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Abstract Experiments where a high-voltage electron beam emitted by a spacecraft in the low-density
magnetosphere is used to probe the magnetospheric configuration could greatly enhance our
understanding of the near-Earth environment. Their challenge, however, resides in the fact that the
background magnetospheric plasma cannot provide a return current that balances the electron beam
current without charging the spacecraft to such high potential that in practice prevents beam emission. In
order to overcome this problem, a possible solution is based on the emission of a high-density contactor
plasma by the spacecraft prior to and after the beam. We perform particle-in-cell simulations to investigate
the conditions under which a high-voltage electron beam can be emitted from a magnetospheric
spacecraft, comparing two possible routes that rely on the high-density contactor plasma. The first is an
“electron collection” route, where the contactor has lower current than the electron beam and is used
with the goal of connecting to the background plasma and collecting magnetospheric electrons over
a much larger area than that allowed by the spacecraft alone. The second is an “ion emission” route,
where the contactor has higher current than the electron beam. Ion emission is then enabled over the
large quasi-spherical area of the contactor cloud, thus overcoming the space charge limits typical of ion
beam emission. Our results indicate that the ion emission route offers a pathway for performing beam
experiments in the low-density magnetosphere, while the electron collection route is not viable because
the contactor fails to draw a large neutralizing current from the background.

1. Introduction

Experiments where a high-power electron beam is emitted by a magnetospheric spacecraft are of interest
for studies of magnetosphere-ionosphere connectivity and magnetosphere-ionosphere coupling [Borovsky
et al., 2000; MacDonald et al., 2012] and could greatly enhance our understanding of the near-Earth
environment.

Electron beam experiments have been successfully operated many times from rockets and spacecraft in the
ionosphere, where the ambient plasma is dense [Hendrickson et al., 1975; Hallinan et al., 1978; Winckler, 1980;
Pellat and Sagdeev, 1980; Zhulin et al., 1980; Swanson et al., 1986; Nemzek and Winckler, 1991; Nemzek et al.,
1992; Lavergnat, 1982; Prech et al., 1995, 2002; Katz et al., 1994]. In the ionosphere a sufficient return current
can be drawn from the background plasma to balance the electron beam current and to maintain spacecraft
charging to low levels that do not prevent beam emission.

Spacecraft charging issues become severe when a high-power electron beam experiment on a spacecraft in
the tenuous plasma of the magnetosphere is considered [Delzanno et al., 2015], since in the magnetosphere
the thermal fluxes of electrons are orders of magnitude smaller than the electron beam currents of interest.
When the electron beam is fired, a residual positive charge will be left on the spacecraft. The problem
becomes moving the residual positive charge off of the spacecraft and away from the spacecraft so that
voltages associated with that positive charge remain small. Indeed, the spacecraft charging problem for
electron beam experiments in the magnetosphere has been pointed out as an outstanding technical issue
for space physics [National Research Council, 2012].
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A possible solution to the spacecraft charging problem involves the operation of a plasma contactor on
the magnetospheric spacecraft to emit a dense plasma cloud prior to and during the operation of the
electron beam. Plasma contactors are often used to control spacecraft charging [e.g., Olsen, 1985; Schmidt
et al,, 1995; Comfort et al., 1998; Torkar, 2001]. They use a noble gas (typically xenon) and less of a
kilogram per year of fuel is normally sufficient since they only operate for a few seconds per hour. One can
imagine that the contactor plasma reduces the positive charge on the spacecraft by either (a) collecting
ambient magnetospheric electrons or (b) emitting ions. In a prior analysis performed in vacuum [Delzanno
et al., 2015] it was shown that ion emission from the surface of the contactor plasma cloud into three
dimensions may provide a mechanism to allow beam experiments in the magnetosphere to operate.

In this paper, particle-in-cell (PIC) simulations are presented to investigate the viability of the two strategies
(electron collection and ion emission) in the presence of the background plasma. Our conclusion is that
the electron collection route is not viable. In the case where the contactor is fired only prior to the electron
beam, as the spacecraft charges positively because of beam emission and reabsorbs the contactor electrons,
the contactor ions are pushed away from the spacecraft and the contact between the two and the ability
to draw a large neutralizing current from the background within benign level of spacecraft charging are
lost. When the contactor is kept on during beam emission (with the contactor current lower than the beam
current), contact between the spacecraft and the ion contactor cloud is maintained, but the contactor
still fails to draw a large background current. The ion emission route (in the limit of the contactor current
larger than the beam current), on the other hand, does not depend on establishing contact between the
spacecraft and the background plasma since it relies only on the ability of the ion contactor cloud to
expand to a size where there are no space charge limits on ion emission. Nevertheless, the presence of the
background plasma reduces the transient of the spacecraft potential (relative to the limiting case with no
background plasma) and helps beam emission. We conclude that the ion emission route offers a strategy for
high-voltage high-power beam emission in a low-density magnetosphere.

