Report No. UMTRI-85-45

THREE-DIMENSIONAL OCCUPANT DYNAMICS SOFTWARE: BELT MODEL USE

Prepared by:

D. H. Robbins and R. O. Bennett Biosciences Division Transportation Research Institute The University of Michigan Ann Arbor, Michigan 48109

Prepared for:

Engineering Mechanics Department General Motors Research Laboratories Twelve Mile and Mound Roads Warren, Michigan 48090

Date:

August 31, 1986

Technical Report Documentation Page

1. Second Active 1. Second Active 1. Harrison and Comparison Active 1. Report Concepts 2. Harrison and Comparison Active 1. Report Concepts 3. Report Date 1. Performing Organization Code 3. Report Date 1. Performing Organization Code 3. Report Date 1. Performing Organization Research Institute The University of Michigan 1. Connect or Cont Ne. Ann Arbor, Michigan 48109 1. Type of Report and Paried Control 12. Security Agency Meet and Addition 388653 The University of Michigan Transportation Research Institute (Oct. 1, 1983-Aug. 31, 1985) Twelve Mile and Mound Roads 1. Security Agency Code Warrent Michigan 43090 1. Security Agency Code 13. Sequencity Nets 1. Security of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation of the CAL 3-D (Version 20) at UMTRI - Implementation of the CAL 3-D (Version 20) at UMTRI - Study of the experimental basis for seat belt analytical modeling - Development of belt slip and submarining models using the existing code - Development and testing of an analytical basis and software for the transfer of belt material across body surfaces - Review of the status of the HARNESS sub-program 14. Da	1. Report No	2 C			
UMTRI-85-45 4. Title ad Subility Three-Dimensional Occupant Dynamics Software: Belt Model Use 7. Autor // D. H. Robbins and R. O. Bennett 9. Performing Organization Research Institute Transportation Research Institute 10. Status Will and Nound Roads Warren, Michigan 48090 12. Superioring Approx Marce Addies Warren, Michigan 48090 13. Supplementary Merce 14. Adviced 15. Supplementary Merce 16. Adviced 17. Key Worke 18. Adviced 19. The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: 10. Implementation of the CAL 3-D (Version 20) at UMTRI 2. Study of the experimental basis for seat belt analytical modeling 2. Development of belt slip and submarining models		2. Government Accession No	. 3. •	(ecipient's Catalog I	NO.
 1. Tive and Scheide Three-Dimensional Occupant Dynamics Software: Belt Model Use 2. Autor 10 3. Repet Date: August 31, 1986 4. Performing Organization Research Institute 3. Repet Date: August 31, 1986 4. Performing Organization Research Institute 3. Transportation Research Institute Transportation Research Institute Transportation Research Laboratories Twelve Mile and Mound Roads Warren, Michigan 48090 3. Sequencing Agency News and Addees: The University of Michigan Transportation Research Institute (UMTRI) Conducted a study of seat belt modeling for use with the CAL 3-D crash victin simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: Implementation of the CAL 3-D (Version 20) at UMTRI Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 19. Key Werk: Crash victin simulation seat belt modeling Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 19. Key Werk: Crash victin simulation seat basis for seat belt modeling Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 20. Mussified 19. Key Werk: Crash victin simulation seat belts Occupant dynamics Restraint System Modeling 	UMTRI-85-45				
Three-Dimensional Occupant Dynamics Software: August 31, 1986 Belt Model Use 4. Performing Organization Code 7. Author J 9. Performing Organization Research Institute 7. Author J 9. Performing Organization Research Institute 7. Performing Organization Research Institute 9. Washing March 1986 7. Performing Organization Research Institute 9. Washing March 1986 7. Performing Organization Research Institute 10. Washing March 1986 7. Sequence Address 10. Washing March 1986 8. Performing Organization Research Institute 10. Washing March 1986 7. Author March 1980 11. Contract of Grant Mac 10. Suppresenting Agency Name address 11. Type of Report address Balance 1 13. Type of Report address 13. Suppresenting Agency Name address 13. Type of Report address 14. Maturet 13. Type of Report address 15. Sequence Mac 14. Somering Agency Code 16. Maturet 15. Sequence Maturet Address 17. Mac of the status of the CAL 3-D (Version 20) at UMTRI 18. Suppresent of belt slip and submarining models using the existing code 19. Development of belt slip and submarining models using the existing code 19. Development of belt slip and submarin	4. Title and Subtitle		5. R	Report Date	
Belt Model Use Image: Second Seco	Three-Dimensional Occup	ant Dynamics Sof	ware: A	ugust 31, 1	.986
7. Autor 10 1. Performing Organization Report Mo. 7. Autor 10 1. Report Montgan 9. H. Robbins and R. O. Bennett UMTRI-85-45 9. Fortaming Organization Research Institute 1. Status 10 11. Second Report Michigan 1. Converse of Geom Mo. Ann Arbor, Michigan 48109 1. Converse of Geom Mo. 12. Second Report Motors Research Laboratories 1. Type at Report and Period Converd Treue Wile and Mound Roads Warren, Michigan 48090 1. Type at Report depondence of Geom Mo. 13. Sequencing Agency Motor Second 48090 1. Second Period Converd 1. Second Period Converd 14. Abuved The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: - Implementation of the CAL 3-D (Version 20) at UMTRI Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code - Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces - Review of the status of the HARNESS sub-program Unlimited 19. Secontry Cleast (of this reperi) <td< td=""><td>Belt Model Use</td><td>ý</td><td>6. P</td><td>erforming Organizati</td><th>ion Code</th></td<>	Belt Model Use	ý	6. P	erforming Organizati	ion Code
7. Author 3) E. Performing Organisation Resear Ne. D. H. Robbins and R. O. Bennett UMTRI-85-45 8. Performing Organisation Near and Address. Transportation Research Institute UMTRI-85-45 9. Forming Organisation Near and Address. Transportation Research Institute 19. Work Unit We. (TRAIS) 338653 10. Security of Michigan 48109 11. Spectron of Period Covered 11. Security of Michigan 48009 13. Type of Report and Period Covered 12. Security Agency Marc and Address. Engineering Mechanics Department General Motors Research Laboratories Twelve Wile and Mound Roads 14. Spectron of Period Covered 13. Supplementary Moter 14. Spectron of Agency Code 14. Spectron of Agency Code 14. Abstreet The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included:					
P. H. Robbins and R. O. Bennett UMTRI-85-45 P. Prioming Organization Neas and Address Transportation Research Institute The University of Michigan Ann Arbor, Michigan 48109 10. Weak Univ No. (TRAIS) 386653 12. Servicing Agency Neas and Address Engineering Mechanics Department General Motors Research Laboratories Twelve Mile and Mound Roads Marren, Michigan 48090 13. Type of Report and Period Covered Final Report (Oct. 1, 1983-Aug. 31, 1985) 13. Superimentary Note: 14. Spensoring Agency Code Final Report (Oct. 1, 1983-Aug. 31, 1985) 14. Superimentary Note: 14. Spensoring Agency Code 14. Spensoring Agency Code 15. Supplementary Note: 15. Supplementary Note: 14. Spensoring Agency Code 16. Aburset The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: - Implementation of the CAL 3-D (Version 20) at UMTRI - Study of the experimental basis for seat belt analytical modeling - Development and testing of an analytical basis and software for the transfer of belt material across body surfaces - Review of the status of the HARNESS sub-program 17. Key Note: Crash victim simulation Seat belts Occupant dynamics Restraint System Modeling 16. Distribution Statement Unclassified 21. Ne. of Pagen 22. Price			8. P	erforming Organizati	ion Report No.
D. H. Robbins and R. O. Bennett UMIRL-35-43 P. Perkendy Operation Research Institute 18. Wet Wur We, (TRAN) Transportation Research Institute 388653 The University of Michigan 48109 19. Vet Wur We, (TRAN) 12. Section Agency New and Address 19. Vet Wur We, (TRAN) Regineering Mechanics Department Final Report General Motors Research Laboratories (Oct. 1, 1983-Aug.31, 1985) Twelve Wile and Mound Roads 14. Security Case Warren, Michigan 48090 14. Security Case 15. Suptematery New 14. Security Agency Case 16. Akuret 14. Security Agency Case The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: - - Implementation of the CAL 3-D (Version 20) at UMTRI - Study of the experimental basis for seat belt analytical modeling - Development of belt slip and submarining models using the existing code - - Review of the status of the HARNESS sub-	/. Author's)				
Y. Forming Organization Name ad Address Transportation Research Institute The University of Michigan Ann Arbor, Michigan 48099 10. Vect Ucn Nc. (IRAS) 388653 11. Seminoing Agency Nees ad Address Engineering Mechanics Department General Motors Research Laboratories Twelve Mile and Mound Roads Warren, Michigan 48090 13. Type of Report and Paried Covered Final Report (Oct. 1, 1983-Aug.31, 1985) 14. Abstreet 14. Someoring Agency Nees Marren, Michigan 48090 14. Someoring Agency Code 15. Sepplementary Notes 14. Someoring Agency Code 14. Someoring Agency Code 15. Sepplementary Notes 15. Sepplementary Notes 14. Someoring Agency Code 16. Abstreet The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included:	D. H. Robbins and R. O.	Bennett	U	MTR1-85-45	
11 Augo Present on Research National Statement 388653 12. Seminaring Agency New and Address 11. Centrest of Grant Ne. 13. Type of Report and Paried Covered Final Report 14. Seminaring Agency New and Address Final Report 15. Seminaring Agency New and Address Final Report 16. Abstreet Final Report 17. The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: - Implementation of the CAL 3-D (Version 20) at UMTRI - Study of the experimental basis for seat belt analytical modeling - Development of belt slip and submarining models using the existing code - Development and testing of an analytical basis and software for the transfer of belt material across body surfaces - Review of the status of the HARNESS sub-program 17. Key Words Unlimited Unclassified Unclassified	Y. Performing Organization Name and Address Transportation Research	Institute	10.	Work Unit No. (TRA	15)
Ann Arbor, Michigan 48109 1. Type of Report and Pariad Coursed 12. Sensiting Agency New and Addits Final Report Engineering Mechanics Department Final Report General Motors Research Laboratories Final Report Twelve Mile and Mound Roads Victigan 48090 Warren, Michigan 48090 1. Secondry Agency Cole 15. Sequence of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: Implementation of the CAL 3-D (Version 20) at UMTRI Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 17. Key Words 18. Distribution Statement Unclassified 19. Security Cleast, (of this report) Unclassified 12. No. of Paget 19. Security Cleast, (of this report) Unclassified 153	The University of Michi	an	3	88653	-
13. Separating Agency Near of Address Engineering Mechanics Department General Motors Research Laboratories Twelve Mile and Mound Roads Warren, Michigan 48090 13. Suppresentery Notes 14. Spensoing Agency Near of Address Warren, Michigan 48090 15. Suppresentery Notes 16. Abstreet The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: - Implementation of the CAL 3-D (Version 20) at UMTRI - Study of the experimental basis for seat belt analytical modeling - Development of belt slip and submarining models using the existing code - Development and testing of an analytical basis and software for the transfer of belt material across body surfaces - Review of the status of the HARNESS sub-program 17. Search Victim simulation Seat belts Search Victim Simulation Seat belts Unclassified 21. Ne. of Pages 22. Price	Ann Arbor Michigan 481	19	· · · ·	Contract or Grant No	.
12. Symmetric Agency Mark and Address Englander Fing Mechanics Department General Motors Research Laboratories Twelve Mile and Mound Roads Warren, Michigan 48090 Final Report (Oct. 1, 1983-Aug. 31, 1985) 13. Supplementery Motes 14. Spennering Agency Code 14. Abstract The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: - Implementation of the CAL 3-D (Version 20) at UMTRI - Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code - Development and testing of an analytical basis and software for the transfer of belt material across body surfaces - Review of the status of the HARNESS sub-program 17. Key Weeds Crash victim simulation Seat belts Occupant dynamics Restraint System Modeling 18. Distribution Statement Unclassified 18. Securit (Let Misreper) Unclassified 20. Security Cleasit (Let Misreper) Unclassified 21. No. of Pages 153	All Alber, Michigan 401		13	Type of Report and I	Pariad Caused
Engineering Mechanics Department Final Report General Motors Research Laboratories (Oct. 1, 1983-Aug.31, 1985) Warren, Michigan 48090 H. Spensoring Agency Code 13. Supplementery Notes H. Spensoring Agency Code 14. Spensoring Agency Code H. Spensoring Agency Code 15. Supplementery Notes H. Spensoring Agency Code 16. Abstract The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: - Implementation of the CAL 3-D (Version 20) at UMTRI - Study of the experimental basis for seat belt analytical modeling - Development of belt slip and submarining models using the existing code - Development and testing of an analytical basis and software for the transfer of belt material across body surfaces - Review of the status of the HARNESS sub-program 17. Key Words Unlimited V: Key Words Unlimited 19. Securit Cleast (of Mis reper) 20. Securit Cleast (of Mis reper) 19. Securit Cleast (of Mis reper) 20. Securit Cleast (of Mis reper) 19. Securit Cleast (of Mis reper) 20. Securit Cl	12. Sponsoring Agency Name and Address				anda Covered
General Motors Research Laboratories Twelve Mile and Mound Roads Warren, Michigan 48090 (Oct. 1, 1983-Aug.31, 1985). 15. Supplementer Nets 14. Spentoring Agency Code 15. Supplementer Nets 14. Spentoring Agency Code 16. Absvect The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: - Implementation of the CAL 3-D (Version 20) at UMTRI - Study of the experimental basis for seat belt analytical modeling - Development of belt slip and submarining models using the existing code - Development and testing of an analytical basis and software for the transfer of belt material across body surfaces - Review of the status of the HARNESS sub-program 17. Key Words crash victim simulation Seat belts Occupant dynamics Restraint System Modeling 16. Distributer Statument Unlimited 18. Security Cleast (of this report Unclassified 20. Security Cleast (of this page) Unclassified 11. No. of Pager 12. Price	Engineering Mechanics D	epartment	F	inal Keport	
Twelve Mile and Mound Roads Warren, Michigan 48090 14. Spontoring Agency Code 15. Supplementary Notes 14. Spontoring Agency Code 16. Abstreet The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: - Implementation of the CAL 3-D (Version 20) at UMTRI - Study of the experimental basis for seat belt analytical modeling - Development of belt slip and submarining models using the existing code - Development and testing of an analytical basis and software for the transfer of belt material across body surfaces - Review of the status of the HARNESS sub-program 17. Key Weds Unlimited Version State 18. Distribution Statement Unlimited Unlimited 0ccupant dynamics Restraint System Modeling 19. Security Cleast (of this report) 10. Security Cleast (of this report) 11. Security Cleast (of this report) 12. Security Cleast (of this report) 13. Security Cleast (of this report) 15. Security Cleast (of this report) 15. Security Cleast (of this report)	General Motors Research	Laboratories	(0c	t. 1, 1983-	-Aug. 31, 1985)
Warren, Michigan 48090 15. Supplementary Note: 16. Abuveet The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: - Implementation of the CAL 3-D (Version 20) at UMTRI - Study of the experimental basis for seat belt analytical modeling - Development of belt slip and submarining models using the existing code - Development and testing of an analytical basis and software for the transfer of belt material across body surfaces - Review of the status of the HARNESS sub-program 17. Key Words Crash victim simulation Seat belts Security Cleast (of this report) 18. Distribution Statement Unlimited Unclassified	Twelve Mile and Mound R	bads	14.	Sponsoring Agency C	Code
15. Supplementary Notes 16. Abstract The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: Implementation of the CAL 3-D (Version 20) at UMTRI Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 17. Key Wede Crash victim simulation Seat belts Unlimited Unlimited 18. Distribution Statement Unlimited Unlimited Unclassified 12. Ne. of Pages 12. Price 	Warren, Michigan 48090				
16. Abstract The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: Implementation of the CAL 3-D (Version 20) at UMTRI Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 17. Key Words Crash victim simulation Seat belts Occupant dynamics Restraint System Modeling 18. Distribution Statement Unlimited Unclassified 18. Ne. of Pages 12. Price 15.3 	15. Supplementary Notes				
16. Absvect The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: Implementation of the CAL 3-D (Version 20) at UMTRI Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 17. Key Words Crash victim simulation Seat belts Occupant dynamics Restraint System Modeling 18. Distribution Statement Unlimited 19. Security Cleasif. (of this report) Unclassified 10. Security Cleasif. (of this report) 11. No. of Pages 12. Price 					
16. Abstract The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: Implementation of the CAL 3-D (Version 20) at UMTRI Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 17. Key Words Crash victim simulation Seat belts Occupant dynamics Restraint System Modeling 18. Distribution Statement Unlimited Unclassified 18. No. of Pages 12. No. of Pages 12. Price 					
16. Abserved The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: Implementation of the CAL 3-D (Version 20) at UMTRI Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 17. Key Words Crash victim simulation Seat belts Unlimited Unlimited Unclassified Unclassified 					
The University of Michigan Transportation Research Institute (UMTRI) conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: Implementation of the CAL 3-D (Version 20) at UMTRI Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 18. Distribution Statement Crash victim simulation Seat belts Unlimited Unlimited 19. Security Cleasif. (of this page) 11. No. of Pages 12. Price Unclassified 15. Security Cleasif. 15. State and state and	16. Abstract				
conducted a study of seat belt modeling for use with the CAL 3-D crash victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: Implementation of the CAL 3-D (Version 20) at UMTRI Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 10. Distribution Statement Crash victim simulation Seat belts Occupant dynamics Restraint System Modeling 12. Security Cleasif. (of this page) 13. No. of Pages 15. Price 	The University of	Michigan Transpo	rtation Rese	arch Instit	ute (UMTRI)
 victim simulation code. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible. The work included: Implementation of the CAL 3-D (Version 20) at UMTRI Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 10. Distribution Statement Unlimited Unlimited Security Clessif. (of this page) Unclassified Unclassified 	conducted a study of se	at belt modeling	for use wit	h the CAL 3	3-D crash
existing software and to improve the codes insofar as possible. The work included: - Implementation of the CAL 3-D (Version 20) at UMTRI - Study of the experimental basis for seat belt analytical modeling - Development of belt slip and submarining models using the existing code - Development and testing of an analytical basis and software for the transfer of belt material across body surfaces - Review of the status of the HARNESS sub-program 17. Key Words III. Distribution Statement Crash victim simulation Seat belts Unlimited Occupant dynamics Unlimited Restraint System Modeling 20. Security Cleasif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 15.3	victim simulation code.	The objective	was to exami	ne the capa	abilities of
included: - Implementation of the CAL 3-D (Version 20) at UMTRI - Study of the experimental basis for seat belt analytical modeling - Development of belt slip and submarining models using the existing code - Development and testing of an analytical basis and software for the transfer of belt material across body surfaces - Review of the status of the HARNESS sub-program 17. Key Words 18. Distribution Statement Crash victim simulation Seat belts Unlimited Occupant dynamics Restraint System Modeling Unlimited 19. Security Clessif. (of this report) 20. Security Clessif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 153	existing software and t	o improve the co	des insofar	as possible	e. The work
 Implementation of the CAL 3-D (Version 20) at UMTRI Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 10. Distribution Stotement Crash victim simulation Seat belts Occupant dynamics Restraint System Modeling 10. Security Cleasif. (of this report) Unclassified 20. Security Cleasif. (of this page) 21. No. of Pages 22. Price 	included:	1		-	
 Implementation of the CAL 3-D (Version 20) at UMIRI Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 10. Distribution Statement Crash victim simulation Seat belts Occupant dynamics Restraint System Modeling 10. Security Clessif. (of this report) 20. Security Clessif. (of this page) 21. No. of Pages 22. Price Unclassified 					
 Study of the experimental basis for seat belt analytical modeling Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 17. Key Words Review of the status of the HARNESS sub-program Is Distribution Statement Crash victim simulation Seat belts Occupant dynamics Restraint System Modeling 18. Distribution Statement Unlimited Unlimited Unlimited Unlimited Unclassified Unclassified	- Implementation	of the CAL 3-D (version 20)	at UMIRI	
 Development of belt slip and submarining models using the existing code Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 17. Key Words Review of the status of the HARNESS sub-program 18. Distribution Statement Crash victim simulation Seat belts Occupant dynamics Restraint System Modeling 18. Distribution Statement Unlimited Unlimited Unclassified Unclassified 	- Study of the ex	perimental basis	for seat be	elt analytic	cal modeling
code - Development and testing of an analytical basis and software for the transfer of belt material across body surfaces - Review of the status of the HARNESS sub-program 17. Key Words Crash victim simulation Seat belts Occupant dynamics Restraint System Modeling 19. Security Clessif. (of this report) Unclassified Unclassified	- Development of	belt slip and su	bmarining mo	dels using	the existing
 Development and testing of an analytical basis and software for the transfer of belt material across body surfaces Review of the status of the HARNESS sub-program 17. Key Words Review of the status of the HARNESS sub-program 18. Distribution Statement Crash victim simulation Seat belts Occupant dynamics Restraint System Modeling 19. Security Clessif. (of this report) Unclassified Unclassified 21. No. of Pages 22. Price 	code				
17. Key Words I8. Distribution Statement Crash victim simulation Unlimited Seat belts Unlimited Occupant dynamics Voltage Restraint System Modeling 20. Security Clessif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 153	 Development and 	testing of an a	nalytical ba	isis and so	ttware for
 Review of the status of the HARNESS sub-program 17. Key Words Crash victim simulation Seat belts Occupant dynamics Restraint System Modeling 19. Security Clessif. (of this report) Unclassified Unclassified If the status of the HARNESS sub-program 	the transfer of	belt material a	cross body s	surfaces	
17. Key Words 18. Distribution Statement Crash victim simulation Unlimited Seat belts Unlimited Occupant dynamics Unlimited Restraint System Modeling 20. Security Clessif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 153	- Review of the s	tatus of the HAR	NESS sub-pro	ogram	
17. Key Words 18. Distribution Statement Crash victim simulation Image: Seat belts Seat belts Unlimited Occupant dynamics Unlimited Restraint System Modeling 20. Security Clessif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 153					
17. Key Words 18. Distribution Statement Crash victim simulation Unlimited Seat belts Unlimited Occupant dynamics Unlimited Restraint System Modeling 20. Security Clessif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 153					
17. Key Words 18. Distribution Statement Crash victim simulation Unlimited Seat belts Unlimited Occupant dynamics Unlimited Restraint System Modeling 20. Security Clessif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 153					
17. Key Words 18. Distribution Statement Crash victim simulation Unlimited Seat belts Unlimited Occupant dynamics Unlimited Restraint System Modeling 20. Security Clessif. (of this poge) 21. No. of Poges 22. Price Unclassified Unclassified 153					
17. Key Words 18. Distribution Statement Crash victim simulation Unlimited Seat belts Unlimited Occupant dynamics Unlimited Restraint System Modeling 20. Security Clessif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 153					
17. Key Words 18. Distribution Statement Crash victim simulation Unlimited Seat belts Unlimited Occupant dynamics Unlimited Restraint System Modeling 20. Security Clessif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 153					
17. Key Words 18. Distribution Statement Crash victim simulation Unlimited Seat belts Unlimited Occupant dynamics Unlimited Restraint System Modeling 20. Security Clessif. (of this page) 21. No. of Pages 19. Security Clessif. (of this report) 20. Security Clessif. (of this page) 21. No. of Pages Unclassified Unclassified 153					
Crash victim simulation Unlimited Seat belts Unlimited Occupant dynamics Victim System Modeling 19. Security Clessif. (of this report) 20. Security Clessif. (of this poge) 21. No. of Poges 22. Price Unclassified Unclassified 153	17. Key Words	18. Di	stribution Statement		
Seat belts Unlimited Occupant dynamics Unlimited Restraint System Modeling 20. Security Clessif. (of this page) 19. Security Clessif. (of this report) 20. Security Clessif. (of this page) Unclassified Unclassified	Crash victim simulation				
Occupant dynamics Restraint System Modeling 19. Security Clessif. (of this report) 20. Security Clessif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 153	Seat belts		Unlimite	ed	
Restraint System Modeling 20. Security Clessif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 153	Occupant dynamics				
19. Security Clessif. (of this report) 20. Security Clessif. (of this page) 21. No. of Pages 22. Price Unclassified Unclassified 153	Restraint System Modeli	ng			
Unclassified Unclassified 153	19. Security Classif. (of this report)	20 Security Classif Ist	his acro)	21. No. of Passa	22 Price
Unclassified Unclassified 153	the second clean (of mis report)		n = pager	21. 190. OT F ages	44. FIICE
	Unclassified	Unclassified		153	

.....

CONTENTS

.

LIST	OF TABLES	iii
LIST	OF FIGURES	iv
1.0	INTRODUCTION	1
2.0	BACKGROUND AND BASICS FOR SEAT BELT MODELING	3
	2.1 Review of Impact Test Data	3 6
3.0	BELT SLIP AND SUBMARINING MODELS USING EXISTING CODES	9
	 3.1 Sequence of Seat Belt Model Development 3.2 Test Cases Using Various Simple Concepts 3.3 Full-Scale Testing of Submarining Model 	9 11 15
4.0	ANALYSIS OF BELT MATERIAL TRANSFER ACROSS SURFACES	30
	4.1 The Belt Slip Model Developed by British Leyland 4.2 UMTRI Extensions to the British Leyland Slip Algorithm	30 33
	4.2.1 Definition of Terms for Belt Slip Algorithm	35
	4.2.2 Belt Slip in the Presence of Slack	37
	4.2.3 Belt Slip Under Load at a Typical Slip Point .	37
	4.2.4 The Progressive Solution Approach	38
	4.2.5 The Simultaneous Solution Based on Change in	
	Unstrained Length for Belt Segment 1 4.2.6 The Simultaneous Solution Based on Deflection	42
	of Belt Segments	44
	4.2.7 The Simultaneous Solution Based on Strain for	
	Belt Segment 2	45
	4.2.8 Set Up of the Slip Resistance Direction Factors	46
	1 3 Summary of Brogross	17
	4.4 Recommendations	48
5.0	THE HARNESS ALGORITHM	49
6.0	UMTRI VERSION OF GMCVS	53
7.0	REFERENCES	56
APPE	NDIX A: Revision Pages to GMCVS Input Description	58
APPE	NDIX B: Derivation of the Slip Force Equilibrium Equation .	63
APPE	NDIX C: Tape Description and Installation Notes	68

LIST OF TABLES

Page

3.1	Impact data set for full-scale submarining model	17
c.1	Description of tape BSC023	69
C.2	New belt slip algorithm routines	72
C.3	Comparison of GUCVS with GMCVS	74
C.4	Completely new or extensive changed code	74
C. 5	Comparison of GUCVS with GMCVS	75
C.6	Listings of code changes to GUCVS	116

.

LIST OF FIGURES

Page

2.1	Schematic of test setup	5
2.2	Restraint belt geometry	7
3.1	Sequence of belt models	10
3.2	Superimposed segments for representation of slip	12
3.3	Attachment of belt to mass which moves relative to primary segment	14
3.4	Simulation of submarining indicator (t=0 ms)	16
3.5	Simulation of submarining indicator (t=80 ms)	28
4.1	The belt plane in inertial space	31
4.2	Belt layout examples	32
4.3	British Leyland slippage between belts	34
4.4	Modified slippage at fixed point	36
4.5	The typical slip point k-l \ldots \ldots \ldots \ldots \ldots	39
4.6	A maximum belt loop configuration	40
5.1	Points on sample harness	50
5.2	Air Force harness simulation using HARNESS	52

1.0 INTRODUCTION

The University of Michigan Transportation Research Institute has conducted a study of seat belt modeling for use with three-dimensional crash victim simulation codes. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible.

The restraint belt algorithm of the Calspan CVS, Version 20 (Fleck et al. 1981), defines a restraint belt in terms of two anchor points and a fixed point on the surface of a contact ellipsoid. The belt is presumed to lie entirely within the belt plane defined by these three points in space. The two anchor points are restricted to be attached to any one segment (usually the vehicle) while the contact ellipsoid, and along with it the fixed point, is restricted to be attached to any other segment (usually one of the body segments). Up to eight belts are allowed but each is totally independent of the other.

British Leyland developed a model for slipping between two belts for the case in which one anchor of one of the belts was coincident with one anchor of the other belt (Newman et al. 1981). Butler et al. (1980, 1983) developed a major new sub-program (HARNESS) which allowed both slipping of the belt over the surface of the occupant and penetration of the belt into the body.

General Motors Research Laboratories made modifications to the Version 20 code particularly in the area of problem size. The University of Michigan Transportation Research Institute reorganized the output sections to reduce the amount of storage required and simultaneously installed some of the output features from the updated version of Version 18A (Bennett et al. 1982).

The remainder of the report describes the work conducted during the project:

- Development of experimental basis for seat belt modeling
- Development of belt slip and submarining models using the existing codes

- Development and testing of an analytical basis for the transfer of belt material across body surfaces
- Review of the status of the HARNESS sub-program

.

• The UMTRI implementation of the CVS

2.0 BACKGROUND AND BASICS FOR SEAT BELT MODELING

2.1 Review of Impact Test Data

In order to understand the physical phenomena which should be incorporated in a model of seat belt interaction with a motor vehicle occupant during a crash, a review was conducted of impact test data. The two questions posed were:

 Did the belt move or slip over the surface of the test subject; and,

2. Did the belt compress the chest structures during load application?

Two papers by Biomedical Science Department staff at the General Motors Research Laboratories were reviewed in this context. A Part 572 dummy was used in a study of test dummy interactions with a shoulder or lap belt by Viano and Culver (1981). These frontal impact tests were conducted with the thorax skin removed in order to better visualize the geometry of the interactions. The major phases of the dummy's interaction with the restraint system involved: "(1) forward movement of the dummy and take up of belt slack; (2) initial belt slip and adjustment to the thoracic structure; (3) inertial acceleration of the thorax with primarily planar thoracic compression; and, (4) substantial non-symmetric deformation of the thoracic structure as the chest rotates about the belt. . . . " An independent review of these movies revealed some slipping of the belt across the surface of the thorax during the loading phase. This was particularly marked where the lower portion of the shoulder belt interacted with the lower right side of the dummy's rib cage. Also, the stalk where the three-point attachment is routed to vehicle structures is observed to rotate.

