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Summary

Toward our goal of personalized medicine, we comprehensively profiled

pre-treatment malignant plasma cells from multiple myeloma patients and

prospectively identified pathways predictive of favourable response to bort-

ezomib-based treatment regimens. We utilized two complementary quanti-

tative proteomics platforms to identify differentially-regulated proteins

indicative of at least a very good partial response (VGPR) or complete

response/near complete response (CR/nCR) to two treatment regimens

containing either bortezomib, liposomal doxorubicin and dexamethasone

(VDD), or lenalidomide, bortezomib and dexamethasone (RVD). Our

results suggest enrichment of ‘universal response’ pathways that are com-

mon to both treatment regimens and are probable predictors of favourable

response to bortezomib, including a subset of endoplasmic reticulum stress

pathways. The data also implicate pathways unique to each regimen that

may predict sensitivity to DNA-damaging agents, such as mitochondrial

dysfunction, and immunomodulatory drugs, which was associated with

acute phase response signalling. Overall, we identified patterns of tumour

characteristics that may predict response to bortezomib-based regimens

and their components. These results provide a rationale for further

evaluation of the protein profiles identified herein for targeted selection of

anti-myeloma therapy to increase the likelihood of improved treatment

outcome of patients with newly-diagnosed myeloma.
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The treatment of multiple myeloma (MM) has improved due

to tremendous progress in recent years following the incor-

poration of immunomodulatory drugs, such as thalidomide,

lenalidomide and pomalidomide, and proteasome inhibitors,

including bortezomib and carfilzomib, into treatment strate-

gies (Richardson et al, 2002, 2005; Dimopoulos et al, 2007;

Harousseau et al, 2009; Dytfeld et al, 2011). Recently-intro-

duced combination regimens using these novel agents show

overall response rates of 90–100%, along with improved rates

of very good partial response (VGPR) approaching 80%,

complete and near complete response rates (CR/nCR) near

60% and stringent complete response (sCR) in up to 50% of

patients (Harousseau & Moreau, 2009; Jakubowiak et al,

2012; Khan et al, 2012). With increasing rates of CR, evalua-

tion of minimal residual disease (MRD) with a variety of

techniques is now emerging as an additional measure of
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depth of response (Jakubowiak et al, 2012; Paiva et al, 2012).

A number of studies have shown association between the

depth of response (e.g. achievement of VGPR or CR/nCR to

a given regimen or treatment strategy) and longer progres-

sion-free survival (PFS) and/or overall survival (OS)

(Jakubowiak et al, 2009; Richardson et al, 2010; Khan et al,

2012). More recently, a similar positive association was

reported for achieving MRD-negative status (Pineda-Roman

et al, 2008; Paiva et al, 2012; Martinez-Lopez et al, 2014).

Observed differences in the degree of response to a given

regimen may reflect variations in the biology of subsets of

myeloma, underscoring the well-established heterogeneity of

the disease within and between patients (Pineda-Roman et al,

2008; Harousseau et al, 2009; Cavo et al, 2010; Chanan-Khan

& Giralt, 2010; Bolli et al, 2014; Lohr et al, 2014). In recog-

nition of these differences, individualized approaches to

treatment of subsets of myeloma or risk-adapted therapeutic

strategies based on pre-treatment cytogenetics and/or gene

expression profiling (GEP) have been proposed (Reece et al,

2009; Zhou et al, 2009; Mikhael et al, 2013). While these

strategies address the treatment recommendations for

patients with different risk factors, a truly individualized

approach to myeloma patient therapy based on pre-treat-

ment tumour characteristics that predicts very good response

(e.g. VGPR or CR) and is statistically associated with

improved time-to-event is lacking. Research in recent years

has uncovered key targets and pathways involved in the

response to the most common anti-myeloma agents, includ-

ing cereblon as a target for immunomodulatory drugs (Zhu

et al, 2011; Broyl et al, 2013; Gandhi et al, 2014), and TJP1

and XBP1 as markers of sensitivity to proteasome inhibitors

(Leung-Hagesteijn et al, 2013; Zhang et al, 2013). These dis-

coveries, along with characterization of new or previously

unknown mutations associated with myeloma, such as muta-

tions in BRAF (Chapman et al, 2011; Lohr et al, 2014), pro-

vide the opportunity for marker-based individualized therapy

and for targeted selection of anti-myeloma agents to improve

treatment outcome. However, translation of these discoveries

into clinical practice is still in very early phases and more

research is needed to advance precision medicine in mye-

loma.