The paper is organized as follows. In section 2 we discuss the electron collection and ion emission strategies
for beam emission in the magnetosphere based on the contactor plasma. In section 3 we present the
simulation model and setup. In section 4 we compare simulations of the electron collection and ion
emission routes varying parametrically the background plasma density. In section 5 we draw the conclu-
sions of this research.

2. Discussion of Different Strategies for Electron Beam Emission in Space:
The Electron Collection and Ion Emission Routes
2.1. The Spacecraft Charging Equation
In order to understand different strategies that could be used for electron beam emission in space, the
spacecraft charging equation [Hastings and Garrett, 2004]

dQsp

dt
= Ie

b + Ibg
e + Ibg

i + Icont
e + Icont

i (1)

is a useful starting point. In equation (1), Qsp is the net charge on the spacecraft, Ie
b is the (constant) electron

beam current, Ibg
e and Ibg

i are the currents associated with the fluxes of magnetospheric (background)
electrons and ions to the spacecraft, and Icont

e and Icont
i are the currents associated with the emission of

electrons and ions off the spacecraft by the plasma contactor. In equation (1) photoelectron currents and
secondary electron currents are ignored. Let us begin by establishing some useful facts. In absence of
background plasma and contactor currents and using the charge versus potential relation for a spherical
body in vacuum,

Qsp = sp𝜙sp = 4𝜋𝜀0rsp𝜙sp (2)

(𝜀0 is the permittivity of vacuum, the spacecraft is spherical with radius rsp and sp is its capacitance),
equation (1) shows that the spacecraft potential 𝜙sp grows linearly in time. When the spacecraft potential
reaches a value corresponding to the kinetic energy of a beam electron (e = 1.6 ⋅ 10−19 C is the elementary
charge, me is the electron mass, and Vb is the velocity of the beam electron)

e𝜙ret
sp =

me

2
V2

b , (3)
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the beam returns to the spacecraft. This happens at time

tr =
2𝜋𝜀0rspmeV2

b

eIe
b

. (4)

For rsp = 1 m, Ie
b = 0.1 A, and a 1 keV beam, it follows that 𝜙ret

sp = 1 kV and tr ≃ 1.1 μs. The beam would only
travel 21 m before being electrostatically pulled back.

Let us now consider a system with the beam and the background plasma (Icont
e, i =0). The background currents

can be estimated using the orbital motion limited (OML) theory [Mott-Smith and Langmuir, 1926; Whipple,
1981]

Ibg
e = −e

√
8𝜋r2

spne

√
Te

me

(
1 +

e𝜙sp

Te

)
, (5)

Ibg
i = e

√
8𝜋r2

spni

√
Ti

mi
exp

(
−

e𝜙sp

Ti

)
, (6)

valid when 𝜙sp>0. In equations (5) and (6), mi is the ion mass while ne (i) and Te (i) are the magnetospheric
background electron (ion) density and temperature (expressed in eV). Note that the OML theory assumes
spherical symmetry, neglects potential barriers to the particle motion, and neglects magnetic field effects
[Mott-Smith and Langmuir, 1926; Al’pert et al., 1965; Laframboise, 1966; Allen et al., 2000; Tang and Delzanno,
2014]. It is normally applicable in the small spacecraft/probe radius relative to the plasma Debye length and
the plasma gyroradii, although simulations have shown that OML can still be an excellent approximation
even for probe radii of the order of the Debye length or the electron gyroradius [Delzanno et al., 2004, 2013].
The theory could also be generalized to nonsymmetric potentials following the approach discussed by
Laframboise and Parker [1973]. The equilibrium of equation (1) with currents given by equations (5) and
(6) can be calculated numerically to understand what level of the spacecraft potential is necessary to draw
a current from the magnetospheric plasma that can balance Ib

e . For approximate plasma parameters at the
geosynchronous orbit (ne = ni = 1 cm−3, Te = Ti = 1 keV, mi∕me = 1836, B = 100 nT, Debye length
∼ 235 m, and electron gyroradius ∼ 750 m) the conditions for the validity of OML are met for a spacecraft
with rsp = 1 m. For Ie

b = 0.1 A, the equilibrium of the spacecraft potential is reached at 𝜙eq
sp = 9.4 ⋅ 106 V, i.e.,

the spacecraft would need to be at a potential of +9.4 MV to draw in enough magnetospheric electrons to
balance the current of the electron beam. For a 1 keV beam, 𝜙eq

sp = 9.4 ⋅ 106 V is orders of magnitude higher
than 𝜙ret

sp =1 kV, implying that the beam returns to the spacecraft as it would do without any background
plasma. It is clear that the return current provided by the background plasma is insufficient to allow emis-
sion of a high-voltage electron beam in the low-density magnetosphere and some other strategy must be
conceived. Inspection of equation (5) reveals ways that can increase the electron magnetospheric current: in
order of importance given by the exponent of the power law, larger collection areas (r2

sp), larger background

density (ne), and larger temperature (
√

Te) lead to larger electron currents from the background. Figure 1
shows 𝜙eq

sp varying with ne (left) and rsp (right). The dashed line shows 𝜙ret
sp = 1 kV and represents the

limit above which a 1 keV electron beam cannot be emitted by the spacecraft. Figure 1 shows that back-
ground densities ne>5 ⋅ 103 cm−3 or collection radii >70 m allow beam emission. Both of these options
are impractical.

