
Secure and Scalable Data Collection with Time
Minimization in the Smart Grid

Suleyman Uludag1, King-Shan Lui2, Wenyu Ren3, and Klara Nahrstedt3

1Department of Computer Science, University of Michigan - Flint, MI, USA
2Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

3Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Abstract—Deployment of data generation devices, such as
sensors and smart meters, has been accelerating towards the
vision of Smart Grid. The volume of data to be collected
increases tremendously. Secure, efficient, and scalable data col-
lection becomes a challenging task. In this paper, we present
a secure and scalable data communications protocol for Smart
Grid data collection. Under a hierarchical architecture, relay
nodes (aka data collectors) collect and convey the data securely
from measurement devices to the power operator. While the data
collectors can verify the integrity, they are not given access to
the content, which may pave the way for third party providers to
deliver value-added services or even the data collection itself. We
further present optimization solutions for minimizing the total
data collection time.

I. INTRODUCTION

In the Smart Grid, massive number of sensors or measure-
ment devices will be installed to collect real-time information.
The generated data should be collected in a secure, efficient,
and scalable manner. To make it scalable, a hierarchical data
collection framework is usually adopted. For example, in
Advanced Metering Infrastructure (AMI), smart meters first
report measurements to data concentrators [1]. Thereby, the
power operator does not have to maintain a separate, expensive
connection with each smart meter. Apart from data collection,
this hierarchical communication structure should also allow
the power operator to send an instruction to the devices. To
maintain fast response, messages, data or instructions, should
be delivered efficiently and as fast as possible. The messages
should be protected to prevent from information leak and
launch of attacks. In this paper, we develop a comprehensive
protocol that allows a power operator to collect data, as well as
send commands to measurement devices in a secure, scalable,
and efficient manner.

PO	

DC1	

DC2	

DC3	

DCi	

MD1	

MD2	

MD3	

MD4	

MDj	

Fig. 1. Hierarchical Data Collection Structure.

Fig. 1 presents the data collection architecture considered

in this paper. The Measurement Devices (MDs) are sensors
or smart meters that generate power-grid specific data. They
are small telemetric devices and computationally constrained.
Each MD is connected to at least one Data Collector (DC), and
each DC may connect to multiple MDs. The Power Operator
(PO) has a direct connection with each DC. PO and DCs are
relatively more powerful than MDs. The data are reported to
PO via a set of DCs. PO may also issue commands to the
MDs via the DCs. Theoretically, a DC is trustworthy if it is
within the security domain of the PO.

However, due to the massive number of MDs and their
dispersion over a large area, it may not be appropriate to
assume DCs can be completely trusted. In addition, one of the
seven actors identified by The National Institute of Standards
and Technology (NIST) in the Smart Grid (SG) Framework [2]
is third party service providers which are to furnish value-
added services. We assume honest-but-curious model for DCs.
Thus, the data collection tasks may be outsourced to third
party service providers [3]. Besides, the benefits of cloud
computing [4] may be accrued for storage and processing of
the data collected. Data sharing to others to provide services
like energy management services can be facilitated as well.

In some other applications [5], DCs are mobile and the
connections between DCs and MDs are dynamic. Therefore,
it would be desirable for MDs to encrypt their data in a way
that DCs do not have access to them. In other words, each MD
should encrypt its data using an appropriate key to keep its
data private from DCs and other possible adversaries. On the
other hand, due to limitation in memory and computational
capability, the encryption algorithm used should be efficient.
PO should also protect its commands appropriately. Apart from
ensuring the security of these commands, it is also crucial to
deliver data and commands promptly because fast actions of
MDs are necessary to maintain the stability and health of the
smart grid. Because the network delay for different DCs to
collect data from a certain MD would be different, to make
the data collection more efficient, we also study how to assign
DCs to MDs to minimize the time for data collection.

Our contributions in this paper may be summarized as
follows:
• Under a hierarchical infrastructure, we have proposed a

scalable, secure, and lightweight data collection scheme
in the Smart Grid,

• Our secure data collection scheme does not assume
trusted DCs, rather they are considered to be honest-but-
curious entities. This may pave the way for outsourcing
the data collection and third party service providers as
envisioned by the NIST’s Smart Grid Framework [2],

• We have coupled the secure date collection with an opti-
mization problem formulation with the objective function
of time minimization, which is a first in the literature as
a joint security and optimization approach,

• We have shown the NP-Hardness of the problem and
developed an efficient heuristic solution,

• We have also provided a solution to the assignment of
DCs to MDs as part of the optimization framework.

The rest of the paper is organized as follows: Sec. II
describes existing efforts on data collection in smart grids.
We provide the system and protocol overview in Sec. III. The
details of the protocol are described in Sec. IV and V. In Sec.
VI, we analyze the time performance of our mechanism and
present the DC-MD assignment problem as an optimization
problem. We conclude our paper in Section VIII.

II. RELATED WORK

Data integrity and confidentiality of end-to-end data have
been studied extensively in the Internet. However, most
schemes, such as TLS [6], assume the devices have abun-
dant memory and computational power to perform expensive
cryptographic operations. In smart grids, on the other hand,
reporting devices have limited memory with a slow CPU.
Traditional Internet security protocols are thus not suitable for
data collection in smart grids [7].

DNP3 (Distributed Network Protocol) [8] is a standard
communications protocol used in SCADA (Supervisory Con-
trol And Data Acquisition), the data collection subsystem
of power grids. It assumes all components are within the
security perimeter of the operator and is not designed to
protect data forwarded by the DC as in our situation. A more
recent standard for substation automation is the IP-based IEC
(the International Electrotechnical Commission) 61850 [9].
Yet, IEC 61850 was also initially designed without security
mechanisms [10]. It is thus generally agreed by the experts
that new security protocols for data collection and command
delivery of smart grids need to be developed.

Our proposed approach comprises security aspect of the
smart grid data collection as well as the time minimization. In
what follows, we provide synopses of related work from these
aspects as well as with respect to a variety of other relevant
subtopics of our holistic approach.

Collecting data by means of transport layer protocols from
a massive number of MDs has been studied in the literature
as an option. [11] studies how to reduce the storage needed
when the control center needs to establish multiple sessions
with the MDs. Long-term shared keys are generated by a
function so that the control center only needs to memorize
the function but not individual keys. Nevertheless, the key
developed this way is not very secure. Besides, the protocol
is not suitable for the hierarchical data collection architecture.

Data collection through a data collector is considered in [12].
The authors propose to maintain two separate Transmission
Control Protocol (TCP) connections, and the two connections
can be protected using different mechanisms independently.
Nevertheless, the data collector is assumed to be trustworthy,
that is, it can read the data sent by the MD.

Another important aspect of secure data collection is con-
cerned with key management. Many assume trusted DC, that
is, they do not consider hiding the data from the DCs, such
as [13], [14], [15]. Some others assume a direct connection
between the PO and MDs [16]–[18] and some others are not
suitable for hierarchical data collection as we consider in this
paper [16], [17], [19].

The SAKE protocol [20] allows two neighboring sensor
nodes to establish keys using hash chains. However, the
authors assume the attackers are of limited computational
capability as another sensor. The authors in [15] apply the el-
liptic curve public key technique to perform key management.
Mutual authentication between different entities is studied.
Nevertheless, there is no discussion on how to protect the data
reported by a sensor.

