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CHAPTER 10

Statistical Measures for Usage-Based

Linguistics

Stefan Th. Gries and Nick C. Ellis
University of California, Santa Barbara and University of Michigan, Ann Arbor

The advent of usage-/exemplar-based approaches has resulted in a major change in
the theoretical landscape of linguistics, but also in the range of methodologies that
are brought to bear on the study of language acquisition/learning, structure, and use.
In particular, methods from corpus linguistics are now frequently used to study distri-
butional characteristics of linguistics units and what they reveal about cognitive and
psycholinguistic processes. This paper surveys a range of psycholinguistic notions that
are becoming ever more important in theoretical and cognitive linguistics—for example,
frequency, entrenchment, dispersion, contingency, surprisal, Zipfian distributions—and
current corpus-linguistic approaches toward exploring these notions and their roles for
linguistic cognition.

Keywords corpus data; psycholinguistics; associative learning; frequency; dispersion;
contingency/association; surprisal

Usage-Based Approaches: Psycholinguistics and Corpus Analysis

Usage-based approaches see language as a large repertoire of symbolic con-
structions. These are form–meaning mappings that relate particular patterns
of lexical, morphological, syntactic and/or prosodic form with particular se-
mantic, pragmatic, and discourse functions (Bates & MacWhinney, 1989;
Goldberg, 2006; Robinson & Ellis, 2008; Tomasello, 2003; Trousdale &
Hoffmann, 2013). These allow communication because they are convention-
alized in the speech community. People learn them from engaging in com-
munication, the “interpersonal communicative and cognitive processes that
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everywhere and always shape language” (Slobin, 1997). Repeated experience
results in their becoming entrenched as language knowledge in the learner’s
mind.

Constructionist accounts thus investigate processes of language acquisition
that involve the distributional analysis of the language stream and the parallel
analysis of contingent cognitive and perceptual activity, with abstract con-
structions being learned from the conspiracy of concrete exemplars of usage
following statistical learning mechanisms relating input and learner cogni-
tion (Rebuschat & Williams, 2012). Psychological analyses of these learning
mechanisms are informed by the literature on the associative learning of cue-
outcome contingencies, where the usual determinants include: factors relating
to the form such as frequency and salience; factors relating to the functional in-
terpretation such as significance in the comprehension of the overall utterance,
prototypicality, generality, and redundancy; factors relating to the contingency
of form and function; and factors relating to learner attention, such as auto-
maticity, transfer, overshadowing, and blocking (Ellis, 2002, 2003, 2006, 2008).
These various psycholinguistic factors conspire in the acquisition and use of
any linguistic construction. Research into language and language acquisition
therefore requires the measurement of these factors.

From its very beginnings, psychological research has recognized three ma-
jor experiential factors that affect cognition: frequency, recency, and context of
usage (e.g., Anderson, 2000; Bartlett, 1932/1967; Ebbinghaus, 1885). “Learn-
ers FIGURE language out: their task is, in essence, to learn the probability
distribution P(interpretation|cue, context), the probability of an interpretation
given a formal cue in a particular context, a mapping from form to meaning
conditioned by context” (Ellis, 2006, p. 8). But assessing these probabilities is
nontrivial, because constructions are nested and overlap at various levels (mor-
phology within lexis within grammar); because sequential elements are memo-
rized as wholes at (and sometimes crossing) different levels; because there are
parallel, associated, symbiotic, thought-sound strands that are being chunked—
language form, perceptual representations, motoric representations, . . . ,
the whole gamut of cognition—and because there is no one direction of
growth—there is continuing interplay between top-down and bottom-up pro-
cesses and between memorized structures and more open constructions: “Lan-
guage, as a complex, hierarchical, behavioral structure with a lengthy course
of development . . . is rich in sequential dependencies: syllables and formulaic
phrases before phonemes and features . . . , holophrases before words, words
before simple sentences, simple sentences before lexical categories, lexical ca-
tegories before complex sentences, and so on” (Studdert-Kennedy, 1991, p. 10).
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Constructions develop hierarchically by repeated cycles of differentiation and
integration. Recent developments in corpus and cognitive linguistics are ad-
dressing these issues of operationalization and measurement with increasing
sophistication (Baayen, 2008, 2010; Gries, 2009, 2013; Gries & Divjak, 2012).
This paper summarizes relevant factors and how these can be operationalized
and explored on the basis of corpus data.

Psycholinguistic Desiderata and Corpus-Linguistic Responses

Frequency
The most fundamental factor that drives learning is the frequency of repetition
in usage. This determines whether learners are likely to experience a construc-
tion and, if so, how strongly it is entrenched, accessible, and its processing
automatized.

Sampling
Language learners are more likely to experience more frequent usage events.
They have limited exposure to the target language but are posed with the
task of estimating how linguistic constructions work from an input sample
that is incomplete, uncertain, and noisy. Native-like fluency, idiomaticity, and
selection presents another level of difficulty again. For a good fit, every utterance
has to be chosen from a wide range of possible expressions to be appropriate
for that idea, for that speaker and register, for that place/context, and for that
time. And again, learners can only estimate this from their finite experience.
Like other estimation problems, successful determination of the population
characteristics is a matter of statistical sampling, description, and inference.

Entrenchment
Learning, memory, and perception are all affected by frequency of usage: the
more times we experience something, the stronger our memory for it, and the
more fluently it is accessed. The power law of learning (Anderson, 1982; Ellis
& Schmidt, 1998; Newell, 1990) describes the relationships between practice
and performance in the acquisition of a wide range of cognitive skills—
the greater the practice, the greater the performance, although effects of prac-
tice are largest at early stages of learning, thereafter diminishing and eventually
reaching an asymptote. The more recently we have experienced something, the
stronger our memory for it, and the more fluently it is accessed. The more times
we experience conjunctions of features, the more they become associated in
our minds, the more these subsequently affect perception and categorization in
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the sense that we perceive and process them as a chunk; so a stimulus becomes
associated to a context and we become more likely to perceive it in that context.

