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SUMMARY. We propose a multivariate sparse group lasso variable selection and estimation method for data with high-
dimensional predictors as well as high-dimensional response variables. The method is carried out through a penalized multi-
variate multiple linear regression model with an arbitrary group structure for the regression coefficient matrix. It suits many
biology studies well in detecting associations between multiple traits and multiple predictors, with each trait and each predic-
tor embedded in some biological functional groups such as genes, pathways or brain regions. The method is able to effectively
remove unimportant groups as well as unimportant individual coefficients within important groups, particularly for large
p small n problems, and is flexible in handling various complex group structures such as overlapping or nested or multilevel
hierarchical structures. The method is evaluated through extensive simulations with comparisons to the conventional lasso

and group lasso methods, and is applied to an eQTL association study.
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1. Introduction
Genomic association studies with a single phenotype have
been widely studied. Such association studies often encounter
high-dimensional predictors with sparsity, that is, only a small
number of predictors are associated with the response. To
select truly associated predictors, it is necessary to use
regularization penalties to shrink the coefficients of irrelevant
predictors to exactly zero. Popular penalties for regres-
sion models with a univariate response include the lasso
(Tibshirani, 1996), the adaptive lasso (Zou, 2006), the
elastic net (Zou and Hastie, 2005), and the smoothly clipped
absolute deviation (Fan and Li, 2001), among many others.
An important characteristic of high-dimensional genomic
predictors is the intrinsic group structures. For example, the
DNA markers, also known as single nucleotide polymorphisms
(SNPs), can often be grouped into genes, and genes can be
grouped into biological pathways. Such grouping strategies
have been applied successfully to genomic studies in rare vari-
ant detection (Zhou et al., 2010; Biswas and Lin, 2012). For
group variable selection, Yuan and Lin (2006) proposed the
group lasso method for the univariate response case. It penal-
izes the Ly norm of each predictor group and selects important
groups in an “all-in-all-out” fashion. That is, all the predictors
in a group are included or excluded simultaneously. However,
in real applications, this is rarely the case. Oftentimes, not all
the variables in an important group are important. For exam-
ple, a gene associated with a certain complex trait does not
mean that all the variants within the gene are causal, and a
pathway that regulates certain gene expressions does not nec-
essarily indicate that all its components have regulatory ef-
fects. Recent efforts have been made to select both important
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groups and important within-group signals simultaneously.
Huang et al. (2009) and Zhou and Zhu (2010) adopted a L,
0 < y < 1, penalty to select important groups while removing
unimportant variables within them; Zhou et al. (2010) used
a penalized logistic regression with a mixed L,/Ls penalty to
select both common and rare variants in a genome-wide as-
sociation study; and Simon et al. (2013) proposed the sparse
group lasso for selecting both important groups and within
group predictors. However, all the above methods concern a
univariate response.

Many other genomic data analyses focus on investigating
the associations between high dimensional response variables
and high-dimensional covariates, such as gene-gene associa-
tions (Park and Hastie, 2008; Zhang et al., 2010), protein—
DNA associations (Zamdborg and Ma, 2009) and brain fMRI-
DNA (or gene) associations (Stein et al., 2010). Oftentimes
pairwise associations are calculated in such studies. For exam-
ple, many multivariate genome-wide association studies nowa-
days still look for one association at a time between a single
marker and a single trait, and then correct for multiple hy-
pothesis testing (Dudoit, Shaffer, and Boldrick, 2003; Stein
et al., 2010). However, when both responses and predictors
are of high dimensions, most of the familywise type I error
controlling procedures are usually too conservative and yield
poor performance (Stein et al., 2010), and oftentimes adjusted
analysis considering multiple variables simultaneously is more
appropriate.

High-dimensional responses also have natural group
structures very often, for example, pathway group structures
for gene expression responses and brain functional regions
for fMRI intensity responses. For multivariate responses,
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Figure 1. B® group structures. Important groups are shaded. (a) X group structure, (b) XY group structure, (¢) X+XY
group structure (nesting group structure) and (d) overlapping group structure.

Peng et al. (2010) adopted the mixed L;/Ls penalty in
an orthonormal setting for identifying hub covariates in a
gene regulation network; Obozinski, Wainwright, and Jordan
(2011) and Bunea, She, and Wegkamp (2011) studied joint
support union and joint rank selections; Lounici et al. (2011)
proved oracle inequalities for multitask learning. Despite all
the efforts, little focus, to our knowledge, has been put on
the cases where the responses also have a group structure,
whereas such cases are commonly encountered in biological
studies. A possible strategy for multivariate-response analysis
is to perform covariate selection for one response variable at
a time. In such analysis the predictor group structure can be
considered but the response group structure is overlooked.