Horsch (1980) reported a study of occupant dynamics as a function of impact angle and belt restraint. Tests were conducted at impact angles of 0, ± 30 , ± 45 , ± 60 , and ± 90 degrees. The test velocities were 35 km/hr. In "opposite side" impacts, the body escaped from under the

torso belt at 60 and 90 degrees but importantly it was noted that much of the impact energy had already been absorbed.

The observation of belt sliding across the surface of the Part 572 thorax in the frontal impacts caused consternation among the present researchers. The reason was that a foundation of the original Calspan 3-D CVS model was attachment of the belt at a fixed point on the thorax. Because of this a further review of test movies using Hybrid III dummies and cadavers was conducted. The data were obtained from the whole body response study, a major effort at UMTRI funded by General Motors and reported by Alem et al. (1977). The test buck was provided by General Motors and test velocities at 16, 22, and 33 mph were used. A schematic of the test setup is shown in Figure 2.1.

A quick look at the cadaver movies revealed what appears to be considerable slipping of the belt over the torso, perhaps 10 inches or more. In the eight side views of a low-level test (16 mph), there seemed to be some sliding of the torso belt as it penetrated down and into the lower right-hand side of the subject. From the left side, the belt slid over the shoulder. This apparent extensive amount of slipping occurred at the same time the belt appeared to be compressing the center of the torso. This was confirmed in a front view of the test. In this view, the belt appeared to slide a little bit initially as if the belt were using up slack while adjusting to the surface of the body before applying any significant loads. As the load was applied, there was a tremendous compression of the chest, during which time the belt was pocketed by the surrounding tissue. No slipping along the belt line was observed. Side slipping was virtually impossible because of the pocketing. It should be noted that the shoulder complex rotated around the thorax and belt to accentuate this effect. The same pattern of behavior was observed in the higher velocity impacts (22 and 33 mph).

The tests at UMTRI using the Hybrid III were conducted using General Motors equipment (test buck and dummies). Tests were reviewed at three velocities (16 mph, 22 mph, 33 mph). With respect to belt slipping, the results were similar to those observed in the cadaver tests. The major difference was the lack of shoulder complex forward

Figure 2.1. Schematic of Test Setup

rotation and the general apparent excessive stiffness of the thoracic structure and spine. Some chest compression was observed.

In conclusion, the following observations can be made in answer to the questions posed at the beginning of this section.

1. Most of the slippage of the belt over the surface of the subject was observed to occur in the initial phase of the test in order to take up slack which may exist in any of the belt segments.

2. Apparent slippage is observed in the upper and lower torso belt segments as body loads are applied. This is primarily the result of thorax compression and, to a lesser extent, belt stretch.

3. During application of a frontal impact load to a subject having a well-positioned belt system, it appears that there is no slippage for one point on the thorax.

4. While the belt interaction with Hybrid III and cadaver test subjects are similar, the Hybrid II response appears to be rather different.

2.2 Limitations of Existing BELT Code

In the BELT subprogram, each of the restraint belts is assumed to lie in a plane defined by two anchor points attached to a segment (usually the vehicle) and by a fixed point on a contact ellipsoid rigidly attached to some other segment (see Figure 2.2). The calculation of the belt length from the fixed point to the two anchor points is done separately. The friction of the contact between the belt and the segment ellipsoid may be assumed to be either zero or infinite. In the zero friction option the total belt length is used to compute the strain and a single force-strain history is used to determine the force which is applied equally at each of the tangent points. In the infinite friction option each of the partial belt lengths (one from the fixed point to anchor point A and the other from the fixed point to anchor point B) are treated independently. Separate force-strain histories are carried for each part resulting in different forces. It is assumed that the force-strain functions are defined in such a manner as to account for deformation of the contact ellipsoid.

Figure 2.2. Restraint Belt Geometry

Based on the observations put forth in Section 2.1, the BELT code is deficient in three ways:

1. There is no capability to transfer material from one side of the belt segment to the other. The only mechanism is force equalization which, rather than feeding slack material from one side to the other, computes the average of the non-zero force on one side with the zero force on the slack side. Based on the observation of adjustment of the belt to fit the shape of the occupant just discussed in Section 2.1, this assumption is inadequate.

2. It is not possible to model a three-point belt. In other words, it is not possible to connect two belts, such as those defined in Figure 2.2, together in order to represent the torso and lap sections of a seat belt assembly. Even if this were possible, the rotation of the stalk attached to the D-ring could not be represented.

3. It is not possible to allow migration of the fixed point on the segment ellipsoid. Although this assumption appears to be good for frontal impact (in the case where there is little transfer of slack belt material), it is not valid for opposite side lateral or oblique impacts where the occupant can slip completely out of the belt.

3.0 BELT SLIP AND SUBMARINING MODELS USING EXISTING CODES

This section of the report discusses the use of the original BELT software to simulate sliding of the belt over body surfaces and penetration of the belt into body surfaces during dynamic loading. Section 3.1 shows the modeling differences between applications to various conceptual problems. Section 3.2 summarizes various simple restraint models and their effectiveness. Section 3.3 presents a fullscale example of a submarining model which appears to work well and which should be laboratory tested for general use.

3.1 Sequence of Seat Belt Model Development

Figure 3.1 is a schematic which shows a variety of modeling concepts including:

- Current BELT code
- Modifications to the code generated by British Leyland
- Further new modifications by UMTRI, made during the present project, suggested for complete implementation

The two drawings in the upper-left section of the figure represent the current state. The two ends of any belt segment are fixed to the vehicle. The belt itself is constrained to conform to an ellipsoid attached to the occupant. This belt is rigidly attached to a point on the surface of the ellipsoid. The forces in the two separate elements of the belt can either be equalized or totally independent. To model a three-point belt system, two independent sets of belts must be used. Each of the four belt ends is fixed independently to the vehicle and each pair has a fixed attachment to a body ellipsoid. This concept is most relevant to the older four-point belt system.

The modifications made to the BELT code by British Leyland (Newman et al. 1981) have the effect illustrated in the upper right portion of Figure 3.1. This allows the transfer of material between pairs of belts and is intended to represent this effect at the D-ring. However, no slippage across the occupant is allowed as the fixed points on the ellipsoid surfaces are still required.

.

Figure 3.1. Sequence of Belt Models

The new UMTRI concepts, implemented and tested at the subroutine level, but not yet integrated into the CAL 3-D code, are illustrated in the bottom three drawings in Figure 3.1. In these cases, slipping of material is allowed across slip points which are rigidly attached to the surface of body ellipsoids, as before. Further, slipping can occur at the point where pairs of belts are connected, as is the case with the British Leyland improvements. Because of this general capability to slip, or transfer material, between all the belt segments, the take-up of initial slack discussed in Section 2 of this report is accommodated. The potential application to the three-point belt system is shown in the bottom section of Figure 3.1. It should be noted, however, that mobility of the stalk into which the D-ring is inserted is not accommodated.

More advanced belt modeling concepts are discussed in Section 5 where the HARNESS sub-program is described.

3.2 Test Cases Using Various Simple Concepts

Simple modeling concepts have been used to study various potential methods of simulating belt slip and submarining. The first of these, shown in Figure 3.2, is intended to demonstrate slipping of a belt either over the thorax or lower torso pelvic region. The mass and geometry of the spherical shaped segment is intended to represent the thorax restrained by an upper torso belt, as shown. A contact surface below the sphere represents the interaction of the lower portion of the body with seat structures. The sphere can slide on, and penetrate, the surface.

To represent slipping of the belt over this surface, a second mass (10% of the first mass) was superimposed and pin-jointed at their mutual centers-of-mass. The belt was attached to the second, and smaller, mass. In order to simulate resistance to the slipping, a moment resistance is added at the pin joint as a function of the relative angle between the two masses.

This modeling concept appeared to function properly. It worked especially well when some resistance to the motion between the two segments was added. Because of the ability to control the slipping over

Figure 3.2. Superimposed Segments for Representation of Slip

a surface in this manner, it was felt that this model concept could be adapted to use as a submarining indicator.

A second series of simple modeling concepts was explored based on the geometry of Figure 3.3. As before, a spherical mass was used to simulate the thorax or lower torso region. The general placement of belt attachments to the vehicle was also as before. In these cases, however, a second mass (small) was located at the point where the belt would pass over the primary body segment. The belt was then attached to a separate ellipsoid on this new small mass.

Three options available with the CAL 3-D were tested as means of attachment of the small mass to the larger primary mass to simulate slippage between the two. These were the fixed distance constraint, the fixed point constraint, and the massless link. The fixed distance constraint is designed to keep a point on one mass a fixed distance from a point on the other. The fixed point constraint is intended to keep a point on one mass at the same point in inertial space as a point on the other mass. These constraints are approximate and use force to maintain the geometry rather than changing the number of degrees of freedom.

The two constraint concepts exhibited problems with instability due to a trading of energy and oscillation from one side of the belt to the other. The only way to damp this behavior was to alter the belt properties. This was considered a poor method because alterations to damp this spurious behavior would also affect the primary properties of the belt which are to stop the forward motion of the primary mass.

The massless link idea does alter the equations of motion. This concept appears to be sound based on the work of Fleck et al. (1975) and Wittenberg (1977). However, in practice, the software did not work.

A final attempt to use the geometric ideas of Figure 3.3 was to employ the traditionally jointed superimposed masses of Figure 3.2. As was the case with the original Figure 3.2 models already described, this concept worked well. It was possible to control the motion of the forward mass. These controls could be based on test data defining the direction and magnitude of forces associated with movement of the belt over the pelvis. These data could be represented as a torque-angle

Figure 3.3. Attachment of Belt to Mass which Moves Relative to Primary Segment

curve. Because of the promise of this technique, the full-scale exercise discussed in Section 3.3 was conducted.

3.3 Full-Scale Testing of Submarining Model

A basic data set provided by General Motors was modified to include a prototype lap belt submarining indicator. Figure 3.4 is a schematic of this data set at the initial time. An overlay of the general shape of the pelvis is included to show the orientation of the lap belts. They are well positioned initially to take crash loading. The pelvic overlay is based on the positions specified in the data set of the joints connecting the pelvis to the spine and the femurs. The point labelled with an "X" on the front of the ellipsoid representing the lower torso is the attachment point for the two elements in the lower torso belt.

The data structure for the submarining indicator is based on the concept described in Section 3.3 where two masses are superimposed at a pinned joint. The small mass, representing a portion of the pelvic mass, is attached to the belt while the primary pelvic mass is attached normally to the remainder of the body linkage. The two masses are connected at a pinned joint which resists relative rotation by the mechanism of a torque-angle resistance.

Table 3.1 is the input data set for the full-scale submarining model using the UMTRI version of the CAL 3-D. Each line in the data file has a number. Those which define changes for the implementation of the submarining indicator are as follows:

Line 24.5. B2 Card. This defines the mass, inertial, and ellipsoid properties of the overlaid mass, named BPEL.

Line 56.1, 56.2. B3 Cards. The attachment of BPEL to the lower torso mass, LT, is defined.

Line 80.1. B4 Card. The torque-angle resistance of the mass to which the belt is attached (BPEL) with respect to the primary mass (LT) is defined. Values have been selected without the aid of experimental information. They are consistent with other properties of the dummy.

17

1	04	NOV	' 1983												
2	TR	IAL	DATA	SET	FOR	SEAT B	ELT C	GRAP	HICS	i ALC	GORI	THM			
з	RE	STR	PASS	Ř.F	RONTA	BARR	IER		CT.	NO F	PITC	H			
Ā	CM	KG	SEC		0.0		0	0		980	66				
5	6	16		01 0	∞ $\tilde{0}$ $\tilde{0}$	0025	0 00		0000	126					
5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- 1 U		איץ		0025	0.00	, 0.	0000	125					
6	00 0	05	000	0	000 0	000	00000	0	1						
7		18	17		•	GM HYB	3 50	R 10).27.	82					
8	LT	51	7.331	2.	479 2	.479 1	.468	12.	00 1	2.50	D 18	. 50	1.70	0.000	350
9	CT	4	5.760	. 3	650 .	3650 .	2790	11.	00 1	1.00) 14	.00	1.660	0.000	0.000
10	UT	31	7 227	2	504 2	504 2	170	12	75 1	2 7	5 15	00	3 610	0,000	0,000
1.1	N	5	4 545	<u> </u>			0.000	4	20	A 00		.00	1 670	0.000	0.000
11		4	1.545	0.	060 0	.060 0		4.	30	4.30		.00	1.670	.0000	0.000
12	н	1	4.545	. 2	190 .	2060 .	2060	7.	75	7.75	5 11	.00	1.500	. 0000	0.000
13	LUL	Α	6.091	. 6	860 .	6860 .	1310	7.	50	7.50) 23	. 10	-0.94	.0000	. 0000
14	LLL	в	3.300	. 7	650 .	7650 .	0970	5.	75	5.75	5 23	.70	-4.22	.0000	.0000
15	LE	С	1.227	. 0	550 .	0550	0150	4	00	4 00	0 10	00	0000	0000	0000
16	PUI	ñ	6 091		860	6860	1210	7	50	7 5/	, ,	10	- 940	.0000	.0000
17		Ē	0.031			2050 .	1310	<i>.</i>	30	7.50	23	. 10	940	.0000	.0000
17	KLL	C	3.300	. /	650 .	/650 .	0910	э.	15	5.75	5 23	. 70	-4.22	.0000	.0000
18	RF	F	1.227	. C	550 .0	0550 .	0150	4.	00	4.00) 10	. 00	.0000	. 0000	.0000
19	LUA	6	2.000	. 1	160 .	1160 .	0250	4.	50	4.50) 13	.00	0000	. 000	.0000
20	LLA	7	2.273	. 3	600 .:	3600 .	0320	4.	25	4.25	5 20	. 80	1.15	.0000	.0000
21	RUA	8	2.000	. 1	160	1160	0250	4	50	4.50) 13	00	0000	0.00	0000
22	PI A	ā	2.273		600	3600	0320	4	25	1 25	5 20	80	1 15	0000	.0000
22		Ň					0020		20	7.25			1.15	.0000	.0000
23		N	0.800	.0		5115 .	0012	5.	50	3.0	5 9	.00	.000	.000	.0000
24	кн	м	0.80	.0	115 .0	0115 .	0012	5.	50	3.05	59	. 00	.000	.0000	. 0000
24.5	BPEL	Ρ4	•	2.4	79 2.4	479 1.	468 1	12.	12	. 5	18.	51	.7 0)	. 35
25	Р	0	1	-2	-4.25		-4.3	32		.00	000	6.5	3		
26					0.0	0.0	0	0	0.0		0	ò	õ		
27	w	D	2	- ว	- 1 60	0.0		iõ	0.0	\sim	<u>~~~</u>	120	ă		
20		r	~	~	-1.00	0.0	-0.4	0	~ ~	.00		13.9	3		
20		-	-	-	0.0	0.0	0.	0	0.0		1.0	Ο.	0		
29	NP	Q	3	-2	-2.54		-15.5	59		. 00	000	.000	0		
30															
31	HP	R	4	-2	0.000		-9.5	59		. 00	000	4.78	0		
32													-		
33	ты	w		- 1	-0 45	-9 95	2 6	.7	~ ~		\ <u></u>	<u>.</u>	0		
24	E11		1	-	2.45	0.00	Z . 4	,,	0.0		700 70	23.3	3		
34			-		-90.	90.				4.	/6		27.0	-70.0	
35	LK	X	6	1	0.00	.0000	16.1	8	0.0	· . OC	-000	16.3	6		
36										4	13.0				
37	LA	G	7	-4-	0.250	.0000	22.0)4	5.36	. 00	000	-4.0	9		
38					90				90				-	79 0	
39	рн	v	4	- 1	-2 45	9 96	2 6	.7	00. 0 0	~ ~	NO0-1	12 0	0	75.0	
10	RIT		• •	- 4	~2.43	0.00	2.0		0.0		00	23.9	9		
40		_	_		90.	90.				4.	/6		-27.	70.	
41	RK	Z	9	1	0.0	. 0000	16.1	8	0.0	.00	-000	16.3	6		
42										4	13.0				
43	RA	Н	10	-4-	0.250	.0000	22.0)4	5.36	. 00	000 -	-4.0	9		
44					90				90				-	79 0	
45	15	c	3	- 4	0 45.	- 18 00	-14 6	0		00	00-	12 0	e	73.0	
40	LJ	J	3		0.45	18.00	- 14.0	19	0.0		-00	13.0	0		
46		_					90.		_				-55.	-65.	
47	LE	Т	12	-4	0.0	. 0000	13.0)7	0.0	. 00	- 000	15.1	1		
48					90.0)			90.				8.0	70.	
49	RS	U	3	-4	0.45	18.00	-14.5	9	0.0	. 00	00-	13.0	6		
50				-			-90	-	•••				55 0	65	
50	DE	v	14		0.0	0000	-30.	-	~ ~	~~~	~~~		35.0	05.	
51	KE	v	14	-4	0.0	.0000	13.0		0.0	.00	-000	15.1	1		
52					90.				90.				-8.	70.	
53	LW	J	13	1	0.0	.0000	10.2	0	0.0	. 00	000 -	-5.1	1		
54					0.0	.0000				- 1	ο.	00	0		
55	RW	ĸ	15	1	0.0	0000	10.2	0	0 0	0	<u>.</u>	-5 1	-		
56	1.045	••		•	0.0	0000	.0.2		0.0		000	00			
56 4	DE1 1	D	4	**	0.0		~	~		~ -1	U.	00.	v		
50.1	FELU	۲	I.	10	. (υ.	υ.		υ.	0	•			

Table 3.1. Input Data Set for Full-scale Submarining Model (Page 1 of 10)

.

· .

Listing of GMCVS2.B1 at 03:24:15 on JAN 31, 1986 for CCid=SU33

			10)
			of
			5
			8 90 00
	, g		(P
70.00 70.00 50.00 50.00 50.00 60.00 70.00	0.0.0		lel
ດ ດ ດ ດ ດ ດ ດ ທ ທີ່ມີມີຄືມີຄ ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ ດ	ວວ ອີດ	0000 00 00	
			o o o o iii
0.0000000000000000000000000000000000000			
	00		Sub
	5 0. 20.		le
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			sca
	4 1 		[] []
			'n
88888 88 8 88 8 8 8	8 8 00		
		000	it 0.000
	0 2 0 0 7 . 0 2 0 0 0 0	ພວວວວ າ , ວວວາ	∞ ∞ 00 mm000 ··· *
).95).95)5)5)74.	174. 15. 15. 15. 15. 15. 15.	аста аста аста аста аста аста аста
00.200 10.000			ndr
		0000000000000000	
00.00 00.00 00.00 00.00 00.00 00 00 00 0		2000 2000 2000 2000 2000 2000 2000 200	200 200 200 200 200 200 200 200
8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.0.0	000000000000000000000000000000000000000	
	0 0440		ble 000000000000000000000000000000000000
	41		- · · E
8,7,8,0,0,7,0,0,7,0,0,7,0,0,7,0 0,			3 6 7 8 9 0 - 7 8 4 5 5 7 8 9 0 - 7
	00000011111000000	ໝ ໝ ໝ ໝ ໝ ໝ ໝ ຫ ຫ ຫ ຫ ຫ ຫ ຫ ຫ) o o o o <u>o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 </u>

.

Page

.

	112.1	0. !	50.	50.	50.	Ο.							
	113							00.	1 00.1	0 00.1	0 00.0	1 00.0	1 00.01
	114							00.	1 00.1	0 00.1	•		
	115							00.	1 00.1	0 00.1	0		
	116							00.	1 00.1	0 00.1	0		
	117							00.	1 00.1	0 00.1	0		
	118							00.	1 00.1	0 00.1	0		
	119							00.	1 00.1	0 00.1	0		
	120							00.	1 00.1	0 00.1	0		
	121							00.	1 00.1	0 00.1	0		
	122							00.	1 00.1	0 00.1	0		
	123							00.	1 00.1	0 00.1	0		
	124							00.	1 00.1	0 00.1	0		
	125							00.	1 00.1	00.1			
	126							00.	1 00.1	00.1			
	127							00.	1 00.1	00.1			
	128							00.	1 00.1	00.1			
	129							00.	1 00.1	00.1			
	129.1							. 1	. 1	. 1			
	130	FRONT	BARRI		LSE,	PRIMAR	Y VEHI	CLE MO	TION	_			
	131	0.0	0.0	0.0	1368	J. 0.00	0.0	0.0	0.0	5	9 0.0	0.002	00
	132	0.0	0.0	1.0	7.0	17.0	19.0	18.0	12.5	8.5	5.0	2.0	22.5
	133	27.5	15.0	18.0	20.5	37.0	33.0	22.5	14.5	15.5	20.0	22.0	25.0
	134	23.0	25.5	26.0	20.0	22.5	21.5	21.0	25.0	24.0	23.0	22.0	20.0
	135	17.0	15.0	12.5	10.5	10.0	10.0	1.5	5.0	1.0	0.0	-3.0	-3.0
	130	~2.5	-2.0	-2.0	-1.5	-1.0	-0.5	0.0	0.0	0.0	0.0	0.0	0.0
	137	23	-) Suteir	, U							
10	130	- 224	ß	WIND:		, _01	2						
÷	140	-277	5	50		- 12	·∡ 1 2						
	140	-224	. С	~50		-91	2						
	142	2	. 0	DASHE		1	. 2						
	143	-200	. 1	50) 0	-36	4						
	144	-209	2	50	0	-71	.5						
	145	-200	. 1	-50	0.0	-36	. 4						
	146	3	E	OTTOM	I.P.								
	147	-230.	.0	5	50.	-57	. 2						
	148	-242.	. 4	50).	-59	. 5						
	149	-230.	.0	-50).	-57	. 2						
	150	4	LO	WER I.	Ρ.								
	151	-242.	. 4	5	50.	-59	. 5						
	152	-246.	. 2	50).	-75	. 5						
	153	-242.	. 4	-50).	-59	. 5						
	154	5	MI	DI.P.									
	155	-246.	. 2	5	50.	-75	. 5						
	156	-242.	.9	50).	-93	. 1						
	157	-246.	.2	-5().	-75	. 5						
	158	6	F H	SEAL	BACK	50	•						
	159	-323.	.8	20	0.0	-58.	82						
	160	-315.	. J	20		-41.	42						
	160	-323.	.0	-20	J.U BACKS	- 58.	0∠						
	162	-220	с г к	SEAL		_06	70						
	164	-330.	. .	20		-00.	12 90						
	165	-330	9	-20		-00.	02 70						
	166	8 SJU.	FD	SFAT	USHTC		12						
	167	-316	0	2541 0	5 0	-27	72						
	168	-301	õ	20	5.0 5.0	-37	72						

. •

.

-- --

169	-316.0	-25.0	-37.72
170	9	FLOORBOARD	
171	-280.	50.0	-19.2
172	-180.0	50.0	-20.1
173	-280	-50.0	-19 2
174	10	TOFBOARD	
175	-005 8	50 0	- 19 5
175	-200.1	50.0	-26 4
170	-200.1	50.0	-30.4
171	~220.0		-19.50
170	11	UPPER I.P.	00.4
1/9	-242.9	50.0	-93.1
180	-224.8	50.0	-91.4
181	-242.9	-50.	-93.1
182	12	FRONT SEAT	BACK3
183	-332.2	20.0	-108.12
184	-330.9	20.0	-86.72
185	-332.2	-20.0	-108.12
186	13	LOWER I.P.	
187	-242.4	50.	~59.5
188	-246.2	50.	-75.5
189	-242.4	-50.	-59.5
190	14	MID I.P.	
191	-246.2	50.	-75.5
192	-242.9	50.	-93.1
193	-246.2	-50.	-75.5
194	15	FR SEAT CUSH	ION2
195	-301.0	25.0	-37.72
196	-291.0	25.0	-42,12
197	-301.0	-25.0	-37.72
198	16	FR SEAT CUSH	LON3
199	-291.0	25.0	-42.12
200	-276.0	25.0	-42.12
201	-291.0	-25.0	-42.12
202	17	ER SEAT CUSH	
203	-276 0	25.0	-42 12
204	-268 9	25.0	-37 72
205	-276 0	-25.0	-42 12
206	18	STLL	42.15
207	-332 8	50 0	-19.0
207	-200 1	50.0	-19.0
209	-332 8	-50.0	- 19,00
210	19	POOF PANEL 1	10.00
211	-282 6	50 0	-110 8
212	-277 9	50.0	-121 3
212	-202 6	-50.0	- 110 9
213	-202.0		-115.0
214	20	ROUF FANEL 2	- 110 9
210	-202.0	50. E0	-119.0
216	-301.0	50.	-126.5
21/	-282.6	-50.	-119.8
218	21	BUITUM I.P	
219	-230.0	50.	-57.2
220	-242.4	50.	-59.5
221	-230.0	-50.	-57.2
222	22	LUWER I.P.	
223	-242.4	5 0.	-59.5
224	-246.2	50.	-75.5
225	-242.4	-50.	-59.5
226	23	MID I.P.	

Table 3.1. Input Data Set for Full-scale Submarining Model (Page 4 of 10)

20

. . .

r ccid=SU33
fo
1986
31,
JAN
no
03:24:15
at
GMCVS2.B1
of
Listing

227	-246.2	50. 50	-75.5			
229	-242.3 -246.2 1 AD BEL	- 50.	-75.5			
231 232	-310. 12.0	-20.00	-45.00	- 309 -	21.00 0.010	-45.00
233 234 235	SHOULDER -340.0 11.9	BELT -24. 0.000	-112.	- 309 .	21.00	- 45 .
236 237	1 HEADI	REST FORCE(K	(9			
238 238	0. 0.	- 15 .	0.0		0.0	
240	4 0.0	0.0	5.0	100.	10.0	200.
241 242	15.0 7 SEAT	300. CHENTON FOR	Ce(ke)			
243	0.0	- 14.	0.0	1.0		
244	03					
245 246	0.0	0.0	2.0	20.	4.0	45.
247	12.0	300.	14.0	450.	0.0	200.
248	3 SI	EATBACK FORCI	E(KG)	•		
249	0.0	- 16 .	0.0	1.0		
251	000		¢	7 12	ç	ç
252	о. Ю.	50.	- 4) .	90.	. 9	200.
253	10.	500.	16.	1000.		,)
254	4 T(DEBRD FORCE ()	(B)			
255 256	0.0	- 10.		1.0		
252	20		÷		ç	
258	0.3	40.0 10.0	0	56.	0.5	74.
259	0.6	95.	0.7	115.	0.8	145.
260	1.0	150.	2.0	240.	Э.О	300.
261	4.0	350.	5.0	500.	6.0	900.
262	2. / Y	DCHLD D FUNC	9.0	1650.	10.0	1800.
264	0.0	-20.	0.0			
265	4		1			
266	0.0	1.0	2.0	0.5	9.0	0.25
267	20.	0.0				
268		USHLU G FUNC				
270	0.4		0			
271	0.0	0.0	2.0	. 75	0.6	0.95
272	20.	0.95	•			2
273	8 MID	I.P. LOADING	3(KG)			
274	0.0 0	-20.	0		0.0	
6/7 9/6	ے م د		•	1200		0007
277	5.0	1800.		1860	n C - e	1910
278	4	2010.	6.0	2055.	20.	2160.
279	о О О	INSTANT F=0.4	0		• •	• • •
280	0.0	0.0	0.40			
281		INSIANI F=0.1	•			
283	11 UPP	I.P. LOAD(KG	() ()			
284	0.0	-24.	0.0		1.0	

Table 3.1. Input Data Set for Full-scale Submarining Model (Page 5 of 10)

.

Page

ß

Listing of GMCVS2.B1 at 03:24:15 on JAN 31, 1986 for CCid=SU33

																																															6 of 10)
	120.	1150.								0.95				0.05				110	182.	189.	153.	o				120	200.	130.	20.				50.	300. 10F	4 3 3 . 600	1070.				980.	16000.			0.13	0.80		Model (Page
	.9	18.								`0.6	•			0.6			1.0			8.	11.	15.			1.0	50	1.0	1.5	2.2		0.0)	2.	ۍ د. ۱	. ī	20.			0.0	7.62	40.5	c	0	0.4	2.20		Submarining N
	80.	560.								0.0	1			1.0				70.	170.	190.	166.	90.			с. Г	60.	190.	160.	40.				20.	200.	400. 550	900.	160000.			445.	2225.			0.05	0.55	66 · O	ull-scale 9
	Э.О	12.		0.9	1	0.95	0.67	NO	0.0	0.5		on No	0.0	0.5		G)	0.0	+	4	7.	10.	13.		0	0.0	0.4	0.9	1.4	2.0		0.0	•	- ·	4 ٢	13	19.	40.5		0.0	5.08	20.3	Ċ	0.0	0.2	1.50	0.0	t for F
	0.0	240.	CONSTANT F=0.9	0.0	TOEBRD F	0. CONSTANT F=0.67	0.0	NLOADING G FUNCTI	- 1000.	0.0	0.95	NLOADING R FUNCTI	.0001-	1.0	0.05	WNDSHLD FORCE(K	-20.	0.0	145.	188.	176.	130.	.0	WSHLD SPIKE(KG)	G.2-	0.0	160.	190.	80. 0	0. I WD I D I DAD(KG	-40.		0.0	.001	505	700.	1300.	HEADER LOAD(KG	-40.	0.0	980. TOTODO	I UEBKU G		0.0	0.22	TOEBRD R	Input Data Se
7	0.0		24. 12	0.0	13	14 0.0	0.0	15 UI	0.0	0. 7 0	1000.			0.0	1000.	17	0.0 1	0.0	Э.	.9	Э	12.	20.	18	0.0 •	0.0	0.7	1.2	1.7	C.2.91	0.0	17	0.0	שיפי	11.	17.	21.	20	0.0 9	0.0	12.7		0 0 0 0	0.0	0.65 2 8	22	Table 3.1.
285	286	287	289	290	291	283	294	295	296 297	298	299	000	302	303	304	305	905	308	309	310	311	312	313	314	316	317	318	319	320	126	323	324	325	325	328	329	330	331	333 333	334	335 235	237	338	339	340 341	342	

......

