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Existing predictive models of risk of disease progression in chronic hepatitis C have lim-
ited accuracy. The aim of this study was to improve upon existing models by applying
novel statistical methods that incorporate longitudinal data. Patients in the Hepatitis C
Antiviral Long-term Treatment Against Cirrhosis trial were analyzed. Outcomes of interest
were (1) fibrosis progression (increase of two or more Ishak stages) and (2) liver-related
clinical outcomes (liver-related death, hepatic decompensation, hepatocellular carcinoma,
liver transplant, or increase in Child-Turcotte-Pugh score to �7). Predictors included lon-
gitudinal clinical, laboratory, and histologic data. Models were constructed using logistic
regression and two machine learning methods (random forest and boosting) to predict an
outcome in the next 12 months. The control arm was used as the training data set
(n 5 349 clinical, n 5 184 fibrosis) and the interferon arm, for internal validation. The
area under the receiver operating characteristic curve for longitudinal models of fibrosis
progression was 0.78 (95% confidence interval [CI] 0.74-0.83) using logistic regression,
0.79 (95% CI 0.77-0.81) using random forest, and 0.79 (95% CI 0.77-0.82) using boost-
ing. The area under the receiver operating characteristic curve for longitudinal models of
clinical progression was 0.79 (95% CI 0.77-0.82) using logistic regression, 0.86 (95% CI
0.85-0.87) using random forest, and 0.84 (95% CI 0.82-0.86) using boosting. Longitudi-
nal models outperformed baseline models for both outcomes (P < 0.0001). Longitudinal
machine learning models had negative predictive values of 94% for both outcomes. Con-
clusions: Prediction models that incorporate longitudinal data can capture nonlinear dis-
ease progression in chronic hepatitis C and thus outperform baseline models. Machine
learning methods can capture complex relationships between predictors and outcomes,
yielding more accurate predictions; our models can help target costly therapies to patients
with the most urgent need, guide the intensity of clinical monitoring required, and pro-
vide prognostic information to patients. (HEPATOLOGY 2015;61:1832-1841)

T
he marked improvement in efficacy and side
effect profile of the direct-acting antiviral
agents have dramatically altered the approach

to treatment decision making for chronic hepatitis C
(CHC).1,2 The availability of short courses of well-
tolerated all-oral therapy with sustained virologic
response rates >90% has prompted recommendations

that all patients with CHC should be considered for
treatment. There has simultaneously been a focus on
improving hepatitis C viral (HCV) infection outcomes
at the public health level. The Centers for Disease
Control and Prevention, the Institute of Medicine, and
the US Preventive Services Task Force have advocated
for HCV screening as well as treatment as a means of
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disease prevention.3-5 The high prevalence of CHC in
the United States paired with the high cost of direct-
acting antiviral agents has created notable logistical
and financial barriers to universal treatment of patients
with CHC. The barriers are even more pronounced in
resource-limited countries, many of which have a
much higher prevalence of CHC than in Western
countries.6

If clinicians were better able to predict which patients
are at the highest risk for disease progression, these
costly therapies could be targeted to patients who have
the most urgent need for treatment. Risk prediction
models for disease progression would also provide clini-
cians with valuable information to help guide the inten-
sity of clinical monitoring required and meaningful
prognostic information irrespective of treatment deci-
sion making. Most published predictive models for dis-
ease progression in CHC are based on data on a few
variables collected at baseline, with a small number of
models incorporating selected data at a single follow-up
time point.7 These rigid models do not mirror clinical
practice where assessments of risk of disease progression
incorporate a patient’s test results over time. In addition,
models with only baseline variables cannot distinguish
between patients with similar initial data but who go
on to have distinct disease courses and outcomes. As
such, the aim of this study was to improve upon exist-
ing models by incorporating longitudinal data that cap-
ture the nonlinear nature of disease progression in
CHC. Data from the Hepatitis C Antiviral Long-term
Treatment Against Cirrhosis (HALT-C) trial were used
for this purpose. We believe that our approach is appli-
cable to other areas of medicine as most chronic dis-
eases do not progress at a linear rate, and it is
important for physicians to be able to utilize longitudi-
nal data to refine prognostication as they follow patients
so that they can adapt the management plan.

