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Recent re-examinations and new fossil findings have added significantly to the data available for evaluating the
evolutionary history of the monocotyledons. Integrating data from the monocot fossil record with molecular dating
techniques has the potential to help us to understand better the timing of important evolutionary events and
patterns of diversification and extinction in this major and ancient clade of flowering plants. In general, the oldest
well-placed fossils are used to constrain the age of nodes in molecular dating analyses. However, substantial error
can be introduced if calibration fossils are not carefully evaluated and selected. Here we propose a set of 34 fossils
representing 19 families and eight orders for calibrating the ages of major monocot clades. We selected these fossils
because they can be placed in particular clades with confidence and they come from well-dated stratigraphic
sequences. As more fossils are discovered or re-examined, these criteria can also be applied to expand the list of
the fossils that are most suitable for dating the early branches of monocot phylogeny. © 2015 The Linnean Society
of London, Botanical Journal of the Linnean Society, 2015, 178, 346–374.

ADDITIONAL KEYWORDS: Alismatales – Arecales – Asparagales – calibration fossil – Dioscoreales –
Liliales – Monocotyledonae – Pandanales – Poales – Zingiberales.

INTRODUCTION

The monocots represent a substantial fraction of
extant angiosperm species (∼22%, Stevens, 2001+),
and define and dominate some of the most widespread
and productive ecosystems, including grasslands and
seagrass meadows (Larkum, Orth & Duarte, 2006;
Strömberg, 2011). Despite their diversity and ecologi-
cal ubiquity, they have often been viewed as having a
meagre and confusing fossil record, primarily because
of preservation biases associated with their predomi-
nantly herbaceous habit (Herendeen & Crane, 1995;
Smith, 2013), but also due to the lack of morphologi-
cal synapomorphies that can be assessed in fossils

(Gandolfo, Nixon & Crepet, 2000). A substantial
expansion in our understanding of fossil monocots has
come about through synthetic review (Doyle, 1973;
Daghlian, 1981; Collinson, Boulter & Holmes, 1993;
Herendeen & Crane, 1995; Gandolfo et al., 2000;
Greenwood & Conran, 2000; Stockey, 2006; Smith
et al., 2010; Friis, Crane & Pedersen, 2011; Smith,
2013), phylogenetic inference (e.g. Doyle, Endress &
Upchurch, 2008) and new fossil discoveries. Recently
described fossils include the first unequivocal orchids
(Ramírez et al., 2007; Conran, Bannister & Lee,
2009a) and the oldest known grasses (Prasad et al.,
2005, 2011). A parallel revolution has happened in our
understanding of higher-order monocot relationships,
due primarily to molecular systematic data (summa-
rized in Stevens, 2001+). These different lines of*Corresponding author. E-mail: will.jd.iles@gmail.com
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evidence have provided new insights into the tempo
and mode of diversification in monocots. However, a
monocot-wide framework for assessing which fossils
are most suitable for calibrating molecular dating
analyses is still lacking. Our major goal here is to
explore this issue in detail.

The fossil record provides the only physical evi-
dence of past biological events, but many lineages
have a poor or non-existent fossil history. Molecular
dating approaches (e.g. Sanderson, 2003; Drummond
et al., 2006; Dos Reis & Yang, 2011; Heath,
Huelsenbeck & Stadler, 2014) allow the integration of
phylogenetic and fossil data to estimate divergence
times across lineages lacking a fossil record, in addi-
tion to improving estimates for fossil-rich lineages.
These inferred dates can be used in further down-
stream analyses, for example to estimate rates of
extinction and speciation (e.g. Magallón & Sanderson,
2001), to reconstruct biogeographical patterns (e.g.
Donoghue & Moore, 2003; Iles et al., 2014) and to date
the origin of specific ecosystems of interest (e.g. Davis
et al., 2005; Edwards et al., 2010; Couvreur, Forest &
Baker, 2011). Although there are multiple sources of
error in molecular dating (e.g. Magallón, 2004;
Rutschmann, 2006; Lepage et al., 2007; Gandolfo,
Nixon & Crepet, 2008; Parham & Irmis, 2008; Ho &
Phillips, 2009; Clarke, Warnock & Donoghue, 2011;
Parham et al., 2012; Dos Reis & Yang, 2013; Paradis,
2013; Sauquet, 2013), the largest ones may be the
mis-specification of fossil placement in the phyloge-
netic tree and the associated age of the fossil (Yang &
Rannala, 2006; Sauquet et al., 2012). This underlines
the need for the careful selection of fossil calibrations
on the basis of accurate and up-to-date assessment of
fossil ages and phylogenetic placements (Magallón,
2004; Gandolfo et al., 2008; Parham & Irmis, 2008;
Parham et al., 2012; Pirie & Doyle, 2013) and contin-
ued research on the fossil record.

Here, we attempt to identify and justify those
monocot fossils that have the potential to be the most
useful for dating monocot phylogenetic trees. Fossils
suitable for calibration should have a well-justified
age and phylogenetic placement, sufficient to con-
strain the age of an associated node in a molecular
phylogenetic tree reliably. Typically the calibration is
effectively applied as the minimum age for the asso-
ciated node. Note that it is not accurate to say that
the fossil originated at the node (see below). Our use
of ‘calibration’ here is more general than that of
Sanderson (1997) and Sanderson & Doyle (2001) and
corresponds approximately to their use of the term
‘constraint’. We focus on two major requirements
noted by several recent authors (Magallón, 2004;
Gandolfo et al., 2008; Parham & Irmis, 2008; Parham
et al., 2012; Sauquet et al., 2012): (1) establishing the
correct age of the strata where fossils were collected,

which defines the minimum age of an associated
calibrated node in a phylogenetic tree; and (2) estab-
lishing the phylogenetic placement of the fossil, i.e.
associating a fossil with a particular node in a tree as
a calibration point. This may mean reviewing multi-
ple candidate fossil records and taxa. Below we lay
out the selection criteria in more detail and then
apply them to the identification of fossils suitable for
dating monocot phylogeny. When necessary, for clarity
we use ‘fossil’ to refer to a particular specimen and
‘fossil taxon’ for a taxonomic entity comprising single
or multiple specimens, possibly of widely varying
geographical and temporal range.

EVALUATING FOSSIL AGE

The description of the locality where the fossil(s) was
collected should ideally contain detailed information
about the site, including the geological formation and
the stratigraphic layer. This allows for independent
confirmation of the proposed age of the stratum,
which can change as relevant knowledge is gained. A
relatively narrow age range for the fossil-bearing
horizon may be inferred using marine biostratigraphy
(if it is bracketed by marine incursions), terrestrial
biostratigraphy (e.g. land mammal ages for North
America, Europe, South America and Asia or palyno-
zones) and/or absolute ages obtained from radiometric
dating (if appropriate minerals are included in the
sediments, e.g. volcanics, detrital zircons) (Fig. 1).
Ideally, multiple methods of dating should be used to
arrive at a narrowly constrained age, but in practice
this is not always possible, due to particular tech-
niques not being applicable to some sediment types.
Conversely, stratigraphic data may be relatively unin-
formative and an absence of radiometrically dated
material may suggest only a relatively broad age
range (e.g. ‘middle Eocene’) for the fossil-bearing
horizon. Note that a broad age range for a fossil does
not imply that the fossil taxon was present in the
whole temporal range; narrow ranges for fossils are
desirable because they allow a more refined calibra-
tion, but are not always available. Our age estimates
for fossils include: (1) ranges, which may correspond
to the beginning and ending of stages or more pre-
cisely dated marine incursions and radiometrically
dated volcanics; and (2) single point estimates, where
the fossil horizon has been dated or an overlying
horizon is dated (see Table 1 for details).

It is possible to use the entire known fossil history
(i.e. all specimens across all fossil taxa) that are
assignable to a clade (or lineage) in a molecular
dating analysis (e.g. Marshall, 2008; Wilkinson et al.,
2011; Nowak et al., 2013; Heath et al., 2014).
However, these analyses are technically complex and
have mostly been carried out in small clades with
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well-defined fossil records. Typically only a single
fossil representative or a horizon-specific collection of
fossils is used for calibrating a specified node. As a
review of the monocot fossil record in its entirety is
beyond the scope of this contribution, we focus only on
those single fossil records most suitable for dating
particular nodes. The oldest fossil clearly assigned
(see below) to a clade should ideally be used for
calibration, as this defines the minimum (youngest)
possible age of the associated stem node.

PHYLOGENETIC PLACEMENT OF FOSSILS

Accurately placing a fossil taxon within a phyloge-
netic tree is more difficult than placing extant taxa.
Fossils lack molecular data, may have poor preserva-
tion or lack preservation of key characters, and are
often limited in number and fragmentary in nature.
Plant organs and parts tend to be shed or preserved
independently (as isolated leaves, flowers, pollen,
stems etc.), which may each contain relatively few
phylogenetically informative characters. The reliance
on single organs to represent a species provides us

with fewer total characters for phylogenetic inference
compared with whole plant data for extant taxa. In
addition, the ability to recognize key characters in
fossils can be hindered by our often limited knowledge
of the morphology and anatomy of modern species
(Smith, 2013).

In a molecular dating analysis it is not always clear
which node in a phylogenetic tree should be associ-
ated with an individual fossil (taxon). We briefly
review the logic behind this process here (see also
Magallón, 2004). If we consider a fossil taxon, ‘f ’, with
an apomorphy, ‘α’, that it shares with an extant clade
(labels ‘d’ and ‘e’ in Fig. 1), ‘f ’ can be placed anywhere
within that clade, or along the subtending branch
(‘stem’) of the clade with equal cost in parsimony (see
thick lines in Fig. 1). The fossil ‘f ’ should conserva-
tively be placed to the deepest possible point (at the
origin of the apomorphy ‘α’), because shallower place-
ments would tend to increase the age of the whole
tree arbitrarily. In general, the exact timing of origin
of the apomorphy along the stem is also unknown (see
Fig. 1). To be conservative, the apomorphy ‘α’ is effec-
tively assumed to originate immediately after the
stem node, for the purposes of calibration. Thus, the
minimum age of fossil ‘f ’, defined by overlaying
stratum layer ‘x’, effectively calibrates the stem node
(filled circle in Fig. 1) that precedes the clade defined
by apomorphy ‘α’ (Fig. 1). An underlying/deeper
stratum, not marked in Figure 1, may also provide a
maximum age for the fossil, but this would not
provide a maximum age for the associated stem node,
as older fossils with the apomorphy ‘α’ may be found.
When a range is given for an age, the youngest
(uppermost) age should be used in a molecular dating
analysis, to be conservative.

