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Abstract An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at
o =~ 0.5Q,, where Q, is the electron cyclotron angular frequency. Recent chorus observations sometimes
show additional gaps near 0.3Q2, and 0.6€2,. Here we present a novel nonlinear mechanism for the formation
of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized,
collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron
cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave
and particles.

1. Introduction

Chorus in the Earth’s magnetosphere is a type of whistler wave that has been analyzed for decades using
ground-based and satellite observations. Intensive studies have gone into understanding the generation and
propagation of these waves and how they affect the magnetospheric plasma [Sazhin and Hayakawa, 1992, and
references therein]. Chorus is believed to be excited by cyclotron resonance with anisotropic (T, > T, where
1 and || correspond to directions perpendicular and parallel to the background magnetic field) electrons with
energy > 1 keVinjected into the inner magnetosphere. Studies have shown that the resonance between cho-
rus and relativistic electrons plays an important role in radiation belt dynamics [Thorne, 2010, and references
therein]. For example, pitch angle scattering by chorus is a major loss mechanism for trapped electrons in the
outer radiation belt. Local acceleration due to interactions between chorus and electrons inside the radiation
belt may be a major mechanism for enhanced relativistic electron fluxes [e.g., Thorne et al., 2013].

Animportant feature of chorus is the presence of a gap at one half the electron cyclotron frequency in its spec-
trum, separating two frequency bands (therefore called “banded chorus”), a lower band with 0.1 <w/Q, <0.5
and an upper band with 0.5 < w/Q, < 0.8 [Meredith et al., 2012; Li et al., 2013], where Q, is the electron
cyclotron angular frequency. Such banded chorus is not unique to the Earth’s magnetosphere but is also
observed in Saturn’s magnetosphere [Hospodarsky et al., 2008]. Recently, using Cluster spacecraft measure-
ments, Macusova et al. [2014] reported that sometimes chorus can have more than two bands, with additional
gaps near 0.3Q, and 0.6Q,. Most of these “multibanded” chorus events were observed with oblique wave
normal angles during disturbed geomagnetic conditions. An example of multibanded chorus observed by
Van Allen Probes A on 10 February 2013 is shown in Figure 1.

The narrow gap at 0.5Q, between the two bands of chorus has received a lot of attention since it was dis-
covered (for a review of existing theories, see Sazhin and Hayakawa [1992] and Liu et al. [2011]). Liu et al.
[2011] hypothesized that two bands of chorus are excited by two different electron populations with tem-
perature anisotropies through linear instability, and the hypothesis has been tested in a case study using Van
Allen Probes data by Fu et al. [2014]. Schriver et al. [2010] explored the possibility of generating the lower
band through nonlinear wave-wave coupling of the upper band chorus. Bell et al. [2009] assumed that dif-
ferent bands are generated in ducts of either enhanced or depleted cold plasma density. Omura et al. [2009]
explained the gap at 0.5Q,, where the group velocity of the whistler wave equals the phase velocity, as non-
linear damping of a slightly oblique whistler wave packet propagating away from the magnetic equator,
taking into account the spatial inhomogeneity of the magnetic field. Despite intensive research, a conclusive
explanation for banded chorus has not been given yet.

Existing models for banded chorus have only considered the primary (linear) resonances when the res-
onant particles described by unperturbed orbits see a “time-independent” wavefield. However, it was
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Figure 1. A multibanded chorus measured by Van Allen Probes A on 10 February 2013: the magnetic field spectrogram
with two frequency gaps at 0.5f., and 0.6f,,, where f,, is the local electron gyrofrequency. Black dashed lines indicate
0.4f,,, 0.5f,, and 0.6f, respectlvely