Some protocols have been developed to establish shared
keys when the two parties can establish direct communication.
[18] describes how to establish keys and secure unicast and
multicast communications. [7] proposes long-term keys to
be given to the different parties for protecting messages.
[16] describes how to apply the Diffie-Hellman mechanism
to establish a shared key for data authentication between
two parties. [17], on the other hand, relies on identity-based
cryptography. All these mechanisms cannot be applied in
the hierarchical data collection model because the PO and
the MDs cannot establish a direct connection. The authors
in [21] describe how a device establishes shared keys with
different controllers at different hierarchical levels. However,
it is assumed that a shared key exists between two adjacent
controllers. Another approach presented in [22] is based on
symmetric cryptography to provide data confidentiality and
authentication between sensors and the base station. Again,
a master key is assumed with a pre-agreed pseudo-random
function in the scheme.

Another category for providing security and privacy [23] ex-
ploits the aggregate statistics of the sensed data, such as sum-
mation, average, minimum, maximum, etc. These approaches
take advantage of in-network data processing (also referred
to as aggregation) to induce some obfuscating operations on
the transmitted data [24]–[31]. Examples of this category
include cluster-based private data aggregation [24] and its
integrity enhanced version [25], secret perturbation [26], k-
indistinguishable privacy-preserving data aggregation [27], a
centralized authentication server based in-network aggregation
for AMI [28], [29], a secure architecture for distributed
aggregation of additive data [30], and a network coding-
based encryption between smart meters and aggregators [31].
Unlike these techniques, our problem formulation does not
assume any statistical property for in-network processing and
deliver the MD data unaltered to the PO. There are also

data aggregation schemes without any security schemes, such
as [32], [33].

There are also homomorphic encryption-based approaches
to hide the collected information from the MDs, such
as [34]–[39]. However, homomorphic encryption is a compute-
intensive operation.

[40] studies how data generators report data to a honest-
but-curious storage center for a user to retrieve later. To
the best of our knowledge, the data collection trust model
assumed in this paper is the most related to our scenario. The
storage center is similar to the DC in our model that it is
semi-trusted, and data should be hidden from it. MDs in our
model are the data generators, while PO is a user in their
model. However, the paper suggests to use expensive attribute-
based and public key encryption to protect data to incorporate
policy consideration. The experimental computational time for
a decryption on a message of size less than 1000 bits in a low-
end smart meter (TinyPBC library on a 32-bit ARM XScale
PXA271 processor) is around 140ms, while the encryption is
supposed to be a few times more expensive. Our protocol,
on the other hand, encrypts data using the much more light-
weighted symmetric key cryptography, which is more suitable
for computationally-constrained MDs.

There are some approaches with optimization for the data
collection process. Cost minimization of data collection by
means of wireless channel selection and transmission schedul-
ing has been reported in [41]. A delay minimization of
overhead transmission lines over unreliable wireless links is
studied in [42]. These and other similar approaches lack any
security mechanism as part of their approaches, unlike our
proposal in this paper.

An interesting approach in [43] considers the tradeoff be-
tween the strength of security and energy consumption jointly
for both Phasor Maeasurement Unit (PMU) and AMI data over
energy-constrained devices. However, only a generic compar-
ison of different cryptographic algorithms over CrossBow and
Ember sensor platforms is reported without any attention to
the overall data collection scheme.

To the best of our knowledge, no other paper in the literature
appears to be proposing a holistic approach for hierarchical
data collection with curious-but-honest DCs with a joint goal
of minimizing the overall data collection time and assignment
of MDs to DCs. Further, we also perform experiments to study
the time performance of our mechanism.

III. SYSTEM AND PROTOCOL OVERVIEW

A. Operations and their requirements

As mentioned in Section I, our communication architecture
supports MDs to report data and PO to deliver commands in
a timely and secure manner. Table I describes each operation.
Op 1 is a regular call-for-data from the PO which is performed
periodically. Op 2 is performed when PO detects something
abnormal and would like a data report from a particular MD.
Time is more critical than a regular data reporting. Op 3 is
done when MD detects something abnormal and would like

Operation Security
Requirement

Time Requirement

Op 1 PO initiates
data collection
of all MDs
or a group of
MDs

Data reported should
be authenticated and
should be read only
by the PO, not by
other MDs or any DC

The total time to col-
lect all data should
be minimized

Op 2 PO requests
data from a
certain MD

Same as Op 1 The time needed
should be kept
minimal

Op 3 MD initiates
an urgent data
report

Same as Op 1 The data should be
delivered to the PO
as soon as possible

Op 4 PO issues
an urgent
command to a
group of MDs

The command should
be authenticated ap-
propriately

Time for each MD to
receive and read the
command should be
minimized

TABLE I
SYSTEM OPERATIONS AND THEIR REQUIREMENTS.

to report to the PO. OP 4 is issued when PO needs a group
of MDs to perform a certain action as soon as possible.

We develop our protocol to be secure from outsider attacks
such as eavesdropping, impersonation, and message tamper-
ing, etc. There are three types of insiders in the protocol: PO,
DCs, and MDs. They are all given with a corresponding pair
of public and private key pair (see Section III-B). Similar to
other secure communication protocols, we basically assume
a signature, which is created by the private key, can be an
identity authenticator. That is, if somebody can prove that
she has the knowledge of Alice’s private key, we assume this
person is Alice. If the working environment is very insecure
that even private keys could be stolen easily, our protocol does
not work. The system, in this case, probably require another
form of authentication such as token-based, bio-metric, instead
of key-based.

We assume the PO (the entity that possesses the private key
of the PO) is always trustworthy because it is the control of the
whole system and it decides how to use the data collected. The
DCs, on the other hand, are honest-but-curious that they would
follow the protocol as specified but would like to read the data
and share with others if they could. That is, they would not
impersonate another entity in the system, nor actively tamper
the data, but would like to learn as much as possible based
on the information they can access according to the normal
operation of the protocol. As the MDs are devices located in
the field (for example, on power grid poles), it is not likely
they are under the same physically secure environment as the
PO. The chance that leaking private keys is higher. When an
attacker gets the private key of a certain MD, it can report fake
data to the PO on behalf of the MD. The PO can analyze the
data reported to detect whether they were legitimate data or
not. Even though this attacker can report fake data on behalf
of its victim, it cannot impersonate other entities (other MDs,
PO, or DCs) and read the data sent by other MDs.

B. System Parameters

Before any communication, PO, DCs, and MDs are
equipped with a set of system parameters. We assume nec-
essary parameters are configured in a DC or MD before they

are installed in the field.
1) Long-term keys: We assume there is a key server that

can generate a set of public and private keys for each entity
in the system. The public/private key pair is configured into a
DC or MD before it is installed in the field. PO, on the other
hand, apart from keeping its own key pair, it also remembers
the public keys of all MDs and DCs in the system. We
denote the public key and private key of node A as A+ and
A−, respectively. Under normal circumstances, PO would not
publish the public keys of DCs and MDs to the general public.
However, our protocol is secure even if the attackers know the
public key information of any DC or MD they want to attack.

2) Diffie-Hellman (DH) parameters: We adopt the Diffie-
Hellman key exchange mechanism to develop shared keys
between two parties. Due to space limitation, we refer readers
to [44] for the details. Generally speaking, DH allows the two
parties to develop a secret shared key even eavesdroppers can
read the half keys they exchange with each other. Through
forgetting half keys and shared keys appropriately, DH keys
also support perfect forward secrecy.

C. Cryptographic functions

To provide authentication, confidentiality, integrity, and
other security protections, messages have to be encrypted,
hashed, or signed. We assume the PO selects appropriate
cryptographic algorithms for the purposes, and these functions
are installed in the DCs and MDs. For example, PO may
use the Advanced Encryption Standard (AES) for symmetric
key encryption and SHA-256 (the Secure Hash Algorithm
with 256 bits of key length) for hash computation. Table II
summarizes the functions used in the protocol. In the table,
PKE is Public Key Encryption, PKD is Public Key Decryption,
SKE is Symmetric Key Encryption, SKD is Symmetric Key
Decryption, SIGV is signature verification, Kp is a public key
while Ks is a shared key.