In this article, we propose a regularization method for
making a good use of the intrinsic biological group structures
on both covariates and responses to facilitate a better
variable selection on multivariate-response and multiple-
predictor data by effectively removing unimportant blocks of
regression coefficients. Both the predictor and response group
structures, or in general, the block structure of the regression
coefficient matrix, are assumed known. Information of many
biologically confirmed group structures can be achieved from
publicly available repositories, for example, RefSeq gene
files from NCBI Reference Sequence Database (http://www.
ncbi.nlm.nih.gov/refseq/), KEGG pathway maps from
Kyoto Encyclopedia of Genes and Genomes (http://www.
genome.jp/kegg/), and Brodmann brain anatomic region
atlas  from  https://surfer.nmr.mgh.harvard.edu/fswiki/
BrodmannAreaMaps. The proposed method can handle
cases where the number of variables in either responses or
predictors is much greater than the sample size, and complex
group structures such as overlapping groups where a variable
belongs to multiple groups. The estimators enjoy finite
sample oracle bounds for the prediction error, the estimation
error, and the estimated sparsity of the regression coefficient
Extensive simulations show that the proposed
method outperforms competitive regularization methods.
We applied the proposed method to a yeast gene expression
quantitative loci (eQTL) study, where the numbers of gene
expression responses and genetic marker predictors are both
much larger than the sample size. The gene expressions are
grouped into biological pathways and the genetic markers
are grouped into genes. We demonstrate by considering both
group structures that the proposed method generates a much
more interpretable and predictive eQTL network between
the gene expressions and genetic markers, comparing with
several other commonly used regularized approaches.

matrix.

2. Multivariate Linear Model with Arbitrary
Grouping

‘We consider the multivariate linear model
Y=XB+W, (1)

where Y= (y;,...,y,) € R"” is the response matrix of n
samples and ¢ variables, X = (x1, ..., x,) € R"™? is the covari-
ate matrix of n samples and p variables, B = (B8 xs € R?*? is
the coefficient matrix and W= (wy, ..., w,) € R" is the ma-
trix of error terms with each wy ~ N(0, 07 Lx,), k=1,...,4.
Assume Y and X are centered so that there is no intercept
in B. We adopt the notational convention that the column
vectors of X are indexed by j, the column vectors of Y and
W are indexed by k, and the samples are indexed by i.

Assume B contains G groups, and each group, denoted as
B, where g € {1, ..., G}, is a subset of two or more elements
in B. We denote the group structure by G = {B, ..., Bg}.
We use B or B, to denote either the set of all their elements
or the numerical values of all their elements, depending on
the context, which should not cause any confusion. Figure 1
illustrates a few examples of group structures, where each
highlighted block indicates an important group in G and each
figure may represent several different group structures. Note
that the group structures considered in this article are pre-
defined by biological functions, such as gene or pathways. Also
note that the union of all groups in G does not need to contain
all the elements of B, in other words, some f; may not be-
long to any group. We say B, is nested in B,, if By, C B,,;
B,, and B,, are overlapping if B, N B,, is not empty. Ob-
viously, nested groups are a special case of overlapping. A
group structure with overlapping groups is common in bio-
logical studies. For example, when grouping genetic variants
according to genes or pathways, different genes or pathways
can overlap.

Though the proposed method works for an arbitrary group
structure G on B, in real applications, a biologically mean-
ingful group structure on B is usually introduced from the
group structures of both predictors and responses. Specifi-
cally, suppose X has m; column groups and Y has my column
groups, then they yield m; x ms intersection block groups on
B. We denote this intersection block group structure by Gyy,
the row block group structure only determined by the predic-
tor groups by Gy, and the nested group structure containing
all groups in Gxy and Gy by Gyy U Gx. In the eQTL association
study, a nonzero group in Gyy indicates that the corresponding
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gene group has SNPs associated with expressions in the cor-
responding pathway group. A nonzero group in Gx indicates
that the corresponding gene group has an effect on some or
all of the expressions.

For an arbitrary group structure G with G groups, let
Zgzl | Bgll2 be the total sum of Ly norms of every group in

G, where || B3 = ZﬁjkeBg B3 The group Ly norm reduces to
the Frobenius norm || Alls = {t]r(ATA)}l/2 for a matrix group

1/2
A and to the vector L, norm |alls = {aTa} / for a vector
group a. Proofs of theoretical results in the following sections
are provided in the web-based Supplementary Materials.

3. The Regularization Method and Its Properties
3.1.

For an arbitrary group structure G on B, to simplify the no-
tation, we denote {g: B, € G} by {g € G} as long as it does
not cause any confusion. For j=1,...,pandk=1,...,q, let
Ajk = 0 be the adaptive lasso tuning parameter for B, with
Aj = 0if Bj is not penalized. Let A, > 0 be the adaptive tun-
ing parameter for group B, € G, with A, = 0 if group B, is not
penalized. We consider the following penalized optimization
problem for a general regularized multivariate multiple linear
regression:

The Multivariate Sparse Group Lasso

2

2lBil + > 2l Bella,

8€g

1
argmin —||'Y — XB||§
B 2n

(2)

where the L, penalty term aims to shrink unimportant groups
to zero and the L; penalty term aims to shrink unimportant
entries within an important group to zero. We call it the multi-
variate sparse group lasso (MSGLasso). We exclude the trivial
case that A, =0 for all g € G and Ay =0 for all j, k. To bet-
ter understand the solution to (2), we develop the following
theorem for B when all other elements in B are fixed.