Fifty years of psycholinguistic research has demonstrated language process-
ing to be exquisitely sensitive to usage frequency at all levels of language repre-
sentation: phonology and phonotactics, reading, spelling, lexis, morphosyntax,
formulaic language, language comprehension, grammaticality, sentence pro-
duction, and syntax (Ellis, 2002). Language knowledge involves statistical
knowledge, so humans learn more easily and process more fluently high fre-
quency forms and regular patterns that are exemplified by many types and that
have few competitors. Psycholinguistic perspectives thus hold that language
learning is the associative learning of representations that reflect the probabili-
ties of occurrence of form-function mappings. Frequency is a key determinant
of this kind of acquisition because “rules” of language, at all levels of analysis
from phonology, through syntax, to discourse, are structural regularities that
emerge from learners’ lifetime analysis of the distributional characteristics of
the language input.

Counting Frequencies in Corpora
Frequencies of occurrence and frequencies of co-occurrence constitute the
most basic corpus-linguistic data. In fact, one somewhat reductionist view of
corpus data would be that corpora typically have actually nothing more to of-
fer than frequencies of (co-)occurrence of character strings and that anything
else (usage-based) linguists are interested in—morphemes, words, construc-
tions, meaning, information structure, function—needs to be operationalized
in terms of frequencies of (co-)occurrence. Thus, linguistic data from corpora
can be ranked in terms of how (in)directly a particular object of interest is
reflected by corpus-based frequencies. On such a scale, frequency per se and
the way it contributes to, or more carefully “is correlated with,” entrenchment
is the simplest corpus-based information and is typically provided in the form
of tabular frequency lists of word forms, lemmas, n-grams (interrupted or con-
tiguous sequences of words), and so on. While seemingly straightforward, it is
worth noting that even this simplest of corpus-linguistic methods can require
careful consideration of at least two kinds of aspects.

First, counting tokens such as words requires an (often implicit) process of
tokenization, that is, decisions as to how the units to be counted are delimited.
In some languages, whitespace is a useful delimiter, but some languages do not
use whitespace to delimit, say, words (Mandarin Chinese is a case in point) so
a tokenizer is needed to break up sequences of Chinese characters into words
and different tokenizers can yield different results. Even in languages that do
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use whitespace (e.g., English), there may be strings one would want to consider
words even though they contain whitespace; examples include proper names
and titles (e.g., Barack Obama and Attorney General), compounds (corpus
linguistics), and multiword units (e.g., according to, in spite of, or on the one
hand). In addition, tokenization can be complicated by other characters (how
many words are 1960 or Peter’s dog?) or spelling inconsistencies (e.g., armchair
linguist vs. armchair-linguist). Practically, this means that it is often a good
idea to explore an inventory of all characters that are attested in a corpus before
deciding on how to tokenize a corpus.

Second, aggregate token frequencies for a complete corpus can be very
misleading since they may obscure the fact that tokens may exhibit very uneven
distributions in a corpus, a distributional characteristic called dispersion, which
is important both psycholinguistically and corpus-linguistically/statistically.

Dispersion
While frequency provides an overall estimate of whether learners are likely
to experience a construction, there is another dimension relevant to learning:
dispersion, that is, how regularly they experience a construction: Some con-
structions are equally distributed throughout language and will thus be experi-
enced somewhat regularly, others are found aggregated or clumped in particular
contexts or in bursts of time and may, therefore, only be encountered rarely,
but then frequently in these contexts. In other words, frequency answers the
question “how often does x happen?” whereas dispersion asks “in how many
contexts will you encounter x at all?”

Sampling Discourse Contexts
Language users are more likely to experience constructions that are widely or
evenly distributed in time or place. When they do so, contextual dispersion
indicates that a construction is broadly conventionalized, temporal dispersion
shares out recency effects.

Sampling Linguistic Contexts: Type and Token Frequency
Token frequency counts how often a particular form appears in the input. Type
frequency, on the other hand, refers to the number of distinct lexical items that
can be substituted in a given slot in a construction, whether it is a word-level
construction for inflection or a syntactic construction specifying the relation
among words. For example, the regular English past tense -ed has a very high
type frequency because it applies to thousands of different types of verbs,
whereas the vowel change exemplified in swam and rang has much lower type
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frequency; thus, in a sense, type frequency is a kind of dispersion. The pro-
ductivity of phonological, morphological, and syntactic patterns is a function
of type rather than token frequency (Bybee & Hopper, 2001). This is because:
(a) the more lexical items that are heard in a certain position in a construction,
the less likely it is that the construction is associated with a particular lexical
item and the more likely it is that a general category is formed over the items
that occur in that position; (b) the more items the category must cover, the
more general are its criterial features and the more likely it is to extend to
new items; and (c) high type frequency ensures that a construction is used fre-
quently and widely, thus strengthening its representational schema and making
it more accessible for further use with new items (Bybee & Thompson, 2000).
In contrast, high token frequency promotes the entrenchment or conservation
of irregular forms and idioms; irregular forms only survive because they are
high frequency.

The overall frequency of a construction compounds type and token fre-
quencies, whereas it is type frequency (dispersion over different linguistic
contexts) that is most potent in fluency and productivity of processing (Baayen,
2010). These factors are central to theoretical debates on linguistic process-
ing and the nature of abstraction in language regarding exemplar-based versus
abstract prototype representations, phraseology and the idiom principle ver-
sus open rule-driven construction, and the richness of exemplar memories and
their associations versus more abstract connectionist learning mechanisms that
tune the feature regularities but lose exemplar detail (Pierrehumbert, 2006).
Metrics of dispersion over different linguistic contexts are therefore key to
these inquiries.

