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Summary. The purpose of inverse probability of treatment (IPT) weighting in estimation of marginal treatment effects is
to construct a pseudo-population without imbalances in measured covariates, thus removing the effects of confounding and
informative censoring when performing inference. In this article, we formalize the notion of such a pseudo-population as a
data generating mechanism with particular characteristics, and show that this leads to a natural Bayesian interpretation of
IPT weighted estimation. Using this interpretation, we are able to propose the first fully Bayesian procedure for estimating
parameters of marginal structural models using an IPT weighting. Our approach suggests that the weights should be derived
from the posterior predictive treatment assignment and censoring probabilities, answering the question of whether and how
the uncertainty in the estimation of the weights should be incorporated in Bayesian inference of marginal treatment effects.
The proposed approach is compared to existing methods in simulated data, and applied to an analysis of the Canadian
Co-infection Cohort.
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1. Introduction
Propensity score adjustment (Rosenbaum and Rubin, 1983),
in the form of either weighting, matching, stratification, or
covariate adjustment, provides a way to control for confound-
ing in non-experimental settings without having to model the
dependence between the confounders and the outcome of in-
terest, given that the probability of the treatment assignment
can be correctly modeled with respect to confounding vari-
ables. Adjustment via the propensity score is typically carried
out in a two stage procedure: first, a parametric propensity
score model for the treatment given the covariates is proposed,
and parameters estimated from the observed data; second, ap-
propriately comparable individuals—so assessed using the es-
timated propensity score—are compared in order to assess the
unconfounded effect of treatment. The two stage estimation
is most commonly justified, and studied theoretically, using
frequentist semiparametric theory. It is not typically regarded
as being derived from a likelihood-based paradigm.

Bayesian inference, on the other hand, always derives
from a full probability model specification, which is why,
in general, propensity score adjustment methods do not
appear to have obvious Bayesian counterparts. For matching
methods, there is no clearly defined joint probability model
for the observable quantities; for covariate adjustment using
the propensity score (or outcome regression) the presumed
likelihood is based on a patently misspecified model, as the

propensity score predictor cannot readily be thought of as a
genuine component of the data generating process. For inverse
weighting-based adjustments, no fully Bayesian justification
has yet been proposed; we aim to fill this gap in the literature.

The recent causal inference literature has seen several at-
tempts to introduce Bayesian versions of propensity score
based methods, including inverse probability of treatment
(IPT) weighting (Hoshino, 2008; Kaplan and Chen, 2012),
covariate adjustment (McCandless, Gustafson, and Austin,
2009; McCandless et al., 2010; Zigler et al., 2013) and match-
ing (An, 2010). In this article, we provide a fully Bayesian
argument that gives further insight into aspects of the pre-
viously proposed approaches. Our specific focus will be on
IPT weighting in the context of marginal structural mod-
els (MSMs, Robins, Hernán, and Brumback, 2000; Hernán,
Brumback, and Robins, 2001).

The advantage of a marginal model specification, coupled
with weighting, is that in addition to controlling for mea-
sured confounding, due to the marginalization over the co-
variate distribution, the impact of any related mediation and
effect modification need not be modeled explicitly. Under lon-
gitudinal settings, explicit modeling and integration over the
(possibly high dimensional) intermediate variables represents
a formidable task even in simple settings, and this is why the
ability to circumvent this modeling step appears to be an im-
portant advantage that inverse probability weighted methods
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have over Bayesian inferences based on fully specified proba-
bility models.

Our motivating example is introduced in Section 2, while
in Section 3 we propose a Bayesian interpretation of IPT
weighting and a corresponding estimation approach. Since
IPT weighted estimation can be interpreted as construction
of a pseudo-population with measured covariate imbalances
removed, a Bayesian version of the procedure can be linked
to sampling from such a pseudo-population, and a Bayes de-
cision rule derived from a change of probability measure, or
equivalently, an importance sampling argument. The result-
ing inference procedure is related to the relevance weighted
likelihood of Hu and Zidek (2002) and Wang (2006) and the
weighted likelihood bootstrap of Newton and Raftery (1994).

We contrast the fully Bayesian procedure to some existing
Bayesian proposals in Section 4. It is a well-known (e.g.,
Hernán et al., 2001; Henmi and Eguchi, 2004) result that an
IPT weighted estimator with estimated weights has a smaller
asymptotic variance than the corresponding estimator with
the true weights known, which can be intuitively understood
in terms of the sample balance given by the estimated propen-
sity score (Rosenbaum and Rubin, 1983, p. 47). However,
many of the approaches suggested for Bayesian propensity
score adjustment (e.g., Kaplan and Chen, 2012, p. 592) incor-
porate an additional variance component acknowledging the
estimation of the propensity scores. We identify the source
of this apparent anomaly to be the lack of a well defined
joint probability distribution. In Section 5, we investigate
the frequency-based properties of the different Bayesian
approaches in a simulation study. In Section 6, we analyze
data from the Canadian HIV/Hepatitis C Co-Infection
Cohort Study. We conclude with a discussion in Section 7.

2. Motivating Example: Antiretroviral Therepy
Interruption and Liver Fibrosis in HIV/HCV
Co-Infected Individuals

Our motivating example is a complex longitudinal data set
relating to health outcomes for individuals simultaneously
infected with HIV and the hepatitis C virus (HCV), in partic-
ular, the possible negative influence of treatment interruption
on specific endpoints. Although antiretroviral therapy (ART)
has reduced morbidity and mortality due to nearly all HIV-
related illnesses, this is not the case for mortality due to end-
stage liver disease, which has increased since ART treatment
became widespread (Klein et al., 2010, p. 1162). In part, this
increase may be due to improved overall survival combined
with HCV associated hepatic liver fibrosis, the progress of
which is accelerated by immune dysfunction related to HIV-
infection. The Canadian Co-infection Cohort (CCC) Study
(Klein et al., 2010) is one of the largest projects set up to study
the role of ART on the development of end-stage liver disease
in HIV–HCV co-infected individuals. Given the importance of
ART in improving HIV-related immunosuppression, it is hy-
pothesized (Thorpe et al., 2011, p. 968) that liver fibrosis pro-
gression in co-infected individuals may be partly related to ad-
verse consequences of ART interruptions. The available data
constitute health information for over a thousand co-infected
individuals recorded longitudinally over a series of clinic
visits, which take place at approximately 6-month intervals.

The objective of our analysis is to assess the causal effect
of ART interruption in a between-clinic visit interval on pro-
gression to liver fibrosis. As in the majority of observational
data sets, there is a strong suggestion of possible confound-
ing, in that factors that influence ART interruption in any
interval—for example, involvement in risky lifestyle practices
such as intravenous drug use or alcohol abuse—also are likely
to induce liver fibrosis. Furthermore, the effect ART interrup-
tion in one interval may be felt directly but also be mediated
through subsequent health status, and also it may influence
subsequent ART interruption incidents.

In the presence of both time-varying confounding and me-
diation, estimation of the (marginal) causal effect of interest
via standard regression methods is not possible, motivating
marginal structural modeling. However, from a Bayesian per-
spective, such procedures seem potentially problematic, as
there is no corresponding likelihood function. Our method-
ological objective in this article is to provide a formal Bayesian
justification and estimation procedure for MSMs.

3. A Bayesian Formulation and Interpretation of
IPT Weighting

3.1. Marginal Structural Models

Consider a longitudinal observational study setting involving
the individuals i = 1, . . . , n, with measurements of covariates
and subsequent treatment decisions carried out at discrete
time points j = 1, . . . , m. Let z̃i ≡ (zi1, zi2, . . . , zim) denote
the observed history of treatment assignments or prescribed
doses. Further, let yi be the outcome of interest observed
after sufficient time has passed from the last time-point,
and x̃i ≡ (xi1, xi2, . . . , xim) denote an observed history of
vectors of covariates, including a sufficient set of (possibly
time-dependent) confounders, recorded before each treatment
assignment. Partial histories up to and including timepoint j

are denoted as, for example, x̃ij ≡ (xi1, xi2, . . . , xij). We use the
shorthand notation vi = (x̃i, yi, z̃i) for all observed variables,
and v without subscript for the corresponding vectors for n

observations. Table 1 in Supplementary Appendix A provides
a succinct summary of the notation.

Marginal structural models (Robins et al., 2000; Hernán
et al., 2001) are formulated as marginal distributions of po-
tential outcome/counterfactual random variables which are
functionally dependent on hypothetical treatment interven-
tions. Letting aj index r discrete treatment alternatives at
time-point j, the rm potential outcomes for individual i are
denoted as yãi, ã ≡ (a1, . . . , am). Assuming that the interven-
tion is well-defined and there is no interference between sub-
jects (the consistency assumption), the observed outcome is
given by yi = ∑

ã
1{̃zi = ã}yãi. A marginal structural model then

specifies the rm marginal distributions p(yãi | θ) through the
parameters θ.

Under a data generating mechanism without confound-
ing, the marginal structural model can be estimated using
its observed counterpart p(yi | z̃i, θ). Assuming that the no
unmeasured confounding/sequential randomization condition
yãi ⊥⊥ zij | (z̃i(j−1), x̃ij) and the positivity condition p(zij = aj |
z̃i(j−1), x̃ij) > 0 hold true for all i, j, and ã, the parameter θ

may be estimated by maximizing the IPT-weighted pseudo-
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likelihood function

q(θ; v, γ, α) ≡
n∏

i=1

p(yi | z̃i, θ)
wi , (1)

where

wi =

m∏
j=1

p(zij | z̃i(j−1), αj)

m∏
j=1

p(zij | z̃i(j−1), x̃ij, γj)

defines “stabilized” case weights. Here α ≡ (α1, . . . , αm) and
γ ≡ (γ1, . . . , γm) parametrize the marginal and conditional
treatment assignment probabilities, respectively, with the true
values of the parameters (γ, α) (for now) taken to be known.
The weights wi in (1) have the property that E[wi] = 1 (see,
e.g., Hernán and Robins, 2006, p. 584). This fact does not
make (1) a proper likelihood in the sense that the correspond-
ing score variance would equal the Fisher information.

Since the effect of the weighting is to construct a pseudo-
population in which there are no imbalances on measured co-
variates between the treatment groups (Robins et al., 2000, p.
553), (1) can be understood in terms of the relevance weighted
likelihood discussed by Hu and Zidek (2002) which arises
when a sample from the population of interest is not directly
available, but samples from other populations are relevant for
learning about this target population. Now the target pop-
ulation is one where zij ⊥⊥ x̃ij | z̃i(j−1) holds true; the weights
convey information on how much the observed population re-
sembles the target population. This information in turn is con-
tained in the parameters γ. In addition, the target population
has the same marginal treatment assignment distribution as
the observed population, characterized by the parameters α.
In the following section we formalize the notion of the target
population and relate it to the observed population.

If the true values of the parameters (γ, α) are known, the
weights wi are fixed; to represent random sampling of the
original n subjects of equal information contribution, we may
consider the likelihood-analogue

q(θ; v, γ, α, π) =
n∏

i=1

p(yi | z̃i, θ)
nπiwi , (2)

where π ≡ (π1, . . . , πn) ∼ Dirichlet(1, . . . , 1), as in the
weighted likelihood bootstrap of Newton and Raftery
(1994, p.4). An alternative formulation could be ob-
tained by replacing in (2) nπi with ξ ≡ (ξ1, . . . , ξn) ∼
Multinomial(n; n−1, . . . , n−1). In Sections 3.2–3.4 we show
that randomly drawing vectors π(k) (or ξ(k)), k = 1, . . . , l, and

taking θ̂(k) ≡ arg maxθ q(θ; v, γ, α, π(k)) produces an approx-
imate sample of size l from the posterior distribution of θ.
In practice, parameters (γ, α) would have to be estimated as
well, which we also address below.

3.2. Bayesian Model Parametrization

In addition to the variables introduced previously, longitudi-
nal settings often involve latent individual level “frailty” vari-

ables, which are determinants of both the outcome and the
intermediate variables, but can sometimes be assumed con-
ditionally independent of the treatment assignments. We de-
note these variables by ui, and now consider a formal Bayesian
construction. We assume that the quadruples (x̃i, yi, z̃i, ui) are
infinitely exchangeable over the unit indices i = 1, . . . , n, n +
1, . . ., and deduce the de Finetti representation (e.g., Bernardo
and Smith, 1994, Chapter 4) for the joint distribution of a
random sample of size n from such a super-population as

p(v | O) =
∫

φ,γ,u

p(x̃, y, z̃, u | φ, γ,O)p(φ, γ) dφ dγ

=
∫

φ,γ

n∏
i=1

[∫
ui

p(yi | x̃i, z̃i, ui, φ1)

×
m∏

j=1

p(xij | z̃i(j−1), x̃i(j−1), ui, φ2j)p(ui | φ3) dui

×
m∏

j=1

p(zij | z̃i(j−1), x̃ij, γj,O)

]
p(φ, γ) dφ dγ, (3)

assuming that the prior distribution for parameters (φ, γ) im-
plied by the representation theorem—presumed here to be
finite dimensional for convenience—is absolutely continuous
with respect to Lebesgue measure, with density p(φ, γ). Fur-
ther, φ = (φ1, φ2, φ3) is a partitioning of φ corresponding to
the above factorization of the likelihood function, that is,
φ1 specifying the conditional outcome model, φ2 the covari-
ate process, and φ3 the marginal distribution of the frailties.
The notation O indexes the data generating mechanism un-
der the observational setting where the treatment assignment
can depend on the x̃ij covariates (cf. Dawid and Didelez, 2010;
Røysland, 2011).

