inclusion of PPy at various weight percentages with PDLLA to 

create conducting composite polymers. Electrical stimulation was used to stimulate rat 

pheochromocytoma 12 (PC12) cells to determine the ability of PPy/PDLLA to support neurite 

growth. A conducting nerve conduit was then fabricated to test the ability of PPy/PDLLA to 

regenerate a rat sciatic nerve defect in vivo. This chapter has been published as a manuscript in 

Biomaterials. 

Chapter 4 details the fabrication of an array of PPy/PLLA nanofibers with 

electrospinning. D3 ESCs were seeded on the nanofibers and stimulated with a potential to 

examine the effect of electrical stimulation on the neuronal differentiation and neurite growth of 

ESCs. In addition, aligned fibers were fabricated to exact greater control over the direction and 

orientation of neurite growth. This chapter also encompasses a manuscript to be published. 

Chapter 5 summarizes the results of this thesis as a whole and outlines the significance 

and impact on the field. 

Chapter 6 addresses the different directions that this project could be taken in with future 

work. 
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CHAPTER 2                                                                                                                            

Effect of fiber size on the neuronal differentiation of mouse embryonic stem cells 

 

Abstract 

Nanofibers have a significant effect on gene expression, differentiation, and cell 

morphology. However, the interaction between mouse embryonic stem cells (ESCs) and a 

nanofibrous substrate with respect to neuronal differentiation has not been fully explored. In this 

study, we began by comparing ESC behavior on poly (l-lactic acid) (PLLA) films to phase 

separated and electrospun nanofibers. Surprisingly, ESCs grown on phase separated matrices 

maintained some level of pluripotency despite being induced to differentiate with defined neural 

medium, while ESCs grown on electrospun fibers differentiated under the same conditions. We 

explored this further by electrospinning nanofibers with controlled fiber sizes from 129nm to 

1889nm.  ESCs cultured on the small fibers did not undergo neuronal differentiation while 

differentiation and neurite growth increased as fiber size increased. In addition, extracellular 

signal-regulated kinase (ERK) activity increased on the larger fiber sizes. These findings indicate 

that a specific size range of nanofibers, around 1-2µm, promote neuronal differentiation of ESCs 

via ERK signaling. 
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Introduction 

Embryonic stem cells (ESCs) are capable of indefinite proliferation and have the ability 

to differentiate into all three germ layers and subsequent lineages [137]. Their pluripotency 

makes them a desirable model for studying early development and differentiation. In addition, 

there are many applications in tissue engineering, a field that bridges regenerative medicine, 

engineering, and materials science. Neural tissue engineering seeks to combine a scaffold with 

cells and soluble factors to treat central or peripheral nervous system defects, significant clinical 

issues with limited treatment options, especially for spinal cord injuries. While ESC pluripotency 

makes their use attractive for use in this field, it also provides a challenge to control their fate. 

The primary means used to differentiate them into neurons is by using soluble factors. Retinoic 

acid (RA), a derivative of vitamin A and important morphogen during neural development, is 

arguably the most common [131, 134], but other growth factors such as brain-derived 

neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), and insulin-like 

growth factor (IGF) have been used [138, 139]. However, it is desirable to employ the substrate 

in an active role to exact another layer of control over stem cell fate. 

Nanofibers mimic the natural extracellular matrix (ECM) and have the ability to control 

cell behavior, including adhesion, proliferation, and differentiation. An extensive amount of 

work has been done to show that nanofibers promote differentiation and neurite growth in more 

mature cell lines. Neural stem cells (NSCs) were cultured on laminin-coated polyethersulfone 

(PES) fibers with average fiber diameters of 283, 749, and 1452nm [140]. NSC proliferation 

decreased and neuronal differentiation increased as fiber size increased. On the other hand, 

mouse cerebellum C17.2 stem cells showed little difference in neurite growth across poly(l-lactic 

acid) (PLLA) fibers ranging from 307nm to 1150nm [62]. Only when the fibers were aligned did 
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size have an effect, and longer neurites were found on the smaller fibers. When it comes to the 

effect of nanofibers on ESC differentiation, very little has been done [141-143].  

Even less has been done to elucidate the mechanism by which nanofibers control stem 

cell fate. Nanofibers have been shown to selectively adsorb proteins and this could affect how 

cells adhere [144]. In fact, osteoblasts were seeded on nanofibrous and solid scaffolds, with and 

without 3,4-dehydroproline, an inhibitor of collagen fibril formation [145]. On the nanofibers, 

osteoblasts expressed integrin subunit α2, part of integrin α2β1 that binds collagen, in presence 

and absence of 3,4-dehydroproline. On the solid surface, osteoblasts only expressed α2 without 

3,4-dehydroproline, showing that nanofibers can interact with cells similar to the way they 

interact with collagen through integrins. In this study, the integrin responsible for the interaction 

between ESCs and nanofibers in the context of neuronal differentiation is investigated. In 

addition, the connection between the extracellular interaction with the ECM and intracellular 

signaling was explored. Understanding the mechanism by which intracellular signals travel and 

which pathways are employed has always been a significant challenge when studying 

development or tissue engineering. The mitogen-activated protein kinase (MAPK) pathway is 

especially interesting for its role during neural development regulating proliferation, 

differentiation, and apoptosis. Out of the three major cascades, extracellular signal-regulated 

kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, ERK has been shown to play a 

significant role in neural development. ERK is activated by an upstream kinase, MEK, via 

phosphorylation of threonine and tyrosine residues and then translocates to the nucleus where it 

phosphorylates transcription factors and cytoskeletal proteins [146]. The activation of one such 

transcription factor, signal transducer and activators of transcription protein 3 (STAT3), has been 

shown to be vital in developing NeuN-positive neurons [147]. However, this interaction is 
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complicated as other reports have shown that ERK negatively regulates STAT3 [148]. In PC12 

cells, multiple studies have implicated ERK activity as a requirement for neuronal differentiation 

[149, 150]. However, little is known about how the nanofibrous architecture of the ECM could 

affect MAPK signaling in ESCs. 

In this study, an array of fibers was fabricated from 129nm in diameter to 1889nm. 

Mouse D3 ESCs were cultured on these nanofibers and their neural differentiation was assayed. 

Our data showed that larger fibers, greater than approximately 900nm, promoted neuronal 

differentiation and neurite growth. In addition, we discovered that early ERK activation was 

required for fiber size-mediated neuronal differentiation, and this was due at least in part to the 

laminin-binding integrin α6β1. 

 

Materials and Methods 

Materials 

PLLA was purchased from Boehringer Ingelheim (Ingelheim, Germany). All other 

chemicals were analytical grade reagents. 

Fabrication and characterization of PLLA matrices 

 For thermally-induced phase separated (TIPS) films, PLLA was dissolved in 

tetrahydrofuran (THF) at 60°C to make a 10% w/v PLLA solution. The nanofibrous PLLA 

matrix (thickness ~40μm) was fabricated by first casting 0.4ml of the PLLA solution on a glass 

support plate that had been pre-heated to 45°C for 10min, and then sealing the polymer solution 

on the glass support plate by covering it with another pre-heated glass plate. The polymer 



 

 

14 

 

solution was phase separated at -20°C for 2hrs and then immersed into a mixture of ice and water 

for 24hrs to exchange the tetrahydrofuran. The matrix was washed with distilled water at room 

temperature for 24hrs, changing the water every 8hrs. After washing, the matrix was freeze-dried 

and then cut to size.  

For electrospun fibers, a PLLA solution was prepared by dissolving either 6%, 8%, 15%, 

or 20% w/v PLLA in hexafluoroisopropanol (HFIP). Fibers were electrospun using a horizontal 

electrospinning setup. A high-voltage power supply (Gamma High-voltage Research, Ormond 

Beach, FL, USA) provided a 15kV potential between the needed and the grounded collector. A 

syringe pump housed a 10ml syringe attached to a 22 gauge flat point needle and was placed 

12cm away from the collector. PLLA solution was dispensed at 1.5ml/hr. 

Matrices were gold coated (Desk-II, Denton Vacuum, Moorestown, NJ, USA) and 

observed using a Philips XL30 FEG scanning electron microscope. Images of fibers were 

analyzed with ImageJ (National Institutes of Health, Bethesda, MD, USA) to determine the 

average fiber diameters. At least 100 fibers for each matrix were measured. 

Matrix preparation 

 The PLLA matrices were placed on a glass coverslip backing and placed in 6-well plates. 

The matrices were sterilized under UV light for 30min, wet briefly with ethanol, and then 

washed 3 times with phosphate-buffered saline (PBS). A polydimethylsiloxane (PDMS, Sylgard 

184
®
, Dow Corning, Midland, MI, USA) donut was used to secure the matrices in the bottom of 

the wells. Prior to seeding, the matrices were incubated in either non-directional (ND) media 

(DMEM supplemented with 2% FBS, 10
-4

M -mercaptoethanol, 0.224mg/ml L-glutamine and 

1.33µg/ml HEPES), neural permissive (NP) media (80% F-12/20% Neurobasal media with N2 



 

 

15 

 

and B27 supplements and 10mM sodium pyruvate) or neural media (80% F-12/20% Neurobasal 

media with N2 and B27 supplements, 10mM sodium pyruvate and 1µM retinoic acid) for 1hr. 

D3 culture and seeding 

 D3 mouse embryonic stem cells [151] were cultured on 0.1% gelatin-coated tissue 

culture flasks in complete ESC media (DMEM supplemented with 10% FBS, 10
-4

M β-

mercaptoethanol, 0.224µg/ml L-glutamine, 1.33µg/ml HEPES, and 1,000 units/ ml human 

recombinant LIF). Cells were passaged every 2 days and stored in a humid 37°C incubator with 

5% CO2. 50,000 cells were seeded on each matrix in the appropriate media and it was changed 

daily for the duration of the experiments.  

PCR 

 Samples were first homogenized with a Tissue-Tearor (BioSpec Products, Bartlesville, 

OK, USA) and then total RNA was isolated using an RNeasy Mini Kit (Qiagen, Valencia, CA, 

USA) according to the manufacturer’s protocol. The cDNA was reverse-transcribed using 

TaqMan reverse transcription reagents (Life Technologies, Carlsbad, CA, USA). Real-time PCR 

was performed using TaqMan Universal PCR Master Mix (Life Technologies) for each of the 

following: βIII-tubulin, Nestin, Ripk2, Oct3/4, and Gfap. Expression levels were normalized 

using glyceraldehyde-3-phosphate dehydrogenase (GAPDH). 

Immunofluorescence and image analysis 

 Samples were washed 3 times in PBS, fixed in 4% paraformaldehyde, washed an 

additional 3 times in PBS, and permeabilized with 0.2% Triton X-100. After 2 more PBS 

washes, samples were blocked with 1% bovine serum albumin (BSA) in PBS for 1hr. Samples 
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were then incubated in primary antibodies for βIII-tubulin (TUJ1, Covance, Princeton, NJ, USA) 

at 1:500, followed by an appropriate secondary antibody. 4',6-diamidino-2-phenylindole (DAPI, 

Vectashield
®
, Vector Laboratories, Burlingame, CA, USA) was used to stain the nucleus. Images 

were acquired using a Nikon Eclipse C1 confocal microscope (Nikon, Tokyo, Japan). Cell counts 

were made using ImageJ using at least 1,000 cells from 3 replicate samples. Median neurite 

lengths were also measured with ImageJ using a population of at least 400 cells. 

Integrin blocking 

 Cells were seeded as described in neural media and allowed to adhere for 24hrs. 

Antibodies were then added to the culture medium at 10µg/ml to block specific integrin subunits 

as follows: β1 (CD29, BioLegend, San Diego, CA, USA), α1 (CD49a, BioLegend), α3 (CD49c, 

R&D Systems, Minneapolis, MN, USA), α5 (CD49e, BioLegend), α6 (CD49f, BioLegend), and 

α11 (R&D Systems). Neural medium was changed daily for a total of 7 days of culture before 

immunofluorescence was performed. 

Western blots 

 Protein was collected from samples using an EpiQuik Whole Cell Extraction Kit 

(Epigentek, Farmingdale, NY, USA) according to the manufacturer’s protocol. 20µg of sample 

protein was mixed with an equal volume of 2X Laemmli buffer and heated to 95°C for 5min. 

The samples were then loaded into a polyacrylamide gel for electrophoresis. The protein was 

transferred to polyvinylidene fluoride (PVDF) membranes, blocked in 3% BSA in tris-buffered 

saline (TBS) with 0.05% Tween 20 (TBST), and incubated overnight at 4°C in primary antibody. 

Antibodies for active extracellular signal regulated kinase 1/2 at 1:2,000 (p-ERK1/2, Cell 

Signaling Technology, Danvers, MA, USA), total ERK1/2 at 1:1,000 (CST), active p38 at 
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1:1,000 (CST), and heat shock protein 60 at 1:200 (HSP60, Santa Cruz Biotechnology, Dallas, 

TX, USA) were used. Blots were then incubated in a secondary antibody conjugated to 

horseradish peroxidase (HRP) at 1:10,000 and treated with an enhanced chemiluminescent 

(ECL) substrate.  

Statistical analysis 

 For all experiments, values are reported as a mean ± standard deviation (SD). 

Experiments were repeated at least 2 times to validate results. Two-way analysis of variance was 

used to determine the statistical significance of differences between data sets. For the neurite 

analysis, median lengths were calculated since the distribution was not normal. Statistical 

differences between medians were determined with a Mann-Whitney U test. A value of p<0.05 

was considered to be statistically significant. 