Measuring Dispersion and Type Frequency in Corpora
Because virtually all corpus-linguistic data are based on frequencies, the fact
that very similar or even identical frequencies of tokens can come with very
different degrees of dispersion in a corpus makes the exploration of dispersion
information virtually indispensable. This fact is exemplified in Figure 1. Both
panels represent the frequency of words (logged to the base of 10) on the x-
axis and the dispersion metric DP (cf. Gries, 2008) on the y-axis. DP is very
straightforward to compute: (i) for each part of the relevant corpus, compute
its size si in percent of the whole corpus; (ii) also, for each part of the corpus,
compute how much of a token it contains in percent of all instances of the
token ti; and (iii) compute and sum up the absolute pairwise differences |si-ti|,
and divide the sum by 2. Thus, DP falls between 0 and approximately 1 and
low and high values reflect equal and unequal dispersion respectively. While

233 Language Learning 65:Suppl. 1, June 2015, pp. 228–255



Gries and Ellis Statistical Measures for Usage-Based Linguistics

Figure 1 The relation between (logged) frequency (on the x-axes) and DP (on the y-
axes): all words in the BNC sampler with a frequency �10 (left panel), 68 words from
different frequency bins (right panel).

there is the expected overall negative correlation between token frequency and
dispersion (indicated by the solid-line smoother)—infrequent tokens cannot be
highly dispersed, frequent ones are likely to be highly dispersed—there is a
large amount of diverse dispersion results for intermediately frequent words.
The left panel shows, for example, that especially in the frequency range of
2–3.5, words with very similar frequencies can vary enormously with regard to
their dispersion; in the right panel, this is exemplified more concretely: words
such as hardly and diamond, for instance, have nearly the exact same frequency
but are distributed very differently.

Because especially in psycholinguistics word frequency is often used as a
predictor or a control variable, results like these show that considering disper-
sion is just as important, or even more important for such purposes (cf. Gries,
2010, for how dispersion measures can be better correlated with reaction time
data than the usual frequency data).

As for type frequency, this is a statistic that is usually computed from
frequency lists (as when one determines all verbs beginning with under-), but
probably more often from concordance displays that show the linguistic element
in question in its immediate context. As discussed, in the case of morphemes
or constructions, the type frequency of an element is the number of different
types that the element co-occurs with, for example, the number of different
nouns to which a particular suffix attaches or the number of different verbs that
occur in a slot of a particular construction. While this statistic is easy to obtain,
it is again not necessarily informative enough because the type frequency per
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Figure 2 Type-token frequency distributions for constructions A and B in a hypothetical
data set.

se does not also reflect the frequency distribution of the types. For instance,
two constructions A and B may have identical token frequencies in a corpus
(e.g., 1,229) and identical type frequency of verbs entering into them, say, 5,
but these may still be distributed very differently, as is exemplified in Figure 2.

A measure to quantify the very different frequency distributions is rela-
tive entropy Hrel, a measure of uncertainty that approximates 1 as distributions
become more even (as in the left panel) and that approximates 0 as distribu-
tions become more uneven and, thus, more predictable (as in the right panel).
The Zipfian distributions that are so omnipresent in corpus-linguistic data
typically give rise to small entropy values; see also below. In sum, both disper-
sion and (relative) entropy are useful but as yet underutilized corpus statistics
that should be considered more often in corpus-linguistic approaches to both
cognitive/usage-based linguistics as well as psycholinguistics.

Contingency
Form–Function Contingency
Psychological research into associative learning has long recognized that while
frequency of form is important, so too is contingency of mapping (Shanks,
1995). Cues with multiple interpretations are ambiguous and so hard to re-
solve; cue-outcome associations of high contingency are reliable and readily
processed. Consider how, in the learning of the category of birds, while eyes
and wings are equally frequently experienced features in the exemplars, it
is wings that are distinctive in differentiating birds from other animals. Wings
are important features to learning the category of birds because they are reli-
ably associated with class membership while being absent from outsiders. Raw
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frequency of occurrence is therefore less important than the contingency be-
tween cue and interpretation. Reliability of form–function mapping is a driving
force of all associative learning, to the degree that the field of its study has
become known as “contingency learning.” These factors are central to the
Competition Model (MacWhinney, 1987, 1997, 2001) and to other models of
construction learning as the rational learning of form-function contingencies
(Ellis, 2006; Xu & Tennenbaum, 2007).

Context and Form-Form Contingency
Associative learning over the language stream allows language users to “find
structure in time” (Elman, 1990) and thus to make predictions. The words that
they are likely to hear next, the most likely senses of these words, the linguistic
constructions they are most likely to utter next, the syllables they are likely
to hear next, the graphemes they are likely to read next, the interpretations
that are most relevant, and the rest of what’s coming (next) across all levels of
language representation, are made readily available to them by their language
processing systems. Their unconscious language representation systems are
adaptively tuned to predict the linguistic constructions that are most likely to
be relevant in the ongoing discourse context, optimally preparing them for
comprehension and production. As a field of research, the rational analysis of
cognition is guided by the principle that human psychology can be understood
in terms of the operation of a mechanism that is optimally adapted to its
environment in the sense that the behavior of the mechanism is as efficient as
it conceivably could be, given the structure of the problem space and the cue–
interpretation mappings it must solve (Anderson, 1989). These factors are at the
core of language processing, small and large, from collocations (Gries, 2013),
to collostructions (Gries & Stefanowitsch, 2004; see below) to formulas (Ellis,
2012), parsing sentences (Hale, 2011), understanding sentences (MacDonald
& Seidenberg, 2006), and reading passages of texts (Demberg & Keller, 2008).