Equation (3) follows under the assumption that zij ⊥⊥ ui |
(x̃ij, z̃i(j−1),O), which is the counterpart of the no unmea-
sured confounding condition stated in the previous section
(cf. Arjas, 2012, Definition 2). The parameter vectors φ and
γ, specified by the representation theorem as some functions
of the infinite sequence of observables, are assumed a priori
independent. We note that here φ is not of direct interest:
what is central to what follows is the interpretation of the
parameter vector γ. We define a correctly specified treatment
assignment model as the sequence of conditional distributions
implied by (3), parameterized via γ. It follows that the out-
comes are non-informative about the treatment assignment
mechanism, characterized by the parameters γ. To see this,
the marginal posterior density for γ may be written

p(γ | v,O) =
∫

φ,u

p(γ, φ, u | v,O) dφ du

∝
∫

φ,u

p(x̃, y, z̃, u | φ, γ,O)p(φ)p(γ) dφ du

∝
n∏

i=1

m∏
j=1

p(zij | z̃i(j−1), x̃ij, γj,O)p(γ)

∝ p(γ | x̃, z̃,O). (4)
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Under the usual regularity assumptions, the posterior in (4)
converges to a degenerate distribution at the true value of γ

when n → ∞ (cf. van der Vaart, 1998, p. 139).
For causal considerations, we need to envision sampling

taking place from another, entirely conceptual, super-
population where treatments are assigned completely at
random so that zij ⊥⊥ (x̃ij, ui) | (z̃i(j−1), E), j = 1, . . . , m. The
indexing of the probability distributions by E refers to
the characteristics of a conceptual “randomized” version
of the treatment assignment mechanism, corresponding to
the randomized trial measure considered by Røysland (2011).
Causal inferences are then possible if the treatment effect un-
der E can be estimated based on the data observed under O.
In addition, the marginal treatment assignment probabilities
under E are taken to be the same as under the observational
setting. The resulting de Finetti representation is

p(v | E) =
∫

φ,α

n∏
i=1

[∫
ui

p(yi | x̃i, z̃i, ui, φ1)

×
m∏

j=1

p(xij | z̃i(j−1), x̃i(j−1), ui, φ2j)p(ui | φ3) dui

×
m∏

j=1

p(zij | z̃i(j−1), αj, E)

]
p(φ)p(α) dφ dα. (5)

Under standard conditions, the corresponding posterior
p(α | z̃, E) converges to a degenerate distribution at the true
value of α. An alternative parametrization would be obtained
by assuming the pairs (yi, z̃i) to be infinitely exchangeable
over the unit indices i. Under the treatment assignment
mechanism E this is sensible, since now the covariates x̃i are
not confounders and are thus irrelevant to learning about the
relationship between the treatment and the outcome. The
resulting parametrization is

p(y, z̃ | E) =
∫

θ,α

n∏
i=1

[
p(yi | z̃i, θ)

m∏
j=1

p(zij | z̃i(j−1), αj, E)

]
× p(θ)p(α) dθ dα. (6)

The parameters α are the same as in (5), and θ parameterizes
the marginal treatment effect of interest. In the Appendix, we
motivate the above definitions by linking the representations
(3) and (5) to the causal parameter. In order to make causal
inferences about θ in (6), one needs to hypothesize generating
predictions v∗

i ≡ (x̃∗
i , y

∗
i , z̃

∗
i ) from the super-population/data

generating mechanism characterized by (5), based on the
actually observed sample v of size n from (3). This is in
principle straightforward, since

p(v∗
i | v, E) =

∫
φ,α,u∗

i

p(v∗
i , u

∗
i | φ, α)p(φ, α | v, E) du∗

i dφ dα

where p(φ, α | v, E) = p(φ | v)p(α | z̃, E), and further

p(φ | v) ∝
n∏

i=1

[∫
ui

p(yi | x̃i, z̃i, ui, φ1)

×
m∏

j=1

p(xij | z̃i(j−1), x̃i(j−1), ui, φ2j)p(ui | φ3) dui

]
× p(φ).

However, we wish to avoid specifying the model components
parameterized in terms of φ, as they reference the latent and
unobserved ui. If, on the other hand, the latent variables
are ignored, the modeling approach would be susceptible
to the “null paradox” discussed by Robins and Wasserman
(1997). We note that our formulation of causal inference as
a posterior predictive problem closely resembles the original
Bayesian approach by Rubin (1978).

3.3. IPT Weighting Derived Through a Bayes Decision
Rule

The representations (3) and (5) are linked through the im-
portance sampling identity (e.g., Robert and Casella, 2004,
p. 92). Let U(·) be a utility function relevant to the estima-
tion/decision problem. Then

E[U(v∗
i ) | v, E] =

∫
v∗
i

U(v∗
i )p(v∗

i | v, E) dv∗

=
∫

v∗
i

U(v∗
i )

p(v∗
i | v, E)

p(v∗
i | v,O)

p(v∗
i | v,O) dv∗

≡
∫

v∗
i

w∗
i U(v∗

i )pn(v
∗
i ) dv∗

i , (7)

where pn is taken to be a non-parametric posterior predictive
density in the sense of Walker (2010, p. 26), and w∗

i = p(v∗
i |

v, E)/p(v∗
i | v,O), which simplifies into

w∗
i =

∫
α

m∏
j=1

p(z∗
ij | z̃∗

i(j−1), αj,O)p(α | z̃,O) dα

∫
γ

m∏
j=1

p(z∗
ij | z̃∗

i(j−1), x̃
∗
ij, γj,O)p(γ | x̃, z̃,O) dγ

=
Eα

[
m∏

j=1

p(z∗
ij | z̃∗

i(j−1), αj,O) | z̃,O
]

Eγ

[
m∏

j=1

p(z∗
ij | z̃∗

i(j−1), x̃
∗
ij, γj,O) | x̃, z̃,O

] , (8)

an estimated version of the weight in (1). The form (7) is
expressed entirely in terms of observable quantities, since
p(zij | z̃i(j−1), αj, E) = p(zij | z̃i(j−1), αj,O). In (7), we require
that the ratio p(v∗

i | v, E)/p(v∗
i | v,O) is well-defined (formally,

we require absolute continuity of the experimental measure
with respect to the observational measure, cf. Dawid and
Didelez, 2010, p. 196). This implies in particular that the
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treatment assignments zij under O may not be deterministic,
and is the counterpart of the positivity condition (see, e.g.,
Hernán and Robins, 2006, pp. 582–583). The no unmeasured
confounding condition zij ⊥⊥ ui | (x̃ij, z̃i(j−1),O) is also required
for obtaining the simplified form (8), the terms involving the
latent variables ui canceling out of the fraction.

Based on (6), we choose the utility function U(v∗
i ; θ) ≡

log p(y∗
i | z̃∗

i , θ) ≡ �(y∗
i | z̃∗

i , θ) say, and then maximize the ex-
pected utility with respect to the parameters of inter-
est θ. Following Walker (2010, p. 27) and adopting the
Bayesian bootstrap strategy pn(v

∗
i ) = ∑n

k=1
πkδvk

(v∗
i ) where

π ≡ (π1, . . . , πn) ∼ Dirichlet(1, . . . , 1), we then obtain the log-
likelihood-analogue corresponding to (2) through

E [�(y∗
i | z̃∗

i , θ) | v, E] =
∫

v∗
i

w∗
i �(y

∗
i | z̃∗

i , θ)

n∑
k=1

πkδvk
(v∗

i ) dv∗
i

=
n∑

i=1

πiwi�(yi | z̃i, θ). (9)

Consequently,

arg max
θ

E [�(y∗
i | z̃∗

i , θ) | v, E]

= arg max
θ

[
n∑

i=1

πiwi�(yi | z̃i, θ)

]
≡ θ̂(v;π), (10)

the weighted maximum likelihood estimator of θ.

3.4. A Computational Algorithm

As in Newton and Raftery (1994), an approximate sample
from the posterior distribution of θ may now be produced
by taking a sample (π(1), . . . , π(l)) of the weight vectors of
length n from the uniform Dirichlet distribution, and taking
(θ(1), . . . , θ(l)) = (̂θ(v;π(1)), . . . , θ̂(v;π(l))) to be a sample from
p(θ | v, E). Alternatively, π could be replaced by the multino-
mial random vector ξ. It should be noted that the weighted
log-likelihood function (9) cannot be used in place of a like-
lihood function in Bayes’ formula, and its curvature does not
play a direct part in quantifying the uncertainty on θ. This es-
timation approach as such does not allow specifying an infor-
mative (non-flat) prior on θ. However, if required, informative
priors could be incorporated using the sampling-importance
resampling (SIR, Rubin, 1988) approach as discussed by
Newton and Raftery (1994). In short, in this procedure a
(say, kernel) density estimate g would be calculated from the
initial sample (θ(1), . . . , θ(l)), followed by resampling with the
importance weights L(θ(k))p(θ(k))/g(θ(k)), where L is a likeli-
hood function and p is the informative prior. In the present
setting we do not have a closed form likelihood function,
but the posterior density estimate g under flat priors can
be taken as a numerical likelihood, resulting in importance
resampling weights p(θ(k)). Alternatively, to avoid potential
issues in the importance resampling weights, the numerical
likelihood g may be used directly in the Bayes’ formula in
place of a closed form likelihood function, enabling the use
of standard Markov chain Monte Carlo (MCMC) methods,
and informative prior specifications for θ. We illustrate this
augmented procedure in Supplementary Appendix B.

Prior specifications for γ and α and posterior inferences
from p(γ | x̃, z̃,O) and p(α | z̃,O) proceed in the usual way,
the evaluation of the weights (8) using Monte Carlo integra-
tion requiring only a single MCMC sample from these posteri-
ors. We note that when there is no confounding under the ob-
servational setting, that is, zij ⊥⊥ x̃ij | (z̃i(j−1),O), j = 1, . . . , m,
the weights wi → 1 and the estimator coincides asymptoti-
cally with the unweighted maximum likelihood estimator.

The proposed computational algorithm can be summarized
as follows: first the treatment assignment model is fitted
using standard Bayesian MCMC techniques to obtain the
posterior mean treatment assignment probabilities and IPT
weights. Second, an approximate sample is produced from
the posterior distribution of the MSM parameters θ with
flat priors by fitting the MSM using a Bayesian bootstrap
procedure where the obtained IPT weights are multiplied
by uniform Dirichlet resampling weights. The procedure can
be augmented to accommodate informative priors for θ. A
step-by-step representation of the computational algorithm
is given in Supplementary Appendix B.

4. Previously Proposed Two-Step and Joint
Bayesian Estimation Approaches

4.1. Two-Step Estimation

Previous Bayesian approaches proposed by Hoshino (2008)
and Kaplan and Chen (2012) for Bayesian propensity score
adjustment or weighting are implicitly based on a marginal
quasi-posterior distribution of the form

q(θ; v) ≡
∫

γ

q(θ; v, γ)p(γ | x̃, z̃) dγ. (11)

The quasi-Bayes point estimator of Hoshino (2008) would be
obtained as the mean of (11), in practice evaluated using
MCMC sampling where the likelihood is replaced by the IPT-
weighted pseudo-likelihood. Given a sample γ(k), k = 1, . . . , l

from p(γ | x̃, z̃), the multiple imputation type point estimator
of Kaplan and Chen (2012), also implied by (11), is Eγ |̃x,̃z[E(θ |
v, γ)] ≈ 1

l

∑l

k=1
θ̂(v; γ(k)). Such point estimators are consistent

as, under standard regularity conditions, p(γ | x̃, z̃) converges
to a point mass at the truth. However, since q(θ; v; γ) is not
a likelihood, the integral q(θ; v) does not have a probabilistic
interpretation. In particular, since (11) is not a true posterior
distribution, it does not readily provide a mechanism for vari-
ance estimation. We refer to Supplementary Appendix C for
more details.

4.2. Joint Estimation

Approaches to Bayesian (and likelihood-based) propensity
score adjustment which allow feedback between the out-
come model and the treatment assignment model have been
a source of continuing controversy in the literature (e.g.,
McCandless et al., 2010; Kaplan and Chen, 2012; Zigler et
al., 2013). Results from Section 3.2 give insight into this is-
sue; we elaborate in Supplementary Appendix C. Briefly, we
conclude that many of the proposed joint estimation methods
are not true propensity score adjustment methods in the sense
that they do not retain the balancing property of propensity
scores.
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Table 1
Results for point and variance estimators of θ2 over 1000 replications. The columns correspond to estimator, mean point
estimate, bias relative to the true value of θ2 (RB), Monte Carlo standard deviation of the point estimates (SD), mean
standard error estimate (SE), standard error estimate bias relative to the Monte Carlo SD, and 95% confidence interval

coverage probability (CP).

