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ABSTRACT

Motivated by the ubiquity of time series in oceanic data, the relative lack of studies of geostrophic turbulence in

the frequency domain, and the interest in quantifying the contributions of intrinsic nonlinearities to oceanic

frequency spectra, this paper examines the spectra and spectral fluxes of surface oceanic geostrophic flows in the

frequency domain. Spectra and spectral fluxes are computed from idealized two-layer quasigeostrophic (QG)

turbulence models and realistic ocean general circulation models, as well as from gridded satellite altimeter data.

The frequency spectra of the variance of streamfunction (akin to sea surface height) and of geostrophic velocity

are qualitatively similar in all of these, with substantial variance extending out to low frequencies. The spectral flux

P(v) of kinetic energy in the frequency v domain for the QG model documents a tendency for nonlinearity to

drive energy toward longer periods, in like manner to the inverse cascade toward larger length scales documented

in calculations of the spectral flux P(k) in the wavenumber k domain. Computations of P(v) in the realistic model

also display an ‘‘inverse temporal cascade.’’ In satellite altimeter data, some regions are dominated by an inverse

temporal cascade, whereas others exhibit a forward temporal cascade. However, calculations performed with

temporally and/or spatially filtered output from the models demonstrate that P(v) values are highly susceptible to

the smoothing inherent in the construction of gridded altimeter products. Therefore, at present it is difficult to say

whether the forward temporal cascades seen in some regions in altimeter data represent physics that is missing in

the models studied here or merely sampling artifacts.

1. Introduction

In this paper, we examine the spectra and spectral

fluxes of surface oceanic geostrophic flows in the fre-

quency domain. We will calculate spectra and spectral

fluxes from the outputs of a highly simplified (idealized)

two-layer quasigeostrophic (QG) turbulence model

(Arbic and Flierl 2004) and a high-resolution ocean

general circulation model run in a realistic near-global
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domain (called here, the realistic model; Hurlburt and

Thompson 1980; Shriver et al. 2007), as well as from

gridded satellite altimeter data (LeTraon et al. 1998;

Ducet et al. 2000). We are motivated in part by the fact

that oceanic data is often in the frequency domain

(taking a current meter as an example). However, as

noted by Ferrari and Wunsch (2010), geostrophic tur-

bulence remains much better theoretically developed in

the wavenumber domain (taking the substantial litera-

ture on spectral slopes in wavenumber space as an ex-

ample; e.g. Vallis 2006). As far as we know, this paper

represents the first comprehensive look at idealized QG

turbulence in the frequency domain. We will describe

spectra and spectral slopes computed from idealized QG

models and compare the results to those from realistic

ocean models and oceanic datasets. Finally, another

primary motivation for this study is the interest in

quantifying the contributions of intrinsic nonlinearities

in oceanic dynamics to oceanic frequency spectra. As

described below, we will quantify nonlinear contribu-

tions through computations of spectral fluxes. Some

important related issues discussed in the paper include

the Taylor (1938) hypothesis relating frequency and

wavenumber spectra, the sensitivity of QG turbulence

statistics in the frequency domain to bottom friction, and

the impact of the spatial and temporal filtering inherent

in the creation of gridded satellite altimeter data on the

computed spectral fluxes.

We will adapt some of the language and results of

geostrophic turbulence theory, which is generally asso-

ciated with the wavenumber domain, to the frequency

domain. For instance, we will build an analog in the

frequency domain for the diagnosis of the inverse cas-

cade to larger spatial scales commonly done in the

wavenumber domain. Recently, the spectral fluxes P(k)

of kinetic energy in wavenumber k space for surface

ocean geostrophic flows have been computed from sat-

ellite altimetry data of sea surface height (Scott and

Wang 2005).1 Following upon this, P(k) has been com-

puted from both idealized QG turbulence models (e.g.,

Scott and Arbic 2007) and realistic ocean general cir-

culation models (e.g., Schlösser and Eden 2007) (see

also Tulloch et al. 2011). All three types of computations

demonstrate that there is an inverse cascade of kinetic

energy, driven by nonlinear advection, toward larger

spatial scales taking place at length scales sufficiently

large [when compared to the first baroclinic (BC)

mode deformation radius Ld]. Motivated by these

studies, here we investigate spectral fluxes P(v) and

spectral transfers

T(v) 5 2
›

›v
P(v)

of kinetic energy in frequency v space, as diagnostics of

the impact of nonlinearity on the frequency spectra of

surface ocean geostrophic flows. Our analysis of non-

linearities in the frequency domain is somewhat similar

to the diagnostics employed by Sheng and Hayashi

(1990a,b) on realistic atmospheric models and atmo-

spheric datasets. Note that our focus is on geostrophic

flows, computed from derivatives of sea surface height

(more precisely streamfunction) via the geostrophic

relations.

In analogy to the spectral fluxes in wavenumber space,

we might expect that, at low frequencies, the spectral

fluxes in frequency space will exhibit cascades toward

yet lower frequencies (longer time scales). Indeed, the

Taylor hypothesis (Taylor 1938) suggests that under

certain conditions (e.g., turbulent velocities u9 that are

small compared to a mean flow velocity U) the wave-

number and frequency domains are related simply, via

the formula v 5 Uk. In this case, spectra in wavenumber

and frequency space would have the same slopes, and

phenomena in the wavenumber domain (e.g., the in-

verse cascade) should have analogs in frequency space.

Further motivation arises from analysis of realistic at-

mospheric models and atmospheric datasets in the fre-

quency domain, which demonstrate an energy transfer

from high-frequency motions to low-frequency motions

in the extratropics (Sheng and Hayashi 1990a,b), and

from experiments on acoustic turbulence in superfluid

helium, in which an inverse energy cascade in frequency

space takes place under certain conditions (Ganshin

et al. 2008; Efimov et al. 2009, 2010).

Substantial variance often extends out to the lowest

frequencies in geophysical records, set by the duration

of the record (e.g., Richman et al. 1977; Wunsch 2009,

2010, and references therein), and there is great interest

in examining potential causes of this low-frequency

variability. An ultimate goal of the work begun here is to

understand the degree to which oceanic frequency

spectra in the geostrophic regime (as measured by, e.g.,

current meters or satellite altimetry) are caused by in-

trinsic nonlinearities in the oceanic dynamics (a process

emphasized in this paper) as opposed to, for instance,

the oceanic response to atmospheric wind forcing (e.g.,

Hasselmann 1976).

Another topic we will explore in this paper is the

sensitivity of eddy statistics in frequency space to the

strength of linear bottom Ekman friction. Several recent

1 In this paper, k denotes isotropic wavenumber except where

noted; in a few places in section 2, k and l denote wavenumbers in

the x and y directions, respectively.
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papers have demonstrated that the length scales and

other statistics in stratified geostrophic turbulence are

highly sensitive to the strength of linear bottom Ekman

friction (Arbic and Flierl 2003, 2004; Riviere et al. 2004;

Thompson and Young 2006, 2007; Arbic et al. 2007).

Arbic and Scott (2008) showed that a qualitatively

similar sensitivity holds when the bottom friction is

quadratic. Motivated by these results, here we briefly

examine the sensitivity of statistics computed in the

frequency domain to linear bottom Ekman friction.

We will also examine the impact of filtering a geo-

strophic streamfunction in space and time on the esti-

mated spectral fluxes. This topic is important because

the Archiving, Validation, and Interpretation of Satel-

lite Oceanographic data (AVISO) gridded satellite al-

timeter products (Le Traon et al. 1998; Ducet et al. 2000)

used here to compute spectral kinetic energy fluxes are

constructed by interpolating along-track data from two

altimeters, in space and time, onto a 1/38 Mercator grid.

The Ocean Topography Experiment (TOPEX)/Poseidon

and Jason-1 altimeter data utilized in this construction

have high along-track resolution (about 6 km) but a

large distance between adjacent tracks (about 300 km;

Chelton et al. 2001). Because of the large along-track

distance, the actual feature resolution of AVISO data is

much coarser than 6 km (Chelton et al. 2011). The in-

terpolation procedure used to construct the gridded

AVISO data acts as a smoother of the raw along-track

data, in both space and time. We will examine the impact

of such smoothing on spectral flux estimates by com-

paring fluxes computed from unfiltered versus filtered

outputs of the idealized QG models and realistic ocean

models.

We will examine the consistency of slopes of stream-

function and geostrophic velocity variance in the fre-

quency domain between idealized QG models, realistic

ocean models, and gridded satellite altimeter data. The

slopes of spectra in frequency and wavenumber space

are of great practical and theoretical interest. The ad-

vent of satellite altimetry has made it possible to com-

pute spectral slopes on global scales and to compare

the results with theoretical predictions. See, for instance,

Le Traon et al. (2008) and Xu and Fu (2011), who com-

pute wavenumber spectra, and Hughes and Williams

(2010) and Wunsch (2009, 2010), who compute fre-

quency spectra. See also Hayashi and Golder (1977)

and Hayashi (1982), who discuss the space–time spectra

of realistic atmospheric models and datasets. As noted,

if the Taylor hypothesis holds, the slopes in frequency

and wavenumber space will be identical. Therefore, if

the Taylor hypothesis holds, the slopes of streamfunction

and geostrophic velocity variance spectra in frequency

space will differ by 22, as in wavenumber space (because

geostrophic velocity is the derivative of streamfunction

and a spatial derivative in physical space is equivalent to

multiplication by k in wavenumber space). However,

there are other considerations, such as Kolmogorov-like

arguments that predict a 22 slope for an energy cascade

in frequency space versus 25/3 in wavenumber space

(Tennekes and Lumley 1972).

