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Traumatic Brain Injury in Later Life
Increases Risk for Parkinson Disease

Raquel C. Gardner, MD,1,2 James F. Burke, MD,3 Jasmine Nettiksimmons, PhD,2,4

Sam Goldman, MD, MPH,1,2 Caroline M. Tanner, MD,1,2 and

Kristine Yaffe, MD1,2,4,5

Objective: Traumatic brain injury (TBI) is thought to be a risk factor for Parkinson disease (PD), but results are con-
flicting. Many studies do not account for confounding or reverse causation. We sought to address these concerns by
quantifying risk of PD after TBI compared to non-TBI trauma (NTT; defined as fractures).
Methods: Using inpatient/emergency department (ED) International Classification of Disease, Ninth Revision code
data for California hospitals from 2005–2006, we identified patients aged �55 years with TBI (n 5 52,393) or NTT
(n 5 113,406) and without baseline PD or dementia who survived hospitalization. Using Kaplan–Meier estimates and
Cox proportional hazards models (adjusted for age, sex, race/ethnicity, income, comorbidities, health care use, and
trauma severity), we estimated risk of PD after TBI during follow-up ending in 2011. We also assessed interaction
with mechanism of injury (fall vs nonfall) and effect of TBI severity (mild vs moderate/severe) and TBI frequency (1
TBI vs >1 TBI).
Results: TBI patients were significantly more likely to be diagnosed with PD compared to NTT patients (1.7% vs
1.1%, p< 0.001, adjusted hazard ratio [HR] 5 1.44, 95% confidence interval [CI] 5 1.31–1.58). Risk of PD was similar
for TBI sustained via falls versus nonfalls (interaction p 5 0.6). Assessment by TBI severity (mild TBI: HR 5 1.24, 95%
CI 5 1.04–1.48; moderate/severe TBI: HR 5 1.50, 95% CI 5 1.35–1.66) and TBI frequency (1 TBI: HR 5 1.45, 95%
CI 5 1.30–1.60; >1 TBI: HR 5 1.87, 95% CI 5 1.58–2.21) revealed a dose response.
Interpretation: Among patients aged �55 years presenting to inpatient/ED settings with trauma, TBI is associated
with a 44% increased risk of developing PD over 5 to 7 years that is unlikely to be due to confounding or reverse
causation.
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Incidence of traumatic brain injury (TBI) peaks 3 times

over the lifespan: in childhood, in adolescence, and in

older adulthood.1 Some prior studies have implicated

any lifetime history of TBI as a risk factor for Parkinson

disease (PD),2–4 the second most common neurodegener-

ative disease of aging. Other studies, however, have found

no such association and raise the hypothesis that recall

bias or reverse causation may contribute to the positive

reported associations.5,6 Whether TBI sustained in older

adulthood increases short-term risk of PD is a question

that has proven particularly difficult to approach. Specifi-

cally, when evaluating risk of PD following TBI sustained

in older adulthood—at a time when the cause of injury

is overwhelmingly due to falls7,8—it becomes increasingly

likely that the patient fell and sustained the TBI due to

early motor symptoms of PD rather than the reverse.

In this study, we sought to quantify risk of PD

after recent TBI sustained in older adulthood. To miti-

gate potential confounding and reverse causation, we

compared patients with TBI to those with other types of

non-TBI trauma (NTT; eg, fracture). Even among

patients who sustain TBI or NTT due to falls, however,

it is conceivable that those who fall and sustain a head

injury are more likely to have incipient PD due to slower

reaction times and reduced ability to redirect the fall tra-

jectory or break the fall with their a’rms.9 Thus, to
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further mitigate potential reverse causation, we assessed

for interactions with mechanism of injury. To further

enhance causal inference, we assessed the role of age, TBI

severity, TBI frequency, and time lag from trauma to PD

diagnosis. We hypothesized that younger patients may be

more resilient to the effects of mild TBI.8 We hypothe-

sized that TBI would increase risk for PD in a dose-

dependent manner (greater for severe TBI compared to

mild TBI; greater for multiple TBIs compared to single

TBI). Furthermore, we hypothesized that although the

estimated risk might be attenuated by excluding patients

with falls or PD diagnoses soon after trauma (as these

populations may be enriched for incipient PD), the effect

would persist, thereby supporting a causal association

between TBI and PD.