Name Description Name Description
PKE(Kp,M) encrypt M using Kp PKD(Kp,C) decrypt C using Kp
SKE(Ks,M) encrypt M using Ks SKD(Ks,C) decrypt C using Ks
SIGN(A,M) sign of M by A SIGV (A,M) verify M signed by A

TABLE II
SYSTEM FUNCTIONS.

Some cryptographic functions run much slower than others.
As some smart grid operations are time sensitive, it is very
crucial to identify efficient cryptographic functions appropri-
ately to protect the communication. To further understand
the computational time of the cryptographic functions on
computationally constrained devices, we measure the time
needed to execute some representative cryptographic functions
on Raspberry Pi. Raspberry Pi is a tiny computer with a size
similar to a credit card. The CPU is 700MHz and the memory
available is 512MB. Due to space limitation, we only present
some of the results. More details can be found in [45].

Table III presents the time needed to create an RSA (the
Rivest-Shamir-Adleman cryptosystem) signature and verify an
RSA signature using different key sizes. The time spent on
encrypting a message using public key is similar to the time

RSA 1024 bits 3072 bits
Message
Size (bits)

Sign.
(ms)

Ver.
(ms)

sign/ver
ratio

Sign.
(ms)

Ver.
(ms)

sign/ver
ratio

128 64.01 3.91 15.12 1048.37 11.49 91.23
256 64.97 4.01 16.19 1033.46 11.65 88.68
512 64.27 4.00 16.08 1047.96 11.69 89.67

TABLE III
RSA COMPUTATIONAL TIME.

needed in verifying a signature. The time needed on decrypting
a message using private key is similar to the time needed on
signature creation. It can be observed that the time needed does
not grow with message size but with key size. Column ratio
in the table gives the time ratio of signature computation

signature verification . The
time spent on a private key operation (signing a message) is
much longer than that on a public key operation (verifying a
signature). An efficient protocol should not require MDs to
sign a lot of messages, especially when a long RSA key is
used.

We also measured the time needed to generate different
Diffie-Hellman keys with different key sizes [45]. A DH
shared key generation is more expensive than an RSA sig-
nature verification. It implies that it may not be appropriate to
re-generate DH shared key for each data collection instance.
By adopting different cryptographic functions and techniques
carefully based on their security features and computational
complexities, our protocol facilitates efficient and secure data
collection.

D. Protocol Overview

To detect replay attacks, we adopt a similar way as the
widely used Kerberos protocol (RFC4120) that uses times-
tamps. The parties who talk directly should first synchronize
their clocks. When a timestamp is included in a message, the
receiver should check whether the carried timestamp is within
a certain amount of difference from its local clock. The default
threshold in Kerberos is 300 seconds. In our protocol, the
threshold would depend on the expected delay in transmitting
the message and granularity of clock synchronization.

Because encrypting data using public key cryptography is
very expensive, before any data collection, we should first
develop shared keys among PO, DCs, and MDs for data
protection. To ensure data reported by a certain MD can be
decrypted by the PO only, we need to establish a key that
is known by PO and that MD. We call a key that is known
by exactly two parties a pairwise shared key. PO and each
DC should also develop a pairwise shared key to protect
their conversations. The same applies to DC with each MD
it will talk to. Apart from pairwise keys, to facilitate a certain
command or instruction to be delivered to a group of MDs in
a secure and efficient manner, we also develop a set of group
keys that each group key is shared between the PO, a DC, and
the MDs that connect to that DC.

The PO initiates the Shared Key Generation Process to
establish the necessary pairwise shared keys and group keys.
We adopt the Diffie-Hellman key exchange mechanism to
develop all pairwise shared keys. We authenticate the DH half

keys using the long-term public keys to avoid the man-in-
the-middle attack. Once the pairwise shared keys and group
keys are established, they will be used for data collection and
command delivery.

As DH operations are expensive, we should not re-generate
the DH shared keys for every data collection. However, it
may not be very secure if we use the same shared keys to
encrypt data collected at different times. To strike a balance
of computational complexity and security, the data encryption
key for each data collection instance depends on both the
DH shared key and the timestamp. As the timestamp changes
for every data collection instance, the data encryption key
will be changed even though we do not re-generate the DH
shared key. In the following, we will first describe the Shared
Key Generation process in Section IV. The detailed message
exchanges of the four operations mentioned in Section III-A
will be provided in Section V.

IV. SHARED KEY GENERATION

Let the set of MDs be MD and the set of DCs be DC. Before
the PO initiates the process, PO has to assign a set of MDs
for DC to connect to. We let MDLISTi ⊆MD be the set of
MDs that are assigned to DCi. Definitely, ∪DCi∈DCMDLISTi =
MD. However, MDLISTi ∩MDLISTj, where i 6= j, may not
necessarily be /0. It is possible that PO would like multiple
DCs to collect data from the same MD to enhance reliability.
In fact, different assignments between MDs and DCs would
differ in data security, cost, and data collection time. In Section
VI, we will formulate the assignment problem to minimize the
data collection time.

In the rest of this paper, for the ease of discussion, we use
shared key to refer to pairwise shared key. We further denote
KA

B as the shared key between A and B. We refer to the set
{PO,DCi}∪MDLISTi as group Gi, and the group key of Gi is
GKi. We use M1||M2 to represent concatenating messages M1
and M2. The definitions of the functions used can be found
in Table II.

Figure 2 presents a summary of the initial shared key
generation process. When the procedure starts, the only keys
an MD or a DC knows are its own public/private keys and
the public key of the PO. After the procedure, MD j should
have established KPO

MD j
, KDCi

MD j
, and GKi if MD j ∈ MDLISTi.

Through the procedure, DCi knows GKi, KPO
DCi

and KDCi
MD j

for
all MD j ∈MDLISTi. The detailed procedure is as follows:

1) PO starts the key generation process. It first generates a
DH secret a to talk to the DCs. PO also captures the current
timestamp T 1 and sends the following message to DCi. T 1
should be kept until the whole key generation process is done.

PO→ DCi: PKE(DC+
i ,ga||T 1),SIGN(PO,ga||T 1)

ga is encrypted and so an eavesdropper cannot read ga.
Because PO signs ga||T 1 and T 1 is a timestamp, an attacker
cannot change T 1 or ga easily without being detected. Sup-
pose an attacker also knows DC+

i , although he can create
PKE(DC+

i ,ga′ ||T 1′) using his own ga′ and T 1′, he cannot
forge the signature SIGN(PO,ga||T 1). To further enhance

SKE(K,	
 MDLIST	
 ||	
 C	
 ||	
 SIGN(PO,	
 C	
 ||	
 DC+))	

PO	
 DC	
 MD	

PKE(DC+,	
 ga	
 ||	
 T1)	
 SIGN(PO,	
 ga	
 ||	
 T1)	

PKE(PO+,	
 gb	
 ||	
 T1)	
 SKE(K,	
 T1)	

K	
 =	
 gab	
 mod	
 p	

C	
 =	
 gc	
 ||	
 GK	
 DC+,	
 PKE(MD+,	
 C	
 ||	
 ge	
 ||T2),	
 	

SIGN(PO,	
 C	
 ||	
 DC+)	
 SIGN(DC,	
 ge||T2)	

PKE(DC+,	
 gd)	
 SIGN(MD,	
 gd	
 ||	
 T2)	

SKE(K,	
 gd||	
 T2)	
 SIGN(MD,	
 gd	
 ||	
 T2)	
 gcd	
 –	
 shared	
 key	
 between	
 PO	
 and	
 MD	

ged	
 –	
 shared	
 key	
 between	
 DC	
 and	
 MD	

GK	
 –	
 group	
 key	

Fig. 2. Initial Shared Key Generation.

security, PO can use different a’s for different DCs, but it has
to generate different signatures for different a’s and remember
which is used for which DC.