If a fossil could be placed confidently along a single
branch of the phylogenetic tree (e.g. in a phylogenetic
analysis) to the exclusion of descendant branches, the
same logic would apply: the minimum age of the fossil
calibrates the stem node of that branch. Most
researchers will use fossils as minimum age con-
straints for associated nodes (Sanderson, 1997;
Sanderson & Doyle, 2001; see Yang & Rannala, 2006,
who considered the use of soft minimum ages). The
example discussed here assumes that the reference
tree (Fig. 1) is accurate. Errors in the topology of the
reference tree may lead to errors in the distribution of
character states, and therefore in the placement of
fossil calibrations within the tree. Well-supported
phylogenetic trees covering the breadth of taxa under
consideration should be used to evaluate the place-
ment of fossil calibrations as far as possible, to mini-
mize this possibility. Some fossil taxa that lack
obvious apomorphies may still be useful for calibra-
tion, so long as a suite of characters unambiguously
support the placement of the fossil in a described

dαa b c eα

fα
α

?

x

Fossil “f” calibrates
this node to a 
minimum age 
given by stratum “x”.

Figure 1. Key steps in using a fossil to calibrate a node in
a molecular dating analysis. The right-hand panel is a
diagram of a stratigraphic formation that includes a fossil
‘f ’ closely overlain by a dated stratum. The left-hand panel
shows a well-supported phylogenetic tree with extant taxa
labelled ‘a’–‘e’. The fossil has an apomorphy (‘α’) shared
here with two extant taxa ‘d’ and ‘e’ (presence of apomor-
phy indicated with a subscript); the thick line indicates
multiple equally parsimonious placements of the fossil.
The date of origin of the apomorphy is unknown (indicated
by a question mark), and so the fossil conservatively dates
the node indicated by the filled circle. The dated stratum
‘x’ that overlies the fossil (the oldest securely placed one
with the apomorphy) provides a minimum age for the
fossil and this node; when there is an age range for a
stratum, the youngest age should be used in a molecular
dating analysis, to be conservative. The vertical axis of the
phylogenetic tree is in arbitrary time units terminating in
the present at the top.
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taxon (even in the absence of a formal phylogenetic
analysis); in these cases the suite may be functionally
equivalent to an apomorphy, and may therefore be
used to calibrate the stem node of the corresponding
clade (Gandolfo et al., 2008). We include these
taxa with the caveat that additional phylogenetic
reconstructions would be useful to clarify the status of
individual characters in associated suites (some
of these characters may act as apomorphies
individually).

SELECTION OF FOSSILS FOR CALIBRATING
MONOCOT PHYLOGENIES

We consulted recent reviews (Stockey, 2006; Doyle
et al., 2008; Doyle & Endress, 2010; Smith et al.,
2010; Clarke et al., 2011; Friis et al., 2011; Smith,
2013) and associated primary literature (see below) to
identify candidate fossils to serve as calibrations for
monocot molecular dating analyses. Our attention
was focused on the oldest fossils associated with fami-
lies (or subfamilies in some cases). We targeted fossil
taxa that can be placed based on phylogenetic analy-
ses, by the possession of apomorphies known to define
particular clades or by the possession of a suite of
characters that satisfactorily align them with well
characterized clades. We chose fossils that are avail-
able as vouchered specimens curated in museum or
university collections, to ensure that fossil identity
and description can be verified (e.g. Gandolfo et al.,
2008; Parham et al., 2012); in a few cases, noted in
Table 1, the fossil belongs to a private collection or
exists only as figures. We used these criteria to justify
the suitability of individual fossils below (summarized
in Table 1). We define the node that each fossil is
suitable for calibrating, and the current age estimate
of the fossil. In practice, taxon sampling in molecular
dating analyses may not be dense enough to use the
most refined placement of the fossil, and so we also
list the next most inclusive named clades. We con-
sulted recent reviews of fossil angiosperm localities
(Clarke et al., 2011; Friis et al., 2011) and associated
primary literature (see below) to evaluate the
minimum age of calibration fossils. The chron-
ostratigraphy follows the International Commission
on Stratigraphy (Cohen, Finney & Gibbard, 2013). In
total we propose 34 fossils that we consider to be
suitable for dating the major lineages of monocot
phylogeny, which span 19 families and eight orders
(summarized in Table 1).

MONOCOTYLEDON FOSSILS
ACORALES

This monogeneric order is often recovered as the
sister group of the rest of the monocots (e.g. Graham

et al., 2006). The order is represented by a single
genus, Acorus L., which is geographically widespread
in the Northern Hemisphere, but has low species
diversity. There are several relevant fossils reported
from the Eocene onward (Smith, 2013), of which the
oldest record is the spadix Acorites heeri (E.W.Berry)
Crepet from North America (Crepet, 1978). Several
features of these fossils (inflorescence structure, para-
cytic stomata and trilocular ovaries) are seen in
modern Acorus and some Araceae (Crepet, 1978;
Grayum, 1987; Mayo, Bogner & Boyce, 1997). The
fossils lack diagnostic characters to place them within
extant species diversity and therefore they are not
suitable for calibrating the crown or stem node of
Acorus.

ALISMATALES: ALISMATACEAE

Fossils with similarities to Alismataceae (including
Limnocharitaceae) occur from the Late Cretaceous
onward (Stockey, 2006; Smith, 2013). The best char-
acterized of these are Cardstonia tolmanii M.G.Riley
& Stockey, Haemanthophyllum Budantzev and Heleo-
phyton helobiaeoides D.M.Erwin & Stockey (Erwin &
Stockey, 1989; Golovneva, 1997; Riley & Stockey,
2004). These fossils show strong similarities to extant
Alismataceae. However, the preserved characters do
not reliably allow their placement in the crown clade
of the family. Additionally, some of these genera also
share characters with other alismatalean families
(such as Aponogetonaceae and Butomaceae). The ear-
liest fossils that can be unequivocally placed in the
crown clade are fossil fruits from the late Oligocene to
early Miocene of Eurasia and North America
(reviewed by Haggard & Tiffney, 1997). Haggard &
Tiffney (1997) described fossil fruits assignable to the
extant genus Caldesia Parl. from the Brandon Lignite
of Vermont based on ‘horseshoe’-shaped seeds, thin
exocarp and thick exocarp consisting of one layer of
radially aligned lignified cells and ribs on the peri-
carp. Caldesia is well embedded in the Alismataceae
clade (G. Ross, University of British Columbia, and
S.W.G., unpubl. data). In terms of seed and fruit
characters it may be closest to Limnophyton Miquel
(Haggard & Tiffney, 1997), which has yet to be
sampled in a molecular analysis. The age of the
lignite is middle early Miocene (20 Ma) based on
terrestrial biostratigraphy (Tiffney, 1994; Traverse,
1994). Fossils from the Isle of Wight, collected from
the Bembridge Marl Member, Bouldnor Formation,
late Eocene (33.8–34.0 Ma; Collinson, 1983; Hooker
et al., 2009), were placed within Alismataceae but are
not particularly close to any extant genera, and they
may represent stem Alismataceae. Therefore, we con-
sider the Brandon Lignite fossil fruit taxon, Caldesia
brandoniana Haggard & Tiffney, to be suitable for
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calibrating the stem node of Caldesia, or more inclu-
sively the crown node of Alismataceae. Additional
fossils from the Eurasian Neogene have been
assigned to modern species (e.g. Alisma plantago L.,
from the Miocene of Germany; Mai, 2000) and may be
relevant as calibrations, once the original material
has been re-examined and their identifications
confirmed.

ALISMATALES: APONOGETONACEAE

Several fossil leaves have been considered to have
affinity with Aponogetonaceae, but alternative assign-
ments to other alismatalean families are often possi-
ble (Smith, 2013). The pollen of Aponogetonaceae is
distinctive, being monosulcate with an echinate
reticulum, and recently was recovered from Creta-
ceous and Eocene sediments from North America
(Wyoming, USA, and British Columbia, Canada) and
Greenland (Grímsson et al., 2014). Grímsson et al.
(2014) described three species from the three locali-
ties and ascribed them to different pollen subtypes
within Aponogeton L.f. The oldest of these fossils is
Aponogeton harryi Grímsson, Zetter, Halbritt. &
G.Grimm from the Upper Eagle Beds, Eagle Forma-
tion, Elk Basin of Wyoming, USA (Grímsson et al.,
2014), with the pollen-bearing stratum dated to at
least 81.13 Ma by an overlying bentonite layer (Hicks,
1993). Although the existence of pollen subtypes
within Aponogeton suggests that it may be possible to
place A. harryi within the context of extant diversity
(i.e. to date the genus crown or shallower node), the
taxonomic distribution of pollen subtypes in the genus
is complex and our understanding of their evolution-
ary history is problematic (Les, Moody & Jacobs,
2005; Grímsson et al., 2014). As a result, the fossil is
best used to calibrate the stem node of Aponogeton
(= Aponogetonaceae).

ALISMATALES: ARACEAE

The fossil record of Araceae has been reviewed exten-
sively, with several general reviews (Friis et al., 2011;
Smith, 2013), recent ones on fossil pollen (Hesse &
Zetter, 2007) and fossil leaves (Wilde, Kvaček &
Bogner, 2005), and a comprehensive review for a
genus-level molecular dating study of the family
(Nauheimer, Metzler & Renner, 2012). When consid-
ering phylogenetic placement within Araceae, we
used the phylogenetic tree of Cusimano et al. (2011;
see also Henriquez et al., 2014) as a reference. We
provide a brief overview of the record here, starting
with the oldest records, and then consider records for
individual subfamilies.