Patients and Methods

Design
This is a retrospective cohort study of administrative health

data using the State Inpatient Databases (SID)10 and State

Emergency Department Databases (SEDD)11 for the state of

California, managed by the Healthcare Cost and Utilization

Project (HCUP) and Agency for Healthcare Research and

Quality. The SID and SEDD capture all inpatient and emer-

gency department (ED) discharge diagnoses for participating

states for each year. For certain states/years, the HCUP has

linked each patient’s data with subsequent inpatient or ED vis-

its, thus allowing for longitudinal tracking of individual

patients. Data are then deidentified and are available to

researchers for a fee after completing a data use agreement. Cal-

ifornia was selected for this analysis as it is the most populous

state and had linked data available from 2005 to 2011.

Protocol Approval
The study was approved by the University of California, San

Francisco Human Research Committee, and the need for

informed consent was waived due to the use of deidentified

administrative data.

Patients
Adults �55 years old were included in the cohort if they were

diagnosed with TBI or NTT during an inpatient or ED visit in

2005 or 2006, did not die during the hospitalization, and did

not have a diagnosis of PD or dementia in any discharge diag-

nosis field.

Exposure
TBI was defined using Centers for Disease Control and Preven-

tion (CDC) criteria12,13: International Classification of Dis-

eases, Ninth Revision, Clinical Modification (ICD-9-CM)

800.0–801.9, 803.0–804.9, 850.0–854.1, or 959.01 in any dis-

charge diagnosis field. Mild TBI was defined according to

CDC criteria13: ICD-9-CM first 4 digits 800.0, 800.5, 801.0,

801.5, 803.0, 803.5, 804.0, 804.5, 850.0, 850.1, 850.5, or

850.9 (with a fifth digit of 0, 1, 2, 6, 9, or missing) or 854.0

(with a fifth digit of 1, 2, 6, 9, or missing). Moderate/severe

TBI was defined as all nonmild TBI. NTT was defined as frac-

ture, excluding fractures of the head and neck: ICD-9-CM

807.0–807.9, 812–819.9, 822–822.9, or 823–827.9. Patients

with both TBI and NTT during the same hospital visit were

classified as TBI. We classified patients with multiple subse-

quent hospital visits based on their first visit only such that a

patient who received a diagnosis of leg fracture during hospital

visit 1 but received a diagnosis of TBI during hospital visit 2

was classified as NTT.

Outcome
The primary outcome was a diagnosis of PD (ICD-9-CM

332.0) made during a subsequent ED visit or inpatient hospi-

talization during the follow-up period ending in 2011. The

follow-up in this study was comprised of all subsequent ED vis-

its or inpatient hospitalizations that were recorded in the

HCUP California SID or SEDD after the baseline visit for TBI

or NTT. This allowed for a maximum follow-up of 5 to 7 years

from the initial hospital visit for trauma. To further reduce the

chance of reverse causation, patients were excluded if the diag-

nosis of PD was made <1 year after the trauma.

Covariates
Information was collected on age, sex, race/ethnicity, comorbid-

ities (depression,14 delirium,15 drug/alcohol/tobacco disorders,

and vascular risk factors including hypertension, hyperlipid-

emia, diabetes, coronary artery disease, peripheral vascular dis-

ease, and cerebrovascular disease), trauma mechanism, health

care use, and trauma severity. ZIP Code–based median income

quartile provided by the HCUP was included as a proxy for

socioeconomic status.16 Comorbidities were based on ICD-9

discharge codes from the index visit for each patient as

described previously8 with the addition of tobacco disorders/

dependence ICD-9-CM 305.1. Trauma mechanism was coded

using major external cause of injury group codes (E codes)17

and then divided into 4 categories: falls, vehicle accidents,

assault, and other/unknown. An additional binary variable was

generated denoting falls versus nonfalls. Health care use data

included total hospital visits and total trauma visits per patient

during the follow-up period including the index visit, as well as

the location of the index visit (ED or inpatient). Trauma sever-

ity was defined according to the new injury severity score18 as

described previously.8

Primary Data Analysis
All statistical analyses were performed using Stata 13.1.19 Sum-