Patients and Methods

Study Population and Data Collection. The
design of the HALT-C trial has been described in
detail previously.8 To briefly summarize, the trial
enrolled patients with CHC with Ishak fibrosis score
�3 on liver biopsy and prior nonresponse to inter-

feron (IFN) therapies. Patients with a prior history of
hepatic decompensation or hepatocellular carcinoma
(HCC) were excluded. Patients were randomized to
maintenance therapy with pegylated-IFN or to no
treatment for the next 3.5 years. Following completion
of the randomized phase, patients were followed with-
out treatment until October 2009. For this analysis,
we included patients randomized to no treatment in
the training set. This selection criterion was chosen
given that IFN therapy can have an effect on labora-
tory results, which in turn may impact their predictive
value. Liver biopsies were performed at baseline and
repeated at 1.5 and 3.5 years. All biopsy specimens
were reviewed for fibrosis, inflammation, steatosis, and
iron by a panel of hepatic pathologists. Patients were
seen every 3 months during the randomized phase of
the trial and every 6 months thereafter. During each
visit blood tests were performed and patients were
assessed for clinical outcomes.

Definition of Outcomes. Outcomes of interest
included (1) histologic progression and (2) liver-related
clinical outcomes. Histologic progression was defined
as an increase of two or more stages in Ishak fibrosis
score from baseline liver biopsy. Any patient with
Ishak >4 at baseline was excluded from this part of
the analysis. Liver-related clinical outcomes included
any of the following: liver-related death, hepatic
decompensation (variceal bleeding, ascites, spontaneous
bacterial peritonitis, or hepatic encephalopathy), HCC
or presumed HCC, liver transplant, or increase in
Child-Turcotte-Pugh score to �7 points on two con-
secutive time points 3 months apart.8 Diagnostic crite-
ria were established for each clinical outcome, and an
outcomes review panel adjudicated each outcome
report per the HALT-C study protocol. Only the first
clinical outcome for each patient was included in the
analysis.

Predictor Variables. A detailed description of the
variables assessed is provided in Table 1. Predictors
evaluated included demographics, viral characteristics,
clinical characteristics (including relevant comorbid-
ities), laboratory test results, and histology. In order to
capture the extensive longitudinal data, for each pre-
dictor we created five variables: mean, maximum,
mean of differential, maximum of differential, and
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mean of acceleration. These variables were defined as
follows: mean was defined as the mean of the observed
values; maximum was defined as the maximum of the
observed values; mean of the differential was defined
as the mean of the difference between sequential
observed values divided by the sequential observation
time; maximum of the differential was defined as the
maximum of the difference between sequential
observed values divided by the sequential observation
time; and mean of acceleration was defined as the
mean of the difference between sequential differential
observed values divided by the difference between
sequential differential observation time (Dx� /Dt).Results
of all predictors until 12 months prior to time of pre-
diction were included. For fibrosis progression, out-
comes could only be assessed at the fixed intervals of
year 1.5 and 3.5 when biopsies were obtained per
study protocol.

A second condensed clinical outcomes prediction
model was also created. The predictor variables
included in the condensed clinical model were chosen
based on their availability in clinical practice and tak-
ing into account the results of the variable importance
graphs generated from the comprehensive clinical
model and the results of our systematic review of the
literature on predictors of clinical outcomes.7

Development of Regression Model. We first devel-
oped a predictive logistic regression (LR) model for both
outcomes within the next 12 months. We generated a
model using baseline variables only and a model that
included baseline and longitudinal data. Because regression
models do not converge when the number of predictors is
large, we used a lasso technique to limit the predictor vari-
ables to those with the highest predictive value.9 A 10-fold
cross-validation was performed by dividing the data into
10 roughly equal smaller data sets (folds). The model
(including variable selection) is then run 10 times, with
the data in each fold being held out in each run. The
cross-validation was then repeated 50 times to give an esti-
mate of the performance characteristics.

Development of Machine Learning Models. An
in-depth description of the machine learning (ML) algo-
rithms and model construction is provided in the Sup-
porting Information. Briefly, we used two ML methods,
random forest (RF) analysis and boosting, to build pre-
diction models.10-12 Boosting and RF are two decision
tree–based ensemble statistical methods that can build
classification and regression prediction models. Com-
pared to the commonly used predictive models, these
two ML methods are able to incorporate many predictor
variables without compromising the accuracy of the risk
prediction.