Scenario Estimator Mean RB (%) SD SE RB (%) 95% CP

b = 0, Naive −0.252 −1.991 0.106 0.106 −0.413 95.1
θ2 = −0.247 ITPW, sandwich −0.253 −2.179 0.107 0.107 −0.121 95.8

ITPW, Adj. sandwich −0.253 −2.179 0.107 0.105 −2.058 95.2
quasi-Bayes −0.255 −3.018 0.109 0.104 −4.559 93.9
MI −0.253 −2.421 0.108 0.113 4.676 96.6
Bayes/Dirichlet −0.257 −3.752 0.108 0.108 −0.717 95.5
Bayes/Multinomial −0.257 −3.806 0.108 0.109 0.370 94.8
Bootstrap −0.257 −3.801 0.108 0.109 0.578 95.0

b = 0.15, Naive −0.345 39.456 0.122 0.124 1.823 52.6
θ2 = −0.569 ITPW, sandwich −0.570 −0.141 0.142 0.142 −0.272 95.0

ITPW, Adj. sandwich −0.570 −0.141 0.142 0.133 −6.434 93.7
quasi-Bayes −0.587 −3.080 0.147 0.147 0.379 95.4
MI −0.582 −2.266 0.145 0.159 9.449 97.7
Bayes/Dirichlet −0.576 −1.102 0.143 0.141 −0.937 94.6
Bayes/Multinomial −0.576 −1.134 0.142 0.144 1.088 95.4
Bootstrap −0.577 −1.430 0.143 0.141 −0.901 95.0

b = 0.3, Naive −0.184 76.340 0.124 0.127 2.540 0.8
θ2 = −0.777 ITPW, sandwich −0.757 2.591 0.217 0.198 −8.750 93.5

ITPW, Adj. sandwich −0.757 2.591 0.217 0.174 −19.665 90.0
quasi-Bayes −0.795 −2.325 0.230 0.284 23.717 97.0
MI −0.789 −1.540 0.229 0.236 3.258 97.7
Bayes/Dirichlet −0.755 2.888 0.207 0.191 −7.750 93.3
Bayes/Multinomial −0.754 3.021 0.204 0.200 −1.892 94.8
Bootstrap −0.759 2.398 0.206 0.195 −5.322 93.2

5. Marginal Structural Model: Simulation Study

5.1. Simulation Strategy

Algorithms for simulating outcomes from a given marginal
structural model are available (e.g., Havercroft and Didelez,
2012) and can be used to deduce the marginal parame-
ters of interest even in the presence of mediation and non-
collapsibility by appealing to standard Monte Carlo princi-
ples. Here, following Section 3.2, we do not regard marginal
structural models as data generating mechanisms as such, but
instead define θ to be a parameter of a given regression model
p(yi | z̃i, θ) fitted to an infinite sequence of observations from
a data generating mechanism characterized by the represen-
tation (5) (cf. Gelman, 2007, pp. 157–158). In the Appendix
we show that (5) is fully specified by (3). The limiting value
of θ as n → ∞ is thus fully defined by the distributions in (3)
and a given model specification p(yi | z̃i, θ), and is here taken
to be the quantity of interest. The correct marginal model is
specified by (12) in Appendix, but under mild regularity con-
ditions the limiting value if θ exists irrespective of whether
the postulated model is correct (cf. White, 1982), and can be
approximated up to arbitrary precision by simulation.

We approximate the limiting value of θ by simulating the rm

potential outcomes for each i = 1, . . . , N, N 
 n, from (3) and
fitting the marginal model to the resulting Nrm observations.
In the data generating mechanism we choose m = 3 time in-
tervals, r = 2 treatment levels, 5 covariates and n = 500. The
conditional distributions in (3) for our three interval MSM

simulation study are given in the Appendix. We considered
three different scenarios with increasing degree of confound-
ing, corresponding to b = 0, b = 0.15, and b = 0.3.

5.2. Simulation Study: Results

The fitted treatment assignment models were chosen
as logit{p(zij | z̃i(j−1), x̃ij, γj)} = γj1 + γ�

j2z̃i(j−1) + γ�
j3x̃ij and

logit{p(zij | z̃i(j−1), αj)} = αj1 + α�
j2z̃i(j−1) for j = 1, 2, 3, and

the marginal model as logit{p(yi | z̃i, θ)} = θ1 + θ2

∑3

j=1
zij.

The results over 1000 simulation rounds for several point es-
timators are presented in Table 1. In particular, we consider
(i) the naive unweighted estimator which does not account for
confounding; (ii) the typical, frequentist IPT weighted estima-
tor (“IPTW”), with the plug-in estimates (γ̂, α̂) substituted
in (1); (iii) the quasi-Bayes estimator (Hoshino, 2008) given
by the mean of the marginal quasi-posterior distribution (11);
(iv) the corresponding multiple imputation type point estima-
tor (“MI”); (v) our proposed Bayesian approach with Dirich-
let sampling (“Bayes/Dirichlet”); (vi) our proposed Bayesian
approach with Multinomial sampling (“Bayes/Multinomial”);
and (vii) the estimate based on bootstrapping the frequen-
tist IPT weighted estimator, where the treatment assignment
models are re-fitted and weights re-calculated in each boot-
strap sample. The weights in estimators (v) and (vi) were
based on MCMC samples from the posterior distributions of
γ and α, using flat improper priors for these parameters. Es-
timators (v)–(vii) were calculated from 2500 replications.
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The results show that all of the weighted estimators are
approximately unbiased, although in the second and third
scenarios the estimators (iii) and (iv) based on (11) give
slightly different results from the other estimators, both in
terms of bias and excess variability. In the last scenario,
the resampling-based point estimators (v)–(vii) show slightly
lower variability than the standard IPTW estimator (i); this
is due to the most influential observations not being present
in every resample. This suggests that when large weights are
present, resampling might be useful for improving the stabil-
ity of point estimation.

The standard approach for variance estimation of
IPTW-based estimators is the “robust”/sandwich variance
estimator, which is expected to be conservative when the
nuisance parameters are fixed to their maximum likelihood
estimates (Hernán et al., 2001, p. 444). Since the asymptotic
variance of the IPT-weighted estimator with estimated
weights (at (γ̂, α̂)) is smaller than that of the same estimator
with the true weights (at the true values of (γ, α); see, e.g.,
Henmi and Eguchi, 2004), a Taylor expansion-based correc-
tion term may be subtracted from the sandwich estimator
to account for the estimation of the weights (e.g., Robins,
Mark, and Newey, 1992). However, it is also well known that
the sandwich estimator itself is often biased downwards in
small samples (e.g., Fay and Graubard, 2001). This is more
pronounced when influential observations with large weights
are present, and thus correcting the sandwich estimator
downwards in such situations may not be sensible.

Table 1 gives also the estimated standard errors for each of
the point estimators. The 95% confidence interval coverage
probabilities correspond to normal approximation confidence
intervals calculated using the respective variance estimates,
except for the Multinomial/Dirichlet sampling and bootstrap
estimators, for which we report the sampling/posterior
distribution based confidence intervals. The results under the
second and third scenarios indicate that adjustment for esti-
mation of γ and α may indeed adversely affect the small sam-
ple properties of the sandwich variance estimator, which itself
shows underestimation when b = 0.3. The quasi-posterior
variances are not appropriate for variance estimation, and
this seems to be the case also for the multiple imputation
type variance decomposition. The Bayesian estimators do
reasonably well under all three scenarios, giving results
similar to the frequentist bootstrap. We also repeated the
simulations with n = 1000 and n = 2000 (see Supplementary
Appendix D), with the conclusions essentially unchanged.

The simulations demonstrate that the variance estimators
which rely on asymptotic approximations—the sandwich es-
timator and its adjusted version—have a tendency for under-
estimation under settings where influential observations with
large weights are present. The proposed Bayesian approach
with Dirichlet sampling seems to be less affected by the pres-
ence of influential observations.

6. ART Interruption and Liver Fibrosis in
HIV/HCV Co-Infected Individuals

6.1. Study Background

We now revisit the real data example introduced in Section
2. We update an earlier analysis of Thorpe et al. (2011), as

the cohort has since been followed up for nearly two addi-
tional years, increasing the number of outcome events from
53 to 112. Similar criteria as in Thorpe et al. (2011) were
used to select individuals into the analysis; we included co-
infected adults who were not on HCV treatment and did not
have liver fibrosis at baseline, according to the outcome def-
inition below. Individuals suspected of having spontaneously
cleared their HCV infection (based on two consecutive neg-
ative HCV viral load measurements) were excluded as they
are not considered at risk for fibrosis progression. The out-
come event was defined as aminotransferase-to-platelet ratio
index (APRI) being at least 1.5 in any subsequent visit, this
event being a surrogate marker for liver fibrosis. We included
visits where the individuals were either on ART (zij = 0) or
had interrupted therapy (zij = 1), during the 6 months before
each follow-up visit. To ensure correct temporal order in the
analyses, in the treatment assignment model all time-varying
covariates (xij), including the laboratory measurements (HIV
viral load and CD4 cell count), were lagged one visit. Follow-
up was terminated at the outcome event (yij = 1); individuals
starting HCV medication during the follow-up were censored.
These selections resulted in N = 474 individuals with at least
one follow-up visit (scheduled at every 6 months) after the
baseline visit, and 2066 follow-up visits in total (1592 exclud-
ing the baseline visits). The number of follow-up visits mi

ranged from 2 to 16 (median 4).

6.2. Analysis

Our main objectives are to compare the variance estimates
given by the alternative methods under a real setting, as
well as to demonstrate that the approach in Section 3.2
generalizes to longitudinal settings with censoring. The de-
tails on accommodating censoring to the weighting approach
of Section 3 are given in Supplementary Appendix E. In
short, in addition to the marginal and conditional treat-
ment assignment models, specified as pooled logistic regres-
sions logit{P(zij = 1 | zi(j−1), α)} = αzi(j−1) and logit{P(zij =
1 | zi(j−1), xi(j−1), γ)} = γ�(zi(j−1), xi(j−1)), j = 2, . . . , mi, we
need to estimate marginal and conditional censoring
models logit{P(cij = 1 | zij, μ)} = μzij and logit{P(cij = 1 |
zij, xij, η)} = η�(zij, xij), j = 1, . . . , mi − yimi

. The potential
confounders we considered were baseline covariates female
gender, hepatitis B surface antigen (HBsAg) test and baseline
APRI, as well as time-varying covariates age, current intra-
venous drug use (binary), current alcohol use (binary), dura-
tion of HCV infection, HIV viral load, CD4 cell count, as well
as ART interruption status at the previous visit. The condi-
tional model estimates are shown in Table 2. The maximum
stabilized visit specific cumulative weight calculated at the
MLEs (η̂, μ̂, γ̂, α̂) was only 2.95; this is due to lagged inter-
ruption being the only significant predictor of present inter-
ruption (Table 2). With little variability in the weights, the
results for the alternative estimators would be expected to
follow the pattern in the first simulation scenario.

Due to the binary outcome status determined at each
follow-up visit (as opposed to once at the end of the follow-up)
and the relatively low rate of events, we used pooled logistic
regression logit{p(yij = 1 | zij, θ)} = θ1 + θ2zij as the specifica-
tion for the MSM. Table 3 shows the estimates for the inter-
ruption effect θ2 in the marginal model and the corresponding
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Table 2
Maximum likelihood estimates from pooled logistic regression for the ART interruption exposure and censoring at end of the

follow-up in the CCC data

Current interruption Censoring

Covariate MLE SE z MLE SE z

Lagged interruption 4.616 0.333 13.853 0.039 0.256 0.151
Female gender 0.557 0.304 1.833 0.163 0.134 1.222
Log baseline APRI 0.060 0.290 0.208 −0.097 0.114 −0.852
HBsAg 0.382 0.879 0.434 0.352 0.326 1.080
Age −0.012 0.019 −0.626 0.018 0.008 2.347
CD4 cell count/100 0.001 0.052 0.029 0.035 0.018 1.909
Log HIV RNA 0.084 0.055 1.522 −0.009 0.032 −0.287
Intravenous drug use −0.148 0.310 −0.477 −0.061 0.132 −0.464
Current alcohol use 0.108 0.291 0.372 −0.078 0.119 −0.660
HCV duration 0.010 0.016 0.635 0.006 0.006 0.960

standard errors. The weights in the Bayesian estimators were
calculated from MCMC samples from the posterior distribu-
tions of (η, μ, γ, α) using flat improper priors. Multinomial,
Dirichlet and bootstrap estimates were calculated from 2500
replications. The five alternative estimates are similar, with
the exception of the MI-type estimator, which, as in the sim-
ulations, appears to overestimate the standard error. In con-
trast, the Multinomial and Dirichlet sampling standard errors
are close to the bootstrap one, without involving re-estimation
of the treatment and censoring models in each replication.

7. Discussion

In attempts to incorporate variability due to estimation of
the propensity scores or IPT weights into Bayesian inferences
of treatment effects, it has not always been recognized that
from the frequentist point of view, estimation of the nuisance
models does not add variability to the treatment effect es-
timate. In addition, standard Bayesian arguments based on
exchangeability and de Finetti representations cannot justify
outcome model specifications which are functions of the treat-
ment assignment probabilities, unless it is explicitly acknowl-
edged that the model thus specified is also misspecified. In
this article, we motivated IPT weighting through a Bayesian
decision-theoretic argument, formalizing the notion of pseudo-
population which has often been given as an intuitive explana-
tion of the function of IPT weighting (e.g., Joffe et al., 2004).

Table 3
Estimates for the marginal effect of ART interruption

(log-hazard ratio) θ2 on liver fibrosis outcome in the CCC
data. Resampling-based estimates are calculated from 2500

replications.

