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A Proofs of technical results

A.1 Some matrix algebra

Lemma A.1 Let
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L°(B) = 1Y - XB|2 = Str(Y = XB)'(Y - XB) (e — Y wiiBin)*.
7j=1

Then
OL’(B) /0B = =% (Y — XB).. = —Sji + 1511565

where Sjr = x3(Y — XB9) .

A.2 Proof of Theorem 3.1

Following Lemma [AT]
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For a coordinate f3;;, in B, denote G, = {g : Bjx € B, € G}, then when L(B) is differentiable

at ﬁjlm

OL(B ;
86(.k) = —Sie/n+ 1%113856/n + Asign(Bix) + > AeBik/ | Bgll2-
J Gik

If ;i > 0, then for any B, € Gji, ||B,||2 > 0, and

OL(B)
B —Sj/n+ [1%13855/n + Nk + Y AgBin/ | Bylla-
J Gik
Notice that 0L(B)/08;, > 0 if and only if
Sj — n)\jk JAN >4

ﬁ'k 2 — Mik>

TR g, A/ IByll "
and OL(B)/0p;, < 0 if and only if 5;;, < Bﬁ So fixing all other coordinates of B, if 3, > 0,
then L(B) is monotone increasing with respect to (;;, when f;;, > Bﬁ and decreasing when

B < B;; Therefore, if 33 minimizes L(B) with respect to 3;; when (3, > 0, then

jk,min
Sik—n\jk ] it g, .
IR VTR S W TP Sik > nAjk (A1)
" 0, otherwise.
Similarly, if Bj_kmm minimizes L(B) with respect to f;; when (;; < 0, then
Sjk-i-n)\jk ) f ' B )\
b= TS /IRl Si < = Ajk (A.2)
a 0, otherwise.

Based on both (A1) and (A2), when 8 # 0, the minimizer 3;; can be summarized into

a unified form:
o osen(Si) (IS — nAze)
ik = - .
1113 + 132 (geg,p Ao/ 1 Bgll2

When f;, = 0, we discuss two separate cases according to weather all the groups con-

taining [3;, are zero groups or not. First, if none of the groups in Gj; is a zero group, then

Bjk needs to satisfy the subgradient equation

Sik/n = [1%11385%/n = Ajwu+ Y Bin/ | Byl (A.3)
Gik



with |u| < 1. Then a similar discussion to the case when §;; # 0 based on whether v > 0 or
u < 0 in (A.3) yields the same expression:
; sgn(Sjk) ([558] — nAgn)

ik = .
%113 + nZ{gng’k} Ag/ || Byll2

Second, if some of the groups in G,j, are zero groups, then neither | - | nor || - [|; in L(B)

is differentiable at zero. Let G = {g : Bjx € By € G, | Bl|; > 0}. Then for any zero group

By in Gj;, and for all 3;;, € By, Bjk needs to satisfy the subgradient equation:

Sik/n = 11113855/ = gt + Agovii + Y AgBin/ || Byll2, (A4)

9
where u is the subgradient scalar for the L; norm |- | and v is the subgradient vector for
the Ly norm || - || with constrains |u| < 1 and ||v]]s < 1, and Ay is the tuning parameter

associated with Byg. It can be seen directly (similar to the case of 5, = 0) that yields

~

BgO == 0 lf

> (Sil/n =A% < Mo

{Jk BjkEBgO}

A.3 Proof of Theorem 3.3

Lemma A.2 Under the assumptions in Theorem 3.3, for any B € RP*Y with probability at

least 1 — (pq)l_A2/2,
1 . N . N
~IX(B —B)|3+AB- B +2)_ A\lIB, - Byll2 (A.5)
g€eg
1 . A N
< ~[1X(B" - B)[3+4x > B — Bl +4 Y AIBy — Byl
jkeJi(B) g€J2(B)
r 4 I * 4 r *
MBS sy Y IXXB-B )P < o5 IXXB-B)E (A0)
jkeJi(B)