2.2. Different Routes to Allow Electron Beam Emission in Space
A strategy presented in Borovsky et al. [2000] and MacDonald et al. [2012] to overcome the problems
discussed in the previous subsection relies on emitting a high-density neutral contactor plasma prior to
and during beam emission. We begin by considering the case where the contactor current is lower than
the beam current. The contactor plasma creates a high-density plasma reservoir near the spacecraft that
provides a large (relative to the background current) electron current that can compensate for that of the
electron beam. Over time this leaves behind a positively charged contactor cloud. Let us first estimate what
size of the contactor cloud would be necessary to allow beam emission. Assuming that the electron beam
emitted charge Q is transferred to the area enclosed by the spacecraft and the ion contactor cloud (which is
at potential 𝜙 and is described by a spherical characteristic radius R), from equation (2) one has

R = Q
4𝜋𝜀0𝜙

. (7)
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Figure 1. The equilibrium spacecraft potential obtained from equation (1) with Ie
b

= 0.1 A and Ibg
e, i given by

equations (5) and (6), varying (left) the background plasma density ne = ni (rsp = 1 m) and (right) the collection
radius rsp (ne = ni = 1 cm−3). The dashed line is 𝜙ret

sp given by equation (3). Other parameters are mi∕me = 1836,
Te = Ti = 1 keV, and Vb = 1.9 ⋅ 107 m/s.

For a 1 keV electron beam with Ie
b = 0.1 A that released Q = 0.25 C and keeping 𝜙 < 𝜙ret

sp to allow beam
emission, it follows that the contactor cloud characteristic radius would be R ≳ 2.2 ⋅ 103 km, i.e., of the
order of the size of the Earth. Note that this is much larger than what was found in Figure 1 (right) since
there the equilibrium charge corresponding to 𝜙eq

sp = 9.4 MV is Qsp = 10−3 C, much smaller than the
Q = 0.25 C considered here, because of the contribution of the background currents. Since creating a
contactor cloud as big as the Earth is clearly impractical, one can imagine employing a smaller contactor
cloud whose purpose is to make contact with the background magnetospheric plasma: as the beam is
emitted and the contactor cloud charges positively, a neutralizing electron current from the background
magnetospheric plasma is drawn to reduce the net charge in the cloud (c.f. equation (1)). From Figure 1
one suspects that a kilometer-sized cloud should be sufficient to compensate for the electron beam current
(although magnetic field effects not accounted for in Figure 1 will affect current collection for a large
contactor cloud [Parker and Murphy, 1967; Laframboise and Sonmor, 1993]). We will refer to this strategy as
the electron collection route, since the electron beam current is ultimately balanced by an electron magne-
tospheric current collected over a larger area. An obvious challenge of this approach is that, in the absence
of collisions, background electrons could be accelerated through the contactor cloud but without being
trapped in it and might therefore fail to deliver the necessary current to the spacecraft.

Of course, one can think of a strategy that uses an ion current emitted by the spacecraft to balance the
electron beam current. We note that a naive view of equation (1) would suggest that one could balance Ie

b

by emitting an ion beam Ii
b of equal current, Ii

b = Ie
b, without the need for a contactor plasma. In practice,

however, this idea does not work because for parameters of interest the ion beam current is above the
Child-Langmuir space charge limit [Child, 1911] and only a small fraction of the ion beam current can really
be emitted [Wang and Lai, 1997; Delzanno et al., 2015]. On the other hand, a different strategy to enable
electron beam emission in space, again based on the plasma contactor, was put forward in Delzanno et al.
[2015]. It consists of operating the electron beam and the contactor simultaneously but with Ie

b < Icont
i . In

this case, the role of the contactor is to enable ion emission over a large, quasi-spherical area (unlike the case
of the ion beam which occurs on a small, planar area which is strongly space charge limited). Thus, the tran-
sient of the spacecraft potential is kept under control because the spacecraft is able to emit an ion current
larger than the beam current. We will refer to this strategy as the ion emission route.

In section 4 we will perform particle-in-cell (PIC) simulations to compare and contrast the electron collection
and ion emission routes. The validity of the latter has already been established in Delzanno et al. [2015] but
for electron beam and contactor emitted in vacuum. Here we will complement the results of Delzanno et al.
[2015] by exploring the role played by the background plasma.
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3. Simulation Model and Setup

In this paper we study the interaction of a spherical spacecraft with a plasma made of electrons and singly
charged hydrogen ions. The plasma consists of a magnetospheric background population and the contactor
plasma emitted by the spacecraft. The spacecraft also emits an electron beam.