Estimator θ̂2 SE z

Naive 0.452 0.354 1.278
IPTW, sandwich 0.354 0.377 0.937
MI 0.316 0.529 0.597
Bayes/Dirichlet 0.366 0.375 0.976
Bayes/Multinomial 0.361 0.400 0.902
Bootstrap 0.308 0.395 0.780

We proposed a fully Bayesian approach to estimating
parameters of a marginal structural model, formulating the
causal inference problem as a Bayesian prediction problem.
Our development suggests that the IPT weights should be
fixed to values given by the posterior predictive treatment as-
signment probabilities. The estimated weights then function
as importance sampling weights in predicting the outcome in
a hypothetical population without covariate imbalances. Our
exposition should make significant steps toward resolving
the lingering question of whether and how the uncertainty
in estimation of weights should be incorporated in Bayesian
estimation of marginal treatment effects. Furthermore, our
development should motivate further research into the use
of non-parametric Bayesian regression and model selec-
tion/averaging techniques in estimation of the IPT weights.

8. Supplementary Materials

Supplementary Web Appendices, referenced in Sections 3, 4,
5, and 6, as well as the code for producing the simulation
results, are available with this paper at the Biometrics website
on Wiley Online Library.
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Appendix

I. Linking the experimental and observational repre-
sentations. We link the representations (3) and (5) to the
causal parameter θ in (6). We note first that (5) is obtained
from (3) by noting that p(zij | z̃i(j−1), αj, E) can be written as

∫
x̃ij

j∏
j′=1

p(zij′ | z̃i(j′−1), x̃ij′ , γj′ ,O)

∫
ui

I(x̃ij, ui) dui dx̃ij

∫
x̃ij

j−1∏
j′=1

p(zij′ | z̃i(j′−1), x̃ij′ , γj′ ,O)

∫
ui

I(x̃ij, ui) dui dx̃ij

,

where

I(x̃ij, ui) ≡
j∏

j′=1

p(xij′ | z̃i(j′−1), x̃i(j′−1), ui, φ2j′)p(ui | φ3).
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Now the outcome model in (6), p(yi | z̃i, θ), is specified by (5)
as ∫

x̃i,ui

p(yi | x̃i, z̃i, ui, φ1)I(x̃i, ui) dui dx̃i∫
x̃i,ui

I(x̃i, ui) dui dx̃i

, (12)

where

I(x̃i, ui) ≡
m∏

j=1

p(xij | z̃i(j−1), x̃i(j−1), ui, φ2j)p(ui | φ3).

Notably (12) does not depend on α. This is important for
the characterization of θ as a causal parameter, as the cor-
responding marginal distribution under O would depend
on γ.

II. Simulation study. We generate ui ∼ N5(0, �u), and then

1. xi1 ∼ N5(0, �x); logit{p(zi1 = 1 | xi1)} = −0.1 + b�xi1

2. xi2 | zi1, xi1, ui ∼ N5

(
xi1 − 0.75zi1 + ui,

1

16
�x

)
;

logit{p(zi2 = 1 | zi1, x̃i2)} = −0.1 + 2zi1 + b�xi2

3. xi3 | z̃i2, x̃i2, ui ∼ N5

(
xi2 − 0.75zi2 + ui,

1

16
�x

)
;

logit{p(zi3 = 1 | z̃i2, x̃i3)} = −0.1 + 2zi2 + b�xi3;

logit{p(yi = 1 | x̃i, z̃i, ui)}

= −0.1 − 0.25

3∑
j=1

zij + b�xi3 + 1�ui/5,

where b is a constant vector of length 5, and �x (�u) is a 5 × 5
covariance matrix with diagonal elements set to 1 (0.1) and
off-diagonal elements set to 0.25 (0.05).

Discussions

Michael R. Elliott and Roderick J. Little*

Department of Biostatistics, School of Public Health, University of Michigan,
Ann Arbor, Michigan 48109–2029, U.S.A.
∗email: rlittle@umich.edu

We applaud Saarela, Stephens, Moodie, and Klein (SSMK)
for building bridges between Bayesian and frequentist forms
of inference for marginal structural models (MSMs), given
the tendency of our profession to bifurcate into these some-
times antagonistic camps. SSMK’s approach has a strongly
Bayesian flavor, and in their simple simulation it shows some
promise of generating inferences with superior frequentist
properties. However, the formulation is general and complex,
and we are not sure to what extent the analysis is fully
Bayesian. We consider here some basic examples, which we
think help to clarify differences between inverse probability
weighting (IPW) and Bayesian approaches to inference,
particularly concerning the role of selection and treatment
allocation weights. Specifically, SSMK include weights in
the Bayesian analysis via the weighted likelihood bootstrap
(Newton and Raftery, 1994), an ingenious computational de-
vice for generating approximate draws from the posterior dis-
tribution; we show that, in our simple examples, weighting the
cases is unnecessary for causal inferences from a well-specified
Bayesian MSM. However, weights can play an important role
as covariates to generate robust model-based inferences.

Example 1: Survey weighting. The first example does
not concern MSMs, but it is fundamental, and it sets the stage
for our other two examples. A standard weighting approach

in sample surveys weights the sampled cases by the inverse
of their probabilities of selection. Figure 1A displays data
on a population of N units, where X is a set of design vari-
ables known for all units in the population, I is an inclusion
indicator taking value 1 for sampled units, say i = 1, . . . , n,

and 0 for non-sampled units i = n + 1, . . . , N. The variables
Y are recorded in the sample and hence missing for non-
sampled units. The sampling weight is the inverse of the se-
lection probability, which is a function of the design variables,
leading to the weight variable W = W(X). A basic design-
based (frequentist) approach to inference weights the sam-
pled case i by wi; for example, the estimate of the mean
of Y is

∑n

i=1
wiyi/N. From a model-based (and in particu-

lar, Bayesian) perspective, a model is defined relating Y to
the covariates X, and then non-sampled values of Y are re-
placed by predictions from the regression of Y on X. In a
Markov Chain Monte Carlo simulation of the posterior pre-
dictive distribution of a function g(y1, . . ., yN) of Y , such as
the population mean, the non-sampled values are simulated

using draws (y
(d)
n+1, . . ., y

(d)
N ) from their posterior predictive

distribution given the sample data (yi, xi), i = 1, . . ., n and

xi, i = n + 1, . . ., N. Then g(y1, . . ., yn, y
(d)
n+1, . . ., y

(d)
N ) is a draw

from the posterior distribution of g(y1, . . ., yN). The draws
y
(d)
i are predictions from Bayesian regression of Y on X, and



On Bayesian Estimation of Marginal Structural Models 289

Unit,  i X I Y

1
2
…
n
n+1
n+2
…
N

1
1
…
1
0
0
…
0

?
?
…
?

(0) (1)Unit,  i X Z Y Y

0
0
…
0
1
1
…
1

?
?
…
?

?
?
…
?

1
2
…
n0
n0+1
n0+2
…
n0+n1

(0) (1)Unit,  i X Y Y

?

…

?

n0+n1+1

…

N

Included in the study (I = 1)

?

…

?

Not included in the study (I=0)

(0) (1) (00) (01) (10) (11)
1 1 2 2 2Unit,  i X Z X X Z Y Y Y Y

1
2
…
n00
n00+1
n00+2
…
n0=n00+n01
n0+1
n0+2
…
n0+n10
n0+n10+1
n0+n10+2
…
n=n0+n10+n11

0
0
…
0
0
0
…
0
1
1
…
1
1
1
…
1

?
?
?
?
?
?
…
?

?
?
?
?
?
?
…
?

0
0
…
0
1
1
…
1
0
0
…
0
1
1
…
1

?
?
…
?
?
?
…
?
?
?
…
?

?
?
…
?
?
?
…
?

?
?
…
?
?
?
…
?

?
?
…
?
?
?
…
?
?
?
…
?

?
?
…
?

?
?
…
?

A

B

C

Figure 1. (A) Data Pattern for Example 1, (B) Data Pat-
tern for Example 2, and (C) Data Pattern for Example 3.

weighting plays no role; however, for valid inferences the re-
gression of Y on X needs to be correctly specified.

From this prediction perspective, W = W(X) is simply a
particular function of X, and can be considered a covari-
ate; however, the balancing property of a propensity scores
(Rosenbaum and Rubin, 1983) implies that, if the relationship
between Y and W is correctly specified, relationships between
Y and covariates other than W may be omitted or misspec-
ified without biasing estimates of marginal parameters like
means.

Example 2: Comparing two treatments with mea-
sured confounders X. Now suppose interest lies in the com-
parison of an outcome Y between two treatments defined by a
binary treatment variable Z. Suppose that there are n units in
the study, and units i = 1, . . ., n0 are assigned treatment zi = 0
and units i = n0 + 1, . . ., n0 + n1 = n are assigned treatment
zi = 1. Units are assumed randomly assigned with probabili-
ties a function of known covariates Xi. We define Y (t) to be
the outcome when assigned treatment Z = t. A frequentist
MSM weights cases by the inverse of their allocation proba-
bility. From a Bayesian perspective, the task is to predict the
values of Y (t) for the treatment t that was not assigned (see
Figure 1B). As in Example 1, the approach is to build a re-
gression model relating Y (t) to X in the treatment group Z = t,
and use this model to predict the value of Y (t) in the treat-
ment group Z = 1 − t. Weighting is replaced by prediction of
the outcomes for treatments not assigned. As in Example 1, a
model relating Y to the assignment propensity can be utilized
instead of modeling all the covariates.

Example 3: A Bayesian MSM comparing two treat-
ments at two time points. We now describe an MSM set-
ting where intermediate variables serve as both mediators and
confounders of a treatment effect. A classic example is the use
of a surrogate marker for the outcome to make treatment de-
cisions (“confounding by indication”).

Suppose X1 is a set of baseline covariates, Z1 is a time 1
binary treatment indicator, assigned randomly with a proba-
bility depending only on X1. A time 1 outcome X2 is measured
after the assignment of Z1 , and then a time 2 binary treat-
ment Z2 is assigned with a probability that depends only on
X1, Z1 and X2. A time 2 outcome Y is then observed. Thus X2

is both an outcome for the first treatment and the mediator
for a second treatment. The causal inference concerns com-
parisons of the distributions of Y (z1,z2), the outcome when a
subject is assigned Z1 at the first time point and Z2 at the sec-
ond time point. The Bayesian analysis simulates predictions
of the missing data, where the data are ordered as shown in
Figure 1C. It has the following steps:

(a) Let x
(z1)
i2 denote the intermediate value of X2 when sub-

ject i is assigned to treatment z1. Regress X2 on X1 and

Z1 and generate draws d of the missing values x
(1,d)
i2 for

i = 1, . . ., n0 and x
(0,d)
i2 for i = n0 + 1, . . ., n0 + n1 from

their respective predictive distributions.
(b) Regress Y on X1, Z1, X2, Z2 and use draws from the

relevant regression model parameters to generate

draws of the missing values y
(01,d)
i , y

(10,d)
i , y

(11,d)
i

for i = 1, . . ., n00, y
(00,d)
i , y

(10,d)
i , y

(11,d)
i for

i = n00 + 1, . . ., n00 + n01 = n0, y
(00,d)
i , y

(01,d)
i , y

(11,d)
i

for i = n0 + 1, . . ., n0 + n10, y
(00,d)
i , y

(01,d)
i , y

(10,d)
i for

i = n0 + 1, . . ., n0 + n1.
(c) Repeat (a) and (b) for a set of draws d = 1, . . ., D,

and simulate inferences for the causal parameters
of interest from the observed or drawn values of
(y

(00)
i , y

(01)
i , y

(10)
i , y

(11)
i ), i = 1, . . ., n.

No weighting is required, but as in previous examples, re-
gressions needs to be correctly specified and estimable given
the available data, as well as the standard sequential ran-
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Table 1
Simulation study results under (a) correctly specified models (θ11 = −.187, θ10 = −.068, θ01 = −.095); (b) misspecified second

treatment model Z2 | X1, X2, Z1 (θ11 = −.079, θ10 = −.025, θ01 = −.035); (c) misspecified intermediate variable model
X2 | X1, Z1 (θ11 = −.054, θ10 = .020, θ01 = −.095)

θ11 = E(Y(1, 1) − Y(0, 0)) θ10 = E(Y(1, 0) − Y(0, 0)) θ01 = E(Y(0, 1) − Y(0, 0))

95% 95% 95%
Method Bias RMSE Coverage Bias RMSE Coverage Bias RMSE Coverage

(a)
Naive .185 .193 3.2 .184 .192 5.4 −.042 .086 89.8
Weighted MSM .000 .036 96.8 .000 .039 96.8 −.002 .060 94.5
Weighted SSMK .001 .036 96.5 .001 .041 96.3 −.004 .061 94.1
Bayesian prediction −.000 .030 96.0 .001 .024 98.1 −.001 .028 99.1
BP using MSM weights .000 .036 91.8 .004 .034 95.6 −.004 .050 93.7

(b)
Naive .074 .078 8.7 .061 .065 22.0 −.026 .044 88.0
Weighted MSM −.000 .021 96.2 .004 .024 92.5 .003 .020 95.2
Weighted SSMK −.001 .022 95.8 .003 .024 92.9 .002 .020 94.1
Bayesian prediction .000 .018 95.4 .001 .014 99.5 .000 .014 97.5
BP using MSM weights −.000 .019 96.6 .001 .022 96.8 .003 .018 96.7

(c)
Naive .113 .120 26.1 .166 .170 0.0 −.033 .062 91.2
Weighted MSM .002 .032 97.1 .000 .030 97.5 .001 .042 96.1
Weighted SSMK .001 .032 97.2 .000 .030 97.1 −.001 .043 95.2
Bayesian prediction −.005 .039 94.9 .008 .020 97.6 −.005 .032 98.5
BP using MSM weights −.055 .066 70.1 .006 .024 95.4 −.048 .057 68.5

domization assumption for the outcome Y (z1,z2) ⊥ Z1 | X1 and
Y (z1,z2) ⊥ Z2 | Z1, X1, X2. It also requires a similar sequential

randomization assumption X
(z1)
2 ⊥ Z2 | Z1, X1 for the inter-

mediate variable X2. Unlike the weighted MSM approach,
correct models of the probability of intermediate treatment
assignment are not required. An alternative approach, in the
spirit of the propensity score discussion in Example 1, is
to regress outcomes on weights W(Zi1, Zi2) associated with
the assignment to each of the treatment conditions, namely
W−1(Zi1, Zi2) = P(Zi2|Zi1)P(Zi1)

P(Zi2|Xi2,Xi1,Zi1)P(Zi1|Xi1)
.