 

Results 

Nanofiber morphology 

Nanofibrous matrices fabricated using TIPS had an average fiber diameter of 135±65nm 

and initial electrospun fibers had an average fiber diameter of 529±141nm (Figure 2.1A, B). 

Mouse D3 ESCs were seeded on both nanofibrous matrices and cultured in non-directional 

medium for 7 days. Cells on the electrospun fibers expressed βIII-tubulin, a late market of 

neuronal differentiation and also developed some neurite growth. In contrast, cells seeded on the 

TIPS fibers exhibited very minimal βIII-tubulin (Figure 2.1C, D). Clearly the cells behaved 
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differently on the two sets of nanofibers and we sought to determine if this could be explained by 

the difference in fiber size. 

 

Figure 2.1. TIPS and electrospun nanofiber morphology and ESC neuronal differentiation. A) and B) shown 

scanning electron micrographs of TIPS (A) and electrospun (B) nanofibers. TIPS nanofibers come in a mat of 

fibrous bundles while electrospun fibers are long and continuous. Immunofluorescence images (C, D) labeling 

with DAPI for nucleii (blue) and βIII-tubulin (red) revealed minimal βIII-tubulin on the TIPS fibers (C), 

while some ESCs on the electrospun fibers (D) were βIII-tubulin positive and even grew neurites. 

Immunofluorescence scale bar 200µm. 
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Electrospinning was used to create an array of PLLA fibers with varying fiber size. The 

concentration of PLLA in HFIP displayed great control over modulating the fiber diameter. 

Table 2.1 summarizes the nanofibrous matrices fabricated with their respective PLLA solution 

and resultant fiber size. Figure 2.2 shows scanning electron micrographs of the array of 

nanofibers. Electrospun fibers were arranged in a pseudo-two dimensional (2D) fibrous mat in a 

random orientation while TIPS fibers were partly arranged in bundles in a more 2D fashion. 

From here on out, the nanofibers will be denoted by their size and fabrication method, with ES 

denoting electrospinning: TIPS, 129ES, 529ES, 901ES, and 1889ES. It should be noted that 

electrospinning was attempted with solutions containing less than 6% or more than 20% PLLA, 

however, the low concentrations yielded a large amount of beading and the high concentration 

solutions became overly viscous without any significant increase in fiber size. 

Table 2.1. Summary of nanofibrous matrices and fiber size. 
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Figure 2.2. Scanning electron micrographs of nanofibrous matrices. Nanofibers fabricated from 

electrospinning (A-D) and TIPS (E) exhibited differing morphologies. TIPS nanofibers (E) formed a mat of 

fibrous bundles. 129ES (A), 529ES (B), 901ES (C), and 1889ES (D) nanofibers were long and continuous with 

larger pores in between the fibers. 
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Synergistic effects of media conditions and fiber size 

 ESCs were seeded on the electrospun and TIPS fibers in 3 different media conditions: 

non-directional (ND), neural permissive (NP), and neural. ND medium is growth medium 

without LIF and with a reduced amount of FBS, 2% instead of 10%, to minimize cell 

aggregation. NP medium is 80/20 induction medium, and neural medium is NP medium with the 

addition of retinoic acid (RA). After 7 days in culture, the cells were fixed and labeled with 

TUJ1, the antibody for βIII-tubulin, a marker for mature neuronal differentiation (Figure 2.3). 

Across the 3 media conditions, there was minimal βIII-tubulin expression on the TIPS and 

129ES fibers. There was also little expression on any of the fiber sizes in the ND medium. 

However, in both the NP and neural media, there was a clear increase in βIII-tubulin expression 

as fiber size increased. From the TIPS and 129ES fibers to the 529ES fibers, there are cells that 

have grown small neurites. Then from the 529ES fibers to the 901ES and 1889ES fibers, more 

cells were βIII-tubulin positive and there were more and longer neurites.  



 

 

22 

 

 

Figure 2.3. Immunofluorescence of neurite outgrowth in different media conditions and on different fiber 

sizes. ESCs cultured on the array of fibers were labeled with DAPI for nucleii (blue) and βIII-tubulin (red). 

ESCs cultured in ND medium (A-E)  exhibited little βIII-tubulin expression and neurite growth compared to 

cells in NP (F-J) or neural medium (K-O). On the smaller fiber sizes, TIPS (A, F, K) and 129ES (B, G, L), 

there was also little neurite growth. As fiber size increased to 529ES (C, H, M), there was an increase in 

neurite growth in NP and neural media. More noticeable, on the larger fibers, 901ES (D, I, N) and 1889ES (E, 

J, O), there was significant neurite growth in NP and neural media. The combination of medium conditions 

with an increase in fiber size resulted in a large increase in neurite growth. Scale bar 200µm. 
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 To get a better idea of the neural differentiation the ESCs undergo on the fiber sizes, we 

assayed the gene expression of pluripotency marker Oct3/4, early neuronal marker Nestin, 

mature neuronal marker βIII-tubulin, oligodendrocyte precursor marker Olig2, and astrocyte 

marker Gfap (Figure 2.4). Statistical significance was determined by comparing samples against 

129ES fibers in the corresponding medium condition. For Oct3/4 (Figure 2.4A), there was a 

clear decrease in expression as fiber size increased, and this was more noticeable in the NP and 

neural media. Surprisingly, despite the neural medium, the smallest fibers were able to maintain 

some level of Oct3/4 expression, indicating some cells remained pluripotent.  

 Looking at Nestin (Figure 2.4B) and βIII-tubulin (Figure 2.4C), the larger fibers seemed 

to promote neuronal differentiation. Nestin expression was highest on the larger fibers in NP 

medium, while expression dropped on the larger fibers in neural medium. On the other hand, 

βIII-tubulin expression was highest on the 901ES and 1889ES fibers in neural medium. Thus, it 

seems that neural medium produces more maturely differentiated cells on the larger fibers, while 

NP medium, without RA, lags behind. In the ND medium, while the fiber size dependent effect 

was still significant for Nestin, it was negligible for βIII-tubulin. In essence, this gave evidence 

of a synergistic effect between the large fiber sizes and medium conditions to promote neuronal 

differentiation of D3 ESCs. 

 We also looked at two other neural markers for oligodendrocyte precursors and 

astrocytes. Similar to βIII-tubulin, there was minimal trend in the ND medium for Olig2 (Figure 

2.4D) and Gfap (Figure 2.4E). However, Olig2 expression remained high on the TIPS and 

129ES fibers in NP and neural media compared to 529ES, 901ES, and 1889ES fibers, where 

expression was negligible. The trend for Gfap was minimal, though there was a decrease in 

expression on the 901ES and1889ES fibers in NP and neural media conditions. 
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Figure 2.4. Gene expression of ESCs in different media conditions and on different fiber sizes. Real-time PCR 

was used to assay the gene expression of pluripotency marker Oct3/4 (A), early neuronal marker Nestin (B), 

mature neuronal marker βIII-tubulin (C), oligodendrocyte precursor marker Olig2 (D), and astrocyte 

marker Gfap (E). Oct3/4 expression decreased as fiber size increased in the NP and neural media. Nestin 

expression was highest in NP medium and large fibers while βIII-tubulin  expression was highest in neural 

medium on large fibers. Large fibers promoted neuronal differentiation with more precursors in NP medium 

and more mature cells in neural medium. Olig2 expression was knocked down significantly as fiber size 

increased in NP and neural medium. Gfap expression also decreased with increasing fiber size, indicating 

smaller fibers could be better for glial differentiation. Statistical significance is denoted by comparison to 

the129ES group in the respective medium. (*p<0.05) 
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Integrin mediated interactions with fibers 

 To elucidate the interaction between the ESCs and the nanofibers, we investigated if there 

were specific integrins that were responsible for the fiber size mediated effect on neuronal 

differentiation. The cells were allowed to adhere for 24h before antibodies against specific 

subunits were introduced to the neural media. We investigated subunits α1 (binds collagens 

including I, II, IV, V, VI, XIII [152, 153]), α3 (binds laminin [154, 155]), α5 (binds fibronectin 

[156]), α6 (binds laminin [154, 155]), α11 (binds collagen I, IV [157, 158]), and β1. Compared 

to the control where IgG was used, blocking α1, α3, α5, and α11 did not affect the fiber size 

dependent expression of βIII-tubulin (Figure 2.5A, B, C, E). However, when α6 or β1 was 

blocked, expression of βIII-tubulin on the larger fiber sizes was knocked down (Figure 2.5D, F). 

Thus, integrin α6β1, a major laminin receptor, was required for fiber size mediated neuronal 

differentiation. Figure 2.6 corroborates this result by showing the lack of neurite growth in the 

presence of α6 (Figure 2.6F – J) or β1 (Figure 2.6K – O) blocking antibodies.  
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Figure 2.5. Integrin-mediated interaction between ESCs and nanofibers. An array of integrin blocking 

antibodies were used to determine how the ESCs are interacting with the nanofibrous matrix with regards to 

neuronal differentiation. There was no difference in βIII-tubulin expression when α1 (A), α3 (B), α5 (C), α11 

(D), or IgG (G) was used. However, α6 (D) and β1 (F) blocking was able to eliminate the fiber size-mediated 

effect on βIII-tubulin expression. Statistical significance was determined by comparison to 129ES. (*p<0.05) 
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Figure 2.6. Neurite growth in the presence of integrin blocking. Immunofluorescence of ESCs cultured on the 

array of fibers were labeled with DAPI for nucleii (blue) and βIII-tubulin (red). Compared to IgG (A-E), 

antibodies blocking α6 (F-J) and β1 (K-O) completely knocked out the ability of ESCs to form neurites on the 

nanofibrous matrices. A, F, K) TIPS. B, G, L) 129ES. C, H, M) 529ES. D, I, N) 901ES. E, J, O) 1889ES. Scale 

bar 200µm. 
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ERK activation mediates fiber size dependent neuronal differentiation 

 After implicating integrin α6β1 for its extracellular role, we attempted to connect it to an 

intracellular pathway. Understanding the signaling pathway responsible for regulating stem cell 

fate is crucial if pluripotent cells are to be used clinically. One of the major signaling cascades is 

the MAPK pathway, and it has been shown to play a role in numerous cell processes, including 

proliferation, differentiation, cell division, apoptosis, and others. To determine if one of the 

MAPK cascades plays a role in fiber size mediated neuronal differentiation, we investigated the 

activity of ERK and p38. RA has been shown to activate ERK  [147] so we used both NP and 

neural media to determine if the nanofibers alone were sufficient in activating ERK.  

 Figure 2.7 shows the phosphorylation of p38 and ERK in the two medium conditions 

across the 4 electrospun fibers. In both the NP and neural media, p-p38 levels were statistically 

similar across the nanofibers. However, p-ERK drastically increased from the 529ES to the 

901ES nanofibers. Activation was similar on the two largest fiber sizes. This trend was similar in 

both the NP and neural media. The addition of RA in the neural medium increased p-ERK levels 

across the board, maintaining the sharp jump in ERK activation from 529ES to 901ES 

nanofibers. With the trend present in both NP and neural media, the large nanofibers were able to 

increase ERK activation with the presence of RA.  
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Figure 2.7. MAPK signaling on electrospun nanofibers. Western blots for p-p38, p-ERK, total ERK, and 

loading control HSP60 were performed (A). While p-p38 remained relatively constant across the medium 

conditions and fiber sizes (D), ERK activity was significantly higher on the 901ES and 1889ES fibers (B). This 

trend was present both in the presence (neural) and absence (NP) of RA. (*p<0.05) 

 



 

 

30 

 

To further demonstrate this, timeline of ERK activation was investigated in order to see 

at what point ERK participates (Figure 2.8). D3 ESCs were seeded on 901ES fibers in neural 

medium in the presence and absence of 10µM U0126, an inhibitor of ERK phosphorylation. The 

inhibitor was used to determine if ERK was responsible for the neuronal differentiation. Prior to 

seeding, there was minimal p-ERK in the undifferentiated ESCs. After the first day, there was a 

significant increase in ERK activation. A similar level was noted on day 2, while p-ERK 

decreased slightly thereafter, though maintained a higher level compared to day 0. This shows 

that ERK is activated early with the highest levels on the first two days post-seeding, and 

maintains activity throughout at least the first week of differentiation. Connecting this to neurite 

growth, the presence of U0126 inhibited the neurite formation throughout the 5 days of culture 

(Figure 2.9) 
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Figure 2.8. Time-dependent activation of ERK. ESCs were seeded on 901ES nanofibers in neural medium. 

Day 0 indicates ESCs prior to seeding. Western blots of p-ERK and total ERK in the presence of absence of 

U0126 showed that ERK is active early and remains active, though p-ERK drops from day 2 to day 3 (A). 

U0126 was able to inhibit ERK activity to levels near day 0 (B). (*p<0.05) 
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Figure 2.9. Time dependent neurite growth with ERK inhibition. Immunofluorescence of ESCs cultured on 

901ES nanofibers in neural medium were labeled with DAPI for nucleii (blue) and βIII-tubulin (red). 

Without U0126 (A-D), a significant amount of neurites grew by day 5. In the presence of U0126 (E-H), very 

few neurites formed, indicating ERK activity is required for neurite growth. A, E) Day 1. B, F) Day 2. C, G) 

Day 3. D, H) Day 5. Scale bar 200µm. 
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Discussion 

The extracellular environment plays an important role in maintaining pluripotency and 

inducing differentiation [159, 160]. During neurogenesis, alterations in both composition and 

structure of the ECM play a role in proliferation, cell migration, and differentiation [161-163]. 