The paper is organized as follows: In section 2, we

present results from the QG turbulence model. After

discussing the model limitations and governing equa-

tions and displaying some typical flow fields, we display

frequency spectra and the sensitivity of the QG results in

frequency space to the strength of bottom Ekman fric-

tion. We then describe the theory behind spectral fluxes

of kinetic energy in frequency space and demonstrate

the critical role that the spectral kinetic energy flux term

plays in an ‘‘integral energy budget.’’ Next, we demon-

strate the necessity for averaging over many grid points

in order to estimate spectral fluxes in frequency space.

Following that, we demonstrate the dependence of

estimates of spectra and spectral fluxes in frequency

space on the duration and sampling frequency of the

time series involved. Section 2 concludes with a dis-

cussion of the substantial impact that filtering in space

or time can have on spectral flux estimates made from

the QG model. In sections 3 and 4, we present spectra

and spectral fluxes in frequency space, computed from

the realistic high-resolution numerical ocean general

circulation model and from gridded satellite altimeter

data, respectively. To complement the filtering exer-

cise done with the QG model and to further aid in in-

terpreting the altimeter results, section 3 also presents

spectral fluxes computed from temporally smoothed

versions of the realistic model output. A summary and

discussion is given in section 5.

2. Results from idealized quasigeostrophic model

a. Model description, governing equations, and
example flow fields

Our two-layer QG turbulence model is highly simpli-

fied. There is no planetary beta effect or bottom topog-

raphy, and there are only two vertical modes [barotropic

(BT) and first mode baroclinic]. The lack of planetary

beta excludes Rossby waves (e.g., Pedlosky 1987; Vallis

2006), which are an important component of surface

oceanic variability (see, e.g., Fig. 5 in Wunsch 2010).

Nevertheless, we will see that the frequency spectra and

spectral fluxes in the idealized QG model compare well

qualitatively with those in our realistic ocean model.

The QG model is forced by an imposed mean flow,

which is horizontally homogeneous within each layer but

SEPTEMBER 2012 A R B I C E T A L . 1579



vertically sheared between the layers and is therefore

baroclinically unstable on the f plane, which we assume

here for simplicity. The imposed mean flow may be

thought of as representing the time-mean gyre flow in

a large patch of the ocean. The model is doubly periodic

and has 256 grid points on a side (thus 2562 grid points in

all), where each side has dimensional length 20pLd. The

model is initialized with a randomly generated initial

condition and achieves statistical equilibrium when the

energy extracted by eddies from the mean flow is bal-

anced by energy dissipation.

As in our earlier papers on QG turbulence, the gov-

erning equations of the model are written as in Flierl

(1978). The Flierl (1978) equations, which can be written

in either modal or layer form, bring out the two dy-

namically significant properties of the system–the decay

scale as embodied in a single internal deformation ra-

dius and the baroclinic self-interaction term. In layer

form, the governing equations are

›q1

›t
1 G1 1 J(c1, q1) 5 ssd and (1)

›q2

›t
1 G2 1 J(c2, q2) 5 2R2=2c2 1 ssd, (2)

where t is time; potential vorticity q is the prognostic

variable; ssd indicates small-scale dissipation; and the

subscripts 1 and 2 denote the upper and lower layers,

respectively. The perturbation streamfunctions c1 and c2

satisfy

q1 5 =2c1 1
(c2 2 c1)

(1 1 d)L2
d

, q2 5 =2c2 1
d(c1 2 c2)

(1 1 d)L2
d

,

(3)

where d 5 H1/H2, the ratio of upper- to lower-layer depths,

and the first baroclinic mode deformation radius Ld is

defined as in Flierl (1978) to be [g9H1H2/f 2
0 (H11H2)]1/2,

where g9 is reduced gravity and f0 is the Coriolis pa-

rameter (e.g., Vallis 2006).2 The upper-layer stream-

function is the quantity in the QG model that is most

closely analogous to sea surface height. The zonal

(east–west) and meridional (north–south) coordinates

are x and y, respectively, and J(A, B) 5 ›A/›x ›B/›y 2

›A/›y ›B/›x. The forcing terms are

G1 5 u1

›q1

›x
1

›q1

›y

›c1

›x
and (4)

G2 5 u2

›q2

›x
1

›q2

›y

›c2

›x
, (5)

where fluctuations from the mean are written without

overbars, whereas imposed time-mean quantities are

designated with overbars. The zonal velocity is u, the

meridional velocity is y, and the imposed mean flow is

taken to be zonal. The imposed mean PV gradients are

›q1

›y
5

(u1 2 u2)

(1 1 d)L2
d

,
›q2

›y
5

d(u2 2 u1)

(1 1 d)L2
d

. (6)

The bottom boundary layer thickness dEkman 5
ffiffiffiffiffiffiffiffiffi
A/f0

p
determines the bottom Ekman drag R2 by

R2 5
f0dEkman

2H2

, (7)

where A is the vertical eddy viscosity.

The ssd used here is an exponential cutoff filter in

wavenumber space (Canuto et al. 1988; LaCasce 1996),

filter 5 exp

�
2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2
p

2 k0

� �M
�

when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l2
p

. k0,

filter 5 1:0 when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 1 l 2
p

#k0, (8)

where k and l are wavenumbers in the x and y directions,

respectively, and k0 is the cutoff wavenumber. We take

a 5 18.4, M 5 4, and k0 5 0.65kN, where kN corresponds

to the Nyquist scale. The filter is applied to bq
1

and bq
2
,

the Fourier transforms of q1 and q2, at every time step.

As shown by LaCasce (1996), the wavenumber filter

does not distort modons (Stern 1975, Larichev and Re-

znik 1976a,b), which are exact solutions of the inviscid

nonlinear QG equations, nearly as much as eddy vis-

cosities or hyperviscosities do. This suggests that the

wavenumber filter is a very ‘‘clean’’ choice for small-scale

dissipation. A disadvantage of the filter is that it is not

simple to diagnose its impact on the energy and enstrophy

budgets, because it acts on q̂ instead of dq̂/dt. We infer its

impact as a residual of the other terms in the budget.

BT and BC modes are defined as in Flierl (1978),

cBT 5
dc1 1 c2

1 1 d
, cBC 5

ffiffiffi
d
p

(c1 2 c2)

1 1 d
,

qBT 5
dq1 1 q2

1 1 d
5 =2cBT,

qBC 5

ffiffiffi
d
p

(q1 2 q2)

1 1 d
5 =2cBC 2

1

L2
d

cBC. (9)

2 Note that in Vallis (2006) the two-layer QG model is defined to

have a single deformation radius as is the case here. Some treat-

ments of the QG equations differ slightly. For instance, in Pedlosky

(1987), the two-layer QG model contains two distinct internal de-

formation radii.
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The QG equations above are governed by two non-

dimensional parameters. In the runs performed here, d is

set to 0.2, a value that yields a strength of the first baro-

clinic mode self-interaction in the two-layer model

consistent with that obtained from typical midlatitude

stratification profiles (Flierl 1978; Fu and Flierl 1980).

The nondimensional linear bottom Ekman friction

strength FL 5 R2Ld/(u1 2 u2) is set to 0.4 in the ‘‘nom-

inal’’ run presented here, which we will focus most of our

efforts on. This FL value yields amplitudes, horizontal

scales, and vertical structure of eddy kinetic energy that

agree reasonably well with midlatitude observations (Arbic

and Flierl 2004).

Figure 1 displays snapshots of c1 and q1 for FL values

of 0.1 and 1.6 as well as the nominal value of 0.4. The

FL 5 0.4 flow field consists of densely packed weak vor-

tices, not unlike a typical snapshot of sea surface height

in the midocean (see, e.g., comparisons of model and

observations in Fig. 10 of Arbic and Flierl 2004). In the

FL 5 0.1 (weaker friction) experiment, isolated co-

herent vortices (e.g., McWilliams 1984) dominate the

c1 and especially q1 fields.

b. Frequency spectra of idealized model

As is standard, the model output is windowed, so that

the beginning and ending of the time series taper toward

FIG. 1. Snapshots of (left) upper-layer streamfunction c1 and (right) upper-layer potential

vorticity q1 for idealized two-layer QG simulations with nondimensional bottom friction values

(top)–(bottom) FL 5 0.1, 0.4, and 1.6.
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zero, before Fourier transforms are computed in fre-

quency space. We utilize nine overlapping Hanning

windows, each having width equal to one-fifth of the

total time interval. Other windows were tried and found

to yield similar results.