mary statistics were generated for baseline characteristics and

demographics of TBI and NTT groups and compared using t

test or chi-square test. Initial unadjusted estimates of risk of PD

after TBI versus NTT were calculated using Kaplan–Meier esti-

mates. Patients were not censored at death, as this information

was not provided by the HCUP and deidentification precluded

linkage to national death data. To evaluate the impact of poten-

tial confounders, we used Cox proportional hazard models

adjusted for all covariates listed above (age category [defined as
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TABLE 1. Baseline Characteristics of Patients with TBI versus NTT

Characteristics NTT, n 5 113,406 TBI, n 5 52,393 p

Age, yr 70.9 (10.9) 73.4 (11.1) <0.001

55–64 40,355 (35.6) 14,653 (28.0)

65–74 27,892 (24.6) 11,553 (22.1)

75–84 29,265 (25.8) 15,784 (30.1)

851 15,894 (14.0) 10,403 (19.9)

Women 76,705 (69.3) 29,603 (57.3) <0.001

Race/ethnicity <0.001

White 75,797 (66.8) 34,558 (66.0)

African American 3,860 (3.4) 2,033 (3.9)

Hispanic 14,747 (13.0) 6,271 (12.0)

Asian 4,163 (3.7) 3,318 (6.3)

Other/missing 14,839 (13.1) 6,213 (11.9)

Median income quartile <0.001

1st, poorest 25,746 (23.2) 10,276 (20.2)

2nd 26,856 (24.2) 12,184 (23.9)

3rd 29,811 (26.9) 14,327 (28.1)

4th, wealthiest 28,436 (25.6) 14,132 (27.8)

ICD-9 comorbidities at index visit

Hypertension 34,820 (30.7) 18,139 (34.6) <0.001

Hyperlipidemia 10,759 (9.5) 4,909 (9.4) 0.447

Diabetes 15,398 (13.6) 7,193 (13.7) 0.404

Coronary artery disease 8,971 (7.9) 5,143 (9.8) <0.001

Peripheral vascular disease 1,319 (1.2) 581 (1.1) 0.335

Cerebrovascular disease 2,416 (2.1) 2,007 (3.8) <0.001

Depression 3,483 (3.1) 1,576 (3.0) 0.486

Delirium 413 (0.36) 228 (0.44) 0.030

Drug disorder/dependence 433 (0.38) 170 (0.32) 0.071

Alcohol disorder/dependence 1,239 (1.1) 1,142 (2.2) <0.001

Tobacco use 3,668 (3.2) 1,423 (2.7) <0.001

Trauma mechanism <0.001

Fall 75,352 (66.4) 34,831 (66.5)

Vehicle accident 9,886 (8.7) 7,448 (14.2)

Assault 827 (0.7) 1,585 (3.0)

Other/missing 27,341 (24.1) 8,529 (16.3)

Health care use

Index visit location 5 ED 77,128 (68.0) 35,767 (68.3) 0.298

Total inpatient or ED visits 5.0 (6.4) 5.4 (7.2) <0.001

Total inpatient or ED visits for TBI/trauma 1.33 (0.7) 1.31 (0.7) <0.001
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55–64 years, 65–74 years, 75–84 years, or 85 years and older],

sex, race/ethnicity, income, comorbidities, trauma mechanism,

health care use, and new injury severity score). The time meta-

meter for the Cox models was time since the index visit for

TBI or NTT.