Friis, Pedersen & Crane (2004) describe two pollen
types from the Aptian–early Albian (Early Creta-

ceous) of Portugal (Doyle & Endress, 2014). The first,
Mayoa portugallica E.M.Friis, K.R.Pedersen &
P.R.Crane, was described as having affinities with
extant Holochlamys Engl. and Spathiphyllum Schott
in subfamily Monsteroideae. A possible relationship
with Gnetales was raised, but rejected due to differ-
ences in infratectal structure. This discovery
prompted Hesse & Zetter (2007) to review the ephed-
roid fossil pollen record (an artificial assemblage).
They concluded that two additional taxa, Ephedrip-
ites vanegensis Hammen & Garcia de Mutis (Palaeo-
cene) and E. elsikii Herngreen (Late Cretaceous), also
belong to Spathiphyllum. More recently, Hofmann &
Zetter (2010) proposed a strong likeness of Mayoa to
Lagenella martinii (Leschik) W.Klaus, a fossil pollen
morphotype of uncertain affinities with an extensive
record from the Triassic to the Cretaceous, casting
doubt on its relationship with Araceae and pointing to
the need to reinvestigate both taxa in detail. Although
it seems likely that some or all of these fossils rep-
resent members of Monsteroideae (especially the
younger fossils), the close similarity with other
extinct and extant lineages precludes their use as
fossil calibrations. The second putatively araceous
fossil pollen illustrated by Friis et al. (2004) shows
strong similarities to the zona-aperturate pollen
taxon Proxapertites operculatus Hammen (Hesse &
Zetter, 2007). Zetter, Hesse & Frosch-Radivo (2001)
established that P. operculatus is similar to pollen
from two unrelated subfamilies in Araceae, Zamioc-
ulcoideae and Monsteroideae. Proxapertites opercula-
tus has an extensive record extending from the latest
Cretaceous to early Oligocene, although more recent
records are rarer (Zetter et al., 2001). If the record of
Friis et al. (2004) proves reliable, this would almost
double the known age of the taxon (Hesse & Zetter,
2007). We currently reserve judgment concerning the
identity of the Friis et al. (2004) fossil, and accept that
Late Cretaceous records of P. operculatus probably
reflect members of Monsteroideae or Zamioculcoideae
(Zetter et al., 2001; Hesse & Zetter, 2007). However,
because these subfamilies are distantly related and
intervening subfamilies have different pollen types,
this fossil taxon is not suitable for molecular dating
(e.g. Nauheimer et al., 2012, did not consider this
taxon in their study). More complete araceous mate-
rial from the Early Cretaceous (Albian) is represented
by two fossil inflorescences, ‘Araceae fossil sp. A’ and
‘Araceae fossil sp. B’, which are also from Portugal
(Friis, Pedersen & Crane, 2010). Based on floral and
inflorescence characters these fossils were assigned to
Aroideae and Pothoideae, respectively (Friis et al.,
2010); Araceae fossil sp. A is more plesiomorphic than
extant members of Aroideae in having pollen with a
reticulate-columellar exine, and is therefore probably
a stem relative of Aroideae, if it is related at all
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(J. A. Doyle, University of California, Davis, pers.
comm.). However, these fossils need to be described
formally and critically compared with other taxa,
before use as fossil calibrations (see also Nauheimer
et al., 2012).

Additional records of Araceae to consider are those
of Late Cretaceous or younger age, which in general
can be placed to subfamily or shallower taxonomic
levels reliably (Nauheimer et al., 2012; Smith, 2013).
Within Aroideae, Herrera et al. (2008) assigned Pal-
aeocene fossil leaves from the Carrejón Mine of
Colombia (Carrejón Formation, 58–60 Ma; Jaramillo
et al., 2007) to the extant genus Montrichardia Creug.
on the basis of multiple shared leaf morphological
characters between the fossil and extant species.
Montrichardia is phylogenetically isolated within
Aroideae and the fossil M. aquatica F.A.Herrera,
C.A.Jaram., Dilcher, S.L.Wing & C.Gómez Nav. could
therefore be used to calibrate the stem node of Mon-
trichardia or, more inclusively, the crown node of
Aroideae. Other fossils clearly assignable to clades
within Aroideae are the leaves Nitophyllites zaisani-
cus Iljinsk. and N. bohemicus V.Wilde, Kvaček &
Bogner. These are similar to each other and have
multiple morphological similarities to tribes Peltran-
deae and Arophyteae (Wilde et al., 2005). These two
tribes are sister taxa and the resulting clade is
termed the ‘Typhonodorum clade’ by Cusimano et al.
(2011). Nitophyllites zaisanicus is the older of the two
species; it dates from the Palaeocene of Kazakhstan
and could be used to calibrate the stem node of the
Typhonodorum clade. Several other fossil leaves
described by Wilde et al. (2005) also have affinities to
Aroideae (Araciphyllites schaarschmidti V.Wilde,
Kvaček & Bogner and Caladiosma messelense
V.Wilde, Kvaček & Bogner), but their placement
within the subfamily is unclear, and because they are
younger than the fossils mentioned above they are not
considered further here. It is also worth mentioning
that the Campanian and Maastrichtian (Late Creta-
ceous) floating aquatic species Cobbania corrugata
(Lesq.) Stockey, G.W.Rothwell & K.R.Johnson was
originally described as an extinct Pistia L. (Stockey,
Rothwell & Johnson, 2007) and has been used as a
calibration in some analyses (e.g. Bremer, 2000).
Although it is araceous and probably placed within
Aroideae, its exact affinities are unknown, but it
remains intriguing as an additional fully aquatic
lineage of Araceae (Stockey et al., 2007).

Within Lasioideae, the best characterized fossils are
seeds from the Princeton Chert locality (Princeton
Member, Allenby Formation) of British Columbia,
which is of early Eocene age (Smith & Stockey, 2003).
Older fossil pollen from the Late Cretaceous is known
from Siberia and is assigned to the genus Lasioideae-
cidites C.-C.Hofm. & Zetter (Hofmann & Zetter, 2010).

Its similarity to Lasioideae is based on thickened
endexine in the sulcus region and similarity in mor-
phology (Hofmann & Zetter, 2010). However, Hesse
(2002) emphasized the need for transmission electron
microscopy (TEM) sections in identifying the unique,
synapomorphic two-layered endexine of Lasioideae. As
TEM sections are lacking for Lasioideaecidites, we do
not consider it suitable for molecular dating at present.
The fossil seeds Keratosperma allenbyense Cevallos-
Ferriz & Stockey emend. S.Y.Sm. & Stockey are more
suitable to calibrating the stem node of Lasioideae (as
it does not appear to be closely related to any of the
extant genera) (Cevallos-Ferriz & Stockey, 1988;
Smith & Stockey, 2003). Fossils were found in multiple
layers below and above ash layer 22 of the Princeton
Chert, British Columbia, which has been dated radio-
metrically to 48.7 Ma (Smith & Stockey, 2003).

Fossil members of Lemnoideae were reviewed
recently by Bogner (2009), who noted the presence of
fossil seeds and plants of the extant genus Lemna L.
from the Oligocene onwards. In particular, he focused
on the extinct Limnobiophyllum scutatum (Dawson)
Krassilov, found from the latest Cretaceous of Asia
and North America. Morphological and palynological
work suggests that Limnobiophyllum is closely
related to subfamily Lemnoideae, although it is less
reduced morphologically (Kvaček, 1995; Stockey,
Hoffman & Rothwell, 1997; Hesse & Zetter, 2007;
Bogner, 2009). A morphology-based phylogenetic
analysis was used to place the genus as the sister
group to extant Lemnoideae, although taxon sam-
pling was scanty (Stockey et al., 1997). The best pre-
served material, which includes in situ pollen
(originally described as Pandaniidites Elsik; see
Stockey et al., 1997; Hesse & Zetter, 2007) is from
Alberta and is of middle Palaeocene age (Stockey
et al., 1997). Slightly older material corresponding to
the Cretaceous–Palaeogene boundary is known from
Asia (Krassilov, 1973) and North America (Johnson,
2002). The North American material is represented
by 99 specimens from five localities in south-western
North Dakota and north-western South Dakota from
the Hell Creek and lower Fort Union Formations
(Johnson, 2002). These localities closely straddle the
Cretaceous–Palaeogene boundary (Hicks et al., 2002;
Johnson, 2002) and we can therefore confidently cali-
brate the stem node of Lemnoideae to 66 Ma.

Araciphyllites tertiarius (Engelh.) V.Wilde, Kvaček
& Bogner, represented by leaves, comes from the
famous Messel Pit of Germany, an Eocene maar lake.
Wilde et al. (2005) re-evaluated it and placed it within
Monsteroideae based on multiple leaf venation
characters. They consider it most similar to tribe
Monstereae, corresponding most closely to the
‘Rhaphidophora clade’ of Cusimano et al. (2011).
Araciphyllites tertiarius can be used for calibrating
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the stem node of the Rhaphidophora clade, or more
inclusively the crown node of Monsteroideae. The age
of the Messel Pit is considered to be middle Eocene
(47 Ma; Franzen, 2005; Mertz & Renne, 2005).

Within Orontioideae, Nauheimer et al. (2012) rec-
ognized several fossil calibration candidates from the
Late Cretaceous, including the infructescence Alber-
tarum Bogner, G.L.Hoffman & Aulenback, and fossil
leaves assigned to Lysichiton Schott, Orontium L. and
Symplocarpus Salisb. (Kvaček & Herman, 2004;
Bogner, Hoffman & Aulenback, 2005; Bogner,
Johnson & Upchurch, 2007). The three fossil taxa
based on leaf remains lack distinguishing characters
(Smith, 2013) and are therefore not reliable for
molecular dating. Albertarum consists of an infructes-
cence complete with seeds from the Late Cretaceous
of Alberta that has multiple characters showing affin-
ity to Orontioideae (Albertarum pueri Bogner,
G.L.Hoffman & Aulenback; Bogner et al. 2005).
However, Albertarum has a thick ribbed testa, a char-
acter not seen in living Orontioideae or Gymnostachy-
oideae and we therefore do not currently consider it
suitable for calibration purposes. Additional leaf
fossils from the Early Cretaceous of Brazil have been
described as Spixiarum kipea Coiffard, B.A.R.Mohr &
Bernardes-de-Oliveira and have been compared with
subfamily Orontioideae, but the authors stopped
short of definitively placing it within the subfamily
(Coiffard, Mohr & Bernardes-de-Oliveira, 2013) and
consequently we do not consider it further.

Nauheimer et al. (2012) recently used Petrocardium
F.A.Herrera, C.A.Jaram., Dilcher, S.L.Wing &
C.Gómez Nav. from the Palaeocene of Colombia
(Herrera et al., 2008) as a calibration fossil within
Pothoideae. However, as Herrera et al. (2008) pointed
out, Petrocardium is characterized by a suite of char-
acters suggesting similarities to members of two dis-
tantly related subfamilies, Pothoideae (especially
Anthurium Schott) and Lasioideae, and consequently
it cannot be assigned with confidence to any particu-
lar clade or taxon within Araceae (Herrera et al.,
2008).