THEOREM 1. For an arbitrary group structure G on B, let
B be the solution to (2) and B be its jkth element. If for some
group By € G with a tuning parameter Ay,

>

{jk: BjxeBgo}

(ISil/m = 2j)? < Agos

®3)

then ,Bjk =0 for every B € Byo. Otherwise, ,Bjk satisfies

i) (ISl —ndg),
I3 41D e peemy el 1Bl

. sgn(S;
k=

(4)

where Sj = x7 (Y — XB(,D)A;( with B(,ﬁ being the jth row of
B replaced by zeros, the subscript -k refers to the kth column
of a matriz, and a;, = a if a > 0 and 0 otherwise.

Note that Theorem 1 is a general solution form and applies
to arbitrary group structures. If there is no group structure
assigned on B, then G becomes an empty set and (4) reduces
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to the lasso solution; If A4 =0 for all j, k, then (4) and (3)
provide the group lasso solution. It is of interest to consider
certain special group structures that are intuitive and com-
monly used in many applications. Specifically, we consider
model (2) with the following four group structures: (I) G = ¢,
no group structure assigned on Bj; (II) Gx; (III) Gxy; (IV)
Gxy U Gx. The corresponding optimization problems become

1
argmin — | Y — XB||2 + A|Bl1, (5)
B 2n

argmm—HY XBI3+AIBh + 31 Y @)%IBy, |,

81€0x

argmln—llY XBIZ+ 4Bl +32 Y ol?Byl,

g2€Gxy

argmm—nY XBI3 + Bl +41 Y o2Byll2

g1€Gx

+i2 Y @Byl (8)

82€0xy

where |B|; = ij |Bjx| is the Ly norm of B, and w,, and w,,
are some weights, in particular, the group sizes. The tuning
parameters Ay = A for all lasso penalties, A, = Alwl/z if ge
Gx, and A, = )\.2&)142 if g € Gyy.

In the remaining of this article, we call (5) the Lasso model,
(6) the Lasso+X model, (7) the Lasso+XY model, and (8) the
Lasso+X+XY model.

Let B;, By, Bixy, and Biyxyy be the solutions to (5),
(6), (7), and (8), respectively. Their corresponding expres-
sions from Theorem 1 further reduce to some interesting sim-
pler forms under the orthonormal design, in particular By
and BLXy are just further shrlnkages of BL, and BLXXy is a
further shrinkage of either By or Biyxy. We are also inter-
ested in the group lasso cases where A =0 in (6), (7), and
(8), with their solutions denoted by BGX, BGXy and ngxy,
respectively. Then the main theorems in Yuan and Lin (2006)
and Peng et al. (2010) become special cases.

In the eQTL example that we will analyze later, method
(5) does not take the advantage of knowing the group struc-
ture. Method (6) only concerns the predictor group struc-
ture, therefore can select important gene groups. However,
it ignores which pathways those genes are associated with.
Method (7) considers both predictor and response group
structures, therefore can select gene-to-pathway association
blocks. Method (8) pertains advantages of both (6) and (7)
and is more robust to misspecified group structures.

3.2.

The lasso method has been shown to achieve the oracle
bounds for both prediction and estimation in the multiple lin-
ear regression model, which are the error bounds one would
obtain if the true model were given, see for example, Bickel,

Oracle Inequalities
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Ritov, and Tsybakov (2009). Similar bounds also hold for a
total of pg regression coefficients in the multivariate multi-
ple linear regression model with a multivariate mixed L;/Lo
penalty. For notational simplicity, we consider the following
special case of (2) with A, = A for all j, k:

1
argmin o | Y ~ XBI3 + AIBl; + > hdBelo. (9)

=4

We follow the method of Bickel et al. (2009). Let J;(B) =
{jk : |Bjx| # 0} be the index set of nonzero elements in B, and
Jo(B) ={g € G, | B;ll2 # 0} be the index set of nonzero groups
in G. Define M, (B) = ij I(Bx #0) =|J1(B)| and M(B) =
deg I(||Bgll2 # 0) = |J2(B)]. For any matrix A € R?*? and
any given index set J; C{jk:1<j<p,1 <k <gq}, denote
A, the projection of A on the index set J;, that is the ma-
trix with the same elements of A on coordinates J; and zeros
on the complementary coordinates Ji. Also for any group in-
dex set Jo € {1,..., |G|}, denote A,, the set of projection of
A on each of {B; : g € J5}, that is A;, = {Ap, : g € J2}. De-
note M;(B) = r and M>(B) = s. We then impose a restricted
eigenvalue assumption for the multivariate linear regression
model with a multivariate mixed L;/Lo penalty, which leads
to the desirable oracle inequalities.