Measuring Contingency in Corpus Linguistics
Quantifying contingency has a long tradition in corpus linguistics. The per-
haps most fundamental assumption underlying nearly all corpus-linguistic re-
search is that similarity in distribution, of which co-occurrence is the most
frequent kind in corpus research, reflects similarity of meaning or function.
Thus, over the last decades a large variety of measures of contingency—so-
called association measures – have been developed (cf. Pecina, 2009 for a recent
overview). The vast majority of these measures are all based on a 2 × 2 co-
occurrence table of the kind exemplified in Table 1. In this kind of table, the two
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Table 1 Schematic co-occurrence table of token frequencies for association measures

Observed frequencies Element y Other elements Totals

Element x a b a+b
Other elements c d c+d
Totals a+c b+d a+b+c+d = N

linguistic elements x and y whose mutual (dis)preference for co-occurrence is
quantified—these can be words, constructions, other patterns—are listed in the
rows and columns, respectively, and the four cells of the table list frequencies
of co-occurrence in the corpus in question; the central frequency is a, which is
the co-occurrence frequency of x and y.

Most association measures require that one computes the expected frequen-
cies a, b, c, and d that would result from x and y co-occurring together as often
as would be expected from their marginal totals (a+b and a+c) as well as the
corpus size N. The following measures are among the most widely used ones:

(1) a. pointwise MI = log2
a

aexpected

b. z = a−aexpected√
aexpected

c. t = a−aexpected√
a

d. G2 = 2 ·
4∑

1
obs · log obs

exp

e. −log10 pFisher-Yates exact test

Arguably, (1e) is among the most useful measures because it is based
on the hypergeometric distribution, which means (i) quantifying the associa-
tion between x and y is treated as a sampling-from-an-urn-(the corpus)-with-
replacement problem and (ii) the measure is not computed on the basis of any
distributional assumptions such as normality. Precisely because of the fact that
(1e) involves an exact test, which could involve the computations of theoreti-
cally hundreds of thousands of probabilities for just one pair of elements x and y,
the log-likelihood statistic in (1d) is often used as a reasonable approximation.
In addition, since some measures have well-known statistical characteristics—
mutual information (MI) is known to inflate with low expected frequencies
(i.e., rare combinations) and t is known to prefer frequent co-occurrences—
researchers sometimes compute more than one association measure.

Applications of association measures are numerous but, for a long time, they
were nearly exclusively applied to collocations, that is, co-occurrences where
both elements x and y are words. For example, researchers would use association
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measures to identify the words y1-m that are most strongly attracted to a word
x; a particularly frequent application involves determining the collocates that
distinguish best between each member x1-n of a set of n near synonyms. For
example, Gries (2003) showed how this approach helps distinguish notoriously
difficult synonyms such as alphabetic/alphabetical or botanic/botanical by
virtue of the nouns each word of a pair prefers to co-occur with.

In the last 10 years, a family of methods called collostructional analysis—
a blend of collocation and constructional—has become quite popular.
This approach is based on the assumption—independently arrived at in
cognitive/usage-based linguistics and corpus linguistics—that there is no real
qualitative difference between lexical items and grammatical patterns, from
which it follows that one can simply replace, say, word x in Table 1 by a gram-
matical pattern and then quantify which words y1-n “like to co-occur” with/in
that grammatical pattern. In one of the first studies, Stefanowitsch and Gries
(2003) showed how the verbs that are most strongly attracted to constructions
are precisely those that convey the central senses of the (often polysemous) con-
structions. For example, the verbs in (2) and (3) are those that are most strongly
attracted to the ditransitive V NPREC NPPAT construction and the into-causative
V NPPAT into V-ing construction, respectively; manual analysis as well as
computationally more advanced methods (see below) reveal that these verbs
involve concrete and metaphorical transfer scenarios as well as trickery/force
respectively.

(2) give, tell, send, offer, show, cost, teach, award, allow, lend, . . .
(3) trick, fool, coerce, force, mislead, bully, deceive, con, pressurize,

provoke, . . .

Additional members of the family of collostructional analysis have been
developed to, for instance, compare two or more constructions in terms of
the words that are attracted to them most (cf. Gries & Stefanowitsch, 2004),
which can be useful to study many of the syntactic alternations that have been
studied in linguistics such as the dative alternation (John gave Mary the book
vs. John gave the book to Mary), particle placement (John picked up the book
vs. John picked the book up), will-future versus going-to future versus shall, and
so on.

If, as we argued above, contingency information was really more relevant
than mere frequency of occurrence, then it should be possible to show this by
comparing predictions made on the basis of frequency to predictions made on
the basis of contingency/association strength. Gries, Hampe, and Schönefeld
(2005, 2010) study the as-predicative exemplified in (4) using collostructional
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analysis and then test whether subjects’ behavior in a sentence-completion task
and a self-paced reading task is better predicted by frequency of co-occurrence
(conditional probability) or association strength (−log10 pFisher-Yates exact test).

(4) a. V NPDO as XP
b. John regards Mary as a good friend.
c. John saw Mary as intruding on his turf.

In both experiments, they find that the effect of association strength is sig-
nificant (in one-tailed tests) and much stronger than that of frequency: Subjects
are more likely to complete a sentence fragment with an as-predicative when
the verb in the prompt was not just frequent in the as-predicative but actually
attracted to it; similarly, subjects were faster to read the words following as
when the verb in the sentence was predictive for the as-predicative. Similarly
encouraging results were obtained by Ellis and Ferreira-Junior (2009), who
show that measures of association strength such as pFYE (and others, see be-
low) are highly correlated with learner uptake of verb use in constructions and
more so than frequency measures alone.