Among various efforts to advance personalized therapy,

proteomics-based techniques provide the opportunity to

comprehensively interrogate the molecular heterogeneity of

MM at the proteome level, which may in turn facilitate the

implementation of marker-based individualized therapies

(Unwin et al, 2006; Nicolas et al, 2011). Advanced quanti-

tative proteomic technologies have been applied in studies

of primary patient samples to identify biomarkers of dis-

ease and putative new targets for treatment and also to

assist in the selection of initial therapy (Taguchi et al,

2007; Liang et al, 2012). Quantitative mass-spectrometry

(MS)-based approaches, such as isobaric chemical labelling

[e.g. isobaric tags for relative and absolute quantitation

(iTRAQ)], are capable of accurate, precise and reproducible

quantification and provide deep proteome coverage (Kesh-

amouni et al, 2006). While several proteomic methodologies

have been applied to basic research questions about MM

biology and pathogenesis (reviewed in Cumova et al, 2011),

there remains an unmet need for applying these technolo-

gies to the translation of protein-based biomarker discover-

ies into the clinic and thus improving and/or tailoring

patient care.

In this paper, we present results from proteomic profiling

of naive MM patient plasma cells (PC) to find patterns

indicative of at least VGPR or CR/nCR to two treatment

regimens: VDD (bortezomib, liposomal doxorubicin, dexa-

methasone) and RVD (lenalidomide, bortezomib, dexameth-

asone), respectively. Using complementary platforms of

iTRAQ and label-free (LB) quantitative MS, and also GEP

for VDD patients, we derived signatures associated with

achievement of at least VGPR or CR/nCR to initial treatment

and identified patterns of protein pathways associated with

different levels of response to treatment with these two regi-

mens.

Materials and methods

Myeloma patient samples and plasma cell enrichment

Bone marrow aspirates were obtained from 18 patients trea-

ted on a Phase II clinical trial with VDD (NCT00116961),

and 16 patients enrolled at the University of Michigan site

in the Phase II portion of the multi-site frontline clinical

trial with RVD (NCT00378105). After approval by the site’s

Institutional Review Board, informed consent to treatment

protocols and sample procurement was obtained for all

cases included in this study. Details of both studies are

described elsewhere (Jakubowiak et al, 2009; Richardson

et al, 2010). Plasma cells (PC) from pre-treatment bone

marrow aspirates were enriched by negative selection

(RosetteSep� Multiple Myeloma enrichment cocktail, Stem

Cell Technologies, Vancouver, BC, Canada) according to

the manufacturer’s recommendations. Pellets containing

0�5 9 106 PC were flash frozen for storage. Only samples

containing at least 80% PC purity, which was confirmed by

Wright-Giemsa staining of post-enrichment cytospins, were

further analysed.

Sample preparation for proteomics platforms

Isobaric tags for relative and absolute quantitation (iTRAQ). All

reagents are from the iTRAQ 8-plex kit (Applied Biosystems,

ThermoFisher Scientific, Waltham, MA, USA). Lysates from

PC pellets were prepared according to the manufacturer’s pro-

tocol. Each iTRAQ 8-plex experiment consisted of peptides

from 0�5 9 106 MM1.S cell lysates labelled with reagents 113

and 121 used as an internal control. Half of the remaining

reagents were used to label samples from patients who

achieved at least VGPR in the VDD portion of the study and
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at least nCR for RVD, and the remaining half were used to

label samples from patients with lesser response. The labelled

peptide mixture was fractionated on a strong cation exchange

(SCX) MicroSpin column with sequential elution of bound

peptides. The eluate was dried and reconstituted in 0�1%
trifluoroacetic acid (TFA) and then separated by reversed

phase chromatography using a Zorbax 300 SB C18 column.

Column effluent was mixed with matrix-assisted laser

desorption/ionization (MALDI) matrix and spotted onto

192-well MALDI target plates that were later analysed by

tandem MS. The MS and MS/MS spectra were acquired on

an Applied Biosystems 4800 Proteomics Analyser [time-of-

flight (TOF)/TOF; AB SCIEX, Framingham, MA, USA] in

positive ion reflection mode. Single-stage mass spectra for all

samples were collected first and in each sample well MS/MS

spectra were acquired from the 12 most intense peaks above

the signal-to-noise ratio threshold of 60. Protein identifica-

tion and quantification were carried out using PROTEINPILOT

software v2.0.1 (AB SCIEX) and the Celera protein sequence

database (https://www.celera.com/), which comprises

sequences from NCBI Refseq, Swiss-Prot, and TrEMBL data-

bases. For assigning sequence identity, the Paragon algorithm

was used (Shilov et al, 2007). All reported proteins were

identified with a false discovery rate (FDR) <1% as deter-

mined by Paragon. Relative quantification of proteins was

performed on the MS/MS scan using the area under the

peaks at 113, 114, 115, 116, 117, 118, 119 and 121 Da,

which are the masses of the tags corresponding to the

iTRAQ reagents (Keshamouni et al, 2006). The peak areas of

the iTRAQ reporters in each peptide were used to calculate

ratios of patients (labels 114–119) versus the control MM1.S

cell lysates used as reference for further analysis (Keshamo-

uni et al, 2006). The reported ratios were automatically nor-

malized using the applied bias factor obtained from the

median ratio of all proteins that came from all the SCX

fractions that were in each MS/MS run.