For tissue engineering, which seeks to create an artificial ECM, understanding the interaction 

between stem cells and their ECM is critical scaffold design, especially when using pluripotent 

stem cells. 

Nanofibrous architecture has been shown to have a significant effect on the attachment, 

proliferation, differentiation, and migration of numerous cell types [164]. Previous studies have 

been done on progenitor cells to show that fiber size can have an effect on neuronal 

differentiation [62, 140], however, little work has been done to study how fiber size affects 

ESCs. In this study, nanofibers with diameters from 129nm up to 1889nm were fabricated to 

investigate the behavior of mouse D3 ESCs on different fiber sizes. Larger fiber sizes greater 

than approximately 900nm, close to the size of focal adhesions [165], promoted neuronal 

differentiation in concert with neural medium containing RA. The smallest nanofibers, TIPS 

nanofibers around 135nm and 129ES nanofibers, inhibited differentiation and maintained a level 

of pluripotency.  

Once the relationship between fiber size and neuronal differentiation was established, the 

interaction between the cells and the nanofibers was investigated. Integrin α6β1 was found to 

mediate the fiber size dependent neuronal differentiation of mouse D3 ESCs. Integrin α6β1 has 

been commonly studied for its role in liver cancer [166, 167]. In addition, α6β1 plays an early 

transient role in the differentiation of cardiomyocytes during development [168]. Importantly, 
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neural progenitor cells (NPSs) from the embryonic mammalian forebrain binds laminin through 

α6β1, which is vital for adhesion and migration [169]. Laminin is a key extracellular matrix 

protein, especially in neural development [170, 171]. This is consistent with the results in this 

study where α6β1 was shown to be responsible for fiber mediated neuronal differentiation. 

Connecting the interaction between the cells and the nanofibers to an intracellular 

pathway, the activity of MAPK proteins p38 and ERK was investigated. Both p38 and ERK have 

been shown to have role in ESC differentiation. The activity of p38 remained relatively constant 

across the fiber sizes and in both NP and neural media. This is consistent with results that 

showed inhibition of p38 activation induced neuronal differentiation, and RA was able to inhibit 

p38 activity [172]. ERK activity, however, was high on the larger 901ES and 1889ES fibers. On 

the smaller fibers, 129ES and 529ES, p-ERK was low. The sharp jump from 529ES to 901ES 

nanofibers corresponded with the increased neuronal differentiation, and this occurred with and 

without RA. RA has been shown to increase ERK activation [147], and while our results also 

showed higher ERK activity with RA, the nanofibers were able to activate ERK even without 

RA. Finally, this nanofiber-mediated ERK activation was evident in the presence and absence of 

U0126, an inhibitor of the upstream kinase MEK, giving more credence to the link between ERK 

activation and neuronal differentiation on the large nanofibers. Other studies have linked ERK 

activation and neuronal differentiation in ESCs [147, 173], neural stem cells [174], and PC12 

cells [149, 175], yet most used soluble factors such as RA or insulin-like growth factor to induce 

neuronal differentiation. The ability to induce differentiation of ESCs with nanofibers is major 

advancement in understanding neurodevelopment and has great implications for tissue 

engineering.  
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Electrospun nanofibers are a common scaffold material in many areas of tissue 

engineering, including bone [176], cartilage [176, 177],  nerve [178], and many others [179, 

180]. The current state of tissue engineering, specifically neural tissue engineering, is scattered, 

with myriad scaffold designs, materials, and cells. This works provides guidance for scaffold 

design, showing that nanofibers above a certain length, around 900nm, are best to induce 

neuronal differentiation. In addition, the implication of laminin-binding integrin α6β1 in the fiber 

size mediated promotion of neuronal differentiation shows that laminin could be a great choice to 

be incorporated in neural tissue engineering scaffolds.  

In addition to the effect large nanofibers had on neuronal differentiation, the small 

nanofibers also seemed to have an interesting effect. Oct3/4 expression, a marker of 

pluripotency, remained higher than on the larger fibers, and there was also significant Olig2 

expression, a marker of oligodendrocyte precursors. Nanofibers, even small ones on the order of 

130nm, have been shown to induce differentiation, so the possibility of maintaining pluripotency 

will need to be investigated further. In addition, the potential to differentiate oligodendrocytes on 

nanofibers merits further study.  
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CHAPTER 3                                                                                                                  

Conducting composite PPy/PDLLA films for nerve tissue engineering 

 

Abstract 

The significant drawbacks and lack of success associated with current methods to treat 

critically sized nerve defects have led to increased interest in neural tissue engineering. 

Conducting polymers show great promise due to their electrical properties, and in the case of 

polypyrrole (PPy), its biocompatibility as well. Thus, the goal of this study is to synthesize a 

conducting composite nerve conduit with PPy and poly (d, l-lactic acid) (PDLLA), assess its 

ability to support the differentiation of rat pheochromocytoma 12 (PC12) cells in vitro, and 

determine its ability to promote nerve regeneration in vivo. Different amounts of PPy (5%, 10%, 

and 15%) are used to synthesize the conduits resulting in different conductivities (5.65, 10.40, 

and 15.56ms/cm, respectively). When PC12 cells are seeded on these conduits and stimulated 

with 100mV for 2hrs, there is a marked increase in both the percentage of neurite-bearing cells 

and the median neurite length as the content of PPy increased. More importantly, when the 

PPy/PDLLA nerve conduit was used to repair a rat sciatic nerve defect it performed similarly to 

the gold standard autologous graft. These promising results illustrate the potential that this 

PPy/PDLLA conducting composite conduit has for neural tissue engineering.  
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Introduction 

In the United States and Europe, approximately 100,000 peripheral nerve repair 

procedures are performed every year [9]. Peripheral nerve injuries can arise from trauma, cancer, 

or congenital defects [10, 11], and are challenging clinical issues to address. While short gaps 

less than 10 mm can be reconnected surgically with microsutures [12] or various nerve guidance 

channels [13-15], longer defects are more difficult to treat. 

Despite the need, current options to regenerate critically-sized nerve defects are limited. 

The gold standard is the autologous nerve graft [181-183], but there are significant drawbacks 

including limited donor source, donor site morbidity, multiple surgical sites, and possible size 

mismatch. Other options include allografts and xenografts, but those run the risk of disease 

transmission and immune rejection. Thus, there is a significant clinical need to address critical 

size nerve defects.  

Nerve tissue engineering is a promising approach that has shown potential to address this 

need with synthetic nerve conduits. There has been a significant effort dedicated to developing 

synthetic nerve conduits that have resulted in encouraging regeneration and some degree of 

functional recovery of peripheral nerve defects [35, 51, 184-186]. However, more work needs to 

be done to improve their efficacy compared to autologous nerve grafts.  

An important aspect of synthetic nerve grafts is their ability to conduct electricity. Wilson 

et al. showed that electrical stimulation can significantly promote the regeneration of peripheral 

nerve injuries after examining a large number of animal experiments [187]. Thus, there has been 

a large focus on the use of conductive materials in neural tissue engineering. Researchers are 

hoping to develop a novel material that can meet both the conductivity demands of nerve tissue 
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and the requirements of tissue engineering as a whole. Ideally, this conduit should be 

biocompatible, biodegradable, and provide an appropriate electrical environment.  

As a means to achieve this, researchers have studied electroconducting polymers, such as 

polypyrrole (PPy), polyaniline, and polyphosphazene. They have been investigated in recent 

years for a number of applications in the field of microelectronics, polymer batteries, actuators, 

and biomedical engineering and have been shown to have excellent electrical properties [188, 

189]. For biological and medical applications, PPy has been the most widely studied [190]. Not 

only does it have excellent electrical properties, in vitro and in vivo studies have proven it to 

have favorable cell and tissue compatibility. In addition, PPy is easy to synthesize, has a readily 

modifiable surface, and is inexpensive, all of which are incredibly appealing for tissue 

engineering applications. Thus, PPy has been recognized as a promising scaffold material for 

nerve tissue engineering and neural prostheses [190, 191]. To demonstrate this, Schmidt et al. 

first electrically stimulated PC12 cells through PPy films and observed the promotion of neurite 

outgrowth from the cells, showing the potential use of conducting polymers for nerve tissue 

engineering scaffolds [192]. Subsequent studies have focused on improving the polymer 

scaffolds by incorporating various cues, such as neurotrophins [193], cell adhesive molecules 

[194, 195], and topographical features [196], emphasizing the importance of multiple signals for 

improved modulation of neuronal responses [197]. For example, Gomez et al. electrochemically 

synthesized PPy micro-channels to fabricate conductive, topographical substrates for neural 

interfacing, and found that PPy micro-channels facilitated axon establishment of rat embryonic 

hippocampal neurons [196]. These studies demonstrated that PPy is a promising candidate for 

nerve regeneration. 
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However, the majority of the work done on PPy involves in vitro cell evaluation. 

Considering its drawbacks, including its poor solubility and degradation profile, more research 

needs to be done in vivo to confirm the viability of PPy as a scaffold material.  

The purpose of this study was to investigate a possible treatment for repairing damaged 

nerves and to overcome the current shortcomings PPy has in tissue engineering. Poly (d, l-lactic 

acid) (PDLLA) is widely used in peripheral nerve tissue engineering due to its good 

biodegradability, biocompatibility, and mechanical properties [198, 199]. In this study, a 

PPy/PDLLA conductive composite nerve conduit was fabricated by emulsion polymerization to 

take advantage of the properties of the individual polymers. The material was tested in vitro for 

its ability to support the neuronal differentiation of rat pheochromocytoma 12 (PC12) cells in 

response to electrical stimulation. In addition, the nerve conduits were used to bridge 10 mm 

defects in the sciatic nerve of Sprague-Dawley rats in vivo. 

 

Materials and Methods 

Materials 

PDLLA was purchased from Boehringer Ingelheim (Ingelheim, Germany). Pyrrole (PY) 

was purchased from Sigma-Aldrich (St. Louis, MO, USA). PY was vacuum-distilled at about 

130°C until it became a colorless liquid, and then stored at 4°C in the dark until use. All other 

chemicals were analytical grade reagents.  

Preparation of PPy/PDLLA nerve conduits 
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The schematic for preparing PPy/PDLLA is outlined in Figure 3.1. PDLLA was 

dissolved in CHCl3 to obtain a 10% (w/v) solution. For the emulsion polymerization of PPy, PY 

and 0.7% (w/v) sodium dodecyl sulfate (SDS, 99%, Sigma-Aldrich) aqueous solution were 

added to the PDLLA/CHCl3 solution under stirring for 2hrs. The weight ratio of PY to PDLLA 

was 5%, 10% and 15%. Then 10% (w/v) FeCl3 aqueous solution (FeCl3∶PY=5.3) was added 

drop-wise into the mixture under vigorous stirring to trigger oxidative polymerization. The 

polymerization continued at room temperature for 5hrs to obtain a PPy/PDLLA composite 

emulsion. A cylindrical mandrel was inserted into the PPy/PDLLA composite emulsion for 

several seconds, and then it was taken into alcohol to remove the CHCl3 and water. This was 

repeated until a 0.2±0.05mm thick film on the cylinder mandrel was obtained. After drying, the 

conduit was removed from the mandrel and stored in a vacuum oven before use. To fabricate the 

films for cell culture studies, the PPy emulsion polymerization in a PDLLA solution continued at 

room temperature for 5hrs, followed by precipitation with ethyl alcohol and washing in 

deionized water. The 0.2mm thick films were obtained by casting the precipitated PPy/PDLLA 

composite onto a polytetrafluoroethylene (PTFE) plate and vacuum-dried for 2 days. Then these 

films were washed with alcohol and deionized water for three times before being used for cell 

culture. 
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Figure 3.1. Schematic for emulsion polymerization of PPy in PDLLA to make PPy/PDLLA. 

 

PPy/PDLLA characterization 

The chemical compositions were characterized through the attenuated total reflectance 

Fourier transform infrared spectroscopy (ATR-FTIR) transmission spectra on a Nicolet Nexus 

FTIR Spectrometer (Nexus, Thermo Scientific, Waltham, MA, USA). The conductivity of the 

PPy/PDLLA conduits was tested by the 4-point probe method using the Hall Effect testing 

system (HL5500PC, Nanometrics, Milpitas, CA, USA). The nerve conduit surface elemental 

composition was characterized by using XPS (Escalab MK II, VG Scientific, East Sussex, UK). 

The morphology at the surface of the PPy/PDLLA conduit was observed using a JSM-5610LV 

scanning electron microscope (JEOL, Tokyo, Japan) with an accelerating voltage of 10kV. Prior 

to observation, the specimens were sputter-coated with gold. 
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Sample preparation for in vitro evaluation 

Rectangular sections of the PDLLA and PPy/PDLLA films were cut and placed in a 

device similar to previously described (Figure 3.2) [200]. Briefly, the film was placed on a thin 

section of polydimethylsiloxane (PDMS, Sylgard 184
®
, Dow Corning, Midland, MI, USA) 

covering a glass slide. Two wires were placed on either side of the film and covered with a 

PDMS well to seal the wires from the inner chamber (1cm × 1cm × 1cm dimension). The device 

was clipped together on two sides and sterilized under UV light for 2hrs. The films were then 

incubated in a 0.1mg/ml solution of rat tail type I collagen (Sigma) for 24hrs at 4°C, washed 

twice with sterile tissue culture water for 5min each, and stored in phosphate buffered saline 

(PBS) at 4°C overnight. 
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Figure 3.2. Diagram of device used for electrical stimulation. A) Angle view. B) Top view. 
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PC12 cell culture and immunofluorescence 

PC12 cells were cultured in F-12K medium (ATCC, Manassas, VA, USA) supplemented 

with 15% heat-inactivated horse serum (Gibco
®
, Life Technologies, Carlsbad, CA, USA), 2.5% 

fetal bovine serum (Gibco
®
), and 1% Penicillin/Streptomycin solution (Gibco

®
) and maintained 

in a humid 37°C incubator with 5% CO2. Three days prior to seeding, the cells were primed with 

50ng/ml nerve growth factor (NGF, PeproTech, Rocky Hill, NJ, USA).   