The system is modeled by the Curvilinear particle-in-cell (CPIC) code which solves the collisionless Vlasov
equation in the electrostatic limit, where the dynamics of the plasma is governed by the self-consistent
electric field arising from its charge distribution and by an external, constant magnetic field B0. The model
equations read

𝜕fs

𝜕𝜏
+ v̂ ⋅ ∇x̂ fs +

qs

e

me

ms

(
−∇𝜓 + v̂ × B̂0

)
⋅ ∇v̂ fs = 0, (8)

− ∇2𝜓 =
∑

s

qs

e
n̂s, (9)

In equation (8), fs is the plasma distribution function and s labels each plasma species (s = e, i, and b for
electrons, ions, and the beam, respectively), 𝜏 is time, x̂ and v̂ are position and velocity, qs (ms) is the charge
(mass) for each species, and 𝜓 is the electrostatic potential. Note that we have lumped the background and
contactor plasma components together, but later we will use the superscripts “bg” and “cont” to specify
their parameters separately.

Equations (8) and (9) are normalized as follows. We introduce a reference density nref and temperature Tref .

Lengths are normalized to a reference Debye length 𝜆ref =
√

𝜀0Tref

e2nref
, x̂ = x∕𝜆ref ; velocity to the reference

electron thermal velocity vth,ref =
√

Tref

me
, v̂ = v∕vth,ref ; time to the reference electron plasma frequency

𝜔pe,ref =
√

e2nref

𝜀0me
, 𝜏 = 𝜔pe,reft; densities to a reference density, n̂s = ns∕nref ; temperatures to a reference

temperature, T̂s = Ts∕Tref ; the electrostatic potential is normalized as 𝜓 = e𝜙∕Tref ; and the background
magnetic field as B̂0 = 𝜔ce,ref

𝜔pe,ref

B0|B0| , with the reference electron cyclotron frequency given by 𝜔ce,ref =e|B0|∕me.

The model equations are solved numerically with the particle-in-cell (PIC) technique Birdsall and Langdon
[1985], implemented in a recently developed code called Curvilinear PIC (CPIC) [Delzanno et al., 2013]. CPIC
has been used primarily for studies of the interaction between plasmas and material objects [Delzanno et al.,
2013; Delzanno and Tang; 2014]. We run CPIC in cylindrical (r, 𝜃, z) geometry and impose azimuthal
symmetry on the electrostatic field. The particles retain three components of the velocity, namely, we run
CPIC in the so-called 2D3V formulation [Birdsall and Langdon, 1985]. The simulation domain is enclosed by
two concentric spheres of radius 𝜌sp and 𝜌2, where we have introduced 𝜌 =

√
r2 + z2, and the spacecraft

of radius 𝜌sp represents the inner boundary of the simulation domain. Particles that hit the spacecraft
are removed from the simulation and their charge is accumulated onto the spacecraft. The spacecraft is
assumed to be a perfect conductor, and the spacecraft accumulated charge Q̂sp yields a boundary condition
at 𝜌 = 𝜌sp given by Gauss’s law. Particles can leave the system at the outer boundary, where a Dirichlet
(conducting) boundary condition is applied on the electrostatic potential: 𝜓

(
𝜌2

)
= 0. The background

magnetic field is directed along z.

The contactor plasma is injected at 𝜌 = 𝜌sp antiparallel to B̂0. At injection, the contactor is characterized
by density n̂cont

e, i , temperature T̂ cont
e, i , and ion drift velocity V̂cont

i directed along −z. Electrons are injected in
the system according to a Maxwellian distribution at rest since their thermal velocity is much larger than
the drift velocity. Ions, on the other hand, are in the opposite limit and their injection velocity is mostly
given by the drift velocity plus a small thermal spread. When the contactor injection is on, we introduce
400 macroparticles per species per time step.

The background plasma is present at all times of the simulation. At time 𝜏 = 0 it is loaded in the system
according to a Maxwellian distribution at rest with density n̂bg

e, i and temperature T̂ bg
e, i equal for electrons and

ions. At every time step, we inject particles at the outer boundary 𝜌 = 𝜌2 to compensate for the thermal flux
of background particles that leaves the system. This allows one to simulate an infinite background plasma
medium outside the simulation domain [Birdsall and Langdon, 1985]. At time 𝜏 = 0 we load 49 macroparti-
cles per cell, and the number of injected particles per time step is such to keep a similar level of resolution
throughout the simulation.
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Figure 2. Cartoon of the simulation setup. Since for the
parameters considered in this study the background plasma
gyroradii are much larger that the spacecraft radius, cur-
rent collection from the background plasma occurs as if the
plasma were unmagnetized.

We simulate the effect of the electron beam by
removing the beam charge ÎbΔ𝜏 (Îb is the beam
current) at every time step Δ𝜏 . This is equivalent
to a beam with infinite kinetic energy and it is a
conservative choice in terms of the transient
induced on the spacecraft potential (since beam
electrons cannot be pulled back electrostatically
and return to the spacecraft), as shown in
Delzanno et al. [2015].

A cartoon of the simulation setup can be found
in Figure 2.

The following dimensionless parameters are
considered in this study:

1. Background magnetic field magnitude:
B̂0 = 3 ⋅ 10−3.

2. Geometrical parameters:
𝜌sp = 1, 𝜌2 = 50.

3. Background plasma parameters:
mi

me
= 1836, n̂bg = n̂bg

e = n̂bg
i , T̂ bg

e = T̂ bg
i = 1.