Label-free quantitation. Pellets containing 0�5 9 106 PC

from the same patients that were analysed by iTRAQ were

lysed in radioimmunoprecipitation assay (RIPA) buffer

(Pierce, ThermoFisher Scientific). Denatured samples were

separated on 4–12% Bis-Tris gels (NuPAGE Novex; Invitro-

gen, ThermoFisher Scientific), which were stained with Gel-

Code Blue (ThermoFisher Scientific). After each lane was

cut into 22 equal pieces, gel plugs were de-stained with

30% methanol, washed with 25 mM ammonium bicarbon-

ate in 50% acetonitrile (ACN), reduced with 10 mM dith-

iothreitol (ThermoFisher Scientific), alkylated using 50 mM

iodoacetamide (Fluka Chemie, Sigma Aldrich Corporate, St.

Louis, MO USA) and digested with trypsin (Sigma Aldrich

Corporate). Peptides were extracted first with 0�1% TFA in

60% ACN and subsequently with 0�1% TFA in 100% ACN.

Each supernatant was collected, pooled and dried, then

reconstituted in solvent prior to liquid chromatography

(LC)/MS analysis. Samples were analysed via liquid

chromatography-electrospray ionization-tandem mass spec-

trometry (LC-ESI-MS/MS) on a linear ion trap mass spec-

trometer (LTQ; ThermoFisher Scientific) coupled to an

Agilent Technologies (Santa Clara, CA, USA) nano LC sys-

tem and a C18 reversed phase LC column (Micro-Tech Sci-

entific, Orange, CA, USA). Data Dependent Analysis (DDA)

mode was utilized on the LTQ to perform MS on all ions

above an ion count of 1000.

Tandem MS spectra from the LTQ were searched

with SEQUEST (http://fields.scripps.edu/sequest/index.html)

against the human IPI protein database appended with an

equal number of decoy (reversed) protein sequences (for

FDR estimation). The output files were evaluated by PEPTIDE-

PROPHET (peptide-level analysis) and PROTEINPROPHET (protein

inference) available as part of the Trans-Proteomic Pipeline

(Deutsch et al, 2010). Protein identifications were filtered

using the ProteinProphet-computed probability to achieve

the FDR of <1% as estimated using the target-decoy strategy.

Proteins were quantified using LF spectral counting strategy

using ABACUS (Fermin et al, 2011).

Analysis of protein quantitation data

Proteomic signatures differentiating ≥VGPR from <VGPR for

VDD and CR/nCR from <nCR for the RVD group were cre-

ated from iTRAQ data as follows. First, the data was filtered

by including only those proteins with acceptable control

ratios (i.e. internal control MM1.S lysates with label

113:121 ≤ 1�5-fold change). Then, for each protein, the

iTRAQ reporter ratios were averaged across patients in both

responder and non-responder groups. The responder to non-

responder expression ratios (i.e. (≥VGPR to <VGPR for

VDD; CR/nCR to <nCR for RVD) were calculated in each of

the three replicate datasets. Finally, these expression ratios

for each protein were averaged across all replicates, which we

denoted as the average protein expression ratio. The cut-off

for differential expression was set at 1�5-fold, which is often

used in proteomic studies (Ting et al, 2009). Figures S1 and

S2 depicts the distribution of average ratios for proteins

identified in VDD and RVD respectively, with line demarca-

tions indicating proteins significant to responders in each

treatment. Within the responder and non-responder groups,

protein spectral counts were normalized by the total spectral

count and averaged across patients. Protein fold change

between responders and non-responders were calculated

using these spectra counts and then were modelled as a

Gaussian distribution. Figures S3 and S4 depicts the log-scale

distribution of protein fold change in expression between

responders and non-responders for VDD and RVD treatment

regimen. Proteins on either side of a 2-standard deviation

cut-off were selected as being significant to responders of

VDD and RVD treatment. Figures S5 and S6 demonstrate

the efficacy of data processing by comparing protein expres-

sion between LF and iTRAQ analysis for VDD and RVD,

respectively.
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RNA isolation and gene expression profiling (GEP)