Primed cells were seeded at a density of 2 × 10
4
cells/cm

2
 and allowed to adhere for 

24hrs. A 100mV potential was then applied across the wires for 2hrs and the cells were cultured 

for an additional 24hrs. After a total of two days in culture and 24hrs post-stimulation, the cells 

were fixed in a 4% formaldehyde (Thermo Scientific) in PBS solution for 10min, permeabilized 

in a 0.1% Triton X-100 (Sigma) in PBS solution for 6min, and then blocked in 1% bovine serum 

albumin (Sigma) in PBS solution for 30min. The cells were labeled with Alexa Fluor
®
 555 

phalloidin (Life Technologies), excitation at 555nm and emission at 565nm, for 20min and with 

4’,6-diamidino-2-phenylindole (DAPI, Vectashield
®
, Vector Laboratories, USA), excitation at 

360nm and emission at 460nm, before being sealed under a coverslip and immediately visualized 

under a confocal fluorescence microscope (Nikon Eclipse C1, Tokyo, Japan). Six samples (n=6) 

for each film and condition were studied. 

Immunofluorescence image analysis 

Image J software (National Institutes of Health, Bethesda, MD, USA) was used to 

process and analyze the fluorescent images. The two parameters measured were the percentage 

of neurite-bearing cells and the median neurite length. The median neurite length was chosen to 
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account for the non-normal distribution and a cut-off of at least a 5µm neurite length was used 

[201]. At least 400 PC12 cells were examined for each film and condition. 

Surgical procedure 

Adult Sprague-Dawley (SD) rats were purchased from Tongji Medicinal School, 

Huazhong University of Technology (Wuhan, Hubei, China). All animals were housed under 

standard conditions, and the experimental procedures involving animals were in accordance with 

NIH Guidelines for the Care and Use of Laboratory Animals and under the approval of the 

Administration Committee of Experimental Animals, Hubei Province, China. The surgical 

procedure was carried out as described previously [202]. Rats weighing 200-250g were used to 

evaluate the nerve regeneration performance of PPy/PDLLA conduits. The animals were divided 

into 3 groups, each with 20 rats. 10mm defects in the sciatic nerve created by surgical removal of 

the nerve tissue were connected with PPy/PDLLA conduits, PDLLA conduits, or autologous 

nerve grafts. The surgical procedure was performed on the sciatic nerve of the right hind limb. 

The left limb sciatic nerve served as a pairwise control. The animals were anesthetized with 

50mg/kg body weight pentobarbital sodium. The right sciatic nerve was exposed after the skin 

incision, and the muscles around the nerve tissues were separated using blunt dissection. 

Subsequently, the right sciatic nerve was severed into proximal and distal segments at the center 

of the right thigh. Both the proximal and the distal stumps were secured with 8-0 nylon to a 

depth of 1mm into the conduits, leaving a 10mm gap between the stumps. For the autograft 

group, after a skin incision, the sciatic nerve was exposed through a gluteal muscle-splitting 

incision, externally dissected to excise a 10mm nerve, and sutured back to the nerve by 

epineurial coaptation serving as the autograft control. The muscle layer was re-approximated 

with 4-0 chromic gut sutures, and the skin was closed with 2-0 silk sutures. Each rat received one 
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implant, which was removed at either 3 or 6 months. Walking track, electrophysiological, and 

histomorphometric evaluations were performed to evaluate nerve regeneration. 

Walking track analysis 

To evaluate the behavior of the rats after nerve injury and repair, walking track analysis 

was performed at 3 and 6 months post-operatively as described previously[203]. Briefly, the rats 

were allowed to walk down a wooden walking alley (5.0 × 8.0 × 45cm
3
) with a darkened goal 

box at the end. The floor of the alley was covered with white paper. A thin film of acrylic paint 

was applied to the rat’s plantar surface to achieve the visualization of important anatomical 

landmarks of the footprints. As the rats moved down the track, they left footprints on the track 

and recordings of footprints were made. This process was repeated a minimum of 3 times until 

clear footmarks were obtained. From the footprints, the following parameters were obtained: 

distance from the heel to the top of the third toe (print length, PL); distance between the first and 

the fifth toe (toe spread, TS) and distance from the second to the fourth toe (intermediary toe 

spread, IT). These measures were made for both the non-operated foot (measurements for this 

foot are designated as NPL, NTS and NIT) and the operated, experimental foot (measurements 

for this foot are designated as EPL, ETS and EIT). In the control animals, parameters of the right 

foot were compared with those from the left foot. In order to calculate the sciatic function index 

(SFI), these parameters were inserted into an equation used in previous studies [204-206]: 

𝑆𝐹𝐼 = (−38.3 × 𝑃𝐿𝐹) + (109.5 × 𝑇𝑆𝐹) + (13.3 × 𝐼𝑇𝐹) − 8  

in which PLF = (EPL-NPL)/NPL; TSF = (ETS-NTS)/NTS; and ITF = (EIT-NIT)/NIT. 

Interpolating identical values of PL, TS, and IT from the right and the left hind feet results in a 

value close to zero in normal rats. A value of -100 implies total impairment. 
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Triceps surae weight analysis 

After performing the electrophysiological evaluation studies at 3 and 6 months, the 

animals were sacrificed and their triceps surae muscle was dissected. The moist weights of the 

triceps surae muscle were measured. After gently blotted with absorbent paper to remove any 

excess blood or serum on the surface of the retrieved tissue, the muscle was promptly weighed. 

To measure the target muscle reinnervation, the triceps surae muscles from the experimental and 

contralateral sides (un-operated) were weighed. The relative weights were presented as 

percentages. 

𝑇𝑟𝑖𝑐𝑒𝑝𝑠 𝑠𝑢𝑟𝑎𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 % =  
𝑇𝑟𝑖𝑐𝑒𝑝𝑠 𝑠𝑢𝑟𝑎𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑑 𝑙𝑒𝑔

𝑇𝑟𝑖𝑐𝑒𝑝𝑠 𝑠𝑢𝑟𝑎𝑒 𝑤𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑢𝑛𝑜𝑝𝑒𝑟𝑎𝑡𝑒𝑑 𝑙𝑒𝑔
   

Electrophysiological assessment  

Electrophysiological tests were performed on the animals three and six months after 

implantation. Under anesthesia, the right sciatic nerve was exposed and nerve stimulation 

electrodes were placed at the proximal part of the proximal joint access and recording electrodes 

placed in the lower leg triceps. Nerve conduction velocities (NCVs) were recorded on the lower 

leg triceps.  

Histological assessment 

The implanted conduits were harvested immediately after recording the NCVs. At the 

same time, the nerve grafts were fixed in a cold buffered 3% glutaraldehyde solution. The nerve 

grafts were then washed in PBS and the sciatic nerve sections were then taken from the middle 

regions of the regenerated nerve. After fixation, some tissues in each group were embedded in 

olefin, cut to 4mm thickness, and stained with hematoxylin and eosin. The other samples were 
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embedded in Epon 812 epoxy resin and stained with methylene blue. All nerve sections were 

observed under a light microscope (TE2000-U, Nikon). An image analysis system (Image-Pro 

Plus, Media Cybernetics, Rockville, MD, USA) was used to analyze the photographs to 

determine the number and areas of individual myelinated axons.  

Electron microscopy was also employed to evaluate the myelin sheath regeneration. 

Ultra-thin sections of the regenerated nerve tissues were stained with lead citrate and 

uranylacetate, and then were examined under a transmission electron microscope (TEM, JEM-

1200 EX, JEOL,Tokyo, Japan).  

Statistical analysis 

All numerical data are given as mean  standard deviation. Significant differences among 

groups were analyzed by one-way analysis of variance (ANOVA) followed by Tukey’s post hoc 

test using SPSS 13.0 software for Windows student version. Statistically significant differences 

between medians were determined with a Mann-Whitney U test. A statistically significant 

difference was defined as p<0.05.  

 

Results 

Preparation and characterization of PPy/PDLLA conduits 

Pyrrole (PY) was oxidized and polymerized to PPy in a PDLLA solution using FeCl3 as 

an oxidant and doping agent and sodium dodecyl sulfate (SDS) as an emulsifier. Then the 

PPy/PDLLA emulsion was used to prepare the PPy/PDLLA conduits through a repeated dip 

coating method with a cylindrical mandrel. Attenuated total reflectance Fourier transform 
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infrared spectroscopy (ATR-FTIR) was used to obtain the FTIR spectra of the PDLLA, PPy/ 

PDLLA, and PPy (Figure 3.3). In the spectrum of PPy/PDLLA, the band at 1752cm
-1 

is a 

characteristic peak of PDLLA. The two bands at 1544cm
-1 

and 1040cm
-1

 are characteristic PPy 

peaks. All the above three peaks are present in the PPy/PDLLA spectrum, verifying that the 

PPy/PDLLA was successfully synthesized. 
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Figure 3.3. Characterization of PPy/PDLLA synthesis. A) ATR-FTIR spectra of PDLLA, PPy/PDLLA and 

PPy. B) XPS of different ratio PPy/PDLLA conduits. 
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PPy/PDLLA conduits with a length of 12mm, an inner diameter of 1.6mm and an outer 

diameter of 2.0mm were fabricated. The photographic images and scanning electron micrographs 

of the PPy/PDLLA films and conduits are shown in Figure 3.4. Figure 3.4A shows the 

PPy/PDLLA film while Figure 3.4B and Figure 3.4C show the PPy/PDLLA conduit. Figure 

3.4D, E, and F show the surface morphology of the 5%, 10%, and 15% PPy/PDLLA conduits, 

respectively.  
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Figure 3.4. Images and scanning electron micrographs of PPy/PDLLA films and conduits. A) Image of the 

PPy/PDLLA film. B) and C) Image of the PPy/PDLLA nerve conduit. D), E), and F) SEM micrographs of the 

surface morphology of 5%, 10%, and 15% PPy/PDLLA, respectively. 
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The surface elemental compositions of the different PPy/PDLLA weight ratio conduits 

were analyzed using X-ray photoelectron spectroscopy (XPS) to quantify the amount of PY 

incorporated onto the conduit surface. All the PPy/PDLLA conduits contained C, N and O, and 

the content of element N was 1.74%, 1.98% and 2.51% for the 5%, 10%, and 15% PPy/PDLLA 

weight ratios, respectively (Table 3.1). The measured conductivity of a PPy/PDLLA conduit was 

higher as the weight ratio of PPy increased (Table 3.1).
 
 

Table 3.1. Content of C, N, and O and conductivity test results for different PPy/PDLLA materials. 

 

Cell culture evaluation 

PC12 cells were employed to study the effect that PPy/PDLLA films combined with 

electrical stimulation had on their behavior. In theory, this would provide an indication of how 

viable the PPy/PDLLA composite is for use in nerve tissue engineering. The cells were allowed 

to adhere to the collagen type I coated substrate for 24hrs before being stimulated with 100mV 

for 2hrs [192, 193]. After stimulation, the cells remained in culture for an additional 24hrs. PC12 

cells were able to adhere to the array of PDLLA and PPy/PDLLA films and were viable 

throughout culture. There was no significant difference in the cell number throughout the 

experiments on any of the films (data not shown), indicating that the PPy content did not have 

any significant effect on adhesion or proliferation. The control cells, where no electrical 
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stimulation was applied, had minimal levels of differentiation across the board. Cells that were 

stimulated with 100mV for 2hrs exhibited more and longer neurites, as can be seen on the actin-

labeled cells (Figure 3.5). On all of the control films, approximately 13% of the cells (Figure 

3.6A) formed neurites with a median length around 8µm (Figure 3.6B). However, there was a 

clear increase in both the percentage of neurite-bearing cells and the median neurite length for 

the cells stimulated with 100mV for 2hrs as the PPy content increased. The percentage of 

neurite-bearing cells increased from 12.5±1.3% on the PDLLA to 17.3±1.7%, 20.8±2.2%, and 

22.8±2.1% on the 5%, 10%, and 15% PPy/PDLLA, respectively. The median neurite length 

increased from 7.5µm on the PDLLA to 9.9µm, 11.5µm, and 12.6µm on the 5%, 10%, and 15% 

PPy/PDLLA, respectively.  
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Figure 3.5. Fluorescent images of PC12 cells on PPy/PDLLA films. Cells were labeled for actin (red) and 

nuclei (blue). A) and B) PDLLA. C) and D) 5% PPy/PDLLA. E) and F) 10% PPy/PDLLA. G) and H) 15% 

PPy/PDLLA. A), C), E), and G) Control cells. B), D), F), and H) Cells stimulated with 100mV for 2hrs. Scale 

bar 200µm. 
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Figure 3.6. Quantification of neurite growth on PPy/PDLLA films. A) Percentage of neurite-bearing PC12 

cells on PPy/PDLLA composite films with varying PPy composition (n=4, *p<0.05). B) Median neurite length 

on PPy/PDLLA composite films with varying PPy composition. 
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Animal study 

A 10mm defect in the sciatic nerve of adult Sprague-Dawley (SD) rats was used as a 

model for in vivo nerve regeneration. The defects were repaired with 5% PPy/PDLLA conduits, 

PDLLA conduits, and the gold standard autografts. Samples were harvested after 3 and 6 

months. The 5% PPy/PDLLA conduit was chosen to minimize the amount of PPy since it 

degrades very slowly.  