Additional Analyses
We tested for an interaction between TBI and trauma mechanism

(falls, vehicle accidents, assault, and other/unknown) as well as

between TBI and falls (falls vs nonfalls). We assessed the role of

time lag from trauma to PD diagnosis by conducting separate

analyses after excluding cases of PD diagnosed <1 year (primary

analysis), 2 years, or 3 years after TBI or NTT. We assessed the

roles of TBI severity and TBI frequency by using an expanded

TBI variable in a single Cox model (NTT vs mild TBI vs moder-

ate/severe TBI and NTT vs 1 TBI vs >1 TBI). To test for a sig-

nificant dose response for mild versus moderate/severe TBI and 1

versus >1 TBI (defined as a repeat TBI anytime during the study

period), we used the Wald test. To test our hypothesis regarding

age and TBI severity, we assessed for an interaction between age

category and TBI severity as well as specifically between age cate-

gory and mild TBI.8 In a preplanned sensitivity analysis to

account for loss to follow-up for any reason (including death), we

excluded PD-free TBI and NTT patients whose last ED or inpa-

tient visit recorded in the database was >1 year before the end of

the follow-up period (defined as the period from the index visit

until December 31, 2011). To account for potential misdiagnosis

of secondary parkinsonism as PD or vice versa, we performed a

final sensitivity analysis in which we excluded patients with a

diagnosis of secondary parkinsonism (ICD-9-CM 332.1) at any

time during the study period.

Results

Primary Analysis
A total of 165,799 cases of trauma were identified who

did not have baseline PD or dementia and who did not

die during the index hospitalization, and 52,393 (32%)

had TBI. Compared to the NTT patients, TBI patients

were slightly older, were more likely to be male, were

from higher income regions, had more comorbidities,

and had higher injury severity scores (Table 1). Trauma

was caused by falls in approximately 66% of both NTT

and TBI patients. Median follow-up was 6 years (inter-

quartile range 5 5.5–6.5 years). After exclusion of cases

of PD that were diagnosed <1 year after TBI (n 5 884),

a total of 2,126 cases of PD were identified during the

follow-up period. Patients with TBI were more likely to

be diagnosed with PD compared to patients with NTT

(1.7% of TBI patients vs 1.1% of NTT patients,

p< 0.001; Fig 1). Patients with TBI were diagnosed with

PD slightly sooner than those with NTT (average time

to PD diagnosis 5 3.1 years vs 3.3 years, p 5 0.02).

Overall, patients diagnosed with PD had a mean age (at

index visit) of 76 years (range 5 55–95, standard

deviation 5 8.6), were 59% female, and were 68% white.

In the unadjusted model, TBI was associated with a

56% increased risk of PD diagnosis (Table 2). Individual

adjustment for covariates changed the hazard ratio (HR)

by <10%, except for age category. In the fully adjusted

model (adjusted for age category, sex, race/ethnicity,

income, comorbidities, trauma mechanism, health care

use, and injury severity), TBI was associated with 44%

increased risk of PD diagnosis (see Table 2). Results were

similar if age was modeled as a continuous rather than a

categorical variable.

Additional Analyses
In fully adjusted models, there was no interaction identi-

fied between trauma mechanism (defined as fall, vehicle

accident, assault, or other/missing) and TBI status

TABLE 1: Continued

Characteristics NTT, n 5 113,406 TBI, n 5 52,393 p

New injury severity score 5.0 (3.7) 7.8 (5.9) <0.001

TBI severity at index visit <0.001

Mild TBI N/A 11,799 (22.5)

Moderate/severe TBI N/A 40,594 (77.5)

TBI frequency <0.001

1 TBI anytime during study period 5,950a (5.3) 44,733 (85.4)

>1 TBI anytime during study period 1,101a (1.0) 7,660 (14.6)

Values are mean (standard deviation) or No. (%). Total inpatient or ED visits are mean per participant over follow-up period
including index visit.
aThese patients were diagnosed with NTT at the index visit and then had subsequent ED or inpatient visit(s) for TBI.
ED 5 emergency department; ICD-9 5 International Classification of Diseases, Ninth Revision; N/A 5 not applicable;
NTT 5 non-TBI trauma; TBI 5 traumatic brain injury.
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(interaction p 5 0.21) or between trauma mechanism and