ø

Listing of GMCVS2.B1 at 03:24:15 on JAN 31, 1986 for CC1d=SU33

.

)									(
343 244	0.0 «	1	1 0.		0.0				0			
345	0		0.0		0.2		0.47		0.4			0.37
346	0.65	0.3	-		1.50		0.26		2.2(0		0.24
347	2.8	0.2	، م'		10.0		0.01					
348 240	23											
350 350	0.76	- 0	. 156		0.0							
50	24	ROOFPAN	<u>لا</u> ۔									
352 252	0.0	CCAT C	0.0		0.80							
505 556	0.0		0.0									
355	0.30	• •			0.0							
356	26	BODY FO	RCES ()	(G)								
357	0.0	I	4.5	U	0.0				1.0			
358	י פ פ		Ċ				-		- -			0
	5 -				10		- 4		4.5			 0
361	27	LAP BEL	T FDF									
362	0.0		-1.50									
363	ß								Č			00,
364	0.00		0.0		. 125		0.07		Ň	40		•
365	CZ.1		D.U	E D F	06.1		0.000					
367	0 .0		-1.25	5								
368	5								•	_		
369	0.00	0	0.0		.0254		44.0		0	25	89	0.00
370	0.950	900.	0		1.25	07	900.00					
371	23 23 23	ELT R			4L ()	ç						
	0.0 20	ELT C	0.0			2						
6/6 74			0.0		0.15	00						
375	31 6	ELT CF)			2						
376					1.0							
377	32 E	ELT SEG	MENT	ш						1		
378					1.0		0	0		0.5		
379	33	IE POIN	IT CF		ŭ		Ċ		Ċ	u		
085	000				0.0				>			
185	- -	u c	Ľ		•	c	с с	P	4	ç	c.	c
383		2 0 2 0	2 0	, ,	-	1	4	r	r	•))
384	1 19	5	17	18	9	23						
385	2 19	ຍ	:	ž	9 15	24						
386	3 19	L L	10	÷	15	12						
387	3 19 61 ·	10 10	61	₽ ; 0 (<u>.</u>							
388	4	9 r 9 r	<u>ה</u>	= = > <								
585	4 4	- 0	<u>ה</u> ק	= ; > c	2 4	סמ						
	- T		<u>5</u>	 >	 	σ						
666	5 7	2 -	0	: =	0 1 2 2	5						
565	5 19	-	8	∓ 0	6 15 15	12						
394	5 19	2	8	∓ 0	6 15	12						
395	5 19	e e	8	∓ 0	6 15	12						
396	5 19	13 13	61	- -	6 15	12						
397	5 70	15 15	<u>6</u>		0 u	2 1						
2000	0 1 1 1	- c	יס כי	 > c	<u>,</u>	29						
0 C C 4	9 19 19	9 00 9 10	ი ი	: ∓ >	6 15 15	20						
222	}	,)	•	•	•						

Table 3.1. Input Data Set for Full-scale Submarining Model (Page 7 of 10)

Page

Ę

Listing of GMCVS2.B1 at 03:24:15 on JAN 31, 1986 for CCid=SU33

401	7	19	1	1	3		16	15	10
402	7	19	2	2	3	0	16	15	10
403	7	19	3	3	3	ŏ	16	15	14
404	8	19	1	1	2	Ŭ	16	15	25
405	ä	19	8	А	4		22	21	13
405	ă	10	4.4	4.4	7	0	22	21	13
400	10	10			4	U	~~~	21	13
407	10	19			4		22	21	13
408	10	19	11	11	4		22	21	13
409	11	19	່ວ	5	11		16	15	10
410	11	19	3	3	11		16	15	10
411	12	19	5	5	1		16	15	10
412	12	19	1	1	2		16	15	25
413	12	19	2	2	2		16	15	25
414	12	19	3	Э	2		16	15	25
415	13	19	12	12	19		16	15	12
416	13	19	14	14	19		16	15	12
417	13	19	13	13	19		16	15	12
418	13	19	15	15	19		16	15	12
419	14	19	12	12	19		16	15	12
420	14	19	14	14	19		16	15	12
421	15	19	1	1	2		16	15	25
422	15	19	6	6	2		16	15	25
423	15	19	ă	ă	2		16	15	25
420	16	10	4	1	2		16	15	25
424	16	10	È	Ē	~		16	15	20
425	16	10	0	0	2		10	15	10
420	47	19	3	9	2		10	15	10
427	17	19	1	1	2		16	15	10
428	19	19	5	5	10		16	15	24
429	20	19	5	5	20		16	15	24
430	21	. 19	6	6	19		16	15	24
431	21	19	9	9	19		16	15	24
432	22	19	17	17	19		16	15	-10
433	22	19	16	16	19		16	15	10
434	23	19	16	16	19		16	15	10
435	23	19	17	17	19		16	15	10
436	1	1							
437	1	19	18	18	27		29	30	31
438	2	19	3	3	28		29	30	31
439	2	2	4	4	0	1	0	Ō	1
440	1	1	13	13	4	•	16	15	10
441	1	1	15	15	Å		16	15	10
442	2	2	16	16	26		16	15	10
442	2	2	17	17	20		16	15	10
440	2	2	12	12	20		16	15	10
444	3	3	46	46	4		10	15	
440	3	3	10	15	-4-		10	15	10
440	3	3	10	10	20		10	15	10
447	3	3	17	17	20		16	15	10
448	4	4	12	12	26		16	15	12
449	4	4	13	13	26		16	15	12
450	4	4	14	14	26		16	15	12
451	4	4	15	15	26		16	15	12
452	6	6	16	16	26		16	15	12
453	9	9	17	17	26		16	15	12
454	12	12	14	14	26		16	15	12
455	12	12	15	15	26		16	15	12
456	12	12	1	1	26		16	15	12
457	12	12	2	2	26		16	15	12
458	12	12	Э	Э	26		16	15	12

24

Table 3.1. Input Data Set for Full-scale Submarining Model (Page 8 of 10)

0

05

•

3 3 1 0 0 0

د

.

.

9

.

Listing of GMCVS2.B1 at 03:24:15 on JAN 31, 1986 for CCid=SU33

.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												0.0																				
450 13 13 14 14 26 16 15 12 451 13 13 15 15 2 26 16 15 12 455 14 14 2 2 26 16 15 12 455 15 15 15 2 26 16 15 12 455 15 15 15 2 26 16 15 12 455 15 15 2 2 16 15 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 15 12	-																₽															
453 13 13 13 13 14 14 26 16 15 465 14 14 1 2 2 26 16 15 465 14 14 2 2 26 16 15 465 14 14 2 2 26 16 15 465 15 16.0 30.0 14 14 2 16 15 465 15 16.0 30.0 17 2 2 26 16 15 477 0.0 15.00 0.0 15.00 0.0 14 13 14 14 2 16 15 16 15 16 16 16 16 15 16 16 15 16 16 15 16 17 16 17 16 17 16 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 <	225	<u>199</u>	<u>5</u> 5	8								0.0					თ	o o	; ; ; ;	00	00	00	00		o o	00	o o	00	o o	00	o c	000
453 13 13 13 14 25 15 465 13 13 13 13 13 13 25 16 465 14 14 1 1 2 25 16 465 14 14 2 2 26 16 465 16 14 1 2 2 26 16 475 00 30.0 14 1 2 2 26 16 477 0.0 30.0 15.00 0.0 18 0.0 0.0 477 0.0 15.00 0.0 15.00 0.0 15.00 0.0 481 0.0 15.00 0.0 15.00 0.0 15.00 0.0 481 0.0 15.00 0.0 15.00 0.0 0.0 0.0 481 0.0 15.00 0.0 15.00 0.0 0.0 0.0 481 0.0 17.5 81.0 0.0 0.0 0.0 0.0 0.0	. <u>.</u>	15	15 15														00															
459 13 14 14 2 2 2 14 14 14 2 14 14 2 3 3 14 14 2 14 14 2 3 3 14 14 2 3 3 14 14 2 3 3 3 14 14 2 3 3 14 14 2 3 3 14 14 2 3 3 3 14 14 2 3 3 3 14 14 14 14 14 14 14 14	, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	0 1 0 1 0	16 16	o o	20	00	00	000	00	00	۰,					0	2															
459 13 13 13 13 14 14 26 465 14 14 14 15 15 26 465 14 14 14 1 15 26 465 15 15 15 26 26 465 15 15 15 2 26 466 15 16 0 30 0 477 000 14 14 2 2 26 477 000 17 3 3 26 26 477 000 17 5 810 0 22 26 478 0.0 17 5 810 22 26<	5			1.C		 0 0	o c		00	 0 0	0	00	80	00			9	o c		00	00	00		o o	o c	00	o c	00		 0 0	o o	000
459 13 13 14 14 14 14 461 13 13 13 15 15 465 14 14 1 1 1 465 14 14 1 1 1 465 14 14 1 1 1 465 14 14 1 2 2 466 16 14 14 1 1 466 16 14 14 1 2 2 466 10 0 0 30.0 30.0 473 0<0		50 50 50	26 26	i			_		_						o.	:	2															
459 13 14 1 <td>. 4.00 c</td> <td>n – n</td> <td>n n</td> <td>0.0</td> <td>. 50</td> <td><u>8</u>8</td> <td>5.00</td> <td>2.0 2.0 2.0</td> <td>30</td> <td>8 8 8 8</td> <td>0.0</td> <td>0</td> <td>1.0</td> <td>0.0</td> <td></td> <td>-</td> <td>4</td> <td></td>	. 4.00 c	n – n	n n	0.0	. 50	<u>8</u> 8	5.00	2.0 2.0 2.0	30	8 8 8 8	0.0	0	1.0	0.0		-	4															
459 13 14 <t< td=""><td>1 4 10 c</td><td>n - n</td><td>5 0</td><td>φC</td><td>22</td><td>- 1 - 1 - 1</td><td>77</td><td>Ξ.</td><td>ָּס<u>ָ</u></td><td>11 35</td><td>ō</td><td>8</td><td>00</td><td>8 8</td><td>22.5</td><td></td><td>e</td><td>.0 0.0</td><td> </td><td>50. 50.</td><td>60. 70.</td><td>80. 90.</td><td>00</td><td>120.</td><td>130.</td><td>150.</td><td>160.</td><td>180.</td><td>50. 20.</td><td>30. 40.</td><td>50. 60</td><td>70. 80.</td></t<>	1 4 10 c	n - n	5 0	φC	22	- 1 - 1 - 1	77	Ξ.	ָּס <u>ָ</u>	11 35	ō	8	0 0	8 8	22.5		e	.0 0.0	 	50. 50.	60. 70.	80. 90.	00	120.	130.	150.	160.	180.	50. 20.	30. 40.	50. 60	70. 80.
459 451 453 456 474 474 474 474 475 474 475 476 477 477 477 476 477 477 477 477 477 478 478 488 47000 488 <td< th=""><th></th><th>244</th><th>15</th><th>11</th><th></th><th>• •</th><th>0.0</th><th></th><th></th><th>~ ~</th><th>ູດ</th><th>ы С</th><th>0.0</th><th>ມີມ</th><th></th><th>150</th><th>7</th><th>00</th><th>00</th><th>00</th><th>00</th><th>00</th><th>00</th><th>00</th><th>00</th><th>00</th><th>0 C</th><th></th><th>00</th><th>00</th><th>00</th><th>000</th></td<>		244	15	11		• •	0.0			~ ~	ູດ	ы С	0.0	ມີມ		150	7	00	00	00	00	00	00	00	00	00	0 C		00	00	00	000
459 461 461 4661 4661 4663 4664 4665 4664 4665 4665 4665 4665		244	5 4	10.01 308-	30	00	00		00	00	°. c	17	-10	- 17			-	18											18			
459 461 461 461 465 466 466 466 466 466 466 466 466 477 477		• •		'											o.	o.																
459 461 461 466 466 466 466 466 466 466 466																												ß				
	459 460	462 463	465	460 467 468	469	471	472 473	474	476	477 478	479 480	481	482	484 485	486	1001	1002	1005	1006	1001	1009 1010	1011 1012	1013	1015	1016	1018	1019	1020.	1021 1022	1023 1024	1025	1027

.

e

0.0

ດ

Page

`

1029		0 90.		0.		0						
1030		0 100		õ.		0.						
1031		0 110		0.		0.						
1032		0 120		<u>.</u>		0.						
1033		0 120		0.		0.						
1034		0 130.		0.		0.						
1035		0 140.		0.		0.						
1036		0 150.		0.		0.						
1037		0 160.		0.		0.						
1037 5		0 170.		0.		0.						
1037.5	40	0 180.		0.		0.						
1038	18	0 10.		Ο.		0.						
1039		0 20.		Ο.		0.						
1040		0 30.		Ο.		Ο.						
1041		0 40.		Ο.		0.						
1042		0 50.		ο.		Ο.						
1043		0 60.		Ο.		0.						
1044		0 70.		Ο.		ο.						
1045		0 80.		Ο.		Ο.						
1046		0 90.		Ο.		0.						
1047		0 100.		Ο.		0.						
1048		0 110.		Ο.		0.						
1049		0 120.		Ô.		0.						
1050		0 130.		0.		õ.						
1051		0 140.		0.		0.						
1052		0 150		Õ.		0.						
1053		0 160		<u>0</u> .		0.						
1054		0 170		õ.		0.						
1054.5		0 180		0.		0.						
1055	18	1	2	3	4	۰. ۲	e	7	•	•		
1056		12	13	14	16	16	47	10	8	9	10	11
1057	18	1	2	3	13	10		18		-		
1058		12	13	14	46	5	47		8	9	10	11
1059	18	1	.3	14	15	10	17	18		_		
1060		12	12	3	4	5	6		8	9	10	11
1061	17	12	13	14	15	16	17	18		-		
1062	• • •	12	12	3	4	5	6	7	8	9	10	11
1063	5	2	13	14	15	16	17					
2001		3	~									
2001	011	1011	0									
2002	0.	. 15	.01									
2003	0	0.	0.									
2004	1.	0.	0.									
2005	0.	1.	0.									
2008	0.	0.	1.									
2007		0.	0.									
2008	0.	1.	0.									
2009	0.	0.	1.									
2010	. 5	. 5	11.	8.5								
2011	. 5	. 5	10.	7.								
2012	-400.	-150.	25 0.	175	-	. 3						
2013	GMCVS2.	D XZ										

\$EMP GUC7 File "GUC7" has been emptied.

Table 3.1. Input Data Set for Full-scale Submarining Model (Page 10 of 10)

Listing of GMCVS2.B1 at 03:24:15 on JAN 31, 1986 for CCid=SU33

Page 10

However, when specific data are obtained which can directly relate pelvic orientation to belt placement and submarining, they should be used.

Line 112.1. B5 Card. The second card describing the torque-angle data.

Line 129.1. B6 Card. The three quantities included are magnitude, absolute error, and relative error tests for angular acceleration of BPEL. The values chosen are the same as for the other variables.

Line 437. F2 Card. This is a variation of the card used in the original data set. The belt attachment for the occupant is shifted from the lower torso (segment 1) to the overlay mass (segment 18).

NOTE: Many lines in the data set use the number of segments included in the model. The segment number representing the vehicle has been changed to 19 with BPEL, the new mass in the occupant linkage, now being assigned to segment 18.

Figure 3.5 is a schematic showing the occupant at 80 milliseconds into simulation. It should be noted that the overlay mass has rotated backward toward the seat back. The original position of the belt attachment to the lower torso is indicated by an "X" with a circle around it. This point has migrated upward, in the direction of submarining, to the point indicated with an "X." Some penetration into the original lower torso mass has also occurred.

A summary of the general results from this simulation are as follows:

Velocity: 1369 cm/sec
Deceleration: Peak of 37 g and duration of 90 ms
Peak Head Deceleration: 61 g's at 74 ms
Peak Thorax Deceleration: 65 g's at 71 ms
Peak Pelvis Deceleration: 64 g's at 73 ms
Upper Torso Belt: 487 kg at 84 ms
Lower Torso Belt: 471 kg at 84 ms
Lap Belt A: 809 kg at 75 ms
Lap Belt B: 808 kg at 78 ms

This simulation has demonstrated the capabilities of the existing BELT subprogram to model submarining without changes to the code. In

order to use it in realistic design studies, impact studies should be conducted to refine the following input quantities:

- -- Location of the joint on the overlay mass.
- -- Properties of the torque-angle resistance.
- -- Shape and location of the overlap ellipsoid.

This will require new kinds of tests and analyses of results which graphically document the position of the belt on the pelvic region as a function of the pelvic structure of the test dummy.

4.0 ANALYSIS OF BELT MATERIAL TRANSFER ACROSS SURFACES

4.1 <u>The Belt Slip Model Developed</u> by British Leyland

As was mentioned in Section 3.1, each belt has a plane called the belt plane which is defined by the positions of two belt anchor points and the fixed point in inertial space. The intersection of the belt plane and the belt contact ellipsoid is the belt ellipse within the belt plane. This situation is pictured in Figure 4.1. From each slip point the belt proceeds as a straight line in the belt plane until it intersects the belt ellipse at a tangent point and then conforms to the belt ellipse to the fixed point. In the case that the belt ellipse is oriented so that there exists line-of-sight between one or both anchors and the fixed point, the belt is assumed to proceed along the line-ofsight and of course no tangent point exists on that side of the fixed point. Figure 4.2 illustrates several such cases. In the original Calspan report, this figure illustrated the algorithm for choosing the belt path from the two tangent lines to an ellipse through any point outside of the ellipse. In the cases where no actual tangent point exists, the term "tangent point" will be defined to mean "fixed point."

A point at which anchors from two belts coincide lies in a plane defined by the common anchor and the near tangent point or fixed point from each of the two belts. We will call this plane the anchor slip plane. In general the anchor slip plane will not coincide with the belt planes of either belt and may or may not contain the fixed points of the two belts. This definition will be used in cases where webbing material passes through a ring. However, in all cases the points at which the belts proceeding from the common anchor first intersect the two belt ellipses will be within the belt slip plane by definition. If the belt is imagined to fasten to the anchor point, then the force vector representing the belt tension's action upon the belt anchor will lie along the belt from the anchor to the nearer tangent point with a magnitude equal to the belt tension. The resultant of both belts upon the common anchor will be the vector sum of the two belt vectors. The

Figure 4.1. The Belt Plane in Inertial Space.

Figure 4.2. Belt Layout Examples.

resultant belt force is broken into "normal" and "tangential" components. The "normal" direction is defined by the unit vector at the common anchor point for which the scalar products with the unit vectors along the two belt force vectors at the same point are equal. The "tangential" direction is defined as an unit vector at the common anchor which is perpendicular. There are two unit vectors which satisfy both the "normal" and "tangential" definitions. In each case the unit vector is chosen for which the component of the resultant force is positive. Figure 4.3 shows the various vectors in the belt slip plane within the belt segment on one side labeled "A" and on the other side labeled "B."

The component of the resultant force in the tangential direction is called the "slip force." The slip force is assumed to be opposed by a "slip friction force" and a "threshold force." The slip friction force is modelled as kinetic friction while the larger effect of static friction is modelled as a threshold force. If slip force exceeds the sum of slip friction force and threshold force then the unstrained belt lengths are modified until slip force is reduced below this sum but not below slip friction force. The satisfaction of this criterion will be referred to as reaching "equilibrium." Note that equilibrium is used relative to the iteration which takes place at each point in time in order to calculate what would physically be seen at that time. Equilibrium is not used in the usual physical sense.

4.2 <u>UMTRI Extensions to the British Leyland</u> <u>Slip Algorithm</u>

Friction-opposed slipping was desired at both fixed points on segments and at vehicle anchors for as many belt segments as were considered to be defined by a single piece of webbing. This was done in order to consider a complete three-point belt system which consists of two lap and shoulder sections with the potential for slipping across the lap, through the ring connecting the lap and shoulder sections, and across the chest. The first extension required was to find corresponding definitions for normal direction, tangential direction, and slip force for the case of the fixed point on a belt ellipse. It is clear that the direction of belt tension at the fixed point itself is

irrelevant to the effect of the belt on the contact ellipse and on the tendency of the belt to slip over the contact ellipse. The directions of the force vectors at the fixed point for the purposes of determining slip force were defined as parallel to the directions of the corresponding anchor points as seen from the two tangent points (with the line-of-sight exception raised in the last section). All the other definitions are carried over from the previous section in terms of these two new force vectors and their resultant. Figure 4.4 illustrates the situation at the fixed point and how it corresponds to the situation pictured in Figure 4.3 at the common anchor point.

UMTRI also adapted the "F.9" data cards which were added by British Leyland to input slip algorithm quantities, as well as made other necessary input changes. Appendix A presents the updated Input Description pages covering these changes.

4.2.1 <u>Definition of Terms for Belt Slip Algorithm</u>. It is useful to define four new terms with which to describe the combining of multiple CVS belts.

1. Belt Node is either any belt anchor point or any belt fixed point for which infinite friction is prescribed. There is a maximum of 24 belt nodes (two or three per belt). Any belt node is characterized by the number of the belt on which the point is situated together with an indicator designating which point (A = Anchor A, F = Fixed Point, or B = Anchor B).

2. Belt Segment is the portion of any belt which connects any two consecutive belt nodes. There is a maximum of 16 belt segments (one or two per belt). Any belt segment can be characterized by the designation of the belt nodes which it connects; however, usually a belt segment will be characterized by its number in the ordered list of belt segments which comprise a belt loop (see remaining definitions).

3. Slip Point is either a terminating belt node (Anchor B) of one belt segment which is coincident in both location and attachment system with the initial belt node (Anchor A) of another belt segment or a fixed point on any belt segment and in either case for which slipping is prescribed. There is a maximum of 15 slip points for all belts. Slip Points can be characterized by the belt nodes which form them or, as in the case of belt segments, by its number in the ordered list of slip points which connect the ordered list of belt segments, respectively.

Figure 4.4 Modified Slippage at Fixed Point

4. Belt Loop is any group of belt segments for which all but exactly two of their constituent belt nodes are slip points connecting belt segments within the group. The two belt nodes which are not slip points within the loop can not be slip points at all and are called loop anchors. There is a maximum of eight belt loops. Belt loops are characterized by the two loop anchors, by the ordered list of belt segments which comprise it, or by the ordered list of slip points which hold it together. Every belt loop is necessarily independent. The typical belt loop in what follows will consist of N belt segments and N-1 slip points.

4.2.2 <u>Belt Slip in the Presence of Slack</u>. Observations of sled tests appear to reveal the characteristic that belts freely slip until all slack is taken up. At this time the slipping mechanism changes and becomes very restricted. This type of slipping behavior has been added by UMTRI by looking at each belt segment individually and prorating unstrained total belt length for the entire belt loop to the belt segment according to the ratio of the belt segment's strained length to the total strained belt length for the entire belt loop. Expressed in equation form, let l_k be the strained belt length for the "k-th" belt segment in the loop. Let L_k be the unstrained belt length for the "k-th" belt segment in the loop.

Let l_T be the total strained belt length over the entire belt loop. Let L_T be the total unstrained belt length over the entire belt loop. Then if $L_T \ge l_T$, the unstrained segment lengths are determined by

 $L_k = \lambda l_k$ for $k = 1, \ldots, N$

where

$$\lambda = \frac{L_{T}}{l_{T}}$$

and all belt forces are defined to be zero. If this free-slipping condition is not met, then the methods of the succeeding subsections are used.

4.2.3 <u>Belt Slip Under Load at a Typical Slip Point</u>. Belt segment k-1 will connect to belt segment k at slip point k-1 where k can be any of $2_1 \ldots N$. Assume that the belt segments are both producing belt

tension. The following equation represents the relationship between the belt segment tension forces at the slip point which is necessary to achieve slip equilibrium. (See Appendix B for the derivation of this expression.) Figure 4.5 shows the typical slip point and pertinent quantities.

$$\lambda_{\mathbf{A},\mathbf{k}-1} \tilde{\mathbf{F}}_{\mathbf{k}-1} + \lambda_{\mathbf{B},\mathbf{k}-1} \tilde{\mathbf{F}}_{\mathbf{k}} + \lambda_{\mathbf{C},\mathbf{k}-1} = 0$$

where the tilde written over any variables signifies "at equilibrium" $\lambda_{\mathbf{A},\mathbf{k}-1} = \sin(\Omega_{\mathbf{k}-1}) + \eta_{\mathbf{k}-1} h_{1,\mathbf{k}-1} \cos(\Omega_{\mathbf{k}-1})$ $\lambda_{\mathbf{B},\mathbf{k}-1} = -\sin(\Omega_{\mathbf{k}-1}) + \eta_{\mathbf{k}-1} h_{1,\mathbf{k}-1} \cos(\Omega_{\mathbf{k}-1})$ $\lambda_{\mathbf{C},\mathbf{k}-1} = \eta_{\mathbf{k}-1} h_{2,\mathbf{k}-1}$ $\Omega_{\mathbf{k}-1} = \text{one-half of included angle between belt segments}$ $h_{1,\mathbf{k}-1} = \mu_{\mathbf{k}-1} + \frac{1}{2} C_{1,\mathbf{k}-1}$ $h_{2,\mathbf{k}-1} = \frac{1}{2} C_{2,\mathbf{k}-1}$ $\eta_{\mathbf{k}-1} = \text{relative direction indicator for slip resistance}$ $\mu_{\mathbf{k}-1} = \text{coefficient of friction}$ $C_{1,\mathbf{k}-1} = \text{coefficient of threshold force}$ $C_{2,\mathbf{k}-1} = \text{constant threshold force}$

This is the characteristic equation of belt slipping equilibrium at each slip point. The computational problem is to adjust the unstrained belt segment lengths throughout the belt loop so that this characteristic equilibrium equation is simultaneously satisfied at all slip points in the belt loop. In what follows, consideration is limited to a maximum of three slip points and four belt segments for each belt loop. Figure 4.6 illustrates one such configuration for a belt loop involving two belt contact ellipsoids.

Figure 4.5. The Typical Slip Point k-1

Figure 4.6. A Maximum Belt Loop Configuration

4.2.4 <u>The Progressive Solution Approach</u>. Belt slipping over a whole belt loop can be conceived as a sequence of slips at individual slip points. If this approach were valid, then the computational problem would be reduced to several simpler tasks (searching for the zero of a non-linear equation in one variable).

The non-linear equation is simply the equilibrium condition equation for the slip point k-1. The force for belt segment k-1 is a function of the strained and unstrained belt lengths for belt segment k-1, of which only the unstrained belt length is subject, during the iteration process. Likewise, the force for belt segment k is a function of the strained and unstrained belt lengths for belt segment k of which only the unstrained belt length is subject to change in the iteration. By looking at slipping only at slip point k-1, it follows that the change in the unstrained belt length for segment k-1 must be equal and opposite to the change in the unstrained belt length for segment k. The following can then be written:

$$\tilde{L}_{k-1} = L_{k-1} + \Delta L_{k-1}$$
$$\tilde{L}_{k} = L_{k} - \Delta L_{k-1}$$

where ΔL_{k-1} is the unstrained belt length added to belt segment k-1 by slipping and is the only unknown.

An effective algorithm for the solution of the non-linear equation was put together from similar work in earlier models and makes use of the methods of Newton, the secant, and halving the interval.

This approach worked very well for single slip point belt loops with all possible belt material properties, but it was very capricious in cases involving more than one slip point. Sometimes the results would converge very quickly and smoothly and other times the results would oscillate chaotically. The apparent flaw in this approach was the selection criterion for determining the order to do the slip points. Although this problem is completely analogous to the selection problem occurring during the relaxation method, no attempt was made to investigate selection from this point of view since the needed partial derivatives are both complex and difficult to obtain accurately when

involving tabular information. It was that there must be some appropriate order of individual slip point adjustments that would converge for any given case since the actual slipping (at least at the quantum level) theoretically occurs this way. It was also felt that some other approaches which seemed to promise a quicker solution should be tried.

4.2.5 <u>The Simultaneous Solution Based on Change in Unstrained</u> <u>Length for Belt Segment 1</u>. A linear approximation to the belt material properties yields:

$$F_{k-1} = K_{k-1} \left(\frac{l_{k-1} - L_{k-1}}{L_{k-1}} \right)$$

and

$$F_{k} = K_{k} \left(\frac{l_{k} - L_{k}}{L_{k}}\right)$$

where K_{k-1} , K_k are the effective linear coefficients of force versus strain. Note that while there is only one set of material properties over both belt segments, it is likely that the two belt segments will be in different strain ranges and therefore will need separate linear approximation.