Table 1. Predictor Variables Assessed

Comprehensive Model

Baseline variables Demographics: Age, gender, race

Viral characteristics: HCV genotype, IL28B genotype, HCV RNA, prior HCV treatment regimens, estimated duration of

HCV infection

Clinical characteristics: alcohol use (lifetime drinks and current use), tobacco use, BMI, waist circumference, history of

diabetes, presence and grade of esophageal varices on upper endoscopy, beta-blocker use, antihypertensive use,

evidence of portal hypertension

Labs: WBC with differential, hemoglobin, platelets, AST, ALT, AST/ALT, total bilirubin, albumin, alkaline phosphatase,

APRI, AFP, INR, MELD, creatinine, BUN, glucose, triglycerides, insulin, HOMA2 IR, iron level, iron saturation, total iron

binding capacity, ferritin

Histology: Ishak score, histologic activity index, steatosis score, biopsy length, biopsy fragmentation, iron score

Longitudinal variables Viral characteristics: HCV RNA

Clinical characteristics: BMI

Labs: WBC with differential, hemoglobin, platelets, AST, ALT, AST/ALT, alkaline phosphatase, total bilirubin, albumin,

INR, AFP, APRI, MELD, CTP score (for fibrosis progression model only), BUN, creatinine, eGFR, urinary protein, glu-

cose, triglycerides, iron, total iron binding capacity, ferritin,

Histology: Ishak score, histologic activity index, steatosis score, biopsy length, biopsy fragmentation, iron score

Condensed Model

Baseline variables Demographics: Age, gender, race

Viral characteristics: HCV genotype, HCV RNA

Clinical characteristics: BMI, history of diabetes

Labs: WBC, hemoglobin, platelets, AST, ALT, AST/ALT, total bilirubin, albumin, alkaline phosphatase, APRI, AFP, INR,

MELD, creatinine, BUN, glucose

Longitudinal variables Clinical characteristics: BMI

Labs: WBC, hemoglobin, platelets, BUN, creatinine, glucose, AST, ALT, AST/ALT, alkaline phosphatase, total bilirubin,

albumin, INR, AFP, APRI, MELD, CTP score (for fibrosis progression model only)

Abbreviations: AFP, alpha-fetoprotein; ALT, alanine aminotransferase; APRI, AST to platelet ratio index; AST, aspartate aminotransferase; BMI, body mass index;

BUN, blood urea nitrogen; CTP, Child-Turcotte-Pugh; eGFR, estimated glomerular filtration rate; HCV, hepatitis C virus; HOMA2 IR, homeostatic model assessment of

insulin resistance; IL, interleukin; INR, international normalized ratio; MELD, model of end-stage liver disease; WBC, white blood cell count.
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In RF, as each decision tree is built, only a random
subset of the predictor variables are considered as pos-
sible splitters for each binary partitioning. The predic-
tions from each tree are used as “votes” in
classification, and the outcome with the most votes is
considered the dichotomous outcome prediction for
that sample. Using this method, multiple decision trees
were constructed to create the final classification pre-
diction model and to determine overall variable impor-
tance. Variable importance identifies the most
important variables based on their contribution to the
predictive accuracy of the model. The most important
variables are identified as those that most frequently
result in early splitting of the decision trees. Boosting,
in comparison to RF, is an iterative process that
focuses on the misclassified data such that each tree is
based on a weighted average of the data points and the
weights are calculated based on the previous model in
the iterative process. The ML methods were also vali-
dated using a 10-fold cross-validation and 50
replications.

Assessing and Comparing Model Performance and
Internal Validation. We compared the performance
of the ML models and the classic LR model for both
fibrosis progression and clinical outcomes with area
under the receiver operating characteristic curve
(AUROC) analysis and 95% confidence intervals (CIs).
We then compared the longitudinal models with mod-
els built on baseline predictors alone for each outcome.
We performed internal validation of the longitudinal
prediction models using the maintenance pegylated-IFN
treatment arm of the HALT-C trial. The receiver oper-
ating characteristic curves were used to identify optimal
risk cutoffs to maximize the model sensitivity and speci-
ficity and define a high-risk and a low-risk group. We
assessed the ability of each model to differentiate the
risk of fibrosis progression or clinical outcomes among
low-risk and high-risk patients. Brier scores, which cap-
ture both calibration and discrimination, were also
reported as an overall measure of model performance.
Brier scores can range from 0 to 1, with lower scores
being consistent with more accurate and better model
performance. In order to assess the performance of our
longitudinal ML model in the setting of missing data as
may occur in the clinical setting, we then applied the
model using imputation for missing predictors. The
MissForest method of imputation for missing laboratory
data was used.13

All ML methods were performed using the statistical
language R (version 3.0.2), with the package random-
Forest, Adaboost, and gbm (by Y.Z. and J.Z.).11,12,14

Additional analyses were conducted using STATA sta-

tistical software. Two-sided P values <0.05 were con-
sidered statistically significant.