Proof. For any B € RP*? we have

1 . . . 1
E” Y- XBH% + 2)\|B|1 + Z 2)‘g||Bg||2 < E” Y- XBH% + 2)\|B|1 + Z 2)‘g||Bg||2-

g€g g€y

Plugging Y = XB* + W into the above inequality, we obtain

1 L 1
LIX(B - B)IF < -IX(B - B+ ZZ (B - Bl

i=1 k=1
+2M(IBl = [Bl1) + ) 2X(|Byll> — || Byll2),

g€g
where [X(B — B)];, denotes the ik*1 element of the product matrix X(B — B) and wyy, is

the ikth element of W. Notice that

S KB Bl — S {z [z vl m] }

i=1 k=1 i=1 (k=1 Lj=1

E TijWik

< max

Syl >) >

ZZ [Bn = Byl = | X" Wc| B~ B,

k=1 j=1

Sh x>y l>) >

X"W.
Let Vix = xj -wy, 1 < j < p, 1 <k < g Since wy ~ N(0,0%1,) for 1 < ¢ < Q,
then var(Vjy) = x%cov(w,)x, = noZ. Therefore (no2)~"/?Vj; are standard normal random

variables. Consider the random event
2
A= {—|XTW|OO < )\} :
n
It is easy to see that the complement of A can be expressed as
An
A = Atleastone|V]k|>2 1<j<p1<k<yq

Denote B(0,An/2) to be a 1-dimensional ball centered at 0 and with radius An/2, then

PrAY < zp:ijpr{ ]kng(o %)} :p;Pr{(nai)‘lﬂ‘/jk%B(U’ A;;f)}

j=1 k=1

Anl/? _\2p B
< pqur{IZIZ }Splep< )Z(pq)1 A2

20 8o?
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where Z is a standard normal random variable, and the last inequality is obtained by
Pr{|Z] > a} < exp(—a?/2). But on event A, we have

1 . ) )
~IX(B* = B)[3 + AlB— Bl +2) A, B, — Byl2

geg

. ) )
< EHX(B — B)|j3+2X\(|B— B|; + |B|; — |B1)

+2) "N\ (I1B, — Bylla + | Byll2 — | Byl2)

geg

1 . . )
< —[|X(B" = B)|3 + 4 Do 18— Bl +4 D A(IBy = Byla.

jkeJi(B) g€J2(B)

This completes the proof of the first inequality in Lemma [A.2]

To prove the second inequality, we use the KKT conditions and obtain

(1/n)[X*(Y — XB)Jj. = 2sgn(fjn) + 2 deg AgBin/ | Blla, B # 0;
(1/m)[[X*(Y = XB)|ji| <2A+23, A Bjx = 0.

From the first condition we can see that Vﬁjk #0,

A< XY - XB)J|

On the other hand, we have on A

1 . 1 .o
XY - XB)ul < [XUX(B - B+ (X Wl
1 . 1
< CIXX(B' - Byl + X W
1 . A
< = “— B)a + 2.
< XX(B - B)lul +
Then combine the above two inequalities, we have
A1 .
S < IXTX(B - Bl
Therefore
. « 4 « x
MB) = KB < oy 0 IIX'X(B— Bl < 15 X'X(B - B

jkeJi(B)



This completes the proof of Lemma [A.2 O

Proof of Theorem 3.3.
By setting B = B* in (A) in Lemma [A.2] we have that on event A,

1 I * A * I *
~IX(B-B W3 < 4 D0 Bu—Bul+4 > MNIB,— Bl (A7)
jkeJi(B*) g€J2(B*)
1/2
< AP B-B)nel+4| > A I(B = B) sy 12
g€ J2 B*)

The last inequality is by Cauchy-Schwarz. Specifically, we have

2 2
Z |Bj = Bkl = Z 1 X |Bjk = Bl
jkeJi(B*) jkeJ1(B*)
< | 3 2| 3 1Ba-sL
jkeJi(B*) jkeJi(B*)

= 7|(B-B") s

and

2
Yoo NIB =Bl | < | YA > 1B, — Byl

g€ J2(B*) g€ J2(B*) g€ J2(B*)

Also by inequality ([A.D), on event A, we have

AB- Bl +23 A\|B, - By (4-8)
geg
<AN ) Bk —Brl+4 D AlIB, — Bl
jkeJi(B*) g€J2(B™)

This is equivalent to

A Z ‘@k ;k|+2 Z )‘gHBg_B;H2

jkeJe(B*) geJS(B*)

<30 Y B —Bl+2 > A\IB, - B

jkeJi(B*) g€J2(B*)