For each belt segment k, a variable Δ_k can be defined as

$$\Delta_{\mathbf{k}} = \tilde{\mathbf{L}}_{\mathbf{k}} - \mathbf{L}_{\mathbf{k}}$$

 Δ_k is the amount of additional unstrained belt segment length for each belt segment in order to reach equilibrium (may be positive or negative). Since the total unstrained belt length over each loop is invariant during this iteration, therefore it is true that

$$\sum_{k=1}^{N} \Delta_{k} = 0$$

We can write

$$\lambda_{A,k-1} \left(\frac{l_{k-1} - L_{k-1} - \Delta_{k-1}}{L_{k-1} + \Delta_{k-1}} \right) + \lambda_{B,k-1} \left(\frac{l_{k} - L_{k} - \Delta_{k}}{L_{k} + \Delta_{k}} \right) + \lambda_{C,k-1} = 0$$

and solving for Δ_k , we get

$$\Delta_{\mathbf{k}} = \frac{\mathbf{a}_{2,k-1}\Delta_{\mathbf{k}-1} + \mathbf{a}_{4,k-1}}{\mathbf{a}_{1,k-1}\Delta_{\mathbf{k}-1} + \mathbf{a}_{3,k-1}}$$

where

$$a_{1,k-1} = \lambda_{A,k-1}K_{k-1} + \lambda_{B,k-1}K_{k} - \lambda_{C,k-1}$$

$$a_{2,k-1} = a_{A,k-1}L_{k} - \lambda_{B,k-1}K_{k}l_{k}$$

$$a_{3,k-1} = -a_{1,k-1}L_{k-1} + \lambda_{A,k-1}K_{k-1}l_{k-1}$$

$$a_{4,k-1} = -a_{1,k-1}L_{k-1}L_{k} + \lambda_{A,k-1}K_{k-1}L_{k}l_{k-1} + \lambda_{B,k-1}K_{k}L_{k-1}l_{k}$$

Since this is a forward recursion relationship, it can be used to solve for each Δ_k in terms of Δ_1 and then these can be substituted into $\sum_{k=1}^{N} \Delta_k = 0$ to get a polynomial in terms of Δ_1 . For N=2, the expression k-1 is a quadratic; for N=3, it is a cubic; for N=4, a quartic. For the last case with reasonably typical values of physical quantities the coefficients of the quartic ranged from 10^{44} to 10^{23} . These were big enough to cause exponent overflow using a good real polynomial solver on the University of Michigan Amdahl. When the coefficients were scaled by the leading coefficient, good zeroes were always obtained even through an occasional false "lack of convergence" was indicated. It was possible to demonstrate that there was loss of significance of at least eight, and as much as twelve, places during this calculation; however, since sixteen places were carried, the results were good enough.

It was necessary to devise an algorithm to select the appropriate root. This turned out to be easily done by choosing a real root which yielded a positive unstrained belt length which was not greater than the total unstrained belt length.

For materials which were linear, the results were always correct. For non-linear materials, the results always overshot. This type of behavior was expected since it was anticipated that this linear approximation based on the first derivative would act like Newton's Method. This did not turn out to be the case since when repeated applications of this algorithm were tried, cyclical behavior was noted which after a point did not improve the results further.

4.2.6 <u>The Simultaneous Solution Based on Deflection of Belt</u> <u>Segments</u>. It was felt that perhaps the numerical properties could be improved if we were to solve for optimal deflection instead of the change in unstrained belt segment length unless the coefficients were driven still larger. While it is true that physically the length of webbing which slips is the variable to be determined, mathematically we could choose any variable in terms of which we could write the unstrained belt length. So force was taken to be

$$\mathbf{F}_{\mathbf{k}} = \mathbf{K}_{\mathbf{k}} \left(\frac{\delta_{\mathbf{k}}}{\mathbf{l}_{\mathbf{k}} - \delta_{\mathbf{k}}} \right)$$

and substitute as before to come up with another forward recursion relationship in $\delta_{\bf k}$

$$\delta_{k} = \frac{a_{1,k-1}\delta_{k-1}^{+a_{2,k-1}}}{a_{3,k-1}\delta_{k-1}^{+a_{4,k-1}}}$$

where

$$a_{1,k-1} = l_{k}[\lambda_{C,k-1} - \lambda_{A,k-1} K_{k-1}]$$

$$a_{2,k-1} = -\lambda_{C,k-1} l_{k-1} l_{k}$$

$$a_{3,k-1} = -\lambda_{A,k-1} K_{k-1} - \lambda_{B,k-1} K_{k-1} + \lambda_{C,k-1}$$

$$a_{4,k-1} = l_{k-1}[\lambda_{B,k-1} K_{k} - \lambda_{C,k-1}]$$

As before this expression was used to write all δ 's in terms of δ_1 and then substituted into the equation resulting from the fact that the sum of all deflections over the loop is invariant during the iteration.

This approach caused a small improvement in coefficient size and in loss of significance but no improvement in non-linear behavior. It was realized that the huge coefficients were due to many applications of the recursion relationship and it was decided that the number of applications could be reduced by starting in the middle and working both ways instead of starting at one end and working across. So the forward recursion relationship was solved backwards to obtain:

$$\delta_{k-1} = \frac{a_{4,k-1}\delta_{k}a_{2,k-1}}{a_{3,k-1}\delta_{k}a_{1,k-1}}$$

where the a's are the same as before.

This made a dramatic improvement in coefficient size (now ranging 10^{23} to 10^{12} and in loss of significance to only four or five places, but did not completely solve the non-linear convergence problem.

4.2.7 <u>The Simultaneous Solution Based on Strain for Belt Segment</u> <u>2</u>. It was felt that the lack of convergence for linear approximations of non-linear material properties was probably due to the form of the definition of force since it was force which was being controlled. It was decided to solve directly in terms of strain and then compute unstrained belt length and deflection from the expressions:

$$L_{k-1} = \frac{l_{k-1}}{l+S_{k-1}}$$

and

$$\delta_{k-1} = \frac{S_{k-1}I_{k-1}}{I+S_{k-1}}$$

where S_{k-1} is strain for belt segment k.

$$\mathbf{F}_{k-1} = \mathbf{K}_{k-1}\mathbf{S}_{k-1}$$

and the recursion relationships became

$$S_k = a_{1,k-1} + a_{2,k-1}S_{k-1}$$

and

$$S_{k-1} = \frac{1}{a_{2,k-1}(S_k-a_{1,k-1})}$$

where

$$a_{1,k-1} = \frac{-\lambda_{C,k-1}}{K_k \lambda_{B,k-1}}$$

and

$$a_{2,k-1} = \frac{-\lambda_{A,k-1}K_{k-1}}{\lambda_{B,k-1}K_{k}}$$

This leads to easy solution of all strained in terms of S_2 , but now the invariant takes a more complex form

$$\sum_{k=1}^{N} \left(\frac{S_k l_k}{l + S_k} \right) = \delta_T$$

This yields coefficient expressions which are as complex as those from the other approaches but promise to yield smaller sizes for coefficients. Unfortunately, it was not possible to finish and test this approach within the resources of the project and extension. The original equations were developed. A satisfactory hand case for the N=2 linear case was done. However, a dimensional check and rederivation of the equations were not accomplished. 4.2.8 Set Up of the Slip Resistance Direction Factors. In the proceeding several sections, we have made use of the Y_{k-1} slip resistance direction factors saying only that they must be properly chosen for a valid solution. In this section, the algorithm for determining the proper choice of these factors is discussed.

For the N=2 case, it is clear that the proper choice is to oppose belt slip from the lower tension belt segment to the higher tension belt segment (since slipping would stop before it would overshoot).

Likewise it is clear that any monotonic arrangement of belt segment tensions in a multiple slip point case would remain in that configuration at equilibrium (with reduced tension differences). It is also clear that there are arrangements in which two relatively small belt tensions could be reversed by the presence of a much larger belt tension nearby on the way to equilibrium.

The approach used was to evaluate the given configuration, find the maximum tension belt segment and proceed in both directions from there searching for reversals in monotonicity (which for the N = 4 case can be a maximum of two). For each of these reversals, the problem is solved with both choices of y_k for the affected belt segments (a maximum of four solutions). Finally, the single solution is chosen which minimizes total belt slipping as the correct solution. This approach may be more laborious than necessary, but until an algorithm which would give good results was developed, it was not possible to investigate improvements in this procedure.

4.3 Summary of Progress

While a major portion of the effort in this project was spent investigating a suitable general method for the solution of the slip equilibrium equations at all slip points, several other tasks were necessary to integrate any such algorithm in the Calspan CVS, Version 20 code. A new Slip Input routine along with modifications to other input routines was also necessary. These have been coded and tested both in isolation and within the model.

It was also necessary to modify the belt routines so that they would work along with the new belt slip routines. The belt slip routines determine the situation, handle any slack, set up the problem for solution, do the solution for slipping, compute the quantities to be outputted and records these for later printing. These routines have also been coded and tested in isolation and also with a dummy solution routine within the CVS model. Finally, the output changes necessary to print the output quantities have been coded and tested.

It was necessary to write a separate test program for the various approaches to the equilibrium equation solution routine and determine the numerical characteristics of each approach. The plan was that when the slip solver was satisfactory in isolation, it would be inserted into the CVS code and final testing of the whole package would take place.

4.4 Recommendations

It is recommended that the strain approach discussed in Section 4.2.7 be implemented, tested, and the numerical characteristics determined.

If this fails, it is felt that an incremental approach should be tried where controlled steps are taken in the direction determined by a Newton-type or secant-type method. The numerical studies already done give some hope that this approach could be successful.

If both of these approaches fail, it is felt that everything done to this point should be reviewed and carefully reevaluated before anything else is considered.

The reasoning behind these recommendations is that the concept and the algorithms are inherently simpler than those used in the more sophisticated HARNESS routines which are not yet working entirely satisfactorily. It is estimated that these concepts are satisfactory for many standard three-point belt applications, and when completely installed and debugged, should be relatively inexpensive and easy to use.

5.0 THE HARNESS ALGORITHM

An advanced restraint system submodel (HARNESS) has been under development of a number of years by Fleck and associates (Butler et al. 1975, 1980, 1983). The model requires the user to specify a set of potential reference points on ellipsoids which are in contact with the belts comprising the harness (see Figure 5.1). The anchor points do not have to be fixed to the same segment. They can also be attached to another belt. Each belt may pass over more than one ellipsoid. Major aspects of this code are described as follows.

 The position of the reference points is mobile. That is, they can move over the surface of the ellipsoid to represent belt sliding. This sliding can include frictional effects.

2. The reference points can penetrate the ellipsoid to represent the deformation of the non-rigid body based on its force-deformation characteristics.

3. If the force is removed from the belt at a reference point, the belt can lift off from contact.

This subprogram has potential, not present in the older BELT subprogram, to overcome problems observed (see Section 2) in laboratory tests of belt hardware. These include:

- Slippage of belt over the surface in non-frontal impacts and release from contact if the occupant slips out of the belt.
- 2. Modeling of submarining.
- 3. Modeling of the complete three-point belt system in three dimensions.
- 4. Modeling of the belt/chest interaction.
- 5. Attachment of belts to non-rigid anchors.

During the early stages of the project, UMTRI was informed by the sponsor of development (USAF) that the software was essentially non-frictional. By the end of 1984, some modest successes were reported. By the end of 1985, UMTRI was provided with a short report (Obergefell and Kaleps 1984) and a list of code modifications to Version 20 of the CVS software. An example was included for a rather sophisticated Air Force harness (see Figure 5.2). It was indicated that

Figure 5.1. Points on Simple Harness.

.

most features worked but that great care had to be used in developing data sets. It is clear that a body of user knowledge must be developed before this code is ready for general use.

It is the recommendations of UMTRI that a considerable effort be expended to build a body of user knowledge on real problems, starting with a matrix of simple test cases. Most design problems involving belts can be handled with this code. Because the code was not recommended for use during the formal work on the project without a considerable expenditure of time and money, no effort was made to exercise it.

Figure 5.2. Air Force Harness Simulation Using HARNESS.

6.0 UMTRI VERSION OF GMCVS

The UMTRI version of GMCVS includes a variety of improvements as well as modifications which were required in order for the program to function on MTS. In particular, the program was split into two separate processors. The first one was used to produce output. Most of these improvements and changes had already been developed during a previous contract with NHTSA (Bennett and Robbins 1982).

The Calspan 3-D CVS, Version 20, as it came to UMTRI from GM, made use of well over three megabytes of virtual storage. This large use of storage is considered excessive on the MTS System and usually causes job cancellation. Also, previous versions of the Calspan 3-D CVS made use of a separate logical device number for each output page as a means of sorting information into output pages as the run proceeded. This practice was not permitted on the MTS System. To cope with these problems during previous contracts with NHTSA, UMTRI reorganized the output sections using direct access (or indexed) input/output to achieve the sorting of information into pages. This reorganization was easily achieved in the past.

In recent versions such as CVS18 and CVS19, new output options were added requiring access to output quantities from previous time points in the simulation and so storage arrays were set up to hold this information. The options of printing all pages on one logical device number at the end of the run and of recording the information in an exterior file (sequentially in simulated time) were also added while keeping the ability to output on multiple logical device numbers. The increased complexity of the output sections and the huge amount of information now stored required the alternate use of three direct access hold files (due to file size restrictions) and multiplied the amount of effort required for the reorganization at UMTRI.

While the necessary reorganization was being carried out, UMTRI installed a number of useful output options which had already been developed in our previous work with NHTSA. As well as the two output recording options supported in Version 20 (every integration step or

every evaluation) it is now possible to record in output at equal increments of time. Regardless of which information recording concept is used, it is possible to print output in equal increments of integral multiples of DT or to print all information present.

The kinematics printout controlled by the "H" cards now allow the user several new options including:

- Specification of the coordinate system in which each output quantity is printed with the original conventions being used as a default;
- Optional printout of contact information both as to category of information and individual interaction; and
- Specifications of the order of printing by category of information.

Discrete use of these options enable the user to cheaply determine the important trends in a run and then set up more detailed printout and graphic displays of pertinent information. This is now possible because the output sections of the program are in a separate processor and can be rerun as often as useful as long as the hold files are kept intact.

Several parts of the general CVS program were not implemented in the UMTRI versions. These included HIC, SI, the variable graphics printer plots, the equilibrium positioning software, the RESTART option, and the VIEW graphics postprocessor. The first four were not implemented since alternatives such as the Validation Command Language Postprocessor (Bennett et al. 1979, Bennett 1983) were available from previous NHTSA work as part of the reorganization of output storage and processing.

The RESTART option was not implemented in GMCVS and so was left out of the UMTRI version. However, it is strongly recommended that this software be implemented as it gives the user the capability to interactively run the program and change the input data structure as simulation proceeds. This can be very useful, particularly in controlling integration time step, during long simulations such as rollovers. Interim graphic output should also be available at local workstations to determine whether to continue, change data and continue, or stop.

The connection to the VIEW postprocessor was also not implemented as the required DISSPLA software package was not installed on at The University of Michigan mainframe. The alternative was the Ellipsoidal Man Plot Postprocessor (Lehman et al. 1983) which was developed under NHTSA contract. It should be noted that the VIEW program cannot include more than one ellipsoid per segment. This limitation has been recently illustrated in attempts to compare graphic results of steering column simulations generated by GMCVS with those generated at UMTRI using the simpler, but more flexible, software.

One code modification was made in the UMTRI version in order to meet the need for a general vehicle motion input vector in simulations of general vehicle rollovers (Robbins 1986).

7.0 REFERENCES

- Alem, N.M., Benson, J.B., and Melvin, J.W. (1977) Whole Body Response of the Hybrid III Anthropomorphic Test Device. Report no. UM-HSRI-77-10. University of Michigan Transportation Research Institute, Ann Arbor. 235p.
- Bennett, R.O. (1983) <u>Validation Command Language: Supplement to 1979</u> <u>Version</u>. Report no. UMTRI-83-28. University of Michigan Transportation Research Institute, Ann Arbor.
- Bennett, R.O., and Robbins, D.H. (1982) <u>HSRI Version of the Improved</u> <u>Three-Dimensional Computer Simulation of Vehicle Crash Victims.</u> In three volumes, <u>Volume I: Analysis</u>, <u>Volume II: User's Guide</u>, <u>Volume</u> <u>III: Programmer's Guide</u>. Final Draft. University of Michigan Transportation Research Institute, Ann Arbor.
- Bennett, R.O., Becker, J., and Robbins, D.H. (1979) <u>Validation Command</u> <u>Language, 1979 Version</u>. Report no. UM-HSRI-79-6. The University of Michigan, Highway Safety Research Institute, Ann Arbor.
- Butler, F.E., and Fleck, J.T. (1975) <u>Development of an Improved Computer</u> <u>Model of the Human Body and Extremity Dynamics</u>. AMRL-TR-75-14. Wright-Patterson AFB, Ohio.
- Butler, F.E., and Fleck, J.T. (1980) Advanced Restraint System Modeling. AMRL-TR-80-14. Wright-Patterson AFB, Ohio.
- Butler, F.E., Fleck, J.T., and DiFranco, D.A. (1983) Modeling of <u>Whole-Body Response to Windblast</u>. AFAMRL-TR-83-073. Wright-Patterson AFB, Ohio.
- Fleck, J.T., and Butler, F.E. (1981) Validation of the Crash Victim Simulator, Volume 1, Engineering Manual--Part I: Analytical Formulation. Report no. ZA-5881-V-1. Calspan Corporation, Buffalo, New York. 264p.
- Fleck, J.T., Butler, F.E., and Vogel, S. L. (1975) <u>An Improved Three-Dimensional Computer Simulation of Vehicle Crash Victims</u>. In four volumes, <u>Volume 1: Engineering Manual</u>, <u>Volume II: Model Validation</u>, <u>Volume III: User's Manual</u>, <u>Volume IV: Programmer's Manual</u>. Report nos. DOT-HS-801507 through DOT-HS-801510. NTIS order numbers PB-241 692 through PB-241 695.
- Horsch, J.D. (1980) "Occupant Dynamics as a Function of Impact Angle and Belt Restraint," <u>Proceedings of the 24th Stapp Car Crash</u> <u>Conference</u>, pp. 417-438. Society of Automotive Engineers, Warrendale, Pa.

- Lehman, R.J., Bennett, R.O., and Robbins, D.H. (1983) <u>Ellipsoidal Man</u> <u>Plotting Package for MVMA 2-D and CVS (HSRI Version) Occupation</u> <u>Motion Models</u>. Report no. UMTRI-83-27. University of Michigan Transportation Research Institute, Ann Arbor.
- Newman, K.F., Grew, N.D., and Dowzall, G. (1981) "Cal 3-D: Its Use in BL Cars Ltd." <u>Proceedings: CAL 3-D Users Conference</u>. Motor Vehicle Manufacturers Association and the National Highway Traffic Safety Administration.
- Robbins, D.H. (1986) <u>3-D Simulation of Occupant Kinematics in Rollovers</u>. Report no. UMTRI-86-44. University of Michigan Transportation Research Institute, Ann Arbor.
- Viano, D.C., and Culver, C.C. (1981) "Test Dummy Interaction with a Shoulder or Lap Belt," Proceedings of the 25th Stapp Car Crash Conference, pp. 583-609. Society of Automotive Engineers, Warrendale, Pa.
- Wittenburg, J. (1977) <u>Dynamics of Systems of Rigid Bodies</u>. B.G. Teubner, Stuttgart, 222p.

APPENDIX A

REVISION PAGES TO GMCVS INPUT DESCRIPTION

The following pages are replacement pages for the Calspan CVS model, Version 20, Input Description covering the changes made to the input sections of the model in order to provide a structure for the algorithms presented in Part 4 of this report.

IF NBLT IS NONZERO ON CARD D.1, NBLT SETS OF CARDS D.3 ARE REQUIRED.

CARD D.3.A FORMAT (5A4)

BLTTTL(I,J),I=1,5 A 20 CHARACTER DESCRIPTION OF THE JTH BELT.

CARD D.3.B FORMAT (6F12.0)

.

BELT(I,J),I=1,3 POSITION OF ANCHOR POINT A FOR THE JTH BELT W.R.T. SEGMENT NSEGA (SPECIFIED ON CARD F.2.B IN NS(1) FIELD). X, Y, AND Z COORDINATES (IN.)

BELT(I,J),I=4,6 POSITION OF ANCHOR POINT B FOR THE JTH BELT W.R.T. SEGMENT NSEGB (SPECIFIED ON CARD F.2.B IN NS(1) FIELD). X, Y, AND Z COORDINATES (IN.)

NOTE: THE PROGRAM MUST PASS A PLANE THROUGH THE THREE POINTS, ANCHOR POINT A, ANCHOR POINT B, AND A FIXED POINT ON THE CONTACTED BODY SEGMENT. IF ANCHOR POINTS A AND B COINCIDE, THEY MUST BE SEPARATED SLIGHTLY FOR INPUT SUCH THAT THE DESIRED BELT PLANE WILL BE DEFINED.

- CARD D.3.C FORMAT (5F12.0)
 - BELT(I,J),I=7,9 POSITION OF BELT FIXED CONTACT POINT WITH RESPECT TO SYSTEM THAT HAS ORIGIN AT ELLIPSOID CENTER AND IS PARALLEL TO LOCAL BODY SEGMENT SYSTEM. (X, Y, AND Z COORDINATES (IN.))
 - NSLPBL(J) NUMBER OF SLIP POINTS FOR THIS BELT. SLIP POINTS MAY OCCUR AT EITHER BELT ANCHOR IF THERE IS ANOTHER BELT WHICH HAS A COINCIDENT ANCHOR WHICH IS ALSO SPECIFIED AS A SLIP POINT. SLIP POINTS MAY ALSO OCCUR AT FIXED POINTS FOR BELTS. (MAXIMUM VALUE IS 3; ENTER AS REAL NUMBER.)
 - BELT(11,J) BELT SLACK (IN). THE SLACK IS ADDED TO THE INITIAL GEOMETRIC LENGTH TO OBTAIN THE INITIAL BELT LENGTH. IF NEGATIVE NUMBER IS ENTERED, IT WILL BE INTERPRETED AS INITIAL BELT LENGTH FROM WHICH THE PROGRAM WILL COMPUTE THE SLACK.

NOTE: NSPT IS DEFINED AS THE SUM OF ALL FIXED POINTS PLUS ONE HALF OF ALL ANCHOR POINTS SPECIFIED IN THE NSLPBL FIELDS OF ALL D.3.C CARDS, IN OTHER WORDS, THE TOTAL NUMBER OF INDIVIDUAL SLIP POINTS FOR ALL BELTS. IF NBLT (THE NUMBER OF BELTS) IS NONZERO ON CARD D.1, CARDS F.2 ARE REQUIRED.

CARD F.2.A FORMAT (814)

MNBLT(J), J=1, NBLT FOR BELT J, THE NUMBER OF SEGMENTS FOR WHICH SEGMENT-BELT INTERACTION IS ALLOWED (0 OR 1 ONLY).

FOR EACH BELT J, MNBLT(J) CARDS OF THE FOLLOWING MUST BE SUPPLIED.

- CARDS F.2.B F.2.N FORMAT (914)
 - NJ THE BELT NUMBER TO BE CONTACTED, MUST CORRESPOND TO J ABOVE. THERE MUST BE MNBLT(J) CARDS WITH THE SAME NJ. IF MNBLT(J) = 0, NO NJ = J SHOULD BE PRESENT.
 - NS(1) SUPPLY NSEGA + 100 * NSEGB WHERE NSEGA IS THE SEGMENT NUMBER FOR ANCHOR A AND NSEGB IS THE SEGMENT NUMBER FOR ANCHOR B. IF NSEGA AND NSEGB ARE THE SAME, SUPPLY ONLY NSEGA. (NOTE 1 APPLIES TO BOTH NSEGA AND NSEGB)
 - NS(2) SUPPLY NOBODY WHICH IS THE NUMBER OF THE SEGMENT TO WHICH THE CONTACT ELLIPSOID IS ATTACHED. (NOTE 1 APPLIES TO NOBODY).
 - NS(3) THE NUMBER OF THE CONTACT ELLIPSOID ATTACHED TO THE SEGMENT NOBODY.
 - NF(1) THE FUNCTION NUMBER FORM CARD E.1 TO DEFINE THE FORCE-DEFLECTION FUNCTION FOR THIS CONTACT. THE ABSCISSA FOR THIS FUNCTION SHOULD BE STRAIN (IN/IN).
 - NF(I), I=2,4 SAME DEFINITION AS ON CARD F.1.B ABOVE.
 - NF(5) IF NON-ZERO, FULL BELT FRICTION IS ASSUMED, I.E., FORCES ARE COMPUTED FOR EACH HALF OF THE BELT SEPARATELY. IF ZERO, ZERO BELT FRICTION IS ASSUMED I.E., BELT TENSION IS THE SAME AT BOTH BELT ANCHOR POINTS. IF THE FIXED POINT FOR BELT NJ IS SPECIFIED AS A SLIP POINT ON A F.9 CARD, THIS FIELD IGNORED.

NOTES:

- 1. ONE OF THREE OPTIONS IS CHOSEN BY USER:
 - (A) THE CARD NUMBER I UNDER CARD B.2.A FOR ANY BODY SEGMENT,
 - (B) NVEH FOR THE PRINCIPAL VEHICLE, OR
 - (C) NGRND FOR THE INERTIAL FRAME (GROUND).
- 2. THE USE OF RATE DEPENDENT FUNCTION AS DEFINED UNDER CARDS F.1.B. ARE NOT CURRENTLY OPERATIONAL FOR BELT-SEGMENT CONTACTS.

- F.9 SUBROUTINE SLPINP CARD INPUT FOR SEAT BELT FEED THROUGH DATA. (NSPT CARDS REQUIRED, SEE NOTE ON CARD D.3.C.)
 - CARDS F.9 FORMAT (I4, 3X, A1, I4, 3X, A1, 5F10.0)

NBSP(I,J),I=1,4
TWO PAIRS OF VALUES SPECIFYING THE BELT
NUMBER AND POINT CODE FOR EACH BELT NODE
COINCIDENT AT SLIP POINT J.
POINT CODES: A = ANCHOR A
B = ANCHOR B
F = FIXED POINT
(ONLY ONE BELT INVOLVED IF POINT CODE
"F".)

- SFRICT(1,J) IF POSITIVE, THE FRICTION COEFFICIENT AT SLIP POINT J. (LBS/LBS). IF NEGATIVE, THE FUNCTION NUMBER FOR FRICTION FORCE (MUST BE NON-NEGATIVE) VS NORMAL FORCE.
- SFRICT(2,J) THE CONSTANT TERM OF THRESHOLD FORCE (MUST BE NON-NEGATIVE). (LBS.) THIS ACTS TOGETHER WITH NEXT QUANTITY.
- SFRICT(3,J) THE COEFFICIENT OF THRESHOLD FORCE (LBS/ LBS). THE TOTAL THRESHOLD FORCE IS OBTAINED BY MULTIPLYING THIS BY SLIP NORMAL FORCE AND ADDING SFRICT(2,J).
- SFRICT(4,J) THE INITIAL SLIP INCREMENT TO BE USED. (IN.) (UNUSED AT PRESENT TIME)

SFRICT(5,J) MAXIMUM RATE OF SLIP WHICH IS ALLOWABLE (IN./SEC.). (UNUSED AT PRESENT TIME)

NOTES: 91. BELT NODES SPECIFIED MUST BE EITHER ONE FIXED POINT OR TWO ANCHOR POINTS WHICH MUST BE COINCIDENT IN BOTH POSITION AND SPECIFICATION OF ATTACHMENT SEGMENT. 92. SFRICT(1,J) AND SFRICT(2,J) CAN NOT BOTH BE SPECIFIED ZERO.

APPENDIX B

DERIVATION OF THE SLIP FORCE EQUILIBRIUM EQUATION

This appendix refers to an amplifies Section 4.2.3 and Figure 4.5. Slip point k-l is located at $(x_{k-1}, y_{k-1}, z_{k-1})$ in inertial space. Belt segment k-l terminates at slip point k-l and begins at slip point k-2 or loop anchor A which is located at $(x_{k-2}, y_{k-2}, z_{k-2})$ in inertial space. Belt segment k begins at slip point k-l and terminates at slip point k or loop anchor B which is located at (x_k, y_k, z_k) in inertial space. As before let l_k be the strained belt length of belt segment k and let L_k be the unstrained belt length of belt segment k. The strained belt lengths are determined geometrically. Total unstrained belt length for any loop is determined from the initial conditions supplied by the user. Individual unstrained belt lengths are determined to meet the slip equilibrium requirements and maintain the user-specified total unstrained belt length of the loop.

$$l_{k-1} = \sqrt{(x_{k-1} - x_{k-2})^2 + (y_{k-1} - y_{k-2})^2 + (z_{k-1} - z_{k-2})^2}$$

and

$$l_{k} = \sqrt{(x_{k} - x_{k-1})^{2} + (y_{k} - y_{k-1})^{2} + (z_{k} - z_{k-1})^{2}}$$

Define

$$\overline{\mathbf{f}}_{\mathbf{k}-\mathbf{l}} = \begin{pmatrix} \mathbf{a}_{\mathbf{k}-\mathbf{l}} \\ \boldsymbol{\beta}_{\mathbf{k}-\mathbf{l}} \\ \boldsymbol{\gamma}_{\mathbf{k}-\mathbf{l}} \end{pmatrix} \quad \text{and} \quad \overline{\mathbf{f}}_{\mathbf{k}} = \begin{pmatrix} \mathbf{a}_{\mathbf{k}} \\ \boldsymbol{\beta}_{\mathbf{k}} \\ \boldsymbol{\gamma}_{\mathbf{k}} \end{pmatrix}$$

where

$$a_{k-1} = \frac{1}{l_{k-1}} (x_{k-2} - x_{k-1}) \qquad a_k = \frac{1}{l_k} (x_k - x_{k-1})$$

$$\beta_{k-1} = \frac{1}{l_{k-1}} (y_{k-2} - y_{k-1}) \qquad \beta_k = \frac{1}{l_k} (y_k - y_{k-1})$$

$$\gamma_{k-1} = \frac{1}{l_{k-1}} (z_{k-2} - z_{k-1}) \qquad \gamma_k = \frac{1}{l_k} (z_k - z_{k-1})$$

These are the unit vectors along the two belt segments k-1 and k, respectively based at the slip point and pointing toward the respective anchors.