4. Contactor plasma parameters:
mi

me
= 1836, n̂cont

e = n̂cont
i = 100, V̂cont

i = 0.01,

T̂ cont
e = T̂ cont

i = 0.01, Îcont
i = 0.187.

In these units the background plasma Debye
length is 𝜆̂ = 1∕

√
n̂bg and the electron gyroradius

is 𝜌̂e = 𝜔pe,ref∕𝜔ce,ref (T̂ bg
e = 1). For the parameters of this study (n̂bg = 10−4 and n̂bg = 10−2), both quan-

tities are much larger than 𝜌sp and justify the use of OML current collection for the estimates of section 4.
The majority of the simulations will be conducted with Îb = 0.093 = Îcont

i ∕2 but we will study a few cases
with Îb = 0.374 = 2Îcont

i . Except for the presence of the background plasma and the case Îb = 0.374, these
are the same parameters used in Delzanno et al. [2015]. As discussed in Delzanno et al. [2015], these param-
eters are somewhat rescaled relative to a realistic system. For reference, one can assume nref = 104 cm−3,
Tref = 1 keV, and |B0| = 100 nT, which would give a contactor ion current Icont

i = 0.022 A.

The simulations are conducted with a 4096 × 1024 grid in (r, z) and time step Δ𝜏 = 0.02, using 256 cores of
the Mapache cluster at the Los Alamos National Laboratory. Some convergence study was performed with
Δ𝜏 = 0.01 without appreciable changes in the results.

The simulation campaign is conducted as follows. Initially, we perform simulations where we only inject
the contactor plasma and follow its expansion in the background plasma. Three configurations obtained at
𝜏 = 200, 600, 1000 (labeled as Cases 1, 2, and 3) are then used as initial conditions for studies of beam emis-
sion from the spacecraft. We compare simulations of beam emission when the contactor injection is turned
off at the time the beam is turned on (i.e., the electron collection route in the limiting case Îb∕Îcont

i −→ ∞)
to ones where the contactor injection remains on when the beam is turned on (the electron collection route
with Îb > Îcont

i and the ion emission route with Îb < Îcont
i ). We will vary the background density n̂bg para-

metrically to investigate its role. The ion densities of the three initial configurations of Cases 1, 2, and 3 for
n̂bg = 10−4 are plotted in Figure 3.

4. Results

Let us begin by analyzing simulations of beam emission with contactor injection turned off when the beam
with Îb = 0.093 is turned on. Figure 4 shows the spacecraft potential 𝜓sp versus time for the three initial
configurations of the contactor plasma that were discussed in section 3 (cf. Figure 3). These simulations
are performed for a low-density background n̂bg

e = n̂bg
i = 10−4. The dots in Figure 4 mark the time where

the total amount of charge emitted by the electron beam is (approximately) equal to the charge that was
present in each contactor species at 𝜏 = 0. For each curve, the behavior of 𝜓sp is monotonically increasing

DELZANNO ET AL. ©2015. American Geophysical Union. All Rights Reserved. 3593
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Figure 3. Contours of the three configurations of the ion density at times 𝜏= 200, 600, and 1000 (labeled as Cases 1, 2,
and 3) obtained by injecting the contactor in the background plasma without beam emission. These are used as initial
conditions for the studies of beam emission from the spacecraft presented in section 4. The background density is
n̂bg = 10−4 and is not visible in the plots.

with time (except at time 𝜏=0 where there is a short initial transient where the spacecraft potential decreases
with time but is not really visible in Figure 4), rising slowly at early times and faster at the end of the simu-
lation. The initial slope of the spacecraft potential can be estimated as done in Delzanno et al. [2015] via a
capacitance-type argument. Assuming that the electron charge emitted by the beam is transferred to the
spacecraft and the ion contactor cloud (characterized by a capacitance ̂cont and assumed at 𝜓 = 𝜓sp), it is
easy to obtain

d𝜓sp

d𝜏
≃

Îb

̂cont

. (10)

In order to obtain the capacitance ̂cont, for each contactor plasma configuration at 𝜏 = 0 we calculate the
area i, 10−3 of the ion density contour corresponding to n̂i = 10−3, calculate the equivalent spherical radius
i, 10−3 =

√
2i, 10−3∕𝜋, and use it to obtain ̂cont = 4𝜋i, 10−3 . For the three initial contactor configurations
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Figure 4. Spacecraft potential versus time starting
from the three initial contactor configurations
described in section 3, with the injection of the
contactor turned off while the beam is emitted. The
dots mark the time where the electron beam has
injected an amount of charge equal to that present
in each contactor species at 𝜏 = 0. The background
plasma density is n̂bg = 10−4 and Îb = 0.093.

of Figure 3, we find i, 10−3 = 2.5, 7.1, and 10.4, leading to
d𝜓sp∕d𝜏 ≃ 2.9 ⋅ 10−3, 1.1 ⋅ 10−4, and 7.2 ⋅ 10−4. This is in
good agreement with a numerical evaluation of d𝜓sp∕d𝜏
by finite difference approximation between 𝜏 = 20 and
𝜏 = 60: d𝜓num

sp ∕d𝜏 ≃ 3.2 ⋅ 10−3, 9.8 ⋅ 10−4, and 6.6 ⋅ 10−4.