TBI severity (interaction p 5 0.38). Varying the time lag

from trauma to PD diagnosis or including only trauma

due to falls or only trauma due to nonfalls produced

results essentially identical to the primary analysis (Fig

2). Furthermore, there was a significant dose response

identified for TBI severity and TBI frequency such that

risk of PD following more severe or more frequent TBI

was doubled compared to that of mild or single TBI (see

Fig 2). There was no interaction identified between age

category and TBI severity (interaction p 5 0.18) or spe-

cifically between age category and mild TBI, after exclud-

ing moderate/severe TBI cases (interaction p 5 0.77). In

a preplanned sensitivity analysis designed to account for

loss to follow-up for any reason (including death) by

excluding non-PD patients without a visit in the database

within 1 year of the end of follow-up, results were simi-

lar to the primary analysis (fully adjusted HR 5 1.55,

95% confidence interval (CI) 5 1.41–1.70, p< 0.001).

Lastly, to account for potential misdiagnosis of secondary

parkinsonism as PD or vice versa, after excluding all

patients with a diagnosis of secondary parkinsonism at

any time during the study period (n 5 5, of whom 1 also

had a diagnosis of PD), results were identical to the pri-

mary analysis (fully adjusted HR 5 1.44, 95%

CI 5 1.31–1.58).

Discussion

Among middle-aged and older patients diagnosed with

trauma in an ED or inpatient setting, we found that

there is a 44% increased risk of being diagnosed with

PD over the subsequent 5 to 7 years after TBI compared

to NTT. Furthermore, we found that risk is significantly

higher with more severe or more frequent TBI, lending

additional weight to a causal association.

This study is novel due to the use of NTT controls

as a means to reduce possible confounding and reverse

causation if patients with incipient PD are more likely to

fall and sustain a TBI than healthy controls. The success

of this approach is highlighted by our finding that

approximately 66% of trauma was caused by falls in

both the TBI and NTT groups. Furthermore, we found

that risk of PD after TBI due to falls versus nonfalls is

TABLE 2. Primary Analysis Cox Models Showing
Risk of PD after TBI versus NTT

HR 95% CI p

Unadjusted 1.55 1.43–1.70 <0.001

Adjusted for
age-category only

1.45 1.33–1.58 <0.001

Fully adjusted
for all covariates

1.44 1.31–1.58 <0.001

Fully adjusted model is adjusted for age, sex, race/ethnicity,
income, comorbidities, trauma mechanism, health care use,
and injury severity score.
CI 5 confidence interval; HR 5 hazard ratio; NTT 5 non-
TBI trauma; PD 5 Parkinson disease; TBI 5 traumatic brain
injury.

FIGURE 2: The role of time lag from trauma to Parkinson
disease (PD) diagnosis, trauma mechanism (falls vs nonfalls),
traumatic brain injury (TBI) severity, and TBI frequency.
Excluding PD diagnosis rendered <1 year (primary analysis),
<2 years, or <3 years after trauma led to essentially equiva-
lent results. Analyzing only trauma due to falls versus only
trauma due to nonfalls produced equivalent results (p-value
in figure is for interaction term for TBI 3 fall). Risk of PD
after moderate/severe TBI was significantly greater than
risk of PD after mild TBI (p-value in figure is for Wald test).
After excluding non-TBI trauma (NTT) cases who went on to
suffer a TBI and then stratifying TBI cases by those with
only 1 TBI versus those who went on to suffer an additional
TBI during the study period, risk of PD after >1 TBI was sig-
nificantly greater than risk of PD after 1 TBI (p-value in fig-
ure is for Wald test). Error bars are 95% confidence
intervals (CIs). HR 5 hazard ratio.

FIGURE 1: Kaplan–Meier plot showing Parkinson disease
(PD)-free survival after traumatic brain injury (TBI) versus
non-TBI trauma (NTT). TBI is associated with increased risk
of PD compared to NTT. The Kaplan–Meier plot is adjusted
for age. [Color figure can be viewed in the online issue,
which is available at www.annalsofneurology.org.]
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equivalent. This finding suggests that even if some

patients who fall and sustain TBI are more likely to have

incipient PD due to slower reaction times9 that may pre-

dispose to head rather than bodily injury, then the

impact on the results is negligible. Additionally, the evi-

dence for a dose response for increasing TBI severity and

TBI frequency, and our persistently significant results

despite multiple additional analyses, all enhance causal

inference.