ALISMATALES: HYDROCHARITACEAE

Seeds recognizable as belonging to extant genera of
Hydrocharitaceae first appear in the late Palaeocene
and increase in diversity and frequency onwards. The
oldest of these belong to Stratiotes L. (Stockey, 2006;
Smith, 2013), which extends into the Palaeocene of
England (Sille et al., 2006). As Stratiotes may be the
sister taxon of the rest of the family (Iles, Smith &
Graham, 2013; but see Les, Moody & Soros, 2006), the
oldest known Stratiotes fossil can most confidently be
utilized for calibrating the stem node of Stratiotes, or
potentially the crown node of Hydrocharitaceae. The

oldest Stratiotes comes from the Felpham Lignite
Bed, Reading Formation, England (Bone, 1986), and
has been dated to 55.9 Ma (Bone, 1986; Collinson &
Cleal, 2001; Collinson, Hooker & Gröcke, 2003). Addi-
tional Eocene to Miocene fossils have also been
assigned to modern genera (summarized by Smith,
2013) and may prove useful after they have been
re-examined and their affiliations confirmed.

ALISMATALES: POTAMOGETONACEAE/RUPPIACEAE

There is a particularly rich record of fossil fruits
assigned to what has been called the Potamogeton–
Ruppia complex which spans from the Cretaceous to
the present (Collinson, 1982; Zhao, Collinson & Li,
2004; Gandolfo et al., 2009; Smith, 2013). Potamoge-
ton L. (Potamogetonaceae) and Ruppia L. (Ruppi-
aceae) are quite distantly related to each other. They
belong to a diverse clade that includes four or five
families, including several seagrass families (Cymo-
doceaceae, Posidoniaceae and Zosteraceae) (Les,
Cleland & Waycott, 1997; Iles et al., 2013). Until
these fossil taxa are examined in a more comprehen-
sive context, the true affinities of these fossil taxa
remain unclear.

ALISMATALES: ‘SEAGRASSES’

Because of the close morphological and anatomical
similarity (Stockey, 2006; van der Ham, van
Konijnenburg-van Cittert & Indeherberge, 2007;
Benzecry & Brack-Hanes, 2008; Smith, 2013) among
distantly related seagrass families (Les et al., 1997;
Iles et al., 2013) we consider them here together,
rather than under separate family headings (Cymo-
doceaceae, Hydrocharitaceae p.p., Posidoniaceae, Zos-
teraceae, but see above for Ruppiaceae fruits).
Extensive convergence and simplification due to
adaptation to a submerged aquatic environment (Les
et al., 1997) make taxonomic placement of seagrass
fossils difficult in the absence of reproductive mate-
rial. Well-preserved fossil seagrasses are known from
the Avon Park Formation of Florida (middle Eocene;
Miller, 1986), which have been assigned to extant
genera (Lumbert et al., 1984), but explicit justification
for these placements is lacking. However, Benzecry &
Brack-Hanes (2008) convincingly showed that
the fossil Thalassites parkavonenses Benzecry &
Brack-Hanes, from the same locality, is related to the
hydrocharit seagrass clade (nested within Hydro-
charitaceae) based on several characters, making
Thalassites the best fossil for calibrating the stem
node of hydrocharit seagrasses, to the middle Eocene
(38.0–47.8 Ma).

ALISMATALES: TOFIELDIACEAE

Tofieldiaceae do not have a reliable fossil record.
Bremer (2000) used a fossil pollen record, Dicolpopollis

356 W. J. D. ILES ET AL.

© 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178, 346–374



Pflanzl, from the Campanian–Maastrichtian boundary
or earliest Maastrichtian of California (Chmura,
1973) for calibrating Tofieldiaceae. Although disul-
cate pollen occurs in Tofieldiaceae, Dicolpopollis is
usually referred to calamoid palms (e.g. Crepet,
Nixon & Gandolfo, 2004; Smith, 2013) and at least
some of the characters Chmura (1973) provided as
evidence for affinity to Tofieldiaceae (e.g. small size
and aspects of sculpturing) are also found in the
palm genus Calamus Auct. ex L. (Dransfield et al.,
2008). Until further investigations are done that
confirm the identity of this pollen, it is not suitable
for calibration.

OTHER PUTATIVE ALISMATALES

Friis, Pedersen & Crane (2000) described a suite of
reproductive organs (pollen, stamens and pistils)
belonging to several closely related species from the
Vale de Agua and Buarcos localities of Portugal
(Albian; Heimhofer et al., 2007; Dinis et al., 2008); the
reconstructed taxon is called the Pennipollis plant,
after the form genus name for the pollen (Pennipollis
E.M.Friis, K.R.Pedersen & P.R.Crane). Friis et al.
(2000) most closely compared the plant with members
of Araceae and Potamogetonaceae and suggested an
affinity within Alismatales. Phylogenetic analyses of
early lineages of angiosperms (Doyle et al., 2008;
Doyle & Endress, 2014) instead found an association
of the Pennipollis plant with Chloranthaceae and
Ceratophyllum L. We therefore do not consider the
Pennipollis plant suitable for calibration of monocots.

ARECALES: ARECACEAE

The fossil record of palms is probably the most con-
spicuous of any monocot family and possibly extends
back to the Turonian of France (Palmoxylon ande-
gavense Crié, P. ligerianum Crié; Kvaček & Herman,
2004; Dransfield et al., 2008). There have been
several recent general reviews (Harley, 2006;
Dransfield et al., 2008), reviews of fossil pollen
(Harley & Baker, 2001; see also Dransfield et al.,
2008) and a comprehensive review for a genus-level
molecular dating of the family (Couvreur et al., 2011).
When considering fossil taxon placement we used the
reference phylogenetic trees of Baker et al. (2009) and
Dransfield et al. (2008). We review the fossil record
here for each subfamily.

In Arecoideae, Cocos L.-like fruits have an exten-
sive record, extending to the Maastrichtian Deccan
Intertrappean beds of India (Harley, 2006; Shukla,
Mehrotra & Guleria, 2012). However many of these
records are poorly preserved or the locality informa-
tion is incomplete (Patil & Upadhye, 1984; Mehrotra,
1987; Tripathi, Mishra & Sharma, 1999; Shukla et al.,

2012) and as a result we do not consider them further.
In the New World, fossil fruits from the Palaeocene of
Colombia and Argentina are known with strong simi-
larities to Cocos and other members of subtribe Atta-
leinae (Gómez-Navarro et al., 2009; Futey et al.,
2012). The Argentinian material is slightly older than
the Colombian material and comes from the Estancia
Las Violetas locality, Salamanca Formation, Chubut
Province (Futey et al., 2012). The permineralized
fruits were placed within a new fossil species, Tripy-
locarpa aestuaria Gandolfo & Futey, the taxonomic
position of which was explored using phylogenetic
analyses of molecular sequences combined with mor-
phological data. The results of these analyses con-
firmed the taxonomic placement suggested by the
morphological and anatomical characters preserved
in the fossils (Futey et al., 2012). Tripylocarpa is the
first confirmed record for subtribe Attaleinae world-
wide and can confidently be used to calibrate the stem
node of Attaleinae (or equivalently the crown node of
Cocoseae, see Baker et al., 2009); more inclusively it
could date the crown node of Arecoideae. Palaeomag-
netic data from several sections of the Salamanca
Formation have been assigned to Chrons C28n and
C29n; specifically, the diverse palaeoflora has been
determined as belonging to Chron C28n, indicating
that the age of the flora is between 63.49 and 64.67
Ma (Clyde et al., 2014).

In Calamoideae, two groups of fossil pollen, Dicol-
popollis and Mauritiidites crassibaculatus van
Hoeken-Klinkenberg, have been described. The first,
Dicolpopollis, is characterized by two opposite equa-
torial sulci (i.e. disulculate pollen). This character is
seen in eight genera of tribe Calameae, and derived
forms (e.g. diporate, zonosulcate, inaperturate) char-
acterize most of the rest of the tribe (Harley, 2006;
Dransfield et al., 2008). Equatorial disulculate pollen
grains are therefore an apomorphy for Calameae. The
earliest reliable Dicolpopollis fossils are from the
Yesomma Formation of Somalia (Schrank, 1994).
The Yesomma Formation is overlain by the late Maas-
trichtian to early Eocene marine Aurabu Formation,
and is considered to be late Maastrichtian (possibly as
old as Campanian) in age (∼72.1–66.0 Ma; Schrank,
1994; Fantozzi & Kassim Mohamed, 2002). The other
group, Mauritiidites, is characterized by intectate
monosulcate pollen with spines ‘embedded’ in the foot
layer, causing a bulge below the spine in the pollen
wall (van Hoeken-Klinkenberg, 1964; Harley, 2006).
This pollen type also characterizes Mauritia L.f., and
is similar to the pollen of the remaining members of
subtribe Mauritiinae (tribe Lepidocaryeae) (Harley,
2006; Dransfield et al., 2008). It can therefore be
considered to be an apomorphy for this subtribe. The
earliest known occurrences of M. crassibaculatus are
from the Maastrichtian of Nigeria and the slightly

MONOCOT FOSSILS FOR MOLECULAR DATING 357

© 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178, 346–374



older Yesomma Formation (van Hoeken-Klinkenberg,
1964; Schrank, 1994). (There have also been reports
of the genus from the Campanian to Eocene of Sudan;
Eisawi & Schrank, 2008.) As Calameae and Lepido-
caryeae are sister taxa, the crown-node placement of
Mauritiidites in Lepidocaryeae (i.e. the stem node of
subtribe Mauritiinae) makes it more informative than
the stem-node placement of Dicolpopollis in tribe
Calameae. We agree with Couvreur et al. (2011) and
consider Mauritiidites to be appropriate for calibrat-
ing the stem node of subtribe Mauritiinae.