General observations post-operation 

The animals in this study tolerated the anesthetic and operative procedures, and showed 

no sign of infection at any time. The animals showed none of the complications typically 

associated with the operation, and all wounds healed without any issues. Moreover, no signs of 

discomfort were observed throughout the 6 month evaluation period.  

Figure 3.7 shows the PPy/PDLLA conduit immediately after implantation, 3 months 

post-surgery, and 6 months post-surgery. Significant levels of degradation can be seen over time, 

with the conduit becoming thin and crisp after 3 months, but it still maintained lumen and wall 

integrity. The degradation was even more severe at 6 months, but significant regeneration had 

occurred, indicating that the conduit had met the demand. 
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Figure 3.7. Intraoperative photographs of the PPy/PDLLA nerve conduits. “P” signifies the proximal end and 

“D” signifies the distal end. A) Immediately after grafting. B) 3 months postoperatively. C) 6 months 

postoperatively. 

 

Walking track analysis 

Walking track analysis was used to assess the functional recovery of all operated animals 

and quantified by calculating the sciatic function index (SFI), a measure of the sciatic nerve 

function where a value close to 0 indicates normal function and a value close to -100 implies 

total impairment. Figure 3.8 (top) demonstrates the recovery of sciatic nerve function 3 and 6 

months after the operation. 3 months after implantation, the SFI of the PPy/PDLLA group, 

PDLLA group, and the autograft group were -47.5±2.3, -58.6±1.9, and -43.6±2.5, respectively. 

There was a significant difference between the PDLLA group and PPy/PDLLA group. There was 
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also significant difference between the PDLLA group and autograft group (p<0.05), while there 

was no significant difference between PPy/PDLLA group and autograft group (p>0.05). After 6 

months post-operation, the three groups, PPy/PDLLA, PDLLA, and autograft, reached an SFI of 

-23.8±1.5, -37.2±1.9and -22.5±1.8, respectively. There was a significant difference between the 

PDLLA group and PPy/PDLLA group (p<0.05), while there was no significant difference 

between PPy/PDLLA group and autograft group (p>0.05). Figure 3.8 (bottom) illustrates the 

footprints from walking track analysis of all nerve conduits after 6 months post-implantation. 

Footprints in the PPy/PDLLA group showed a greater improvement in toe spreading, and the 

footprints themselves were shorter and wider than those in the PDLLA group. Impressively, the 

PPy/PDLLA group had similar results to the autograft group.  
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Figure 3.8. Recovery of sciatic nerve function. Sciatic function index (SFI) as a function of implantation time 

(top). Footprint stamps in walking track analysis after 6 months of implantation (bottom). A) PPy/PDLLA. B) 

PDLLA. C) Autograft. D) Normal left leg 
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Electrophysiological evaluation 

Since the nerve conduction velocity (NCV) can offer important insight for studying the 

conducting function of a peripheral nerve, NCVs were recorded in the lower leg triceps at 

postoperative intervals 3 and 6 months. The NCVs of the PPy/PDLLA group were significantly 

faster than those of PDLLA group (p<0.05) and not significantly different from those of the 

autograft group (p>0.05) (Figure 3.9A). At 6 months after implantation the NCVs of the 

autograft were found to be 68.39±1.28m/s, whereas those bridged with the PPy/PDLLA conduits 

were 66.59±7.97m/s, and those bridged with the PDLLA conduits were 51.54±0.66m/s.  

Triceps surae weight analysis 

As an index of muscle atrophy, the triceps surae muscle on the operated leg was 

compared to that of the healthy leg to calculate a muscle weight ratio. Figure 3.9B illustrates that 

the muscle weight ratio of the PPy/PDLLA and autograft groups was significantly higher than 

that of PDLLA group (p<0.05), while the triceps surae muscle weight ratio of autograft groups 

was not significantly different from that of PPy/PDLLA group (p>0.05). The improvement in 

muscle weight indicates that there was significant reinnervation of the target muscle. 
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Figure 3.9. Electrophysiological behavior of regenerated nerve. A) Nerve conduction velocities (NCVs) 3 and 

6 months after implantation (n=6, *p<0.05). B) Triceps surae weight (%) 3 and 6 months post-operation (n=6, 

*p<0.05). 
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Nerve morphological assessment 

During the early nerve regeneration process, the structure of PPy/PDLLA conduits 

remained intact (Figure 3.7). After 3 months, the conduit showed signs of degradation and was 

covered with connective tissue. The degradation was more apparent after 6 months and the 

presence of PPy was visibly reduced. The 10mm gap removed by surgery had been bridged by 

the regenerated tissue 3 months after implantation.  

The regenerated nerve samples were removed from the conduits and stained with 

methylene blue to evaluate the number and diameters of regenerated axons in all of the conduit 

groups. Numerous bundles of regenerated nerve fibers were clearly identified in the sections of 

the regenerated tissues (Figure 3.10). Transmission electron microscopy (TEM) of the mid-

portion of the regenerated nerve tissues 3 months after implantation revealed that the formation 

of regenerated myelinated fibers occurred at similar levels in both the PPy/PDLLA and autograft 

groups. In addition, the structure of the myelinated fibers in the regenerated tissues of those two 

groups was more compact and more uniform than that of the PDLLA group (Figure 3.10).  
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Figure 3.10. Histology images of regenerated nerve. Sections were stained with methylene blue or fixed for 

transmission electron microscopy (TEM). Images represent cross sections of regenerated nerves taken from 

types of nerve conduits implanted in rats after 3 and 6 months. Histology scale bar 50μm. TEM scale bar 

2μm. 

 

Statistical analysis was performed on the average axon diameter (Figure 3.11A), the 

myelinated fiber diameter (Figure 3.11B), the thickness of regenerated myelin sheath (Figure 

3.11C), and the density of myelinated fibers of the regenerated nerve (Figure 3.11D). For all of 

the parameters measured, there was a significant difference between the PPy/PDLLA and the 

PDLLA groups (p<0.05). Not only was there a higher density of myelinated fibers in the 

PPy/PDLLA conduits, comparable to that in the autograft, but the myelin sheath was thicker. To 

evaluate the ingrowth of connective tissue to the wall of conduits, the regenerated nerves were 

stained with hematoxylin and eosin (HE). The histological sections demonstrated that the inner 

layers of PPy/PDLLA group were compact enough to prevent any connective tissue ingrowth, 

while the PDLLA group was filled with connective tissue (Figure 3.12). In addition, the PPy 
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content in the PPy/PDLLA group is visibly reduced from 3 to 6 months, mirroring the gross 

observations from Figure 3.7. 

 

Figure 3.11. Quantification of the histological assessment of the regenerated nerve fibers. A) Average axon 

diameter of regenerated myelinated nerve fibers. B) Average diameter of the regenerated nerve fiber. C) 

Average thickness of regenerated myelinated sheath. D) The average density of regenerated myelinated nerve 

fibers (n=6, *p<0.05).  
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Figure 3.12. Cross sections of regenerated nerve. Samples were taken 3 months and 6 months post-operation 

and stained with hematoxylin and eosin (HE). Scale bar 50μm. A) PPy/PDLLA. B) PDLLA. C) Autograft. A3, 

B3, C3) 3 months after implantation. A6, B6, C6) 6 months after implantation. 
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Discussion 

Tissue engineering combines a scaffold with cells and growth factors to functionally 

repair tissue defects. Each tissue has its own unique requirements for each component. For nerve, 

the scaffold must guide the regenerating axons across the gap to connect with the distal end. 

Only then will signal transduction occur. Moreover, since nerve is an electrically active tissue, 

perhaps the scaffold should likewise be able to conduct an electrical signal. Most polymers used 

in tissue engineering are unable to do so, but the addition of a conducting polymer, PPy in our 

study, greatly increases the electrical properties of the scaffold. Additionally, the scaffold must 

be biocompatible to avoid any adverse response, and biodegradable to allow the newly 

regenerated nerve to fully develop and eliminate the need for a secondary surgery to remove the 

implant.  

In our study, we attempted to address all of the above requirements using a PPy/PDLLA 

conduit. The in vitro experiments showed that increasing amounts of PPy resulted in more and 

longer neurites. Interestingly, this suggests that electrically stimulated differentiation of PC12 

cells is mediated by the conductivity of the substrate. While the mechanism behind how 

electrical stimulation promotes neurite formation is not fully understood, these data may provide 

insight for further investigation. However, pure PPy is brittle and marginally biodegradable, so 

we used the minimum amount necessary for the in vivo study. Our in vitro experiments 

confirmed that 5% PPy/PDLLA was sufficient to induce more and longer neurites while 

maintaining the mechanical flexibility of PDLLA. This was likely caused by the distribution of 

the PPy on the surface of the material in micro-domains. Thus, the 5% PPy/PDLLA conduits 

were used in the in vivo experiments. 
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Impressively, the PPy/PDLLA group had similar results to the autograft group. There was 

an encouraging level of functional regeneration for a synthetic nerve conduit. After 6 months, 

there was no statistical difference in the SFI between the PPy/PDLLA group and the autograft 

group. NCVs were clearly detected in all nerve conduits groups after 3 months, indicating a rapid 

functional recovery for the injured nerves. Moreover, 6 months after conduit implantation the 

NCVs were faster than those after 3 months, showing no deterioration of the conducting function 

of the regenerated nerve tissues. Conduction velocities of healthy nerve can range from 60 to 

70m/s [207], which compare favorably to the PPy/PDLLA and autograft groups. NCVs are 

dependent on a variety of factors including the diameter of the axons, myelin sheath thickness, 

and internode length [208], so they provide important insight into the ability of the nerve to 

conduct an action potential. Generally, NCVs of regenerated nerves are less than those of healthy 

nerves. To recover the electrophysiological properties of the nerve and achieve NCVs that are 

within the range of those of healthy nerve is an important step toward achieving functional 

regeneration. Histological analysis also showed significant similarities between the PPy/PDLLA 

conduit and the autograft. Taken together, these data suggest that the presence of PPy to make 

the PPy/PDLLA conduits electrically conductive had a significant positive effect on the axon 

regeneration and myelination compared to those in the PDLLA conduits. 

Previous work has illustrated the beneficial effects a conducting polymer with electrical 

stimulation has on neurite outgrowth [192, 200]. This study translates that effect to an in vivo 

system to show the feasibility PPy/PDLLA conduits have for nerve tissue regeneration. By 

achieving similar results to the gold standard autograft, PPy/PDLLA conduits are a prime 

candidate for a nerve tissue engineering construct. While this is a great achievement, the ultimate 
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goal would be to create a synthetic nerve conduit that outperforms an autologous graft, not just 

matches it, and that is the next hurdle to overcome. 

 

Conclusion 

Nerve tissue engineering offers an innovative and promising approach to treating nerve 

defects. Conductive polymers have great potential as biomaterials to fabricate synthetic nerve 

conduits. We fabricated PPy/PDLLA composite nerve conduits using emulsion polymerization 

and dip coating methods. PC12 cells were used to assess the cell compatibility in vitro, and the 

cells exhibited more and longer neurites than on PDLLA conduits after being stimulated with 

100mV for 2hrs. The 5% PPy/PDLLA was used to fabricate nerve conduits to bridge a 10mm 

defect in the sciatic nerve of a rat. After 6 months, the rats with the PPy/PDLLA conduits 

showed functional recovery similar to that of the gold standard autologous nerve graft and 

significantly better than that of the PDLLA conduits.  

While achieving recovery on the level of healthy nerve is the goal of tissue engineering, 

creating a graft that provides the same functional recovery level as an autologous graft is exciting 

because such a conduit eliminates the drawbacks associated with using an autologous graft, 

including limited donor source, donor site morbidity, multiple surgery sites, and possible size 

mismatch. In this study, we have demonstrated that the synthetic PPy/PDLLA conduit has great 

potential for nerve tissue regeneration. 
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CHAPTER 4                                                                                                                     

Electrical stimulation of mouse ESCs seeded on PPy/PLLA nanofibers  

 

Abstract 

Embryonic stem cells (ESCs) are a promising choice for neural tissue engineering, a field 

without an easily harvested and expandable cell source. What makes ESCs desirable, their ability 

to proliferate indefinitely and their pluripotency, also makes their use challenging. Three 

parameters have been shown to affect the neuronal differentiation and neurite growth of various 

cell types: fiber size, electrical stimulation, and fiber orientation. In this study, the goal is to 

investigate how these parameters affect the neurite outgrowth of mouse D3 ESCs. An array of 

electrospun poly (l-lactic acid) (PLLA) nanofibers with varying amounts of polypyrrole (PPy) 

(0%, 5%, 10%, and 15%) were fabricated in both a random and aligned fashion. Fiber diameters 

were around 150nm, 550nm, 900nm, and 1800nm. D3 ESCs were seeded on the fibers and 

stimulated with 100mV for 2hrs. As fiber size increased, the percentage of neurite-bearing cells 

increased, with the 900nm and 1800nm nanofibers resulting in the highest values. Electrical 

stimulation further increased neurite outgrowth compared to unstimulated cells. Finally, there 

were a higher percentage of neurite-bearing cells on the aligned fibers compared to random 

fibers in the presence of electrical stimulation. These results lay the foundation for using 

substrate properties and electrical stimulation as additional layers of control in promoting the 

neuronal differentiation of ESCs for neural tissue engineering. 
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Introduction 

Nerve injuries in both the spinal cord and periphery remain significant clinical issues. 