We consider a simulation study to compare the Bayes pre-
diction method with those discussed in SSMK. We generate
data under a simple longitudinal model:

xi1 ∼ N(0, 1), zi1 | xi1 ∼ BIN(1, expit(−.1 + xi1))

xi2 | xi1, zi1 ∼ N(xi1 − .75zi1, 1/16),

zi2 | xi1, xi2, zi1 ∼ BIN(1, expit(−.1 + (xi2 − xi1)(1 − zi1))

yi | xi1, xi2, zi1, zi2 ∼ BIN(1, expit(−.1 − zi2 + xi1 + xi2))

where expit is the inverse of the logit function: expit(u)=
eu

1+eu .
We consider three causal estimands of interest, corre-

sponding to the differences in the expected probabilities
of a “poor” outcome (Y = 1) when receiving no treatment
compared with (a) both treatments (θ11), (b) only the first
treatment (θ10), and (c) only the second treatment (θ01),
where θkl = E(Y (k,l) − Y (0,0)). Thus treatment assignment
at time 1, Z1, is positively correlated with X1, X2 is a
confounder/surrogate that mediates the effect of treatment

assignment Z1 on Z2; assignment to treatment at time 1
is associated with smaller values of X2, and assignment to
treatment at time 2 is positively associated with increases
in X2 relative to X1 in the absence of treatment at time 1
(suggesting treatment is “needed”) and negatively associated
with increases in X2 relative to X1 in the absence of treatment
at time 1 (suggesting treatment is “failing”). The outcome
Y is a function of only Z2 given X1 and X2. Each simulation
consisted of a sample of n = 1000 independently generated
observations.

We fit five models to estimate the causal effect of Z1, Z2,
and their interaction on Y : (1) a naive model that estimates a
logistic regression for the observed Y on the observed X1 and
X2; (2) a standard weighted MSM; (3) the weighted MSM
method described in SSMK; (4) our Bayesian prediction (BP)
model; and (5) a variation of the BP model that assumes the
logit of the probability of the outcome is linearly related to
log(W(Zi1, Zi2)), omitting other covariates. Empirical Bias,
RMSE, and nominal 95% coverage based on 1000 simulations
are shown in Table 1.

The weighted MSM and Weighted SSMK methods perform
very similarly in these simulations, perhaps in part because
they are based on a large sample size. Table 1a) provides re-
sults under correctly specified models—the model on the log
weights is approximately correctly specified. The naive model
badly underestimates the marginal effect of treatment at
time 2 and somewhat overestimates the effect of treatment at
time 1 only, since subjects doing more poorly at time 1 are
more likely to get treatment at time 2. All other approaches
have minimal empirical bias, as expected given correct speci-
fication. The BP approach yields a reduction in RMSE of 17%
for θ11, 40% for θ10 and 60% for θ01 over the MSM approaches,
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with the larger reductions to some degree associated with
settings where weights inflate variance but have less of an
impact in bias. Coverage for the MSM and BP approaches
are general conservative. The BP approach using MSM
weights is slightly biased, yielding increasing in RMSE and
decreases in coverage, although RMSE is generally smaller
than the MSM approaches, and coverage is correct to slightly
undercovered.

Table 1b presents results when the second treatment
assignment model is misspecified by omitting the interaction
between X and Z1—we generate xi1 ∼ N(3, 1) to enhance
the effect of this misspecification, with the intercept for
the outcome model set to −3. A modest degree of bias is
introduced for the MSM and SSMK estimators, sufficient
to induce undercoverage for θ10. The BP approach yields
minimal empirical bias, the best RMSE, and nominal or
conservative coverage, as expected since the imputation
models are correctly specified and misspecification of the
weight model does not affect this method. Similar results
are found for the BP using MSM weights, suggesting that
misspecification of the weights themselves is less critical
when they are used to model the outcome directly.

Table 1c shows results when the model for the weights is
correctly specified, but the prediction model is misspecified by

generating xi2 | xi1, zi1 ∼ N(xi1 − .75zi1 + .5xi1zi1, 1/16), but
ignoring the interaction in this model (again generating xi1 ∼
N(3, 1) and setting the outcome model intercept to −3 to
enhance the effect of the misspecification). Predictably, both
BP models are now biased for all the estimators, with large

degrees of bias and undercoverage for the BP using MSM
weights for θ11 and θ01. Despite this, the direct BP prediction
retains correct coverage and still has the smallest RMSE for
θ10 and θ01. The poorer behavior of the BP weight model even
though the weight model is correctly specified is due to the
fact that Y in no longer linear in log(W) as a result of the new
model for X2—a situation that could be remedied by modeling
the relationship between Y and W more flexibly, for example
by penalized spline regression (Zheng and Little, 2005).

In summary, we suggest that selection or allocation weights
should be regarded as covariates in the Bayesian paradigm,
and not used to weight for differential inclusion or differen-
tial allocation of units to treatments. We have presented an
approach based entirely on prediction of missing variables for
the sampled and/or nonsampled population—no hypothetical
population is invoked.
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1. Introduction

Saarela, Stephens, Moodie and Klein (SSMK hereafter) are to
be congratulated for writing a really interesting paper. There
has been considerable angst on how to reconcile Bayesian-
ity with inverse probability of treatment (IPT) weighting.
Fortunately, however, there have been recent insights. For
instance, Wang, Parmigiani, and Dominici (2012)provide a
model-selection sense in which a treatment-choice model mat-
ters for Bayesian inference, while Zigler et al. (2013) shed
more light on the thorny issue of “feedback” from the outcome
data to the treatment-choice model. And now SSMK may
have moved the goalposts considerably. In the subtle longitu-
dinal context, they provide a full and closely argued recipe for
Bayesian inference based on modeling the treatment-choice
mechanism. To help understand SSMK’s method, here it is
implemented in a simple example, and then compared to a
different method.

2. Saturated Bayes Model

As a simple technical tool, a Bayesian saturated binary re-
gression model (henceforth BSAT, for short) is defined as fol-
lows. For a binary response variable A and binary explana-
tory variables B = (B1, . . . , Bp), a distinct outcome probabil-
ity is assigned to each of the 2p possible values of B, i.e.,
λb = Pr(A = 1|B = b). As a conjugate prior, the elements of λ

are taken as iid, with Unif(0, 1) distributions. Hence a posteri-
ori they are independently beta-distributed, and direct Monte
Carlo sampling from the posterior distribution is trivial.

3. A Simple Worked Example

To bolster understanding of SSMK’s proposal, consider the
fictitious data in Table 1. These involve n = 5000 subjects,
with only two timepoints (m = 2), two treatment alternatives
(r = 2), a binary covariate, and a binary outcome. For ease of
exposition, regard Zj = 1 (Zj = 0) as being “on” (“off”) treat-
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Table 1
An illustrative dataset on n = 5000 individuals with m = 2

timepoints. The time-varying treatment status Zj, the
time-varying covariate Xj, and the outcome Y are all binary.

X1 Z1 X2 Z2 Y = 0 Y = 1

0 0 0 0 1364 744
0 0 0 1 355 185
0 0 1 0 371 335
0 0 1 1 104 88
0 1 0 0 8 5
0 1 0 1 91 45
0 1 1 0 1 2
0 1 1 1 25 11
1 0 0 0 18 13
1 0 0 1 4 3
1 0 1 0 279 389
1 0 1 1 71 100
1 1 0 0 2 1
1 1 0 1 11 11
1 1 1 0 19 19
1 1 1 1 141 185

ment at the j-th timepoint, while Y = 1 is a harmful outcome,
such as having reached irreversible disease progression by the
end of the study. As per SSMK, consider the variables as un-
folding in the temporal order (X1, Z1, X2, Z2, Y).

In such a small-scale problem there is no need to make
parametric modeling assumptions. Each treatment pattern
ã = (v, w) can have a distinct counterfactual mean outcome
θvw. Focussing in on the “always-treat” pattern, ã = (1, 1),
the subset of the data pertaining to those treated at both
timepoints is summarized in Table 2. Taking these data at
face value, without any regard to confounding, yields an esti-
mated outcome probability for the always-take regime to be
252/(252 + 268) = 0.485.

Upon fitting BSAT models for (Z1), (Z2|Z1), (Z1|X1), and
(Z2|X1, Z1, X2), and then exactly following SSMK’s prescrip-
tion (as per their Supplementary Appendix B), a weight is
estimated for each (X, Z) pattern. For Z = (1, 1) these are
reported in Table 2, and they yield the weighted (X, Y) data
table given in the rightmost columns of the table, i.e., raw cell
counts in each row get multiplied by the corresponding weight.
The weighted table then gives an estimated outcome proba-

Table 2
Summary of the 520 individuals treated at both timepoints.
Both the raw and reweighted X by Y data tables are given,

with the latter obtained from the former by row
multiplication by the estimated weight ŵi for an individual

with this X pattern and Z = (1, 1).

X1 X2 Y = 0 Y = 1 ŵ Y = 0 Y = 1

0 0 91 45 2.26 205.28 101.51
0 1 25 11 2.27 56.71 24.95
1 0 11 11 0.40 4.36 4.36
1 1 141 185 0.38 53.17 69.76

Total 268 252 319.52 200.59

bility of 200.59/(319.52 + 200.59) = 0.386 for the counterfac-
tual world in which everyone is fully treated. The adjustment
for time-varying confounding has quite markedly changed the
face-value impression of the data.

SSMK’s method does not directly use the weighted columns
of Table 2, yet reweighting rows of X by Y data tables, for
fixed Z, is central. Particularly, the proposal is to Bayesian-
bootstrap first, reweight second. Each individual’s contribu-
tion of exactly one datum is replaced with a contribution of
roughly one datum, via the Dirichlet sampling scheme. This
gives a “noised up” X by Y data table for fixed Z, which is
then reweighted to yield a point estimate of the corresponding
θvw. Then the ensemble of such point estimates arising from
repeated Bayesian bootstrapping is taken as the posterior dis-
tribution of θvw. Doing this, we obtain a posterior mean (SD)
of 0.386 (0.027) for θ11. Not surprisingly given the nature of
bootstrapping, the posterior mean is effectively the same as
the point estimate from the reweighted portion of Table 2. Of
course, interest typically lies in comparing different regimes.
For θ11 − θ00, the counterfactual risk difference between fully
treating and fully not treating, we get a posterior mean (SD)
of −0.047 (0.029).

4. Using the g-Formula

Stepping back, IPT weighting is but one strategy for such
problems. The g-formula approach pioneered by Robins
(1986) is another. There are various accounts of this method;
see an Appendix to Taubman et al. (2009) for an accessible
explanation. The core idea is to probabilistically express the
time-evolution of all variables, including both the treatment
choice arising under a specific intervention and the treatment
choice arising in the absence of any intervention. Assump-
tions about no unmeasured confounding then equate to as-
sumptions about this joint distribution. In the special case of
a single timepoint, the g-formula reduces to the well-known
epidemiological procedure of standardization (Snowden, Rose,
and Mortimer, 2011).

For the problem at hand, the g-formula specializes as fol-
lows. The outcome probability in the counterfactual world
where all are fully treated reduces to

θ11 =
1∑

x1=0

1∑
x2=0

[Pr(X1 = x1)Pr(X2 = x2|X1 = x1, Z1 = 1)

× Pr{Y = 1|X = (x1, x2), Z = (1, 1)}] ,

with an analogous expression obtained for θ00. Thus
BSAT models can be fit for (X1), (X2|X1, Z1), and
(Y |X1, Z1, X2, Z2), requiring 1, 4, and 16 parameters, respec-
tively. Let γ1, γ2, and γ3 be the three parameter vectors, with
γ = (γ1, γ2, γ3). It is immediate that if the γi’s are judged to
be a priori independent of one another, then they will be a
posteriori independent also. So direct iid Monte Carlo sam-
pling of the posterior on γ is trivial. Moreover, since each θvw

is a deterministic function of γ, we obtain the posterior for
θ with no additional fuss or cost. Applying this to the Table
1 data yields a posterior mean (SD) for θ11 − θ00 of −0.043
(0.028). The Bayesian g-formula (BGF) and SSMK answers
are essentially the same.
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5. Simulation

Before investigating further, we disclose the origins of the Ta-
ble 1 data. Each individual’s data was simulated (forward in
time) according to:

X1 ∼ Bern(0.25)

Z1 ∼ Bern(0.05 + κ1X1)

X2 ∼
{

Bern(0.25 − κ2Z1) if X1 = 0

Bern(0.95) if X1 = 1

Z2 ∼
{

Bern(0.1 + κ1X2) if Z1 = 0

Bern(0.9) if Z1 = 1

Y ∼ MaxBern(0.2 − κ3Z1 + κ4X1 , 0.2 − κ3Z2 + κ4X2),

where MaxBern(a, b) is taken to be the distribution of the
maximum of independent Bern(a) and Bern(b) random vari-
ables. Thus, we mimic the realistic situation of an irreversible
disease outcome that could be reached after the first or second
timepoint.