Thus the condition in Assumption 1 holds with A = B— B* and pg = Ag/A. Therefore,

S IX(B = BY)|» S IX(B = BY)|l»
||(B - B )J1(B*)H2 < K1n1/2 ) ||(B —B )J2(B*)H2 < K2n1/2 )
Plugging the above two inequalities into [A.7)), we have
i[5 \2 1/2
1 . 112 4or1/? < g€J2(B") 9) - .
UxB-BE < | DL x(B - B,
L\ 172
axelz AN (deJz(B*> Pg) . .
- iz T | X(B — B2,
Kin Koy/1

which gives
2

o\ /2
ri/2 n (deJz(B*)pg)

R1 Rg

1 .
~[|X(B - B)|l; < 16)*
n

Define || All2,1 = 3 cgaugr || All2 for a matrix A, where each coefficient in G' = G, forms

a group. Hence

IB- B,y = [B-B|i+Y |B,~ Bl (A.9)
geg
< (c+1)|B- B (A.10)

Then we have
A+pN)[|B=B'|l21 = A|B—B'[l21+ p\|B — B||2:
< (c+1)AB—B'|1 + pA||B — B|2 (by (AI0))

= (¢c+DAB=B'|i+pAlB= B'[i + Y pA|B, - B> (by (A3))

geg
< (c+2AB-B|i+ > X\|B, - Bl
geg
< (c+2AB-B1+2> \|B, - B;|>
geg
< (c+2) [AB=B1+2> X\|B, - Bl

geg



By (A8) and the last inequality in (A7) we obtain

14+p. =
—)\||B- B*
OB~ B
<AB- B +2Y 0B, - Bl
g€y
<AN D BBl +4 Y AlBy— Bills
jkeJ1(B*) g€ J2(B*)
1/2
<I(B-B el +4 | D> A (B=B)nml:
g€J2(B")
5 \2 1/2
4or1/? 4( g€ J2(B") 9) > "
- Kint/2 Konl/2 IX(B = B)ll2
)\ /2 5\ /2
a2 A (deJz(B*)pg> oy [ (deJz(B*)pg)
< dn=)\ +
Kint/2 Konl/2 K1 Ko
2\ /2 2
= 16\ ri/2 + <2965J2(B*)p9) 5
K1 K2
Therefore,
> S\ /2 2
) . 16(c+2)\ [ 71/ < geJ(B*>/)g>
|B- B, < 0*2 AT

1—|—,0 K1 K9

1/2
32(c+2)cA <log(pq))1/2 ri/2 N (deJz(B*) p3>

1—|—,0 n K1 K9

It is trivial that |B — B*|; < ||B — B*||2.1.
From (A6) in Lemma [A-2] we obtain

4
A2n2

dpmax
A\2n

Mi(B) < 551 X"X(B - B')|l; < IX(B — B3,



where the second inequality is from

IIX*X(B~B")ull; = (B-B)3X"(XX")X(B - B').

< nwmaXHX(B - B*)ng

for each 1 < k < ¢. By the upper bound of | X(B — B*)||2 we have

2

1/2
2
. r1/2 (Z cJo(B*) P )
Mi(B) < 64t | 5t =

A.4 Proof of Proposition 4.1

To prove Proposition 4.1, we first show the following lemma.

Lemma A.3 For every pair of (j,k), the sequence of coordinate decent estimates {B;?) :
m=0,1,2,---} obtained at each step m by solving the following equation

sgn(Sjr) (195l — nAjk) .
12113 + 13" (geq: sue,, 1B, 250y Ao/ (IBy—im I3 + [Bjxl*)/?

Bix = (A.11)

for Bjk while fizing others converges to a global minimizer of the objective function (2) in the

main text.

First, it is easy to see that the exact solution of exists. If ||Bg_(jk)||2 = 0, the
close form solution of ([A.11) is just the lasso solution. If HB’g_(jk) |2 # 0, then the right hand
side of (A.IT) is a continuous function of Bjk, which is monotone when Bjk > 0 or Bjk < 0,
bounded away from zero when Bjk = 0, and bounded away from 4+oco when Bjk goes to too,

therefore must intersect with either y = Bjk ory = —Bjk. Therefore an exact solution of

(A11) must exist.