The wavenumber and frequency spectra of the upper-

layer streamfunction variance c2
1 and of the upper-layer

kinetic energy j$c1j2 are displayed in Fig. 2. The

computations in Fig. 2 are done with 600 snapshots,

where each snapshot is one unit of nondimensional

time Ld/(u1 2 u2) apart. The correlation time (as mea-

sured by the zero crossing in the autocorrelation) is

about 16.5 snapshots for the FL 5 0.4 run and a similar

number for the other runs shown in Fig. 2.

Results in Fig. 2 are displayed from the nominal run

with FL 5 0.4, as well as from runs with FL equal to 0.1

FIG. 2. (a) Wavenumber k spectrum of upper-layer kinetic energy j$c1j2 in two-layer QG

turbulence model. (b) Frequency v spectrum of j$c1j2. (c) Wavenumber spectrum of upper-

layer streamfunction variance c2
1. (d) Frequency spectrum of c2

1. Cyan, red, and blue curves

denote experiments with nondimensional bottom friction values FL 5 0.1, 0.4, and 1.6, re-

spectively. Thick solid black lines have been included to show slopes of (a) 25/3 and 23, (b) 22,

and (c) 211/3 and 25. Thick dashed black lines in (a)–(d) are least squares fits to the red curve

over the range of wavenumbers or frequencies covered by the lines, with slopes of 23.7, 21.8,

25.8, and 22.6, respectively; y values in dashed black lines are multiplied by 2 for clarity. In this

and other plots of QG results, U in the x-axis label denotes u1 2 u2.
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and 1.6. As discussed in Arbic and Flierl (2004) and

other sources (e.g., Thompson and Young 2006, 2007),

as the friction strength decreases (FL decreases), the

inverse cascade reaches out to larger scales, such that the

wavenumber spectrum reddens (cyan curves in Figs. 2a,c).

Figure 2a, the wavenumber spectrum plot of kinetic en-

ergy, displays the canonical slope values of 25/3 and

23, representing the classical predictions in energy and

enstrophy cascade regimes (Vallis 2006), as thick solid

black lines. Figure 2c, the wavenumber spectrum plot of

streamfunction variance, displays the classical slope

values of 211/3 and 25, obtained from the 25/3 and 23

slopes through division by k2. At the high-wavenumber

end but before the sharp dropoff due to the action of

the wavenumber filter, the slopes of the streamfunction

variance and kinetic energy in the FL 5 0.4 run are 25.8

and 23.7, respectively, as determined from least squares

fits over the range indicated by the thick dashed black

lines. These slopes differ (to within ‘‘estimation errors’’)

by 22, as anticipated, and are somewhat steeper than

the 25 and 23 predictions from the enstrophy cascade.

The frequency spectra of the model (Figs. 2b,d) dis-

play a steeper slope at higher frequencies and a flatter

slope at lower frequencies. This basic shape is also found

in frequency spectra computed from current-meter re-

cords (e.g., Richman et al. 1977; Ferrari and Wunsch

2010; and references therein) and in frequency spectra

computed in previous studies using altimeter data

(e.g., Wunsch 2009, 2010, and references therein). In

contrast to the wavenumber spectra, which turn over at

low wavenumbers, the frequency spectra continue to

be energetic (stay flat) at the lowest frequencies. In

Fig. 2b, the thick solid line is at a slope of 22, the

predicted slope for an energy cascade in the frequency

domain (Tennekes and Lumley 1972). In Figs. 2b,d, the

thick dashed lines represent least squares fits to the

frequency spectra of velocity and streamfunction var-

iance, respectively, over the windows covered by the

lines, from the FL 5 0.4 run. The slopes over these

windows are 21.8 and 22.6 for velocity and stream-

function variance, respectively. The velocity variance

slope is close to the predicted 22 slope, as are slopes

computed from current-meter-derived frequency spec-

tra (e.g., Richman et al. 1977; Ferrari and Wunsch 2010;

and references therein). The model slopes of 21.8 and

22.6 are not equal to what is seen at the high-wavenumber

end in the wavenumber spectrum, and they do not differ

by 22, as do the slopes of these quantities in wave-

number space. The Taylor (1938) hypothesis relating

wavenumber to frequency spectra thus fails quantita-

tively in both respects. At the low-frequency end, the

slopes of upper-layer streamfunction and velocity variance

are 20.4 and 20.1, respectively, as determined from

least squares fits over a decade of frequencies. These

slopes also do not differ by 22.

c. Sensitivity of time scales in idealized model to
Ekman friction

In this section, we compare the sensitivity of eddy time

scales to linear bottom Ekman friction with the previ-

ously documented sensitivity of eddy length scales to

bottom Ekman friction. As is common (e.g., Vallis 2006),

we define length scales L as reciprocals of the first mo-

ment (centroid) of the wavenumber spectrum E(k). For

instance, the length scale LBT of the barotropic mode is

LBT 5

ð
kEBT(k) dkð
EBT(k) dk

0BB@
1CCA
21

, (10)

where EBT(k) is the wavenumber spectrum of baro-

tropic kinetic energy. Likewise, we define model time

scales T as reciprocals of the centroid of the frequency

spectrum E(v) in question. For instance,

T BT 5

ð
vEBT(v) dvð
EBT(v) dv

0BB@
1CCA
21

, (11)

where EBT(v) is the frequency spectrum of barotropic

kinetic energy. For these quantities to be well defined,

the wavenumber and frequency spectral slopes must fall

off more steeply than 22 at the high-wavenumber and

high-frequency ends and less steeply than 21 at the low-

wavenumber and low-frequency ends. The nominal

FL 5 0.4 simulation satisfies these constraints, with the

exception of the kinetic energy at high frequencies,

which falls off as 21.8. As will be discussed later, a

simulation of the nominal QG solution with higher

sampling frequency shows slopes steeper than 22 at

the high-frequency end, which thus satisfies the con-

straints for vE to be well defined. The values of vE

computed from the two cases are nearly identical.

The length and time scales of the barotropic mode,

baroclinic mode, and upper layer, in QG simulations

with different bottom friction values, are displayed in

Fig. 3. Length scales L (dashed curves with squares) are

normalized by Ld while time scales T (solid curves with

x’s) are normalized by L
d
/(u

1
2 u

2
). In the weak friction

regime (FL of order one or less), as friction further

weakens the length scales of the barotropic mode and

upper layer increase, whereas the baroclinic length scale

remains relatively constant. In the weak friction regime,

the kinetic energies associated with each mode or layer

increase more rapidly with further decreases in friction
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than the length scales do (see, e.g., Figs. 4–6 of Arbic and

Flierl 2004). Therefore, if we crudely estimate the time

scale by T 5 L/Urms, where Urms is the rms velocity of

the mode or layer in question, then we might expect

a decrease in T with decreasing friction. Figure 3 dem-

onstrates that these predicted time scales (dotted curves

with circles) do indeed decrease with decreasing friction

strength. The actual time scales computed from (11) also

decrease with decreasing friction. Thus, the trend of the

changes in time scale with changes in friction is suc-

cessfully predicted by the above argument. However,

the actual time scales are larger than the predicted time

scales. The actual barotropic time scale exceeds

Ld/(u1 2 u2) in all of the experiments analyzed here. In

most of these experiments, the time scale exceeds this

value for the upper layer and baroclinic modes, as well as

for the barotropic mode. This tendency for time scales

to exceed L
d
/(u

1
2 u

2
) mimics the tendency for length

scales to exceed Ld, although the tendency is not as rigid

in the case of the time scales. Some of the time scales

drop below the dashed lines set at unity in Fig. 3, whereas

the length scales never drop below these lines.

d. Theory of spectral fluxes in frequency space

To develop the theory of P(v), we let

c1(x, y, t) 5 �
k

�
l

�
v

cc1(k, l, v)ei(kx1ly1vt),

c2(x, y, t) 5 �
k

�
l

�
v

cc2(k, l, v)ei(kx1ly1vt), (12)

where bc denotes a Fourier transform of c in wavenumber–

frequency space and k and l are zonal and meridional

wavenumbers, respectively. If we neglect the small-scale

dissipation, the Fourier transformed upper- and lower-

layer governing equations are

2iv K2 1
1

(1 1 d)L2
d

 !cc1(k, l, v)

1 iv
1

(1 1 d)L2
d

cc2(k, l, v) 1
b
J(c1, =2c1)(k, l, v)

1
1

(1 1 d)L2
d

bJ(c1, c2)(k, l, v) 1cG1(k, l, v) 5 0 (13)

and

2iv K2 1
d

(11 d)L2
d

 !cc2(k, l,v) 1 iv
d

(1 1 d)L2
d

cc1(k, l,v)

1
b
J(c2, =2c2)(k, l,v) 1

d

(1 1 d)L2
d

bJ(c2,c1)(k, l,v)

1cG2(k, l,v) 5 R2K2cc2(k, l,v), (14)

respectively, where K2 5 k2 1 l2 and we have dropped

the summation signs for simplicity.