They are commonly caused by trauma, but cancer or congenital defects also tribute to the 12,000 

new spinal cord injuries each year [1] and 100,000 peripheral nerve repair procedures are 

performed in the United States and Europe [9]. Tissue engineering, a field that combines 

regenerative medicine, engineering, and materials science, provides a promising means to 

develop a new treatment method. By combining a scaffold with cells and growth factors, the 

hope is to create a biocompatible and biodegradable synthetic implant capable of regenerating 

injured tissue. 

Previous work has established nanofibers as a prime scaffold architecture candidate [65]. 

Nanofibers mimic the natural extracellular matrix (ECM) and can induce behavior in a way 

similar to collagen [145], a major ECM component. Nanofibrous structures can modulate 

adhesion, proliferation, and differentiation [142, 209-211]. Electrospinning is arguably the most 

simple and flexible method of producing nanofibers with myriad materials, both synthetic and 

natural, being compatible with electrospinning [176-178, 180, 212-214]. In neural tissue 

engineering, electrospun fibers have been shown to interact favorably with various cell types. 

NSCs seeded on poly (l-lactic acid) (PLLA) nanofibers were able to adhere better compared to 

solid films, differentiate, and grow neurites [62, 210]. PC12 cells, commonly used to model 

neurite outgrowth, have been shown to exhibit great neurites on nanofibers [215, 216]. More 

differentiated cells, including dorsal root ganglion [217] and hippocampal neurons [218], were 

also shown to have significant neurite outgrowth and improved adhesion on nanofibers. Even 

mesenchymal stem cells (MSCs) were able to differentiate into neuronal on electrospun PLLA-

co-polycaprolactone nanofibers [64].  
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With electrospun fibers as successful as they have been, a significant amount of research 

has been performed to improve their properties in different fashions. Since nerve is an 

anisotropic electrically active tissue, the common areas of interest are fabricating conductive 

fibers and creating aligned fibers. There are several options for conducting polymers, including 

polyaniline (PAni), polythiophene (PTh), and polypyrrole (PPy). PAni has been shown to be 

biocompatible [219], but its poor cell compatibility has limited its use in tissue engineering [220-

223]. PTh, compared to PAni and PPY, is relatively new to the field of tissue engineering, and 

while it shows early promise [224-226], more work needs to be done to establish its potential for 

neural tissue engineering. PPy is well established, has a high electrical conductivity, flexible 

preparation method, easily modified surface, high environmental stability, high biocompatibility, 

and supports the attachment and proliferation of numerous cell types [190, 191, 227-229]. 

Incorporating conducting polymers allows for the use of electrical stimulation [50, 52, 192, 230]. 

PC12 seeded on electrospun poly(lactic-co-glycolic) (PLGA) and stimulated with 10mV had 40-

50% longer neurites and 40-90% more neurites compared to unstimulated [200]. Nanofiber 

alignment was also shown to have a positive effect on cell behavior. Mouse cerebellum C17.2 

stem cells grown on random and aligned PLLA nanofibers grew longer and oriented neurites on 

the aligned fibers [62]. Furthermore, more cells were neurofilament-positive on the aligned 

fibers. The ability to control the directionality of neurite outgrowth with fiber orientation makes 

aligned fibers very promising for neural tissue engineering. 

While many strides have been made in scaffold design and fabrication, the cell source 

remains a significant issue. The most studied cells are NSCs or tissue derived adult neurons, both 

of which are extremely difficult to harvest and expand in a clinically relevant fashion. For 

instance, NSCs are commonly isolated from the subventricular zone of the lateral ventricle [109, 
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110], though there are other sources as well, and neurons can be isolated from the dorsal root 

ganglion or hippocampus[217, 218], among other sources. On the other hand, embryonic stem 

cells (ESCs) have the ability to differentiate into every cell time and can proliferate indefinitely. 

Their pluripotency makes them a great candidate for tissue engineering, but it also makes 

controlling their fate more difficult. The two most common methods of inducing neuronal 

differentiation is with retinoic acid (RA), a derivative of vitamin A, or lineage selection [131]. 

Little work has been done on using substrate architecture to control ESC differentiation. 

In a previous study, we demonstrated the ability of electrically stimulated PPy/PLLA 

films synthesized using emulsion polymerization to induce neurite outgrowth of PC12 cells 

[231]. Nerve conduits made from this PPy/PLLA proved to be very successful at regenerating a 

sciatic nerve defect in a rat model. In this study, an array of nanofibers with different fiber sizes, 

electrical conductivities, and orientations was electrospun. ESCs were seeded on these fibers to 

determine their ability to induce neuronal differentiation with and without electrical stimulation.  

 

Materials and Methods 

Materials 

PLLA was purchased from Boehringer Ingelheim (Ingelheim, Germany). Pyrrole (Py) 

was purchased from Sigma-Aldrich (St. Louis, MO, USA). Py was vacuum distilled at about 

130°C until it became a colorless liquid, and then stored at 4°C in the dark until use. All other 

chemicals were analytical grade reagents. 

Electrospun PPy/PLLA nanofibrous matrix fabrication 
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 PPy/PLLA was prepared as previously described (Figure 3.1) [231]. Briefly, PLLA was 

dissolved in CHCl3 to obtain a 10% (w/v) solution. An aqueous solution of Py was added under 

rigorous stirring, followed drop-wise by 10% (w/v) aqueous FeCl3 to trigger the oxidative 

emulsion polymerization. The weight ratio of Py to PLLA was 5%, 10%, or 15%. After 5hrs of 

polymerization, the PPy/PLLA composite was obtained.  

For electrospinning, a polymer solution of PLLA, 5% PPy/PLLA, 10% PPy/PLLA, or 

15% PPy/PLLA was prepared by dissolving either 6%, 8%, 15%, or 20% w/v of the polymer in 

hexafluoroisopropanol (HFIP). Fibers were electrospun using a horizontal electrospinning setup. 

A high-voltage power supply (Gamma High-voltage Research, Ormond Beach, FL, USA) 

provided a 15kV potential between the needed and the grounded collector. A syringe pump 

housed a 10ml syringe attached to a 22 gauge flat point needle and was placed 12cm away from 

the collector. Solution was dispensed at 1.5ml/hr. For the random fibers, the collector was a 

stationary copper plate covered by aluminum foil with glass coverslips. For the aligned fibers, 

the collector was a rotating drum covered by aluminum foil with glass coverslips. 

Surface resistivity 

The surface resistivity of the nanofibrous matrices was measured using a basic setup 

[232]. Two wire electrodes were placed either side of the sample with dimensions length (L) by 

width (W). Both directions of the aligned and random fibers were measured. Constant DC 

voltage (V) was applied and the current (I) was noted. Those parameters were used to calculate 

the surface resistivity (ρs) as follows: 

ρ𝑠 =
𝑊

𝐿
𝑅𝑠 =

𝑊

𝐿

𝑉

𝐼
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It should be noted that while the unit of surface resistivity is the ohm (Ω), it is usually 

denoted as ohm/square (Ω/sq) to indicate that it can be applied to any uniform surface. 

Nanofiber characterization 

Matrices were gold coated (Desk-II, Denton Vacuum, Moorestown, NJ, USA) and 

observed using a Philips XL30 FEG scanning electron microscope. Images of fibers were 

analyzed with ImageJ (National Institutes of Health, Bethesda, MD, USA) to determine the 

average fiber diameters. At least 100 fibers for each matrix were measured. ImageJ was also 

used to determine the orientation of both random and aligned fibers. Measurements were 

normalized to 90° and at least 150 fibers were measured.  

Matrix preparation 

The electrospun matrices were placed in 6-well plates. The matrices were sterilized under 

UV light for 30min, wet briefly with ethanol, and then washed 3 times with phosphate-buffered 

saline (PBS). A polydimethylsiloxane (PDMS, Sylgard 184
®
, Dow Corning, Midland, MI, USA) 

donut was used to secure the matrices in the bottom of the wells. For the films to be electrically 

stimulated, rectangular sections of the PLLA and PPy/PLLA nanofibrous matrices were cut and 

placed in a device similar to previously described (Figure 3.2) [200]. Briefly, the film was 

placed on a thin section of PDMS covering a glass slide. Two wires were placed on either side of 

the film and covered with a PDMS well to seal the wires from the inner chamber (1cm × 1cm × 

1cm dimension). The device was clipped together on two sides and sterilized under UV light for 

2hrs. All films were coated with 20µg/ml poly-l-ornithine overnight at 4°C, washed twice with 

sterile water, coated with 10µg/ml laminin overnight at 4°C, and then washed with PBS. Finally, 
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the films were incubated in neural media (80% F-12/20% Neurobasal medium with N2 and B27 

supplements, 10mM sodium pyruvate and 1µM retinoic acid) for 1hr in a 37°C incubator. 

D3 culture and seeding 

 D3 mouse embryonic stem cells [151] were cultured on 0.1% gelatin-coated tissue 

culture flasks in complete ESC media (DMEM supplemented with 10% FBS, 10
-4

M β-

mercaptoethanol, 0.224µg/ml L-glutamine, 1.33µg/ml HEPES, and 1,000 units/ ml human 

recombinant LIF). Cells were passaged every 2 days and stored in a humid 37°C incubator with 

5% CO2. 30,000 cells were seeded on each matrix in neural medium and it was changed daily for 

a total of 7 days. For electrical stimulation, cells were allowed to adhere for 24hrs and then 

100mV was applied for 2hrs. Similar to control cells, neural medium was changed daily for a 

total of 7 days. 

Immunofluorescence and image analysis 

 Samples were washed 3 times in PBS, fixed in 4% paraformaldehyde, washed an 

additional 3 times in PBS, and permeabilized with 0.2% Triton X-100. After 2 more PBS 

washes, samples were blocked with 1% bovine serum albumin (BSA) in PBS for 1hr. Samples 

were then incubated in primary antibodies for βIII-tubulin (TUJ1, Covance, Princeton, NJ, USA) 

at 1:500, followed by an appropriate secondary antibody. 4',6-diamidino-2-phenylindole (DAPI, 

Vectashield
®
, Vector Laboratories, Burlingame, CA, USA) was used to stain the nucleus. Images 

were acquired using a Nikon Eclipse C1 confocal microscope (Nikon, Tokyo, Japan). Cell counts 

were made using ImageJ using at least 400 cells from 4 replicate samples. Median neurite 

lengths were also measured with ImageJ using a population of at least 400 cells. 

Statistical analysis 
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 For all experiments, values are reported as a mean ± standard deviation (SD). 

Experiments were repeated at least 2 times to validate results. Two-way analysis of variance was 

used to determine the statistical significance of differences between data sets. For the neurite 

analysis, median lengths were calculated since the distribution was not normal. Statistical 

differences between medians were determined with a Mann-Whitney U test. A value of p<0.05 

was considered to be statistically significant. 

 

Results 

PPy/PLLA nanofiber fabrication 

 PLLA, 5% PPy/PLLA, 10% PPy/PLLA, and 15% PPy/PLLA were used to fabricate 

random and aligned nanofibers. Solutions containing 6%, 8%, 15%, and 20% of each polymer 

were used. Table 4.1 summarizes the resultant fiber sizes fabricated. Random and aligned fibers 

had comparable sizes with the 6%, 8%, and 15% solutions at approximately 150nm, 550nm, and 

900nm respectively. There was a slight difference between the aligned and random fibers using 

20% polymer solution at approximately 1600nm and 1900nm respectively, though the difference 

was not statistically significant. A possible explanation for this is the rotating drum collector 

exerts a slight force on the jetted fibers, causing a degree of stretching that only manifests on the 

larger fibers due to the high viscosity solution. However, this needs further investigation. In 

addition, varying content of PPy did not affect fiber size. From here on out, the fibers will be 

denoted by their approximate size and electrospinning fabrication method: 150ES, 550ES, 

900ES, and 1800ES. Figure 4.1 and Figure 4.2 show scanning electron micrographs of the 



 

 

78 

 

random and aligned fibers respectively. The presence of PPy in the polymer did not manifest any 

changes in fiber morphology as all fibers had a smooth surface. 

Table 4.1. Summary of random and aligned electrospun composite fiber sizes. 
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Figure 4.1. Scanning electron micrographs of random electrospun composite nanofibers. An array of 

nanofibers was fabricated from PLLA (A-D), 5% PPy/PLLA (E-H), 10% PPy/PLLA (I-L), and 15% 

PPy/PLLA (M-P). Sizes ranged around 150nm (A, E, I, M), 550nm (B, F, J, N), 900nm (C, G, K, O), and 

1800nm (D, H, L, P). 