Wu and Lange (2008) proved the convergence to a minimal point of the lasso objective
function for the greedy coordinate descent algorithm. In a very similar way, one can extend
the proof to the multivariate sparse group lasso objective function and the coordinate descent
algorithm of iteratively solving for the exact solution of (A.11]). Due to significant overlapping

with Wu and Lange (2008), we omit the proof of Lemma [A.3] here.

Proof of Proposition 4.1.
Denote {B](Z"b)} the sequence of estimates of jk™ coordinate from the coordinate descent,

~ (m—1
algorithm that solves equation (A.I1]) in each step indexed by m. Starting from B( ),

MCD(m 1)

denote ) the one step update of the jk* coordinate by the mixed coordinate descent

algorithm. We prove in the following that
BT < 185 < 185" (A12)

with equalities hold only when | B;km)\ = | B§Zn_1)|.
First, if BAJ(Z%) is updated by (3) in the main text, then (A.I2)) is automatically satisfied
since
0= 1801 = 18 < 183
Otherwise, if BAJ(km) is updated by (II) or (III) or (IV) in Section 4 of the main text, then

it must be one of the following cases.

(i) If
m—1 Alm - (‘S]k| - n)\Jk)
B](k )<ﬁ]('k): (ml 12<07
HX]HQ +nz{geg B;xEBy, IIB('" Y l2>0} g/(HB ||2 + |5 | )
then
Al\]/iCD( m) _ — (|Sjul = nAjk) ;. < g
l .

-1) Alm—1
5518+ g, 5cm,, 15— paony Ao/ 1By B + 135 212

10



From the proof of Theorem 3.1, B;?_l) < BJ(Z%) if and only if

OL(B)

m—1) -1
55 |y = S I BAE T = X+ 3B 1B < 0
J 5’”*

Gik

Notice that the above is also the partial derivative of L"*(B) w.r.t. [;; taking value at
B;?_l), where L"**(B) is the elastic net objective function

L*'(B) = —IIY XBIl3+ > Al Bl + Y All Byl 2218, 1)

Jk geg

holding ||B;m_1) |2 as constants and constraining that 5;; < 0.
Following exactly the same argument as in the proof of Theorem 3.1, we can prove that
%:EB) sm-) < 0 if and only if B;?_l) is less than the solution of 0L(B)/0p;, = 0 with the
J
ik

constraint 3;; < 0, which is the solution of

~(m—1)
—Si/n+ %1385/ = Ajw + > ABin/ 1B, 2 =0
Gik

under §j; < 0 given by

— (|S] = n>‘jk)+ _ AMCD(m)
(m—l) - Mk ’

5 A
15112+ 722 e guem,. 18,1570 50) Ao/ |1 B
Therefore, we have

m MCD(m) Alm
B < g™ < g < 0

(ii) TF
Alm—1 A(m (|S]k|_n)\]k)
BV > B = o >0,

2 2 (m)
15513 + 1 54 geg 5,cm,, 150 sy Yol (1Bamanll3 + 153712)172

with similar argument, we have that

Alm MCD(m Alm
B > P = g >,

11



(iii) If B;?_l) = Bj(?), the mixed coordinate descent algorithm will be exact update and

we will have
B](fkn—l) _ B%CD(m) _ B](km)

In summary, we have (A.12).

Lemma, [A.3] shows that the sequence of estimates of jk' coordinate {B](;n)} iteratively
updated from solving (A1) converges to a global minimizer regardless the value of the
starting point. For each term in the sequence {B%CDU)}, suppose one can construct a se-
quence of {Bj(km)} starting from A%CD(”, then those sequences all converge to minimizers (if
the minimizer is not unique, e.g. for not strictly convex objective function) with the same
minimum value. Thus from ([A.12)) we know that {B%CDU)} converge to a global minimizer
with the same minimum value. O

Figure [A1] illustrates coordinate updates by the standard coordinate descent and the
mixed coordinate descent algorithms on a contour surface of a two-dimensional objective
function. Given the same starting values, one step update on one coordinate from the mixed

coordinate descent algorithm is always bounded between the previous and current values

from the standard coordinate descent algorithm.

A.5 Comparison of computing costs

The computational cost of coordinate descent algorithm with inner iterations is much higher
than our mixed coordinate descent algorithm. Figure [A.2] shows the comparison between
these two algorithms. The group structure of the regression coefficient matrix used is set to
be (b) in Figure 1 in the main text. In Figure[A.2] the mixed coordinate descent algorithm
converges to a minimizer after 500 iterations while the coordinate descent algorithm with

inner iterations converges after 150000 iterations.