To obtain the depth-averaged energy equation, we mul-

tiply (13) by 2(d/1 1 d)bc
1
*(k, l, v), where the superscript

asterisk represents a complex conjugate, and the complex

conjugate of (13) by 2(d/1 1 d)cc1(k, l, v); add the re-

sults; and divide by 2. Similarly, we multiply (14) by

2(1/1 1 d)bc2
*(k, l, v) and the complex conjugate of (14)

by 2(1/1 1 d)cc2(k, l, v), add the results, and divide by 2.

We then add everything together and find that the terms

involving iv in (13) and (14) drop out. Utilizing the identity

(a*b 1 ab*)/2 5 Re[a*b], where Re denotes the real part of

a complex number, we are left with

FIG. 3. Length scales L and time scales T of the kinetic energy in

the (a) barotropic mode, (b) baroclinic mode, and (c) upper layer, in

two-layer QG turbulence experiments damped by bottom friction,

as a function of nondimensional bottom friction strength. Length

(time) scales are computed as the reciprocal of the first moment of

the appropriate wavenumber (frequency) spectrum. Length scales

are given by dashed curves with squares and are normalized by Ld,

whereas time scales are given by solid curves with x’s and are nor-

malized by Ld/(u1 2 u2). Dotted curves with circles are the predicted

time scales obtained by dividing the length scale L by the rms ve-

locity scale associated with the layer or mode in question. Dashed

horizontal lines are drawn at the value of 1.
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Re

�
d

1 1 d
cc1

*(k, l, v)
b
J(c1, =2c1)(k, l, v)

�
1 Re

�
1

1 1 d
cc2

*(k, l, v)
b
J(c2, =2c2)(k, l, v)

�
1 Re

"
d

(1 1 d)2L2
d

(bc12 c2)*(k, l, v)bJ(c1, c2)(k, l, v)

#
1 Re

�
d

1 1 d
cc1

*(k, l, v)cG1(k, l, v)

�
1 Re

�
1

1 1 d
cc2

*(k, l, v)cG2(k, l, v)

�
2

1

1 1 d
R2K2cc2

*(k, l, v)cc2(k, l, v) 5 0. (15)

To simplify the interpretation of (15), we utilize the

following definitions: The spectral transfers of upper-

and lower-layer kinetic energy are

TKE,1(k, l, v) 5 Re

�
d

1 1 d
cc1

*(k, l, v)
b
J(c1, =2c1)(k, l, v)

�
and (16)

TKE,2(k, l, v) 5 Re

�
1

1 1 d
cc2

*(k, l, v)
b
J(c2, =2c2)(k, l, v)

�
,

(17)

respectively. The spectral transfer of available potential

energy (APE) is

TAPE(k, l,v)

5 Re

"
d

(11d)2L2
d

b(c1 2 c2)*(k, l,v)bJ(c1,c2)(k, l,v)

#
.

(18)

The spectral transfer due to the imposed mean flow

forcing is

Tforcing(k, l, v) 5 Re

�
d

1 1 d
cc1

*(k, l, v)cG1(k, l, v)

1
1

1 1 d
cc2

*(k, l, v)cG2(k, l, v)

�
, (19)

and the spectral transfer due to bottom Ekman friction is

Tfriction(k, l, v) 5 2
1

1 1 d
R2K2cc2

*(k, l, v)cc2(k, l, v).

(20)

With these definitions, (15) becomes

TKE,1(k, l, v) 1 TKE,2(k, l, v) 1 TAPE(k, l, v)

1 Tforcing(k, l, v) 1 Tfriction(k, l, v) 5 0. (21)

Spectral fluxes are defined by integrating the spectral

transfers over some part of (k, l, v) space. For instance,

integration over all values of v and over a semi-infinite

range of wavenumbers yields spectral fluxes in wave-

number space,

PKE,1(K) 5

ð
k21l2$K2

ð ð
TKE,1(k, l, v) dv dk dl, (22)

PKE,2(K) 5

ð
k21l2$K2

ð ð
TKE,2(k, l, v) dv dk dl, (23)

PAPE(K) 5

ð
k21l2$K2

ð ð
TAPE(k, l, v) dv dk dl, (24)

Pforcing(K) 5

ð
k21l2$K2

ð ð
Tforcing(k, l, v) dv dk dl, and

(25)

Pfriction(K)5

ð
k21l2$K2

ð ð
Tfriction(k, l, v) dv dk dl. (26)

Similarly, the spectral fluxes in frequency space P(v) are

obtained by integrating over all wavenumbers and over

a semi-infinite range of frequencies,

PKE,1(V) 5

ð ð ð
v$V

TKE,1(k, l, v) dv dk dl, (27)

PKE,2(V) 5

ð ð ð
v$V

TKE,2(k, l, v) dv dk dl, (28)

PAPE(V) 5

ð ð ð
v$V

TAPE(k, l, v) dv dk dl, (29)

Pforcing(V) 5

ð ð ð
v$V

Tforcing(k, l, v) dv dk dl, and

(30)

Pfriction(V) 5

ð ð ð
v$V

Tfriction(k, l, v) dv dk dl. (31)

Following the terminology of Scott and Arbic (2007), we

will call the budget obtained by summing the spectral

fluxes (22)–(26) or (27)–(31) the integral energy budget.

Note that, because we are using the depth-averaged en-

ergy equation, there are no interlayer spectral fluxes or

transfers. See Sheng and Hayashi (1990a,b) and refer-

ences therein for the derivation of energy equations in the
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frequency domain for realistic atmospheric models and

atmospheric datasets.

For simplicity, in this paper, we examine either spec-

tral fluxes P(k) in wavenumber space or P(v) in fre-

quency space. In future work, we will consider fluxes in

which partial integrations are performed over both fre-

quency and wavenumber, via

P(K, V) 5

ð
k21l2$K2

ð ð
v$V

T(k, l, v) dv dk dl. (32)

In the next section, we will show integral potential ens-

trophy budgets as well as integral energy budgets. The

potential enstrophy budget is obtained through multipli-

cation of (13) and (14) by d bq1
*/(1 1 d) and bq2

*/(1 1 d),

respectively, followed by addition, taking the real parts, and

integration.

e. Energy and enstrophy budget of idealized
model in frequency space

The integral energy budget in wavenumber space of

the nominal FL 5 0.4 QG simulation was examined in

detail in Scott and Arbic (2007) and is discussed briefly

here (Fig. 4a). The forcing term (magenta curve) is pos-

itive, indicating an energy gain over all wavenumbers.

The bottom friction term (blue curve) is a sink of energy

over all wavenumbers. The flux PAPE(k) of available

potential energy (green curve) is positive, meaning that

potential energy cascades toward larger wavenumbers

(smaller length scales; Salmon 1980). The black and red

curves represent spectral fluxes PKE,1(k) and PKE,2(k) of

upper- and lower-layer kinetic energy, respectively, with

the latter being much smaller in magnitude. The nega-

tive values of these curves indicate an inverse cascade of

energy toward lower wavenumbers (larger length scales).

The cyan curve is the residual of the terms above. It is

close to zero over all wavenumbers, indicating that the

effects of the wavenumber filter in the energy budget of

these runs are negligible, consistent with our results in

Arbic and Flierl (2004).

The integral energy budget in frequency space is dis-

played in Fig. 4b. The terms behave similarly, with a

positive forcing term (energy source), negative bottom

friction term (energy sink), positive potential energy

flux (forward cascade to small time scales), negative

kinetic energy flux, and small residual. The negative spec-

tral kinetic energy fluxes PKE,1(v) and PKE,2(v) indicate

that an ‘‘inverse temporal cascade’’ exists alongside the

well-known inverse cascade in space. An important dif-

ference between the budgets in frequency versus wave-

number space is that the fluxes in the frequency budget

are ‘‘wider.’’ The forward potential energy flux and

inverse kinetic energy flux take on nonnegligible values

immediately to the right of the low-frequency endpoints.

In contrast, in wavenumber space these fluxes are close

to zero over wide bands at the low end of the spectrum.

Nonlinearities in the QG turbulence model apparently

drive energy to the lowest frequencies allowed in the

simulation, where these lowest frequencies are set by the

simulation duration.

The integral potential enstrophy budget is displayed

in Fig. 5, in both the wavenumber and the frequency

domains. Once again, forcing is denoted by the magenta

curves and is positive, indicating a source of enstrophy.

The bottom friction terms (blue curves) represent a sink,

but one that is much less substantial than in the energy

budgets. The flux of potential enstrophy by nonlinear

terms (black and red curves for the upper and lower

layers, respectively) is positive, indicating a forward flux

of potential enstrophy down to small spatial scales (where

enstrophy dissipation takes place) and small time scales.

FIG. 4. Integral energy budgets of nominal two-layer FL 5 0.4

QG simulation in (a) wavenumber k space and (b) frequency v

space. Black and red curves denote spectral fluxes of upper- and

lower-layer kinetic energy PKE,1 and PKE,2, respectively. Green

curves denote spectral flux of APE PAPE. Forcing is given by the

magenta curve, whereas bottom Ekman friction is given by the blue

curve. The cyan curve denotes the residual of the terms above. All

terms nondimensionalized by (u1 2 u2)3/Ld.
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The cyan curve again denotes the imbalance of the other

terms. Here, the imbalance is much more substantial than

in the energy budget. We assume that the imbalance is

dominated by small-scale dissipation (the wavenumber

filter), which is much more important in enstrophy bud-

gets than in energy budgets. As in Fig. 4, we see in Fig. 5

that the fluxes in frequency space are wider, with a more

rounded appearance than they have in wavenumber

space.

f. Necessity for averaging over many grid points

It is necessary to average over many grid points to

obtain an estimate of the spectral flux in frequency space.