The key drivers of the scenario are set as κ1 = 0.25, κ2 =
0.075, κ3 = 0.03, and κ4 = 0.15. By dint of all these being pos-
itive, the scenario has some typical features. Think of Xj = 1
as some manifestation of “being sicker” at the j-th timepoint,
as meshes with κ4 > 0. Via κ1 > 0, those who are sicker are
more likely to start treatment, a hallmark of “confounding
by indication.” Also, positive κ2 and κ3 reflect a dual benefit
of treatment. There is a direct effect (controlled by κ3), but
also an indirect effect (controlled by κ2), whereby treatment
reduces the chance of the undesirable transition from X1 = 0
to X2 = 1.

Figure 1 gives results for 50 datasets simulated as de-
scribed. The previously seen agreement in estimating θ11 − θ00

is no fluke; the SSMK and BGF posterior means are always
essentially the same. The corresponding posterior standard
deviations agree less closely, though both exhibit very mod-
est variation across repeated sampling. Moreover, in an ex-
tended simulation of 1000 datasets, the empirical coverage of
95% equal-tailed credible intervals are 95.6% and 95.7% for
SSMK and BGF, respectively, with a discordance rate (one
interval covers but the other does not) of only 0.9%. Taking
stock then, the two methods start with different premises, and
require modeling different parts of the joint distribution of ob-
servables. Yet here they give essentially the same estimate and
about the same indication of uncertainty.

Figure 1. Comparing BGF and SSMK inferences on 50
simulated datasets. The left panel compares posterior means
and the right panel compares posterior standard deviations.

6. Discussion

It is comforting to see two seemingly disparate statistical
methods, SSMK and BGF, yielding the same answer. In con-
trasting the methods, however, BGF does have a simple el-
egance. Models for some conditional distributions must be
specified, along with concomitant priors. Then the Bayesian
crank is turned, and the target parameter is a function of the
unknown parameters. The need for bootstrapping is obviated,
and special arguments to support the method’s validity are
not required.
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1. Introduction

In the ambitious article by Saarela, Stephens, Moodie and
Klein (hereafter SSMK), the authors propose a Bayesian per-
spective on causal inference for longitudinal treatments under

sequential ignorability (SI) assumptions using marginal struc-
tural models (MSMs) and inverse-probability-of treatment
weighted (IPTW) methods. Their approach can be viewed as
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blending two strands of the literature in causal inference: (1)
MSMs and IPTW estimators are often applied to consistently
estimate causal effects, although not in a Bayesian perspec-
tive; (2) recent work has focused on Bayesian inference for
causal effects in observational studies using propensity score
methods (see references in the SSMK’s article). To the best of
our knowledge, the only attempt to develop a fully Bayesian
approach to causal inference for sequential treatments is in
Zajonc (2012), who does not use propensity score methods.

Although we find the authors’ contribution of some
interest, the reading of the article stimulated some reactions.
The points we wish to make and discuss include (1) the
importance to clearly define the causal estimands of interest;
(2) the role of the weights in a fully Bayesian approach;
and (3) the role of the assignment mechanism to design
observational studies.

As we better explain in the sequel, our main disappoint-
ment with the article arises because the authors provide
several technical details on the Bayesian interpretation of the
weights used by IPTW estimators, neglecting substantive
discussion on the assumptions underlying the definition of
the weights and of a MSM. Specifically, the authors implic-
itly assume that treatment assignment model and weights
are correctly specified, and that weights are successful in
creating a pseudo-population where the distributions of
relevant confounders are overlapping and well balanced
across units exposed to alternative treatment sequences. We
argue that assessing the degree of overlap in the confounders’
distributions and the balancing property of weights is crucial
and should be the only guidance in the specification of the
weights. This point relates also to the paramount importance
of carefully designing an observational study, which is essen-
tial for drawing credible objective causal inference, especially
in the presence of sequential treatments.

2. Causal Estimands

In causal inference problems, it is crucial to start by precisely
defining the causal quantities (causal estimands) we want to
draw inference on. In the SSMK’s article, the definition of the
causal estimand of interest is a bit nebulous and the presenta-
tion is sometimes unclear and ambiguous. SSMK focus on in-
ferential issues omitting details on the link between potential
outcomes and observed outcomes in a MSM framework, and
thus making it difficult to understand when they are work-
ing with the parameters of the MSM, and thus with potential
outcomes, and when, instead, they are considering the param-
eters of an associational model for the observed outcomes.

In order to shed light on these key issues, we find it useful
to reformulate the basic setup according to our understanding
and our view. We will follow the notation used by the authors
as much as possible.

Consider a sample of n units, indexed by i = 1, . . . , n. In
each time period, indexed by j = 1, . . . , m, units can be poten-
tially assigned to r alternative treatments, aj ∈ {w1, . . . , wr}.
Let ã ≡ (a1, . . . , am) denote one of the rm treatment sequences,
which a unit can be potentially assigned to. The objective is
to assess the effect of different treatment sequences on some
final outcome, y, measured after the assignment of the last
treatment, am. Under the Stable Unit Treatment Value As-
sumption (SUTVA, Rubin, 1980), for each unit there are rm

associated potential outcomes at a future point in time after
the last treatment, but at most one of which can be observed.
Let yãi be the value of y if unit i is assigned treatment sequence
ã, and let yãi denote the set of all the rm potential outcomes for
unit i. A causal effect of two alternative treatment sequences,
ã and ã′, on a unit is defined to be a comparison of potential
outcomes, for instance, their difference yãi − yã′i.

Let zij denote which treatment unit i received at time j,
and let z̃i ≡ (zi1, . . . , zim) denote the observed history of treat-
ment assignments. Let yi = ∑

ã
1{̃zi=ã}yãi be the observed out-

come, where 1{·} is the indicator function. For each units,
we also observe the set of vectors x̃i ≡ (xi1, . . . , xim), includ-
ing both baseline covariates, measured prior to the onset
of treatment, and time-varying covariates (intermediate out-
comes) recorded prior to each treatment assignment. Finally,
let z̃i(j) ≡ (zi1, . . . , zij) and x̃ij ≡ (xi1, . . . , xij) denote the ob-
served treatment vector and the observed vectors of covariates
up to time j, j < m.

This is the basic setup, which defines the primitives for
causal inference and the observed data in longitudinal studies.
The next step is to introduce some structural and, eventually,
parametric assumptions that allow us to draw inference on the
causal estimands of interest. MSMs describe the distribution
of potential outcomes, or some of their characteristics, in
terms of parameters of specific models: yãi ∼ p(·; θ), where
p(·; θ) denote a probability density/mass function with
parameter vector θ. For instance, if the outcome variable is
binary, and the treatment assigned in each period is binary
(r = 2, aj ∈ {0, 1}, j = 1, . . . , m), a MSM is usually specified
as a linear logistic model: logit (πãi)≡ logit (Pr(yãi = 1)) =
θ1 + θ2

∑m

j=1
aj. In this perspective, causal estimands can

be usually expressed in terms of the parameters, θ, of the
MSM, which therefore represent comparisons of potential
outcomes. A MSM may impose restrictive constraints
on causal effects. For instance, in the previous example,
the logistic MSM implies that causal effects of alterna-
tive treatment sequences are additive on logit scale, so that
eθ2 = [πãi · (1 − πãi)

−1]/[πã′i · (1 − πã′i)
−1] represents the causal

odds ratio for the comparison of all treatment sequences ã

and ã′ such that
∑m

j=1
aj − ∑m

j=1
a′

j = 1 (e.g., ã = (1, 0, . . . , 0)

and ã′ = (0, 0, . . . , 0)). Thus, in a MSM approach focus is on
identifying and estimating the parameter vector θ. We believe
that explicitly motivating the interest in the parameters θ is
crucial to avoid misunderstandings. SSMK focus on deriving
the posterior distribution of θ, but do not clearly explain the
role of the parameter θ in the causal problem.

Another related issue that we believe the authors should
better discuss concerns the role of the assignment mech-
anism. The critical assumption invoked in the article is
SI, which the authors refer to as no unmeasured con-
founding/sequential randomization condition: p(z̃i|yãi, x̃i) =
p(zi1|xi1)

∏m

j=1
p(zij|z̃i(j−1), x̃ij). An overlap assumption is also

invoked: p(zij = aj|z̃i(j−1), x̃ij) > 0 for all i, j, and ã.
It is well known that the parameters of MSMs, θ, differ

from the parameters of associational models for the observed
outcome, say p(yi|z̃i, θ

∗). However, under SI, the causal
parameter θ of a MSM can be consistently estimated using
an IPTW estimator, that is, fitting the corresponding
associational model for the observed outcome, p(yi|z̃i, θ

∗),
with the stabilized weights wi = [p(zi1)

∏m

j=2
p(zij|z̃i(j−1))]/
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[p(zi1|xi1)
∏m

j=2
p(zij|z̃i(j−1), x̃ij)]. The authors do not clearly

distinguish between parameters of associational models, θ∗,
and parameters of MSMs, θ, and we believe that the lack of
clarity on this key point may raise misunderstandings.

SSMK put a great deal of effort to prove that IPTW esti-
mation can be derived through a Bayes decision rule, defining
a conceptual population where a longitudinal randomized ex-
periment has been conducted. We appreciate the idea, which
might also thrill Bayesians.

However, weighting by the inverse of selection probabilities
is a well-known approach, not only in causal inference, but in
statistics in general, which dates back to Horvitz and Thomp-
son in 1952. In causal inference, the interpretation of the
weights as a tool to construct a pseudo-population, which re-
sembles a “target” population where there is no imbalance in
the observed variables is a weighting approach’s own feature;
it is not related to any specific inferential approach. According
to us, the critical issue underlying a weighting approach is not
the interpretation of the weights, but rather the specification
of the model used to estimate the weights, just as in obser-
vational studies with single-time point treatments focus is on
the specification of the propensity score, in order to obtain
estimates of the propensity score that balance the pretreat-
ment covariates between treatment groups, also accounting
for the degree of overlap in the covariate distributions.

The problem to assess the overlap condition (positivity as-
sumption) and to find a specification of treatment assignment
model leading to weights that satisfy the balancing property
is even more dramatic in longitudinal observational studies,
where we need to control not only for pretreatment baseline
covariates, but also for intermediate variables, which are si-
multaneously posttreatment outcomes and pretreatment con-
founders.

3. The Role of the Weights in a Fully
Bayesian Approach

Although the article promises to develop a ‘fully Bayesian pro-
cedure for estimating parameters of MSMs using IPT weight-
ing,’ the reading of the article may leave a nasty taste in a
Bayesian’s mouth. The approach proposed by SSMK is far
from standard Bayesian approaches, and in our view, it is not
actually fully Bayesian.

From a Bayesian perspective, all aspects of the observable
data must be modeled, and the target of inference is the
joint posterior distribution of all model parameters includ-
ing the parameters of the outcome model and the parame-
ters of the treatment assignment model. According to this
view, Bayesian inference for time-varying treatments follows
by specifying a joint model for intermediate confounders, fi-
nal potential outcomes and treatment assignment probabili-
ties (and possibly even for baseline covariates). Assumptions
may help simplifying the model. Under SI, the treatment as-
signment model does not depend on missing intermediate and
final outcomes. Therefore, a fully Bayesian approach for longi-
tudinal treatment under SI requires only a model for the joint
distribution of intermediate confounders and final potential
outcomes (and baseline covariates), at least if the parameters
of the treatment assignment model and the parameters of the
outcome model are a priori independent (see also Gustafson,

2012). Posterior distributions of causal effects are derived by
marginalizing over appropriate covariates distributions, as in
g-estimation methods. Thus, in a fully Bayesian perspective
weights can be ignored, because they do not enter the poste-
rior distribution of the causal parameters.

A fully Bayesian approach may end up with a very complex
model raising inferential challenges. However modern meth-
ods of computational statistics can make inference relatively
straightforward, as shown in Zajonc (2012) and suggested by
Gustafson (2012).

4. Designing a Longitudinal Observational Study

The importance of carefully designing observational studies
with single-time, often binary, treatments is well-known in
the causal inference literature (e.g., Rubin, 2008). We argue
that carefully designing a longitudinal observational study is
also of paramount importance.

Under SI, the core of the design phase of a study with
sequential treatments is to create a subpopulation of units
exposed to alternative treatment sequences, where the
distributions of the confounders, including both pretreat-
ment baseline covariates and intermediate (time-variant)
confounder variables, are overlapping and well balanced
across units exposed to alternative treatment sequences.

SSMK repeatedly stress that IPTW methods aim at con-
structing a pseudo-population without imbalances in observed
variables, formally defining the weights in terms of treatment
assignment probabilities. According to us, the specification
of treatment assignment probabilities, which need to be es-
timated from the data, deserves special attention, just as
the specification of the propensity score in non-longitudinal
settings. Indeed MSMs can be sensitive to misspecification
of treatment assignment model (e.g., Imai and Ratkovic,
in press).

We argue that the specification of the treatment assign-
ment model should be judged aiming at obtaining weights
that balance the distributions of baseline and time-varying
covariates across all appropriate sub-populations (e.g., Imai
and Ratkovic, in press).

The performance of IPTW estimators also depends on the
positivity (overlap) assumption. Assessing overlap in covariate
distributions is crucial because, even if SI holds, there may
be regions of the covariate space with relatively few units
exposed to specific treatment sequences. In such a case, some
weights can be extremely large making some units particularly
influential, and thus making inferences on causal effects less
precise.