Results

Predicting Fibrosis Progression. A total of 274
patients in the no-treatment arm had an Ishak score of
<5 on the baseline biopsy and at least one of the two
subsequent protocol follow-up liver biopsies. For this
analysis, we included 184 patients who did not have
any missing data for any of the predictor variables. At
baseline biopsy, 22 patients had Ishak fibrosis stage 2,
105 had Ishak stage 3, and 57 had Ishak stage 4. Fifty
(27.1%) patients had fibrosis progression. Baseline
characteristics of patients who did and those who did
not have a �2-point increase in Ishak score are shown
in Table 2. These findings were similar to those of the
larger cohort that included patients with missing data
(Supporting Table S1).

The AUROC results for the three separate predic-
tion models created using either baseline or longitudi-
nal data to differentiate patients with fibrosis
progression are displayed in Fig. 1A. For models with
longitudinal data, the AUROCs were 0.78 (95% CI
0.74-0.83) using LR, 0.79 (95% CI 0.77-0.81) using
RF, and 0.79 (95% CI 0.77-0.82) using boosting. The
difference between the longitudinal AUROCs of the
two ML models and the LR model, calculated using
the 50-replication approach, were statistically signifi-
cant (P 5 0.002 for RF, P 5 0.0006 for boosting).
Each of the three longitudinal models had statistically
higher AUROCs than their respective models with
baseline data alone (P< 0.0001).

The variable importance graph for the RF ML lon-
gitudinal model is shown in Fig. 2A. The most impor-
tant variables in differentiating patients who developed
fibrosis progression and those who did not were as fol-
lows: mean aspartate aminotransferase, mean and dif-
ferential mean aspartate aminotransferase to platelet
ratio index (APRI), mean alanine aminotransferase,
and baseline model of end-stage liver disease score.

Predicting Clinical Outcomes. A total of 533
patients were assessed for clinical outcomes. For this
analysis, we included the 349 patients who did not
have any missing data for any of the predictor varia-
bles. A total of 100 patients (28.6%) met predefined
criteria for the combined clinical outcome. Baseline
characteristics of those patients who did and those
who did not have a clinical outcome are shown in
Table 2.

The AUROC results for the three separate predic-
tion models created using baseline or longitudinal data
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to differentiate patients who did or did not develop a
clinical outcome are displayed in Fig. 1B. For models
with longitudinal data, the AUROCs were 0.79 (95%
CI 0.78-0.82) using LR, 0.86 (95% CI 0.85-0.87)
using RF, and 0.84 (95% CI 0.82-0.86) using boost-
ing. The ML models had significantly better discrimi-
native accuracy than the LR model for clinical
outcomes (P <0.0001). The longitudinal models out-
performed the related baseline models for all three
methods (P< 0.0001).

The variable importance graph for the longitudinal
RF ML model in predicting clinical outcomes is
shown in Fig. 2B. The most important independent
variables in differentiating patients who developed clin-
ical outcomes and those who did not were as follows:
mean APRI, maximum baseline and mean platelet
count, and mean albumin. To assess whether our mod-
els were more accurate at predicting any of the five
combined clinical outcomes, additional sensitivity anal-
yses were performed by removing one clinical outcome
from the combined clinical outcome at a time. Neither
the AUROC nor the variable importance results signif-
icantly changed. Of note, removing HCC as one of

the combined clinical outcomes did not significantly
alter the AUROC or the variable importance (Support-
ing Fig. S1).

Performance of Prediction Models in the Internal
Validation Cohort. Validation of the prediction
models was performed using data from the treatment
arm of the HALT-C trial. The baseline characteristics
of the patients in the treatment arm are displayed in
Supporting Table S2. A total of 183 patients in the
IFN treatment arm had no missing data for any of the
predictor variables and were included in this analysis
for histologic and clinical outcomes. In the internal
validation cohort 46 (25.1%) patients had fibrosis pro-
gression and 31 (17%) had a clinical outcome. The
features associated with developing an outcome on
univariate analysis in the internal validation cohort
were similar, though not identical, to results in
the control arm of the HALT-C study (Supporting
Table S2).