2) When DCi receives the message, it uses DC−i to re-
trieve ga and T 1. It checks whether the received signature
SIGN(PO,ga||T 1) is correct. If so, DCi checks whether T 1 is
within an acceptable range. If so, it generates its DH secret
b and computes K as gabmod p. K is then the shared key
between PO and DCi (KPO

DCi
). It encrypts its publich DH key

(gb) using PO’s public key and send it to PO. It also proves
it knows K by providing SKE(K,T 1).

DCi→ PO: PKE(PO+,gb||T 1),SKE(K,T 1)
The timestamp T 1 is used to detect replay attack as mentioned
in Section III-D. When a message is accepted, DCi should
record T 1. When another message arrives that carries a time
stamp T , T is accepted only when it is not exactly the same
as T 1 and the time difference between T and it local clock is
acceptable. Note that an attacker, who does not know DC−i ,
cannot retrieve ga and T 1 from PKE(DC+

i ,ga||T 1). Therefore,
when PO receives a correct reply, he knows that it was DCi
who sent him the message.

3) When PO receives the message, it can retrieve gb using
PO− to compute K. It then uses K to decrypt SKE(K,T 1)
and retrieves T 1. If this is the same as the one he sent earlier,
PO can confirm that it was DCi who sent the message. It then
sends DCi the list of MDs, together with the MDs’ public
keys, that it assigns DCi to talk to. It also creates C for DCi
to talk to the MDs in the list. C contains gc, which is used
for establishing shared keys between PO and MDs, and GKi,
which is the group key of Gi. The public keys of the MDs
should also be sent (We assume they are included in MDLISTi
in Figure 2).
PO→ DCi: SKE(K,MDLISTi||C||SIGN(PO,C||DC+

i)) where
C = gc||GKi

It is worth noting that PO also sends SIGN(PO,C||DC+
i) and

further encrypts it using K. This allows DCi to detect whether
the message has been tampered. As C is encrypted using K,
it should be safe from eavesdroppers. GKi, which should be
known to PO, DCi, and those MD in MDLISTi, is protected
then.

4) When DCi receives the message, it first uses K to retrieve
C and SIGN(PO,C||DC+

i). It verifies whether the signature
is correct. If so, DCi can then generate its DH half key, gei

for establishing shared keys with the MDs. DCi also captures
the current timestamp T 2, which must be larger than T 1, and
sends the information to MD j in MDLISTi using the public
keys provided. DCi also needs to send its public key. To allow
MD j to detect whether the message has been tampered, two
signatures, SIGN(PO,C||DC+) and SIGN(DCi,gei ||T 2), are
sent as well.

DCi→MD j: DC+
i , PKE(MD+

j ,C||gei ||T 2),
SIGN(PO,C||DC+), SIGN(DCi,gei ||T 2)

As DC+
i is sent in plaintext and C||gei ||T 2 is encrypted

using the public key of MD j, it is possible for an at-
tacker to create its own DC+

i , PKE(MD+
j ,C||gei ||T 2) and

SIGN(DCi,gei ||T 2). That is, let the attacker be AK. He can
send AK+, PKE(MD+

j ,C
′||gei

ak||T 2′) and SIGN(AK,gei
ak||T 2′)

to MD j, trying to pretend to be DCi. However, he cannot forge
PO to create SIGN(PO,C′||AK+) to cheat MD j. This message
is thus safe from message tampering and an attacker cannot
impersonate DCi.

5) Upon receiving the message, MD j first decrypts
PKE(MD+

j ,C||gei ||T 2) using his private key to retrieve
C||gei ||T 2. It then verifies the two signatures to ensure the
message has not been tampered. It should also check whether
T 2 is acceptable in a similar way that DCi verifies T 1 to detect
replay attacks. If the message passes the tests, MD j creates a
DH secret key d to establish the shared key between itself and
PO (KPO

MD j
), which is gcd , and the shared key with DCi(K

DCi
MD j

),
which is geid . It then encrypts gd using the public key of DCi
so that gd is safe from eavesdroppers. It also signs gd and T 2
to defend against impersonation and replay attacks.

MD j→ DCi: PKE(DC+
i ,gd), SIGN(MD j,gd ||T 2)

If an attacker eavesdropped an earlier communication, it
cannot simply replay the message from the previous session
because T 2 carried in the new message should be different.
By signing gd , we can defend against attackers who want to
impersonate MD j in replying to DCi.

6) When DCi receives the message, it decrypts
PKE(DC+

i ,gd) using its private key and retrieves gd . It
can then verify the signature to detect whether the message
has been tampered. If not, it sends gd to PO by encrypting
it using K. It also sends the signature by MD j it received to
PO.

DCi→ PO: SKE(K,gd ||T 2), SIGN(MD j,gd ||T 2)
As only DCi and PO know K, only PO can read gd in
SKE(K,gd ||T 2). By checking whether T 2 is later than T 1
kept in memory, PO can detect whether it is a replay. The
signature of MD j on gd and T 2 authenticates that it was MD j
who created gd .

7) If gd ||T 2 encrypted using K and signed by MD j are the
same, PO can assume the message has not been tampered. PO
can then compute KPO

MD j
to be gcd . Note that as DCi can only

read gc and gd but neither c nor d, it cannot compute gcd . gcd

is thus a key shared by PO and MD j only.

We now analyze the memory needed for each entity to keep
the shared keys. The PO needs to keep a shared key for each

DC, a shared key for each MD, and a group key for each
group. The total number of keys is 2x|DC| + |MD|. DCi has
to keep KPO

DCi
, a shared key with each MD belongs to its group,

and a group key. The total is 2 + |MDLISTi|. For MD j, for
each group Gi it belongs to, it has to keep a shared key with
DCi and the group key GKi. It is worth noting that MD j can
establish different shared keys with PO through different DCs.
If PO provides different gc’s for different DCs, the shared keys
developed via different DCs must be different. Even when PO
provides the same gc through different DCs, MD j can also
establish different shared keys by replying different gd’s for
different DCs. Therefore, MD j has to keep at most 3 x number
of groups it belongs to keys in total. PO decides how many
groups an MD is associated with and can thus establish keys
according to the memory available in different MDs.

V. DATA COLLECTION AND COMMAND DELIVERY

A. PO initiates Data Collection of a Group of or All MDs

It is a regular data collection initiated by the PO. We want
the data collection to be secure, scalable, and efficient. To
ensure data confidentiality and integrity, data reported by MD j
is encrypted using KPO

MD j
, a key shared by the PO and MD j

only. Our data collection protocol is scalable because a single
DC would collect data from multiple MDs. PO no longer
needs to establish a single session to each MD. To acheive
efficiency, we do not require computationally-constrained MDs
to perform a lot of expensive operations. We also reduce the
number of messages exchanged. To further reduce the time of
data collection, we study how to assign DCs to collect data
from the MDs in Section VI. In the following, we first present
the data collection procedure in a step by step manner. Fig. 3
shows the whole process. In the figure, K1, K2, and K3 are
KPO

DCi
, KPO

MD j
, and KDCi

MD j
, respectively.