The authors completely neglect how the problem of assess-
ing the degree of overlap in the confounder’s distributions can
be addressed in a longitudinal setting and provide no discus-
sion on the specification of the weights. They simply invoke
the positivity assumption and implicitly assume that speci-
fication of the treatment assignment model is correct. Con-
versely, we argue that a critical specification of the weights is
essential, as also pointed out by a recent strand of the litera-
ture, which is moving toward a better thought out construc-
tion of weights in longitudinal observation studies, proposing
methods to assess overlap in the covariate distributions and
evaluate the balancing property of the weights (Achy-Brou,



296 Biometrics, June 2015

Frangakis, and Griswold, 2010; Platt, Delaney, and Suissa,
2012; Imai and Ratkovic, in press).

Once a sub-population where there is overlap in the distri-
butions of the observed variables and there is no imbalance
in the observed variables has been constructed (e.g., by trim-
ming and/or matching using the treatment assignment prob-
abilities), one can move to the analysis phase. Given a good
design phase, in the analysis phase one can use any procedures
for estimating causal effects, including IPWT estimators and
Bayesian imputation methods.

SSMK emphasize that MSMs, coupled with weighting, do
not require to explicitly model intermediate variables and re-
lationships. We do not question the benefits that MSMs may
offer, but we believe that the authors should stress that the
advantages of MSMs are derived from the underlying assump-
tions of SI, positivity and correct specification of both the
treatment assignment model and the MSM. Correct MSM
specification is another critical assumption entering the anal-
ysis phase. We can understand that misspecification in the
MSM is a topic that goes beyond the aim of the article, but
feel the authors should have been clear about the critical as-
sumptions and provided some discussion on their plausibility,
at least in the empirical study.
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Saarela et al. are concerned with integrating propensity
scores into a Bayesian framework. Some of us have previously
written (Robins and Ritov, 1997; Robins and Wasser-
man, 2000; http://normaldeviate.wordpress.com/2012/08/
28/robins-and-wasserman-respond-to-a-nobel-prize-winner/;
posted 28 Aug 2012, accessed 1 Oct 2014) about this topic,
every time making much the same argument. Here, we
present a simplified version that captures the main points.

A Simple Setting

Though our argument applies to the complex observational
data considered by Saarela et al., it is easier to understand
it in the simpler setting of a double-blind, placebo-controlled
randomized clinical trial of a non-time-varying treatment and
under complete compliance. In the spirit of the authors, we
assume the trial subjects are representative of a much larger
population and the trial results will guide treatment decisions
in the population.

Let V = {Zi, Xi;Yi; i = 1, . . . , n} denote the data on the n

trial subjects, where Zi is the binary treatment arm indica-
tor, Yi is the binary outcome, and Xi is a high-dimensional
vector of baseline covariates. The randomization probabilities
pr [Z = 1|X] are chosen by a randomizer. By de Finetti’s the-
orem (e.g., Bernardo and Smith, 1994), a Bayesian can write
the marginal density p (V) of V

p (V) =
∫

φ,γ

p (Z,X,Y;φ, γ)p (φ, γ) dμ (φ) dμ (γ) ,

p (Z,X,Y;φ, γ) = L1 (φ)L2 (γ) ,

L1 (φ) =
n∏

i=1

L1i (φ) , L2 (γ) =
n∏

i=1

L2i (γ) ,

where L1 (φ)=f (Y |Z, X;φ1) f (X;φ2) and L2 (γ)=f (Z|X, γ).
We have already integrated out the authors’ unmeasured
frailty U.

http://normaldeviate.wordpress.com/2012/08/28/robins-and-wasserman-respond-to-a-nobel-prize-winner/
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The propensity score e (X; γ †) = pr [Z = 1|X; γ † ] is known
to the randomizer by design, but let us provisionally assume
that our Bayesian does not know it so he treats γ as random.
[We assume there exist true values

(
φ†, γ †

)
of (φ, γ) but, even

if not, our argument, slightly modified, is still valid].
Like the authors, we take our goal to be the estimation

of the counterfactual probabilities θ† = (
θ
†
0, θ

†
1

)
, where θ†z =

pr (Yz = 1), and Yz is a subject’s counterfactual response under
treatment level z. Randomization implies that θ†z is identified
and equals

θ†z =
∫

pr
[
Y = 1|Z = z, X = x;φ†

1

]
f

(
x;φ†

2

)
dx

Why Bayesian Inference Must Ignore the
Propensity Score

Bayesian logic is rigidly defined: given a likelihood and a
prior, one turns the Bayesian crank to obtain a posterior.
There is no wiggle room. A fact concisely summarized in
the slogan “There is no Bayes but Bayes.” Because the
parameter θ of interest is a functional of the parameters φ,
the posterior for θ is completely determined by the posterior
of φ. If φ and γ are a priori independent, the posterior of φ

is obtained from the L1 (φ) factor of the observed likelihood
and the prior p (φ) for φ.

Therefore, Bayesian inference concerning θ cannot be
a function of the propensity score e (X; γ †) because the
Bayesian’s posterior for φ—and thus for θ—does not depend
on γ. Saarela et al. assume φ and γ are a priori independent
and yet argue that inverse probability weighting by a function
of the propensity score e (X; γ †) can be given a Bayesian
interpretation. In light of the above, their arguments cannot
be valid.

Why Propensity Scores Should Not be Ignored

Why do the authors, as Bayesians, work so hard to include
propensity scores in their inference when, according to Bayes,
they are irrelevant? Our guess is that the authors recog-
nize that an analysis—Bayesian or otherwise—that ignores a
known propensity score can go seriously wrong because one’s
prior knowledge of pr [Y = 1|Z = z, X] is meager when X is
high-dimensional.

Specifically, consider any estimator θ̂ of θ† that does not de-
pend on the known propensity score. Robins and Ritov (1997)

prove that θ̂ cannot be uniformly consistent for θ† over the
large infinite dimensional model M that includes any laws
bz (X) = pr [Y = 1|Z = z, X], any density f (x) for X, and any
propensity function e (X) = pr [Z = 1|X] bounded away from 0
and 1. The practical implication of this theorem is that, when-
ever e (X; γ †) is a complex function of our high dimensional
X and the (infinite-dimensional) parameters γ and φ are a
priori independent, the posterior for θ will fail to concentrate
around the true value of θ† as n goes to infinity because any
model we specify for f (Y |Z, X;φ1) is almost certainly incor-
rect (imposing smoothness will not really help). This practical
implication is obvious; the Robins and Ritov theorem serves
as a mathematical formalization.

In contrast, estimators that use the known randomization
probabilities, like the Horvitz-Thompson (1952) estimator

of θ†z , can be uniformly n1/2-consistent over M. The deficien-
cies of the Horvitz-Thompson estimator—it may exceed 1,
it ignores data on X except for the one-dimensional sum-
mary e (X; γ †), and it can be very inefficient—can be remedied
by using an improved version: the so-called locally semipara-
metric efficient regression estimator (Scharfstein, Rotnitzky,
Robins 1999). In observational studies, this estimator is dou-
bly robust when the unknown e (X; γ †) is replaced by an es-
timate. More efficient doubly robust estimators are reviewed
by Rotnitzky et al. (2012).

When the Priors are Dependent

Our argument relies on the authors’ assumption that φ and γ

are a priori independent. This assumption is often reasonable,
as shown in the Appendix. However, when φ and γ are a priori
dependent—which implies that the posterior for θ will depend
on the propensity score e (X; γ)—two new issues arise.

First, in observational studies with γ † unknown, the pos-
terior for γ will depend on the data through the φ part of
the likelihood. The authors find this troubling since this pro-
cedure fails to ”retain the balancing property of propensity
scores.” But again true Bayesians cannot have it both ways.
The parameters φ and γ are either a priori independent or
they are not. If one wants to use dependent priors to make
the posterior for θ to depend on the propensity score, then
one must accept that the posterior for the propensity score
will depend on the φ part of the likelihood.

The above is not only a philosophical issue concerning
schools of inference. It implies that true Bayesian inference
based on finite-dimensional working models will generally fail
to be doubly robust since misspecification of either the out-
come or propensity model will bleed into the estimation of
the parameters of the other correct model. As the authors
discuss in their supplemental material, this lack of double ro-
bustness confronted both McCandless et al. (2010) and Zigler
et al. (2013) who proposed approaches to prevent the bleed-
ing. But, as useful as the approaches may be, they cannot be
truly Bayesian.

Second, even in a randomized trial with known propensity
score, simply making φ and γ dependent a priori does not
imply that the posterior for θ will concentrate around the
truth. The dependent prior still has to be carefully engi-
neered for that to happen. As an example we can construct
a locally semiparametric efficient Bayes estimator θ̂Bayes as
follows. We assume that, conditional on the known γ † and
k given functions wm,z(x), pr (Y = 1|Z = z, X = x;φ1,z), φ1,z =
(η1,z, . . . , ηk,z) is a finite-dimensional parametric function

expit
{∑k

m=1
ηm,zwm,z(x)

}
with wk,z(x) = 1/pr(Z = z|X = x; γ †).

Then, if we put smooth or non-informative priors over the
parameters φ1z = (η1,z, . . . , ηk,z), the Bayes estimator θ̂Bayes

will be asymptotically equivalent to the frequentist locally
semiparametric efficient estimator cited earlier and thus be
n1/2-consistent. Thus, by using carefully tuned dependent
priors, we have obtained a Bayes estimator that has good
frequentist behavior by mimicking a locally semiparametric
efficient frequentist estimator.

But this is a Pyrrhic victory. If we need to engineer the de-
pendent prior just to mimic a frequentist answer, is it really
Bayesian inference? We call Bayesian inference which is care-



298 Biometrics, June 2015

fully manipulated to force an answer with good frequentist
behavior, frequentist pursuit. There is nothing wrong with
it. But if you want to be Bayesian, then accept that, in this
example, your posterior will fail to concentrate around the
true value.

Conclusion

Our arguments above may have left readers thinking ”why
bother? If you want good frequentist properties, just use a
frequentist estimator rather than embarking on a frequentist
pursuit.” Indeed, it might appear that we are arguing that
the Bayesian machinery should be reserved for implementing
subjective Bayes inference that maps prior beliefs to posterior
beliefs via the likelihood function, without regard for the fre-
quentist properties of the resulting estimators. While we do
believe that investigation of this mapping through Bayesian
sensitivity analysis and/or robust Bayes is important and ex-
tremely useful, we also believe that the Bayesian approach
can play other important roles, even when one is interested
in good frequentist properties. We consider three cases.

First, Bayesian logic and machinery may sometimes lead to
procedures with provably better frequentist operating charac-
teristics than their current competitors, even asymptotically.
An example is the conditional predictive and partial posterior
predictive p-values of Bayarri and Berger (2000).

Second, when modeling complex phenomena (particularly
in small and moderate samples), there may be Bayesian ap-
proaches that are rather straightforward to motivate and im-
plement even when there is no good frequentist alternative,
so the Bayes estimator is the best, or perhaps the only, fre-
quentist game in town.

Third, to improve decision making under uncertainty, one
can adopt a Bayes-frequentist compromise (Robins 2004, Sec
5.2) that combines honest subjective Bayesian inference with
good frequentist behavior even when, as above, the model is
so large and the likelihood function so complex that standard
(uncompromised) Bayes procedures have poor frequentist
performance. It follows immediately from our earlier argu-
ments that such a compromise requires that our subjective
Bayesian decision maker is only allowed to observe a specified
vector function of X (depending on e (X; γ †)) but not X

itself. In this way one can circumvent the problem referred
to by Robert (http://xianblog.wordpress.com/2013/01/17/
robbins-and-wasserman; posted 17 Jan 2013, accessed 01 Oct
2014) as the curse of marginalization: ”the classical Bayesian
approach is an holistic system that cannot remove informa-
tion to process a subset of the original problem.”
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Appendix

Example of A Priori Independence of the Propensity Score

Suppose a health insurance company needs to estimate the
fraction θ of its patient population that will have a myocardial
infarction (MI, Y = 1) in the next year, so as to determine the
need for cardiac unit beds. They have 300 potential risk fac-
tors X = (X 1, . . . , X300) measured on each member. A general
epidemiologist had earlier studied risk factors for MI by fol-
lowing 5000 patients for a year. Because MI was a rare event,
he oversampled subjects whose X, in his opinion, indicated
a higher conditional probability b (x) = E [Y |X = x] of Y = 1.
Hence, with Z the inclusion indicator, the sampling fraction
e (x) = pr (Z = 1|X = x) was a known but complex function.

The world’s leading heart expert, our Bayesian, was hired
to estimate θ = ∫

b (x)p (x) dx, where p (x) is the marginal
density of x, based on the study data (X,Z,ZY). As world’s
expert, his beliefs about the risk function b (·) would not
change upon learning the propensity score function e (·), as
e (·) only reflected a nonexpert’s beliefs. Hence the functions
b (·) and e (·) are a priori independent. [Nonetheless, he would
believe with high probability that the random variables b (X)
and e (X) were positively correlated, knowing that the epi-
demiologist had read the expert literature on risk factors for
MI.]

Robins and Ritov (1997) showed that once any Bayesian,
cardiac expert or not, thoroughly queries the epidemiologist
who selected e (·) about his reasoned opinions concerning b(·)
(but not about e(·)), the Bayesian will then have independent
priors. The idea is that once you are satisfied that you have
learned from the epidemiologist all he knows about b(·) that

http://xianblog.wordpress.com/2013/01/17/robbins-and-wasserman
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you did not, you will have an updated prior for b (·). Your
updated prior for b (·) cannot then change if you subsequently
are told e (·). Hence, we could take as many Bayesians as

you please and arrange it so all had b (·) and e (·) a priori
independent. This last argument is quite general and applies
to many settings.