This point is illustrated in Figs. 6 and 7. Figure 6a shows

the upper-layer spectral kinetic energy flux in wave-

number space PKE,1(k), computed from each of the 600

‘‘realizations’’ [individual snapshots (black curves)] of the

nominal FL 5 0.4 QG solution. Averaging over the

snapshots (red curve) is equivalent to integrating over all

frequencies, which was done in Fig. 4a. Figure 6b displays

the PKE,1(v) plots computed at the 2562 individual grid

points in the QG model (black curves), alongside the

PKE,1(v) values computed after averaging over all of

these grid points (red curve; equivalent to integrating

over all wavenumbers, as in Fig. 4b). The range seen in

PKE,1(v) estimates at individual grid points is about 25

times larger than the range seen in PKE,1(k) estimates in

individual snapshots. The range in PKE,1(v) values is

especially large for low frequencies.

In Figs. 7a,b, we show the spectral fluxes PKE,1(k) and

PKE,1(v), respectively, along with envelopes represent-

ing the variability seen in Fig. 6. The envelopes are

computed as standard deviations of the individual re-

alizations shown in Fig. 6, divided by the square root of

FIG. 5. Integral potential enstrophy budgets of nominal two-

layer FL 5 0.4 QG simulation in (a) wavenumber k space and (b)

frequency v space. Black and red curves denote spectral fluxes of

upper- and lower-layer potential enstrophy, respectively. Forcing is

given by the magenta curve, whereas bottom Ekman friction is

given by the blue curve. The cyan curve denotes the residual of the

terms above and is assumed to be dominated by the dissipation of

enstrophy by the wavenumber filter in the model. All terms non-

dimensionalized by (u
1
2 u

2
)2/L3

d.

FIG. 6. Variability in individual realizations of spectral fluxes of

upper-layer kinetic energy PKE,1(k) and PKE,1(v) computed from

nominal two-layer FL 5 0.4 QG simulation. (a) Black curves are

PKE,1(k) computed from each of 600 individual snapshots in time,

and the red curve is PKE,1(k) computed from averaging over the

600 individual snapshots. (b) Black curves are PKE,1(v) computed

from each of 2562 individual grid points, and the red curve is

PKE,1(v) computed from averaging over the 2562 grid points. All

terms nondimensionalized by (u
1
2 u

2
)3/L

d
.
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the estimated number of degrees of freedom. The num-

ber of degrees of freedom for the PKE,1(k) calculation is

estimated by dividing the simulation duration by the

correlation time scale. Similarly, the number of degrees

of freedom for the PKE,1(v) calculation is estimated by

dividing the number of grid points (2562) by the square of

the correlation length scale. Consistent with the Fig. 6

results, the PKE,1(k) envelopes are much smaller than the

PKE,1(v) envelopes.

g. Effects of simulation duration and sampling
frequency

In this subsection, we examine the impact of the du-

ration of the model simulations on the estimation of

spectra, spectral fluxes, and spectral transfers in fre-

quency space. We are motivated in part by the large

envelopes computed in the previous subsection, which

suggest a large uncertainty in the estimation of PKE,1(v).

If the uncertainty is indeed large, then different simula-

tions of the nominal FL 5 0.4 QG run should yield sub-

stantially different estimates of PKE,1(v). We can test this

with simulations having different durations. We will ex-

amine spectral transfers, which identify sources and sinks

of energy. We are interested in whether spectral trans-

fers will identify nonlinear cascades as a source of low-

frequency energy and whether this determination will

change as lower frequencies become available in simu-

lations with longer durations.

An examination of a nominal FL 5 0.4 simulation that

is saved more frequently than the runs discussed thus far

will shed light on some other issues of interest. We an-

ticipate a sensitivity to sampling frequency in the spectra

at high frequencies based on the nature of small-scale

dissipation. Dissipation operators such as the wave-

number filter we employ here act preferentially on high

wavenumbers and thus yield steep slopes at the high end

of wavenumber spectra plots (Figs. 2a,c). The wave-

number filter does not act directly on small time scales,

and therefore it is not clear that we will see similarly

steep slopes at high frequencies. To confidently estimate

the slopes at high frequencies, we need simulations that

are sampled more frequently. Another motivation for

examining slopes at high frequencies was noted earlier.

At high frequencies, a slope steeper than 22 is required

for the first moment of the frequency spectrum vE to be

a meaningful quantity.

The frequency spectra of upper-layer kinetic energy in

three simulations of the nominal FL 5 0.4 two-layer QG

solution, with each having a different duration and sam-

pling frequency, are displayed in Fig. 8a. The red curve is

from the same simulation as the red curves in Fig. 2: 600

snapshots, each spaced one unit of nondimensional time

Ld/(u1 2 u2) apart. The black curve is also sampled one

unit of nondimensional time apart but is from a simula-

tion that is 9 times as long (5400 snapshots). The blue

curve is from a simulation that contains 2400 snapshots,

each spaced 0.1 units of nondimensional time apart; it is

more frequently sampled but shorter than the other two.

The space- and time-averaged kinetic energies of the

three simulations are equal to within 5%. Over the win-

dow of frequencies utilized in Fig. 2b, the slope of the

blue curve (higher-frequency sampling) is 21.9, similar to

the slope computed in that band for the red curve (21.8).

At higher frequencies, the slope of the blue curve is

steeper than 22, as anticipated in discussions of the defi-

nition of vE. This steeper band is aliased into lower fre-

quencies in the red and black curves (lower-frequency

sampling) in Fig. 8a, as seen by the upturns at the high-

frequency end of those curves.

The spectral fluxes of upper-layer kinetic energy in

frequency space PKE,1(v) are shown in Fig. 8b for the

three simulations. Near nondimensional v values on the

order of one, the three curves agree very closely. At lower

frequencies, the blue curve (short, rapidly sampled sim-

ulation) separates from the red and black curves by slight

amounts. The red and black curves (longer simulations)

stay close together over all the frequencies for which both

are defined. The separation of the three curves is not

nearly as large as the envelopes in Fig. 7b suggest they

might be. For this reason we prefer the term ‘‘envelopes’’

in the discussion of Fig. 7b rather than error bars. In all

three curves in Fig. 8b, the nonlinear kinetic energy flux

extends out to the lowest frequencies, where the lowest

FIG. 7. (a) Upper-layer spectral kinetic energy flux PKE,1(k)

(solid curve) computed from nominal two-layer FL 5 0.4 QG

simulation, shown along with envelopes representing variability of

individual realizations of PKE,1(k). See text for more description.

(b) As in (a), but for PKE,1(v). All terms nondimensionalized by

(u1 2 u2)3/Ld.
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frequency of any particular run is set by the duration of

the run.

As discussed in many sources (e.g., Salmon 1978, 1980;

Hua and Haidvogel 1986; Larichev and Held 1995; LaCasce

1996; among others), the transfer T(k) 52[›P(k)/›k]

identifies wavenumbers that serve as energy sources and

sinks. In like manner, T(v) 52[›P(v)/›v] can be used

to identify energy sources and sinks as a function of

frequency. Figure 8c shows the T(v) budget for the

600-snapshot FL 5 0.4 QG simulation (solid curves),

next to the budget for the longer-duration 5400-snapshot

simulation (dashed curves). Different terms in the budget

are denoted by the same colors as in Fig. 4. At low fre-

quencies, the main balance is between the upper-layer

kinetic energy flux TKE,1(v) and the potential energy flux

TAPE(v), with substantial contributions from forcing and

friction. In the longer run, the various terms in the budget

extend from their values at higher frequencies (which

are close to the values seen in the shorter run) out to

lower frequencies in a relatively flat manner. Figure 8c

demonstrates that nonlinear cascades play a dominant

role in maintaining variance out to frequencies as low

as one-thousandth of the nondimensional frequency

(u
1

2 u
2
)/L

d
. We have not yet found a lower bound on

the frequencies to which the QG turbulence model will

push into. Considering that this model contains only

eddies, which are normally described as having time

scales of a year or less, and has no gyres, boundary

currents, or other features that are normally associated

with interannual and decadal time scales, this result is

somewhat surprising.

Given that the kinetic energy flux dominates the low-

frequency behavior, it is of interest to determine how large

it is relative to the total energy in the system. The absolute

value of the minimum (trough) of the flux PKE,1(v), di-

vided by the domain-integrated upper-layer kinetic energy

in the simulation, is 0.09, in units of (u1 2 u2)/Ld. Taking

typical midocean values of 1–10 cm s21 for u
1

2 u
2

and

50 km for Ld, this amounts to 2 3 1028 to 2 3 1027 s21, in

dimensional terms. Later we will compare this range to

values computed from realistic models and from altimeter

data.