PO	
 DC	
 MD	

M1	
 =	
 SKE(K1,	
 T	
 ||	
 SIGN(PO,	
 T))	

M2	
 =	
 SKE(GK,	
 T	
 ||	
 SIGN(PO,	
 T))	

M3	
 =	
 PRODATA,	
 HASH(GENKEY(K3,	
 T),	
 PRODATA)	

M4	
 =	
 SKE(GENKEY(K1,	
 T),	
 PRODATA)	

K1	
 –	
 shared	
 key	
 between	
 PO	
 and	
 DC	

K2	
 –	
 shared	
 key	
 between	
 PO	
 and	
 MD	

K3	
 –	
 shared	
 key	
 between	
 DC	
 and	
 MD	

GK	
 –	
 group	
 key	

PRODATA	
 is	
 encrypted	
 and	

integrity-­‐protected	
 using	

GENKEY(K2,	
 T)	

Fig. 3. Data Collection.

1) PO first identifies all the DCs to talk to according to a
certain optimization criterion. It captures the current timestamp
T , signs it, encrypts T and the signature using KPO

DCi
, and sends

the encrypted message to DCi. Note that it is possible that PO
does not want to collect data from some MDs in MDLISTi. If
so, PO should also include the list of intended MDs. We omit
that in our protocol to simplify the discussion.

PO→ DCi: SKE(KPO
DCi

,T ||SIGN(PO,T))
2) Upon receiving the message, DCi can retrieve

T ||SIGN(PO,T)) using the shared key. It first verifies

the signature to ensure the message has not been tampered. To
detect whether the message is a replayed one, it checks whether
T is acceptable. It then encrypts T ||SIGN(PO,T)) using the
group key GKi and sends the message to MD j ∈MDLISTi (or
only the MDs PO wants to collect data from).

DCi→MD j: SKE(GKi,T ||SIGN(PO,T))

By encrypting the message using the group key, DCi only
needs to create a single message for all MDs in its group.
However, the group key cannot authenticate it was PO who
requested the data collection because it is a key shared by
many entities. We thus need to include a signature of PO to
facilitate authentication. This message should work fine if DCi
has to collect data from every MD in MDLISTi. However,
when some MDs are not supposed to report data, those are
not reporting can also read T in the message. As T is only a
timestamp and is not a secret, knowing T would not allow MDs
to launch any attack. However, if this is a serious concern, DCi
can send SKE(KDCi

MD j
,T ||SIGN(PO,T)) to the involved MDs

instead. The disadvantage of this approach is DCi needs to
create a different message for different MD and possibly incurs
more delay in the data collection process. As an attacker does
not know GKi and cannot forge SIGN(PO,T), the message is
safe from impersonation.
3) When MD j receives the message, it retrieves the content

using GKi. It first verifies the signature and whether T is
within an acceptable range. If so, MD j generates keys for
protecting the data and allows DCi to perform integrity check.
Let the Message Key (MK) be MK = GENKEY (KPO

MD j
,T). An

encryption key and an integrity key developed based on MK
are used to protect the data. The protected data is denoted
as PRODATA. As MK depends on T , different MK’s will
be used for different data collection instances even KPO

MD j
is

not changed. MD j also generates DK = GENKEY (KDCi
MD j

,T)
to protect from message tampering. The hash of PRODATA
using DK is computed and sent to DCi.

MD j→ DCi: PRODATA,HASH(DK,PRODATA)

Note that as PRODATA is encrypted using a derivative of
KPO

MD j
, DCi cannot decrypt and read it. PRODATA is thus secure

against honest-but-curious DCs. The hash of PRODATA, on
the other hand, is computed using a derivative of KDCi

MD j
. DCi

can thus check whether an attacker has tampered the message
before relaying the data back to the PO. As an attacker does
not know KDCi

MD j
, he cannot impersonate MD j to send DCi the

data.
4) When the encrypted data arrives, DCi verifies the hash

to ensure PRODATA was generated by MD j even it cannot
decrypt PRODATA. It then forwards PRODATA to PO by en-
crypting it GENKEY (KPO

DCi
,T). Alternatively, DCi can encrypt

all the replies from MDs in a single message. In this case,
only a single symmetric key encryption is needed, but PO may
receive some data later.

DCi→ PO: SKE(GENKEY (KPO
DCi

,T),PRODATA)

5) Upon receiving the message, PO retrieves PRODATA by
decrypting the message using GENKEY (KPO

DCi
,T). It also de-

velops MK to extract the data from PRODATA. Because KPO
DCi

is a shared secret between PO and DCi, an attacker cannot forge
the message. If the message is tampered, say, a bit is flipped,
PRODATA decrypted would be scrambled and would not pass
the integrity check using MK. The data sent from MD j are
thus remain confidential and secure.

It can be observed that each MD, each DC, and the PO need
to perform one public key operation only no matter how many
messages it has to handle. Besides, the signature verification
that MDs and DCs have to perform is not very expensive when
compared with signature creation. Our protocol is thus very
light-weight and scalable.

B. PO requests data from MD j

We list the steps PO can take to request date from MD j:
1) PO first identifies a certain DCi such that MD j ∈ Gi. T

is the timestamp. Apart from signing the timestamp, PO also
encrypts the timestamp using KPO

MD j
.

PO→ DCi: SKE(KPO
DCi

,T ||SIGN(PO,T)||SKE(KPO
MD j

,T))
2) DCi sends the information to MD j after verifying the

signature on T .
DCi→MD j: SKE(KDCi

MD j
,T ||SKE(KPO

MD j
,T))

Steps 3 - 5 are the same as in Section V-A.
Similar mechanism can be used for PO to issue an urgent

command to MD j. MD j should respond with an acknowledge-
ment instead of PRODATA.

C. MD j initiates an urgent data report

The following are the steps by MD j to report unsolicited
urgent data:

1) MD j first identifies a certain DCi to relay the message
and records the current timestamp T . PRODATA and DK
are generated as in Step 3 in Section V-A.

MD j→ DCi:
SKE(KDCi

MD j
,T ||PRODATA||HASH(DK,PRODATA))

2) DCi verifies the hash and forwards PRODATA to PO.
DCi→ PO: SKE(KPO

DCi
,T ||PRODATA)

3) PO can then extract T using KPO
DCi

to develop the appro-
priate keys to decrypt PRODATA.

In reporting emergency information, latency and reliability
are very important. In the protocol, MD j does not need to
perform any expensive public key operation before sending
the data report. The latency is thus very small. To en-
hance reliability, MD j can send the data to PO via multiple
DCs. It has to compute HASH(DK,PRODATA) and encrypt
T ||PRODATA||HASH(DK,PRODATA) using different keys
for different DCs in Step 1. As both operations are not
expensive, MD j can send out the reports promptly.

D. PO issues an urgent command to a group of MDs

When PO invoke a group of MDs, it employs the following:
1) Similar to requesting data, PO should first identify the

DCs that cover all the MDs that it wants to send the urgent

command to. Let the command be COMD. MDLISTi contains
the MDs that DCi should talk to.

PO→ DCi:
SKE(KPO

DCi
,SIGN(PO,COMD)||MDLISTi||COMD)

2) DCi sends to each MD j in MDLISTi the urgent command.
DCi→MD j: SKE(GKi,SIGN(PO,COMD)||COMD)

The signature of the command by the PO provides authen-
tication check to all MDs and DCs. By using a group key in
Step 2, we share the same issue as in Step 2 of Section V-A.
The administrator can thus select the most appropriate way to
strike a balance of security and efficiency.