ASSUMPTION 1. Let J; C{jk:1<j<p,1<k<gq} and
Jo € {1,...,1G]} be any indexr sets that satisfy |J1| <r and
[J2| <s. Let p = {p, : g € G} be a set of positive numbers. Then
for any nontrivial matrix A € RP*Y that satisfies

Ascli 42D pell Al <3IALL 42> pellAg,la,

gelts geJa

the following minimums exist and are positive:

- . XAl
k1(r,s,p) = min ————— >0,
7172820 n2 ([ Ay, |2
oty s, p) = XAl
R 7192820 N2 A g, |l
THEOREM 2. Consider model (9). Let B* be the true co-

efficient matriz. Assume each column of the error matriz,
wy, follows a multivariate normal distribution N(0, orI,), and
all the diagonal elements of the matrix X" X/n are equal
to 1. Suppose My(B*) =r and My(B*) =s. Let Ymax be the
largest eigenvalue of X" X/n, o = max{oy, - ,0,}, Ay = peh
for g € G, p=min{l, p,; g € G}, ¢ be the mazimum number of
duplicates of a coefficient in overlapping groups in G, and

A = 20A{log (pq)/n}'"?

for some constant A > 2'/2. Furthermore, assume Assump-
tion 1 holds with k1 = k1(r, s, p) and ko = k2(r, s, p). Then with
probability at least 1 — (pq)*~4/2, we have the following ora-
cle bounds for the prediction error, the estimation error and
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the order of sparsity:

2
1 . ri/2 (def2(B*) pg) 1/2
—|X(B— B3 < 163 + :
n 1 K2

|B— B, <

32(c +2)oA [ log(pq) 12
14+p n

2

) 1/2
ri/2 (deh(B*) pg)

x| —+
K1 K2

) 1/2\ 2
e (de12<B*>pg)

1 K2

The mean square prediction error is bounded by a factor of
order A2 ~ log(pgq)/n, the I; norm of the estimation error is
bounded by a factor of order +/log(pq)/n, and the estimated
order of sparsity is bounded by a constant related to Assump-
tion 1. These results are similar to those in Bickel et al. (2009).
Note that Theorem 2 will still hold for flexible Ay in (2), as
long as A > 0 for all j, k.

4. The Mixed Coordinate Descent Algorithm

Based on Theorem 1, the zero groups can be determined
according to (3) and the entries in a nonzero group can be
determined by solving for the fixed point solution of (4)
using a coordinate descent algorithm. The algorithm updates
each coefficient coordinate Bj at a step while fixing all the
other coefficients at their current values. Theoretically, the
coordinate descent algorithm would work if one can solve (4)
for ,B_,-k exactly. Practically, since B i« also appears in the term
Z(geg; BBy, IByl2=0) X¢/lIBgll2 on the right hand side of (4),
unlike lasso, a closed form solution is usually not available and
numerically solving for B_,k requires iteratively updating (4),
which can be time consuming. Here we propose a mixed co-
ordinate descent algorithm, which only updates ;AE % once from
,Bi.lzfl) to Bj(,t") according to (4) without iteratively solving
(4). In particular, the algorithm updates B_,k by the following.

(I) If any of the groups B, € G containing B satisfies (3),
then the entire group is estimated at zero. Otherwise /§ e will
be updated according to one of the situations (II)—(IV).

(II) If all the groups containing B satisfy ||]A3;':;; lo =0 at

~ (m—1) | =~ (m—1)
the current step, where Bg%jk) is B,

replaced by zero, then B i is updated by

with its jkth element

(m—1) (m—1) _ _ .
sen(Si ) ('ka =72 et puepn 18 Ve 8 'M-’k>
, .

(€3]

2(m)
By =
. [EH

Notice that in this case (4) becomes a closed form lasso
solution.
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(III) If all the groups containing B satisfy ||B§’:jg l2 >0

at the current step and Ay = 0, then BEZHI) is updated by the
group lasso formulation

(m=1)
Sk

5o _
)

~ (m—1 .
13 (- X/ B
EIERD DIl o

Notice in this case, all the entries in B, with ”Bg—(jk) [l2 >0
will enter as nonzero entries
(IV) If some but not all groups containing B satisfy

IIB,_(jiylla = 0 at the current step, then 35,'("_1) belongs to a
mixture of the lasso case (for groups with ||Bi,'j(_ji; 2 =0) and
the group lasso case (for groups with ||B§,’f(_;; l2 > 0), and it

is updated as if by a mixture of the lasso and the group lasso
through

=)y | gn=1)
s¢ s§Y)— - hg—nij
sgn(Sy ) (' I LD D 180 1z=0) "¢ " f")
+

Hm) _
By = ~n—1)

2
Xj n g - (n- /I B
W2 72 e, puen, 18 i2=0) o/ 1By 2

Specifically, the algorithm is given in the following for a
fixed set of values of all the tuning parameters.
Step 1. Standardize the data such that

n n n

2
§ Yik = 0, g Xij = 0, g xl‘j =1,
i=1 i=1 i=1

forall je{l,...,p}, ke{l,...,q}.

In our numerical examples, we also standardize y, such that
>, ya =1 to minimize the impact of different scales of
variations across y; on the regression coefficients for all k €
{1,...,q}. A

Step 2. Set initial values for all B; and the iteration index
m = 1. We use initial values ,B;,?) = 0 in our numerical exam-
ples.