In spite of the many studies that have used association measures to quan-
tify contingency, there have been few attempts to improve how contingency is
quantified. Two problems are particularly pressing. First, nearly all association
measures neither include the type frequencies of x and y in their computation
nor the type-token distributions (or [relative] entropies, see above) because the
type frequencies are just conflated in the two token frequencies b and c. Thus,
no association measure at this point can distinguish the two hypothetical sce-
narios represented in Figure 3, in which one may be interested in quantifying
the association of construction A and verb h. In both cases, A is attested 1,229
times with 5 different verb types, of which the verb of interest, h, accounts
for 500. All existing association measures would return the same value for the
association of A and h although a linguist appreciating the notion of contin-
gency/predictiveness may prefer a measure that can also indicate that, in the
left panel, another verb may be more strongly attracted to A than in the right
panel, where h is highly predictive of A. There is one measure that has been
devised to at least take type frequency into consideration—Daudaravičius and
Marcinkevičienė’s (2004) lexical gravity G—but even this one would not be
able to differentiate the two panels in Figure 3 since they involve the same type
frequency (5) and only differ in their entropy.

In the absence of easily recoverable frequency distributions of, say, con-
structions from parsed corpora, this kind of improvement will of course be
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Figure 3 Type-token frequency distributions for constructions A and B in a hypothetical
data set.

very hard to come by; studies like Roland, Dick, and Elman (2007) provide
important first steps toward this goal.

A second problem of nearly all association measures is their bidirection-
ality: they quantify the mutual association of two elements even though, from
the perspective of psycholinguistics or the psychology of learning, associations
need not be mutual, or equally strong in both directions (just like perceptions
of similarity are often not symmetric; cf. Tversky 1977). While there have
been some attempts at introducing directional association measures based on
ranked collocational strengths (cf. Michelbacher, Evert, & Schütze, 2011),
the results have been mixed (in terms of how well they correlate with be-
havioral data, how well they can separate some very strongly attracted col-
locations, and in terms of the computational effort the proposed measures
require). The currently most promising approach is the measure �P from
the associative learning literature as introduced into corpus linguistics by
Ellis (2007). �P is a measure that can be straightforwardly computed from
a table such as Table 1 as shown in (5), that is, as simple differences of
proportions:

(5) a. �Py|x = a
a+b − c

c+d
b. �Px |y = a

a+c − b
b+d

When applied to two-word units in the spoken component of the British
National Corpus (cf. Gries, 2013a), this measure is very successful at iden-
tifying the directional association of two-word units that traditional measures
flag as mutually associated. For instance, (6a) lists two-word units in which the
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first word is much more predictive of the second one than vice versa, and (6b)
exemplifies the opposite kind of cases.

(6) a. upside down, according to, volte face, ipso facto, instead of, insomuch
as

b. of course, for example, per annum, de facto, at least, in situ

In sum, the field of corpus-linguistic research on contingency/association
is a lively one. Unfortunately, its two most pressing problems—type-token
distributions and directionality—are currently only addressed with methods
that can handle only one of these at the same time; it remains to be hoped that
newly developed tools will soon address both problems at the same time in a
way that jibes well with behavioral data.

Surprisal
Language learners do not consciously tally any of the above-mentioned corpus-
based statistics. The frequency tuning under consideration here is computed
by the learner’s system automatically during language usage. The statistics
are implicitly learned and implicitly stored (Ellis, 2002); learners do not have
conscious access to them. Nevertheless, every moment of language cognition
is informed by these data, as language learners use their model of usage to
understand the actual usage of the moment as well as to update their model and
to predict where it is going next.

There is considerable psychological research on human cognition and its
dissociable, complementary systems for implicit and explicit learning and
memory (Ellis, 2007, 2015; Rebuschat, 2015). Implicit learning is acquisition
of knowledge about the underlying structure of a complex stimulus environ-
ment by a process that takes place naturally, simply, and without conscious
operations. Explicit learning is a more conscious operation where the individ-
ual makes and tests hypotheses in a search for structure. Much of the time,
language processing, like walking, runs successfully using automatized, im-
plicit processes. We only think about walking when it goes wrong, when we
stumble, and conscious processes are called in to deal with the unexpected.
We might learn from that episode where the uneven patch of sidewalk is, so
that we don’t fall again. Similarly, when language processing falters and we do
not understand, we call the multimodal resources of consciousness to help deal
with the novelty. Processing becomes deliberate and slow as we think things
through. This one-off act of conscious processing too can seed the acquisition
of novel explicit form–meaning associations (Ellis, 2005). It allows us to con-
solidate new constructions as episodic fast-mapped cross-modal associations
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(Carey & Bartlett, 1978). These representations are then also available as units
of implicit learning in subsequent processing. Broadly, it is not until a represen-
tation has been noticed and consolidated that the strength of that representation
can thereafter be tuned implicitly during subsequent processing (Ellis, 2006).
Thus the role of noticing and consciousness in language learning (Ellis, 1994;
Schmidt, 1994).

Contemporary learning theory holds that learning is driven by prediction
errors: that we learn more from the surprise that comes when our predictions
are incorrect than when our predictions are confirmed (Clark, 2013; Rescorla &
Wagner, 1972; Rumelhart, Hinton, & Williams, 1986; Wills, 2009), and there
is increasing evidence for surprisal-driven language processing and acquisition
(Dell & Chang, 2014; Demberg & Keller, 2008; Jaeger & Snider, 2013; Picker-
ing & Garrod, 2013; Smith & Levy, 2013). For example, Demberg and Keller
(2008) analyze a large corpus of eye-movements recorded while people read
text to demonstrate that measures of surprisal account for the costs in reading
time that result when the current word is not predicted by the preceding context.
Surprisal can be seen as an information-theoretic interpretation of probability.
It is computed as shown in (7).