Coryphoideae have the oldest systematically
assignable fossil palms. These are keeled costapal-
mate leaves from the Late Cretaceous of eastern
North America. The oldest of these is Sabalites caro-
linensis E.W.Berry, from the Near Langley locality,
Middendorf Formation, South Carolina (Berry, 1914),
which dates to the Santonian (83.6–86.3 Ma; Gohn,
Dowsett & Sohl, 1992). Sabalites magothiensis
E.W.Berry is known from the ‘Deep Cut’ at Summit
Bridge, Delaware, and Grove Point, Maryland, locali-
ties, which are considered to be comparable to the
Cliffwood beds of the Magothy Formation (Berry,
1905, 1911), which are also of Santonian age
(Christopher, 1979). Costapalmate induplicate leaves
are an apomorphy of subfamily Coryphoideae, and we
therefore consider S. carolinensis to calibrate the
stem node of Coryphoideae to the Santonian. As it is
the oldest crown clade member of Arecaceae, it can
also be used to calibrate the crown node of Arecaceae.
There are also several plausible crown clade members
of Coryphoideae. Several fossil petioles assignable to
the modern genus Hyphaene Gaertn. were recently
discovered in Ethiopia (Pan et al., 2006). The fossils
are characterized by features of the spines and are
described as Hyphaene kappelmanii A.D.Pan,
B.F.Jacobs, J.Dransf. & W.J.Baker. The age of the
associated fossil flora is dated to the late Oligocene
(27.23 Ma; Pan, 2010). Hyphaene kappelmanii can be
utilized for calibrating the stem node of Hyphaene
(see also Couvreur et al., 2011) or, more inclusively,
the crown node of tribe Borasseae. Additional evi-
dence for crown Coryphoideae fossils comes from
Arengapollenites R.K.Kar, which comprises intectate
pollen with spines interlocking over the sulcus (Kar,
1985; Kar & Bhattacharya, 1992). This pollen type is
most similar in structure and exine ornamentation to
modern Arenga Labill. (tribe Caryoteae) (Kar, 1985;
Kar & Bhattacharya, 1992). Nonetheless, all genera
of Caryoteae have intectate pollen with either spines
or clavae, which may interlock over the sulcus
(Harley, 2006; Dransfield et al., 2008). The age of the
type locality Panandhro, India (Naredi Formation), is
early Eocene (= Ypresian, 47.8–56.0 Ma; Kar, 1985;
Saraswati, Sarkar & Banerjee, 2012). As the charac-
ters of the fossil are found in all genera of Caryoteae,

we consider Arengapollenites to calibrate the stem
node of tribe Caryoteae. More inclusively, it can also
calibrate the crown node of Coryphoideae.

In Nypoideae, fossil pollen grains (Spinizonocolpites
Jan Muller) and fruits assigned to the subfamily are
known from the Maastrichtian and Palaeocene,
respectively (Harley, 2006; Gómez-Navarro et al.,
2009). However, as Nypoideae are monotypic, these
fossils would effectively constrain the stem node of
Nypoideae. A more informative (i.e. older) fossil for
this same node is Sabalites carolinensis, mentioned
above for subfamily Coryphoideae. As a result, we do
not consider fossil Nypoideae further here.

ASPARAGALES: ASPARAGACEAE

Several macrofossils representing disparate woody
lineages of Asparagaceae s.l. have been found in Aus-
tralia, Antarctica, Asia and North America. Fossil
leaves similar to those of extant Cordyline Comm. ex
R.Br. have been recovered from the Oligocene and
Eocene of the Kerguélen Islands in the southern
Indian Ocean and Australia (Conran, 1997; Conran &
Christophel, 1998). The older of these, Paracordyline
aureonemoralis Conran & Christophel, comes from
the early Eocene (Golden Grove, 56.0–47.8 Ma) of
Australia (Conran & Christophel, 1998), whereas the
younger, P. kerguelensis Conran, is from ash sedi-
ments between basalt flows (26–22 Ma; Giret et al.,
1989) on La Grande Terre in the Kerguélen Archi-
pelago (Conran, 1997). Although these fossils are in
general similar to each other and to Cordyline, and
the younger fossil shares a cuticular sculpturing apo-
morphy with a subclade of Cordyline, other assign-
ments are also possible (Conran, 1997; Conran &
Christophel, 1998). Additional fossil material for Cor-
dyline comes from the early Miocene Foulden Maar of
New Zealand, which has yet to be formally described
(Lee et al., 2012). As P. kerguelensis shares an apo-
morphy with some members of Cordyline it can be
used to calibrate the stem node of Cordyline to 22 Ma.
More inclusively, it can be used to calibrate the crown
node of subfamily Lomandroideae (see Steele et al.,
2012 for a reference phylogenetic tree).

Stems, roots and leaves that appear to be of an
arborescent monocot are known from the Miocene
Virgin Valley Formation of Nevada (Tidwell & Parker,
1990). Tidwell & Parker (1990) compared these ana-
tomically preserved fossils with extant groups of
woody monocots, and on that basis suggested a close
relationship to Yucca L., especially Y. brevifolia
Engelm. (Joshua tree), describing them as Protoyucca
shadishii Tidwell & L.R.Parker. We agree with their
assessment and suggest that Protoyucca be used to
calibrate the stem node of Yucca or, more inclusively,
the crown node of subfamily Agavoideae. The Virgin
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Valley Formation has been radiometrically dated to
14.5–16.2 Ma (Perkins et al., 1998).

Denk, Güner & Grimm (2014) recently reported on
fossil leaves from the Miocene of Anatolia and sug-
gested that they have affinities with the dragon tree
group of Dracaena Vand. ex L. Individual fossil leaves
and leaf rosettes were recovered (described as D. tay-
funii Denk, H.T.Güner & G.Grimm), some with pre-
served cuticular features (e.g. the arrangement of
stomata in rows that form bands and the presence of
‘bone-like’ papillate epidermal cells). These were
interpreted as most similar to the Macaronesian
D. draco (L.) L and D. tamaranae Marrero Rodr.,
R.S.Almeida & Gonz.-Mart. (Denk et al., 2014).
However, these leaves were not evaluated broadly
against a large range of comparable taxa, and so we
do not consider them currently as suitable for
calibration.

ASPARAGALES: ASTELIACEAE

Fossil leaves from the Foulden Maar of New Zealand
were recently described as having affinities to a sub-
clade of Astelia Banks & Sol. ex R.Br., based on a
phylogenetic analysis of cuticular characters
(Maciunas et al., 2011). The Foulden Maar has been
radiometrically dated to 23.2 Ma (Lindqvist & Lee,
2009) and palaeontological studies also suggest a late
Oligocene or early Miocene age. Consequently, Astelia
antiquua Maciunas, Conran, Bannister, R.Paull &
D.E.Lee can be used to calibrate the stem node of
Astelia (or equivalently the crown node of Asteliaceae,
see Birch, Keeley & Morden, 2012); more inclusively
it can be used to date the stem node of Asteliaceae.

ASPARAGALES: ORCHIDACEAE

There have been several recent fossil finds of
Orchidaceae from subfamilies Orchidoideae and Epi-
dendroideae (Ramírez et al., 2007; Conran et al.,
2009a). Meliorchis caribea S.R.Ramírez, Gravend.,
R.B.Singer, C.R. Marshall & Pierce is a pollinium mass
attached to its pollinator preserved in Dominican
amber (Ramírez et al., 2007). Phylogenetic analysis of
pollinia characters suggested a placement with sub-
tribe Goodyerinae (subfamily Orchidoideae) and the
age of the amber is mid-to-latest early Miocene (15–
20 Ma; Iturralde-Vinent & MacPhee, 1996). Conse-
quently, M. caribea could be used for calibrating the
stem node of Goodyerinae. Additional evidence for
early Miocene (or late Oligocene) fossil leaves (Conran
et al., 2009a) comes from the early Miocene Foulden
Maar of New Zealand (23.2 Ma; Lindqvist & Lee,
2009). Conran et al. (2009a) assigned these fossils to
two extant genera in subfamily Epidendroideae based
on multiple morphological characters. However, the

higher-order phylogeny of Epidendroideae is largely
unresolved and assigning these genera to subclades is
therefore problematic (e.g. Cameron, 2004;
Freudenstein et al., 2004; van den Berg et al., 2005;
Neubig et al., 2008; Górniak, Paun & Chase, 2010).
Conran et al. (2009a) also noted that Dendrobium
winikaphyllum Conran, Bannister & D.E.Lee is com-
parable to the indigenous extant New Zealand species
Dendrobium cunninghamii Lindl., and they therefore
consider it to belong to the Australasian Dendrobium
clade (Conran et al., 2009a; Adams, 2011). Conserva-
tively, this can be used to date the stem node of
Dendrobium Sw. (see Adams, 2011 for a reference
phylogenetic tree). Earina fouldenensis Conran, Ban-
nister & D.E.Lee was compared with extant species of
Earina Lindl. from New Zealand to which it was found
to be closely similar based on the shared presence of
unique stomatal characters and general morphology
(Conran et al., 2009a). Here we consider it suitable to
calibrate the stem node of Earina, or more inclusively,
the stem of subtribe Agrostophyllinae (see van den
Berg et al., 2005 for a reference phylogenetic tree).

ASPARAGALES: XANTHORRHOEACEAE

A single fossil leaf, Dianellophyllum eocenicum
Conran, Christophel & L.K.Cunn., from the Nelly
Creek locality, Eyre Formation, Australia, has multiple
characters that suggest an affinity with subfamily
Hemerocallidoideae, particularly with the modern
genera Dianella Lam. ex Juss. and Thelionema
R.J.F.Hend. (Conran, Christophel & Cunningham,
2003). The Eyre Formation is dated to the middle
Eocene (38.0–47.8 Ma) based on biostratigraphy
(Alley, Krieg & Callen, 1996). Additional fossils similar
to Dianella and Phormium J.R.Forst. & G.Forst. (sub-
family Hemerocallidoideae) have been recovered from
the early Miocene of New Zealand (Lee et al., 2012).
However, these lack a formal description and so are not
considered further here. Dianellophyllum eocenicum
can be used to calibrate the stem node of subfamily
Hemerocallidoideae, or more inclusively, the crown
node of Xanthorrhoeaceae (see Seberg et al., 2012 for a
reference phylogenetic tree).