Step 3. For a given pair (j, k), fix Byr at B;,’Zfl) for all j # j
or k' # k. Then update 3;,'{"_1) to /Aﬁﬁ,:") by (I) to (IV) accord-
ingly.

Step 4. Repeat Step 3 for all je({l,...
{1,...,q}, and iterate until ||B<m> 71A3<m71)|| reaches a pre-
specified precision level for some norm | - ||. We use infinity
norm in our numerical examples.

Convergence of different types of coordinate descent algo-
rithms have been studied in the literature. Tseng (2001) pro-
vided conditions for convergence of cyclic coordinate descent
algorithm with general separable objective functions. Wu and
Lange (2008) proved the convergence of greedy coordinate de-
scent algorithm with a Lo loss and the lasso penalty. Based on
Wu and Lange (2008), we show the convergence of our mixed
coordinate descent algorithm which is given in the following
proposition. Details are provided in the supplemental materi-
als, where we also illustrate that the speed of convergence of
our mixed coordinate descent algorithm is much faster than

,p} and ke
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the coordinate descent algorithm that solves the fixed point
solution to (4) with inner iterations.

PROPOSITION 1. A sequence of coordinate estimates itera-
tively updated by the mized coordinate descent algorithm con-
verge to a global minimizer of the objective function.

We implemented the MSGLasso and the mixed coordinate
descent algorithm with C/C++ language and wrapped it into
an R package. It is available on the web-based Supplementary
Materials and will soon be upload to CRAN repository.

5. Numerical Studies

5.1.

In this section, we first investigate the numerical performances
of Lasso, Lasso+X, Lasso+XY, Lasso+X+XY methods and
their group lasso counterparts when the true coefficient matrix
B* takes a group structure of either Gy, Gxy or Gxy U Gx. We
also compare the proposed MSGLasso method with lasso and
group lasso for an overlapping group structure.

All the true group structures considered in our simulations
are given in Figure la—-d. For each group structure, we con-
sider two scenarios: (i) “all-in-all-out,” where all the coeffi-
cients in an important group are important, and (ii) “not-all-
in-all-out,” where only a subset of coefficients in an important
group are important. Specifically, we generate B* by setting

% = 0 if it is from an unimportant group, and drawing its
value from a uniform distribution on [—5, —1] U [1, 5] and fix-
ing it for the simulations if it is from an important group.
The sparsity of an important group in the “not all in all out”
setting is randomly set between 1/4 and 1/6.

Each B* is of dimension 200 x 200. For a nonoverlap-
ping group structure, each X row group is of dimension
20 x 200; each XY block group is of dimension 20 x 20. For
the overlapping group structure, the groups start on coor-
dinates (1,21, 41,61, 101, 121, 141, 181) and end on coordi-
nates (20, 40, 70, 100, 120, 150, 180, 200), for both X and Y
variables.

Covariates X, i=1,...,n, are generated from a
multivariate normal distribution N,(0, Xx), where Xy =
diag(Z,,, ..., X,,) is block diagonal and each block corre-
sponds to each group of X which has the first order autore-
gressive structure. Specifically, X, (j, k) = pV~* for any j k
pair from the same group, i = 1, ..., 10. The error terms w;,
are generated from a normal distribution N(0, 0?), where o2
is chosen to yield a signal to noise ratio of 2. Finally, the
responses are generated from Y = XB* + W.

The optimal values of tuning parameters may be selected
by different criteria. Since the degrees of freedom are difficult
to determine for a penalty with multiple tuning parameters,
we search for the optimal tuning parameter values using a
five-fold cross-validation over a wide range of candidate val-
ues. The searching process starts with the largest candidate
tuning parameter values with each by itself shrinking all the
coefficients to zero. The converged estimates B obtained from
the previous searching step are used as the initial values for B
in the next searching step with a new set of tuning parameter
values. We find it very effective in reducing the computational
cost.

Simulations
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a X group structure
False Positive False Negative Sensitivity(%) Specificity(%) Prediction Error
3000 150 100 100
2.15e+6
75 75
2000 100 2.10e+6
50 50
1000 50
25 25 2.05e+6
0 0 0 0 2.00e+6
—X>>X>> X >>X>> X > > >> X > > >> X >>X>>
dxx8xXx HxX'axX HxXaxXx dxXxaxXx HxXaxXx
X 58X X 58X JX 58X X 58X X 58X
= 52 -T2 -T2 o2 =
o o o o o
b XY group structure
False Positive False Negative Sensitivity(%) Specificity(%) Prediction Error
7000 100 100
2.70e+6
6000 450
75 75 2.50e+6
4000 300
50 50 2.30e+6
2000 150 25 25 2.10e+6
0 0 0 0 1.90e+6
> > X >> X >>X>> X > > > > XX >> X > > >>
—AXXOXX —AXXOXX —AXXOXX —AXXOXX —AXXOXX
—XT0OX —XT0OX X7 0OX —XT0OX —XT0OX
- (4 - (4 - (4 - (4 - (&)
C X+XY group structure
False Positive False Negative Sensitivity(%) Specificity(%) Prediction Error
6000 750 100 100 4.85+6
5000
P, 600 75 76 4.60e+6
450 4.35+6
3000 50 50
2000 300 4.10e+6
160 150 25 25 3.85e+6
0 0 0 0 3.60e+6
XX > >X>> X > > X >> XX >> XX >> X > > X >>
—AXXOXX —AXXOXX —AXXOXX —AXXOXX —AXXOXX
X7 0OX X7 0OX X7 0OX —XT0OX —XT0OX
- (O] - (O] - (O] - (O] - (0]
d Overlapping group structure
False Positive False Negative Sensitivity(%) Specificity(%) Prediction Error
7500 100
250 75 3.70e+6
200 75
5560 o 3.60e+6
50 3.50e+6
2500 100 25 3.40e+6
25
. 3.30e+6 D
0 0 0 0 3.20e+6 —
- a o - a o - a o - (_DA [0) - (_DA [0)
(2] (2] (2] 12 12