Using Qiagen RNeasy minicolumns (Qiagen, Santa Clarita,

CA, USA), total RNA was extracted from the PC of 18 patients

enrolled in the VDD study. RNA quality was determined by

assessing the presence of rRNA bands on an Agilent Bioanaly-

ser (Agilent Technologies). When required, amplification of

the transcriptome was performed using Ovation (Nugen Inc.,

San Carlos, CA, USA) to generate cDNA. cRNA was synthe-

sized according to Affymetrix (Santa Clara, CA, USA) proto-

cols and was labelled and hybridized to the U133plus 2�0
GeneChip, according to manufacturer’s guidelines. The quality

of the microarray data was analysed using a density plot of all

perfect-match probes for each chip and degradation plot of the

mean intensity for probes ordered according to where they

bind to the mRNA transcript. A t-test was performed to iden-

tify 166 genes that were significantly different between ≥VGPR
and <VGPR groups (P < 0�001). Through permutation

analysis using sample labels, an expected FDR of 24% was

determined, and supported using Benjamini–Hochberg

adjusted P-values. Log-rank tests for univariate association

with VGPR were performed to generate heat map column

dendrograms with hierarchical clustering.

Pathway analysis

Identified proteins were mapped to their corresponding gene

symbols. Differentially expressed proteins in both LF and

iTRAQ experimental groups are indicated by +1/�1 labels

based on whether they were up- or down-regulated, with 0

label indicating proteins whose expression were unchanged

between analysed groups. Within RVD and VDD, the iTRAQ

and LF lists were combined as follows: Proteins with consistent

labels in both lists were retained. Additionally, proteins with

differential label (+1/�1) in one list but with a 0 or missing

label in the other list were retained. Proteins with inconsistent

labels (i.e. +1 in one list, �1 in the other) were ignored.

Signature proteins (i.e. mapped gene symbols) and their labels

were used as input to the Ingenuity Pathway Analysis software

(IPA; Qiagen). Ingenuity Pathway Analysis encompasses the

Ingenuity Pathway Analysis Knowledge Base (IPA KB,

http://www.ingenuity.com/), a hand-curated database of all

published protein interactions. Here, a given signature gene list

was mapped to IPA KB with labels being denoted as ‘Other’

within the analysis. Default parameters were used and species

was selected as human. Pathway analysis was conducted sepa-

rately for RVD and VDD groups, following which a compari-

son analysis was made between them. Fisher’s exact test was

used to calculate P-values for determining significance of over-

lap between the proteins in each dataset and the canonical

pathways within IPA KB. Additionally for each analysis, IPA

software was used to generate hypothetical networks from the

list of molecules (called focus genes) and score them based on

log-scale P-values indicative of the probability of including a

gene in a network purely by random chance.

Similarly to proteomics analysis, the 166 differential genes

from the GEP data from VDD patients were labelled as +1/
�1, following which the IPA-determined pathways were

compared to corresponding VDD protein signatures.

Results

Proteomic analysis of patients enrolled in VDD study

The clinical characteristics of the 18 patients used in this

analysis (Table I), were generally comparable to all 40

patients treated with VDD in the phase II trial (Jakubowiak

et al, 2009), with the single exception of higher representa-

tion of patients with deletion of chromosome 13 in the

≥VGPR group (data not shown). Response rates and survival,

including survival based on level of response to 6 weeks of

VDD, were previously reported (Jakubowiak et al, 2009; Dyt-

feld et al, 2011). This time point was selected as a surrogate

endpoint for prediction of PFS, regardless of level of

response in later stages of treatment.

A total of 944 proteins were detected from the iTRAQ

experiments, while the LF approach yielded 900 proteins,

with 512 proteins in common between both methods

(Fig 1A, FDR <1%). Among the 356 differentially expressed

proteins detected from iTRAQ analysis, 195 were up-regu-

lated and 161 were down-regulated in samples from patients

achieving ≥VGPR. From the LF analysis, 90 proteins (40 pro-

teins up-regulated and 50 down-regulated in the ≥VGPR
group) were differentially expressed. In LF method, the strict

definition of differential expression in the data (top and bot-

tom 5% after Gaussian fitting) resulted in assigning no

change to most proteins and only a small overlap of

differentially expressed proteins between the two platforms

(not shown), which is in agreement with previous work (Vel-

laichamy et al, 2009).

Table I. Clinical characteristics of patients treated with RVD and

VDD profiled in this analysis.