VI. GROUPING OPTIMIZATION

A. Deriving the Optimized Data Collection Time

We now consider how to minimize the time to perform
data collection from a group of MDs by selecting a single
appropriate DC to collect data from each MD. To compute
the total time needed for PO to collect the data, we first
define some notations to represent the time needed to perform
a single cryptographic operation defined in Table II. Theoreti-
cally speaking, the time needed for a cryptographic operation
depends on the size of the message. As we only perform public
key operations on small-sized messages, we ignore this factor
and denote T p(OP,A) as the time needed for A to execute
public key cryptographic operation PKE, PKD, SIGN, and
SIGV . For example, the time for PO to sign a message is
T p(SIGN,PO). To capture the effect of message size on the
computational time of symmetric key and hash operations, we
denote the time needed as T s(OP,A,SIZE). As symmetric key
encryption and decryption take roughly the same time, we use
SK to represent both SKE and SKD. We also use HASH to
denote both hash computation and verification. To simplify our
discussion, we assume the size of T ||SIGN(PO,T) in Section
V-A as 1 unit. That is, the time needed for DCi to develop
message SKE(GKi,T ||SIGN(PO,T)) is T s(SK,DCi,1). The
one-way network delay between A and B is T n(A,B). We also
let xi j = 1 if MD j belongs to Gi.

To simplify our discussion, we use M1, M2, M3, and M4
to represent the four messages exchanged between PO, DCs,
and MDs as shown in Fig. 3. We only consider the situation
where a DC reports all data collected in a single message to
PO. To illustrate the process of time analysis, we present Fig.
4 to explain the different time components in the whole data
collection process. In the picture, we assume there are only
two MDs.

We first develop the time needed for DCi, after having pre-
pared M2, to send message M2 = SKE(GKi,T ||SIGN(PO,T))
to MD j and verify the hash of MD j’s reply, which is denoted
as Ti j. Ti j is the sum of the following components:

1) round-trip network delay between DCi and MD j:
2T n(DCi,MD j)

2) time needed for MD j to generate reply M3 (Step 3):
T s(SK,MD j,1)+T p(SIGV,MD j)+T s(SK,MD j,size)+
2T s(HASH,MD j,size) where size is the size of the data
in terms of number of units.

PO	
 DCi	
 MD1	
 MD2	

M1	

M2	

M3	

M3	

M4	

Ti1	

Ti2	

M3	
 hash	
 verifica5on	

TcDCi	
 TDCi	

Decrypt	
 M1	
 and	
 	

prepare	
 M2	

Prepare	
 M4	

Retrieve	
 data	

from	
 M4	

Fig. 4. Time for Data Collection.

3) time needed for DCi to verify the hash:
T s(HASH,DCi,size)

Before DCi can send message M2 =
SKE(GKi,T ||SIGN(PO,T)) to MD j, DCi needs to decrypt
M1 and prepare M2. As described in Step 2 in Section V-A,
DCi has to spend 2T s(SK,DCi,1) + T p(SIGV,DCi) time to
prepare M2. We now study the time needed for DCi to prepare
the reply (M4) to PO after verifying the hashes of the replies
from all MDs. Let Ni be ∑ j xi j. That is, Ni is the number
of MDs in Gi. The total amount of data received by DCi is
Ni× size. The time to prepare M4 is T s(SK,DCi,Ni× size).
Therefore, the total time needed for DCi from the moment it
receives M1 from PO to the moment it sends out M4 to the
PO is:

T c
DCi

= 2T s(SK,DCi,1)+T p(SIGV,DCi)+max j{xi jTi j}
+T s(SK,DCi,Ni× size)

We now study the time from the moment that PO sends
out M1 until the moment that PO successfully decrypts and
verifies the data carried in M4 sent by DCi. We denote
this time as TDCi . To retrieve the raw data from M4 =
SKE(GENKEY (KPO

DCi
,T),PRODATA), PO first needs to de-

crypt M4 using GENKEY (KPO
DCi

,T). It then needs to decrypt
and verify the hash carried in PRODATA. Therefore, TDCi is

TDCi = 2T n(PO,DCi)+T c
DCi

+

2T s(SK,PO,Ni× size)+T s(HASH,PO,Ni× size)

= f (i)+max j{xi jTi j} (1)

where
f (i) = 2T s(SK,DCi,1)+T p(SIGV,DCi)+2T n(PO,DCi)

+2T s(SK,PO,Ni× size)+T s(HASH,PO,Ni× size)

B. Problem Formulation

When PO wants to collect all data as soon as possible,
we should assign each MD to an appropriate DC such that
the maximum TDCi over all i ∈ D is minimized. Such an
objective leads to what is known in the literature as a minimax
problem. From Equation 1, we can simplify the terms into
two major categories for the minimax optimization: One is
the maximizing component (max j{xi jTi j}) and the other is
the summative part (f (i)). The former consists mostly of
the network delay whose maximum value will determine

the total completion time for data collection by a DC. The
latter includes the processing time, including the cryptographic
computation, whose total time will be a summation operation.
In what follows, we will ignore the maximization components,
as it is rather trivial to address alone, and concentrate on the
summative part. Under a realistic data collection scenario,
summative component will likely be the dominant term to
determine the overall performance.

When the summative part is considered, the problem looks
very similar to the makespan minimization problem from
the scheduling theory [46], [47]. Scheduling theory considers
problems where a set of jobs (tasks) are to be assigned to a set
of machines or processors to satisfy an objective. One machine
can only work on one job at a time. The well-established
3-field classification introduced in [48] uses α|β |γ notation,
where job, machine, and scheduling characteristics are denoted
by α , β , and γ , respectively. The summative part of our
objective function is denoted by Q||Cmax, where arbitrary
number of machines operating at different speeds must be used
to complete a given set of tasks with the minimum makespan
objective. This problem setting is also known in the literature
as uniform parallel machines [49]. In our problem, machines
are DCs, and tasks are MDs whose data need to be collected.

The Integer Linear Programming (ILP) formulation for our
summative part may be formulated as follows:

min max ∑
j

xi jti j (2)

s.t. ∑
j

xi j = 1, ∀i ∈ D (3)

xi j ∈ {0,1} ∀i ∈ D,∀ j ∈M (4)

where xi j represents whether DC i is assigned to collect data
from MD j, and ti j is the amount of the summative part of
the total data collection time of MD j’s data by DC i.

When we let Cmax represent the maximum data collection
time, the above formulation can be rewritten in a standard
form as follows:

min Cmax (5)

s.t. ∑
j

xi j = 1, ∀i ∈ D (6)

∑
j

xi jti j ≤Cmax, ∀i ∈ D (7)

xi j ∈ {0,1} ∀i ∈ D,∀ j ∈M (8)

The above problem can be shown to be strongly NP-
Hard [50], [51] by a reduction from a 3-Partition problem [52].
Also note that this problem is a kind of the dual of the bin
packing problem [50], [53].

As solving the ILP of minimum makespan is NP-hard by
reduction from a 3-Partition problem, and thus making it
unlikely that a polynomial algorithm exists, we develop a
greedy heuristic, Least Loaded DC First (L3F), to solve the
problem. We find the largest time for data collection for any
(DC,MD) pair, say δ ,µ . We assign MD µ to a DC that will
complete in the least time. Next, we pick the next largest time

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4
3.6
3.8

Distance from Optimal for MD = 25 − 70, DC = 10 − 20

Different Number of (MD,DC) Pairs
(2

5,
10

)

(2
5,

20
)

(2
5,

30
)

(4
0,

10
)

(4
0,

20
)

(4
0,

30
)

(5
5,

10
)

(5
5,

20
)

(5
5,

30
)

(7
0,

10
)

(7
0,

20
)

(7
0,

30
)

R
at

io
 to

 IL
P

 O
pt

im
al

 S
ol

ut
io

n

L3F
ILP (Optimal)

Fig. 5. Ratio of total data collection time for L3F to Optimal ILP.