Rejoinder

Olli Saarela,
David A. Stephens,
Erica E. M. Moodie,
and Marina B. Klein

The authors would like to thank all the discussants for their
contributions and insights. In particular, the numerical re-
sults by Elliott and Little (from here on, EL) and Gustafson
shed further light into the behavior of the different approaches
for Bayesian causal inference. Mattei and Mealli (MM) point
out a lack of clarity in our exposition for which we apolo-
gize and which we attempt to rectify below. Finally, Robins,
Hernán and Wasserman (RHW) reiterate the incompatibility
of a standard Bayesian formulation under independent prior
specifications with the goal of uniformly consistent inference
concerning the parameter of interest.

To recap: our paper attempts to demonstrate the formu-
lation of Bayesian inference procedures for the now widely
used marginal structural model (MSM) in particular, and
for two-stage inverse weighting procedures in general. Due
to space limitations in the original manuscript, we did not
include a completely comprehensive summary of issues re-
lated to MSMs, presuming some familiarity on behalf of the
reader. In particular, as MM comment, we did not discuss
the MSM estimand at any length: we reiterate here that our
estimand is merely the usual MSM estimand, that is, a pa-
rameter in a hypothesized marginal model relating the total
effect of time-varying exposure to the counterfactual outcome
(see Section 3.1). This parameter has a precise Bayesian in-
terpretation through the de Finetti representation of a model
for exchangeable observable quantities under specific assump-
tions concerning the data generating process – see Equation
(6) in the main paper. However, crucially, these assumptions
are presumed not to hold for the actual data generating mech-
anism at hand, requiring us to use reweighting methods. Our
posterior predictive formulation of Bayesian inference follows
for example, Walker (2010); to derive the estimator, we pro-
pose a utility function – specified as a loss function for a future
predicted outcome – and compute its posterior (predictive)
expectation. This computation is carried out using simula-
tion based methods related to the weighted likelihood boot-
strap of Newton and Raftery (1994), and also to the Bayesian
bootstrap of Rubin (1981).

We now try to address in detail two specific points raised
in the discussion, namely whether an inference procedure fea-
turing IPT weights or propensity scores can ever be fully
Bayesian (a question raised by both RHW and MM), and
whether modeling of the treatment assignment mechanism is

really preferable to modeling of the outcome and covariate
processes (a question raised by MM, EL, and Gustafson).

1. Is it Bayesian?

First, we are in full agreement with RHW that from purely
likelihood-based arguments, the treatment assignment mech-
anism plays no part in Bayesian inferences of marginal causal
effects. Indeed, we noted that if the models are correctly
specified, the parameters γ characterizing the treatment
assignment mechanism are independent of the outcomes
(Formula (4)). A dependency between these can arise if the
outcome model is misspecified (Supplementary Appendix C),
but in this case the balancing properties of the propen-
sity scores would be lost, as has also been pointed out by
McCandless et al. (2010) and Zigler et al. (2013). On the other
hand, the marginal model parametrized in terms of θ is fully
specified by the models for the outcome and covariate pro-
cesses parametrized in terms of φ (Appendix), and inferences
on θ can be obtained through marginalization if one is willing
to model the full longitudinal data generating mechanism.

RHW proceed to make a convincing argument as to why
one should not ignore propensity scores in favor of modeling
the outcome and covariate processes; indeed this was also
our motivation to study whether approximate posterior
distributions for θ could be generated without specifying the
models in terms of φ. RHW also point out – in line with the
Robins–Ritov–Wasserman logic outlined in the Discussion
– that no ‘strict factorization based’ estimator, such as
that derived using Bayesian logic under prior independence
assumptions, can perform uniformly adequately. As stated
above, we concur with this view. However, through the use of
a posterior predictive approach, we have constructed a fully
Bayesian ‘estimator’ that is not strict factorization based.

We used a posterior predictive approach, where the
assumed marginal model takes the role of a parametric utility
function (cf. Walker, 2010). Our objective is to produce an
estimator of the required marginal parameter by maximizing
a posterior predictive expected utility; we feel that this
is appropriately referred to as a Bayesian procedure. The
unavailability of data suitable for computing the desired pos-
terior predictive quantity requires us to adopt a simulation-
based, Monte Carlo strategy for computing the necessary
expectation integral. We have access to data collected in the
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observational study, so may compute the corresponding obser-
vational posterior predictive distribution; we then use impor-
tance sampling ideas to rewrite the desired expected utility
calculation in terms of this observationally derived quantity.

Although the change of measures or importance sampling
argument has been previously used for deriving IPT weights
by various authors – it is, of course, central to the con-
struction of the classical Horvitz-Thompson estimator – to
our knowledge it has not been used for this purpose in
the Bayesian context, where it also suggests an inference
procedure. Thus, we contend that the proposed approach
is Bayesian in the same way that the weighted likelihood
bootstrap of Newton and Raftery (1994) is; if we had ac-
tually observed a sample v = (x̃, y, z̃) under the hypotheti-
cal completely randomized setting E, so that it would make
sense to directly approximate the posterior predictive density
p(v∗

i | v, E) with the Bayesian bootstrap
∑n

k=1
πkδvk

(v∗
i ) where

π = (π1, . . . , πn)∼Dirichlet(1, . . . , 1), we would obtain the
maximum likelihood solution arg maxθ E[�(y∗

i | z̃∗
i , θ) | v, E] =

arg maxθ

∑n

i=1
πi�(yi | z̃i, θ). Here the weights π are a means

to generate a probability distribution over the space of θ. In-
troducing the importance sampling weights to account for
the non-random treatment assignments adds variability to
the resulting estimator, depending on how strongly the treat-
ment assignments depend on the covariates. Furthermore, the
approach of Newton and Raftery (1994) is closely related
to that of Rubin (1981), who also proposed Dirichlet sam-
pling approximately to generate the posterior quantities of
interest. Clearly, multinomial resampling (the standard non-
parametric bootstrap) is a limiting special case of symmetric
Dirichlet sampling (Rubin’s Bayesian bootstrap) with prior
parameters presumed taken to be infinitely large.

There are some drawbacks to this sampling approach to
Bayesian inference; first, it does not allow direct specification
of an informative prior for θ, although this can be added in
afterwards by using the numerically obtained function over
θ in place of a likelihood in Bayes’ formula, as discussed in
Section 3.4. Secondly, since the estimation procedure is for-
mulated through an out-of-sample predictive criterion, condi-
tioning on a given sample, it does not account for the variance
reduction due to sample balance obtained through estimation
of the IPT weights. This is because the weights are fixed to
their best estimates based on the observed sample, rather than
re-estimated in the predicted ‘resamples’, as in the frequen-
tist bootstrap. Thus, while the proposed estimation procedure
does not (and should not) add a variance component due to
uncertainty in the estimation of the weights, it does not re-
duce the variance either, and thus results in a conservative
variance estimator. (This was not apparent in our simulation
setting of Section 5, but in other settings the variance reduc-
tion may be more substantial).

We can modify the weighting argument as follows to get
closer to the correct frequentist – that is, repeated finite sam-
ple – properties. We note first that the expression pn(v

∗
i ) =∑n

k=1
πkδvk

(v∗
i ) for the posterior predictive density p(v∗

i | v,O)
implies also an expression for any of the conditional distribu-
tions

pn(z
∗
ij | z̃∗

i(j−1), x̃
∗
ij) =

∑n

k=1
πkδ(̃zkj ,̃xkj)(z̃

∗
ij, x̃

∗
ij)∑n

k=1
πkδ(̃zk(j−1) ,̃xkj)(z̃

∗
i(j−1), x̃

∗
ij)

,

j = 1, . . . , m, which are thus fully determined by π and v. In
practice it is not feasible to directly use the non-parametric
expression for estimating the treatment assignment proba-
bilities, and a parametric specification p(z∗

ij | z̃∗
i(j−1), x̃

∗
ij, γj,O)

would be used instead. However, the parameters γj themselves
may in turn be estimated using the weighted likelihood boot-
strap, as

arg max
γj

E
[
log p(z∗

ij | z̃∗
i(j−1), x̃

∗
ij, γj,O) | v,O

]
= arg max

γj

n∑
i=1

πi log p(zij | z̃i(j−1), x̃ij, γj,O)

≡ γ̂j(v;π).

Since γ̂j(v;π) is taken to be a sampled value from the posterior
distribution p(γj | v), this motivates approximating pn(z

∗
ij |

z̃∗
i(j−1), x̃

∗
ij) parametrically with p(z∗

ij | z̃∗
i(j−1), x̃

∗
ij, γ̂j(v;π),O).

A similar argument would apply for the parameters αj, j =
1, . . . , m, specifying the marginal treatment assignment prob-
abilities.

Considering now the original utility function given a real-
ization of π, we get

E[�(y∗
i | z̃∗

i , θ) | v, E]

=
∫

v∗
i

�(y∗
i | z̃∗

i , θ)

∏m

j=1
pn(z

∗
ij | z̃∗

i(j−1))∏m

j=1
pn(z

∗
ij | z̃∗

i(j−1), x̃
∗
ij)

pn(v
∗
i ) dv∗

i

=
n∑

i=1

wiπi�(yi | z̃i, θ),

where the non-parametrically specified weights would in prac-
tice be replaced with the parametric versions

wi =
∏m

j=1
p(zij | z̃i(j−1), α̂j(v;π),O)∏m

j=1
p(zij | z̃i(j−1), x̃ij, γ̂j(v;π),O)

.

The modified computational algorithm now involves re-
estimating the IPT weights at each realization of π. Using the
multinomial distribution instead of the Dirichlet distribution
would (with flat priors) reproduce the frequentist bootstrap.
Simulation results for the modified Bayes/Dirichlet estimator
are reported in Rejoinder Table 1; the same simulation set-
ting as in Section 5.2 was employed. These results resemble
those for the frequentist IPT weighted estimator combined
with the adjusted sandwich variances (Table 1), with some
undercoverage visible when large weights are present. Since
the frequentist bootstrap, which also involves re-estimation
of the weights in each resample, does not show such under-
coverage, we take this to be related to the properties of the
Dirichlet and multinomial distributions. For comparison, in
the real data example of Section 6.2, the point estimate and
its standard error with the re-estimated weights were 0.302
and 0.339, respectively, also showing slightly smaller variabil-
ity compared to the previous results in Table 3. Further sim-
ulations would be needed to investigate the properties of the
modified estimation procedure under different settings.
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Table 1
Results for point and variance estimators of θ2 over 1000 replications. The columns correspond to estimator, mean point
estimate, bias relative to the true value of θ2 (RB), Monte Carlo standard deviation of the point estimates (SD), mean
standard error estimate (SE), standard error estimate bias relative to the Monte Carlo SD, and 95% confidence interval

coverage probability (CP)

Scenario Estimator Mean RB (%) SD SE RB (%) 95% CP

b = 0; θ2 = −0.247 Bayes/Dirichlet −0.256 −3.613 0.108 0.105 −3.403 94.4
b = 0.15; θ2 = −0.569 Bayes/Dirichlet −0.577 −1.405 0.143 0.133 −7.052 93.3
b = 0.3; θ2 = −0.777 Bayes/Dirichlet −0.762 1.915 0.212 0.175 −17.635 90.2

2. Is Modeling of the Treatment Assignment
Mechanism Preferable to Modeling of the
Outcome and Covariate Processes?

MM point out that also IPT weighted approaches to infer-
ence require plenty of identifying and modeling assumptions;
in particular, we need to assume that the models for the
treatment assignment mechanism are correctly specified, all
the relevant confounders are measured, and that the posi-
tivity/overlap condition is not violated. Whilst noting that
these assumptions are arguably less restrictive than the re-
quirement to construct a completely correctly specified longi-
tudinal model for exposure and outcome, we fully agree that
the practical evaluation of these properties is crucial, and this
is equally the case for the inference procedure proposed herein.
However, because the practical issues are the same, and have
been discussed extensively and in detail by other authors (e.g.,
Cole and Hernan, 2008; Xiao, Moodie, Abrahamowicz, 2013,
and the references given by MM), we did not discuss them
at length. It is certainly true that especially in longitudinal
settings the variability of the estimated weights can become
excessive, and lead to substantial loss of precision compared
to likelihood-based inferences based on modeling the covari-
ate and outcome processes, as is also demonstrated in the
simulation study by EL. However, in terms of bias, as noted
in the previous section, a modeling strategy based on finite-
dimensional parametrizations is arguably likely to be more
successful for the treatment assignment mechanism than for
the distribution of all longitudinal covariates (i.e. the con-
founders and mediators), in particular if the longitudinal co-
variates are high-dimensional.

Other issues were also raised; for instance, many of the dis-
cussants preferred the more conventional Bayesian formula-
tion where potential outcomes are considered as missing data.
We did not rely on potential outcomes notation to formulate
the causal estimands and estimators, but rather opted to de-

fine these in terms of the observational and experimental mea-
sures for exchangeable observable sequences via de Finetti’s
representation. We do not wish to enter into a debate on the
respective merits of different notational systems for essentially
equivalent approaches to causal modeling; the causal infer-
ence problem may be formulated alternatively as a missing
data problem, or a prediction problem (cf. Greenland, 2012).
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