DIOSCOREALES: DIOSCOREACEAE

Reliable fossil records of this family are known from
the Eocene onwards; earlier records from the Creta-
ceous are less securely placed (Smith, 2013). A three-
winged fruit assignable to Dioscorea L., based on the
presence of a thick pedicel, retained perianth and fine
venation on the wings, is known from the late Eocene
of Colorado (Manchester, 2001; Manchester &
O’Leary, 2010), but its placement with respect to
extant species is unclear, and it may belong along the
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stem lineage of Dioscorea. The fossil leaf D. wilkinii
A.D.Pan, B.F.Jacobs & Currano from the Guang River
flora (27.23 Ma; Pan, 2010; Pan, Jacobs & Currano,
2014) of Ethiopia is closely related to extant species of
Dioscorea section Lasiophyton Uline (Pan et al.,
2014). We therefore assign D. wilkinii to the stem
node of Dioscorea section Lasiophyton (for phyloge-
netic placement, see Wilkin et al., 2005). Pan et al.
(2014) also described Tacca umerii A.D.Pan,
B.F.Jacobs & Currano from the early Miocene Mush
Valley of Ethiopia (21.7 Ma). This fossil is thought to
have greater similarities to the Malagasy, Asian and
Malesian species than to the sole extant continental
African species, T. leontopetaloides (L.) Kuntze, but
Pan et al. (2014) stopped short of placing it defini-
tively within the extant diversity of the genus. Con-
sidering its possible stem lineage placement with
Tacca J.R.Forst. & G.Forst. and young age, we do not
consider it informative for calibration purposes and
do not consider it further here.

LILIALES: ALSTROEMERIACEAE

Fossil leaves assigned to the extant genus Luzuriaga
Ruiz & Pav. along with associated reproductive mate-
rial (Lee et al., 2012; Conran et al., 2014) have been
recovered from the early Miocene Foulden Maar of
New Zealand (23.2 Ma; Lindqvist & Lee, 2009). Rec-
ognition of the extinct taxon Luzuriaga peterbannis-
teri Conran, Bannister, Mildenh. & D.E.Lee was
based on the presence of resupinate leaves, venation
patterns and cuticular details that closely agree with
Luzuriaga (Conran et al., 2014). The associated fossil
flower was not organically connected to the leaves and
was excluded from the species description. However,
its characters also suggest association to Luzuriaga
(Conran et al., 2014). The placement of L. peterban-
nisteri was further explored within Alstroemeriaceae
using phylogenetic approaches, where it was found to
be either sister to extant Luzuriaga, or nested in
Luzuriaga. We follow Conran et al. (2014) and con-
servatively consider that this fossil may be sister to
extant members of the genus and therefore useful for
calibrating the stem node of Luzuriaga. Note that
Conran et al. (2014) performed molecular dating
analyses, but in both cases used it to constrain nodes
within the crown of extant Luzuriaga.

LILIALES: RIPOGONACEAE

Fossil leaves, Ripogonum tasmanicum Conran,
R.J.Carp. & G.J.Jord., from the Macquarie Harbour
Formation of Tasmania were assigned to Ripogonum
J.R.Forst. & G.Forst. based on leaf venation and
stomatal patterns (Pole, 2007a; Conran, Carpenter &
Jordan, 2009b). A phylogenetic analysis placed R. tas-

manicum within the crown clade of Ripogonum
(Conran et al., 2009b). However, bootstrap support for
this relationship is poor (< 50%) and so we only con-
sider it suitable for calibrating the stem node of
Ripogonum. Marine and terrestrial biostratigraphy
date the Macquarie Harbour Formation to the mid-
Ypresian (early Eocene, 51–52 Ma; Carpenter, Jordan
& Hill, 2007). Additional fossils similar to Ripogonum
have recently been recovered from the early Miocene
of New Zealand (Pole, 2007b; Lee et al., 2012), but
await formal description; we do not consider them
further here.

PANDANALES: CYCLANTHACEAE

Recent evaluation of infructescences and seeds from
the Messel Pit of Germany (47 Ma; Franzen, 2005;
Mertz & Renne, 2005) and the re-evaluation of iso-
lated seeds from several Ypresian–Lutetian (early
Eocene) localities in the UK demonstrated that they
are most closely related to modern Cyclanthus Poit.
ex A.Rich. (Smith, Collinson & Rudall, 2008b).
Although the isolated seeds designated as C. lakensis
(Chandler) S.Y.Sm., M.E.Collinson & Rudall probably
represent Cyclanthus, they lack the apomorphies of
the fossil infructescences C. messelensis S.Y.Sm.,
M.E.Collinson & Rudall, which directly link the latter
to Cyclanthus. Therefore, C. messelensis can be used
to calibrate the stem node of Cyclanthus or, more
inclusively, the crown node of Cyclanthaceae.

PANDANALES: PANDANACEAE

Pandanoid fossil leaves are known from Cretaceous
deposits onwards (e.g. Kvaček & Herman, 2004;
Herman & Kvaček, 2010). However, these could be
confused with certain members of Cyperaceae (i.e.
some mapanioid sedges); fossil pandans are recog-
nized by strap-shaped, parallel-veined leaves that are
M-shaped in transverse section, armed with non-
vascularized spines (e.g. as discussed by Kvaček &
Herman, 2004; S.Y.S., pers. obs.), characters that also
occur in some mapanioids (S.Y.S., pers. observ.) that
are now recognized as being widespread in Europe in
the early Cenozoic (Smith et al., 2009). Confusion
even with modern collections was apparent in inves-
tigating mapanioid material in herbarium, which had
often been initially identified or accessioned as Pan-
danus (S.Y.S., pers. observ.). Therefore, we consider
the records of fossil leaves to be unreliable markers of
the family until significant distinguishing characters
can be identified (Smith, 2013).

Fossil infructescences described as Gruenbachia
pandanoides J.Kvaček & A.B.Herman were recently
recovered from the early Campanian Grünbach For-
mation of Austria (Herman & Kvaček, 2010). These
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fossils were found in association with pandanoid
leaves and are similar to some members of Pandan-
aceae, particularly to Pandanus Parkinson, with
which the fossils purportedly share the character of
polydrupes (also termed ‘phalanges’ in the literature).
However, several of the extant Pandanus spp. used
for comparisons with the fossils are now segregated
as Benstonea Callm. & Buerki and do not produce
polydrupes (Callmander et al., 2012), even though one
is illustrated and labelled as such (see P. gibbsianus
Martelli, plate 16 fig. 6 in Herman & Kvaček, 2010).
Thus, although we consider that the fossils probably
represent Pandanaceae and possibly even Benstonea
or Pandanus, they are in need of further comparison
with extant pandan fruits and we do not currently
consider them appropriate for calibration purposes.

In the earlier literature certain fossil pollen types
were considered evidence for Pandanaceae. The most
widespread of these pollen types is the near cosmo-
politan Pandaniidites (Jarzen, 1983), which was origi-
nally described as having an affinity to Pandanaceae
based on shared monoporate echinate grains (Elsik,
1968; Hotton, Leffingwell & Skvarla, 1994). Sweet
(1985) subsequently noted similarities to the pollen of
subfamily Lemnoideae of Araceae. Evidence that at
least some records belong to Lemnoideae came from
in situ pollen in plants of Limnobiophyllum, an ara-
ceous fossil with affinities to Lemnoideae (Stockey
et al., 1997; see above for discussion on Limnobiophyl-
lum). As a result, records of Pandaniidites are not
reliable indicators of fossil Pandanaceae. Maastrich-
tian ‘Pandanus tectoria’-type pollen described by
Jarzen (1978) and reported in Muller (1981) has been
used by various authors as calibrations for Pandan-
aceae (e.g. Bell, Soltis & Soltis, 2010; Zanne et al.,
2014). However, this pollen type was reinterpreted as
Pandaniidites (e.g. Nichols, 1987) and is therefore
also not reliable for calibrating the family.

In the Palaeogene of Australia and New Zealand
two fossil pollen types have been compared with Frey-
cinetia Gaudich.: Dryptopollenites semilunatus Stover
and Lateropora glabra Pocknall & Mildenh. The
former was originally published by Stover &
Partridge (1973) who mentioned a general similarity
to Magnoliaceae, Arecaceae and Dioscoreaceae. Dryp-
topollenites was then tentatively compared with Frey-
cinetia by Macphail et al. (1994) or more broadly with
Pandanaceae (Macphail, 1999). In addition, the
description of the pollen grains as having a large
sulcus and often occurring in pairs (Stover &
Partridge, 1973; Truswell, 1997) is unlike extant
Freycinetia or Pandanaceae (Furness & Rudall, 2006).
Lateropora (which ranges from the Palaeogene to
Miocene) has also been associated with Freycinetia
(Couper, 1953; Pocknall & Mildenhall, 1984). The
characters used to place it (a relatively smooth

tectum that is punctate under scanning electron
microscopy; a single pore) are found in Freycinetia
(Furness & Rudall, 2006), but are homoplasious in
angiosperms and may therefore not support this asso-
ciation. We therefore do not consider Dryptopollenites
or Lateropora to be suitable for calibration.

PANDANALES: TRIURIDACEAE

Gandolfo and colleagues (Gandolfo et al., 1998;
Gandolfo, Nixon & Crepet, 2002) described well-
preserved male flowers from the Late Cretaceous of
North America and assigned them to three species
(Mabelia connatifila Gandolfo, Nixon & Crepet,
M. archaia Gandolfo, Nixon & Crepet, and Nuhlian-
tha nyanzaiana Gandolfo, Nixon & Crepet). Phyloge-
netic analysis based on the morphology data set of
Stevenson & Loconte (1995) suggested a sister rela-
tionship between these fossils (treated as a single
taxon) and Triuridaceae (Gandolfo et al., 2002).
Further phylogenetic analysis focusing on members of
Triuridaceae suggested a closer relationship between
the fossils and tribe Triurideae than with tribe
Sciaphileae (Gandolfo et al., 2002). Rudall (2003) sug-
gested other possible placements within Pandanales,
and Friis et al. (2011) posited similarities with mag-
noliid families, especially Myristicaceae; these sug-
gestions were not based on phylogenetic analyses of
additional taxa or characters. However, tribe Kupe-
aeae (Triuridaceae) was not included in the second
analysis of Gandolfo et al. (2002) and some character
states (e.g. reticulate pollen tectum) are not found
among current members of Triuridaceae (although
reticulate pollen is found in some members of Pan-
danales; Furness & Rudall, 2006). The most complete
specimen is represented by M. connatifila and we
therefore consider it conservative to use it as a stem
node calibration for Triuridaceae, which may also be
supported by the good preservation of flowers in the
fossil material (these are ephemeral in living
members of the family; J. A. Doyle, University of
California, Davis, pers. comm.; however, the fossil
flowers are charcoalified and may represent pre-
anthetic material). This fossil (along with the others)
was collected from the Old Crossman Clay Pit locality,
Sayreville, New Jersey, part of the South Amboy Fire
Clay of the Raritan Formation, which is considered
mid-Turonian to possibly Coniacian in age
(Christopher, 1979), although the mesofossils are
similar to eastern North American localities of San-
tonian or Campanian age (Friis et al., 2011). The age
of estimation of this sequence is complex; we follow
Massoni, Doyle & Sauquet (2014) who suggest an age
corresponding to the Coniacian–Santonian boundary.
A complication to including Triuridaceae and associ-
ated fossils in a molecular dating analysis is that
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heterotrophic taxa often have highly elevated rates of
evolution in plastid, nuclear and mitochondrial genes
(demonstrated in Triuridaceae by Mennes et al., 2013,
for the latter two genomes), which may prove chal-
lenging in molecular dating analyses.