Clinical characteristic

VDD

(n = 18)

RVD

(n = 16)

Median age, years (range) 57 (44–74) 60 (43–82)

Sex ratio (male/female) 12/6 8/8

Salmon-Durie stage I/II/III 1/5/12 3/4/9

ISS stage1/2/3 5/5/8 7/6/3

Cytogenetics (SR/HR) 11/7 8/8

Best response (CR/nCR/VGPR/PR/

PD)

2/1/7/8/0 4/4/5/3/0

Alive/Dead 14/4 12/4

Not progressed/Progressed 12/6 10/6

RVD, lenalidomide, bortezomib, dexamethasone; VDD, bortezomib,

liposomal doxorubicin, dexamethasone; ISS, International staging

system; SR, standard risk; HR, high risk; CR, complete response;

nCR, near complete response; VGPR, very good partial response; PR,

partial response; PD, progressive disease.
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Proteomic analysis of patients treated with RVD

Analysis was performed on 16 patients (Table I) treated with

the RVD regimen and was based on whether or not patients

achieved CR/nCR after six cycles of RVD, a prognostic indi-

cator of higher significance than VGPR. The response rates

and survival in the RVD trial have been previously reported

(Richardson et al, 2010).

Based on iTRAQ analysis, a total of 669 proteins were

detected (Fig 1B, FDR <1%). Comparison of proteomic altera-

tions in CR/nCR vs. a lesser response in the RVD cohort of

patients revealed the up-regulation of 161 proteins, while 98

proteins showed reduced expression in iTRAQ analysis. The

LF approach yielded 765 proteins (Fig 1B, FDR <1%), of

which 40 proteins were up-regulated, while 31 proteins were

down-regulated in patient samples associated with nCR/CR

response. Similar to the VDD study, the LF approach in RVD

also demonstrated that a majority of proteins remain

unchanged (top and bottom 5% after Gaussian fitting).

Network analysis of differentially expressed proteins in
VDD and RVD

To understand molecular variations between different levels

of response among the two drug regimens, analysis was per-

formed at the pathway level on both cohorts of samples. In

VDD-treated patients, 211 proteins were up-regulated and

195 down-regulated among those that were mapped to the

IPA KB database after merging the iTRAQ and LF protein

lists (with 27 proteins unmapped). The complete list of

mapped and un-mapped proteins (given as gene symbols)

along with assigned labels is given in Table SI. Figure 2A

depicts the top ten canonical pathways (based on the log of

the p-value from Fisher’s exact test) identified in the cohort

of patients achieving at least VGPR on the VDD regimen, of

which mitochondrial dysfunction (P-value: 1�44-09), oxidative
phosphorylation (P-value: 2�00-08), and EIF2 signalling

(P-value: 2�37�08) are most confidently associated. Networks

of proteins with overlaying canonical pathways were gener-

ated for the VDD proteomic profile, and the one with the

highest score (46) had 32 network-seeding focus molecules

and was most closely associated with cell death and survival

(IPA reported P-value: 3�40�07, Figure S7).

In RVD-treated patients, 316 differential proteins were

identified from merging iTRAQ and LF protein lists, of

which 292 were successfully mapped to the IPA KB. Out of

this set, 178 proteins were up-regulated and 114 proteins

were down-regulated in the nCR/CR group (Table SII). As in

the VDD-treated patients, EIF2 signalling is among the top

canonical pathways (P-value: 3�17�12) enriched by proteins

from the signature differentiating patients who achieved at

least nCR in response to RVD (Fig 2B). Other high-scoring

networks include liver X receptor/retinoid X receptor (LXR/

RXR) activation (P-value: 2�17�07) and remodelling of epi-

thelial adherens junctions (P-value: 2�19�07). The IPA-gener-

ated network with the highest score (48) had 31 focus

molecules and was associated most closely with RNA post-

transcriptional modification (P-value = 1�95�08, Figure S8).

Also shown in Figure S2 is the overlap of this network with

the four major canonical pathways identified in Fig 2B.

Using the IPA comparative analysis mode, a comparison of

pathways generated from VDD responders (≥VGPR) was made

with those identified in RVD responders (CR/nCR. Figure 3A

depicts the top common and unique pathways between

cohorts. As shown earlier, differential EIF2 signalling was

found in common and with high confidence scores in both

VDD and RVD. Other high-scoring common differential path-

ways include remodelling of epithelial adherens junctions,

clathrin-mediated endocytosis signalling, epithelial adherens

junction signalling and actin cytoskeleton signalling. Among

the differential pathways, mitochondrial dysfunction was

found to be significant in VDD (P < 0�05) in contrast with

RVD. Figure 3B shows the oxidative phosphorylation pathway,

a subset of mitochondrial dysfunction, for both VDD and

RVD signature proteins. As can be seen, the presence of

NADH dehydrogenase class of proteins in the VDD signature

profile results in a higher enrichment of this pathway in the

VDD cohort.