As time progresses the spacecraft potential rises at a
faster pace than at the beginning and asymptotically all
the curves reach the same growth rate. This asymptotic
state can be calculated via equations (1) and (5), which
can be solved analytically if we neglect the ion current
from the magnetosphere (as justified by the fact that the
spacecraft is accumulating a strong positive charge). This
leads to the solution

𝜓sp =
⎛⎜⎜⎝1 −

Îb√
8𝜋𝜌2

spn̂bg
e

⎞⎟⎟⎠
[

exp

(
−
𝜌spn̂bg

e 𝜏√
2𝜋

)
− 1

]
, (11)

where we have assumed that 𝜓sp(0) = 0. In the limit

n̂bg
e 𝜏∕

√
2𝜋 ≪ 1 (late time in Figure 4) and considering

that Îb∕n̂bg
e ≫ 1, equation (11) simplifies to

𝜓sp ≃
Îb

4𝜋𝜌sp
𝜏 −→

d𝜓sp

d𝜏
≃

Îb

̂sp

, (12)
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Figure 5. Electron density contours corresponding to n̂e = 102, 101, 100, 10−1, and 10−2 at various times for Case 1 with
the contactor injection turned off. The background plasma density is n̂bg = 10−4 and Îb = 0.093.
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Figure 6. Ion density contours corresponding to n̂i = 102, 101, 100, 10−1, and 10−2 at various times for Case 1 with the
contactor injection turned off. The background plasma density is n̂bg = 10−4 and Îb = 0.093.
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Figure 7. Potential near the spacecraft at various times for Case 1 with the contactor injection turned off. The
background plasma density is n̂bg = 10−4 and Îb = 0.093.

indicating that on this time scale the spacecraft potential rises linearly in time driven by electron beam
emission and without much contribution from the background electrons. From equation (12), one obtains
d𝜓sp∕d𝜏 ≃ 7.4 ⋅ 10−3, in good agreement with the numerical calculation of d𝜓sp∕d𝜏 at the end of each

simulation which gives d𝜓num
sp ∕d𝜏 ≃ 6.8 ⋅ 10−3 for all curves. For n̂bg

e 𝜏∕
√

2𝜋 ≫ 1, the spacecraft potential
reaches its equilibrium value where the electron beam and background currents balance. For n̂bg = 10−4,
equation (11) yields

𝜓eq
sp =

Îb√
8𝜋𝜌2

spn̂bg
e

− 1 = 185. (13)

Figure 4 allows one to calculate the time scale 𝜏r upon which a beam of given velocity V̂b would be pulled
back by the spacecraft. This occurs when 𝜓sp = V̂2

b∕2. For V̂b =1, this happens at 𝜏r =154, 335, and 484 for
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Figure 8. Potential near the spacecraft for Cases 2 and 3, at the time when the amount of electron charge emitted by the
beam equals that present in each contactor species at 𝜏 = 0. The contactor injection is turned off in these simulations.
The background plasma density is n̂bg = 10−4 and Îb = 0.093.

Cases 1, 2, and 3, respectively. For V̂b = 2 one has 𝜏r = 606, 1000, and 1320, while for V̂b = 4 one has
𝜏r = 1521, 2321, and 3068.

The fact that the asymptotic evolution of 𝜓sp in Figure 4 (which is still in the limit n̂bg
e 𝜏 ≪ 1) is dictated

by the spacecraft capacitance (equation (12)) is an indication that the spacecraft is losing contact with the
ion contactor cloud. In order to verify this, we look at the plasma densities in Figures 5 and 6 for Case 1.
Figure 5 shows the electron density contours corresponding to n̂e = 102, 101, 100, 10−1, and 10−2 at vari-
ous times of the simulation. Note that the background is at n̂bg ≃ 10−4 and therefore is not visible in these
plots. At time 𝜏 = 10 (Figure 5a) the density resembles that of the initial contactor configuration and one
can see the n̂e = 102 contour and a rather diffused cloud corresponding to n̂e = 10−2. As time progresses
and the spacecraft potential rises, electrons from the contactor cloud are pulled back to the spacecraft and
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Figure 9. Spacecraft potential versus time starting from
the three initial contactor configurations described in
section 3, with the injection of the contactor turned on
while the beam is emitted but with Îb = 0.374 (Îcont

i =
0.187). The background plasma density is n̂bg = 10−4.