recently found that the nonlinear resonances which develop by taking into account the perturbed par-
ticle motion in the wavefield can also prompt energy exchange between the wave and particles. For
instance, island overlapping due to nonlinear resonances can cause stochastic ion heating in an oblique
Alfvén wave with a subcyclotron frequency in the solar corona [Chen et al., 2001; Guo et al., 2008]. Can
the nonlinear resonance happen between chorus and electrons? If it can, how will it affect the electrons
and chorus? Inspired by the interesting feature of nonlinear resonances at subcyclotron frequencies, we pro-
pose the following scenario for the banded chorus observation illustrated in Figure 1. A warm (a few hundred
eV), anisotropic (T, > T) electron velocity distribution drives the whistler anisotropy instability [Gary et al.,
2000,2011], which gives rise to continuous narrowband (0.4Q2, < w < 0.7Q,) enhanced magnetic spectra that
appear as a relatively coherent temporal waveform. The cold electron (1-100 eV) response, as will be shown
by both theoretical analysis and test particle simulations in this work, demonstrates that there is a nonlinear
wave-particle interaction whereby certain electrons come into subharmonic resonance with certain Fourier
components. If this interaction transfers energy from the fluctuations to the electrons, the resonant Fourier
components will be damped and the fluctuation spectra will develop gaps at €, /2 and other subharmonics
as shown in Figure 1.

In this paper, we show that, in the absence of primary resonances, an oblique whistler wave with a frequency at
a fraction of Q, is able to resonate with the cold electrons nonlinearly, leading to nonlinear damping/growth
of the wave with certain electron distributions. This nonlinear mechanism, which involves only wave-particle
interactions and works in homogeneous plasmas with a uniform magnetic field, can provide a complementary
element to existing theories on chorus. In addition, it can explain additional gaps in chorus spectra around
0.3Q2, and 0.6%2,, as reported recently by Macusova et al. [2014].

The rest of the paper is organized as follows. In section 2, we present a theoretical framework for analyzing the
dynamics of electrons in an oblique whistler wave with uniform background magnetic field. The structures of
nonlinear resonances are analyzed using Poincaré maps by solving the equations of motion numerically and
confirmed by our theoretical calculations employing the Lie perturbation method. In section 3, we show the
results of test particle simulations for an ensemble of electrons with certain velocity distributions. The effects
of nonlinear resonances on the electron distribution function and the total kinetic energy are investigated. In
section 4, we discuss how this nonlinear mechanism is related to frequency gaps in magnetospheric chorus.
Finally, conclusions are given in section 5.

2. Theoretical Analysis

In this section, we analyze the dynamics of electrons in a single oblique whistler wave and a uniform
background magnetic field using Hamiltonian theory.
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2.1. Hamiltonian
For simplicity, we consider a uniform plasma in a uniform background magnetic field, EO = B,z, and the
whistler wave dispersion relation in the cold plasma limit is given as [Stix, 1992, equation (2)-(45)]

2

(&) =1 sotim

w " w(w—-Q,cos6)’
where w, is the plasma frequency, k is the wave number, and the whistler wave is oblique with a small wave

normal angle 6 with respect to the background magnetic field so that « = tan 6 = k, /k,. Assuming 0 < 1
and using the cold plasma theory [Stix, 1992], the vector potential can be written as

A= Boxy + e(By/k,)(sin ¥X + cos 6 cos Py) , (2)

where ¥ = k,x + k,z — wt is the phase of the wave and ¢ = B,, /B, denotes the perturbation magnitude. To
eliminate electric fields, we move to the wave frame by a transformation, X' = X — (w/k,)t2. Normalizing time
to 1/Q,, magnetic field to By, mass to m,, and length to 1/k,, the normalized Hamiltonian for the electron is
given by

H= % [P+ (p, +x)* + p2| + € [p,siny + (p, + X) cOs 6 cos y| + %6‘2(1 —sin? 0 cos? y), (3)

where p,, p,, and p, are the canonical momenta and y = ax + z. In the wave frame, the electron energy is
conserved as H does not depend on time explicitly and p,, is a constant of motion since H is independent of y.
A set of equations of motion for the electron can be readily obtained from the Hamilton’s equation [e.g., José
and Saletan, 1998]:

X =p, +esiny, 4)

px = —(p, +X) — elap, cosy — a(p, + x) cos O siny + cos O cos y]

€2 .2 .
- ?a sin“ 0 sin2y), (5)
z=p,, and (6)
. . €2 .2 .
Py = —€lp,cosy — (p, +Xx) cosfsiny] — 3 sin” 8 sinQy), (7)

where dots represent time derivatives.