POALES: CYPERACEAE

Isolated fossil fruits assigned to Cyperaceae are
common from the Eocene onwards, but potentially
extend back to the Palaeocene (Smith et al., 2010).
However, it is unclear if these records are all reliable,
as a review of English fossil fruits assigned to Scirpus
L. revealed them to be fossil seeds of Cyclanthaceae
(Smith et al., 2008b). Recently, Volkeria messelensis
S.Y.Sm., M.E.Collinson, D.A.Simpson, Rudall,
Marone & Stampanoni was described from the Messel
Pit of Germany (47 Ma; Franzen, 2005; Mertz &
Renne, 2005), and is represented by complete
infructescences with pollen and fruits that can be
unambiguously assigned to subfamily Mapanioideae
(Smith et al., 2009). Therefore, V. messelensis can be
used to calibrate the stem node of Mapanioideae, or
equivalently the crown node of Cyperaceae, as
Mapanioideae are the sister group of the rest of the
family (Simpson et al., 2006).

POALES: JUNCACEAE

The vegetative fossil record of Juncaceae is generally
doubtful (Smith et al., 2010). More secure records
come from seeds comparable to Juncus L. from the
Eocene–Oligocene boundary of England (Collinson,
1983). Although seed characters can be useful taxo-
nomically (Balslev, 1998), seed character evolution
has not been studied within the family and uncer-
tainty concerning the monophyly of Juncus relative to
the rest of the family complicates this issue further
(Drábková, 2010). Therefore, without further study of
fruit or seed morphology, these fossils cannot cur-
rently be placed within the crown clade of the family
and the relatively young age of the fossils suggests
that they would not be informative if used as a stem
node calibration for the family.

POALES: POACEAE

Although grasses are often ecologically dominant,
their herbaceous habit and the dry habitat that they
are often associated with makes for poor fossil pres-
ervation (Strömberg, 2011). There are several recent
reviews of the grass fossil record (Jacobs, Kingston &
Jacobs, 1999; Smith et al., 2010; Friis et al., 2011;
Strömberg, 2011), and the family has repeatedly been
the focus of molecular dating studies (Strömberg,
2005; Bouchenak-Khelladi et al., 2008, 2014;

Vicentini et al., 2008; Prasad et al., 2011). Note that
Poaceae (and some other Poales) have extensive rate
elevation in plastid and other genes (e.g. Saarela &
Graham, 2010), and it is possible that current dating
methods do not fully accommodate this phenomenon
(see the related discussion of elevated rates in heter-
otrophic taxa, in the section on Triuridaceae), a pos-
sible caveat for dating analyses of the family.

Strömberg (2011) provided the most comprehensive
bibliography so far of possible grass fossils from the
Cretaceous to the present. The most common grass
fossils are pollen, which purportedly extend to the
Maastrichtian (Jacobs et al., 1999). However, the gross
morphology of grass pollen is indistinguishable from
that of many members of related poalean families
(Anarthriaceae, Ecdeiocoleaceae, Flagellariaceae,
Joinvilleaceae and Restionaceae; Linder & Ferguson,
1985) and although TEM sections can be used to
distinguish Poaceae pollen from relatives (Linder &
Ferguson, 1985) they are rarely done on fossil pollen
(Jacobs et al., 1999). More systematically useful evi-
dence comes in the form of bio-opaline phytoliths (silica
bodies) and macrofossil evidence, which can often be
assigned to subfamilies of Poaceae (e.g. Strömberg,
2004; Prasad et al., 2005; Smith et al., 2010). Although
more work needs to be done to fully characterize
phytolith morphologies in Poales and other groups, the
available data (which includes examination of all
families of Poales) demonstrate that there is no con-
vergence between the specialized short-cell morpho-
types found in Poaceae with any other plant families,
and some poacean morphotypes are even diagnostic to
a species level; however, it is not yet clear how diag-
nostic of the different subfamilies and tribes the dif-
ferent morphotypes are (Prychid, Rudall & Gregory,
2004; Piperno, 2006; Prasad et al., 2011). A more
conservative approach is to use phytoliths as fossil
constraints when they are preserved in conjunction
with other characters (see below).

Here we consider several putatively deeply nested
fossils. Poinar (2011) evaluated phytoliths from a
Late Cretaceous fossil leaf, Programinis laminatus
Poinar, preserved in Burmese amber (98.8 Ma; Shi
et al., 2012). Based on the presence of rondel phyto-
liths, he suggested an affinity with Pooideae.
However, their three-dimensional shape is hard to
distinguish, and thus we reserve judgement about the
affinity of the fossil within Poales. The oldest convinc-
ing macrofossils of Poaceae are spikelets from the
Palaeocene–Eocene boundary (Crepet & Feldman,
1991). The presence of spikelets suggests an affinity
to the core subfamilies of Poaceae (i.e. all subfamilies
except Anomochlooideae; Crepet & Feldman, 1991;
Grass Phylogeny Working Group, 2001; Saarela &
Graham, 2010). Because these fossil spikelets possess
two florets, Vicentini et al. (2008) considered them for

362 W. J. D. ILES ET AL.

© 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178, 346–374



constraining the stem node of all subfamilies except
Anomochlooideae and Pharoideae (which have single
flowered spikelets). As floret number is labile (Grass
Phylogeny Working Group, 2001), we consider it more
conservative for the fossil to calibrate the stem node
of the clade comprising all grass subfamilies exclud-
ing Anomochlooideae (i.e. the crown node of grasses).
However, there are older more deeply nested fossils
available to use, and so we do not consider these
spikelets further.

Among the species-poor earliest diverging subfami-
lies, Anomochlooideae lack a fossil record. A phytolith
from the Maastrichtian of India, Pipernoa pearsalla
V.Prasad, Strömberg, Alimohammadian & A.Sahni,
was suggested to have some affinity with Puelioideae,
but its placement with this subfamily is not certain
(Prasad et al., 2005). A spikelet attached to mamma-
lian hair recovered from Dominican amber (15–20 Ma;
Iturralde-Vinent & MacPhee, 1996) was considered to
have affinity to Pharus P.Brown (Pharoideae) based on
the comparison of eight characters (Poinar &
Columbus, 1992). Further work on this fossil, Pharus
primuncinatus Judz. & Poinar, indicates an associa-
tion with P. mezii Prodoehl, although a phylogenetic
analysis was not performed (Poinar & Judziewicz,
2005). We accept that P. primuncinatus belongs in
Pharus, but are hesitant to consider it part of the genus
crown clade. It could potentially be used to calibrate
the crown node of Pharoideae. However, the mono-
phyly and phylogeny of Pharoideae (including Pharus,
Leptaspis R.Br. and Scrotochloa Judz.) has not been
adequately evaluated (Judziewicz & Clark, 2007;
Christin et al., 2013), and the relatively young age of
the fossil (15–20 Ma) makes it unsuitable for dating
the stem node of Pharoideae. Another putative fossil
member of Pharoideae is represented by leaves
described as Leptaspis cf. zeylanica, from the Miocene
Ngororoa Formation, Tugen Hills, Kenya (Jacobs &
Kabuye, 1987; Jacobs, Judziewicz & Kabuye, 2014).
However, as it is not figured or formally described in
the literature, we do not consider it further here.

The oldest definitive fossils of Poaceae are from the
Maastrichtian–Danian Deccan beds of India (Prasad
et al., 2005, 2011). These are phytoliths formed in the
short cells of grass leaf epidermis, belonging to ten
form species with affinities to a number of clades and
subfamilies of Poaceae (Prasad et al., 2005, 2011).
Two of these phytolith form species, Changii indicum
V.Prasad, Strömberg, Leaché, B.Samant, R.Patnaik,
L.Tang, Mohabey, S.Ge & A.Sahni and Tateokai
deccana V.Prasad, Strömberg, Leaché, B.Samant,
R.Patnaik, L.Tang, Mohabey, S.Ge & A.Sahni, have
been placed with tribe Oryzeae, subfamily Ehrhar-
toideae, using a Bayesian phylogenetic approach
(Prasad et al., 2011); the remainder have not been
analysed in this manner and so we do not consider

them further. The epidermal fragment of the holotype
of C. indicum is exceptionally well preserved and we
consider it to be suitable in dating the stem node of
Oryzeae or, equivalently, the crown node of Ehrhar-
toideae (the former tribe is the sister group of the
remainder of the latter subfamily; Grass Phylogeny
Working Group II, 2012). The age of the Deccan beds
has been contentious. Here we follow Courtillot &
Renne (2003) who reviewed the radiometric and mag-
netostragraphic evidence over the extent of the basal-
tic flows and suggest that the bulk of the flows closely
straddled the Cretaceous–Palaeogene boundary. As
C. indicum was recovered from dinosaur coprolites in
horizons containing dinosaur bones (Prasad et al.,
2011), we consider this fossil to be latest Maastrich-
tian (66 Ma). Phytoliths that have been recovered
from the Eocene to Miocene of North America, South
America and Asia putatively have affinity to Bambu-
soideae, Chloridoideae, Danthanioideae, Pooideae and
other clades (Strömberg, 2004, 2005; Strömberg et al.,
2007, 2013; Zucol, Brea & Bellosi, 2010), but they
have not been phylogenetically analysed like
C. indicum and T. deccana, and the distribution of
phytolith characters in Poaceae is not yet comprehen-
sively known. Therefore, we do not consider them
further here. Additional fossil evidence for subfamily
Ehrhartoideae comes from the distal end of an inflo-
rescence assignable to Leersia Sw., from the Seifhen-
nersdorf locality, Saxony, Germany (Walther, 1974;
Walther & Kvaček, 2007). This locality has been
dated by overlying basalts to the Oligocene (30.7 Ma;
Bellon et al., 1998). Therefore, the fossil L. seifhen-
nersdorfensis H.Walther can be used to calibrate the
stem node of Leersia or, more inclusively, the crown
node of Oryzeae (Grass Phylogeny Working Group II,
2012). Non-phytolith evidence for Bambusoideae
comes from spikelets preserved in Miocene Dominican
amber (Poinar & Columbus, 2013) that show similari-
ties to the climbing bamboo Arthrostylidium Rupr.
However, the fossil is not definitely placed within the
phylogeny of Bambusoideae, and so we do not con-
sider it further here. Whole fossil grasses with Kranz
anatomy are known from the Miocene of California,
and were compared with Paspalum L. (Panicoideae)
(Nambudiri et al., 1978; Whistler et al., 2009). Never-
theless, they were not rigorously evaluated and are
not considered further here.