Now

$$\cos(2\Omega_{k-1}) = \overline{f}_{k-1} \cdot \overline{f}_{k} = a_{k-1}a_{k}+\beta_{k-1}\beta_{k}+\gamma_{k-1}\gamma_{k}$$

Define

$$\overline{F}_{k-1} = F_{k-1}\overline{f}_{k-1}$$
 and $\overline{F}_k = F_k\overline{f}_k$

These are the belt tension force vectors at the slip point along the two belt segments, respectively. British Leyland defines the normal direction as a unit vector called $f_{n,k-1}$ where

$$\overline{f}_{n,k-1} = \frac{\overline{f}_{k-1} + \overline{f}_k}{|\overline{f}_{k-1} + \overline{f}_k|}$$

and the tangential direction as

$$\overline{\mathbf{f}}_{s,k-1} = \frac{\overline{\mathbf{f}}_{k-1} - \overline{\mathbf{f}}_k}{|\overline{\mathbf{f}}_{k-1} - \overline{\mathbf{f}}_k|}$$

Note that

$$\left|\overline{f}_{k-1} + \overline{f}_{k}\right| = \pm 2 \cos(\Omega_{k-1})$$

and

$$\left|\overline{f}_{k-1}-\overline{f}_{k}\right| = \pm 2 \sin(\Omega_{k-1})$$

These expressions are determined by substitution of components into the definitions of vector magnitudes and application of trignometric identities. British Leyland defined the normal and tangential force magnitudes as the scalar product of the force resultant vector with the two direction vectors.

$$\mathbf{F}_{n,k-1} = (\overline{\mathbf{F}}_{k-1} + \overline{\mathbf{F}}_k) \cdot \overline{\mathbf{f}}_{n,k-1}$$

and

$$\mathbf{F}_{s,k-1} = (\overline{\mathbf{F}}_{k-1} + \overline{\mathbf{F}}_k) \cdot \overline{\mathbf{f}}_{s,k-1}$$

Substituting definitions and simplifying, the normal force magnitude becomes

$$F_{n,k-1} = (F_{k-1}\overline{f}_{k-1} + F_k\overline{f}_k) \cdot \frac{\overline{f}_{k-1} + \overline{f}_k}{|\overline{f}_{k-1} + \overline{f}_{k-1}|}$$
$$= \frac{(F_{k-1} + F_k) (1 + \cos(2\Omega_{k-1}))}{\pm 2 \cos(\Omega_{k-1})}$$
$$= \pm (F_{k-1} + F_k \cos(\Omega_{k-1}))$$

Likewise for tangential or slip force magnitude,

$$F_{s,k-1} = \frac{(F_{k-1}-F_k) (1-\cos(2\Omega_{k-1}))}{\pm 2 \sin(\Omega_{k-1})}$$
$$= \pm (F_{k-1}-F_k) \sin(\Omega_{k-1})$$

The slip resistance force vector at the slip point $(\overline{F}_{R,k-1})$ is assumed to be due to friction force at the slip point $(\overline{F}_{F,k-1})$ and threshold force at the slip point $(F_{T,k-1})$. Threshold force includes the differences between static and kinetic friction while friction force is includes kinetic effects only.

So that

$$F_{R,k-1} = F_{F,k-1} + F_{T,k-1}$$

where

$$F_{F,k-1} = \mu_{k-1}F_{n,k-1}$$

and

$$F_{t,k-1} = C_{1,k-1} F_{n,k-1} + C_{2,k-1}$$

 μ_{k-1} is the inputted coefficient of friction,

 $C_{1,k-1}$ is the inputted coefficient of threshold force, and

 $C_{2,k-1}$ is the inputted constant threshold force.

The direction of $\overline{F}_{R,k-1}$ is opposite to that of $\overline{F}_{s,k-1}$.

In the British Leyland algorithm, slipping will occur if

$$F_{s,k-1} > F_{F,k-1} + F_{T,k-1}$$

and the iteration to adjust the unstrained lengths in order to reduce $F_{s,k-1}$ until $F_{F,k-1} < F_{s,k-1} < F_{F,k-1} + F_{T,k-1}$. This is the interval of convergence.

We will define a target variable \mathtt{V}_{k-1} which assumes the value of zero in the center of the interval of convergence as

$$V_{k-1} = F_{s,k-1} + \eta_{k-1} F_{R,k-1}$$

where η_{k-1} is assigned the value of +1 or -1 depending on the relative direction of slip resistance forces when equilibrium is reached. Note that slip resistance will always oppose slip force, but if the equation is to predict equilibrium, then it must reflect the direction of slip resistance at equilibrium which may or may not be the same as the direction of slip resistance where the iteration is started.

The equilibrium condition then is taken to be $V_{k-1}=0$.

When computed during the iteration, convergence is defined as

$$|\mathbf{v}_{k-1}| \leq \frac{1}{2} \mathbf{F}_{T,k-1}$$

Note that this condition corresponds to the previous interval of convergence. Now substituting the previously developed expressions

$$\mathbf{v}_{k-1} = \mathbf{0} = (\mathbf{F}_{k-1} - \mathbf{F}_k) \sin(\mathbf{\Omega}_{k-1}) + \eta_{k-1} [\mathbf{h}_{1,k-1} (\mathbf{F}_{k-1} + \mathbf{F}_k) \cos(\mathbf{\Omega}_{k-1}) + \mathbf{h}_{2,k-1}]$$

and collecting on F_{k-1} and $F_{k'}$

$$\lambda_{\mathbf{A},\mathbf{k}-1}\mathbf{F}_{\mathbf{k}-1} + \lambda_{\mathbf{B},\mathbf{k}-1}\mathbf{F}_{\mathbf{k}} + \lambda_{\mathbf{C},\mathbf{k}-1} = 0$$

where

$$\lambda_{k,k-1} = \sin(\Omega_{k-1}) + \eta_{k-1}h_{1,k-1}\cos(\Omega_{k-1})$$
$$\lambda_{k,k-1} = -\sin(\Omega_{k-1}) + \eta_{k-1}h_{1,k-1}\cos(\Omega_{k-1})$$
$$\lambda_{k-1} = \eta_{k-1}h_{2,k-1}$$
APPENDIX C

TAPE DESCRIPTION AND INSTALLATION NOTES

C.l Introduction

The software produced as part of the CVS belt software project is submitted in the form of magnetic tape number BSC023. The remaining sections of this appendix present a description of the physical layout of tape BSC023, a description of each piece of software included on the tape, and notes concerning installation of this software at GMR including a summary of changes made in the UMTRI version (GUCVS) of the GMR version (GMCVS) of the Calspan CVS, Version 20.

C.2 Tape Description of Tape BSC023

Tape BSC023 is an unlabelled, EBCD, nine-track magnetic tape with eleven files and the following properties: RECFM = FB, BLKSIZE = 2400, and LRECL = 80 written at 6250 BPI. Table C.1 summarizes the contents by file.

TABLE C.1

File No.	Code Name	Description	Seq ID (col 73-74)	No. of Records	No. of Blocks
1	ODIC1.FORT	GMCVS Part I	num 73-80	6,824	228
2	ODIC3.FORT	GMCVS Part II	num 73-80	6,443	215
3	CIGS	GUCVS Part I	IG	13,080	436
4	CUTS	GUCVS Part II	UT	1,363	46
5	ROBMULTESTS	Deflection 2 Code	ED	830	28
6	ROBEP1MULT	Unstrained Change	EP	792	27
7	ROBDELOMULT	Deflection 1 Code	DZ	811	28
8	RIGS	Slip GUCVS Part I	RI	3,395	114
9	RUTS	Slip GUCVS Part II	RU	353	12
10	ROBPLOTCS.S	Ellip Man Plotter	CS	1,330	45
11	ROBMULTEST.D	Test Data for 5-7	None	168	6

DESCRIPTION OF TAPE BSC023

C.3 Software Descriptions

ODIC1.FORT and ODIC3.FORT are duplicates of the GMCVS files from which UMTRI started. They are included to serve as a reference point from which to understand the updates which UMTRI made in creating GUCVS. It may be useful to compare these two old GM files with the corresponding current GM files in order to pinpoint where the changes reported in the next section relative to these two old files fit relative to current GM files.

While ODIC1.FORT and ODIC3.FORT were just the GMCVS divided into two rather equal files for ease of handling, CIGS and CUTS represent a division of the model into two processors to be run usually in succession. This division was made for two reasons: first, it makes recovering printout on an aborted run easier (sometimes automatic if the model is run under procedure control), and secondly, it reduces the total virtual memory needed to run the model without either reducing model features or increasing the cost of a model run. Part 6 of this report gives a short discussion of model improvements incorporated in GUCVS.

ROBMULTESTS, ROBEPIMULT, and ROBDELOMULT are three stand alone packages which consist of a test main, a trial version of the new CVS model subprogram, "BLTSOL" (which has the task of obtaining a solution to the belt slip equilibrium equations, see Section 4.2.3), and needed service routines either pulled from the model intact or dummied. Each of these packages use the same data formats to describe the desired test cases. ROBMULTEST.D is the data for the standard group of tests which was used to test these three approaches.

ROBEPIMULT is the approach discussed in Section 4.2.5. This package contains one coding error which invalidates the results for the N=4 cases. Since it was clear from the N=2 and N=3 cases that the approach had failed, there was no purpose in finding and correcting this error.

ROBDELOMULT and ROBMULTESTS are the two approaches discussed in Section 4.6 of Part I. There are no known coding errors in these two packages.

RIGS and RUTS contain replacement and new subprograms for GUCVS to implement the new belt slip algorithms. The subprograms in CIGS for which changes were required (and for which changed versions are included in RIGS) are BELTRT, CINPUT, CONTCT, OUTREC, OUTPUT, SINPUT, and UPDATE. Table C.2 contains a short description of the functions of each of the new subprograms included in RIGS. The subprograms in CUTS for which changes were required (and for which changed versions are included in RUTS) are BLOCK DATA, HEDING, and PRTLIN. All these routines are only partially tested and are subject to further changes.

ROBPLOTCS.S is the source for the Ellipsoid Man Plotting Program which UMTRI used instead of the VIEW Plotting Program. GUCVS will optionally produce the exterior binary hold files required by both/ either/neither of these plotting programs. ROBPLOTCS.S makes use of the regular Calcomp Plotting Routines whereas VIEW makes use of the DISSPLA plotting routines.

TABLE C.2

NEW BELT SLIP ALGORITHM ROUTINES

Routine Name	Description of Function
BLDERV	Obtains approximations to belt material derivatives for one specified belt loop and one specified unstrained belt length configuration of four possible unstrained belt length configurations.
BLEVL	Evaluates belt tension, normal forces, and slip forces for all slip points in all belt loops for one specified unstrained belt length configuration.
BLTSLP	Is the main control routine for the belt slip algorithm. It calls the other belt slip routines as necessary to handle for each belt loop separately the applicable cases of non-slipping belts, free-slipping belts under slack, or slipping under friction. The last case is handled by setting up and solving up to four belt configurations in order to determine the minimum amount of belt slip which satisfies the belt slip equilibrium equations.
BLTSOL	Solves for unstrained belt lengths which satisfy the belt slip equilibrium equations for a specified belt loop and a specified belt configuration.
BLTUPD	Updates the unstrained belt lengths for which values at current and last previous simulated times are maintained.
BLTVAL	Evaluates belt tension forces for a specified regular belt or around a specified belt slip point.
POLRT	Computes real and complex roots of a real polynomial by the Newton-Raphson iterative technique.
SLPINP	Reads the F.9 input data cards and sets up the appropriate control and data internal storage arrays.

C.4 Installation Notes

This section documents the updates necessary to turn the GMCVS presented on tape BSC023 into the GUCVS also presented on this tape. Table C.3 is the index of the collected output of several runs of a comparison program on the MTS System of the files CVSA and CVSB (which are MTS line file versions of tape files ODIC1.FORT and ODIC3.FORT, respectively) and the files CIGS and CUTS (which are MTS line file versions of tape files CIGS and CUTS, respectively). The collected output is included as Table C.5. In all cases the sequence fields have been stripped off to enable the comparisons to be based solely on program content.

Line files are characterized by line numbers which identify each line of information separately from line contents. This allows sequencing to be maintained without disturbing comparisons of content. Line numbers in the file listings which accompany tape BSC023 correspond to the number of the record in the tape file in each case. These tape file listings show the line number for each tape record on the left followed by the 80 characters of contents which includes the sequencing information.

Table C.3 also shows the line number for each displayed line at the left. The output of the comparison program shows lines from the two files being compared side by side on as many printout lines as required to display the total contents of both lines. Every pair of lines which are the same character by character and which are displayed are designated by "=" on the extreme left and right of each printout line required to display the entire lines. The only equal lines which are displayed are those which begin the interval of comparison, end the interval of comparison, precede an unequal line, or follow an unequal line. The equal lines which are not displayed are counted in a summary of omitted lines which is printed in the place of the omitted equal lines. Every line in either file for which a difference is found or for which no corresponding line is found is displayed without the "=" on the extreme left and right of each printout line.

The output of the several comparison runs are ordered in Table C.3 on the sequence of the line intervals in CVSA and CVSB. Any line

intervals which are missing in Table C.3 are either exactly the same, or bear no relationship to the other file. A list of the sections of the code which have been changed are included as Table C.4. The changed listings are included as Table C.6.

TABLE C.3

COMPARISON OF GUCVS	WITH	GMCVS
---------------------	------	-------

GUCVS Lines	GMCVS Lines
CVSA(1,249)	CIGS(1,246)
CVSA(250,856)	CIGS(247,856)
CVSA(861,1778)	CIGS(857,1781)
CVSA(1779,3506)	CIGS(1782,3508)
CVSA(3507,3781)	CIGS(3509,3782)
CVSA(5235,6258)	CIGS(5257,6304)
CVSA(6420,6824)	CUTS(835,1122)
CVSB(166,1501)	CIGS(6527,7862)
CVSB(1502,1830)	CIGS(7863,8445)
CVSB(2564,2877)	CIGS(9161,9474)
CVSB(2918,4698)	CIGS(9544,11350)

TABLE C.4

COMPLETELY NEW OR EXTENSIVELY CHANGED CODE

1. 2.	Subroutine DRCQUA Subroutine OUTREC	(new code) (new code)
3.	Subroutine PLOTR1, PLOTR2, PLOTRA	(new code)
4.	Subroutine QUAT	(new code)
5.	Subroutine STASH	(new code)
6.	Main program for CUTS replaces old subroutine POSTPR	(new code)
7.	Old subroutine POSTPR (CVSB) replaced by CUTS Main	
8.	Subroutine FETCH	(new code)
9.	New dummied subroutine HICCSI	
10.	Old subroutine HICCSI	
11.	Subroutine INREAD	(new code)
12.	Subroutines PICKUP and PRTLIN	(new code)
13.	New dummied subroutine SLPLOT	
14.	Old subroutine SLPLOT	
15.	Subroutines VECADD and VECSUB	(new code)

1 1: SUSP:CIGS(1,246) 1 BLOCK DATA	ines and the second s	F, NSSF, NBGSF 31 COMMON/RSAVE/ DPMI(3,3,100), LPMI(100)	32 CDMMDN/CDINT/ UU(4),GH(3,4), 33 * * E(3,800),FF(5,800),GG(5,800	5,800),U(5,800), H.HPRINT,TSAVE,TPRINT,TSTAK	NT, IDBL, IFLAG COMMON/DAMPER/ APSDM(3,20), APSDN(3,20), ASI O), MSDM(20), MSDN(20)	Ines ####################################	SUUI 97 LOGICAL NPRT1,NPRT2,NPRT3 ,NPRT18 98 CALL ELTIME(1, 1)	105 ====================================	***',9X ***',9X 109 • ***',9X	V', 6X', SSSSSS', 5X', ******* 0V', 6X', ******* 0V', 6X', ******** 0V', 6X', ******* 0V', ******* 0V'	111 3'GG G', 6X, 'UU UU', 6X, 'CCCCCC', 6X, 'V'	V , 6X , 5555555 , 5X , ****** , 9X , 3 ****** , / ,22X , ****** , 9X , 113 4 ' GG ' , 6X , 'UU UU ' ,6X , 'CC ' ,6X , ' \	',6X,'SS ',5X, 114 ',******'/,22X,'******',9X, 115 9'GG GGG',6X,'UU UU',6X,'CC ',6X,'' \	', (6X, 'SSSSSSS', 5X, 116 9'******', /, 22X, '******', 9X, 117 5/00 000 000	וו/ סישי, של של האייט טטי, שאיי כט י, שאיי לאיי SS', 5X, 118 5'******', /, 22X, '******', 9X,	119 6'GG GG', 6X, 'UUUUUU', 6X, 'CCCCCCC', 6X, ' '.6X.'SSSSSS'.5X.	120 6 ******',/,22X,'******',9X, 121 7'GGGGG G',6X,'UUUUUU',6X,'CCCCCC',6X,' . cv 'ccccccc', cv	122 7'******') 123 112 FDRMAT(3(22X,'******',73X,'******',),22X,	***',17X, 124 8' GMR/UMTRI MAIN PROCESSOR',2X,3A4,17X,'**	',/',22X, 125 ************************************	nes ====================================	157 C Nes thereforestretertertertertertertertertertertertert	179 18 WRITE (6,999) 179 999 FORMAT(1X,'**** RESTART OPTION NOT OPER/
CVSA(1,249) Uni BLOCK DATA	<pre>====================================</pre>	F.NSSF.NBGSF COMMON/RSAVE/ XSG(3,20,3),DPMI(3,3,100),LPMI(1 00),NSG(7),	*MSG(20,7) COMMON/CDINT/ UU(4),GH(3,4), * E(3,800),FF(5,800),GG(5,800),Y(5,800),U(5,800), H,HPRINT,TSAVE,TPRINT,TSTART,IC *	NT.IDBL.IFLAG. DMMY(200,25),DMMY2(5000,25) comMON/DAMPER/APSDM(3,20),APSDN(3,20),ASD(5,2 0).MSDM(20),MSDN(20)	<pre>statestatestatestatestatestatestatesta</pre>	CALL ELTIME(1, 1)	<pre>====================================</pre>	***',9X, 2'GGGGGGG' 6X 'MM MM' 6X 'CCCCCCC' 6X 'VV V	V', 6X', SSSSSSS-', 5X', ******* 9X 9', 8X', SSSSSSS', 7X', ******* 9X	3'GG G', 6X, 'MM MM', 6X, 'CCCCCC', 6X, 'VV V	V, 04, 3030303, 304, 3'******', /,22X,'******',9X, 4'GG ',6X,'MMM MMM',6X,'CC ',6X,' VV VV	, 6X, 'SS ', 5X, '******, 9X, 4'******'/, 22X, '******, 9X, 9'GG GGG', 6X, 'MM MMM', 6X, 'CC ', 6X,' VV VV	', 6X, 'SSSSSS', 5X, 9'*****',/,22X,'*****, 9X, #'GC 62' 6Y, MM M MM' 6Y, CC 16V VVV	6X, 5S',5X, """ "" "" '0X, '0X, '0X, '0X, '0X, '0X, '0X, '0X,	6'GG GG',6X',MM MMM',6X',CCCCCCC',6X', VVV ',6X',SSSSSS',5X',	6'******',/'22X''*****',9X' 7'GGGGG G',6X''MM MM',6X,'CCCCCCC',6X,' V ' EY 'SSSSSS' FY	7'******') 1'******') 112 FORMAT(3(22X,'******',73X,'******',),22X,'***	***',17X, G. M. R.',8X,3A4,17X,'******',/',22	· · · · · · · · · · · · · · · · · · ·	IT FORMAT('O NPRT ARRAY'/3X,36I3/3X,36I3) 30 equal 110 NPRT4 = NPRT(4) IF (NPRT(4)	u 	<pre>18 WRITE (6,999) 899 FORMAT(1X,'**** RESTART OPTION NOT OPERETION C.5. Comparison of GUCVS with GMCVS (Page 1 of 41)</pre>
+ 0: -	==== 30	31	207	35	912	8	٥Q	= 60	-	· .	10	4 IJ	9 1	co o	, o	-	20	4 10	9	7			- 4 3 1e

41 IL	12 10 13 14 14		I HI IN IN
L ****') RETURN ************************************	21 CALL RSTART(4,5) 23 CALL DINT	<pre>ED BY NPRT(18). ED BY NPRT(18). NPRT18 = (NPRT(18) .EQ. 1) IF (NPRT(18) .GT. 1) NPRT18 = (MOD(ISTEP.NPRT B)) .EQ. 0) IF (NPRT(18) .NE. 0 .AND. ISTEP .EQ. 0) CALL IF (NPRT(18) .NE. 0 .AND. ISTEP .EQ. 0) CALL IF (NPRT18) CALL PLOTR2 G. SUBROUTINE ELTIME ON PRIMARY OUTPUT UNIT C TROLLED BY NPRT(2). IF (ISTEP.LE.NSTEPS) GO TO 20 IF (ISTEP.LE.NSTEPS) GO TO 20 IF (NPRT2) CALL ELTIME (2,1)</pre>	IF (.NOT.NPRT2) CALL ELTIME (2,1) Stop 1 END
န ဂ်ဂဂဂဂ	1 1 1 1 1		U
181 182 183 184 185 187	1 fnes = 199 200	2222 2225 2225 2225 2226 2229 2229 2229	243 245 245
	equal	50 50 50 40 40 40 40 40 40 40 40 40 40 40 40 40	
	₹ - (
AL ****') RETURN CALL RSTART(1,IRSIN) CALL RSTART(4,5) NPRT4 = NPRT(4) 19 IF (IRSOUT.NE.O) CALL RSTART(2,IRSOUT)	21 CALL RSTART(4,5) 15 (NPRT(4).LT.O) GO TO 50 23 CALL DINT	C 5. SUBROUTINE ELTIME ON PRIMARY OUTPUT L NTROLLED BY NPRT(2). C 1. (1510) 1. (1510)	C 60 IF (.NDT.NPRT2) CALL ELTIME (2,1) STOP 1 END
185 186 187 188 188	201 202 203	226 226 226 226 235 235 235 235 235 235 235 235 235 235	246 247 248 249
			_

Unit 0: CVSA(250,856)

Unit 1: SUSP:CIGS(247,856)

=	250	SUBROUTINE ADJUST (M,D1)	247	SUBROUTINE ADJUST (M,D1) =
= = =		bener bene	lines	
=	256	* E(3,800), F(5,800),GG(5,800),Y(5	253	* $E(3,800), F(5,800), GG(5,800), Y(5 =$
=		, BOO), U(5, 800),		,800),U(5,800), =
	257	* H.HPRINT,HS,TPRINT,TSTART,ICNT,I	254	* H.HPRINT, HS. TPRINT, TSTART, ICNT, I
		DBL, IFLAG.		DBL, IFLAG
	258	* DMMY(200.25)		
=	259	COMMON/COMAIN/ VAR(800). DER(800). DT. HO. HMAX. HM	255	COMMON/COMAIN/ VAR(800) DER(800) DT HO HMAX HM =
=	200	IN RSTIME.		IN RSTIME =
= = =			lines	
_	622		619	C
-	022		010	
	623	L = NSEG + NBAG + 2	619	L = NGRND + NBAG
	624	K = NSEG + 2	620	K = NGRND
=	625	W(L) = W(K)	621	W(L) = W(K) =
= = =		16 equal	lines	***************************************
=	642	19 SGTEST(I.4.L) = SGTEST(I.4.K)	638	19 SGTEST(I.4.L) = SGTEST(I.4.K) =
	643	NGRND = NSEG + NBAG + 2	639	NGRND = NGRND + NBAG
-	644		640	
			1400	
		211 equa	Tines	
=	856	49 PYMOUT(J) = CYMOUT(J)	852	49 PYMOUT(J) = CYMOUT(J) =
			853	50 CONTINUE
			854	99 CALL ELTIME(2.29)
			855	RETURN
		-	856	END
			010	

Table C.5. Comparison of GUCVS with GMCVS (Page 3 of 41)

Unit 0: CVSA(861,1778)

Unit 1: SUSP:CIGS(857,1781)

7 X

SUBROUTINE BELTG (ZA,ZB,ZC,BD)	SUBROUTINE BELTRT(I,II,MM,M,NT)	C THE ROUTINE CALLS SUBROUTINE BELTG TO COMPUTE = THE TANGENT POINTS =	* NS.NQ.NSD.NFLX.NHRNSS.NWINDF.NJ =	<pre>NIF,NPR1(36) COMMON/SGMNTS/ D(3,3,100),WMEG(3,100),WMEGD(3,</pre>	1001, U1(3, 100), . * U2(3, 100), SEGLP(3, 100), SEGLV(3, 100), SEGLA(3, 100), NEGLA(3, 100), NEGLA(3, 100), NEGLA(3, 100), NEGLA	COMMON/CNTSRF/ PL(17,100),BELT(20,8),TPTS(6,8) =	. COMMON/TABLES/MXNTI,MXNTB,MXTB1,MXTB2,NTI(300) =	<pre>"INTERCOUD.). * TAB(9600) COMMON/FORCES/PSF(7,100),BSF(4,20),SSF(10,20),</pre>	BAGSF(3,20), PRJNT(7,100),NPANEL(5),NPSF,NBS = F,NSSF,NBGSF =		MA = MOD(MM, 100) MB = MM/100	IF (MB.EQ.O) MB=MA Call DDT31 (D(1,1,MA),BELT(1,M),TA)	CALL D0T31(D(1,1,1),UVB,TTT) =	U1(K,MA) = U1(K,MA) - TT(K) U1(K,MB) = U1(K,MB) - TTT(K)	100 U1(K,I) = U1(K,I)+TTT(K) + TT(K) C		CALL MAT31(D(1,1,MA),TT,ZA) CALL MAT31(D(1,1,MB),TTT,ZB) CALL CDOCS(RFIT4,M) 7A TA)	CALL CROSS(BELT(4,M),ZB,TB) CALL CROSS(APA,UVA,TT) CALL CROSS(APA,UVA,TT)	стинистически по то как и п По то ки ма) = по ки ма) - таки)	U2(K,MB) = U2(K,MB) - TB(K) 40 U2(K,I) = U2(K,I)+(TT(K)+TTT(K)) =	<pre>====================================</pre>	CDMMON/TEMPVS/ YPR1(3,100),YPR2(3,100),YPR3(3, = 100),YPRPMI(3,100),	======================================
857	1038	1039	1046	1047	1048	1049	1050	1051	1053	1 1 nes 1063	1065	1066	1155	1157	1159	1162	1163 1164	1166	1106 1169 1170	1171	111nes 1370 1371	1372	11nes 1439 1440
100 001	== 160 equal	COMPUTE .	VINDF, NJ	WMEGD (3), SEGLA	TS(6,8)	ITI (300)	(10,20)	PSF, NBS	9 equal						1 equal			1 equal	~	ar equal) AI(10	3 3(3,	de equal) MI(10
SUBROUTINE BELTG (ZA, ZB, ZC, BD)	2 SUBROUTINE BELTRT(I,II,MM,M,NT)	REV 20 05/23/80 C THE ROUTINE CALLS SUBROUTINE BELTG TO THE TANGENT POINTS	NS, NQ, NSD, NFLX, NHRNSS, NV	NIF, NPRI (36) COMMON/SGMNTS/ D(3,3,100) , WMEG(3,100),	3 (3 100), U(3, 100), SEGLP(3, 100), SEGLV(3, 100) (3 100) MSVM(100), SEGLP(3, 100), SEGLV(3, 100)	CONMON/CUTSRF/ PL(17,100), BELT(20,8), TP	COMMON/TABLES/MXNTI,MXNTB,MXTB1,MXTB2,N	* * TAB(9600) * TAB(9600) COMMON/FORCES/ PSF(7,100),BSF(4,20),SSF	, BAGSF (3, 20) ,		MA = MM MB = MM	CALL DOT31 (D(1,1,MA),BELT(1,M),TA)	CALL D0T31(D(1,1,1),UVB,TTT)	TTT(K) = TTT(K)+TT(K) 30 U1(K,I) = U1(K,I)+TTT(K)	U			CALL CROSS(APA,UVA,TT)	D0 40 K=1,3	40 U2(K,I) = U2(K,I)+(TT(K)+TTT(K))	* ************************************	0).NSG(7).MSG(20,7) COMMON/TEMPVS/ YPR1(3.100).YPR2(3,100).YPI 100).YPRPMI(3.100).	<pre>common/rsave/xsg(3,20,3),DPMI(3,3,100),LPi 0),NSg(7),MSg(20,7)</pre>
861 SUBROUTINE BELTG (ZA, ZB, ZC, BD)	1042 SUBROUTINE BELTRT(I,II,MM,M,NT) 1043 C	REV 20 05/23/80 1044 C THE ROUTINE CALLS SUBROUTINE BELTG TO THE TANGENT POINTS	1051 * NHRNSS, NV	1052 NIF, NPRI (36) COMMON/SGMNTS/ D(3,3,100) , WMEG(3,100),	1053 ; 100); U(3; 100); SEGLP(3, 100); SEGLV(3, 100 (2, 100) MSVM(100); SEGLP(3, 100); SEGLV(3, 100	1054 COMMON/CNTSRF/ PL(17,100),BELT(20,8),TP	1055 COMMON/TABLES/MXNTI,MXNTB,MXTB1,MXTB2,N	1056 *TAB(9600) 1057 COMMON/FORCES/ PSF(7,100),BSF(4,20),SSF	, BAGSF (3, 20), 1058 * PRJNT (7, 100), NPANEL (5), N F, NSSF, NBGSF		1069 MA = MM 1070 MB = MM	1071 CALL DDT31 (D(1,1,MA),BELT(1,M),TA)	1159 CALL D0T31(D(1,1,1),UVB,TTT)	1161 TTT(K) = TTT(K) + TT(K) 1162 30 U1(K,I) = U1(K,I)+TTT(K)	1163 C			1166 CALL CROSS(APA,UVA,TT)	1168 D0 40 K=1,3	1169 40 U2(K,I) = U2(K,I)+(TT(K)+TTT(K))	1367 ************************************	0).NSG(7).MSG(20,7) COMMON/TEMPVS/YPR1(3,100).YPR2(3,100).YPI 100).YPRPMI(3,100).	1436 * ' UNITL, UNITR, UNITT, GRAVTY(3 1437 COMMON/RSAVE/XSG(3,20,3), DPMI(3,3,100), LPI 0), NSG(7), MSG(20,7)