Without loss of generality, we choose the following parameters relevant to chorus in the Earth’s magneto-
sphere. The whistler wave satisfies ® = 0.4Q,, k = 0.9w,/c, and § = 26.6° (¢ = tanf = 0.5), where c is
the speed of light and w,/Q, = 5. So the parallel phase speed of the wave is w/k, = 0.1¢, and the energy
is normalized to m,(Q,/k,)? ~ 0.06m,c? = 30.66 keV. Note that the choice of the whistler wave frequency
is for illustration purposes. It will be shown later that, for waves closer to 0.5Q,, the difference is only in the
energy of resonant electrons. The extension to a whistler wave packet with multiple Fourier components is
also straightforward [Lu and Chen, 2009]. Unless otherwise specified, the above parameters are used in the
rest of the paper.

2.2. Poincaré Maps

In our Hamiltonian model, electrons are moving in a four-dimensional phase space (x, p,,z, and p,). With
Poincaré surfaces of section (or maps), one can visualize the wave-particle resonances in phase space. We con-
struct a Poincaré map in (p,, z) by recording points when the trajectory of an electron in phase space crosses
the surface of x = 0 with p, > 0. Electrons are initialized with x = 0, p, = 0, fixed H, and a range of paral-
lel velocities p,’s. In Figure 2 (top), a map for electrons with energy H = 0.3 is shown in the presence of an
oblique whistler wave with ¢ = 0.02. In the map, a major island in (p,, z) plane located at p, = 0 demonstrates
trapping of particles by the wave satisfying w — k,v, = 0 (note p, = m,(v, — w/k,) before normalization),
which is the well-known Landau resonance condition. Another set of two islands develops at p, = —%, which
corresponds to a new resonance condition

w—kyv,=9Q,/2, (8)

suggesting that electrons can resonate with finite amplitude oblique whistler waves at half cyclotron fre-
quency. A similar mechanism has been proposed for the subcyclotron resonance between ions and oblique
Alfvén waves [Chenetal., 2001; Guo et al., 2008]. With higher energy, the primary cyclotron resonance between
electrons and the whistler wave can be seen from the island located at p, = —1 (not shown).
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Figure 2. (top) Poincaré map in (p,, z) plane for electrons in the presence of an oblique whistler wave with an amplitude
B,, /By = 0.02. The energy of electrons in the wave frame is fixed with H = 0.3. Islands develop near p, = 0 and p, = —%.
(bottom) Similar Poincaré map, but with a larger wave amplitude B,, /B, = 0.05. Additional resonant islands develop
near p, = —% andp, = _§~

2.3. Subcyclotron Resonances

We can show that the half cyclotron resonance is the result of nonlinear dynamics by taking into account
the perturbed electron orbit in the presence of wavefields. The analysis is greatly simplified in the so-called
guiding center coordinates. Through a canonical transformation [Guo et al., 2008], the Hamiltonian becomes

H = Hy + eH, + €*H,, 9
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where H, = J + p§/2 is the unperturbed guiding center Hamiltonian,

H, = \/Z_J [cos ¢ sin(a\/Z_J sing +2z) + sin¢g cosd cos(a\/Z_Jsin ¢+ z)] ,and (10)
Hz=—%sin20c052(a\/2_Jsin¢+z). (11)

Here J = [(p,+x)* +p}]1/2 denotes the perpendicular energy and ¢ the gyroangle. Interestingly, if the whistler
wave is purely parallel to the background magnetic field (6 = 0), H, vanishesand H; = \/Zsin(z—q')) contains
only the primary resonance. So the electron dynamics becomes integrable, and there will not be any nonlinear
resonance. Due to the dependence of the perturbed Hamiltonian on ¢ and z, both J and p, vary in time.
These variations are related to the magnetic drift of the guiding center which can then give rise to nonlinear
resonances via the kl . )?g term with )?g being the magnetic drift.