Figure 2. Simulation results, large p small n, “not all in all

out” cases with n =100, p = ¢ = 200, and p = 0.5. SGL: the

multivariate sparse group lasso; G: the multivariate group lasso.

For each simulation setup, we run a hundred replications
and calculate the averages of the following quantities:

false positives = |{ij pairs : B; # 0 and g, = 0},

false negatives = |{ij pairs : 3,7 =0 and ,3,*, # 0},

I{ij pairs : B;; # 0 and B; # 0}
\{ij pairs : Bj; # 0}]

|{ij pairs : B; = 0 and B; = 0}|
|(ij pairs : B = 0}

sensitivity

)

specificity

)

prediction error = || Yiest — Xiest B3 ,

where | - | is the number of elements in a set and ( Yiest, Xtest)
is an independently generated testing set of 100 samples.
Figure 2 summarizes these quantities for simulation setups
with “not all in and all out” for all the group structures in
Figure 1 at p = ¢ = 200, n = 100, and p = 0.5. The proposed
method using Lasso+X+XY for the nonoverlapping group
structures Gy, Gxy, and Gyy U Gx as well as for the overlapping
group structure are highlighted in black. The methods for the
correctly specified group structures are highlighted in grey ex-
cept in Figure 2c and d, where the implemented group struc-
tures are by themselves the correctly specified group struc-
tures. From Figure 2 we see that correctly incorporating group
structure improves both variable selection and prediction, and
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Figure 3. Heatmaps of coefficient matrices, selection effects. (ajh): “Ngt all in Aall out” 2(+X Y nonpverlappi{lg group
structure with n = 100, p = 200, ¢ = 200, and p = 0.5. (a) B*; (b) By; (c) Brx; (d) Brxy; (e) Brxxy; (f) Bex; (8) Baxy; (h)
Bgxxy. (i-1): “Not all in all out” overlapping group structure with n = 100, p = 200, g = 200, and p = 0.5. (i) B"; (j) By; (k)

Bsor; (1) BG-

our proposed method Lasso+X+XY, or the MSGLasso, per-
forms at least the same as, if not better than, the methods for
the correct group structures and yields the lowest prediction
erTors.

Figure 3 illustrates fitted results for a data set randomly
chosen from one hundred replications, where B* has a “not all
in all out” either Gxy U Gx or overlapping group structure with
p = 200, g = 200, and p = 0.5. It clearly shows that the MS-
GLasso results for correctly specified group structure, both in
Figure 3e and in Figure 3k, yield the most desirable estimates.
Methods without lasso penalty yield too many false positives
inside the important groups for the “not all in all out” case
even when the groups are correctly specified, while methods
with lasso penalty but incorrectly specified groups yield too
many false positives outside the important groups.

5.2.  Yeast eQTL Data Analysis

In this section, we demonstrate our method by analyzing a
yeast eQTL data set generated by Brem and Kruglyak (2005),
see also Yin and Li (2011), where gene expressions are grouped
into, possibly overlapping, pathways and the genetic markers
are grouped into genes.

The data set contains 6216 yeast genes assayed for
112 individual segregant. Genotypes of these 112 segre-
gant at 2956 marker positions were also collected us-
ing GeneChip Yeast Genome S98 microarrays. The 6216
expressed genes are grouped by Kyoto Encyclopedia of
Genes and Genomes pathways and the 2956 markers are
grouped by genes, taking isoform genes as the same gene.
To illustrate the method, in the reported analysis we
only include genes from the following four pathways: the
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Table 1
Comparison of prediction errors between different methods

Method MSG lasso M lasso MG lasso  lasso

Prediction error 3094.5 3396.8 3557.4 3683.3

MSG lasso = multivariate sparse group lasso, M lasso = multivariate
lasso, MG lasso = multivariate group lasso, lasso = univariate las-
SOS.

mitogen-activated protein kinases (MAPK) pathway contain-
ing 54 genes, the cell cycle pathway containing 116 genes,
the cancer pathway containing 20 genes and the ribosome
pathway containing 137 genes. There are in total 315 distinct
expressed genes in these pathways, with 5 genes overlapping
between MAPK and cell cycle, 5 genes overlapping between
MAPK and cancer, 3 genes overlapping between cell cycle
and cancer, and 1 gene overlapping between MAPK, cell cycle
and cancer. Ribosome does not contain overlapping genes with
the other three pathways.