 



 

 

80 

 

 

Figure 4.2. Scanning electron micrographs of aligned electrospun composite nanofibers. An array of 

nanofibers was fabricated from PLLA (A-D), 5% PPy/PLLA (E-H), 10% PPy/PLLA (I-L), and 15% 

PPy/PLLA (M-P). Sizes ranged around 150nm (A, E, I, M), 550nm (B, F, J, N), 900nm (C, G, K, O), and 

1800nm (D, H, L, P). 
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Orientation and surface resistivity of PPy/PLLA nanofibers  

The degree of orientation was visualized in Figure 4.3. Random fibers showed no 

directional bias. Aligned fibers, however, were tightly oriented by the rotating drum collector 

with standard deviations of 11, 17, 15, and 9 degrees for the 150ES, 550ES, 900ES, and 1800ES 

nanofibers respectively. Alignment also resulted in fibers that were more tightly packed. While 

there were large gaps and pores between the random fibers, more noticeable as fiber size 

increased, aligned fibers created a more uniform surface. 

 

Figure 4.3. Degree of orientation of electrospun composite nanofibers. Electrospinning with a stationary 

collector produced evenly distributed random nanofibers. Using a rotating drum oriented the fibers to a high 

degree, with standard deviations of 11, 17, 15, and 9 degrees for 150ES (A), 550ES (B), 900ES (C), and 

1800ES (D) nanofibers respectively. The orientation of at least 150 fibers was measured. 
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 For the purpose of applying electrical stimulation, the surface resistivity of each 

nanofibrous matrix was measured. Surface resistivity is a material property useful for describing 

the ability of a thin film of uniform thickness to conduct a current. The pseudo-2D nanofibrous 

matrix fit the definition of a thin film for this measurement. It should be noted that while the unit 

of surface resistance is the ohm, to avoid confusion with bulk resistance, the unit is commonly 

denoted as an ohm/square, which is uniquely used for surface resistivity. A reading could not be 

attained on the PLLA fibers, indicating a very high surface resistivity. The length-wise and 

width-wise directions of the random fibers were measured to confirm the lack of directional bias, 

and the values obtained were indistinguishable (data not shown). The highest surface resistivity 

values were obtained measuring perpendicular to the aligned fibers (Figure 4.4). Measuring 

parallel to the aligned fibers greatly reduced the surface resistivity, which showed that the 

aligned nanofibers exhibited anisotropic electrical properties that mirrored their anisotropic 

orientation. In addition, surface resistivity decreased as PPy content increased.  
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Figure 4.4. Surface resistivity of aligned and random electrospun composite nanofibers. Measurements for 

random fibers were similar along both directions. Surface resistivity did not change with fiber size: 150ES 

(A), 550ES (B), 900ES (C), and 1800ES (D) nanofibers. Resistivity was highest perpendicular to the aligned 

fibers, which was approximately an order of magnitude higher than the resistivity across the random fibers. 

Surface resistivity along the aligned fibers was the lowest of the groups. In general, surface resistivity steadily 

decreased as PPy content increased. Measurements could not be attained on the PLLA nanofibers.  
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Effect of electrical stimulation on ESC neurite growth. 

 Mouse D3 ESCs were seeded on the composite nanofibers, allowed to adhere for 24h, 

and then stimulated with 100mV for 2hrs. The cells were cultured for an additional 6 days for a 

total of 7 days before being fixed for immunofluorescence and labeled for βIII-tubulin, a 

cytoskeletal protein that forms microtubules and marker of neuronal differentiation. In the 

absence of electrical stimulation, there was very little βIII-tubulin expression and a negligible 

amount of neurites on the 150ES random fibers (Figure 4.5A, E, I, M). The amount of PPy go to 

along with the PLLA did not have an effect on cell morphology. There were more neurites 

formed on the 550ES random fibers (Figure 4.5B, F, J, N) and they grew in all directions, 

showing that there was no directional bias. Similar to the 150ES fibers, the PPy content had no 

effect on cell morphology. For the two largest fiber sizes, 900ES (Figure 4.5C, G, K, O) and 

1800ES (Figure 4.5D, H, L, P), there was a large increase in βIII-tubulin expression and neurite 

growth. The neurite growth was random, mirroring the random orientation of the nanofibrous 

matrices.  
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Figure 4.5. ESC neurite growth on random composite nanofibers without electrical stimulation. ESC were  

cultured for a total of 7 days, and then labeled with DAPI for nuclei (blue) and βIII-tubulin (red). The 

nanofibrous matrix array included PLLA (A-D), 5% PPy/PLLA (E-H), 10% PPy/PLLA (I-L), and 15% 

PPy/PLLA (M-P) with fiber diameters of 150nm (A, E, I, M), 550nm (B, F, J, N), 900nm (C, G, K, O), and 

1800nm (D, H, L, P). Neurite outgrowth increased as fiber size increased while PPy content had no effect. 
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When the ESCs were stimulated with 100mV for 2hrs, a difference within the fiber size 

groups between differing PPy content arose. The smallest nanofibers, 150ES (Figure 4.6A, E, I, 

M), still inhibited neurite growth and little βIII-tubulin was observed. Similarly, though there 

was a small amount of neurite growth on the 550ES nanofibers (Figure 4.6B, F, J, N), the 

amount of PPy did not seem to have an effect in spite of the electrical stimulation. The largest 

fibers, 900ES (Figure 4.6C, G, K, O) and 1800ES (Figure 4.6D, H, L, P), similar to the control 

group, promoted the most and longest neurites. However, as PPy content increased, there seemed 

to be even more and longer neurites. This is especially noticeable comparing 15% PPy (Figure 

4.6O, P) and 10% PPy (Figure 4.6K, L) to PLLA (Figure 4.6C, D). The orientation of the 

neurite growth remained random with neurites growing in all directions despite being stimulated 

by an oriented electric potential. This indicated that nanofibers retained control over the 

directional outgrowth of neurites, though electrical stimulation had an effect on the quantity and 

length of neurite growth. It should be noted that even though ESCs have the tendency to 

aggregate, very few aggregates were observed on any of the matrices. For the most part, cells 

were in a monolayer on the surface of the fibers, ensuring that any differences in behavior were 

due to the nanofibrous matrix and not interactions among aggregates.  
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Figure 4.6. ESC neurite growth on random composite nanofibers with electrical stimulation. ESC were 

stimulated with 100mV for 2h, cultured for a total of 7 days, and then labeled with DAPI for nuclei (blue) and 

βIII-tubulin (green). The nanofibrous matrix array included PLLA (A-D), 5% PPy/PLLA (E-H), 10% 

PPy/PLLA (I-L), and 15% PPy/PLLA (M-P) with fiber diameters of 150nm (A, E, I, M), 550nm (B, F, J, N), 

900nm (C, G, K, O), and 1800nm (D, H, L, P). Neurite outgrowth increased as both fiber size and PPy content 

increased. 
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The immunofluorescence images provided insight into how fiber size combined with 

electrical stimulation affected the neurite growth of D3ESCs. To better understand the observed 

differences, the median neurite length and percentage of neurite-bearing cells was quantified. On 

the 150ES nanofibers, 0.5-0.8% of cells bore neurites with no stimulation and that only grew to 

as many as 2.8% and 4.0% on the stimulated 10% PPy and 15%PPy, respectively (Figure 4.7A). 

Those figures increased to 5.3-6.8% on unstimulated 550ES nanofibers with 10.0% on 

stimulated 10% PPy and 11.8% on stimulated 15% PPy (Figure 4.7B). 900ES and 1800ES 

nanofibers had the highest baseline percentage of neurite-bearing cells at 11.0-13.5% and 9.5-

12.0%, respectively (Figure 4.7C, D). When electrical stimulation was applied, the difference 

was significant on 900ES 15% PPy with 16.0%, 1800ES 10% PPy with 15.3%, and 1800ES 15% 

PPy with 17.8%.  
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Figure 4.7. Percentage of neurite-bearing cells on random and aligned electrospun composite nanofibers with 

and without electrical stimulation. Very few cells expressed neurites on the 150ES nanofibers (A), even 

though 100mV stimulation for 2h increased the number on the 10% PPy and 15% PPy nanofibers. A similar 

trend was evident on the 550ES nanofibers (B) with more cells producing neurites across the board. The 

percentage of neurite-bearing cells increased further from 550ES nanofibers to  900ES (C) and 1800ES (D) 

nanofibers. Furthermore, there was an increase in neurite-bearing cells on the aligned fibers compared to 

random fibers when the ESCs were stimulated on the 10% PPy (C) and 15% PPy nanofibers (C, D). At least 

400 cells were counted from 4 samples. (* p<0.05) 
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For the median neurite length, a minimum of 10 neurites from 400 observed cells was 

required. On the 150ES nanofibers, only cells seeded on the electrically stimulated 10% PPy and 

15% PPy eclipsed that requirement, producing median neurite lengths of 24 and 28µm, 

respectively (Figure 4.8A). On the 550ES nanofibers, in the absence of stimulation median 

neurite lengths ranged from 32-42µm. With stimulation, the range increased to 33-56µm, though 

it was not statistically significant (Figure 4.8B). The longest neurites were observed on 900ES 

(Figure 4.8C) and 1800ES (Figure 4.8D) nanofibers, with unstimulated median neurite lengths 

of 71-85µm and 67-82µm, respectively. With stimulation, the length grew significantly on 15% 

PPy to 112µm for 900ES nanofibers and 127µm for 1800ES nanofibers.  
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Figure 4.8. Median neurite length on random and aligned electrospun composite nanofibers with and without 

electrical stimulation. A (#) denotes less than 10 neurites were observed on at least 400 cells counted from 4 

samples. Too few neurites were observed on the majority of the 150ES samples (A). On the 550ES nanofibers 

(B) there was a slight trend of longer neurites after 100mV stimulation for 2h as PPy content increased, 

though it was not statistically significant.  This was also evident on the 900ES (C) and 1800ES (D) nanofibers. 

Electrical stimulation resulted in longer neurites on both random and aligned 15% PPy nanofibers (C, D), 

and aligned 10% PPy nanofibers (C, D). (* p<0.05) 
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Effect of fiber alignment on ESC neurite growth 

 Electrical stimulation was able to increase the percentage of neurite bearing cells and 

median neurite length on the two largest fiber sizes with the increasing PPy content. Aligning the 

fibers decreased the surface resistivity of the matrices, so the combination of aligned fibers with 

electrical stimulation was employed. Without electrical stimulation, similar to the random fibers, 

there was minimal βIII-tubulin and neurite formation on the 150ES nanofibers (Figure 4.9A, E, 

I, M). More neurites were observed on the 550ES nanofibers (Figure 4.9B, F, J, N), and the most 

and longest neurites were observed on the largest two fiber sizes, 900ES (Figure 4.9C, G, K, O) 

and 1800ES (Figure 4.9D, H, L, P). Also similar to the random fibers, without electrical 

stimulation the amount of PPy had little effect on neurite formation. However, aligned fibers 

were able to align the neurite outgrowth to a high degree, which is a desirable characteristic for 

neural tissue engineering. 
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Figure 4.9. ESC neurite growth on aligned composite nanofibers without electrical stimulation. ESC were  

cultured for a total of 7 days, and then labeled with DAPI for nuclei (blue) and βIII-tubulin (green). The 

nanofibrous matrix array included PLLA (A-D), 5% PPy/PLLA (E-H), 10% PPy/PLLA (I-L), and 15% 

PPy/PLLA (M-P) with fiber diameters of 150nm (A, E, I, M), 550nm (B, F, J, N), 900nm (C, G, K, O), and 

1800nm (D, H, L, P). Neurite outgrowth increased as fiber size increased while PPy content had no effect. 

Scale bar 200µm. 
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 With the addition of 100mV electrical stimulation for 2hrs, the content of PPy started to 

have an effect on neurite growth. Minimal or few short neurites were observed on the 150ES 

(Figure 4.10A, E, I, M) and 550ES (Figure 4.10B, F, J, N). On the 900ES (Figure 4.10C, G, K, 

O) and 1800ES (Figure 4.10D, H, L, P) fiber sizes, the 10% PPy (Figure 4.10K, L) and 15% 

PPy (Figure 4.10O, P) fibers seemed to have more and longer neurites. These neurites were also 

highly aligned with the orientation of the nanofibers. 
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Figure 4.10. ESC neurite growth on aligned composite nanofibers with electrical stimulation. ESC were 

stimulated with 100mV for 2h, cultured for a total of 7 days, and then labeled with DAPI for nuclei (blue) and 

βIII-tubulin (green). The nanofibrous matrix array included PLLA (A-D), 5% PPy/PLLA (E-H), 10% 

PPy/PLLA (I-L), and 15% PPy/PLLA (M-P) with fiber diameters of 150nm (A, E, I, M), 550nm (B, F, J, N), 

900nm (C, G, K, O), and 1800nm (D, H, L, P). Neurite outgrowth increased as both fiber size and PPy content 

increased. Scale bar 200µm. 
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 The percentage of neurite bearing cells and median neurite length was quantified to better 

elucidate the differences between the nanofibrous matrices. Only 0.8-1.0% of cells were neurite-

bearing on the unstimulated aligned 150ES nanofibers (Figure 4.7A). With electrical 

stimulation, that jumped to 2.8% and 5.0% on the 150ES 10% PPy and 150ES 15% PPy 

nanofibers, respectively. 6.5-7.8% of cells bore neurites on unstimulated aligned 550ES fibers, 

increasing to 12.3% and 13.8% on 10% PPy and 15% PPy 550ES nanofibers, respectively 

(Figure 4.7B). Aligned 900ES nanofibers yielded 13.0-14.3% neurite-bearing cells in the 

absence of electrical stimulation. With electrical stimulation, the increase was significant on 10% 

PPy and 15% PPy, with 19.0% and 22.0%, respectively (Figure 4.7C). Finally, without 

stimulation the percentage of neurite-bearing cells was 12.8-14.3% on 1800ES fibers. With 

stimulation, there was a significant increase to 18.5% on 10% PPy and 23.8% on 15% PPy 

(Figure 4.7D).  