To analyze the perturbed Hamiltonian, we introduce the Lie transform method [e.g., José and Saletan, 1998]
which utilizes particular canonical transformations to obtain perturbation series in terms of Poisson brackets.
Similar to the approach in Guo et al. [2008], a generating function

50 ) cos(ng + 2) ’ (12)

.50
Wy($.2,0,p,) = V2 2 (sin? Spes +cos? 54, ) <= D

is obtained to remove the first-order perturbations by setting [W;,H,] + H, = 0 with [, ] being the Poisson
bracket. This generating function indicates singularities when p, = —n, with n being any integer. In the lab-
oratory frame, they simply correspond to the well-known cyclotron resonance condition w — k,v, — n, = 0
when n # 0 and the Landau resonance condition @ — k,v, = 0 whenn = 0.

After the Lie transformation, the new Hamiltonian becomes H' = H, + €2(H, + [W;, H,1/2) + O(e?), where the
second-order perturbation reads

H, = 2-1 (A = $in 0J,,J,) cOs(Ip + 22) = ¥ (B, , + 5in? 0,,J,) cos(m — n)p | (13)
m,n m,n

with/ = m+n.The functions A, ,(J,p,) and B, ,(J, p,) are introduced for simplicity. Their explicit expressions
are tediously long and will be presented later in a separate paper. The new Hamiltonian clearly shows the
existence of nonlinear resonances when the phase (/¢ +2z) remains a constant or p, = —//2.In the laboratory
frame, they correspond to the second-order resonance conditions w — k,v, — (//2)Q, = 0. The second term in
equation (13) does not contribute to resonances. Therefore, our analytical calculation confirms the existence
of the nonlinear resonance at the half cyclotron frequency (/ = 1). Following the result in Guo et al. [2008],
we know that the island width of second-order resonances is proportional to ¢ while it is \/Efor the primary
resonances. This means the damping due to second-order resonance is weaker than the primary resonance
by square root of the wave magnitude. Continuing to the third-order expansion, we will obtain resonances at
p, = —I/3 which is present in Figure 2 (bottom) when the wave has a larger amplitude.

3. Test Particle Simulations

A wave-particle resonance causes efficient energy exchange between the wave and resonant particles. For
example, a wave is damped via Landau resonance, while the resonant particles gain same amount of kinetic
energy the wave loses. To further illustrate how the nonlinear resonance, at w — k,v, — ©,/2 = 0, can damp
waves around the half cyclotron frequency, we perform test particle simulations of a large number of electrons
and investigate the changes in the electron distribution and their kinetic energy in the presence of an oblique
whistler wave.

In our test particle simulation, about 10° electrons with Maxwellian velocity distribution in the lab frame,

v+ vf V2
f(vy,v,,v,) =fyexp [-m + =11, (14)
y € 2T, 2T”

are loaded initially. Here we choose electron temperatures T, =T, ~ 300 eV so that v, = /T //m, = |(w -
Q,/2)/k|. Electrons are advanced according to equations of motion given by equations (4)-(7). In the pres-
ence of an oblique whistler wave with wave amplitude B,, /B, = 0.02, the energy (calculated in the lab frame)
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Figure 3. (a) Change of the averaged energies per test electron in the presence of an oblique whistler wave with an
amplitude B,, /By, = 0.02. The averaged initial total energy per electron E; o = 0.028. (b) The distribution function f(p,)
at different times of the simulation. Changes of f(p,) and f(p,) are minor.

evolution of these electrons is shown in Figure 3a. After initial oscillations, the averaged energy per elec-
tron (E) increases at a rate AE/(E,At) ~ 107*Q, (where E, is the averaged initial energy per electron) and
the energy gain is predominantly in the perpendicular direction. In a self-consistent simulation where the
wavefield follows Maxwell’s equations and the total energy of the system is conserved, the increase of the
electron energy must come from the decrease of wave energy. This implies that the wave will be damped
by the nonlinearly resonant electrons. The rate of particle energy gain normalized to the wave energy is
24oNem,(Q./k,? AE /(B2 Ab) & 0.02Q,,.