(7) surprisal = –log2 p

The probability in question can be unconditional or conditional probabi-
lities of occurrence of different kinds of linguistic elements of any degree of
complexity. The simplest possible case would be the unconditional probability
(i.e., relative frequency) of, say, a word in a corpus. A slightly more complex
example would be a simple forward transitional probability such as the proba-
bility of the word y directly following the word x, or a conditional probability
such as the probability of a particular verb given a construction. More com-
plex applications include the conditional probability of a word given several
previous words in the same sentence or, to include a syntactic example, the
conditional probability of a particular parse tree given all previous words in a
sentence (as in, say, Demberg & Keller, 2008).

Whatever the exact nature of the (conditional) probability, equation (7)
shows that surprisal derives from conditional probabilities, which means it, too,
can in fact be computed from Table 1, namely as -log2

a/a+b or -log2
a/a+c, and,

as Figure 4 clearly shows, surprisal is therefore inversely related to probability
and thus also very strongly correlated with �P.

In usage-based linguistics, surprisal has been studied in particular in studies
of structural priming, for example, when Jaeger and Snider (2008) show that
surprising structures—for example, when a verb that is strongly attracted to
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Figure 4 The relationship between probability (on the x-axis) and surprisal (on the
y-axis).

the ditransitive is used in the prepositional dative—prime more strongly than
nonsurprising structures. Whichever way surprisal is computed, it is a useful
addition to the corpus-linguistic tool kit and may ultimately also be viewed as
a good operationalization of the notoriously tricky notion of salience.

The complementary psychological systems of implicit, expectation-driven,
automatic cognition as opposed to explicit, conscious processing are paralleled
in these complementary corpus statistics measuring predictability in context
vs. surprisal. Contemporary corpus pattern analysis also focusses upon their
tension. Hanks (2009, p. 64) talks of norms and exploitations as the Linguistic
Double Helix:

Much of both the power and the flexibility of natural language is derived
from the interaction between two systems of rules for using words: a
primary system that governs normal, conventional usage and a secondary
system that governs the exploitation of normal usage.

The Theory of Norms and Exploitations (TNE, Hanks, 2013) is a lexically
based, corpus-driven theoretical approach to how words go together in collo-
cational patterns and constructions to make meanings. He emphasizes that the
approach rests on the availability of new forms of evidence (corpora, the Inter-
net) and the development of new methods of statistical analysis and inferencing.
Partington (2011), in his analysis of the role of surprisal in irony, demonstrates
that the reversal of customary collocational patterns (e.g., tidings of great joy,
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overwhelmed) drives phrasal irony (tidings of great horror, underwhelmed).
Similarly, Suslov (1992) shows how humor and jokes are based on surprisal
that is pleasurable: we enjoy being led down the garden path of a predictable
parse path, and then have it violated by the joke-teller.

Zipf’s Law and Construction Learning
Zipf’s law states that in human language, the frequency of words decreases
as a power function of their rank in the frequency table. If pf is the pro-
portion of words whose frequency in a given language sample is f, then
p ≈ α f −1/s with s ≈ 1 . Zipf (1949) showed this scaling relation holds across
a wide variety of language samples. Subsequent research has shown that many
language events (e.g., frequencies of phoneme and letter strings, of words, of
grammatical constructs, of formulaic phrases, etc.) across scales of analysis
follow this law (Ferrer i Cancho & Solé, 2001, 2003).

Research by Goldberg (2006), Ellis and Ferreira-Junior (2009), Ellis and
O’Donnell (2012), and Ellis, O’Donnell, and Römer (2012) shows that verb
argument constructions are (1) Zipfian in their verb type-token constituency
in usage, (2) selective in their verb form occupancy, and (3) coherent in their
semantics, with a network structure involving prototypical nodes of high be-
tweenness centrality and a degree distribution that is also Zipfian. Psychological
theory relating to the statistical learning of categories suggests that learning
is promoted, as here, when one or a few lead types at the semantic center of
the construction account for a large proportion of the tokens. These robust
patterns of usage might therefore facilitate processes of syntactic and semantic
bootstrapping.

Zipfian distributions are also characterized by a low entropy because of how
the most frequent elements in a distribution reduce the uncertainty, and increase
the predictability, of the distribution. In a learning experiment of Goldberg,
Casenhiser, and Sethuraman (2004), subjects heard the same number of novel
verbs (type frequency: 5), but with two different distributions of 16 tokens, a
balanced condition of 4-4-4-2-2 (with a relative entropy of Hrel = 0.97), and a
skewed lower-variance condition of 8-2-2-2-2 (Hrel = 0.86). The distribution
that was learned significantly better was the one that was more Zipfian and had
the lower entropy, providing further evidence for the psycholinguistic relevance
of Zipfian distribution and the notion of entropy.

Semantic Network Analysis
Constructions map linguistic forms to meanings. One of the greatest challenges
in usage-based research is how to quantify relevant aspects of meaning, for
example, for verb-argument constructions (VAC):
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− prototypicality: For each verb type occupying a VAC, how prototypical is
it of the VAC?

− semantic cohesion: For each VAC, how semantically cohesive are its verb
exemplars?

− polysemy: Are there are one or several meaning groups associated with a
VAC form and can we identify these semantic communities?

Analysis of construction meanings typically rests on human classification,
as illustrated so well in the ground-breaking corpus linguistic work on the
meanings of English Verb Pattern Grammar (Francis, Hunston, & Manning,
1996). But we can go some way toward quantifying these analyses, and this
will become increasingly important as we pursue replicable research to scale
in large corpora. O’Donnell and Ellis applied methods of network science to
these goals (O’Donnell, Ellis, Corden, Considine, & Römer, 2015; Römer,
O’Donnell, & Ellis, 2014).