These results are in line with a recent meta-analysis

of 22 studies that reported a pooled odds ratio of 1.57

for the association between PD and head trauma.4 In

this meta-analysis, despite variability in methodological

approach and statistical significance, nearly all (19 of 22)

studies reported odds ratios> 1. Aside from mounting

evidence for an association between TBI and PD, many

prior studies have identified TBI as an important risk

factor for late onset dementia20–23 and possibly early

onset dementia as well.24 Together, this body of work

suggests that TBI may be an important risk-magnifier or

threshold lowerer for neurodegeneration of many kinds.

The risk of PD following mild TBI in particular has

been somewhat less clear. Results of the few prior studies

on this topic have been mixed. For example, of the 5

qualifying studies analyzed in a systematic review of the

literature from 1990–2012,5 only 2 reported an elevated

risk of PD after mild TBI.6,25 Interestingly, the authors of

one of these studies attributed these results to reverse cau-

sation6; the authors of the other study, to suboptimal

matching of controls.25 Our study appears to be among

the largest to date to specifically assess the risk of PD fol-

lowing mild TBI while mitigating both of these prior

methodological concerns. In our analysis of >11,000

patients with mild TBI compared to >113,000 patients

with NTT, we identified >1,300 subsequent cases of PD.

Patients with mild TBI were 24% more likely to develop

PD than those with NTT. The lack of an interaction

between age category and mild TBI indicates that risk of

PD following mild TBI is similar across ages.

PD is a progressive neurodegenerative disorder

characterized by loss of pigmented dopaminergic neurons

of the substantia nigra as well as the presence of abnor-

mal alpha-synuclein–containing Lewy bodies and Lewy

neurites.26 Prior to development of clinically apparent

parkinsonism, patients must lose upwards of 60% of

striatal dopamine.27 A causal association between TBI

and PD may be explained by several possible mecha-

nisms. First, TBI may produce a static brain injury that

reduces motor reserve, thereby leading to an earlier diag-

nosis of PD in a susceptible patient (eg, by unmasking

otherwise subclinical symptoms). Second, TBI may

actively accelerate or augment a pre-existing neurodege-

nerative cascade. Third, TBI may trigger a de novo neu-

rodegenerative cascade. Our results could theoretically

lend support to the first 2 hypotheses, but the relatively

short period of follow-up precludes commentary regard-

ing the third hypothesis.

A number of prior studies using animal models of

TBI support a causal mechanism for post-TBI PD. For

example, a study of experimentally induced TBI in rats

showed 15% loss of dopaminergic neurons ipsilateral to

the injury just 11 days after injury that increased to 30%

bilateral dopaminergic neuron loss 26 weeks postinjury.28

Others have shown persistently decreased markers of dopa-

mine synthesis and abnormal accumulation of alpha-

synuclein in the substantia nigra 60 days after injury.29

Recently, studies in humans have begun to replicate some

of these findings. Alpha-synuclein is elevated in cerebrospi-

nal fluid of TBI patients compared to controls during the

week following injury, and the degree of elevation is highly

predictive of survival.30 Among patients who die after

TBI, abundant alpha-synuclein deposition may be seen

within injured axons.31 A preliminary autopsy analysis

from the Adult Changes in Thought study that explored

associations between an array of dementia-related neuropa-

thologies and prior history of TBI among 525 patients

(107 with TBI) found that alpha-synuclein was the only

dementia-related neuropathology that was significantly

associated with TBI history.32 Small studies in clinical

populations have reported parkinsonism immediately fol-

lowing severe TBI that is sometimes dopamine respon-

sive33 and have identified functional magnetic resonance

imaging abnormalities in motor networks among patients

with post-traumatic parkinsonism that mirror those

reported in idiopathic PD.34 Post-traumatic parkinsonism,

however, may be transient and is hypothesized to be pri-

marily due to traumatic axonal disruption of nigrostriato-

frontal pathways. Among those cases that become chronic

or progressive, it is conceivable that neurodegenerative

pathology may be a contributing factor. This hypothesis,

however, is currently speculative and requires further study.