the electron density decreases. (In part this is also
due to the fact that part of the contactor cloud
keeps expanding because of its initial inertia.) For
instance, at 𝜏 = 200 (Figure 5c) n̂e < 10 and at 𝜏 = 600
(Figure 5e) n̂e<1. At time 𝜏 = 800 (Figure 5f ) the elec-
tron contactor cloud has reduced significantly in size
and at time 𝜏 ≃ 850 it disappears completely. Figure 6
shows the ion density at the same times and with the
same format of Figure 5. In general, the contactor ion
clouds keeps expanding because of its inertia and the
strong positive charge that is being accumulated on
the spacecraft. Consequently, its density decreases.
Some density pileup at the back of the ion cloud is
also visible. By the time the electron contactor cloud
has been completely reabsorbed by the spacecraft,
the ion contactor cloud has moved past z ≃−6 and
its density is n̂i < 1. Figure 6 shows clearly that the
connection between the spacecraft and the ion
contactor cloud is lost. Note also that our simulations
show no evidence that the expanding ion contactor
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Figure 10. Spacecraft potential versus time starting from
the three initial contactor configurations described in
section 3, with the injection of the contactor turned on
while the beam is emitted. The dashed lines correspond
to the cases where the electron beam and the contactor
are injected in vacuum (i.e., n̂bg = 0). The background
plasma density is n̂bg =10−4, Îb =0.093, and Îcont

i =0.187.

cloud is being neutralized by the background plasma.
This suggests that even if contact between the space-
craft and the ion contactor cloud was maintained (by
having the contactor turned on during beam emis-
sion but with Îb > Îcont

i ), the ion contactor cloud could
fail to collect electrons from the background plasma.

Figure 7 shows a zoom of the electrostatic potential
at various times for Case 1. Recall that the potential is
zero at the outer boundary 𝜌2 = 50. At the early times,
Figure 7a, one can see a shallow virtual anode in
front of the contactor injection point. It is interesting
to note that the contactor expansion remains roughly
quasi-neutral, as can be seen in Figures 7b and 7c.
However, as the ion contactor cloud is losing contact
with the spacecraft, the potential starts to develop
a large, spherically symmetric gradient near the
spacecraft. At later times, when the electron contac-
tor cloud has been absorbed and the ion cloud has
spread further away from the spacecraft, the effect of
the diffused ion contactor cloud becomes less evident
and the potential becomes spherically symmetric up
to |z| ∼ 5. Figure 8 shows the potential for Cases 2

and 3 at the times corresponding to when the total electron charge emitted by the beam is approximately
equal to the charge present in each contactor species at 𝜏 = 0. Compared with Figure 7c for Case 1, one
can see that a larger emitted charge (and a larger contactor cloud) induces a larger differential between
the spacecraft potential and the potential of the ion cloud. For Case 2, the potential in the plateau region
extending between −22< z<−10 and r< 8 is 𝜓 ≈ 0.54 while 𝜓sp = 2.64. For Case 3, the plateau is between
−35 < z < −15 and r < 12 with 𝜓 ≈ 0.38 versus 𝜓sp = 3.86.

Figure 9 shows the spacecraft potential for simulations with the contactor injection kept on during beam
emission but with Îb = 0.374 = 2Îcont

i . After an initial transient controlled by the size of the contactor cloud,
the curves for Cases 1 and 2 grow linearly in time with a slope given by

d𝜓sp

d𝜏
≃

Îb − Îcont
i

̂sp

= 0.15, (14)

in good agreement with its numerical evaluation at the end of the simulation, d𝜓num
sp ∕d𝜏 ≃ 0.14. As before,

the electron contactor cloud is reabsorbed completely. Interestingly, the spacecraft is able to emit ions
(since the spacecraft potential becomes quite large) and maintains contact with the ion contactor cloud.
Nevertheless, the late-time evolution in Figure 9 is governed by the spacecraft capacitance and not by the
capacitance of the ion cloud. The fact that the potential grows linearly with time indicates that the contactor
fails to draw a large neutralizing current from the background.

Figure 10 shows the spacecraft potential for the same conditions of Figure 4 (Îb = 0.093) but maintaining
the contactor injection after the electron beam has been turned on (Îcont

i =0.187). For comparison, Figure 10
also shows the result from the simulations that were carried out in Delzanno et al. [2015] for the same param-
eters but with the beam and the contactor injected in vacuum (i.e., n̂bg = 0). In those simulations carried out
in Delzanno et al. [2015] it was determined that the net ion emission from the outer surface of the contactor
plasma cloud was balancing the current of the electron beam. One can see in Figure 10 that the effect of the
background plasma is negligible in this case: it supplies a rather small current that reduces the peak of the
spacecraft potential slightly relative to the case without background plasma. Unlike the case of Figure 4, one
can see that the spacecraft potential initially rises (with the same slope that was calculated for the cases in
Figure 4), it peaks and then decreases. Thus, any beam with velocity V̂b>

√
2𝜓max

sp (𝜓max
sp is the maximum of

the spacecraft potential) would be emitted in this scenario, a rather modest requirement considering also
that larger initial contactor clouds decrease 𝜓max

sp . In comparison with Figure 4, a beam with V̂b = 1 would
return to the spacecraft for Cases 1 and 2 but would be emitted for Case 3. Any beam with V̂b > 1.3 would be
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Figure 11. Electron and ion density contours corresponding to n̂ = 102, 101, 100, 10−1, and 10−2 at various times for
Case 1. The contactor injection is turned on while the beam is emitted and the background plasma density is n̂bg = 10−4,
Îb = 0.093, and Îcont

i = 0.187.

emitted. In these cases where the contactor plasma emission is kept on during the electron beam operation,
net ion emission is acting.