The electron velocity distributions in the wave frame at tQ, = 0,60, 120, and 180 are shown in Figure 3b.
Clearly, the parallel velocity distribution f(p,) deviates from the initial Maxwellian in the vicinity of p, = —0.5,
which corresponds to the second-order resonance shown in the Poincaré map in Figure 2. The changes in
both f(p,) and f(py) are small (not shown). For the given Maxwellian distribution function, the nonlinear sub-
cyclotron damping steepens the gradient of f(p,) around p, = —0.5, causing the parallel kinetic energy to
decrease, and the perpendicular kinetic energy to increase (see Figures 3a). This is similar to the primary
cyclotron resonance where the electrons are scattered along the constant energy surfaces in the wave frame
as pointed out by Kennel and Engelmann [1966].

Just like the Landau or cyclotron resonance, the nonlinear resonances can lead to damping/growth of the
waves at subcyclotron frequencies when the electron distribution satisfies certain conditions (the stability
criteria). Even though the particle motion is described as periodic in our theoretical analysis and test particle
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Figure 4. Relative change of energies per electron for cases with temperature anisotropy T, /T; = 1,3,10, and 100. All
parameters except T, are fixed.

simulations, what determines the wave damping/growth rate is how fast the resonant particles can take (give)
energy from (to) the perturbed fields. This is the same as in Landau or cyclotron damping, which requires the
resonant particles to gain energy at a rate faster than their bounce frequency in the perturbed field. The wave
begins to saturate when this condition is violated. The difference in the nonlinear damping mechanism is that
the relevant bounce motion is now described by the second-order perturbed Hamiltonian and thus becomes
much slower than the linear bounce motion. A test particle simulation describes the particle dynamics at the
beginning stage of the wave-particle interaction and can predict the rate of energy gain or loss by resonant
particles depending on the distributions, as discussed in the following.

When the temperature anisotropy T, /T, is strong enough, the nonlinear resonance may also lead to decrease
of the particle energy and thus instability of the whistler wave. This is demonstrated by a comparison of runs
with different initial anisotropies, as shown in Figure 4. Same parameters as those in Figure 3 except the per-
pendicular temperature are used in these runs. For T, /T, = 100, the electrons lose energy, which implies
wave growth in a self-consistent situation. Interestingly, for anisotropies well below the instability threshold,
the temperature anisotropy can enhance the nonlinear wave-particle resonance, as shown by the case with
T, /T, = 3 initially. This is consistent with our analysis as in equation (12) where a factor of \/Z shows the
dependence on the particle perpendicular energy.

To further illustrate the subcyclotron resonance and clarify that the energy gain of electrons is not dominated
by numerical heating or pseudoheating [Dong and Singh, 2013] in our simulations, we carry out two compar-
ison test cases. In the first case, we artificially load electrons with f(p,) flat in the range —0.6 < p, < —0.4 as
shown in Figure 5a. Due to the nonlinear resonance near half cyclotron frequency, electrons gain energy from
the wave. In the second case, we remove the resonant particles within —0.55 < p, < —0.45 from the distri-
bution as shown in Figure 5b. The resulting energy gain in the lab frame (Figure 5c¢) is significantly reduced.
Therefore, it is clear that the dominant energy gain of electrons is caused by the nonlinear resonance.

4, Application to Banded Chorus

In the Earth’s magnetosphere, cold plasmaspheric electrons (~ 1 eV) extend into a region called the “plasma
trough” with L = 4-8 (L is the equatorial distance of a magnetic field line from the center of the Earth in the
unit of Earth’s radius) [e.g., Carpenter and Anderson, 1992], where they meet ~ 1 keV electrons from the plasma
sheet. Banded chorus is frequently observed in this region [e.g., Meredith et al., 2012]. We conjecture that the
gap of the banded chorus may be caused by the nonlinear damping of oblique whistler waves by these cold
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Figure 5. The evolution of the distribution function f(p,) for (a) an initial flat-top distribution and (b) a flat-top
distribution with resonant particles removed. (c) The comparison of the change of total energy per electron is shown.

electrons with energy 1-100 eV. For 10 eV electrons, whose thermal velocity v, ~ 6 x 10~3¢, the nonlinear
resonance condition (equation (8)) becomes w = 0.5€,; i.e,, these electrons could damp oblique whistler
waves with frequency near 0.5Q,, leaving a gap in the wave power spectrum.