Table C.5. Comparison of GUCVS with GMCVS (Page 4 of 41)

	. .			a	
ະ ເ	H [] 19 19				
ypra(11 17 18 14 14 17				
100),	11 11 14 14 13				
R2(3,	14 47 18 18				
о), YP	11 TR 18 18 18				
(3,10	8 8 8 8 4				
YPR1	1) 1) 1) 1) 0) 4				
4PVS/ 20).					
0N/TEN [(3.10					
COMMO	E N D				
100)	N H H 11 H				
	N N N H				1)
1441	1781 1781				of ²
	dual				ige ;5
PR3(3	0 0 0 0				S (Pa
1, (00	11				GMCV
2(3,1	4 11 12 14 14				vith
, үрк	11 11 12 13				CVS V
3,100	8 11 4 4 11				of GU
YPR1(:	0 4 4				son c
PVS/ .	11 11 14 19 18				ıpari
√/TEM (3,100	1 14 14 10	•			Соп
PRPMI					с. 5.
, (00					able
÷ i	14 14 14 14 14				T
1438	1778				
ו ז א נו ח	H 19 19 1				

Unit 0: CVSA(1779,3506)

= 1779	SUBROUTINE CFACTT(A,B,D)	1782	SUBROUTINE CFACTT(A,B,D)	=
	======================================	1 lines		. = =
= 1976	* E(3,800), F(5,800),GG(5,800),Y(5,80	1979	<pre>* E(3,800), F(5,800),GG(5,800),Y(5,80)</pre>) =
=	0),U(5,800),		0),U(5,800),	=
1977	* H, HPRINT, HS, TPRINT, TSTART, ICNT, IDBL	1980	* H, HPRINT, HS, TPRINT, TSTART, ICNT, IDBI	-
	,IFLAG,		, IFLAG	
1978	* DMMY(200,25)			
= 1979	COMMON/COMAIN/ VAR(800),DER(800),DT,HO,HMAX,HM	1981	COMMON/COMAIN/ VAR(800),DER(800),DT,HO,HMAX,HN	A =
=	IN,RSTIME,		IN, RSTIME,	=
	••••••••••••••••••••••••••••••••••••••	1 lines		:==
= 1984	CALL DZP (NEQ, VAR, GG, E, FT, M)	1986	CALL DZP (NEQ,VAR,GG,E,FT,M)	=
1985	IF (NPRT(26).EQ.2) CALL OUTPUT(O)	1987	IF (NPRT(4).EQ.2) CALL OUTPUT(0)	
= 1986	CALL PDAUX (VAR,DER,NEQ,K)	1988	CALL PDAUX (VAR,DER,NEQ,K)	=
1987	IF (NPRT(26).EQ.2) CALL OUTPUT(1)	1989	IF (NPRT(4).EQ.2) CALL OUTPUT(1)	
= 1988	RETURN	1990	RETURN	=
		l lines	***************************************	:==
= 2219	IF (NJ2.GT.200) WRITE (6,11) NS,NFLX,NQ,NJNT,N	2221	IF (NJ2.GT.200) WRITE (6,11) NS,NFLX,NQ,NJNT,N	1 ≈
=	J2		J2	=
2220	11 FDRMAT('ONS=',I6,',NFLX=',I6,',NQ=',I6,',NJNT=	2222	11 FORMAT('ONS=',I6,',NFLX=',I6,',NQ=',I6,',NJNT:	=
	',I6,' AND NJ2='I6/		',I6,' AND NJ2=',I6/	
= 2221	*' THE VALUE OF NJ2 EXCEEDS THE ARRAY SIZES FOR	2223	*' THE VALUE OF NJ2 EXCEEDS THE ARRAY SIZES FO	2 =
=	RHS AND IJK IN SUBR		RHS AND IJK IN SUBR	=
	======================================	1 lines		. = =
= 3506	END	3508	END	=

1

80

Table C.5. Comparison of GUCVS with GMCVS (Page 6 of 41)

Unit 0: CVSA(3507,3781)

Unit 1: SUSP:CIGS(3509,3782)

.

.

=	3507	SUBROUTINE DHHPIN(DD,BN,L,M,N)	3509	SUBROUTINE DHHPIN(DD,BN,L,M,N) =
=	3551	* E(3.800), F(5.800), GG(5.800), Y(5.80	3553	* $F(3, 800) = F(5, 800) GG(5, 800) Y(5, 80) =$
=		0),U(5.800),		0).U(5.800).
	3552	* H, HPRINT, HS, TPRINT, TSTART, ICNT, IDBL	3554	+ H. HPRINT, HS. TPRINT, TSTART, ICNT, IDBI
		, IFLAG,		. IFLAG
	3553	* DMMY(200,25)		
=	3554	COMMON/COMAIN/ VAR(800),DER(800),DT,HO,HMAX,HM	3555	COMMON/COMAIN/ VAR(800),DER(800),DT,HO,HMAX,HM =
=		IN,RSTIME,		IN,RSTIME, =
= =	*==*****		lines	
=	3588	ICNT = -2	3589	ICNT = -2 =
	3589	IF (ISTEP.EQ.O .OR. NPRT(26).EQ.2) CALL OUT	3590	IF (ISTEP.EQ.O .OR. NPRT(4).EQ.2) CALL OUTP
		PUT(O)		UT(O)
=	3590	CALL PDAUX (VAR, DER, NEQ, K)	3591	CALL PDAUX (VAR,DER,NEQ,K) =
	3591	IF (ISTEP.NE.O .AND. NPRT(26).EQ.2) CALL OUT	3592	IF (ISTEP.NE.O .AND. NPRT(4).EQ.2) CALL OUTP
		PUT(1)		UT(1)
=	3592	DO 14 I=1,NEQ	3593	DO 14 I=1,NEQ =
= =		37 equal	lines	
=	3630	IF (L.EQ.1) M = O	3631	IF (L.EQ.1) M = O =
	3631	IF (NPRI(26).NE.2) CALL DUIPUI(0)	3632	IF (NPRT(4).NE.2) CALL DUTPUT(0)
	3632	CALL CMPUTE (K,M, H)	3633	CALL CMPUTE (K,M, H) =
_	2670		lines	
-	30/3	30 IF (H.LE.HMINTERS(0)) GU [U 6] IE (NODT(36) EO 3) CALL OUTPUT(4)	3680	15 (H.LE.HMIN+EPS(8)) GO 10 61 = 15 (NDDT(4) 50 0) 0111 (NDDT(4) 50 0) 01111 (NDT(4) 50 0) 011111 (NDT(4) 50 0) 011111 (NDT(4) 50 0) 011111 (NDT(4) 50 0) 0111111 (NDT(4) 50 0) 0111111111111111111111111111111111
-	3680	IF (NFRI(20).EQ.2) CALL DUIPUI(I)	3681	IF (NPRI(4), EQ.2) CALL UDIPUT(1)
==		37 IIME - IJIANI 	11002	99 ITWC - IJIAKI =
=	3781	FND	2792	
	0.01		0/02	

٠

٠

Table C.5. Comparison of GUCVS with GMCVS (Page 7 of 41)

建筑和自己的复数形式加速度计划的有限的 计分子 化合金化合金化合金化合金化合金化合金化合金化合金化合金化合金化合金化合金 Ħ (i ŧ. 8 8 я IWIND(100), MWSEG(5,100), NFVSEG(6), COMMON/TEMPVS/JTITLE(5,301),NF(5),MS(3),KTITLE 42 IF (MM .GT. NSEG .AND. MM .LT. NGRND) GD TO 42 IF (NELSEG(MM) .EQ. O) NELSEG(MM) = M IF (NELSEG(MM) .EQ. M) GO TO 429 WRITE (6,42) FORMAT(' CONTACT INPUT ERROR: PROGRAM TERMINAT COMMON /PLOTRS/ ELYPR(3,100), PLPTS(3,3,100), (NN .GT. 100) GD TD 426 (NN .GT. NSEG .AND. NN .LT. NGRND) GD TD NELSEG(100), LDNPCS 1 , IELPS, IELPB, IELP, NNELP, NPLSEG(100) REAL*4 PLPTS 41 FORMAT('0',I7,'-',I3,I11,'-',I3,I8,4121) NN = (NELSEG(NN) .EQ. 0) NELSEG(NN) = NJ (NELSEG(NN) .NE. NJ) GO TO 426 (NPLSEG(NJ) . EQ. O) NPLSEG(NJ) (NPLSEG(NJ) .NE. NN) GO TO 426 (1 .GT. 3) GO TO 429 (1 .NE. 3) GO TO 424 IF (NJ.NE.J) GD TD 426 IF (NJ.GT. 100) GD TD 426 IF (I.NE. 1) GD TD 422 (NN .GT. 100) GD TD 426 (NJ .GT. NPL) GD TD 426 (MM .GT. 100) GD TD 426 IABS(MS(2)) SUBROUTINE FINPUT = IABS(MS(1)) = IABS(MS(1)) = IABS(MS(3)) D0 43 JJ = 1,31Unit 1: SUSP:CIGS(5257,6304) STOP 14 NLT = 1 " 2 END 1 I Z ž Ŀ Ξ шш Ľ z **L L** NFVNT(5) 42 ED. () 429 422 426 (18) 424 ø G 29 equal lines G(6), 5287 5288 5289 5290 5291 77 equal lines 5383 5384 5385 5385 5386 5387 5388 5370 5371 5372 5375 5376 5377 5377 5379 5380 5381 5381 908 equal lines 5257 5369 5373 5374 5389 5390 5391 5392 5393 5394 5395 6304 COMMON/TEMPVS/JTITLE(5,301),NF(5),MS(3),KTITLE IWIND(100), MWSEG(5, 100), NFVSEG(6). 42 FORMAT(' CONTACT INPUT ERROR. PROGRAM TERMINAT ED.') 41 FORMAT('O', I7,'-', I3, I11,'-', I3, I8,4I21) IF (NJ.NE.J) WRITE (6,42) ST0P 14 SUBROUTINE FINPUT D0 43 JJ = 1,31IF (NJ.NE.J) NLT = 1Unit 0: CVSA(5235,62) END NFVNT(5) (16) 5344 5345 5266 5346 5235 5265 5347 5348 5349 6258 н # ... Ħ . H

Comparison of GUCVS with GMCVS (Page 8 of 41) Table C.5.

H

Generative HELING (11NES, LPP) BBS Calculative HELING (11NES, LPP) BBS Calculative HELING (11NE, LPP) BBS Calculative HELING (11N, LPA) BBS Calculative HELING (11N, LPA) BBS Calculative HELING (11N, LPA) BBS Calculative HELING (11NE, LPA) BBS Calculative HELING (11NE), LEPS BBS DITUL DIAN DIAN <thdian< th=""> DIAN DIAN <thd< th=""><th>nit 0: (</th><th>CVSA(6420,6824)</th><th></th><th>1771) (101) (101) (101) (101) (101) (101) (101)</th></thd<></thdian<>	nit 0: (CVSA(6420,6824)		1771) (101) (101) (101) (101) (101) (101) (101)
Construction Construction<	6420	SUBROUTINE HEDING (LINES, LPP)	835 835	SUBROUTINE HEDING (KTG, LIN, LPAG)
6422 "Weitign" affit af the top. Mark 397 Common volume Common v	6421	C BEV 20 05/18/80	000	REV 20 05/18/80
accords accords <t< td=""><td>6422</td><td>IMPLICIT REAL*8 (A-H, D-Z)</td><td>837</td><td>COMMON /HOLDIT/ BAGTTL(5,6), BDYTTL(5), BLTTTL</td></t<>	6422	IMPLICIT REAL*8 (A-H, D-Z)	837	COMMON /HOLDIT/ BAGTTL(5,6), BDYTTL(5), BLTTTL
G22 Commonly, NS, O, NSD, MK, DX, MHRNSS, MMILTR, MMIT, RASTOP, MNUTM, MST, MARTZ, MNUT, MNUT, MARTZ, MARTZ, MNUT, MNUT, MARTZ, MARTZ, MNUT, MNUL, MNUT, MENVAR, LFENKT, MARZG, G1, G1, MARZG, G1, G1, MULL, MULL, LENYT, LSDMT, LSD	6423	COMMON/CONTRL/ TIME,NSEG,NJNT,NPL,NBLT,NBAG,NV	838	1DATE(3), DT, JOINT(100), INCSML, INCBIG, PLTTL
6423	6424	EH, NGRND, * NJNTF, NJNTF, NHRNSS, NWINDF, NJNTF	. 839	25EG(100), VPSTTL(20), LLFRST, KASTOP, NRNTIM,
6426 100 MBALG (3 - 10 - 6) MBL (1 - 5, 100) MBL (1	6425	.NPRT(36) COMMON/JBARTZ/ MNPL(100),MNBLT(8),MNSEG(100	840	3TIMLAS, MULTPL, NPL, NPLT, NRNVAR, LFENKT,
6427 100. 4644(3, 10, 6), MTPL(5, 100), MTEL(5, 6), MTEG(5, 6, 6) 642 5LBSEG, KKNTR.(231), NSD. NSG, ISPSY, NNT 6428 DYTTL(60, D), MTLL(61, 100), MTLL(16, 100), MATLY 643 (NST FFS, NVEH, NORD, MNET, 9, 100), MTL 6430 DYTTL(61, 0), STTL.(201), STTL(201), STTL(6426),MNBAG(6), MPL(3,5,100),MBLT(3,5,8),MSEG(3,5,	841	4NBAG, NBLT, LBBAG, LBBELT, LBJNT, LBPL,
6428 100 00 Common / TTLLES / DATE(13), LONKARF 643 644	6427	100),MBAG(3,10,6), * NTPL(5,100),NTBLT(5,8),NTSEG(5,	842	5LBSEG, KKNTRL(241), NSD, NSEG, ISPSWT,
6429 DYTL(5), DYTL(5), 643 BLTTL(6, B), PLTL(5, 100), BAGTL(5, 643 COMMON PERSET/ ISWB(40), KASLIN(3, 16), LDMA (11), SEA, DMT ComMON PERSET/ ISWB(40), KASLIN(3, 12), DPMT(3, 3, 10), 9, 0, MAXMA 6431 0;SE(100), 10;SE(3,41), COS, SE(100), US(100), 10;SE(3,41), COS, SE(10, 20), SEF(4, 20), SEF(10, 20) 843 (13), SEA, MAT 10, SEE, MAT 11, SEE, MAT 10, SEE, MAT 11, MAT 10, SEE, MAT 11, MAT 10, SEE, MA	6428	100) CDMMDN/TITLES/ DATE(3),COMENT(40),VPSTTL(20),B	. 843	GNSTEPS, NVEH, NGRND, NHRNSS, NJNT
6430 61,5EG(100), 51,5EG(100), 6431 01,1EG(1,1,1,0,1,11,1,0,111,1,0,111,1,0,111,1,0,111,0,0,111,0,0,111,0,0,111,0,0,0,1,0	6429	DYTTL(5), BLTTTL(5,8),PLTTL(5,100),BAGTTL(5,	844	COMMON /PRESET/ ISYMB(49), KASLIN(3,16), LDNAR
GT1.5EG.JUNIT. GGILALT. GG.JUNIT. B47 PMI (100). FEG.J.3, 12). SEGL(J, 12). SEGL(J, 12). WEG(J, 12). G433 COMMON/FIDRCEX, PS (7, 100). B5 (4, 20). S5 (10, 20) B44 X. JIXASE (12). NKASE. KASKOL. KASPAG. KASPAG. KASFOL G434 S57. NGGST COMMON/FIDRCEX, PS (7, 100). NPANEL(S), NPSF. NBSF. N B43 X. JIXASE (12). NKASE. KASKOL. KASPAG. KASFOL 6435 S57. NGGST ONNITI., UNITI., GRAVT(3) B50 UN KATKAL (12). NKASE. KASKOL. KASPAG. KASFOL 6436 UNITI., UNITI., GRAVT(3) B51 UN KATKAL (12). KASKUL (15, 241). MAYPTS 6437 O.NGMON/DAMPER/ APSDM(3, 20). APSDM(2). ANSNM (12). ANSNM (20). ANS	6430 6431	<pre>6), SEG(100), JOINT(100), CGS(100), JS(100) * REAL DATE, COMENT, VPSTTL, BDYTTL, BLTTTL, PLTTL, BA</pre>	845 846	1(3), LPF, NWOO 1, MAXKAP COMMON /FETCHT/ D(3,3,12), DPMI(3,3,100), G, L
6433 common/Forces/ psf(7,100).hsf(4,20).ssf(0,20) 848 72 zumeGa(3,12). UNITL, UNITL, UNITL, RADIAN, TIMA 6434 SsF NBSE, N 849 X. 31XASE(12). NKASE, KASFOL. KASPAG, KASFUL 6435 ssr NBGSF 0.0000/CONSNTS/ P1, RADIANG, THIRD.EPS(24). 850 0.00000 6435 • UNITL, UNITM, UNITT, GRAVTY(3) 851 0.00000 // ICON/ NRNBAS(246). LFIRST(241). KASN 6437 0.00000/CONSNTS/ P1, RADIANG, THIRD.EPS(24). 850 0.00000/ // ICON/ NRNBAS(246). LFIRST(241). MAXPTS 6437 0.00000/CONSNTS/ P1, RADIANG, TIMA, UNITT, GRAVI(3) 851 0.000000 // ICON/ NRNBAS(246). LFIRST(5,241). MAXPTS 6439 0.00000/CONSONTANCE/SO B800(1000). 853 200000 // ICON/ ICON/ NRNBAS(246). LFIRST(5,241). MAXPTS 6430 0.00000/MORES/ APSENI(3, 20). MERCIA 853 200000 // ICON/	6432	GTTL,SEG,JDINT LOGICAL*1 CGS,JS	847	PMI(100), PI, 15EGLA(3,12), SEGLP(3,12), SEGLV(3,12), WMEG(3,
6434 FBASE(13, 20), FBANT(7, 100), NPANEL(5), NPSF, MBSF, NBSF, NBSF, NBSSF, SEGUT, VASNUS, P1, RADIAN, G, THIRD, EPS(24), B50 AXX00, TASE(12), NASE(24), LETRST(241), KASN 6435 • UNITL, UNITH, UNITH, GRAVTV(3) 850 COMMON/FISAVES/VES/VES/VES/VES/VES/VES/VES/VES/VES/	6433	CDMMON/FDRCES/ PSF(7,100),BSF(4,20),SSF(10,20)	848	12). 2WMEGD(3,12), UNITL, UNITT, UNITM, RADIAN, TIMM
SSF.NBGSF SSF.NBGSF COMMON/VINIT/ GRATY(31) B50 COMMON /HLDCON NINBAS(246). LFIRST(241), MAXPTS 6436 • UNITI.UUTT.GRATY(3) B51 UM. KATKOLIS. 241), MAXPTS 6437 • UNITI.UUTT.GRATY(3) B51 UM. KATKOLIS. 241), MAXPTS 6437 • UNITI.UUTT.GRATY(3) B51 UM. KATKOLIS. 241), MAXPTS 6437 • UNIT.UUTT.GRATY(3) B51 ZURU. LSTEP. LASREC(3) C241), MAXPTS 6438 • UNIX.OD, MSU(20), APSU(3, 20), APSU(3, 20), ASU(5, 2 B53 ZURU. VIOUT/ LDWWR, KUDPLN. IDTALK 6439 • MSU(20), MSU(20), MSU(20), MPELQO, MTHRUSO, APSU(3, 20), ASU(10) B54 ZURU. VIOUT/ LDWWR, KUDPLN. IDTALK 6440 • MORE: SUBRUTINES PARE THIS C B54 S(18), ITANG TIME (EGO), ZTH(6, 0), JUDT 6441 • MOTE: SUBRUTINES POSTPR & HEDIAG SHARE THIS C B54 COMMON /ZTHWP. TIME 6442 • NOTE: SUBRUTINES POSTPR & HEDIAG SHARE THIS C B5 S(18), ITANG TIME 6443 • NOTE: SUBRUTINES POSTPR & HEDIAG SHARE THIS C B5 S(18), ITANG TIME 6444 BLPPHS) • NOTE: SUBRUTINES POSTPR & BOUT FIRS INSTERIOR SHARE THIS C S(18), ITANG TIME S(18), ITANG TIME </td <td>6434</td> <td>,BAGSF(3,20), PRJNT(7,100),NPANEL(5),NPSF,NBSF,N</td> <td>849</td> <td>AX, 3IKASE(12), NKASE, KASKOL, KASPAG, KASFUL</td>	6434	,BAGSF(3,20), PRJNT(7,100),NPANEL(5),NPSF,NBSF,N	849	AX, 3IKASE(12), NKASE, KASKOL, KASPAG, KASFUL
6436 * UNITL, UNITR, UNITR, GRAVTV(3) B51 UM, KARKAS(3, 12), KASKTL(5, 241), MAXPTS 6437 COMMON/SSAVE/XSG(3, 20, 3), DPMI(3, 3, 100), LPMI(10) B52 ZNRN, LSTEP, LASREG(3), KASKTL(5, 241), MAXPTS 6438 COMMON/SSAVE/XSG(20, 7) MSG(7),	6435	SSF,NBGSF COMMON/CNSNTS/ PI,RADIAN,G,THIRD,EPS(24),	850	COMMON /HLDCON/ NRNBAS(246), LFIRST(241), KASN
6437 COMMON/RSAVE/YSG(3,20,3).DPMI(3,3,100).LPMI(10 B52 2NRN. LSFEP. LASRE(3) 6438 0).NSDM(20).MSDM(20).AFSDM(3,20).AFSDM(3,20).ASD(5,2 B53 COMMON / IDGNTL/ LDNWRK. KUDPLN. IDTALK 6438 0).MSDM(20).MSDM(20).MSDM(20).BEDDT(100). B53 COMMON / IDGNTL/ LDNWRK. KUDPLN. IDTALK 6439 0).MSDM(20).MSDM(20).HTIME(2).IBAR(5,100).NL(B53 COMMON / FETCHU/ POUANT(16). KONTLP(6,3). JDTPT 6440 * NEDRS/2.100).NTIME(20).HTIME(2).IBAR(5,100).NL(B55 \$(18).IPN(3).IFFCHU/ POUANT(16). KONTLP(6,3). JDTPT 6441 * NDTEX COMMON / ZTTHWG ZOD.NTIME(5). KONTLP(6,3). JDTPT 6442 * NDTEX S(16).IPRN(3). TIME(6000). ZTTH(6000). ZTTH(7000). ZTTH(7000). ZTTH(70000). ZTTH(7000). ZTTH(70000). ZTTH(70000	6436	<pre>* UNITL,UNITM,UNITT,GRAVTY(3)</pre>	851	UM, KAINULUIS), KATKAS(3,12), KASKTL(5,241), MAXPTS
0).NGG(7).MSG(20).MSG(20).APSDN(3.20).ASD(5.2 B53 COMMON / IOCNTL/ LDNWRK, KWDPLN, IOTALK 6439 0).MSON(20).MSDN(20) BRR (15, 100).BBD0T(100); B54 S(18). TPIN(3); KONTLP(6.3), JDTPT 6430 0).MSON(20).MSDN(20), MSDN(20), MSD (15, 100).BBD0T(100); B54 S(18). TPIN(3); KONTLP(6.3), JDTPT 6431 * NUNCE(20).MTHRNS(20).NFTPLY(20).NTHRNS(20).N B55 S(18). TPIN(3); KONTLP(6.3), JDTPT 6441 * NDTE: SUBROUTINES POSTPR & HEDING SHARE THIS C B55 COMMON / TTHNG/ TIME(6000; 11). LIN 6442 2.100); NDTE: SUBROUTINES POSTPR & HEDING SHARE THIS C B55 DIMENSION CONTLP(6.3), HEAD(6), HEAD(2.3) 6443 2.100; NDTE EGT(6000) NUL HEAD(1,1)). (HHEAD(6); 6443 C DMMON / TEMPUS/ PEDATA USC(45). ZTTH(4) NUL 6444 PLDATA HEAD / PLDATA USC(45). NOPL(100) B60 PTLATA HEAD / PLDATA 6443 COMMON / TEMPUS/ FEDICOS NOPL(100) HEAD / PLDATA HEAD / PLDATA 6444 TH COMMON / TEMPUS/ FEDIC	6437	CDMMON/RSAVE/XSG(3,20,3),DPMI(3,3,100),LPMI(10	852	. 2NRN, LSTEP, LASREC(3)
6439 0, MSUNC, NSUNCZO, MSUNCZO, MSUNCYTANGZO, MSUNCYTANGZO, MSUNCYTANGZO, MSUNCYTANGZO, MSUNCYTANGZO, MSUNCYTANGZO, MATTANGZO, MATT	6438	0),NSG(7),MSG(20,7) COMMON/DAMPER/ APSDM(3,20),APSDN(3,20),ASD(5,2	853	COMMON /IOCNTL/ LDNWRK, KWDPLN, IOTALK
6440 2.100). xLONG(20).HTIME(2).IBAR(5.100).NL(855 714.455.NECCPT. MTIMPT 6441 2.100). NPTSPB(20).NPTPLY(20).NTHRNS(20).N 856 COMMON /ZTTHNG/ TIME(6000).ZTTH(6000).JLING/ 6442 C NOTE: SUBROUTINES POSTPR & HEDING SHARE THIS C 856 COMMON /ZTTHNG/ TIME(6000).ZTTH(6000).JLING/ 6443 C NON/TEMPUS/. B58 10.116000 10.110.110.110.110.110.110.110.110.110.	6439	0), MSDM(20), MSDN(20) common/HRNESS/ BAR(15,100), BB(100), BBD0T(100),	854	COMMON /FETCHU/ PQUANT(16), KONTLP(6,3), JDTPT s(18) tpin(3)
6441 2.100), NPTSPB(20), NPTPLY(20), NTHRNS(20), N B56 COMMON / ZTTHNG/ TIME (6000), ZTTH (6000), ZTTH (6000), LIN 6442 C NOTE: SUBROUTINES POSTPR & HEDING SHARE THIS C B57 DIMENSION CONTLP(6,3), HHEAD(6), HEAD(2,3) 6443 C NOTE: SUBROUTINES POSTPR & HEDING SHARE THIS C B58 EqUIVALENCE (CONTLP(1,1), KONTLP(1,1)), (HHEAD(6), HEAD(2,3) 6443 C NON/TEMPVS/ EAD PHED, BLANK PLDATA USEC (45) NI 6445 C NON/TEMPVS/TDATA(14,300), HEAD(20), NOPL(100) B60 DIMENSION PHED(5), HEDU(8,2), HEADU(8,2), WRTO 6445 TTH COMMON/TEMPVS/TDATA(14,300), HEAD(20), NOPL(100) B60 DATA HEDU/NIPNY, 4H FL, 4HEXUR, 4HE A, 4HZI 6445 MOPL(100), PLDATA(97,20), USEC(45), ZTTH(14 B61 DATA HEDU/NIPNY, 4H FL, 4HEXUR, 4HE A, 4HZI 6447 COMMON/TEMPVS/TDATA(97,20), USEC(45), ZTTH(14 B61 DATA HEDU/NIPNY, 4H FL, 4HEXUR, 4HE A, 4HZI 6447 MOPL(100), PLOATA(97,20), USEC(45), ZTTH(14 B61 DATA HEDU/NIPNY, 7H HEADU, 4HZI 6447 MOPL(100), PLOATA(97,20), USEC(45), ZTTH(14 B61 DATA HEDU/NIPNY, 7H HEADU, 7HZ, 7HIN 6448 MOPL(100), PLOATA A, 1HI	6440	PLUSS(2, 100), XLONG(20), HTIME(2), IBAR(5, 100), NL(855	IKKAS, MSECPT, MTIMPT
6442CB51DIMENSION CONTLP(6,3), HHEAD(6), HEAD(2,3)6443CSEE COMMENT IN POSTPR & HEDING SHARE THIS CB53DIMENSION CONTLP(1,1), KONTLP(1,1)), (HHEAD(6), HEAD(2,3)6443CSEE COMMENT IN POSTPR ABOUT FIRST DIMENSION OFB581), HEAD(1,1))HEAD(2,3)6444PLDATAHEADPIC2.2), WRT(2,3)PHED(5), HEDU(8,2), HEADUU(8,2)WRTO6445TTHCOMMON/TEMPVS/TDATA(14,300), HEAD(20), NOPL(100)B60DIMENSION PHED(5), HEDU(8,2), HEADUU(8,2)WRTO6446MOPL(100),PLDATA(97,20)USEC(45)ZTTH(14B6114HTM14HTORS, 4HION4HE'PREC', 4HN.644645,2)DGICALLOGICALLOGICALLOGICALLOLDHEADU(4,2)B63DATAHION4HN.AHIN/64480RSIONPHEDU(8), HEDU(4,2)B417(10)B41B61DATAAHION4HN.AHIN/64480RSIONPHEDU(8), HEDU(4,2)B417(10)B41B63DATAAHION4HN./64400RSIONPHEDU(8), PHECCN, HHIB63DATAAHIONAHIN////////64500RSIONB41B65DATAB410AHIONAHION////////////////////////////	6441	2,100). * 	856	CDMMDN /ZTTHNG/ TIME(6000), ZTTH(6000,11), LIN
6443C MMON/TEMPVS/ C MMON/TEMPVS/EQUIVALENCE (CONTLP(1,1), KONTLP(1,1)), (HHEAD(1)), EAD(1,1))6443PLDATAPHED, BLANK, PLDATA, USEC, ZB591), HEAD(1,1))6444TTHDIMENSION PHED(5), HEDU(8,2), HEADU(8,2), HEADU(8,2), WRT06445TTHCOMMON/TEMPVS/TDATA(14,300), HEAD(20), NOPL(100)B60DIMENSION PHED(5), HEDU(8,2), HEADU(8,2), HEADU(8,2), HEADU(18,2), WRT06445MOPL(100),PLDATA(97,20), USEC(45), ZTTH(14B61MU, 4HTH4H FL, 4HEXUR, 4HE6446, 95,2)MOPL(100),PLDATA(97,20), USEC(45), ZTTH(14B6114HTOR'S, 4HION, 4H FL, 4HEXUR, 4HE6447, 95,2)DOTA HEDJ/'IPIN', 4H, 14HTOR'S, 4HION, 4H FL, 4HEXUR, 4HN.6448, 45,2), 001DATA HEDJ/'IPIN', 4H, PREC', 4H.N.6449DOTA HEDJ/BHIPIN FL, BHEXUREA, BALB6224HUTAT, 4HION, 4H, PREC', 4H.N.6449DOTA HEDJ/BHIPIN FL, BHEXUREA, BALB63DATA HEDJ/'SPRF', 'PNL', 'P	6442	BLTPH(5) C NOTE: SUBROUTINES POSTPR & HEDING SHARE THIS C	857	DIMENSION CONTLP(6,3), HHEAD(6), HEAD(2,3)
6444 PLDATA PLDATA USEC Z BINENSION PHED(5), HEDU(8,2), HEADU(8,2), HEADU(8,2), HEADU(8,2) WRT0 6445 TTH REAL HEAD PIC JINENSION PHED(5), HEDU(8,2), HEADU(8,2), HEADU(8,2) WRT0 6445 TTH COMMON/TEMPVS/TDATA(14,300), HEAD(20), NOPL(100) B60 DATA HEDU/'IPIN', 4H FL, 4HEXUR, 4HE A, 4HZI 6446 , MOPL(100), PLDATA(97,20), USEC(45), ZTTH(14 B61 14HTORS, 4HION, 4HIEUL, 4HER, 'PREC', 4H. N. 6447 , 45,2) DGICAL <lold, lnew<="" td=""> UNENSION PHED(5), HEDUJ(4,2), HEADUJ(4,2) B62 24HUTAT, 4HION, 4HIEUL, 4HER, 'PREC', 4H. N. 6448 DATA HEDU/BHIPIN FL, BHEXURE A, BHZ B63 DATA BLANK/' ', PAGEB/O.' 6449 ORSION BAIEULER BHPREC. N, BHUTATION, 8H S65 DATA WRTOPT/4H"W.R, 4H.T.', 4HI.N.' 'AHTA'</lold,>	6443	OMMON/TEMPVS/. CSEE COMMENT IN POSTPR ABOUT FIRST DIMENSION OF	858	EQUIVALENCE (CONTLP(1,1),KONTLP(1,1)), (HHEAD(
6445 TTH COMMON/TEMPUS/TDATA(14,300),HEAD(20),NOPL(100) 860 TTA: #10, #10, #10, #10, #10, #10, #10, #10,	6444	PLDATA. REAL HEAD , PHED , BLANK , PLDATA , USEC , Z	859	- DIMENSION PHED(5),HEDJ(8,2),HEADJJ(8,2) , WRTO
6446 , MUPL (100), PLDATA(97,20), USEC(45), ZTTH(14 861 14HTORS, 4HIDN, 4HIEUL, 4HER, 'PREC', 4H. N. 6447 , 45,2) LOGICAL LOLD, LNEW 862 24HUTAT, 4HIDN, 4H SP, 4HIN / 6447 0.45,2) DIMENSION PHED(5), HEDU(4,2), HEADU(4,2) 862 24HUTAT, 4HIDN, 4H SP, 4HIN / 6449 0ATA DIMENSION PHED(5), HEDU(4,2), HEADU(4,2) 863 DATA 0ATA 6449 DATA HEDU/8HIPIN FL, 8HEXURE A, 8HZIMUTH 8HT 863 DATA PHED/*SPRF', PNL1', PNL2', PNL3', PNL4' / 6450 * BHIEULER 8HPREC. N, 8HT 865 DATA AHTOPT/4H"W.R, 4H.T.", 4H(W.R, 4H.T.)/	6445	TTH COMMON/TEMPVS/TDATA(14,300),HEAD(20),NOPL(100)	860	PILZ,27, WRITZ,37 DATA HEDU/'IPIN', 4H FL, 4HEXUR, 4HE A, 4HZI Mu AHTU
6447.45.2) DIMENSION PHED(5),HEDJ(4,2),HEADJJ(4,2)862 86324HUTAT, 4HION 4HION4HSP, 4HIN/6448DIMENSION PHED(5),HEDJ(4,2),HEADJJ(4,2)863 863DATA BLANK/''/', PAGEB/O.'6449DATA HEDJ/8HIPINFL,8HEXUREA,8HZIMUTH , 8HT,8HT864DATA PHED/'SPRF', PNL1', PNL2', PNL2', PNL2', PNL2', PNL3', PNL4'/6450865DATA WRTOPT/4H"W.R, 4H.T.", 4H(W.R, 4H.T.)/	6446	,MOPL(100), PLDATA(97,20), USEC(45), ZTTH(14	861	14HTORS, 4HION, 4HIEUL, 4HER, 'PREC', 4H. N.
ORSION . BHIEULER , BHPREC. N, BHUTATION , BH SP 865 DATA WRTOPT/4H"W.R, 4H.T.", 4H(W.R, 4H.T.)/	6447 6448 6449	.43.2) LOGICAL LOLD , LNEW DIMENSION PHED(5),HEDJ(4,2),HEADJJ(4,2) DATA HEDJ/BHIPIN FL,BHEXURE A,BHZIMUTH ,BHT	862 863 864	24HUTAT, 4HION 4H SP, 4HIN / Data Blank/' '/ Pageb/o./ Data Phed/'Sprf','Pnl1','Pnl2','Pnl3','Pnl4'/
	6450	ORSION , BHIEULER , BHPREC. N, BHUTATION , BH SP	865	DATA WRTOPT/4H"W.R, 4H.T.", 4H(W.R, 4H.T.)/