In the internal validation cohort, the longitudinal
fibrosis progression models had the following
AUROCs: 0.79 (95% CI 0.71-0.87) using LR, 0.88
(95% CI 0.83-0.93) using RF, and 0.86 (95% CI

Table 2. Baseline Characteristics of Patients by Outcome: Training Cohort

Variable

Fibrosis Progression (n 5 184) Clinical Outcome (n 5 349)

No Yes

P

No Yes

P

(n 5 134) (n 5 50) (n 5 249) (n 5 100)

Mean or % Mean or % Mean or % Mean or %

Age (years) 49.6 48.6 0.37 49.2 49.6 0.63

% Female 27.6 38.0 0.17 28.9 27 0.72

Race (% white) 71.6 76.0 0.19 71.9 74 0.15

% HCV genotype 1 92.5 90 0.20 92 91 0.59

Duration of Infection (years) 25.9 26.8 0.49 26.3 28.1 0.06

BMI 29.3 31.5 0.02 29.6 20.6 0.12

Diabetes (%) 13.4 22 0.16 15.2 18 0.53

Alcohol intake/day (g) 28.9 28.0 0.89 27.5 32.6 0.35

Tobacco use (pack-years) 13.9 17.0 0.27 15.3 12.1 0.12

Log HCV RNA (log10 IU/mL) 6.5 6.4 0.10 6.5 6.3 0.003

Platelet count (1000/mm3) 201 173 0.008 185 123 <0.0001

INR 0.99 1.03 0.008 1.02 1.08 <0.0001

AST ratio to ULN* 1.75 2.40 0.009 2.03 2.46 0.01

ALT ratio to ULN* 2.13 2.81 0.05 2.37 2.34 0.88

AST/ALT 0.78 0.81 0.44 0.78 0.97 <0.0001

Alkaline phosphatase ratio to ULN* 0.78 0.85 0.22 0.79 0.95 0.0002

Albumin (g/dL) 3.97 3.87 0.04 3.94 3.67 <0.0001

Total bilirubin (mg/dL) 0.66 0.81 0.008 0.73 0.91 <0.0001

AFP ratio to ULN* 1.01 1.66 0.03 1.17 2.64 <0.0001

MELD 6.5 7.2 0.0001 6.8 7.5 0.0001

APRI 0.99 1.77 0.0004 1.34 2.33 <0.0001

Ishak 3.1 3.3 0.14 3.83 4.14 <0.0001

HAI 7.23 7.06 0.60 7.39 7.47 0.22

Steatosis (0-4) 1.14 1.72 0.0002 1.33 1.38 0.65

*Variable expressed relative to the ULN to account for differences in reference ranges for normal results among different clinical trial sites.

Abbreviations: AFP, alpha-fetoprotein; ALT, alanine aminotransferase; APRI, AST to platelet ratio index; AST, aspartate aminotransferase; BMI, body mass index;

HAI, histologic activity index; HCV, hepatitis C virus; INR, international normalized ratio; MELD, model of end-stage liver disease; RNA, ribonucleic acid; ULN, upper

limit of normal.
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0.80-0.91) using boosting (Fig. 3A). The longitudinal
predictive models for clinical outcomes had the follow-
ing AUROCs in the internal validation cohort: 0.76

(95% CI 0.67-0.86) using LR, 0.81 (95% CI 0.73-
0.90) using RF, and 0.80 (95% CI 0.70-0.90) using
boosting (Fig. 3B). An additional analysis was

Fig. 1. Areas under the receiver operating characteristic curve in the training cohort for (A) fibrosis progression and (B) clinical outcomes.
Abbreviation: AUROC, area under the receiver operating characteristic curve.

Fig. 2. Longitudinal RF variable importance in the training cohort for (A) fibrosis progression and (B) clinical outcomes. Abbreviations: Accel,
acceleration; AFP, alpha-fetoprotein; Alk Phos, alkaline phosphatase; ALT, alanine aminotransferase; ANC, absolute neutrophil count; APRI, AST to
platelet ratio index; AST, aspartate aminotransferase; BMI, body mass index; CTP, Child-Turcotte-Pugh; Diff, differential; HOMA2 IR, homeostatic model
assessment of insulin resistance; INR, international normalized ratio; MELD, model of end-stage liver disease; WBC, white blood cell count.
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performed using the entire validation cohort including
patients with missing data for the predictors which
yielded similar results.