FIG. 8. (a) Frequency spectra and (b) spectral fluxes in frequency

space PKE,1(v) of upper-layer kinetic energy in three simulations

of the nominal two-layer FL 5 0.4 QG solution. The red curve

is as in Fig. 2, based on 600 snapshots spaced one unit of non-

dimensional time Ld/(u1 2 u2) apart. The blue curve is based on

2400 snapshots, spaced 0.1 units of nondimensional time apart. The

black curve is based on 5400 snapshots, spaced one unit of non-

dimensional time apart. (c) Spectral transfers T(v) 52›P(v)/›v,

shown for the nominal 600-snapshot simulation (solid curves) and

longer 5400-snapshot simulation (dashed curves). Colors in (c)

represent different terms in the model energy budget as in Fig. 4.

FIG. 9. Spectral flux PKE,1(v) of upper-layer kinetic energy in

frequency space computed from the 600-snapshot nominal two-

layer FL 5 0.4 QG simulation (unfiltered) and from filtered ver-

sions of this simulation. The spatial filter is a Blackman filter that

goes to zero at six grid points from the central grid point. The time

filter is a Blackman filter that goes to zero at four units of non-

dimensional time Ld/(u1 2 u2) from the central time. The wide and

very wide time filters are Blackman filters that go to zero at 9 and 17

units of nondimensional time from the central time, respectively.

All terms nondimensionalized by (u1 2 u2)3/Ld.
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h. Impact of spatial and temporal filtering on spectral
fluxes in frequency space

In Fig. 9, motivated by the spatial and temporal fil-

tering inherent in the creation of gridded satellite al-

timeter data, we show PKE,1(v) computed from the

nominal FL 5 0.4 QG simulation and from filtered ver-

sions of this simulation. Note that the filtering is performed

on the model output after the model has been run, not

during the run. The time filter is a Blackman filter that goes

to zero at four units of nondimensional time L
d
/(u

1
2 u

2
)

from the central time. The spatial filter goes to zero at six

grid points from the central grid point, meaning it has

a ‘‘full width at half maximum’’ (width at the half-power

point) of 3.4 grid points or a wavelength of 0.83 Ld. Fil-

tering in space or in time diminishes the negative lobe of

the spectral flux substantially. Filtering in both space and

time further diminishes the negative lobe. Widening the

time filter distorts the spectral flux even more (cyan curve),

to the point where it can eventually change sign (green

curve). We will revisit this point later in the paper.

3. Results from the realistic ocean model

We use three full years of output (2001–03) from the

nonassimilative version of the Naval Research Laboratory

(NRL) Layered Ocean Model (NLOM). Data-assimilative

versions of NLOM are in current use as a U.S. Navy op-

erational model. NLOM is based on the primitive equa-

tion model of Hurlburt and Thompson (1980), but with

greatly expanded capability (Wallcraft et al. 2003). It has

six dynamical layers and a bulk mixed layer. Shriver et al.

(2007) and references therein describe the NLOM grid,

wind forcing, and other model details. The horizontal

resolution of the NLOM simulation analyzed here is 1/328 in

latitude and 45/10248 in longitude, on a model grid ex-

tending from 728S to 658N. For simplicity, we refer to the

simulations as having 1/328 resolution. The simulation we

used was saved at 6-h intervals over the 3 yr analyzed here.

Figure 10 displays a snapshot of sea surface height in

NLOM. Six subdomains (regions) of interest, in which

we will compute spectra and spectral fluxes, are shown.

Four of the subdomains are in regions of intense boundary

current and mesoscale eddy activity: the Kuroshio in the

western North Pacific, the Gulf Stream in the western

North Atlantic, the Agulhas off the southern tip of Af-

rica, and the Malvinas in the western South Atlantic.

Two additional subdomains are analyzed in the eastern

South Pacific: a quiescent region in midlatitudes and

a high-latitude region that touches upon the Antarctic

Circumpolar Current in its southernmost portions.

FIG. 10. Six subdomains used to compute spectra and spectral fluxes in 1/328 NLOM output,

highlighted against the 15 Feb 2002 snapshot of sea surface height (cm) in the model: mid-

latitude southeast Pacific, high-latitude southeast Pacific, Agulhas, Malvinas, Gulf Stream, and

Kuroshio.
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In the subdomains in a realistic model (or observa-

tional oceanic dataset), spectral flux computations will

be affected by energy fluxes into and out of the sub-

domains. Scott and Wang (2005) investigated the impor-

tance of subdomain size in the computation of spectral

fluxes PKE,1(k) in wavenumber space. They computed

fluxes for subdomains 108, 208, and 408 on a side. The 108

subdomains yielded noisy results, ‘‘most likely indicating

the importance of boundary terms relative to interior

terms.’’ However, their Fig. 2 shows that even the noisy

results in the 108 3 108 subdomains are not qualitatively

different from 208 3 208 results centered on the same

point, which in turn are similar to the 408 3 408 results.

Our subdomains in this paper contain roughly as many

grid points as the 208 3 208 boxes in their paper. There-

fore, our spectral fluxes should not be qualitatively af-

fected by the size of our subdomains.

The NLOM computations are the most demanding

calculations shown in this paper. Three years of 6-hourly

global 1/328 NLOM sea surface heights represents 660 GB

of output to sort through. Once extracted, the six sub-

domains constitute about 35 GB of output, which must be

analyzed in both the time and space domains several times

over to compute PKE,1(v) and PKE,1(k). For simplicity,

we compute only PKE,1 in the NLOM integral energy

budget and omit other terms. Also for simplicity, the

factor d/(1 1 d) is omitted from the computation of

PKE,1, because stratification is not uniform across the

extent of the model. Finally, the envelopes discussed in

section 2f are omitted here because they would be very

expensive to compute.

The procedure for analyzing NLOM output is as fol-

lows: The NLOM sea surface heights are first low-pass

filtered in time to remove motions with periods of 3 days

or less. This is done because such high-frequency mo-

tions cannot be geostrophic. Next, we compute surface

streamfunctions c1 5 gh/f, where h is sea surface height;

g 5 9.8 m s22 is the gravitational acceleration; and f is

the Coriolis parameter, which varies as the sine of the

model gridpoint latitude (Vallis 2006). Then, for each of

the six subdomains shown in Fig. 10, each snapshot of

c1 is detrended in space with a two-dimensional least

squares fit. Following this, the c1 field is tapered in space

with a two-dimensional function constructed of nine

overlapping Hanning windows in each spatial direction,

with each window having a width one-fifth of the domain

extent in that direction. Tapering is also done on each

time series at each model grid point, using the same win-

dow as in the QG calculation (nine overlapping Hanning

windows). This type of detrending and tapering is standard

in computations of Fourier transforms of nonperiodic

data. Fourier transforms are then repeatedly utilized to

compute derivatives. For simplicity, we base the increment

lengths of the wavenumbers in the east–west direction

on the length of the increments at the central latitude of

the box. Thus, we do not account for the convergence of

meridians in our spectral calculations.

The frequency spectra of the variance of the NLOM

streamfunction c1 in the six subdomains are displayed

in Fig. 11a. Figure 11b displays the frequency spectra of

the variance of geostrophic velocities (kinetic energy;

j$c1j2). As in the QG results, the NLOM frequency

spectra display a ‘‘flatness’’ at the lowest frequencies

and a steeper slope at higher frequencies, in what might

be called the ‘‘mesoscale band.’’3 The dashed vertical

FIG. 11. Frequency spectra of the variance of (a) surface ocean

streamfunction c1 5 gh/f, where g is gravitational acceleration, f is

the Coriolis parameter, and h is sea surface height drawn from

NLOM output in subdomains shown in Fig. 10, and (b) geostrophic

velocities computed from this streamfunction. Dashed lines are

drawn at the frequencies corresponding to periods of 14 and 68.4

days.

3 Schmitz (1996) (see also references therein, including Schmitz

and Luyten 1991) defines the mesoscale band as 20–200 days. This

band contains most of the kinetic energy in regions of strong

boundary currents.
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lines in Fig. 11 are at frequencies corresponding to pe-

riods of 68.4 and 14 days, respectively. In the next sec-

tion, we will discuss the slopes in this band along with

slopes computed in the same band from satellite altimeter

data. This band was chosen because it lies in the meso-

scale band, is resolved by both the NLOM and AVISO

results utilized in this paper, appears to lie in approxi-

mately the same part of parameter space in which the

band analyzed in Figs. 2b,d lies (i.e., in the steep part of

the QG spectrum), and covers a range of frequencies

equal to the range of the band analyzed in Figs. 2b,d. The

highest frequencies in the NLOM spectra show a steep

dropoff due to the 3-day low-pass filter we employed.

Figure 12 displays the spectral fluxes PKE,1(k) in

wavenumber space computed from the six subdomains

in NLOM. As in previous studies (Scott and Wang 2005;

Scott and Arbic 2007; Schlösser and Eden 2007; Tulloch

et al. 2011), the negative lobes representing inverse cas-

cades are ubiquitous (seen in every subplot). As noted in

Scott and Wang (2005), the magnitude of the spectral

fluxes varies by two orders of magnitude across ocean

basins.