•

.

100

.

Table C.5. Comparison of GUCVS with GMCVS (Page 9 of 41)

C CURRENT CATEGORY NUMBER KAT = KTG IF (KAT :GT :LE. 0) GO TO 550 IF (KAT :GT :14) GO TO 550 IF (KAT :GT :14) GO TO 550 C INITIZLIZE TIME POINT ON PAGE LINE COUNT LPAG = 0 C FIRST TIME POINT FOR NEW PAGE LINES = LIN NPAGE = PAGEB + FLOAT(NPAG) / 100. NT = 6 IF (LINES :EQ. 1) PAGEB = PAGEB + 1 PAGE = PAGEB + FLOAT(NPAG) / 100. NT = 6 IF (KAT :GT 7) GO TO 210 WRITE (NT 10) DATE PAGE COMENT VOSTTL BOYTTU	1 10 FORMAT('1', 18X,'DATE:', 3X,3A4,68X,'PAGE:',F6.2	 18X, 'RUN DESCRIPTION: ', 3X, 20A4/27X, 20A4/ 23X, 'VEHICLE DECELERATION: ', 3X, 20A4/ 23X, 'VEHICLE DECELERATION: ', 3X, 20A4/ 311X, 'CRASH VICTIM: ', 3X, 5A4) 15 (K.EQ.1) WRITE (NT, 20) 20 FORMAT('0', 27X, 	<pre>7 1'SEGMENT LINEAR ACCELERATIONS (G'`S)') 8 1'SEGMENT LINEAR ACCELERATIONS (G'`S)') 9 0 FORMAT('O'. 27X. 9 1'SEGMENT LINEAR VELOCITIES (', A4, '/', A4, ')') 1 1'SEGMENT LINEAR VELOCITIES (', A4, '/', A4, ')') 1 1'SEGMENT LINEAR VELOCITIES (', A4, '/', A4, ')') 1 1'SEGMENT LINEAR DISPLACEMENTS (', A4, ')') 1 1'SEGMENT ANGULAR ACCELERATIONS (REV/', A4, '**2) 1 1'SEGMENT ANGULAR ACCELERATIONS (REV/', A4, '**2)</pre>	<pre>T IF (K.EQ.5) WRITE (NT.GO) UNITT 60 FORMAT('0'/'0', 27X, 1'SEGMENT ANGULAR VELOCITIES (REV/',A4,')') 1 F (K.EQ.6) WRITE (NT.70) 1 F (K.EQ.6) WRITE (NT.70) 70 FORMAT('0'/'0', 27X, 1 'SEGMENT ANGULAR DISPLACEMENTS (DEG)') 1 F (K.EQ.7) WRITE (NT.80) 80 FORMAT('0', 27X, JOINT PARAMETERS') 0 110 L = 1, KKAS 7 HEAD(1,L) = SEG(KK) 9 HEAD(1,L) = SEG(KK) 9 HEAD(1,L) = SEG(KK) 9 HEAD(1,L) = SEG(U) 1 F (K.GT.3) G0 T0 90 1 L = 1 1 F (KONTLP(4,L) .LT. 0) LL = 2</pre>	3 WRT(1,L) = WRTOPT(1,LL) 4 WRT(2,L) = WRTOPT(2,LL) 5 GO TO 110 6 90 IF (K.LT.7) GO TO 110 7 KK = IABS(KK) 8 HEAD(1,L) = JOINT(KK) 9 K2 = 1 8 K2 = 1 9
8668 867 867 877 877 877 877 877 877 877	881	882 883 884 885 885 885	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	898 898 898 890 900 900 900 900 900 900	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DATA BLANK/4H / DATA PHED/4HSPRF,4HPNL1,4HPNL2,4HPNL3,4HPNL4/ NPRT4 = NPRT(4) + 4 IF (NPRT4.LE.O.OR. NPRT4.GT.8) STOP 40 GO TO (11,11,82,12,12,11,11,12), NPRT4 1 LOLD = FALSE LNEW = TRUE. GO TO 13 12 LOLD = TRUE. 13 MT = 20 NLINES = MOD(LINES-1,LPP)+1 XPAGE = 0.01*FLOAT((LINES + LPP-1)/LPP) C NOTE: MT WILL BE THE PAGE OR OUTPUT UNIT COUNT	ER C NT WILL BE THE ACTUAL OUTPUT UNIT NUMBER	C IT WILL BE THE INDEX TO THE DATA ARRAY C NLINES WILL BE THE NUMBER OF LINES TO BE PRINTED C C EVERY LPP LINES PRINT HEADINGS FOR 7 TYPES OF	DUTPUT ABOVE. C DO 20 K=1,7 IF (NSG(K).LE.O) GO TO 20 KSG VSG(K) J3 IF (0.7) J3 = 2 DO 19 J1=1,KSG,J3 MT = MT + 1 NT = MT IF (LNEW) NT = 6	IT = MT - 20 PAGE = FLOAT(MT) + XPAGE WRITE (NT,21) DATE, PAGE, COMENT, VPSTTL, BDYTTL IF (K.EQ.1) WRITE (NT,22) IF (K.EQ.2) WRITE (NT,22) IF (K.EQ.3) WRITE (NT,23) UNITL IF (K.EQ.3) WRITE (NT,25) UNITT IF (K.EQ.4) WRITE (NT,25) UNITT IF (K.EQ.5) WRITE (NT,25) UNITT IF (K.EQ.6) WRITE (NT,22) UNITT IF (K.EQ.7) WRITE (NT,22) UNITT IF (K.EQ.6) WRITE (NT,22) UNITT IF (K.EQ.6) WRITE (NT,22) UNITT IF (K.EQ.6) WRITE (NT,22) UNITT IF (K.EQ.6) WRITE (NT,22) UNITT IF (K.EQ.7) WRITE (NT,22) UNITT IF (K.EQ.6) WRITE (NT,22) UNITT IF (K.EQ.7) WRITE (NT,22) UNITT I	KK = IABS(KK) HEAD(J) = JOINT(KK) JJ2 = J-J1+1 K2 = 1
6451 6451 6453 6453 6455 6455 6455 6456 6461 6461 6463	6466	6467 6468 6469 6470 6471	6472 6473 6474 6475 6475 6475 6478 6478 6479 6479 6480 6480	6482 6483 6484 6484 6486 6488 6489 64901 64903 64903 64903 64903 64903 64903 64903	6497 6498 6499 6500

•

Table C.5. Comparison of GUCVS with GMCVS (Page 10 of 41)

H

ıt

H

IJ

6501	IF (MSG(J,K).LT.O) K2 = 2	920	IF
6502	D0 35 K1=1,4	921	DO
6503 6504	35 HEADJJ(K1,JJ2) = HEDJ(K1,K2) 14 CONTINUE	922 073	100 HEA
6505	IF (K.LE.3) WRITE (NT,29) (BLANK, (XSG(I,J,K),I	924	
6506	-1,3),0-01,02) IF (K.LE.G) WRITE (NT,30) (BLANK,MSG(J.K),HEAD	925	, L=1,3) =D,1
6507	IF (K.LE.5) WRITE (NT,31) (BLANK, J=J1, J2)	926	120 FDR
6508	IF (K.EQ.6) WRITE (NT,32) (BLANK,J=J1,J2)	927	F0.2, 7) U IF
6509	IF (K.LT.7) GO TO 15	928	. HEAU(1,
6510	WRITE (NT,33) (BLANK,MSG(J,K),HEAD(J),J=J1,J2)	929	U =1, KKA 130 FDR
6511 6512	WRITE (NT,36) (BLANK,UNITL,UNITM,J=J1,J2) WRITE (NT,37) (BLANK,(HEADJJ(K1,J),K1=1,4),J=1	930 931	A4, ')' 1 I IF
6513	, JU2) 15 WRITE (NT, 38)	932	140 FOR
6514 6515	IF (NOT LNEW) GO TO 19 IF (K.EQ.7) GO TO 17	933 934	150 FOR
6516 6517	JJ = 4*(J2-J1+1) DO 16 I=1,NLINES	935 936	X, KULL', IF WRI
6518	16 WRITE (NT,39) USEC(I),(ZTTH(J,I,IT),J=1,JJ)	937	1,KKAS) 160 FDR
6519 6520	GD TD 19 17 JJ = 7*(J2-J1+1)	838 838	170 FOR
6521 6522	DO 18 I=1,NLINES 18 WRITE (NT,40) USEC(I),(ZTTH(J,I,IT),J=1,JJ)	940 941	LES (DEG) 1'TO WRI
6523	19 CONTINUE	942	1,L) 180 FOR
6524 6525	20 CONTINUE 21 FORMAT('1',18X,'DATE:',3X,3A4,68X,'PAGE:',F6.2	943 944	US KES 190 WRI 200 FDR
6526	/ * BX_'RUN DESCRIPTION:' 3X_20A4/27X_20A4/	945	US
6527 6528	* 3X, 'VEHICLE DECELERATION: ', 3X, 2044/ * 11X, 'CRASH VICTIM: ', 3X, 5A4)		0
6529 6530	22 FORMAT(* */27X, * * SFGMENT INFAR ACCE FRATIONS (G**S) IN POCAL		
65,31	REFERENCE /) 23 FORMAT(' '/27X,		
6532	*'SEGMENT LINEAR VELDCITIES (',A4,'/',A4,') IN VEHICLE REFERENCE'/)		
6533 6534	24 FORMAT(' '/27X, *'SEGMENT LINEAR DISPLACEMENTS (',A4,') IN VEHI		
6535	CLE REFERENCE'/) 25 FORMAT(''//27X,		
9509	*'SEGMENI ANGULAR ACCELERATIONS (REV/',A4,'**2) IN LOCAL REFERENCE'		
6538	*/) 26 FORMAT(' '//27X.		
6539	*'SEGMENT ANGULAR VELOCITIES (REV/',A4,') IN VE HICLE REFERENCE'/)		
6540	27 FORMAT(' '//27X,		

GO TO 550	15
180 FORMAT('O (MSEC)',2(A1,8A4,4X,'SPRING VISCC US RES '))	42
1'TOTAL TORQUE (',244,') ')) WRITE (NT,180) (BLANK,(HEADJJ(K1,J),K1=1,8),J=	<u>0</u> :
WRITE (NT,170) (BLANK,UNITL,UNITM,J=1,KKAS) 170 FORMAT('O TIME ',2(A1,'STATE',5X,'JDINT AN 155 (DEG)' aY	38 39
160 FORMAT(9X,2(A1,21X,'JDINT ND.',13,' - ',A4,20)	37
IF (K.LT.7) GO TD 190 WRITE (NT.160) (BLANK,KONTLP(4,J),HEAD(1,J),J 1.KKAS)	35 36
<pre>//, res.ix, / / / / / / / / / / / / / / / / / / /</pre>	33 34
140 FDRMAT('O (MSEC)',3(A4,5X,'X',8X,'Y',8X,'Z' 7X 'RES' 1X))	32
I 13, '(', A4, ')')) IF (K.LE.5) WRITE (NT,140) (BLANK,J=1,KKAS)	31 3
U =1, KKAS) U =1, KKAS) 130 FORMAT('O TIME ', 3(A2, 'SEGMENT NO.', 13,'('	60 0 70 0
IF (K.LE.6) WRITE (NT,130) (BLANK, KONTLP(4, J), HEAD(1, J),	27
120 FDRMAT(9X,3(A4,3X, POINT (*,F6.2,*,F6.2,*,* F6 2 *) DN *))	26
<pre>IF (K.LE.3) WRITE (NT,120) (BLANK,(CONTLP(I, J .I=1,3) 1,J=1,KKAS)</pre>	24 25
100 HEADJJ(K1,L) = HEDJ(K1,K2) 110 CONTINUE	23
IF (IABS(IPIN(L)) .EQ. 4) K2 = 2 D0 100 K1=1,8	50

Comparison of GUCVS with GMCVS (Page 12 of 41) Table C.5.

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	16	551 60 10 220, 430, 280, 340, 380, 450, 470), NGD 552 220 N1 = KONTLP(2,1) 553 N2 = KONTLP(2,2) 554 M1 = KONTLP(3,1)	55 M2 = KONTLP(3,2) 56 M1A = KONTLP(4,1) 67 M2A = KONTLP(4,2) 58 WRITE (NT,10) DATE,PAGE,COMENT,VPSTTL,BDYTTL 59 WRITE (NT,230)	<pre>160 230 FORMAT(27X, CONTACT FORCES - VEHICLE PANELS VS ELLIPSOIDS') 161 ELLIPSOIDS') 162 IF (KKAS EQ 1) WRITE (NT,240) 162 1BLANK,N1,(PLTL(I,N1),I=1,5),M1A,SEG(M1) 163 240 FORMAT('0', BX,2(A4,' PANEL',I3,'(',5A4,') V 163 S FILTDSOTD'TS</pre>	 1. (', A4, ') ') 1. (', A4, ') ') 1. (KKAS. EQ. 2) WRITE (NT, 240) 1. (KKAS. EQ. 2) WRITE (NT, 240) 1. (PLTTL(1, N1), 1=1, 5), M1A, SEG(M1), 1. (PLTTL(1, N2), 1=1, 5), M2A, SEG(M2) 2. (PLTTE (NT, 250) (BLANK, UNITL, J=1, KKAS) 2. (PRMAT(', ', BX, A4, 'DEFL- NORMAL FRICTION RESU 	TO LIANT CUNIACI LUCAL 10N (', 44,')', 42, 'DEFL- NORMAL FRICTION RESU LTANT CONTACT LOCAT	71 210N (', 44,')') 72 WRITE (NT,260) (BLANK, J=1, KKAS) 73 260 FDRMAT(' TIME', 2(A4, 'ECTION FORCE FORC 74 FORCE (VEHI 74 1CLE REFERENCE)'))	75 WRITE (NT,270) (BLANK,UNITL,UNITM,UNITM,UNITM, J=1,KKAS) 76 270 FORMAT(* (MSEC)*,2(A3,*(*,A4,*)*,2X,*(*,A4,*))*,4X,*(*,A4,*)*,3X,
<pre>* 'SEGMENT ANGULAR DISPLACEMENTS (DEG) IN VEHIC LE REFERNCE // 28 FORMAT(` '/27X,'JDINT PARAMETERS'/) 29 FORMAT(9X,3(A4,3X,'POINT (',F6.2,',F6.2,',',F6.2,')' 30 FORMAT(` TIME ',3(A4,9X,'SEGMENT NO.',I3,' - ',A4.5X)) TIME ',3(A4,5X,'X',BX,'Y',BX,'Z',7 31 FORMAT(' (MSEC)',3(A4,5X,'YAW',5X,'PITCH',5X', X,'RES',1X)) 32 FORMAT(' (MSEC)',3(A4,4X,'YAW',5X,'PITCH',5X', 'ROLL',5X,'RES ')) 33 FORMAT(9X,2(A1,21X,'JOINT NO.',I3,' - ',A4,20X')</pre>)))))))))))))))))))	The second s C MPSF = 0 S IF (NPL.EQ.0) GD TO 52 S	DO 42 J=1,NPL IF (MNPL(J).EQ.O) GO TO 42 KPL = MNPL(J) DO 41 I=1,KPL DO 41 I=1,KPL	MPSF = MPSF+1 NOPL(MPSF) = J 41 MOPL(MPSF) = MPL(2,I,J) 42 CONTINUE 1F (MPSF.EQ.O) GO TO 52 9 16 (MPSF.EQ.O) GO TO 52	DO 44 J1=1,MPSF,2 9 J2 = MINO(J1+1,MPSF) MT = MT + 1 NT = MT 99	IF (LNEW) NT = G IT = MT - 20 PAGE = FLOAT(MT) + XPAGE WRITE (NT,21) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT,45) N1 = NOPL(J1) · 9	N2 = NOPL(J2)	MI = MUPL(U1) M2 = MOPL(U2) IF (U1.EQ.U2) WRITE (NT,46) + BLANK,N1,(PLTTL(I,N1),I=1,5),M1,S 9	EG(M1), F (J1.NE.J2) WRITE (NT.46) * BLANK,N1,(PLTTL(1,N1),1=1,5),M1,S 9 EG(M1),
6541 6542 6543 6544 6545 6545 6545	6548 6549 6550 6551 6551 6553	= 6556 = 6556 6557 6558	6559 6560 6561 6562	6565 6565 6565 6566	6568 6569 6570 6571	6572 6573 6574 6575 6575 6576 6577	6578	6580 6581 6581 6582	6583 6584