Consider the into-causative VAC (as in He tricked me into employing him)
described here. Wulff, Stefanowitsch, and Gries (2007) present a comparison
of the verbs that occupy this construction in corpora of American and British
English using distinctive collexeme analysis. They take the verbs that are sta-
tistically associated with this VAC in the two corpora, qualitatively group them
into meaning groups, and show a predominance of verbal persuasion verbs
in the cause predicate slot of the American English data as opposed to the
predominance of physical force verbs in the cause predicate slot of the British
English data. Their qualitative methods for identifying the semantic classes
were clearly described:

First, the three authors classified the distinctive collexemes separately.
The resulting three classifications and semantic classes were then
checked for consistency. Verbs and classes which had not been used by all
three authors were finally re-classified on the condition that finally a
maximum number of distinctive collexemes be captured by a minimum
number of semantic classes. The resulting classes are verbs denoting
communication (e.g. talk), negative emotion (e.g. terrify), physical force
(e.g. push), stimulation (e.g. prompt), threatening (e.g. blackmail), and
trickery (e.g. bamboozle). (p. 273)

This pattern was discussed on the Corpora list (www.hit.uib.no/corpora/
November 20, 2013) and Kilgarriff (Kilgarriff, Rychly, Smrz, & Tugwel, 2004)
posted the types of verb that occupy the pattern in 113436 hits in the en-
TenTen12 corpus (a 12 billion word corpus of web crawled English texts
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collected in 2012, http://www.sketchengine.co.uk). Following the methods de-
scribed in O’Donnell et al. (2015), we took these verb types and built a se-
mantic network using WordNet, a distribution-free semantic database based
upon psycholinguistic theory (Miller, 2009). WordNet places verbs into a
hierarchical network organized into 559 distinct root synonym sets (synsets
such as move1 expressing translational movement, move2 movement without
displacement, etc.), which then split into over 13,700 verb synsets. Verbs are
linked in the hierarchy according to relations such as hypernym [verb Y is a
hypernym of the verb X if the activity X is a (kind of) Y (to perceive is an
hypernym of to listen], and hyponym [verb Y is a hyponym of the verb X if
the activity Y is doing X in some manner (to lisp is a hyponym of to talk)].
Algorithms to determine the semantic similarity between WordNet synsets have
been developed that consider the distance between the conceptual categories
of words and their hierarchical structure in WordNet (Pedersen, Patwardhan, &
Michelizzi, 2004). We compared the verb types occupying the into-causative
pairwise on the WordNet Path Similarity measure as implemented in the Na-
tural Language Tool Kit (Bird, Loper, & Klein, 2009), which ranges from 0 (no
similarity) to 1 (items in the same synset). We then built a semantic network in
which the nodes represent verb types and the edges strong semantic similarity.
Standard measures of network density, average clustering, degree centrality,
transitivity, and so on, were then used to assess the cohesion of the semantic
network (de Nooy, Mrvar, & Batagelj, 2010). We also applied the Louvain
algorithm for the detection of communities within the network representing
different semantic sets (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008).

Figure 5 shows the semantic network for verb occupying the into-causative
VAC built using these methods, with 7 differently colored communities iden-
tified using the Louvain algorithm. In these networks, related concepts are
closer together. The more connected nodes at the center of the network, like
make, stimulate, force, and persuade, are depicted larger to reflect their higher
degree. For each node we have measures of degree, betweenness centrality,
and so on. There are 57 nodes connected in the network by 130 edges. The
cohesion metrics for the network as a whole include network density 0.081,
average clustering of 0.451, a degree assortativity of 0.068, transitivity 0.364,
degree centrality 0.212, and betweenness centrality 0.228, and a modularity
score, which reflects the degree to which there are emergent communities, of
0.491. We have colored the communities following the same scheme we used
above when describing the qualitative results of Wulff et al. (2007). There are
clear parallels, and community membership seems to make sense. For example,
the [deceive] community [deceive, fool, delude, dupe, kid, trick, hoodwink] is
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Figure 5 The semantic network for verbs occupying the into-causative VAC.

clearly separate from the [force] community [force, push, coerce, incorporate,
integrate, pressure]. The [persuade] community is separated again [persuade,
tease, badger, convert, convince, brainwash, coax, manipulate], and [speak,
and talk] drift off into space on their own. Relating back to Kilgarriff ’s list of
hits, the [deceive] community accounts for 44% of the total tokens, [speak],
17%, [make] 12%, [throw] 8%, [stimulate] 8%, [force] 6%, and [persuade] 4%.

These network science methods allow a variety of relevant metrics for
semantics:

− prototypicality: The prototype as an idealized central description is the best
example of the category, appropriately summarizing its most representa-
tive attributes. In network analysis, there are many available measures of
centrality: degree centrality, closeness centrality, betweenness centrality,
PageRank, and so on, each with its advantages and disadvantages (New-
man, 2010). Historically first and conceptually simplest is degree centrality,
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or degree, which is simply its connectivity in terms of the number of links
incident upon a node. An alternative is betweenness centrality, which was
developed to quantify the control of a human on the communication be-
tween other humans in a social network (Freeman, 1977). It is defined as
the number of shortest paths from all nodes to all others that pass through
that node. It is a more useful measure than degree of both the load and
global importance of a node.

− semantic cohesion: In category learning, coherent categories, where ex-
emplars are close to the prototype, are acquired faster than categories
comprised of diverse exemplars. Graph theory also offers a number of
alternatives for measuring network connectivity. The simplest is density,
the number of edges in the network as a proportion of the number of possi-
ble edges linking those nodes. Other measures include average clustering,
degree assortativity, transitivity, degree centrality, betweenness centrality,
and closeness centrality (de Nooy et al., 2010; Newman, 2010).