Figure 13 displays the spectral fluxes PKE,1(v) in fre-

quency space (shown as thick solid curves) computed

from the six subdomains in NLOM. The fluxes are dom-

inated by negative lobes, implying that nonlinear terms

drive a cascade of kinetic energy toward longer time

scales. Comparison of the subplots in Fig. 13 to the sub-

plots in Fig. 12 demonstrates that the magnitudes of the

spectral fluxes PKE,1(v) in the various subdomains are

comparable to but smaller than the magnitudes of the

corresponding spectral fluxes PKE,1(k). The ratio of the

FIG. 12. Spectral fluxes of surface ocean geostrophic kinetic energy PKE,1(k) in wavenumber

space computed from NLOM output in subdomains shown in Fig. 10.
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minimum (trough) of the flux PKE,1(v) to the domain-

averaged kinetic energy lies in the range from 5.8 3 1028

to 1.4 3 1027 s21, similar to the range estimated from

the QG results in section 2g. This suggests to us that, as

in the QG simulations, nonlinearities play an important

role in the maintenance of low-frequency energy in NLOM.

The dashed thick curves in Fig. 13 are spectral fluxes

PKE,1(v) computed from NLOM output that has been

temporally smoothed, in an attempt to mimic the fil-

tering inherent in the gridded satellite altimeter data. As

in the calculations made from filtered QG model output,

the filtering is performed on NLOM output after the

model has been run, not during the runs. For NLOM we

use a Blackman filter, which goes to zero at 7 days from

the central time. The 7-day width is chosen to match the

7-day output frequency of the AVISO data. As in the

QG results, temporal smoothing diminishes the inverse

temporal cascade, to the point where in some cases (see

especially Fig. 13e) the flux changes sign.

4. Results from satellite altimeter data

We use 840 snapshots of the two-satellite AVISO 1/38

Mercator grid ‘‘reference’’ product (Le Traon et al.

1998; Ducet et al. 2000), beginning with 14 October 1992

and ending with 12 November 2008. The AVISO record

we utilize is much longer than the NLOM record (16

versus 3 yr), but has a much lower temporal sampling

FIG. 13. Thick solid curves are spectral fluxes of surface ocean geostrophic kinetic energy

PKE,1(v) in frequency space computed from NLOM output in subdomains shown in Fig. 10.

Thick dashed curves represent fluxes computed after the NLOM output has been temporally

filtered. See text for details.
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rate (7 days versus 6 h). The spatial resolution is also

much lower (1/38 versus 1/328). The analysis procedure

used on the AVISO data is very similar to that used on

the NLOM output, with the main exception being that

we do not subject the AVISO data to the 3-day low-pass

filtering.

Figure 14 displays the six subdomains over which we

compute spectra and spectral fluxes from AVISO data.

The subdomains correspond closely to those utilized in

the NLOM analysis. The correspondence is not exact

because of the lack of points in shallow waters in NLOM

(see Shriver et al. 2007, and references therein). The

misfit between the boundaries of the NLOM and altim-

eter subdomains is largest in the Agulhas subdomain. As

in the NLOM computation, we compute only PKE,1 from

AVISO, omitting other terms in the integral energy

budget, and we omit the stratification factor d/(1 1 d).

Figure 15 displays the frequency spectra of the vari-

ance of c1 and of surface geostrophic velocity computed

from AVISO. As in the NLOM and idealized QG results,

the AVISO spectra are flat at the lowest frequencies and

show a steeper slope at higher frequencies.

Table 1 presents the slopes of the frequency spectra in

NLOM and AVISO, over the period band 14–68.4 days,

for the six subdomains and for both streamfunction and

velocity variance. A few general conclusions can be

noted. For the most part, the NLOM spectral slopes

hover around the 21.8 and 22.6 values found in the

high-frequency QG model results, albeit with wide

variability (deviations vary by as much as 0.4 in either

direction). A notable exception is the slope of the

streamfunction variance in the midlatitude southeast

Pacific, which is actually less steep than the slope of the

velocity variance (at higher frequencies, the stream-

function variance in this subdomain is steeper than the

velocity variance, as is more typically the case). Con-

sistent with the highly smoothed nature of the AVISO

product, the AVISO slopes are steeper than the NLOM

slopes, often substantially so (deviations vary by as much

as 2.0). With the exception of the midlatitude southeast

Pacific patch noted above, the difference between slopes

in NLOM streamfunction variance and NLOM velocity

variance spectra, or in AVISO streamfunction variance

and AVISO velocity variance spectra, ranges from 20.3

to 20.7. These differences are remarkably consistent be-

tween AVISO and NLOM output computed for the same

subdomain, despite the fact that the AVISO slopes are

generally much steeper than the NLOM slopes.

The values of the slopes depend, of course, on the band

chosen for computing the least squares fit. The slopes of

FIG. 14. Six subdomains used to compute spectra and spectral fluxes in 1/38 AVISO gridded

satellite altimeter data, highlighted against the 27 Dec 2006 snapshot of sea surface height

anomaly (cm) in AVISO: midlatitude southeast Pacific, high-latitude southeast Pacific, Agulhas,

Malvinas, Gulf Stream, and Kuroshio.
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the AVISO spectra are not very clean in the 14–68.4-day

band. Note, for instance, the upturns at the high-frequency

end of the Kuroshio results in Fig. 15. This is likely due

to aliasing; see the discussion of the upturns in Fig. 8a.

We also computed spectral slopes over the 38–184-day

band, which gets us away from the problems at the high-

frequency end for AVISO. For the sake of brevity, the

slopes over the 38–184-day band are not given here in

detail, but we do note that over most of the six sub-

domains they are more consistent between NLOM and

AVISO than the 14–68.4-day band results. This does not

mean that the 38–184-day band is without problems. It is

not as cleanly separated from the flat low-frequency part

of the spectrum as the 14–68.4-day band is. Thus, the

slopes in the 38–184-day band are more likely to rep-

resent a mixture of the dynamics of two distinct regimes.

The 38–184-day band slopes are generally shallower

than the 14–68.4-day band slopes.

Periods shorter than 14 days are not represented in the

AVISO data, whereas periods longer than 1095 days are

not represented in the 3-yr NLOM record used here.

Slopes computed from NLOM output over a frequency

band corresponding to periods between 3 and 14.6 days

are considerably steeper than those in Table 1. For the

3–14.6-day band, the differences in slopes between NLOM

streamfunction and velocity variance spectra range from

20.5 to 21.1, except in the high-latitude southeast Pa-

cific patch, which yields a slope that is steeper in velocity

variance by 0.2. For periods between 294 and 2940 days,

the slopes of the AVISO frequency spectra range from

20.5 to 20.1 for streamfunction variance and from 20.2

to 0.1 for velocity variance, with the streamfunction

variance always being steeper, by amounts ranging from

20.02 to 20.3. These values lie near the low-frequency

QG values reported earlier of 20.4 and 20.1 for stream-

function and velocity variance and 20.2 difference be-

tween these.

All six of the AVISO subdomains display a tendency

for the low-frequency variance of zonal velocity to be

larger than that of meridional velocity. Figure 16 plots

the frequency spectra of zonal and meridional velocity

variance in the midlatitude southeast Pacific, in which

this tendency is most extreme. The zonal velocity vari-

ance integrated over periods of 420–5880 days is 2.3

times larger than the meridional velocity variance. In the

FIG. 15. Frequency spectra of the variance of (a) surface ocean

streamfunction c1 5 gh/f, where g is gravitational acceleration, f is

the Coriolis parameter, and h is sea surface height drawn from

gridded 1/38 AVISO data in subdomains shown in Fig. 14, and (b)

geostrophic velocities computed from this streamfunction. Dashed

lines are drawn at the frequencies corresponding to periods of 14

and 68.4 days.

TABLE 1. The first column is the six subdomains of World Ocean examined in both NLOM output and AVISO gridded satellite

altimeter data. The second through fifth columns are the slopes of frequency spectra of variance of surface streamfunction c1 and variance

of surface geostrophic velocity (kinetic energy; j$c1j2). Slopes are computed as least squares fits over the frequency band corresponding to

periods of 14–68.4 days (see dashed vertical lines in Figs. 11, 15). The sixth column is NLOM D, the slope in the NLOM streamfunction

variance spectrum minus the slope in the NLOM velocity variance spectrum. The seventh column is as in the sixth column, but for AVISO.

Subdomain NLOM c2
1 AVISO c2

1 NLOM j$c1j2 AVISO j$c1j2 NLOM D AVISO D

Midlatitude southeast Pacific 21.8 23.7 22.0 23.5 0.2 20.2

High-latitude southeast Pacific 22.4 23.3 22.1 23.0 20.3 20.3

Agulhas 22.5 23.4 21.9 22.8 20.7 20.7

Malvinas 22.9 23.1 22.2 22.3 20.7 20.7

Gulf Stream 22.2 23.8 21.6 23.2 20.6 20.6

Kuroshio 22.6 24.4 21.9 23.8 20.7 20.6
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other five subdomains, the zonal velocity variance in-

tegrated over these periods ranges from 1.1 to 1.6 times

larger than the meridional variance. This tendency for

zonal velocity variance to exceed meridional velocity

variance at low frequencies was noted by Richman et al.