Wave analysis often shows chorus is quasi-parallel, but we have already shown that even with a wave nor-
mal angle of 26.6°, nonlinear wave-particle interactions can be significant. Furthermore, even if the chorus
is excited purely parallel in the source region close to the magnetic equator, as the wave propagates away
from the equator, it will soon have an oblique component due to the curved nature of Earth’s dipole-like
magnetic field.

Here we have presented cases with a modest wave amplitude B,, /B, = 0.02 to better illustrate the nonlinear
resonance mechanism with less computational constrains. The numerical integration scheme can introduce
errors into the particle’s energy; therefore, for smaller wave amplitudes, we need to both reduce the time
step to suppress the numerical heating and increase number of particles to resolve the resonance structure in
phase space. Typical amplitude of chorus in the magnetosphere is about B,, /B, ~ 0.001, but large-amplitude
whistler waves have also been reported with B, /B, > 0.01 [e.g., Santolik et al., 2014]. The subcyclotron
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resonance can be strong and effective in damping these large-amplitude whistler waves as shown in the previ-
ous section. For smaller wave amplitude, we have also carried out test particle simulations with B,, /B, = 0.002,
® = 0.46Q,, T = 50eV,and T, = 100 eV. The results (not shown here) indicate that the same nonlinear res-
onance occurs, although the rate of the electron energy gain is reduced (AE/(EAt) = 6 X 107°Q,) due to the
lower wave amplitude. Therefore, the proposed nonlinear damping mechanism at subcyclotron frequencies
is robust and can play a role for waves observed in the magnetosphere. Furthermore, in the presence of mul-
tiple whistler modes (or a narrow band) near half cyclotron frequency, the nonlinear damping is expected to
be enhanced due to the overlapping of resonances as suggested by Chen et al. [2001] and Lu and Chen [2009].
This effect will be addressed in a separate paper.

If the wave amplitude increases to B,, /B, = 0.05, additional resonant islands near p, = —1/3and p, = —2/3
develop in the Poincaré map (Figure 2, bottom), which may explain the additional gaps near 0.3, and 0.6€2,
observed by Macusova et al. [2014]. As Macusova et al. [2014] reported, multibanded chorus were observed
during more disturbed times with the average Kp ~ 3, larger than the average Kp ~ 2 for chorus observed with
one or two bands. These higher-order nonlinear resonances, as well as the half cyclotron resonance we have
shown, belong to a set of nonlinear resonant conditions below the cyclotron frequency, w — kv, = NQ,/M,
where M, N are integer and N < M [Guo et al., 2008].

5. Conclusions

In this paper, we have presented a nonlinear resonant mechanism between an oblique whistler wave and elec-
trons, satisfying the resonant condition @ — kv, = Q,/2, by theoretical analysis and test particle simulations.
Our mechanism works in a homogeneous plasma with a uniform background magnetic field and may explain
the frequency gap at 0.5Q, frequently observed in the power spectra of magnetospheric chorus. Further-
more, similar nonlinear resonances may explain the frequency gaps at 0.3Q, and 0.6, in chorus observations
recently reported by Macusova et al. [2014] and as shown in Figure 1. This mechanism provides a comple-
mentary element to existing theories on banded chorus. The detailed theoretical analysis (section 2) will be
presented in a separate paper later. The ability of this nonlinear mechanism to explain frequency gaps in cho-
rus emissions needs to be further investigated in a self-consistent way (e.g., via particle-in-cell simulations) to
address the dependence of damping rates on various plasma and wave parameters.
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