− polysemy and community detection: A community within a graph or network
is a group of nodes with dense connections to the other nodes in the
group and sparser connections to other nodes that belong to a different
community. Identification of communities has proven highly useful across
a broad range of spheres to which network modeling can be applied, such
as social networks, neural and gene networks. Analyses like those in Figure
5 suggest they might provide some traction in analyzing issues relating to
issues of construction polysemy and homonymy. Nevertheless, there is a
long way to go in properly analyzing the "hard problem" of construction
semantics, which is just as hard as the hard problem of consciousness
(Chalmers, 1995) in that we wish to understand how language prompts
phenomenal experiences.

New developments like these network-/graph-based methods provide
promising new avenues for exploring the functional side or pole of
constructions—so far done largely manually or with simpler exploratory statis-
tics such as cluster analyses—on the basis of the distributions of the formal
side or pole of constructions. Given the scalability of these approaches, these
are bound to take corpus-based studies in usage-based linguistics to new levels.

Conclusion

As we have argued above, speakers keep track of a wide array of co-occurrence
information of both their language comprehension and production. It is becom-
ing more and more obvious that this unconscious tracking of co-occurrence
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statistics happens extremely early—in utero, in fact (cf. Moon, Lagercrantz,
& Kuhl, 2012)—and also extremely fast. The latter has been demonstrated
both in specific learning experiments with both children and adults but also
in experiments that were not concerned with learning at all, but in which
within-experiment learning had to be statistically controlled (cf. Gries & Wulff,
2009, for an example in L2 learning or Doğruöz & Gries, 2012, for an example
in language contact situations). It is therefore imperative that both experimen-
tal and observational studies consider the speed and ubiquity of these learning
processes alike—the unconscious pattern matcher in all of us hardly ever sleeps.

The processes and associations we describe here are all involved in every
episode of language usage. Language processing is conditioned upon them all.
So, for example, Ellis, O’Donnell, and Römer (2014) used free association and
verbal fluency tasks to investigate VACs and the ways in which their processing
is sensitive to these statistical patterns of usage (verb type-token frequency
distribution, VAC-verb contingency, verb-VAC semantic prototypicality). In
experiment one, 285 native speakers of English generated the first word that
came to mind to fill the V slot in 40 sparse VAC frames such as ‘he across
the . . . ’, ‘it off the . . . ’, and so on. In experiment two, 40 English speakers
generated as many verbs that fit each frame as they could think of in a minute.
For each VAC, they compared the results from the experiments with the corpus
analyses of usage. For both experiments, multiple regression analyses predicting
the frequencies of verb types generated for each VAC showed independent
contributions of (i) verb frequency in the VAC, (ii) VAC-verb contingency,
and (iii) verb prototypicality in terms of centrality within the VAC semantic
network.

Future priorities concern both the range of corpus resources and statistical
tools:

− We need more corpora, and more corpora representing diverse registers
and with diverse layers of annotation—not just part-of-speech tagging, but
syntactic parses, semantic as well as discourse annotation, and so on.

− We need more studies of the precise conditions when learning happens best
and fastest, for example, how many high-frequency types in the Zipfian
token distribution are best—1, 2, a few?—and what are the ideal distribu-
tion/dispersion conditions in which learning happens?

− We need more multivariate tools that include all the corpus statistics we
can obtain—frequencies, dispersions, entropies, associations, and so on—
but also new ones (such as the graph-based methods) that help us see the
patterns in the structured but noisy mess that are corpora.
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We hope that this agenda will lead to a stronger collaboration between
usage-based theory on the one hand and corpus-linguistic practice on the other.

Final revised version accepted 16 September 2014
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Ellis, N. C., O’Donnell, M. B., & Römer, U. (2012). Usage-based language:
Investigating the latent structures that underpin acquisition. Currents in Language
Learning, 1, 25–51.
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Ferrer i Cancho, R., & Solé, R. V. (2003). Least effort and the origins of scaling in

human language. PNAS, 100, 788–791.
Francis, G., Hunston, S., & Manning, E. (Eds.). (1996). Grammar patterns 1: Verbs.

The COBUILD Series. London: HarperCollins.
Freeman, L. (1977). A set of measures of centrality based upon betweenness.

Sociometry, 40, 35–41.
Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological

networks. Proceedings of the National Academy of Science USA, 99, 7821–7826.
Goldberg, A. E. (2006). Constructions at work: The nature of generalization in

language. Oxford, UK: Oxford University Press.
Goldberg, A. E., Casenhiser, D. M., & Sethuraman, N. (2004). Learning argument

structure generalizations. Cognitive Linguistics, 15, 289–316.
Gries, S. Th. (2003). Testing the sub-test: a collocational-overlap analysis of English

-ic and -ical adjectives. International Journal of Corpus Linguistics, 8, 31–61.
Gries, S. Th. (2008). Dispersions and adjusted frequencies in corpora. International

Journal of Corpus Linguistics, 13, 403–437.
Gries, S. Th. (2009). Quantitative corpus linguistics with R: A practical introduction.

London, New York: Routledge.
Gries, S. Th. (2010). Dispersions and adjusted frequencies in corpora: Further

explorations. In S.Th. Gries, S. Wulff, & M. Davies (Eds.), Corpus linguistic
applications: Current studies, new directions (pp. 197–212). Amsterdam: Rodopi.

Gries, S. Th. (2013). 50-something years of work on collocations. International
Journal of Corpus Linguistics, 18, 137–165.

Gries, S. Th., & Divjak, D. S. (Eds.). (2012). Frequency effects in cognitive linguistics
(Vol. 1): Statistical effects in learnability, processing and change. Berlin, Germany:
Mouton de Gruyter.
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