The proportion of patients correctly classified as
high versus low risk and the associated Brier score are
displayed in Table 3 and illustrated in Fig. 4. For
fibrosis progression, the ML models were 85% sensi-
tive, 71%-77% specific with a negative predictive value
(NPV) of 94%. For clinical outcomes, the ML models
had a sensitivity of 74%-81%, a specificity of 70%-
78%, and an NPV of 94%.

Performance of the Condensed Clinical Prediction
Model. The results of the more condensed clinical
prediction model built with only variables routinely
available in clinical practice yielded similar results (Fig.
5A). Once again, the longitudinal models outper-
formed the related baseline models for all three meth-
ods (P< 0.0001). The variables that contributed most
to the predictive accuracy of the condensed model
were similar to the comprehensive model and were as
follows: mean APRI, maximum mean and baseline
platelets, and mean albumin (Supporting Fig. S2). In

Fig. 3. Area under the receiver operating characteristic curves in the internal validation cohort of (A) longitudinal models for fibrosis progression
and (B) longitudinal models for clinical outcomes. Abbreviations: AuC, area under the receiver operating characteristic curve; RF, random forest.

Table 3. Misclassification Table for Longitudinal Predictive Models of
Fibrosis Progression and Clinical Outcomes: Internal Validation Cohort

Fibrosis Progression

Fibrosis Progressors (n 5 46) Fibrosis Nonprogressors (n 5 137)

Cutoff

Predicted Fibrosis

Progression

Predicted No Fibrosis

Progression

Predicted Fibrosis

Progression

Predicted No Fibrosis

Progression Brier score NPV PPV

Random forest 0.353 39 (84.8%) 7 (15.2%) 31 (22.6%) 106 (77.4%) 0.208 93.8% 55.7%

Boosting 210.47 39 (84.8%) 7 (15.2%) 39 (28.5%) 98 (71.5%) 0.251 93.3% 50.0%

Logistic regression 21.19 36 (78.3%) 10 (21.7%) 35 (25.5%) 102 (74.5%) 0.246 91.1% 50.7%

Clinical Outcomes

Clinical Progressors (n 5 31) Clinical Nonprogressors (n 5 152)

Cutoff

Predicted Clinical

Progression

Predicted No Clinical

Progression

Predicted Clinical

Progression

Predicted No Clinical

Progression Brier score NPV PPV

Random forest 0.291 23 (74.2%) 8 (25.8%) 34 (22.4%) 118 (77.6%) 0.230 93.7% 40.4%

Boosting 212.29 25 (80.7%) 6 (19.3%) 45 (29.6%) 107 (70.4%) 0.279 94.7% 35.7%

Logistic regression 21.77 23 (74.2%) 8 (25.8%) 51 (33.6%) 101 (66.4%) 0.322 92.7% 31.1%

Abbreviations: NPV, negative predictive value; PPV, positive predictive value.
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the internal validation cohort, the results of the con-
densed longitudinal clinical progression models were
essentially unchanged compared to the more compre-
hensive models (Fig. 5B). The proportion of patients
correctly classified as high versus low risk were also
very similar though slightly less accurate compared to
the original comprehensive model. For clinical out-
comes, the condensed longitudinal ML models had a
sensitivity of 76%-78%, a specificity of 66%-70%,
and an NPV that remained high at 94% (Supporting
Table S3).

Discussion

Recent advances in the treatment of CHC have rev-
olutionized the approach to treatment decision making
and reinvigorated the public health initiatives to iden-
tify patients with CHC. The pool of potential treat-
ment candidates is expected to continue to expand,
and the economic impact of these highly efficacious
but extremely costly therapies could potentially cripple
health care budgets. With over 3.2 million of the US
population estimated to have CHC and a single 12-
week course of therapy with sofosbuvir priced at
$84,000, universal treatment would cost over $268 bil-
lion, not accounting for the cost of other medications
and any other associated costs.15 In this context, our
data related to improving prediction models of disease
progression for patients with CHC provide clinically
relevant and valuable tools. These models can help tar-
get HCV therapies to patients with the most urgent
need for treatment until such time that logistic and
financial solutions allow universal treatment. Our
model also provides important prognostic information
that can help inform patients and tailor the intensity
of clinical monitoring required.