(1977), from analysis of a current-meter record much

shorter than the present-day AVISO record.

Figure 17 displays the spectral fluxes PKE,1(k) in

wavenumber space over the six subdomains of AVISO

data. As in the QG and NLOM computations, the dom-

inant feature is a negative lobe, representing an inverse

cascade toward larger length scales. Also as in the NLOM

computations, the magnitudes of the spectral fluxes vary

by two orders of magnitude over ocean basins. Envelopes

were computed assuming a 35-day correlation time over

the 16-yr record, and are small enough that they are dif-

ficult to see in Fig. 17.

Figure 18 displays the spectral fluxes PKE,1(v) in fre-

quency space over the six subdomains of AVISO data.

To test the sensitivity to windowing, fluxes are computed

in three different ways. The baseline calculations (black

curves) use the full time interval of 840 snapshots, ta-

pered with nine overlapping Hanning windows each 168

snapshots wide. We also subdivided the time series into

time intervals of 160 days each with 9 different over-

lapping realizations (blue curves) and into time intervals

of 80 days each with 19 different overlapping realizations

(red curves). At higher frequencies, the three methods

yield similar results, suggesting that our computation

technique is relatively robust. Some subdomains (high-

latitude southeast Pacific, Agulhas, and arguably the

Malvinas) display a negative lobe indicating an inverse

temporal cascade, consistent with the QG and NLOM

results. However, the Gulf Stream, Kuroshio, and mid-

latitude southeast Pacific display a predominantly forward

cascade (positive spectral flux) in frequency space. This

may be due to interesting physics in some regions of the

ocean that are not captured well in either NLOM or the

QG turbulence model. The smoothing exercises in pre-

vious sections suggest an alternative possibility, that for-

ward temporal cascades could be artifacts of the filtering

inherent in the creation of gridded satellite altimeter data

products. For the subdomains with a clear negative spec-

tral flux (Agulhas and high-latitude southeast Pacific), the

ratios of the minimum (trough) negative flux PKE,1(v) to

the kinetic energy are 6.0 and 4.0 3 1028 s21, respectively,

consistent with the QG and NLOM results (see discussions

in earlier sections) and suggestive of the importance of

nonlinearities in maintaining energy at low frequencies.

5. Summary and discussion

Motivated by the ubiquity of time series in oceanic

data, the relative lack of studies of geostrophic turbu-

lence in the frequency domain, and the interest in quan-

tifying the contributions of intrinsic oceanic nonlinearities

to oceanic frequency spectra, we have undertaken a com-

prehensive examination of spectra and spectral fluxes of

surface oceanic geostrophic flows in the frequency do-

main. We have shown that the frequency spectra of the

streamfunction (sea surface height) variance and geo-

strophic velocity variance (kinetic energy) in idealized

flat-bottom f-plane two-layer QG turbulence models,

realistic ocean general circulation models, and gridded

satellite altimeter data exhibit qualitative similarities,

with steeper slopes at higher frequencies and flatter slopes

at lower frequencies. In the data and models considered

here, the flat slopes at lower frequencies continue out

to the lowest frequencies allowed by the duration of the

record.

We demonstrate here that the machinery of geo-

strophic turbulence, which is usually discussed in the

wavenumber domain, is useful in the frequency domain

as well. Through examination of the energy budgets of

the QG model in frequency space, we find that the

quantity PKE,1(v), the spectral flux of upper-layer ki-

netic energy in the frequency domain, documents an

energy cascade toward longer time scales driven by the

action of nonlinearities, much like PKE,1(k), the spectral

flux of upper-layer kinetic energy in the wavenumber

domain, documents an inverse cascade of energy toward

larger length scales. The PKE,1(v) is ‘‘wider’’ than

PKE,1(k), consistent with the action of nonlinearities at

the longest time scales permitted by the record duration.

A budget of the spectral transfers T(v) 52›P(v)/›v

FIG. 16. Frequency spectra of the variance of zonal and meridi-

onal geostrophic velocity, computed from AVISO gridded altimeter

data in the midlatitude southeast Pacific patch shown in Fig. 14.

1596 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 42



further demonstrates the importance of nonlinearities in

maintaining low-frequency energy in the QG turbulence

model examined here.

We have also calculated spectral fluxes in frequency

space from NLOM, a realistic near-global ocean general

circulation model, and from the AVISO gridded satellite

altimeter dataset. The PKE,1(v) values computed from

the realistic model also document a nonlinear cascade of

kinetic energy toward longer time scales. The PKE,1(v)

values computed from AVISO gridded satellite altimeter

data yield more ambiguous results. Some subdomains

(regions) are dominated by an ‘‘inverse temporal cas-

cade,’’ whereas others exhibit a forward temporal cas-

cade. Computations done with temporally and/or spatially

smoothed QG model output, as well as temporally

smoothed NLOM output, demonstrate that the spectral

flux computations are highly susceptible to the smoothing

inherent in the construction of gridded altimeter prod-

ucts. It remains to be seen whether the forward temporal

cascades seen in some subdomains in altimeter data

represent real physics not present in the models analyzed

here or artifacts of the smoothed nature of gridded al-

timeter data.

A comprehensive comparison of the slopes of fre-

quency spectra in the QG turbulence model, the realistic

NLOM simulation, and AVISO altimetry data is given

in this paper. In the QG model, the slope of the velocity

variance spectra at the high-frequency end is 21.8, close

to the 22 prediction from dimensional considerations of

a kinetic energy cascade in frequency space (Tennekes

FIG. 17. Spectral fluxes PKE,1(k) in wavenumber space (thick curves) computed from gridded
1/38 AVISO data in subdomains shown in Fig. 14. Envelopes are drawn with dashed curves.
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and Lumley 1972). The slopes in frequency spectra of

streamfunction and velocity variance do not differ by

22, as they do in wavenumber spectra, which represents

a quantitative failure of the Taylor (1938) hypothesis

relating frequency to wavenumber spectra. In the band

of higher frequencies analyzed in the QG model, the

slopes differ by 20.8. In the band 14–68.4 days, the dif-

ferences in the slopes of the streamfunction and velocity

variance spectra vary between 20.3 and 20.7 in NLOM

and AVISO, in five of the six subdomains analyzed.

There is some consistency between slopes in the ideal-

ized QG model and the realistic model (NLOM), but the

latter shows wide variability from one region to another.

In the 14–68.4-day band, the slopes in the AVISO dataset

are significantly steeper, consistent with the highly filtered

nature of that product. The failure of the Taylor (1938)

hypothesis in our results is reminiscent of discussions in

Hayashi and Golder (1977), who found no simple re-

lationship between kinetic energy spectra in the fre-

quency and wavenumber domains in their space–time

FIG. 18. Spectral fluxes PKE,1(v) in frequency space (thick curves) computed from gridded
1/38 AVISO data in subdomains shown in Fig. 14. Thick black curves denote baseline results

computed over 840 weekly snapshots. Thick blue (red) curves denote results computed over

overlapping intervals of 160 (80) weekly snapshots each. Dashed curves denote envelopes of

thick black curves.
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analysis of realistic atmospheric models and atmospheric

datasets.

The time scales in two-layer QG turbulence exhibit

a sensitivity to the strength of linear bottom Ekman

friction, somewhat similar to the sensitivity previously

documented in the length scales. Although there are

some interesting differences discussed in section 2c, an

important similarity is that the time scales in two-layer

QG turbulence tend to be longer than the imposed non-

dimensional time L
d
/(u

1
2 u

2
), just as the length scales

tend to be larger than the imposed length scale Ld.

We end by briefly discussing natural extensions of this

work. In this study, we have looked only at the spectra

and spectral fluxes of geostrophic flows. In future work,

we will consider spectra and spectral fluxes computed

from the full velocity field in realistic models that con-

tain ageostrophic flows. In this study, we have looked

only at spectra and spectral fluxes in wavenumber space

or in frequency space, but never in mixed frequency–

wavenumber space. In section 2d, we developed the

theory for the more general flux P(k, v). We anticipate

that examination of spectra in mixed wavenumber–

frequency space may help to illuminate some of the

limitations of Taylor’s (1938) hypothesis. We antici-

pate that examination of mixed fluxes P(k, v), in flows

that include ageostrophic motions such as near-in-

ertial waves and tides as well as geostrophic eddies,

could yield insights into interactions between these

different classes of motions. Motivated by the results

in Fig. 8c, we also anticipate that the spectral transfers

T(v) could be useful diagnostics of the role of non-

linearity in maintaining low-frequency variability in the

climate system. In ocean models, T(v) could be com-

puted for both the atmospheric forcing and the oceanic

nonlinearities, potentially helping to determine how

much low-frequency variability in the ocean is driven by

atmospheric forcing (e.g., Griffies and Tziperman 1995)

and how much is due to intrinsic oceanic nonlinearities

(e.g., Penduff et al. 2011).
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