12



s (B1™, B:™)

(B ™, B2 P™)

/ B:™, B

1CD! -1
(B:7™, )

Figure A.1: Ilustration of coordinate updates by the standard coordinate descent and the
mixed coordinate descent algorithms on a contour surface of a two-dimensional objective
function.

B Comparison between univariate and multivariate ap-
proaches

Figures and illustrate the comparisons between univariate approaches and multi-
variate approaches. The true regression coefficient matrix takes a Gxy UGx group structure.
It can be seen that when different response variables have a similar sparsity to the predic-
tors, the multiple univariate lasso (using different A values for different response variables)
and the multivariate lasso (using the same A value for all response variables) have similar

performance on variable selection. The multiple univariate sparse group lasso approach has

13
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Figure A.2: Decreasing of the objective function. The gray line is for the proposed mixed
coordinate descent (MCD) algorithm without inner iterations of updating (AI1]) and the
black line is for the coordinate descent (CD) algorithm with inner iterations.

a slightly better variable selection performance than the multiple univariate lasso. The pro-
posed multivariate sparse group lasso yields the best variable selection result by borrowing

information from other response variables within the same group. It also has the smallest

prediction error.

C More simulations

Figures to show the variable selection and prediction effects in some other simulation

settings, such as with different autocorrelation coefficient values or with a true “all-in-all-out”

14



Figure B.1: Heatmaps of coefficient matrices. (a) True B*;

lasso; (c) The multiple univariate sparse group lasso (d) The multivariate lasso; (e) The
multivariate sparse group lasso; The true B* has a “not all in all out” and X+XY group
structure with p = ¢ = 200, n = 100, p = 0.5.

2500
2000
1500
1000

500

False Positive

uni L
uni SGL

multi L
multi SGL

1250
1000

False Negative

uni L
uni SGL

multi L
multi SGL

Sensitivity(%)

uni L
uni SGL

multi L
multi SGL

Specificity(%)

(b) The multiple univariate

uni L
uni SGL

multi L
multi SGL

Univariate and multivariate comparison, N=100, P=200, Q=200, p=0.5

Prediction Error

7.45e+6
7.20e+6
6.95e+6

6.70e+6

uni L

uni SGL
multi L
multi SGL

Figure B.2: Comparison between multiple-univariate and multivariate approaches from 100
simulated data sets.

“uni L” — the multiple univariate lasso; “uni SGL” — the multiple

univariate group lasso; “multi L” — the multivariate lasso; “multi SGL” — the multivariate
sparse group lasso with an XY group structure on the coefficient matrix.
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group structure.

D Network structure for the yeast eQTL data analysis

Figure [D.1] shows the network constructed from the multivariate sparse group lasso method.
The top association signals are highlighted in dark lines and also reported in Table 2 and 3

in the main text.
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Figure C.1: More simulation results, “not all in all out” cases with n = 150, p = ¢ = 200

and p = 0.2.
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Figure C.2: More simulation results, “not all in all out” cases with n = 150, p = ¢ = 200

and p = 0.8.
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Figure C.3: More simulation results, “all in all out” cases with n = 150, p = ¢ = 200 and

p=0.5.
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Figure C.4: More simulation results, “all in all out” cases with n = 150, p = ¢ = 100 and

p=0.5.
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Figure C.5: Heatmaps of coefficient matrices, selection effects. “Not all in all out” XY group
structure with n = 100, p = 200, ¢ = 200, and p = 0.5. (a) B*; (b) By; (c¢) Brx; (d) Brxy;
(e) Brxxy; (f) Bax; (8) Baxys () Bexxy-
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Figure D.1: Network constructed from the multivariate sparse group lasso method. Network
structure is between gene expressions grouped in mitogen-activated protein kinases (MAPK),
cell cycle, cancer, ribosome pathways and markers grouped in 45 gene groups. Gray lines
connect expression-marker pairs with non-zero Bjk. Dark lines are for the top 10 associations
in each pathways. The strength of these top associations are indicated by the width of the
dark lines. The dotted circles indicate the overlapping pathway group structure.
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