We follow a similar procedure of Yin and Li (2011) for
prescreening genotype markers by performing univariate lin-
ear regressions across all the 315 gene expressions and 2956
markers, and include the 395 markers with p-value of 0.01 or
smaller into the final analysis. These 395 markers are embed-
ded in 45 distinct genes.

Since some marker within a gene is associated with some
gene expression in a pathway does not necessarily imply the
gene must be associated with all four pathways, we exclude
the Gy group structure and only apply an overlapping Gyy
group structure in the data analysis. We cross-validate the
performance of the multivariate sparse group lasso, the mul-
tivariate lasso, the multivariate group lasso and the univariate
lasso. In particular, we randomly divide the 112 samples into
five approximately equal sized subsets, set one subset aside as
the test set, and use the remaining four subsets as the train-
ing set. Then for each model, we run five-fold cross-validation
on the training set to estimate the coefficient matrix, and use
the estimated model to compute the prediction error on the
test set. We repeat the above procedures until each of the
five subsets has been used as the test set once. The overall
cross-validated prediction errors, the sum of squares, are re-
ported in Table 1. The univariate lasso is conducted by first
selecting variables on the training set using 315 separate lasso
regressions, each for a single gene expression variable, and
then implementing multivariate linear regression on only the
selected set of covariates to obtain B. Our proposed method
has the best performance. The univariate lasso gives the high-
est prediction error, which is expected because the relations
among responses are totaly overlooked, and this leads to high
variability and over-fitting (Peng et al., 2010). The proposed
method shows roughly a 10% decrease of the cross-validated
prediction error over the multivariate lasso method, the sec-
ond best approach among all four compared methods.

We then apply the multivariate sparse group lasso to the en-
tire data set with 315 gene expressions and 395 markers. The
final tuning parameters are A =7 x 1072 and A; =2 x 1074,
determined by a fivefold cross-validation. We also investigate
the selection stability following Meinshausen and Bithlmann
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(2010) by calculating the selection frequencies of the top se-
lected associations using one hundred bootstrap datasets. The
top associations in terms of size, with selection frequency no
less than 95%, are given in Table 2. The p-values in the last
column are obtained from marginal simple linear regressions.
Overall there are 1422 nonzero elements in the estimated co-
efficient matrix, which gives an overall estimated sparsity of
about 1%. There are 235 markers with nonzero coefficients
related to genes in the MAPK pathway, 135 markers related
to genes in the cell cycle pathway, 65 markers related to genes
in the cancer pathway, and 65 markers related to genes in the
ribosome pathway. Among those, 34 markers are related to
genes in the overlap of MAPK and cell cycle pathways, 23
markers are related to genes in the overlap of MAPK and
cancer pathways, and 5 markers are related to a gene in the
overlap of MAPK, cell cycle and cancer pathways.

Table 3 lists the top pathway-gene groupwise associations
in terms of the group L, norms with a 100% group-wise se-
lection frequency. Out of 180 block groups, 89 groups contain
nonzero coefficients. Several top selected genes have been re-
ported in the literature. For example, one of the isoforms of
YCR gene, YCR073C/SSK22 is MAPK cascade involved in
osmosensory signaling pathway. Gene groups YJL and YGR
in the Scr homology 3 domains are interacting with gene Pbs2
in one of the three kinase components in the MAPK path-
way (Zarrinpar, Park, and Lim, 2003). The top association
signals detected between the gene expressions in the joint of
MAPK, cell cycle and cansor pathways and markers in NHR
gene group also confirm the regulation effects of NHR genes
on cell cycle pathway and other autophagy-related genes.

It is worth noting that none of the association p-values
from marginal simple linear regressions between gene YJL
and pathway MAPK survives the Bonferroni correction for
multiple comparisons. For example, the 14th signal in Ta-
ble 2 has a univariate marginal p-value of 0.044, therefore it
is unlikely to be picked up by the pairwise analysis. However,
the MSGLasso successfully selected this signal in an adjusted
analysis with high individual and group selection frequencies,
see Tables 2 and 3. This finding is supported by Zarrinpar
et al. (2003). It demonstrates that besides the advantage of
dimension reduction, the MSGLasso can also pick out impor-
tant signals that would be missed by the pairwise method.

The stability selection results show that the first 40 selected
top signals do not contain zero within their 2.5-97.5% boot-
strap percentile band, and the bootstrap Q1-Q3 band of the
top 100 selected signals do not contain zero, indicating that
the top selected signals using proposed method have high se-
lection frequencies from bootstrap samples.