50 100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

Number of MDs

T
ot

al
 T

im
e

Total Time for Greedy Longest to Least Loaded First

DC=25
DC=50
DC=75
DC=100

Fig. 6. Performance of L3F in terms of total data collection time over
changing the number of MDs with 4 different number of DCs.

and assign it to the least loaded DC for the corresponding
MD. We iterate until we deplete unassigned MDs. It is obvious
that the complexity of the algorithm is O(d). Due to the page
limitation, we omit the details of the full algorithm and refer
the reader to [45].

VII. PERFORMANCE EVALUATION

We have used CPLEX to solve the ILP formulations and
implemented our approaches in C++. Since the problem is
NP-Hard, the ILP formulation that can be solved by CPLEX
hits a wall rather quickly: After about 70 MDs and 35 DCs,
CPLEX started taking very long to yield any results. Thus, we
have run some simulations up to 70 MDs and 35 DCs each
with 30 runs to get an idea of the comparative performance
results. The time for collecting data from MDs by DCs are
randomly generated from a uniform probability distribution in
the range of 10 to 100. The number of DCs took the values
of 10, 20, and 30 while the number of MDs were assigned
25, 40, 55, and 70. All possible combinations were run for 30
times for statistical significance.

Figure 5 shows the performance of ILP and L3F for all 12
combinations of the number of MDs and DCs. It plots the total
time values returned by the ILP from CPLEX as the reference
point and hence shows it as a straight line on bottom. L3F,

being a greedy algorithm, performed worse with an average
distance ratio to the optimum of approximately 1.96.

For more MDs and DCs, ILP cannot yield results. Thus,
we only report L3F in extensive simulations with the number
of MDs going up to 1000 in increments of 50 starting from
50 and number of DCs at 25, 50, 75, 100. We had a total of
80 unique (MD,DC) pairs. Again, in order to attain statistical
significance, each combination pair was run 30 times. The
time values for the data collection from MDs by DCs were
generated using a uniform density function in the range of
10 to 100. Figure 6 displays the total time of data collection
for L3F over the number of MDs from 50 to 1000 for 25,
50, 75, and 100 DCs as separate lines. Except for when the
number of DCs was equal to 25, the total time increases with
respect to larger number of MDs is with moderate slope. When
DC is equal to 25, the increase is rather steep but still linear.
This behavior might indicate that when there is significant
imbalance between the number of DCs and MDs the total time
to collect data may adversely affected. This point of operating
overload is hard to have a threshold value to associate with
but nevertheless should be considered.

VIII. CONCLUSION

The bidirectional power and information flow of the Smart
Grid vision has led to the proliferation of a variety of measure-
ment devices. These devices generate unprecedented amounts
of data. The existing, legacy protocols are not capable of
addressing this new phenomenon. In order to address this
challenge, we propose a comprehensive and secure com-
munications protocol to enable a power operator to collect
data from measurement devices in a practical, scalable, and
efficient manner under a hierarchical data collection model.
Intermediary nodes are assumed to follow the honest-but-
curious model in relaying the data. Thus, our protocol paves
the way for third party service provisioning, as envisioned by
the NIST Smart Grid Framework. Examples of such services
include outsourcing data collection by third party DCs, utiliz-
ing cloud computing services for data storage and processing,
etc. We formulate an optimization problem for associating the
intermediary relay nodes with measurement devices for data
collection in order to minimize the total data collection time.
The problem is intractable and thus we present a heuristic
algorithm with good approximation and fast convergence.

REFERENCES

[1] N. Kayastha, D. Niyato, E. Hossain, and Z. Han, “Smart grid sensor
data collection, communication, and networking: a tutorial,” Wireless
Communications and Mobile Computing, pp. n/a–n/a, 2012.

[2] National Institute of Standards and Technology. (2013, October) NIST
Framework and Roadmap for Smart Grid Interoperability Standards,
Release 3.0. Smart Grid Interoperability Panel (SGIP).

[3] X. Fang, S. Misra, G. Xue, and D. Yang, “Managing smart grid infor-
mation in the cloud: opportunities, model, and applications,” Network,
IEEE, vol. 26, no. 4, pp. 32–38, July 2012.

[4] S. Bera, S. Misra, and J. Rodrigues, “Cloud computing applications for
smart grid: A survey,” IEEE Tran. on Par. and Dist. Sys., no. 99, 2014.

[5] R. Tabassum, K. Nahrstedt, E. Rogers, and K.-S. Lui, “SCAPACH: Scal-
able password-changing protocol for smart grid device authentication,”
in Proc. of Third International Workshop on Privacy, Security, and Trust
in Mobile and Wireless Systems (MobiPST), 2013.

[6] RFC 5246, “The transport layer security (tls) protocol version 1.2,” 2008.
[7] Y.-J. Kim, V. Kolesnikov, and M. Thottan, “Resilient end-to-end mes-

sage protection for large-scale cyber-physical system communications,”
in Smart Grid Communications (SmartGridComm), 2012 IEEE Third
International Conference on, Nov 2012, pp. 193–198.

[8] IEEE 1815-2012, “Dnp3 secure authentication version 5,” 2011.
[9] International Electrotechnical Commission’s (IEC) Technical Committee

57 (TC57). (2003) IEC 61850, Power Utility Automation .
[10] W. Wang and Z. Lu, “Cyber security in the smart grid: Survey and

challenges,” Computer Networks, vol. 57, no. 5, pp. 1344 – 1371, 2013.
[11] Y.-J. Kim, V. Kolesnikov, H. Kim, and M. Thottan, “SSTP: a scalable

and secure transport protocol for smart grid data collection,” in Proc. of
IEEE SmartGridComm, 2011.

[12] T. Khalifa, K. Naik, M. Alsabaan, A. Nayak, and N. Goel, “Transport
protocol for smart grid infrastructure,” in Proc. of IEEE International
Conference on Ubiquitous and Future Networks, 2010.

[13] X. Long, D. Tipper, and Y. Qian, “An advanced key management
scheme for secure smart grid communications,” in Proc. of IEEE
SmartGridComm, 2013.

[14] N. Liu, J. Chen, L. Zhu, J. Zhang, and Y. He, “A key management
scheme for secure communications of advanced metering infrastructure
in smart grid,” IEEE Tran. on Ind. Elect., vol. 60, no. 10, 2013.

[15] D. Wu and C. Zhou, “Fault-tolerant and scalable key management for
smart grid,” IEEE Trans. on Smart Grid, vol. 2, no. 2, June 2011.

[16] M. M. Fouda, Z. M. Fadlullah, N. Kato, R. Lu, and X. Shen, “A
lightweight message authentication scheme for smart grid communica-
tions,” IEEE Tran. on Smart Grid, vol. 2, no. 4, Dec. 2011.

[17] C. Bekara, T. Luckenbach, and K. Bekara, “A privacy preserving and
secure authentication protocol for the advanced metering infrastructure
with non-repudiation service,” in Proc. of ENERGY, 2012.

[18] Y. Law, G. Kounga, and A. Lo, “WAKE: Key management scheme for
wide-area measurement systems in smart grid,” IEEE Comm. Mag., Jan.
2013.

[19] N. Liu, J. Chen, L. Zhu, J. Zhang, and Y. He, “A key management
scheme for secure communications of advanced metering infrastructure
in smart grid,” IEEE Tran. on Industrial Electronics, vol. 60, no. 10, pp.
4746–4756, Oct 2013.

[20] A. Seshadri, M. Luk, and A. Perrig, “Sake: Software attestation for key
establishment in sensor networks,” in Proc. of International Conference
on Distributed Computing in Sensor Systems, 2008.