GEP of patients treated with VDD

A subset of 24 patients treated with VDD with available

RNA from isolated PC was analysed for GEP using the

iTRAQ Label free
VDD

432 512 388

(A)

iTRAQ Label free
RVD

327 342 423

(B)

Fig 1. Proteomic analysis of samples from VDD (A) and RVD (B)

cohorts. Protein IDs were mapped to gene symbols and tabulated.

(A) Comparison of protein identification using both LF and iTRAQ

on all VDD samples based on achieving at least very good partial

response (VGPR) or better vs. less than VGPR. (B) Comparison of

protein identification using both LF and iTRAQ on all RVD samples

based on achieving near-complete response/complete response (CR)

versus less than CR. RVD, lenalidomide, bortezomib, dexamethasone;

VDD, bortezomib, liposomal doxorubicin, dexamethasone; LF,

Label-free quantitation; iTRAQ, isobaric tags for relative and abso-

lute quantitation

D. Dytfeld et al
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Affymetrix U133plus 2�0 GeneChip. Twenty of these samples

passed RNA quality control and 18 samples were evaluable

after GEP analysis, nine from patients achieving ≥VGPR and

nine from patients achieving <VGPR. Of this group, eight

patients were among those subjected to proteomic analysis.

The GEP signature demonstrated 166 genes differentially reg-

ulated in patients based on whether or not VGPR was

achieved in response to VDD therapy (Fig 4). The top 20

differentially up- and down-regulated genes in VDD ≥VGPR
responders are highlighted. Ingenuity Pathway Analysis of

our GEP signature identified oxidative phosphorylation as

the predominant pathway enriched among responders. In

comparison with the VDD GEP data, it was noted that the

COX class of proteins that form Complex IV is up-regulated

at the genome level, but down-regulated at the proteome

level (Fig 5).

Discussion

With recognition of the heterogeneity of MM, there is an

increasing interest in improving treatment using individual-

ized therapy based on pre-treatment disease characteristics

and/or biomarkers. In this report, we describe the novel

application of two independent proteomic techniques to

identify pre-treatment expression patterns in malignant PC

indicative of response to initial treatment with VDD and

RVD. We and others have reported that depth of response

may serve as a surrogate for final endpoints, including PFS

and OS (Dytfeld et al, 2011). Therefore, we used early

response criteria, i.e. achievement of VGPR or CR within six

cycles of treatment, as a predictor of clinical outcome.

The use of multiple proteomic platforms can greatly

expand the sensitivity of observed differences in protein
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(B)Fig 2. Proteomic profiling of differential pro-

teins in VDD and RVD studies. (A) A list of

the top ten canonical pathways identified to be

dominant from the Ingenuity Pathway Analysis

(IPA) of differential proteins indicative of

favourable response to VDD. The threshold is

marked for a P-value of 0�05. Mitochondrial

dysfunction, oxidative phosphorylation and

EIF2 signalling are identified with most confi-

dence. (B) A list of top ten canonical pathways

identified to be dominant from the IPA analy-

sis of differential proteins identified in the

cohort of RVD patients who achieved near-

complete response/complete response. Thresh-

old is marked for P-value of 0�05. EIF2 signal-

ling, LXR/RXR activation, remodelling of

epithelial adherens junctions, and acute phase

response signalling were identified with most

confidence. RVD, lenalidomide, bortezomib,

dexamethasone; VDD, bortezomib, liposomal

doxorubicin, dexamethasone.
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expression and improve the probability of establishing a

proteomic signature of response to treatment. Through a

combined analysis of PC samples on iTRAQ and LF plat-

forms, we identified 406 proteins in VDD patients who

achieved at least VGPR versus those with lower response,

and 292 proteins differentiating patients who achieved at

least nCR versus those with lower response to RVD treat-

ment. Although comparative proteomics is a powerful ana-

lytical method for learning the biology of the cell,

considerable issues remain, such as incomplete proteome

coverage and variations in quantitation values for specific

proteins both within and across different platform MS runs.

In addition, we applied stringent statistical analyses in the

LF method by including only the top and bottom 5% of all

identified differentially expressed proteins after Gaussian fit-

ting. This resulted in only modest overlap of identified pro-

teins between LF and iTRAQ (38% in the VDD study and

31% in the RVD). This is comparable to similar published

data (Usaite et al, 2008; Patel et al, 2009), and is a widely

recognized limitation of proteomic methods (Chandramouli

& Qian, 2009; Wang et al, 2012). An optimal approach to

comprehensive analysis has not yet been established and

studies comparing different quantitative proteomics plat-

forms are lacking. We approached the limitations in identi-

fication of a consensus list of differentially expressed

proteins by performing pathway analyses and comparing the

profiles of PC from patients treated with RVD and VDD

based on response. This approach allowed us to consider

groups of proteins rather than individual proteins alone to

predict response and identify statistical differences in pat-

terns associated with response to two treatment regimens,

despite a relatively small number of samples available for

analysis.