Figure 11 shows electron and ion density contours for Case 1 of Figure 10, obtained at two different
times. One can see that the continuous injection of the contactor plasma maintains contact between
the spacecraft and the contactor cloud. Figure 11 also shows that the contactor cloud has a steady state
quasi-neutral component (for densities n̂e = n̂i ≳ 1 in Figure 11, where the ion and electron density
contours overlap almost perfectly) and a nonneutral component (n̂e ∼ n̂i ≲ 0.1) that keeps expanding.
As discussed in Delzanno et al. [2015], it is the ability to emit ions off the quasi-neutral part of the contactor
cloud that allows the spacecraft potential to decrease asymptotically in time (recall that Îb < Îcont

i ).

DELZANNO ET AL. ©2015. American Geophysical Union. All Rights Reserved. 3600



Journal of Geophysical Research: Space Physics 10.1002/2014JA020683

0 1000 2000 3000
0

0.2

0.4

0.6

0.8

1

τ

ψ
sp

Case 1
Case 2
Case 3

Figure 12. Spacecraft potential versus time starting from
the three initial contactor configurations described in
section 3, with the injection of the contactor turned off
while the beam is emitted. The background plasma density
is n̂bg =10−2 and Îb =0.093. The dashed line represents the
equilibrium value 𝜓eq

sp ≃ 0.87 obtained from equation (1).

We have also analyzed the case where the back-
ground density is much higher, n̂bg = 10−2, again
for Îb=0.093. The spacecraft potential for simulations
of Cases 1, 2, and 3 and with the contactor injection
turned off when the beam is emitted are presented
in Figure 12 (compare with Figure 4 at n̂bg=10−4). For
these parameters, equation (13) gives a substantially
lower equilibrium spacecraft potential 𝜓eq

sp ≃ 0.86.
Including also the ion collection current in the
current balance of equation (1) gives 𝜓eq

sp ≃ 0.87.
From Figure 12 it can be seen that the spacecraft
potential approaches 𝜓eq

sp ≃ 0.87 asymptotically,
at least for Case 1. Owing to the larger background
density, any beam with V̂b > 1.3 would be emitted.
Figure 13 shows the spacecraft potential for Cases 1,
2, and 3 when the contactor injection is maintained
during the simulations. Compared to Figure 10, one
can see that the presence of the background plasma
reduces the transient of the spacecraft potential
substantially and facilitates beam emission: any
beam with V̂b > 0.6 would now be emitted.

5. Conclusions

In this paper, we have performed PIC simulations to investigate the conditions under which a high-voltage
electron beam can be stably emitted by a spacecraft in the low-density magnetosphere. We have compared
two scenarios, both relying on a high-density contactor plasma emitted by the spacecraft prior to and
during beam emission. In the first scenario, dubbed the electron collection route, the contactor plasma has
lower current than the electron beam. It is used with the objective of creating a (kilometer-sized) contactor
cloud that can collect magnetospheric electrons over a much larger area than that given by the spacecraft.
In the second scenario, the contactor plasma has higher current than the beam current. The ions can be
emitted off the large, quasi-spherical area of the contactor cloud without encountering the space charge
limits typical of ion beam emission in planar geometry and maintain the spacecraft charging under control.
For this reason, this scenario has been referred to as the ion emission route. Our simulation results show
that the electron collection route is not viable. In the limit when the contactor is fired only prior to the
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Figure 13. Spacecraft potential versus time start-
ing from the three initial contactor configurations
described in section 3, with the injection of the con-
tactor turned on while the beam is emitted. The
background plasma density is n̂bg = 10−2, Îb = 0.093,
and Îcont

i = 0.187.

beam, while the spacecraft charges positively driven by
beam emission and reabsorbs the contactor electrons,
it pushes away the contactor ions. Thus, the spacecraft
loses contact with the ion contactor cloud and with
it loses the possibility of drawing a large neutralizing
current from the background through the large
contactor area. In essence, it returns to a situation
where the contactor is absent. In the case where the
contactor is kept on during beam emission (but with
the contactor current lower than the beam current),
contact between the spacecraft and the ion contactor
cloud can be maintained but the latter fails to draw
a large neutralizing current from the background. In
a low-density magnetosphere, both cases imply that
the spacecraft charges to a very high potential that
prevents beam emission. The ion emission route (with
the contactor current larger than the beam current),
on the other hand, relies only on the contactor
cloud reaching an area where ion emission is not
space charge limited, independent of the background
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density. The presence of the background plasma, however, reduces the transient of the spacecraft potential
relative to the case where the contactor is emitted in vacuum and therefore favors beam emission.

In conclusion, the ion emission route offers a pathway to perform beam experiments in the low-density
magnetosphere.
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