[21] H. Nicanfar and V. Leung, “Multilayer consensus ecc-based password
authenticated key-exchange (mcepak) protocol for smart grid system,”
IEEE Tran. on Smart Grid, vol. 4, no. 1, 2013.

[22] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “Spins:
Security protocols for sensor networks,” Wirel. Netw., vol. 8, no. 5, pp.
521–534, Sep. 2002.

[23] S. Uludag, S. Zeadally, and M. Badra, “Techniques, Taxonomy, and
Challenges of Privacy Protection in Smart Grid,” in Privacy in a Digital,
Networked World. Springer London, Feb. 2015.

[24] W. He, X. Liu, H. Nguyen, K. Nahrstedt, and T. Abdelzaher, “Pda:
Privacy-preserving data aggregation in wireless sensor networks,” in
IEEE INFOCOM 2007, May 2007, pp. 2045–2053.

[25] W. He, H. Nguyen, X. Liu, K. Nahrstedt, and T. Abdelzaher, “iPDA: An
integrity-protecting private data aggregation scheme for wireless sensor
networks,” in IEEE MILCOM 2008, Nov 2008, pp. 1–7.

[26] T. Feng, C. Wang, W. Zhang, and L. Ruan, “Confidentiality protection
for distributed sensor data aggregation,” in IEEE INFOCOM, April 2008.

[27] M. Groat, W. He, and S. Forrest, “Kipda: k-indistinguishable privacy-
preserving data aggregation in wireless sensor networks,” in IEEE
INFOCOM, April 2011, pp. 2024–2032.

[28] Y. Yan, Y. Qian, and H. Sharif, “A secure and reliable in-network col-
laborative communication scheme for advanced metering infrastructure
in smart grid,” in IEEE WCNC, March 2011, pp. 909–914.

[29] K. Kursawe, G. Danezis, and M. Kohlweiss, “Privacy-friendly aggrega-
tion for the smart-grid,” in Privacy Enhancing Technologies. Springer,
2011, vol. 6794, pp. 175–191.

[30] C. Rottondi, G. Verticale, and C. Krauss, “Distributed privacy-preserving
aggregation of metering data in smart grids,” IEEE JSAC, vol. 31, no. 7,
pp. 1342–1354, July 2013.

[31] H. Nicanfar, A. Alasaad, P. Talebifard, and V. Leung, “Network coding
based encryption system for advanced metering infrastructure,” in IEEE
ICCCN, July 2013, pp. 1–7.

[32] D. Niyato and P. Wang, “Cooperative transmission for meter data
collection in smart grid,” Communications Magazine, IEEE, vol. 50,
no. 4, pp. 90–97, April 2012.

[33] S. Shao, S. Guo, X. Qiu, L. Meng, Y. Jiao, and W. Wei, “Traffic schedul-
ing for wireless meter data collection in smart grid communication
network,” in Computing, Communication and Networking Technologies
(ICCCNT), 2014 International Conference on, July 2014, pp. 1–7.

[34] F. Li, B. Luo, and P. Liu, “Secure information aggregation for smart
grids using homomorphic encryption,” in Smart Grid Communications
(SmartGridComm), 2010 First IEEE International Conference on, Oct
2010, pp. 327–332.

[35] N. Yukun, T. Xiaobin, C. Shi, W. Haifeng, Y. Kai, and B. Zhiyong, “A
security privacy protection scheme for data collection of smart meters
based on homomorphic encryption,” in EUROCON, 2013 IEEE, July
2013, pp. 1401–1405.

[36] J. Kamto, L. Qian, J. Fuller, J. Attia, and Y. Qian, “Key distribution and
management for power aggregation and accountability in advance meter-
ing infrastructure,” in Smart Grid Communications (SmartGridComm),
2012 IEEE Third International Conference on, Nov 2012, pp. 360–365.

[37] F. Li and B. Luo, “Preserving data integrity for smart grid data
aggregation,” in Smart Grid Communications (SmartGridComm), 2012
IEEE Third International Conference on, Nov 2012, pp. 366–371.

[38] T. Chim, S. Yiu, V. Li, C. Hui, and J. Zhong, “PRGA: Privacy-
preserving Recording amp; Gateway-assisted Authentication of Power
Usage Information for Smart Grid,” IEEE Tran. on Dependable and
Secure Computing, vol. PP, p. 1, 2014.

[39] L. Chen, R. Lu, and Z. Cao, “PDAFT: A privacy-preserving data
aggregation scheme with fault tolerance for smart grid communications,”
Peer-to-Peer Networking and Applications, pp. 1–11, 2014.

[40] J. Hur, “Attribute-based secure data sharing with hidden policies in smart
grid,” IEEE Tran. on Par. and Dist. Sys., vol. 24, no. 11, 2013.

[41] P. Li, S. Guo, and Z. Cheng, “Joint optimization of electricity and
communication cost for meter data collection in smart grid,” IEEE Tran.
on Emerging Topics in Computing, vol. 1, no. 2, pp. 297–306, Dec 2013.

[42] P. Li and S. Guo, “Delay minimization for reliable data collection on
overhead transmission lines in smart grid,” in Computing, Communica-
tions and IT Applications Conference (ComComAp), 2013, April 2013,
pp. 147–152.

[43] M. Qiu, H. Su, M. Chen, Z. Ming, and L. Yang, “Balance of security
strength and energy for a pmu monitoring system in smart grid,”
Communications Magazine, IEEE, vol. 50, no. 5, pp. 142–149, May
2012.

[44] G. Dan, K.-S. Lui, R. Tabassum, Q. Zhu, and K. Nahrstedt, “SELINDA:
A secure, scalable and light-weight data collection protocol for smart
grids,” in Proc. of IEEE SmartGridComm, 2013.

[45] S. Uludag, K.-S. Lui, W. Ren, and K. Nahrstedt, “Secure and Scalable
Communications Protocol for Data Collection with Time Minimization
in the Smart Grid,” Department of Computer Science, University
of Illinois at Urbana-Champaign, Tech. Rep. 2014-07-16, July 2014.
[Online]. Available: http://hdl.handle.net/2142/49985

[46] J. Y.-T. Leung, Handbook of scheduling : algorithms, models, and
performance analysis. Boca Raton, Fla.: Chapman & Hall/CRC, 2004.

[47] M. Pinedo, Scheduling: Theory, Algorithms, and Systems. Springer,
2008.

[48] R. Graham, E. Lawler, J. Lenstra, and A. Kan, “Optimization
and approximation in deterministic sequencing and scheduling:
a survey,” ser. Annals of Discrete Mathematics. Elsevier,
1979, vol. 5, no. 2, pp. 287 – 326. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016750600870356X

[49] P. Brucker, Scheduling Algorithms. Springer, 2007. [Online]. Available:
http://books.google.com/books?id=FrUytMqlCv8C

[50] J. Y.-T. Leung, “Bin packing with restricted
piece sizes,” Information Processing Letters, vol. 31,
no. 3, pp. 145 – 149, 1989. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0020019089902238

[51] D. S. Hochbaum and D. B. Shmoys, “Using dual approximation
algorithms for scheduling problems theoretical and practical results,”
J. ACM, vol. 34, no. 1, pp. 144–162, Jan. 1987. [Online]. Available:
http://doi.acm.org/10.1145/7531.7535

[52] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[53] E. Coffman, Jr., M. Garey, and D. Johnson, “An application
of bin-packing to multiprocessor scheduling,” SIAM Journal on

Computing, vol. 7, no. 1, pp. 1–17, 1978. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/0207001