Lastly, some have found that TBI exposure may synergize

with other environmental exposures, such as pesticides,2,28

or specific genes35,36 to increase risk for PD, suggesting

that certain subpopulations may be at particularly high

risk for post-TBI PD.

This study is limited by the use of inpatient and ED

administrative diagnostic codes, which may be poorly sen-

sitive or specific to PD diagnoses.37,38 Poor sensitivity, if

equal across groups, should not bias the relative magnitude

of the association. However, severe TBI or bodily trauma

may make a diagnosis of PD difficult due to the possibility

of post-traumatic motor or behavioral abnormalities that

may complicate assessment. Thus some degree of bias in

ANNALS of Neurology
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diagnostic sensitivity across groups cannot be entirely ruled

out. Given the constraints of this administrative data set,

we were unable to validate PD diagnoses via expert review

of medical records or to develop complex algorithms to

include only diagnoses rendered by experts or to account

for medication use.38 Thus, the possibility of misdiagnosis

in this study underscores the critical importance of con-

firming these findings in large-scale prospective studies,

ideally with autopsy confirmation. The study is addition-

ally limited by lack of information regarding medical his-

tory (including prior TBI history) prior to the study

period, lack of detailed information regarding acute man-

agement of TBI such as medications and surgical interven-

tions, the relatively short 5- to 7-year follow-up duration,

inability to censor at death or loss to follow-up for any rea-

son, lack of outpatient data, and possible selection bias if

patients who present to the hospital for TBI differ from

those who do not seek medical care.39 Additionally, by

using a trauma control group, we essentially controlled for

any additional deleterious systemic effects of trauma on

the nervous system that could potentially independently

increase risk of PD. Thus, if NTT itself increases risk for

PD, then the risk of PD following TBI may be underesti-

mated in this study. Lastly, while the use of a NTT control

group may reduce confounding, the possibility for residual

confounding remains. Assault was a more common mecha-

nism of injury and alcohol disorders/dependence were

more common baseline comorbidities among TBI patients

compared to NTT patients. Although we adjusted for

these (and many other) potential confounders, we cannot

exclude the possibility that some residual unmeasured con-

founders exist (eg, a behavior that may lead a person to be

more likely to sustain a TBI vs an NTT and that may also

be an independent risk factor for PD). Despite these limi-

tations, we assert that the careful design of this study as

well as the robustness of the multiple additional analyses

and identification of a dose response support a causal asso-

ciation. We propose that future studies of neurodegenera-

tive disease using this data set may be appropriate if either

the outcome or predictor of interest is well suited to an

inpatient or ED diagnosis (as in the case of incident TBI)

and if the investigators carefully consider the above

limitations.

Conclusion
We report that among middle-aged and older trauma

patients presenting to an ED or inpatient setting, a TBI

results in a 44% increased risk of PD compared to a

trauma to the rest of the body over a follow-up period of

just 5 to 7 years. Based on our careful study design and

extensive secondary analyses, this result is almost cer-

tainly not solely due to reverse causation or confounding.

Furthermore, in combination with our prior study that

identified a 26% increased risk of dementia after TBI

versus NTT in this population,8 our results suggest that

TBI is an important independent risk factor for a variety

of neurodegenerative syndromes. Whether these post-TBI

syndromes are primarily subserved by typical dementia

or PD neuropathologies or may be partially or wholly

due to unique TBI-specific neuropathology, such as has

been documented in patients subjected to repeated TBI

who have chronic traumatic encephalopathy, deserves fur-

ther study. It is important to note that the vast majority

of TBI patients in this study did not develop PD. This

finding suggests that there must be multiple additional

risk or protective factors that determine susceptibility or

resilience to post-TBI neurodegeneration. Thus, it is

imperative for future studies to continue to elucidate the

underlying mechanisms and additional risk factors for

post-TBI neurodegenerative disease to inform treatment

and prevention in this high-risk population. Lastly, as the

cause of trauma in this study was overwhelmingly due to

falls, there is critical importance for fall prevention in

middle-aged and older adults not only as a means to pre-

vent bodily injury but potentially as a means to prevent

neurodegenerative diseases such as dementia and PD.
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