6. Discussion

For a predetermined group structure, the MSGLasso effec-
tively and efficiently selects the important groups and im-
portant individual signals within those groups. There is some
interest in recent literature in learning the group structure
and selecting the important variables simultaneously. For ex-
ample, Yin and Li (2011) proposed a conditional Guassian
graphical model to select nonzero entries in the precision ma-
trix conditional on simultaneously selected predictors. It is
of interest to select important predictors via the MSGlasso
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Table 2

Top selected expression-marker associations

s

Index B ik Sel. Expr.” Expr. Marker Marker gene p-value
freq.” (%) name pathways Chr:BP™"

1 —1.481 100 YKL178C MAPK 3:201166 YCRO41W 2.43e—51
2 1.465 100 YFLO26W MAPK 3:201166 YCRO41W 2.81e—55
3 —1.264 100 YPL18TW MAPK 3:201166 YCRO41IW 7.10e—45
4 1.061 100 YNL145W MAPK 3:201166 YCRO41IW 5.54e—39
5 —0.735 100 YGL089C MAPK 3:201166 YCRO41IW 8.53e—20
6 0.650 100 YFLO26W MAPK 3:201167 YCRO41W 2.81e—55
7 —0.649 100 YKL178C MAPK 3:201167 YCRO41W 2.43e—51
8 —0.554 98 YPL18TW MAPK 3:201167 YCRO41W 7.10e—45
9 0.452 100 YDR461W MAPK 3:201166 YCRO41W 8.42e—14
10 —0.385 98 YPL18TW MAPK 3:177850 gCRO2 1.65e—33
11 0.352 100 YGROSSW MAPK 15:170945 gOL02 1.52e—10
12 0.346 100 YGROSSW MAPK 15:174364 gOL02 1.51e—10
13 —0.318 97 YKL178C MAPK 3:177850 gCRO2 2.44e—37
14 0.257 98 YGROSSW MAPK 10:51003 YJL204C 0.044
15 —0.175 95 YGL089C MAPK 2:681361 YML056C 0.66

*Sel. Freq. = Selection frequency. **Expr. = gene expression. ***Marker is denoted by its physical position in the format of “chromo-
some:basepair”.

Table 3

Top selected pathway-gene associations (with 100% selection frequency)

Index Pathway Gene ||Bg||2 Number of nonzero Top expr.” Top marker™™ Top B

B e in group in pathway in gene in group
1 MAPK YCR 3.06 23 YKL178C 3:201166 —1.481
2 MAPK gOL 0.508 10 YGROSSW 15:170945 0.352
3 MAPK gCR 0.499 3 YPL18TW 3:177850 —0.385
4 MAPK YJL 0.424 23 YGROSSW 10:51003 0.257
5 MAPK NHR 0.420 49 YCLO2TW 8:111686 —0.184
6 MAPK NBR 0.382 15 YGL089C 2:681361 0.207
7 MAPK YBR 0.372 81 YGROSSW 2:368060 0.165
8 Ribosome YER 0.342 119 YER102W 5:350744 —0.063
9 Cancer YLR 0.286 14 YJRO48W 12:674651 0.164
10 MAPK YGR 0.275 3 YGL089C 7:916471 —0.172
11 MAPK YPL 0.274 18 YGROSSW 12:428612 0.240
12 MAPK YLR 0.252 62 YCL0O2TW 12:957108 0.092
13 MAPK YER 0.229 23 YPL18TW 7:321714 0.135
14 MAPK YML 0.214 23 YGL098C 13:164026 —-0.175
15 MAPK YHL 0.205 15 YKL178C 8:98513 —0.128
16 MAPK YNL 0.183 23 YGL089C 14:418269 —0.083
17 MAPK YCL 0.176 27 YCLO2TW 3:64311 0.140
18 MAPK; NHR 0.175 44 YJL157C 8:111686 ~0.061

Cell cycle
19 MAPK gJL 0.131 9 YFLO26W 10:259991 0.098
20 MAPK YOL 0.125 26 YPL18TW 15:193911 0.084
MAPK;
21 Cell cycle; NHR 0.098 5 YBLO16W 8:111686 —0.044
Cancer

22 Cell cycle YCR 0.067 5 YLR288C 3:201166 0.046
23 Cell cycle YCL 0.063 16 YDL00SW 3:64311 —0.035
24 Cell cycle YLR 0.029 37 YBR093C 12:674651 0.012

*Expr. = gene expression. **Top marker in gene is denoted by its physical position in the format of “chromosome:basepair.”
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based on a data driven group structure, where the selection
of group structure is a topic for future research.

The L1/L2 penalty in the MSGLasso ensures that the
objective function is a convex function with respect to B.
The convexity is essential for the proposed mixed coordinate
descent algorithm. Replacing the L1 penalty by the SCAD
penalty (Fan and Li, 2001) would be of interest, but the re-
spective optimization is non-convex, thus not guaranteed to
converge to the global minimum. More research along this line
is needed.

7. Supplementary Materials

Web Appendices for the proofs of theoretical results refer-
enced in Sections 3 and 4, computing cost comparison and
MSGLasso package referenced in Section 4, and additional
numerical results are available with this paper at the Biomet-
rics website on Wiley Online Library.
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