 Comparing random and aligned fibers, there was a significant difference on the two large 

sizes, 900ES and 1800ES, which displayed the highest percentages of neurite-bearing cells along 

with the longest median neurite lengths. With stimulation, there were more neurite-bearing cells 

on the 10% PPy and 15% PPy fibers. Without stimulation, there was only a significant difference 

between the 10% PPy and 15% PPy fibers at the largest 1800ES fiber size, though it should be 

noted that the p value for both was only 0.04 (Figure 4.7C, D). There were no significant 

differences in median neurite lengths between random and aligned nanofibers (Figure 4.8). 

These results indicated that alignment alone was not enough to promote neurite outgrowth for 

mouse D3 ESCs. In combination with electrical stimulation and large fiber sizes, alignment 

increased the percentage of neurite-bearing cells, but had little effect on neurite length.  



 

 

97 

 

Discussion 

The relationship between fiber size, orientation, and electrical stimulation and ESC 

behavior has not been fully explored. Work has been done using various NSCs and neurons. 

These cells can be great models for neurite growth when new strategies for neural tissue are 

being explored. After all, inducing neurite growth for many of them is relatively simple. 

However, for practical applications in the clinic and for tissue engineering as a whole, their use 

becomes less attractive since they are difficult to harvest and grow to clinically relevant 

numbers. Embryonic stem cells, on the other hand, can proliferate indefinitely and have the 

ability to differentiate into any cell type in the body. In this study, properties of electrospun 

nanofibrous substrates were investigated to determine their capacity to induce neurite outgrowth 

of mouse D3 ESCs.  

For fiber size, small nanofibers around 150nm effectively inhibited neurite growth. As 

fiber size increased, more ESCs produced longer neurites. The 900ES and 1800ES nanofibers 

promoted neurite growth in a similar fashion, indicating that somewhere between 550nm and 

900nm there was a threshold met where the cells could fully produce neurites. This size 

threshold corresponds with the size of focal adhesions [165]. Between 900ES and 1800ES fibers, 

the 900ES fibers are likely more applicable for neural tissue engineering. With a similar cell 

response, the smaller 900ES fibers would allow for more fibers in a given area, increasing the 

amount of guidance a scaffold could perform.  

Conducting polymer PPy was added to the PLLA in varying amounts to reduce the 

surface resistivity, opening up the potential to use electrical stimulation. Electrical stimulation 

with 100mV for 2hrs increased the percentage of neurite-bearing cells on the large fibers with 
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the highest PPy contents. This effect was further increased when the fibers were aligned. 

Electrical stimulation also increased the median neurite length on those same fibers, however, 

aligning the fibers did not have an additional effect on increasing neurite length. This is in 

contrast to other studies performed with PC12 cells [200] and NSCs [178] which showed that 

aligned fibers did result in an increase in neurite length. As mentioned, these cells are used as 

models for neurite growth and thus, their behavior is the ideal case. With ESCs, it is possible that 

there are conditions or time points that could result in aligned fibers having a significant effect 

on neurite growth. Further investigation is required to confirm these results. Interestingly, despite 

there being a difference in surface resistivity, electrical stimulation promoted neurite growth on 

both aligned and random nanofibers. The direction of the neurite growth was predominantly 

affected by the nanofibers and not the direction of the electrical field. Neurites that formed on the 

random fibers grew in random direction instead of with the applied electric potential. Previous 

work showed that even when the electrical potential was applied perpendicular to aligned 

nanofibers, the neurite outgrowth of dorsal root ganglia neurons increased [233]. This is an 

important factor in combining electrical stimulation with aligned conducting nanofibers. 

The mechanism by which electrical stimulation promotes neurite growth is not well 

understood. There are several hypotheses that have been proposed including a difference in 

surface protein adsorption [230], a decrease in membrane potentials causing depolarization 

[234], and electrically-mediated rearrangement of membrane-bound proteins [235], yet more 

work needs to be done to fully elucidate the effect electrical stimulation has on cell behavior. A 

better understanding of the underlying mechanism will open up additional avenues for 

controlling cell behavior using electrical stimulation. This work continued the effort of 

understanding the interactions between ESCs, biomaterials, and electrical stimulation and offers 
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guidance to scaffold design for neural tissue engineering. Previously, we showed the fiber size-

dependent promotion of neurite growth and neuronal differentiation of mouse D3 ESCs can be 

attributed to integrin α6β1 through extracellular signal-regulated kinase (ERK) activation. There 

is also some additional evidence that focal adhesions could play a role [236], potentially 

implicating focal adhesion kinase (FAK). Future work should delve into the mechanism and 

apply these composite PPy/PLLA nanofibers in vivo. 

Other characteristics need to be taken into account when translating to an in vivo 

application. Though PPy is biocompatible and the electrical properties its inclusion imparts on 

the composite polymer result in improved in vitro results, PPy is not biodegradable. The benefits 

of PPy must be balanced with the drawbacks in order to optimize the use of composite 

nanofibers in vivo, including in vivo electrical stimulation. Work has been done on the use of 

electrical stimulation in vivo to improve nerve repair [237-239], both short term and long term. 

However, these studies do not use a long defect bridged with a nerve conduit. This study shows 

the potential electrical stimulation could have for neural tissue engineering with electrically 

conductive nanofibers. 

 

Conclusion 

Understanding the interaction between cells and biomaterials is a critical aspect of tissue 

engineering. For neural tissue engineering, a major aspect of this cell-biomaterial interaction 

involves neurite outgrowth promotion. In addition to nanofibrous biomaterials, electrical 

stimulation can also induce neurite outgrowth. Here, an array of random and aligned nanofibers 

with fiber diameters ranging from around 150nm up to around 1800nm was fabricated. Varying 



 

 

100 

 

amount of PPy was added to improve their electrical properties for in vitro electrical stimulation. 

Mouse D3 ESCs were seeded on these fibers to determine the effect topographical features in 

combination with electrical stimulation had on the neurite outgrowth of pluripotent stem cells, an 

extremely promising cell source for tissue engineering as a whole. As fiber size increased, 

neurite growth increased, with 900nm and 1800nm fibers promoting neurite growth the most. 

With the addition of electrical stimulation, applying 100mV for 2hrs increased the percentage of 

neurite-bearing cells and median neurite length on the large nanofibers with the highest content 

of PPy. Aligning these nanofibers increased the percentage of neurite-bearing cells and oriented 

the neurites along the direction of the fibers. 

These results show that fiber size, electrical stimulation, and fiber alignment can control 

ESC behavior. In addition to making their use in neural tissue engineering more promising, 

applications of this work could stretch to other aspects of tissue engineering. ESCs and other 

pluripotent stem cells offer numerous benefits, including indefinite proliferation and versatile 

differentiation, yet controlling their fate remains a significant challenge. In this study, additional 

layers of control have been demonstrated to further the drive toward clinical applications. 
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CHAPTER 5                                                                                                                     

Summary 

 

This project began by noticing a difference in the way embryonic stem cells (ESCs) 

behaved on thermally-induced phase separated (TIPS) and electrospun nanofibers. As this 

difference was explored, a fiber size-mediated effect on the neuronal differentiation of ESCs was 

discovered. Small nanofibers on the order of 150nm inhibited neuronal differentiation while 

nanofibers above approximately 900nm promoted neuronal differentiation. The mechanism 

behind this was investigated and it was found that integrin α6β1, a major laminin binding 

integrin, was responsible and it acted through the mitogen-activated protein kinase (MAPK) 

pathway by activating extracellular signal-regulated kinase (ERK).  

In parallel with studying the mechanism, a composite polymer using polypyrrole (PPy) 

and poly (l-lactic acid) (PLLA) was synthesized. Films fabricated with this polymer were seeded 

with rat pheochromocytoma 12 (PC12) cells and stimulated with 100mV for 2hrs. Electrical 

stimulation increased the percentage of neurite-bearing cells and the median neurite length, 

showing that PPy/PLLA had potential for nerve tissue engineering. A nerve conduit was then 

fabricated and used to regenerate a critical-sized sciatic nerve defect in a rat. The PPy/PLLA 

greatly exceeded the performance of PLLA conduits and performed on par with the current gold 

standard, a nerve autograft. 
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Combining the first two studies, PPy/PLLA was used to electrospin an array of 

nanofibers with varying fiber diameter, PPy content, and orientation. The purpose of this was to 

expound on the ability of nanofibers to control the neurite outgrowth of ESCs by incorporating 

additional cues, including topography and electrical stimulation. It was discovered that electrical 

stimulation promoted neurite outgrowth as PPy content increased and that aligned fibers 

increased the number of neurite-bearing cells. 

Taken as a whole, these results significantly advance the fields of neural tissue 

engineering and neural development. Elucidating the mechanism by which ESCs interact with 

nanofibers could provide insight into the role the extracellular matrix (ECM) plays during 

neurodevelopment. In addition, it could provide guidance to scaffold design by revealing a target 

pathway to induce neuronal differentiation and neurite growth. Combined with the success 

showed by incorporating electrical stimulation and fiber alignment, there is significant promise 

in using this work as a platform for the clinical translation of ESCs for neural tissue engineering, 

and potentially tissue engineering as a whole. 
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CHAPTER 6                                                                                                                          

Future Work 

 

One of the main accomplishments of this work was elucidating the mechanism of 

embryonic stem cell (ESC)-nanofiber interactions. While discovering the role of integrin α6β1 

and extracellular signal-regulated kinase (ERK) was a great start, they are just two players in a 

complex system of pathways. Finding the links between α6β1 and ERK and then to other 

downstream transcription factors would fully reveal the cascade responsible for fiber size-

mediated neuronal differentiation. Potential targets include focal adhesion kinase (FAK), 

phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB/Akt), Ras/Raf, and signal transducer 

and activator of transcription 3 (STAT3) [240]. In addition, Wnt signaling has also been shown 

to be required for neuronal differentiation so the effects of nanofibers on Wnt activity should be 

investigated [241]. Later on, the effect of nanofibers on the differentiation of ESCs into other 

lineages could be explored for additional applications in development and tissue engineering. 

Furthermore, this knowledge should be applied to scaffold design. The overarching goal 

of this project was to better understand the neuronal differentiation of ESCs to be applied to 

neural tissue engineering. The logical next step then towards the clinic is to use aligned 

PPy/PLLA nanofibers, around 900nm in diameter, within a nerve guidance conduit to repair a 

critically-sized sciatic nerve defect in a rat, the most common model for peripheral nerve 
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regeneration. The insight into the mechanism provides candidates to target with extracellular 

binding moieties or drug delivery. Binding integrin α6β1 or activating ERK could possibly 

enhance the fiber size-mediated effect on neuronal differentiation, though care would have to be 

taken to test for potential side effects. A higher goal would be to address a spinal cord injury 

(SCI). SCIs are a more difficult clinical challenge and less work has been done to address them.  

In addition, more work could be with electrical stimulation on three fronts. First, this 

work only used one mode of stimulation, a single dose of 100mV direct current for 2hrs. One 

parameter that could be studied is the wave form of stimulation. Perhaps something similar to an 

action potential could be optimal. The magnitude should also be investigated since 100mV is a 

relatively high in vitro potential and there is some evidence that lower voltages yield better 

neurite growth [200]. Finally, the timing of electrical stimulation needs to be optimized. 

Stimulation over time could improve on the single early dose used in this study, though perhaps 

only early stimulation is important. More work needs to be done to better understand when and 

how much electrical stimulation is best for the neurite growth of ESCs. Second, in translating in 

vivo, electrical stimulation has not been investigated in conjunction with an electrically active 

nerve conduit. Like in vitro, the parameters of stimulation should be optimized in vivo. With a 

different environment, it is likely that a different mode of electrical stimulation will be optimal. 

Third, and finally, the mechanism behind the effect electrical stimulation has on neurite growth 

should be elucidated. There are several hypotheses that have been proposed, involving protein 

adsorption, membrane depolarization, and ion channel organization. Each has merit and is 

worthy of further investigation. 

Finally, all the work in this thesis has been done with animal cells, either mouse D3 ESCs 

or rat pheochromocytoma 12 (PC12) cells. To translate to a clinical application, human cells 
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need to be studied. Working with human ESCs comes with moral, political, and ethical concerns, 

making their use less than ideal. As a promising alternative, induced pluripotent stem cells 

(iPSCs) could be used [119-121]. Derived from adult somatic cells, commonly fibroblasts, and 

reprogrammed with genes, either Oct3/4, Sox2, c-Myc, and KLF4 [122, 123], or Oct3/4, Sox2, 

Nanog, and Lin28 [124], they have the same pluripotent capabilities of ESCs without the 

extracurricular drawbacks. It is possible that the results of this work could not translate perfectly 

to a new cell line from a different species, so these studies performed should be repeated to 

ensure their veracity with human iPSCs. However, it is expected that the results should hold, 

possibly with only minor variation. Establishing the potential of human iPSCs for neural tissue 

engineering by increasing the control over their neuronal differentiation with scaffold 

architecture and determining the mechanism of action would be an enormous leap toward 

clinical applications in humans.  

Although this work improves the foundation for neural tissue engineering, the timeline of 

clinical applications using ESCs or iPSCs may still be decades away. In the meantime, the 

significant questions will continue to be addressed as the field steps toward fully regeneration 

damaged tissues. 
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