In this study, we demonstrated that prediction mod-
els that incorporate longitudinal data outperform mod-

els restricted to baseline data alone. Moreover, we
demonstrated that ML techniques can overcome limita-
tions of the classic forms of statistical analyses by virtue
of their ability to incorporate large numbers of predictor
variables without compromising the accuracy of the risk
prediction. For fibrosis progression, the AUROCs of
our longitudinal models of 0.86-0.88 were notably
higher than those in prior studies of 0.66.16 Our ML
longitudinal prediction models also yielded very high
NPVs of 94%; thus, very few patients classified as low
risk of fibrosis progression ultimately developed an out-
come. Our findings confirm the utility of liver enzymes
and other noninvasive markers of liver fibrosis, specifi-
cally APRI, particularly when the results of these tests
are used in aggregate.17-21 From a clinical practice and
health policy standpoint the results of our clinical out-
come prediction models are even more relevant. Our
models were able to accurately discriminate high- versus
low-risk patients with a sensitivity of 74%, a specificity
of 78%, and an NPV of 94%. As expected, the varia-
bles that contributed most importantly to the predictive
capability of the model were longitudinal laboratory
markers of advanced liver disease including changes in
platelet count, APRI, and albumin. Of interest, when
removing HCC/presumed HCC from the composite
clinical outcomes, neither the AUROC nor the variable
importance significantly changed. This is somewhat sur-
prising given that other studies have identified different
predictors for hepatic decompensation and HCC.22,23

The major strength of our study is the application
of novel statistical approaches to analyze longitudinal
data, which improved the accuracy of prediction esti-
mates; however, there are several limitations to our
findings. These stem from the constraints on the gen-
eralizability of our results given the enrollment criteria
for the HALT-C study, which only enrolled patients
with advanced fibrosis and prior HCV treatment fail-
ure. Moreover, the HALT-C cohort was primarily
composed of middle-aged Caucasian men with geno-
type 1 infection and, thus, represents only a portion of
the overall population of patients with CHC. Future
studies would benefit from evaluating cohorts that
include more diverse ranges of baseline liver disease,
demographic characteristics, as well as other HCV
genotypes. In addition, our endpoint of interest was a
composite of liver-related clinical outcomes, and our
models may not be as accurate for prediction of indi-
vidual outcomes. Sensitivity analyses did show that our
models performed equally well when each outcome
was removed one at a time.

In conclusion, our findings build upon the existing
tools by providing novel approaches to analyze

Fig. 4. Outcome incidence by risk strata: internal validation cohort.
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individual patient results over time in order to more
accurately assess the risk of disease progression from
CHC. Machine learning methods of analysis have
long been successfully applied in other fields such as
business and marketing and, as demonstrated here,
provide a significant opportunity for application in
clinical settings.24 In our proposed models, we dem-
onstrate that accurate risk predictions can be made
based on data routinely available in clinical practice.
In its present form, our model can easily be imple-
mented into existing electronic medical records as a
clinical decision tool. Developing our model as a uni-
versally accessible web-based tool would further
increase its accessibility and uptake in clinical practice
and is an ultimate goal from an implementation
standpoint. Similar to our prediction models in
inflammatory bowel disease, we anticipate a tool
which would pull data from an individual patient’s
electronic medical records or a web-based platform
where physicians will input and store serial laboratory
results from individual patients and an update of the
prediction of high or low risk for an outcome in the
next 12 months can be run at each clinic visit.25 This
result can then be discussed with patients by the cli-
nician to help inform decisions regarding treatment
initiation and the intensity of clinical monitoring
(such as frequency of clinic visits and outpatient test-

ing). In the current era of highly efficacious therapy
for CHC, ideally we would treat all patients who do
not have an absolute contraindication to therapy.
Unfortunately, until society can solve the logistic and
financial barriers, clinicians and policy makers are
faced with the arduous task of trying to target these
therapies to patients with the most urgent need.
Herein we illustrate that it is possible to create pre-
dictive models of risk of disease progression that
accurately identify those patients at highest risk for
adverse outcomes. Offering immediate treatment to
patients identified as high risk for clinical outcomes
would reduce the immediate cost burden of HCV
treatment without jeopardizing the outcomes of other
patients as long as they continue to be monitored
and risk assessments are updated at each clinic visit.
Future studies are needed to externally validate our
results in broader patient populations. Ultimately, we
hope treatment will be affordable and accessible to all
patients with CHC.
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