Pathway analysis of proteomic profiles of responders to

both RVD and VDD therapy depicted a number of pathways

not only specific to each drug regimen but also in common to

both. For example, our study highlighted the endoplasmic

reticulum (ER) stress response, more specifically EIF2 signal-

ling, as the most prominent pathway associated with patients

that responded best to both regimens (i.e. ≥VGPR on VDD or

CR/nCR on RVD). Because MM PC produce large amounts of

immunoglobulins, they operate with an elevated demand on

the ER and are known to exhibit constitutive activation of ER

stress pathways (Obeng et al, 2006), which function to halt

most protein translation, increase expression of ER chaperones

and, under conditions of extreme or prolonged stress, induce

apoptotic effectors. Interestingly, it is this very nature of MM

PC that renders them more susceptible to proteasome inhibi-

tion, which induces extreme stress in the ER and promotes

apoptosis. Both drug regimens under examination in our

multi-platform proteomic profiling of MM PC contain the

proteasome inhibitor bortezomib. Our data suggest that,

although MM PC require basal ER stress for optimal survival

in the setting of increased metabolic demands, a threshold of

ER stress response-associated proteins may need to be crossed

in order to exhibit an optimal response to proteasome inhibi-

tor-based regimens. Indeed, it has been reported that the

degree of EIF2 phosphorylation itself, a key determinant in the

outcome of ER stress, may be responsible for resistance to

bortezomib (Schewe & Aguirre-Ghiso, 2009), suggesting that,

in patients who did not respond well in our completed trials

(i.e. <VGPR on VDD or <nCR), ER stress responses are some-

how attenuated. In addition, the EIF2 pathway was recently

highlighted as a critical determinant of dexamethasone-

induced apoptosis in MM cells (Burwick et al, 2013). Taken

together, our results suggest that detection of enriched EIF2
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Fig 3. Comparison of pathways between VDD and RVD. (A) EIF2 signalling, LXR/RXR activation, remodelling of epithelial adherens junctions,

clathrin-mediated endocytosis, and actin cytoskeleton signalling are pathways common to both RVD and VDD. Mitochondrial dysfunction was

significantly more prevalent in VDD than RVD. On the other hand, Acute Phase Response signalling and was more prevalent in RVD. (B) Red

depicts up-regulated and green depicts down-regulated. In VDD, Complex-I (NADH Dehydrogenase) is seen to be active along with a down-reg-

ulation of cytochrome c. RVD, lenalidomide, bortezomib, dexamethasone; VDD, bortezomib, liposomal doxorubicin, dexamethasone.
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Fig 3. Continued.

Predicting Response in Pre-Treatment Myeloma Patient Cells

ª 2015 John Wiley & Sons Ltd 73
British Journal of Haematology, 2015, 170, 66–79



<VGPR ≥VGPR

SYNJ1
RHEBL1
236935_at
RBAK
ALAS1
LOC348180
ZBTB40
C2orf3
ARGHEF9
237060_at
LOC728537
238477_at
IDNK
217604_at
CREM
HEXIM2
SLC41A3
NFX1
PHKA1
WDR42A

FBXL3
TP53BP1
237448_at
GLMN
AP1G1
BCL11B
242364_at
LOC283140
KRTAP2-1
NSUN4
SUPT20H
ANKRD10
GBAS
VASH1
UBAC2
HKR1
C13orf31
RBFOX1
LHFP
KSR1

Fig 4. Gene expression profiling on VDD samples. Gene expression profiling correlation with VDD response in terms of achieving at least VGPR.

The top 20 probe sets/genes increased in those achieving VGPR or better are highlighted in green and the top 20 probe sets/genes decreased in

the same group are highlighted in red. VDD, bortezomib, liposomal doxorubicin, dexamethasone; VGPR, very good partial response.
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Fig 5. Comparison of oxidative phosphorylation pathway between GEP and protein signatures in VDD. Oxidative phosphorylation pathway com-

parison of the VDD GEP signature against the differential protein labels in VDD datasets revealed up-regulation of Complex IV (cytochrome c

oxidase) in the GEP dataset as opposed to down-regulation in the proteomics dataset. VDD, bortezomib, liposomal doxorubicin, dexamethasone;

GEP, gene expression profiling.
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signalling-associated proteins in pre-treatment MM PC may

serve as a useful ‘universal response pathway’ and predictive

marker of positive response in newly-diagnosed MM patients

treated with a regimen that includes bortezomib and dexa-

methasone.