In Pooideae grass fruits described as Stipa floris-
santi (Knowlt.) MacGinitie are known from the
Eocene Florissant Formation of Colorado (MacGinitie,
1953; Manchester, 2001). These fossils were compared
closely with the extant Mexican species Nassella
mucronata (Kunth) R.W.Pohl and other New World
members of Stipeae [MacGinitie, 1953; Manchester,
2001; note that extant Stipa L. s.s. is considered to be
restricted to the Old World (Romaschenko et al.,
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2010), and so this fossil may not necessarily fit the
modern circumscription of Stipa]. The age of the
Florissant Formation is constrained by radiometric
dating to 34.07–36.70 Ma (Evanoff, Mcintosh &
Murphey, 2001). As tribe Stipeae is clearly nested in
Pooideae (Grass Phylogeny Working Group II, 2012),
we consider Stipa florissanti from Colorado to con-
strain the stem node age of Stipeae or, more inclu-
sively, the crown age of Pooideae. In addition to this
macrofossil evidence there exist Stipa-like phytoliths
spanning the Eocene to Miocene from North America,
South America and Asia (Strömberg, 2005; Strömberg
et al., 2007, 2013). However, these phytoliths have not
been phylogenetically evaluated, and so we do not
consider them further.

POALES: RESTIONACEAE

Fossil pollen widely ascribed to Restionaceae, Milfor-
dia Erdtman emend. A.D.Partr., has a record extend-
ing back to the Maastrichtian (Smith et al., 2010).
However, its placement is not considered secure as
there are several other poalean families with similar
pollen (Linder & Ferguson, 1985; Linder, 1987). More
convincing are fruits from the Eocene–Oligocene
boundary in Queensland, Australia, assigned to the
extinct genus Restiocarpum M.E.Dettmann & Clifford
and co-occurring with Milfordia pollen (Dettmann &
Clifford, 2000). These are unilocular fruits with a
single, pendulous ovule with thin seed coat and
tannins, much like extant Restionaceae (Dettmann &
Clifford, 2000). Some of the fossil seed characters
suggest placement in the crown clade of Restionaceae,
but some of these characters (e.g. unilocular fruits) are
homoplasious in the family (Briggs, Marchant &
Perkins, 2010) and may not be systematically informa-
tive. Centrolepidaceae share many embryological fea-
tures with Restionaceae (Briggs & Linder, 2009) and
may either be phylogenetically embedded in Restion-
aceae or sister to it (Briggs et al., 2010; Briggs,
Marchant & Perkins, 2014). Because of the uncer-
tainty in the phylogenetic placement of Centrolepi-
daceae, we consider Restiocarpum suitable for
constraining the stem node of Centrolepidaceae + Res-
tionaceae [we list the type species R. latericum
M.E.Dettman & Clifford (Dettmann & Clifford, 2000)
in Table 1, but any of these fossils would be suitable].
Palynological correlations of the locality Rockhampton
1, Casuarina Beds, Queensland, Australia (Noon,
1980), with radiometrically constrained strata indicate
a minimum age of 27.7 Ma (Sutherland, Stubbs &
Green, 1977; Dettmann & Clifford, 2000).

POALES: TYPHACEAE

As currently circumscribed Typhaceae contain two
genera, Sparganium L and Typha L. (APG III, 2009).

Both genera have an extensive and distinctive record
of fossil fruits from the Palaeogene onwards, with the
record for Typha potentially extending to the Late
Cretaceous (Smith et al., 2010). Typha seeds are char-
acterized as being elongate with a mucronate lid-like
operculum that is one cell thick, a thin, membraneous
seed coat with only two layers, longitudinally orien-
tated integumentary cells and a small cone-shaped
chalazal chamber (Dettmann & Clifford, 2000; M. E.
Collinson, Royal Holloway University of London, pers.
comm., 2014). The chemistry of Typha and Sparga-
nium seed coats is distinctive and could also be used
to strengthen the identity of fossil seeds (Collinson &
van Bergen, 2004). The European Cretaceous (Maas-
trichtian) Typha specimens (Knobloch & Mai, 1986)
are probably Typhaceae, but require additional study
to demonstrate key features (Crepet et al., 2004; Friis
et al., 2011). Although somewhat younger, one of the
best preserved specimens consists of a complete inflo-
rescence (cattail) from the early Eocene of Wyoming
(Grande, 1984). The Fossil Lake locality is part of the
Green River Formation and the fossil-bearing
stratum (‘18 inch’ layer) is overlain by a K-feldspar
tuff that has been radiometrically dated to 51.66 Ma
(Smith, Carroll & Singer, 2008a; Buchheim, Cushman
& Biaggi, 2011). This unnamed Typha cattail is con-
sidered suitable for calibrating the stem node of
Typha or, equivalently, the crown node of Typhaceae.

ZINGIBERALES

Spirematospermum M.Chandler, which has been vari-
ously assigned to Musaceae and Zingiberaceae, has
an extensive fossil record covering Eurasia and North
America from the Late Cretaceous nearly to the
present day (Fischer et al., 2009; Friis et al., 2011).
The oldest occurrence of the genus, S. chandlerae
E.M.Friis, is from the early Campanian Tar Heels
Formation of Neuse River, North Carolina (Friis,
1988; Owens & Sohl, 1989; Sohl & Owens, 1991;
Mitra & Mickle, 2007; Friis et al., 2011). Its place-
ment in a particular family has been contentious, but
current evidence tends to point to an association with
crown Zingiberaceae (S.Y.S., M. Collinson, Royal Hol-
loway University of London, J. Benedict, University of
Michigan & C. Specht, University of California,
Berkeley, unpubl. data). Despite the uncertainty in its
systematic placement, we consider this fossil useful
for calibrating the stem of Zingiberaceae to the Cam-
panian (72.1–83.6 Ma).

UNPLACED MONOCOT FOSSILS

Until recently the earliest records of monocots were
restricted to Liliacidites Couper pollen grains and a
vegetative shoot, Acaciaephyllum Fontaine (Doyle
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et al., 2008; Friis et al., 2011). Like many fossil form-
genera, Liliacidites has a complex history. The genus
was first described for pollen grains from the Late
Cretaceous of New Zealand (L. kaitangataensis
Couper; Couper, 1953) that are monosulcate boat-
shaped grains with a reticulate tectum that has
graduated fining of the lumina towards the ends of
the grain. This combination of features is only known
from monocots (e.g. some members of Alismatales,
Dioscoreales, Liliales, Asparagales and Poales; Doyle,
1973; Walker & Walker, 1984; Doyle et al., 2008).
However, fossil pollen grains without these characters
have been called ‘Liliacidites’ in the literature
(Gandolfo et al., 2000); some of these are demonstra-
bly not of monocot affinity (Doyle et al., 2008), and as
a result care must be taken when considering
whether a particular record actually represents
monocot fossil evidence. The earliest records of Lilia-
cidites with clear monocot affinity (showing the above
mentioned features) are from the Trent’s Reach local-
ity of Virginia (Doyle, 1973; Doyle & Hickey, 1976;
Doyle & Robbins, 1977; Doyle et al., 2008), part of the
Patuxent Formation and corresponding to the base of
Zone I, (early?) Aptian (113–125 Ma; Doyle, 1973;
Hochuli, Heimhofer & Weissert, 2006). These were
originally described as Retimonocolpites sp. C by
Doyle (1973) and later reinterpreted as Liliacidites
sp. A by Doyle & Hickey (1976). A phylogenetic analy-
sis placed these fossils either on the stem of monocots
or equally parsimoniously anywhere in the included
monocots (Doyle et al., 2008). Vegetative material
from the Dutch Gap locality of Virginia (Patuxent
Formation) was described by Fontaine (1889) as Aca-
ciaephyllum Fontaine and compared with Acacia Mill.
phyllodes. Doyle (1973) subsequently reinterpreted
them as monocot leaves based on venation patterns.
This placement was challenged by Gandolfo et al.
(2000) who re-examined the original fossils and dis-
carded the placement in monocots based on the poor
preservation of some of the fossils and the lack of
apomorphic characters for monocot leaves. Doyle
et al. (2008) revisited the issue with a phylogenetic
analysis that affirmed his earlier placement. As Lil-
iacidites sp. A sensu Doyle & Hickey (1976) provides
an equivalent age constraint and is unambiguously
associated with monocots, we consider that it repre-
sents the best early evidence for monocots in the fossil
record and is therefore useful for calibrating the stem
node of monocots.

CONCLUSION

Table 1 provides a summary of the fossils that we
think are most reliably placed within extant monocot
diversity, and that best satisfy the additional criteria
for using fossils as calibrations in molecular dating

analyses (i.e. they have well-characterized phyloge-
netic placements and ages, and exist as voucher speci-
mens). This review should serve as a guide for
molecular dating studies, especially those focused on
monocots. It is clear that there are many more
monocot fossils still to be re-examined or discovered.
We hope that our summary here will spur additional
research into clarifying the systematic relationships
of monocot fossils, and studies of the morphology and
anatomy of modern relatives that are often needed for
identifying synapomorphic characters that can be rec-
ognized in the fossil record.
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