Although EIF2 signalling was associated with those patients

responding well to both RVD and VDD treatment, other path-

ways were found to be uniquely differentially regulated in each

regimen. The proteomic signature predicting achievement of

≥VGPR to initial treatment with VDD revealed mitochondrial

dysfunction as the top-ranked canonical pathway, which was

not differentially expressed according to outcome in the RVD

cohort. Interestingly, a common phenomenon associated with

deregulated cancer cell proliferation is the corresponding alter-

ation in energy metabolism, which is classically viewed as

mitochondrial dysfunction (reviewed in Ward & Thompson,

2012). Furthermore, changes in expression of specific meta-

bolic enzymes have been associated with sensitivity to genotox-

ic stimuli. Indeed, it has been demonstrated that decreased

expression of a NADH dehydrogenase subunit is associated

with resistance to doxorubicin (Wong et al, 2000). Accord-

ingly, patients achieving better response to VDD demonstrate

an enrichment of these proteins. In addition, enhanced pro-

duction of reactive oxygen species (ROS) has also been shown

to sensitize transformed cells to the effects of genotoxic stress

(Benhar et al, 2001). Our results suggest that in MM PC, mod-

ulation of enzymes that can elevate ROS in the setting of

altered mitochondrial function will provide a therapeutic ben-

efit to those patients receiving a DNA-damaging agent, such as

doxorubicin. In patients treated with RVD, a regimen in which

the thalidomide derivative, lenalidomide, is used in combina-

tion with bortezomib and dexamethasone instead of doxorubi-

cin (as in VDD), enrichment of the Acute Phase Response

Signalling pathway is associated with better response. The pre-

dominant cytokine associated with the Acute Phase Response

is IL6, an essential myeloma cell survival factor. The mecha-

nism of action of immunomodulatory drugs, such as lenalido-

mide, is to inhibit production of pro-inflammatory cytokines,

including TNF (also termed TNFa), IL1B, and IL6, and to co-

stimulate T-cells and natural killer cells to elicit tumouricidal

activity (Richardson et al, 2002). It stands to reason that a

group of patients with an enriched signature of Acute Phase

Response cytokines would benefit from a regimen containing

an immune modulating compound, as demonstrated by our

cohort of best responders among patients treated with RVD.

Altogether, our findings highlight dysregulated, therapeuti-

cally-relevant pathways that are of biological significance to

MM. Furthermore, these studies lay the groundwork for the

application of high-resolution quantitative proteomics to per-

sonalizing treatment options for newly-diagnosed MM

patients. However, prospective validation of these techniques

on a larger cohort of patients is required. Indeed, and as men-

tioned above, one potential drawback of our study is the lim-

ited number of samples in our training sets, i.e. the number of

samples derived from patients enrolled in both VDD and RVD

clinical trials, even if we are confident in our findings and in

the stringency of our statistical analyses. With this in mind, we

are currently prospectively collecting patient samples from

additional trials already in progress, including two with bort-

ezomib-based regimens and one with carfilzomib-based regi-

men, with the correlative objectives to perform much needed

validation analyses based on findings from this report.

As GEP is more widely used for analysis of myeloma sam-

ples, we performed an exploratory comparison of the results

between proteomic platforms and GEP on our VDD samples.

The analysis revealed that all but six of the differentially

expressed genes in our 166-gene GEP model were different

from the proteins identified as differentially expressed in our

proteomic signatures (data not shown). Furthermore, using

IPA to compare oxidative phosphorylation, which was the only

pathway subset enriched at both the proteomic and genomic

level in patients achieving VGPR or better on the VDD regi-

men, showed opposite trends. While GEP highlighted up-regu-

lation of complex IV-associated genes, proteomic evaluation of

this subset demonstrated down-regulation. While potentially

worrisome, overall, these results are in line with the well-recog-

nized phenomenon of limited concordance between GEP and

protein levels, and further support efforts made at interrogat-

ing the more biologically-relevant proteome level (De Wit

et al, 2010; Vogel et al, 2010; Schwanhausser et al, 2011). This

is reinforced by the discovery of novel protein pathway bio-

markers, which our results suggest may be relevant as predic-

tors of response to bortezomib-based therapeutic regimens.

However, we recognize that more work is necessary to deter-

mine the applicability of these pathway-based biomarkers as a

tool to bridge the gap between these translational bench-based

observations and deployment in the clinic.

In summary, profiling of patient samples collected prior

to treatment with VDD and RVD showed, as a proof of con-

cept, that it is possible to identify proteomic patterns specific

to response and treatment outcome. We believe that these

results may represent the first proteomic-based step in a

broader effort to establish marker-based personalized

approaches for the selection of treatment in MM. The pre-

dictive capabilities of these patterns, along with applicability

to therapeutic guidance need to be explored further.
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