6585	<pre>* BLANK,N2,(PLTTL(I,N2),I=1,5),M2,S</pre>	977	1'(',A4,') X Y Z '))
	EG(M2)		
6586	WRITE (NT,47) (BLANK,UNITL,J=J1,J2)	978	WRITE (NT.200)
6587	WRITE $(NT, 48)$ (BLANK $J=J1, J2$)	979	GO TO 550
6588	WDITE (NT A_{0}) (BLANK HNITH HNITH HNITH HNITH	0.0	
0000			
65.00	-01,02		
6589	WRITE (NI, 38)		
6590	IF (.NOT.LNEW) GO TO 44	2 ⁴	
6591	JJ = 7*(J2-J1+1)		
6592	DO 43 I=1.NLINES		
6593	43 WRITE (NT 50) μ SEC(I) (ZTTH(. I IT) μ =1)		
6594			
0554			
6293	45 FURMAT(27X, CUNTACT FURCES - VEHICLE PANELS VS		
	. SEGMENTS'		
6596	46 FORMAT(' '/8X,2(A4,' PANEL',I3,' (',5A4,') VS		
	. SEGMENT', I3,		
6597	* (('.A4.()))		
6598	47 FORMAT(' AX A4 'DEFL- NORMAL EDICTION DESU		
	ITANT CONTACT LOCAT		
6500	TANK CONTACT LOCAT		
0399	TION (1, A4, 1), A2, DEFL- NORMAL FRICTION RESU		
	LIANI CUNIACI LUCAI		
6600	*ION (',A4,')')		
6601	48 FORMAT(' TIME',2(A4,'ECTION FORCE FORC		
	E FORCE (VEHI		
6602	*CLE REFERENCE)())		
6603	49 FORMAT(1) (MSEC)(1)(2)(A)(1)(1)(A)(1)(2)(1)(A)(1)(1)(A)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)		
0000	(1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,		
6604			
0004	$\left(\left(\begin{array}{c} A4, \end{array} \right) \right) $		
6605	50 FURMAI(F9.3,2(F9.3,3F9.2,3F8.3))		
6606	51 FURMAT(3X, '(MSEC)', 4(A1,9X, 'X',8X, 'Y',8X, 'Z', 1		
	x))		
≈ 6607	C	980	C
			5
	1 equa	lline ==	-
= 6609	C	1 1 ine == 982	C =
= 6609 6610	C 52 MBSF = 0	1 line == 982 983	C = 280 N1 = KONTLP(2.1)
= 6609 6610 6611	C 52 MBSF = O IF (NBLT.EQ.O) GD TD 83	1 line =: 982 983 984	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2)
= 6609 6610 6611 6612	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO	1 1 ine =: 982 983 984 985	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(2,1)
= 6609 6610 6611 6612 6613	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO J=1.NBLT	1 1 ine == 982 983 984 985	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) Y2 = KONTLP(3,2)
= 6609 6610 6611 6612 6613 6613	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO () J=1,NBLT IF (LT(J).EQ.O) GO TO 54 ND0C514	1 11ne =: 982 983 984 985 986	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2)
= 6609 6610 6611 6612 6613 6614	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO (J=1,NBLT IF (J).EQ.O) GO TO 54 MBSF = MBSF+1	1 11ne =: 982 983 984 985 986 987	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL
= 6609 6610 6611 6612 6613 6614 6615	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO (J=1,NBLT IF (J).EQ.O) GO TO 54 MBSF = MBSF+1 NOPL(MBSF) = J	1 11ne =: 982 983 984 985 986 986 987 988	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290)
= 6609 6610 6611 6612 6613 6614 6615 6616	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO J=1.NBLT IF (J).EQ.O) GO TO 54 MBSF MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J)	1 11ne =: 982 983 984 985 986 987 988 989	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT,290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG
= 6609 6610 6611 6612 6613 6614 6615 6616	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO (J=1,NBLT IF (J).EQ.O) GO TO 54 MBSF = MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J)	1 11ne =: 982 983 984 985 986 987 988 989	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS')
= 6609 6610 6611 6612 6613 6613 6614 6615 6616 6617	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO (J=1,NBLT IF (J).EQ.O) GO TO 54 MBSF = MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE	1 1 1 ne =: 982 983 984 985 986 987 988 989 989	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT.300)
= 6609 6610 6611 6612 6613 6614 6615 6616 6616 6617 6618	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO J=1,NBLT IF (1 11ne =: 982 983 984 985 986 987 988 987 988 989 990 991	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT,300) 1BLANK N1 (BLTTL (I N1) I=1.5) M1 SEG(M1)
= 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO J=1.NBLT IF (J].EQ.O) GO TO 54 MBSF MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GO TO 83 DO 56 J1=1 MBSF 2	1 1 1 ne =: 982 983 984 985 986 987 988 989 989 990 991 982	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT,290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 200 FORMAT(' (' Z) 2(A4 () PELT(I)) ((' EA4 ()) VC
= 6609 6610 6611 6612 6613 6614 6615 6616 6616 6617 6618 6619	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO (J=1,NBLT IF (J).EQ.O) GO TO 54 MBSF = MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GO TO 83 DO 56 J1=1,MBSF,2	1 1 1 ne =: 982 983 984 985 986 987 988 989 989 989 990 991 992	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT('',7X,2(A4,' BELT',I3,' (',5A4,') VS
= 6609 6610 6611 6612 6613 6614 6615 6616 6616 6617 6618 6619 6620	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO (J=1,NBLT IF (LT(J).EQ.O) GO TO 54 MBSF = MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GO TO 83 DO 56 J1=1,MBSF,2 J2 = MINO(11+1 MBSE)	1 1 1 ne =: 982 983 984 985 986 987 988 989 989 990 991 992	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT('',7X,2(A4,'' BELT',I3,' (',5A4,') VS . SEGMENT',I3,
= 6609 6610 6611 6612 6613 6614 6615 6616 6616 6617 6618 6619 6620	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO J=1,NBLT IF (1 11ne =: 982 983 984 985 986 987 988 987 988 989 990 991 992 993	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT.300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT('',7X,2(A4,' BELT',I3,' (',5A4,') VS . SEGMENT',I3, 1' (',A4,') '))
= 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO J=1,NBLT IF (J).EQ.O) GO TO 54 MBSF MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GO TO 83 DO 56 J1=1,MBSF,2 J2 = MINO(J1+1,MBSF) MT = MT + 1	1 11ne =: 982 983 984 985 986 987 988 987 988 989 990 991 992 993 994	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT,10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT,290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT(' ',7X,2(A4,' BELT',I3,' (',5A4,') VS . SEGMENT',I3, 1' (',A4,') ')) IF (KKAS .EQ. 2) WRITE (NT,300)
= 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO J=1.NBLT IF (J).EQ.O) GO TO 54 MBSF MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GO TO 83 DO 56 J1=1.MBSF,2 J2 = MINO(J1+1,MBSF) MT = MT + 1 NT = MT	1 1 1 ne =: 982 983 984 985 986 987 988 989 989 990 991 992 993 994 995	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT,290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT(',7X,2(A4,' BELT',I3,' (',5A4,') VS . SEGMENT',I3, 1' (',A4,') ') IF (KKAS .EQ. 2) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1),
= 6609 6610 6611 6612 6613 6614 6615 6616 6616 6617 6618 6619 6620 6621 6622 6623	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO J=1.NBLT IF (LT(J).EQ.O) GO TO 54 MBSF = MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GO TO 83 DO 56 J1=1.MBSF,2 J2 = MINO(J1+1.MBSF) MT = MT + 1 NT = MT IF (LNEW) NT = 6	1 11ne =: 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT('',7X,2(A4,' BELT',I3,' (',5A4,') VS . SEGMENT',I3, 1' (',A4,') ')) IF (KKAS .EQ. 2) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTTL(I,N2),I=1,5),M2,SEG(M2)
= 6609 6610 6611 6612 6613 6614 6615 6616 6616 6617 6618 6619 6620 6621 6622 6623 6624	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO J=1,NBLT IF (J).EQ.O) GO TO 54 MBSF = MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GO TO 83 DO 56 J1=1,MBSF,2 J2 = MINO(J1+1,MBSF) MT = MT + 1 NT = MT IF (LNEW) NT = 6 IT = MT - 20	1 11ne =: 982 983 984 985 986 987 988 989 990 991 992 993 993 994 995 996 997	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT.300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT('',7X,2(A4,' BELT',I3,' (',5A4,') VS . SEGMENT',I3, 1'(',A4,')') IF (KKAS .EQ. 2) WRITE (NT.300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTTL(I,N2),I=1,5),M2,SEG(M2) WRITE (NI.310) (BLANK,J=1,KKAS)
= 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO J=1.NBLT IF (IJ).EQ.O) GO TO 54 MBSF MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GO TO 83 DO 56 J1=1.MBSF,2 J2 = MINO(J1+1.MBSF) MT = MT + 1 NT = MT IF (LNEW) NT = 6 IT = MT - 20 PAGE = FLOAT(MT) + XPAGE	1 1 1 ne =: 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290) 290 FORMAT('O',2GX,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT.300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT(',7X,2(A4,' BELT',I3,' (',5A4,') VS . SEGMENT',I3, 1' (',A4,') ')) IF (KKAS .EQ. 2) WRITE (NT.300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTTL(I,N2),I=1,5),M2,SEG(M2) WRITE (NT.310) (BLANK,J=1,KKAS) 310 FORMAT(' 22,2(A4, 11X'ANCHOR POINT A' 14X)
= 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO J=1.NBLT IF (LT(J).EQ.O) GO TO 54 MBSF MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GO TO 83 DO 56 J1=1.MBSF,2 J2 = MINO(J1+1.MBSF) MT = MT + 1 NT = MT IF (LNEW) NT = 6 IT = MT - 20 PAGE = FLOAT(MT) + XPAGE	1 1 1 ne =: 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT,290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT('',7X,2(A4,' BELT',I3,' (',5A4,') VS . SEGMENT',I3, 1' (',A4,') ') IF (KKAS .EQ. 2) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTTL(I,N2),I=1,5),M2,SEG(M2) WRITE (NT,310) (BLANK,J=1,KKAS) 310 FORMAT(' ',2X,2(A4,11X,'ANCHOR POINT A',14X, 'ANCHOR POINT B'))
= 6609 6610 6611 6612 6613 6614 6615 6616 6616 6617 6618 6619 6621 6622 6623 6624 6625 6626	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO J=1,NBLT IF (J).EQ.O) GO TO 54 MBSF = MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GO TO 83 DO 56 J1=1,MBSF,2 J2 = MINO(J1+1,MBSF) MT = MT + 1 NT = MT IF (LNEW) NT = 6 IT = MT - 20 PAGE = FLOAT(MT) + XPAGE WRITE (NT 21) DATE PAGE COMENT VESTL BOYTT	1 11ne =: 982 983 984 985 986 987 988 989 990 991 991 992 993 994 995 996 997 998	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT,300) 1BLANK,N1,(BLTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT('',7X,2(A4,'' BELT',I3,'(',5A4,') VS . SEGMENT',I3, 1' (',A4,') ') IF (KKAS .EQ. 2) WRITE (NT,300) 1BLANK,N1,(BLTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTL(I,N2),I=1,5),M2,SEG(M2) WRITE (NT,310) (BLANK,J=1,KKAS) 310 FORMAT(' ',2X,2(A4,11X,'ANCHOR POINT A',14X, 'ANCHOR POINT B')) WDITE (NT 200) (BLANK, J=1,KKAS)
= 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6623 6624 6625 6626 6627	C 52 MBSF = 0 IF (NBLT.EQ.O) GO TO 83 D0 J=1,NBLT IF (T(J).EQ.O) GO TO 54 MBSF = MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GO TO 83 D0 56 J1=1,MBSF,2 J2 = MINO(J1+1,MBSF) MT = MT + 1 NT = MT IF (LNEW) NT = 6 IT = MT - 20 PAGE = FLOAT(MT) + XPAGE WRITE (NT,21) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT,21) DATE,PAGE,COMENT,VPSTTL,BDYTTL	1 11ne =: 982 983 984 985 986 987 988 989 990 991 992 993 991 992 993 994 995 996 997 998 999	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT.300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT('',7X,2(A4,' BELT',I3,' (',5A4,') VS . SEGMENT',I3, 1' (',A4,') ') IF (KKAS .EQ. 2) WRITE (NT.300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTTL(I,N2),I=1,5),M2,SEG(M2) WRITE (NT.310) (BLANK,J=1,KKAS) 310 FORMAT(' ',2X,2(A4,11X,'ANCHOR POINT A',14X, 'ANCHOR POINT B')) WRITE (NT.320) (BLANK,J=1,KKAS)
= 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO J=1,NBLT IF (IJ).EQ.O) GO TO 54 MBSF MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GO TO 83 DO 56 J1=1,MBSF,2 J2 = MINO(J1+1,MBSF) MT = MT + 1 NT = MT IF (LNEW) NT = 6 IT = MT - 20 PAGE = FLOAT(MT) + XPAGE WRITE (NT,21) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT,57)	1 11ne =: 982 983 984 985 986 987 988 989 990 991 992 993 994 995 995 995 995 997 998 999 1000	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290) 290 FORMAT('O',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT.300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT(' ',7X,2(A4,' BELT',I3,' (',5A4,') VS . SEGMENT',I3, 1' (',A4,') ')) IF (KKAS .EQ. 2) WRITE (NT.300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTTL(I,N2),I=1,5),M2,SEG(M1), 2BLANK,N2,(BLTTTL(I,N2),I=1,5),M2,SEG(M2) WRITE (NT.310) (BLANK,J=1,KKAS) 310 FORMAT(' ',2X,2(A4,11X,'ANCHOR POINT A',14X, 'ANCHOR POINT B')) WRITE (NT.320) (BLANK,J=1,KKAS) 320 FORMAT(4X,'TIME',2(A4,5X,'STRAIN',7X,'FORCE',1
= 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6625 6626 6627	C 52 MBSF = O IF (NBLT.EQ.O) GO TO 83 DO J=1.NBLT IF (IJ).EQ.O) GO TO 54 MBSF MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GO TO 83 DO 56 J1=1.MBSF,2 J2 = MINO(J1+1.MBSF) MT = MT + 1 NT = MT IF (LNEW) NT = 6 IT = MT - 20 PAGE = FLOAT(MT) + XPAGE WRITE (NT.21) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.57) N4 = NODL(J4)	1 1 1 ne =: 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT,290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT(' ',7X,2(A4,' BELT',I3,' (',5A4,') VS . SEGMENT',I3, 1' (',A4,') ') IF (KKAS .EQ. 2) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTTL(I,N2),I=1,5),M2,SEG(M2) WRITE (NT,310) (BLANK,J=1,KKAS) 310 FORMAT(' ',2X,2(A4,11X,'ANCHOR POINT A',14X, 'ANCHOR POINT B')) WRITE (NT,320) (BLANK,J=1,KKAS) 320 FORMAT(4X,'TIME',2(A4,5X,'STRAIN',7X,'FORCE',1 2X,
= 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628	C 52 MBSF = 0 IF (NBLT.EQ.O) GO TO 83 D0 J=1,NBLT IF (1 11ne =: 982 983 984 985 986 987 988 989 990 991 992 993 994 995 995 996 997 998 999 1000 1001	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT('',7X,2(A4,' BELT',I3,'(',5A4,') VS . SEGMENT',I3, 1' (',A4,') ') IF (KKAS .EQ. 2) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTTL(I,N1),I=1,5),M2,SEG(M1), 2BLANK,N2,(BLTTTL(I,N2),I=1,5),M2,SEG(M2) WRITE (NT,310) (BLANK,J=1,KKAS) 310 FORMAT(' ',2X,2(A4,11X,'ANCHOR POINT A',14X, 'ANCHOR POINT B')) WRITE (NT,320) (BLANK,J=1,KKAS) 320 FORMAT(4X,'TIME',2(A4,5X,'STRAIN',7X,'FORCE',1 2X, 1'STRAIN',7X,'FORCE', 3X))
= 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629	C 52 MBSF = 0 IF (NBLT.EQ.O) GD TD 83 D0 J=1,NBLT IF (T(J).EQ.O) GD TD 54 MBSF = MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GD TD 83 DD 56 J1=1,MBSF,2 J2 = MINO(J1+1,MBSF) MT = MT + 1 NT = MT IF (LNEW) NT = 6 IT = MT - 20 PAGE = FLOAT(MT) + XPAGE WRITE (NT,21) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT,57) N1 = NOPL(J1) N2 = NOPL(J2)	1 11ne =: 982 983 984 985 986 987 988 989 990 991 991 992 993 991 992 993 994 995 996 997 998 999 1000 1001 1002	C = 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.290) 290 FORMAT('0',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT('',7X,2(A4,' BELT',I3,' (',5A4,') VS . SEGMENT',I3, 1' (',A4,') ') IF (KKAS .EQ. 2) WRITE (NT.300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTTL(I,N2),I=1,5),M2,SEG(M2) WRITE (NT,310) (BLANK,J=1,KKAS) 310 FORMAT(' ',2X,2(A4,11X,'ANCHOR POINT A',14X, 'ANCHOR POINT B')) WRITE (NT,320) (BLANK,J=1,KKAS) 320 FORMAT(4X,'TIME',2(A4,5X,'STRAIN',7X,'FORCE',1 2X, 1'STRAIN',7X,'FORCE', 3X)) WRITE (NT,330) (BLANK,UNITL,UNITL,UNITM,UNITL,
 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 	C 52 MBSF = 0 IF (NBLT.EQ.O) GO TO 83 D0 J=1,NBLT IF (IJ).EQ.O) GO TO 54 MBSF MBSF+1 NOPL(MBSF) = J MOPL(MBSF) = MBLT(2,1,J) 54 CONTINUE IF (MBSF.EQ.O) GO TO 83 DO 56 J1=1,MBSF,2 J2 = MINO(J1+1,MBSF) MT = MT + 1 NT = MT IF (LNEW) NT = 6 IT = MT - 20 PAGE = FLOAT(MT) + XPAGE WRITE (NT,21) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT,57) N1 = NOPL(J1) N2 = NOPL(J2)	1 11ne =: 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002	C 280 N1 = KONTLP(2,1) N2 = KONTLP(2,2) M1 = KONTLP(3,1) M2 = KONTLP(3,2) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT,290) 290 FORMAT('O',26X,'CONTACT FORCES - BELTS VS. SEG MENTS') IF (KKAS .EQ. 1) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1) 300 FORMAT(',7X,2(A4,' BELT',I3,' (',5A4,') VS . SEGMENT',I3, 1' (',A4,') ')) IF (KKAS .EQ. 2) WRITE (NT,300) 1BLANK,N1,(BLTTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTTL(I,N1),I=1,5),M1,SEG(M1), 2BLANK,N2,(BLTTTL(I,N2),I=1,5),M2,SEG(M2) WRITE (NT,310) (BLANK,J=1,KKAS) 310 FORMAT(',2X,2(A4,11X,'ANCHOR POINT A',14X, 'ANCHOR POINT B')) WRITE (NT,320) (BLANK,J=1,KKAS) 320 FORMAT(4X,'TIME',2(A4,5X,'STRAIN',7X,'FORCE',1 2X, 1'STRAIN',7X,'FORCE', 3X)) WRITE (NT,330) (BLANK,UNITL,UNITL,UNITM,UNITL,UNITH,J=1,

Table C.5. Comparison of GUCVS with GMCVS (Page 13 of 41)

87

330 FDRMAT(3X,'(MSEC)',2(A4,2X,'(',A4,'/',A4,')',4	X,'(',A4,')',9X, 1'(',A4,'/',A4,')',4X,'(',A4,')',3X)) WRITE (NT.200)	GO TO 550									۳ ن	C ====================================	ORCES') WRITE (NT,360) (BLANK,(KONTLP(I,J),I=1,2),J=1, 	KKAS) 360 FORMAT(9X,2(A4,11X,'BELT NO.',I4,' DF HARNESS	NU.'.13.15.)) WRITE (NT.370) (BLANK,(KONTLP(I.U),I=3.4),J=1,	TASS) 370 FORMAT(9X,2(A4,6X,'POINT NO.',I5,16X,'POINT NO 21 F CV)	WRITE (NT.320) (BLANK, J=1, KKAS) WRITE (NT.330) (BLANK, J=1, KKAS) WRITE (NT.330) (BLANK, UNITL, UNITL, UNITM, UNITL,	UNTIL UNTIM. J= 1. 1KKAS) WRITE (NT, 200) GO TO 550
1004	1005 1006	1007									1008	11ne = 1010 1011 1012 1013	1014	1015	1016	1017	1018 1019	1020 1021 1022
M2 = MOPL(J2)	IF (J1.EQ.J2) WRITE (NT.58) * BLANK,N1,(BLTTTL(1,N1),I=1,5),M1,S EG(M1)	IF (J1.NE.J2) WRITE (NT,58) * BLANK,N1,(BLTTTL(1,N1),I=1,5),M1,S EG(M1)	EG(M2) FG(M2)	WRITE (NT,59) (BLANK,J=J1,J2) WRITE (NT,60) (BLANK,J=J1,J2) WRITE (NT,61) (BLANK,UNITL,UNITL,UNITM,UNITL,U NITL_UNITM_J=J1,J2)	WRITE (NT,38) IF (.NOT.LNEW) GO TO 56 UJ = 4*(J2-J1+1) DO 65 T= ANIMAES	55 WRITE (NT.62) USEC(I),(ZTTH(J,I,IT),J=1,JJ) 56 CONTINUE 57 FORMAT('O',26X,'CONTACT FORCES - BELTS VS. SEG	MENIS') 58 FORMAT('',7X,2(A4,' BELT',I3,'(',5A4,') VS secement'I3	<pre>55 FORMAT('', 24,')')) 55 FORMAT('', 2X,2(A4,11X,'ANCHOR POINT A',14X, 56 FORMAT('', 2X,2(A4,11X,'ANCHOR POINT A',14X, 'ANCHOR POINT B')) 60 FORMAT(4X,'TIME',2(A4,5X,'STRAIN',7X,'FORCE',1</pre>	2X, * 'STRAIN',7X,'FORCE', 3X)) 61 FORMAT(3X,'(MSEC)'.2(A4,2X,'('.A4,'/',A4,')'.4 X,'(',A4,')'.9X, */'.A4,'')'.5X,	(',A4,')',3X))	======================================	K1 = 1	DO 85 I=1,NHRNSS	IF (NBLTPH(I).LE.O) GO TO 85	J2 = J1 + NBLT₽H(I) − 1	DO 84 J=J1,J2 MBSF = MBSF + 1	IF (NPTSPB(J).LE.O) GO TO 84 K2 = K1 + NPTSPB(J) - 1 NOPL(2*MBSF-1) = J NOPL(2*MBSF) = I MOPL(2*MBSF) = I MOPL(2*MBSF) = K1
6631	6632 6633	6634 6635	6636	6637 6638 6639	6640 6641 6642 6642	6645 6645 6646	6647	6648 6649 6650	6651	6652 6652	= 6654 6655	======================================	6661	6662	6663	6664	6665 6666	6667 6668 6669 6670 6671 6671

Table C.5. Comparison of GUCVS with GMCVS (Page 14 of 41)

.

•						1023 C	1025 C 1026 380 M1 = KONTLP(1,1) 1027 N1 = KONTLP(2,1) 1028 M2 = KONTLP(2,1) 1029 N2 = KONTLP(2,1) 1031 N2 = KONTLP(1,2) 1033 N3 = KONTLP(1,2) 1033 N3 = KONTLP(1,2) 1033 N4 = KONTLP(1,2) 1034 N4 = KONTLP(1,2) 1033 N4 = KONTLP(1,2) 1034 IF (M2 . NE O) JKAS = 2 1035 IF (M2 . NE O) JKAS = 2 1036 IF (M2 . NE O) JKAS = 3 1037 WRITE (NT,10) DATE,PAGE,COMENT,VPSTTL,BDYTTL 1038 WRITE (NT,10) DATE,PAGE,COMENT,VPSTTL,BDYTTL 1038 WRITE (NT,390) (BLANK,J,J,J=1,JKAS)	1040 390 FDRMAT('0',26X,'SPRING DAMPER FDRCES'/ 1041 19X,4(A3,3X,'SPRING DAMPER ND.',13,4X)) 1042 GD TD (400,404,406,408),JKAS 1043 400 WRITE(NT,401) BLANK,M1,SEG(M1),N1,SEG(N1) 1044 401 FDRMAT(9X,4(A3,'SEG',13,'(',A4,') - SEG',13,'(1045, , , , , , , , , , , , , , , , ,
	<pre>K1 = K2 + 1 84 CONTINUE 01 = J2 + 1 85 CONTINUE D0 87 J1=1,MBSF,2 U2 = MINO(J1+1,MBSF) MT = MT + 1</pre>	NT = MT IF (LNEW) NT = 6 IT = MT - 20 PAGE = FLOAT(MT) + XPAGE WRITE (NT,21) DATE,PAGE,COMENT,VPSTTL,BDYTTL	WRITE (NT,89) (BLANK,NOPL(2*J-1),NOPL(2*J),J=J 1,J2) WRITE (NT,90) (BLANK,MOPL(2*J-1),MOPL(2*J),J=J 4.12) 4.12)	WRITE (NT,60) (BLANK,U=J1,U2) WRITE (NT,61) (BLANK,UNITL,UNITL,UNITM,UNITL,U NITL,UNITM,U=J1,U2) WRITE (NT,38) IF (.NOT.LNEW) GO TO 87	DO 86 I=1,ULINES B6 WRITE (NT,62) USEC(I),(ZTTH(J,I,IT),J=1,JJ) B7 CONTINUE B8 FORMAT('O',26X,'HARNESS SYSTEM BELT ENDPOINT F ORCES') B9 FORMAT(9X,2(A4,11X,'BELT NO.',14,' OF HARNESS	ND.',13,15X)) 90 FORMAT(9X,2(A4,6X,'POINT ND ',15,16X,'POINT ND ',15,6X)) C	C 91 IF (NSD.LE.O) GO TO 63 DO 94 J1=1,NSD.4 J2 = MINO(J1+3,NSD) MT = MT NT = MT IF (LNEW) NT = 6 IT = MT IF (LNEW) NT = 6 IT = MT - 20 PAGE = FLOAT(MT) + XPAGE WRITE (NT.21) DATE,PAGE.COMENT,VPSTTL,BDYTTL WRITE (NT.21) DATE,PAGE.COMENT,VPSTTL,BDYTTL WRITE (NT.21) DATE,PAGE.COMENT,VPSTTL,BDYTTL 0 92 J=J1,J2 M1 = MSDN(J) N1 = MT N1 = MSDN(J) N1 = MSDN	HEAD(2*J-1) = SEG(M1) 92 HEAD(2*J) = SEG(N1) WRITE (NT,96)(BLANK,MSDM(J),HEAD(2*J-1),MSDN(J),HEAD(2*J),J=J1,J2) WRITE (NT,97) (BLANK,J=J1,J2) WRITE (NT,98) (BLANK,UNITL,UNITM,J=J1,J2)	<pre>wRITE (NT.38) IF (.NOT.LNEW) GO TO 94 JJ = 2*(J2-J1+1) Table C.5. Comparison of GUCVS with GMCVS (Page 1</pre>
	6673 6674 6675 6675 6676 6677 6678	6680 6681 6683 6683 6683	6686 6686 6687	6689 6689 6691 6691	6693 6693 6695 6695 6696 6696 6697	======================================	<pre>= 6701 6702 6703 6703 6705 6706 6706 6711 6711 6713 6713 6713 6713 6713</pre>	6716 6717 6718 6719 6719 6720	6721 6722 6723

: \

<pre>GD TD 409 406 WRITE(NT,401) BLANK,M1,SEG(M1).N1,SEG(N1). 1BLANK,M2,SEG(M2).N2,SEG(N2). 2BLANK,M3,SEG(M3).N3,SEG(N3) 6D TD 409 408 WRITE(NT,401) BLANK,M1,SEG(M1).N1,SEG(N1).</pre>	1BLANK,M2,SEG(M2),N2,SEG(N2),	2BLANK,M3,SEG(M3),N3,SEG(N3),	3BLANK,M4,SEG(M4),N4,SEG(N4) 409 WRITE (NT,410) (BLANK,J=1,JKAS) 410 FORMAT(4X,'TIME',1X,4(A3,5X,'LENGTH',7X,'FORCE 4X))	WRITE (NT,420) (BLANK,UNITL,UNITM,J=1,JKAS) 420 FORMAT(3X,'(MSEC)',4(A3,5X,'(',A4,')',6X,'(',A 4,')',4X))	WRITE (NT,200) GO TO 550 C	C 430 N1A = KONTLP(2,1) N1 = KONTLP(1,1) N1 = KONTLP(1,1)	M1 = KONTLP(3,1) M1 = KONTLP(3,1) WRITE (NT.10) DATE,PAGE,COMENT,VPSTTL,BDYTTL WRITE (NT.440) N1A,SEG(N1),M1A,SEG(M1),UNITL,N	1.M1 1.UNITL,UNITM,UNITM,UNITM 440 FORMAT('O',26X,'CONTACT FORCES - ELLIPSOID ND.	13, (',44, 1') VS. ELLIPSOID NO.',13,' (',A4,')'// 13' () 13, (',A4,')'//	134, DEFL- NURMAL 2 FRICTION RESULTANT', 144 'CONTACT IOCATT	AX TIME FCITION	2(' SEG.'I3.'LOCE', IX), 2(' SEG.'I3.'LOC	5AL REFERENCE ')/ 3X.'(MSEC)'.3X.'('	6A4,')', 3(3X,'(',A4,')'), 2(5X:'X',7X',Y',7X.	7'2'4X)/1X) GD TD 550	C AIRBAG QUANTITIES HEADINGS	C 450 WRITE (NT,10) DATE,PAGE,COMENT,VPSTTL,BDYTTL	WRITE (NT,460) J,(BAGTTL(I,J),I=1,5) 460 FORMAT('O',26X,'PARAMETERS FOR AIRBAG ND.',12, 460 FORMAT('O',26X,'PARAMETERS FOR AIRBAG ND.',12,	116X,'SUPPLY CYLINDER STATIC'/ 116X,'SUPPLY CYLINDER STATIC'/ 24X,'TIME',BX,'PRES.',4X,'TEMP.',4X,'PRES.',12X	ON (DEG.)'/ JX, AIRBAG SEMIAXES', 12X, ORIENTATI
1048 1049 1050 1051 1051 1052	1054	1055	1056 1057 1058	1059 1060	1061 1062 1063	1065 1065 1066	1070 1071	1072 1073	1074	1075	1076	1077	1078	1079	1080 1081	1082 1083	1084 1085	1086 1087	1088 1089	1090
D0 93 I=1,NLINES 93 WRITE (NT,99) USEC(I),(ZTTH(J,I,IT),J=1,JJ) 94 CONTINUE 95 FORMAT('O',26X,'SPRING DAMPER FORCES'/ * 9X,4(A3,3X,'SPRING DAMPER NO.'I3,4X)) 96 FORMAT(9X,4(A3,'SEG',I3,'(',A4,') - SEG',I3,'(97 FORMAT(4X,'TIME',1X,4(A3,5X,'LENGTH',7X,'FORCE		99 FDRMAT (F9.3,4(F14.3,F12.2,4X))		C	C 63 MSSF = 0 D0 65 J=1,NSEG TF (MNSEG()) 50 TO 55	LT (MNSEG(U) EG TO GO LSEG = MNSEG(U) DD 64 I=1,LSEG MSSF = MSSF+1	NOPL(MSSF) = J 64 MOPL(MSSF) = MSEG(2,I,J)	65 CONTINUE	IF (MSSF.EQ.O) GO TO 70	DO 67 J=1,MSSF	MT = MT + 1	NT = MT	IF (LNEW) NT = 6	IT = MT - 20 Page = float(MT) + xpage	WRITE (NT,21) DATE,PAGE,COMENT,VPSTTL,BDYTTL N1 = NOPL(J)	MI = MUPL(J) WRITE (NT,68) N1,SEG(N1),M1,SEG(M1),UNITL,N1,M	* , UNITL,UNITM,UNITM,UNITM IF (.NOT.LNEW) GO TO G7	DO 66 I=1,NLINES 66 WRITE (NT, 69) USEC(I),(ZTTH(JJ,I,IT),JJ=1,10	67 CONTINUE
6724 6725 6725 6726 6728 6728 6728	6730	6731	6732		= 6733	= 6735 6735 6737 6738	6739 6739 6740 6741	6742 6743	6744	6745	6746	6747	6748	6749	6750 6751	6752 6753	6755 6755	6756 6757	6758 6759	6760

Table C.5. Comparison of GUCVS with GMCVS (Page 16 of 41)

•

4'(MSEC)',7X,'(PSIG) (DEG.R) (PSIG)',8X,'X', 8X,'Y',8X,'Z' 511X,'A',8X,'B',8X,'C',10X,'YAW',4X,'PITCH',5X, 'ROLL'/) GO TO 550 C	C 470 D0 520 K = 1, KKAS N1 = KONTLP(1,K) N2 = KONTLP(2,K) 17 (N1 GT O) G0 T0 480 HEAD(1,K) = FHED(-N1) 480 HEAD(1,K) = SEG(N1) 490 U2 = 3 10 U2 = 3 10 HEAD(2,K) = FHED(-N2) 11 F(N1 530) 10 HEAD(2,K) = SEG(N2) 10 HEAD(2,K) = SEG(N2) 10 HEAD(2,K) = SEG(N2) 10 HEAD(2,K) = SEG(N2) 10 HEAD(2,K) = SEG(N2) 11 F(N1 530)UNITM.J.(BAGTTL(1,J),I=1,5).(BLA NK.J.(HEAD(1,K)) 11 = 1,2). 12 AM NK.J.(HEAD(1,K), AIRBAG.I2, VS. 'A4.1X) 11 = 1,2). 12 HAM 11 = 1,2). 12 HAM 12 + 1,2). 14 MITE (N1 530)UNITM.J.(BAGTTL(1,J),I=1,5).(BLA NK.J.(HEAD(1,K)) 17 4X.'TIME'4(A1,11X.'AIRBAG',I2.' VS. 'A4.1X) 17 4X.'TIME'4(A1,11X.'AIRBAG',I2.' VS. 'A4.1X) 17 4X.'TIME'4(A1,11X.'AIRBAG',I2.' VS. 'A4.1X) 540 MRITE (N1 530)UNITM.J.(BAGTTL(1,J),I=1,5).(BLA NK.J.(HEAD(1,K)) 540 FORMAT(0',26X.'CONTACT FORCES ('A4.') ON AIR BAG N0.'12,4X.5A4// 17 4X.'TIME'4(A1,11X.'AIRBAG',I2.' VS. 'A4.1X) 540 FORMAT(3X.'(MSEC)'4(A1,9X.'X',BX.'Y',BX.'Z',1 550 RETURN 550 RETURN
1091 1092 1093	** ** 1009 ** 1009 ** 1009 ** 1100 ** 111
<pre>68 FORMAT('O',26X,'CONTACT FORCES - SEGMENT ND.',I3,</pre>	<pre>c To IF (NBAG.Eq.0) GO TO 82 To J=1,NBAG TF J=1,NBAG TF J=1,NBAG TF J=1,NLBAG TF MT TF T = 20 TT = MT TT = 20 TT = MT TT = 20 METE (NT.28) J(BAGTL(IJ),I=1.5) TT = NLINE TT = 0 TT = NLINE TT = 0 TT = 1,NLINE TT = 1,NLIN</pre>
6761 6762 6763 6763 6765 6765 6765 6766 6768 6769	<pre>= 6772 6773 6774 6774 6774 6774 6779 6788 6788 6789 6799 6799 6799 6799</pre>

•

.

Table C.5. Comparison of GUCVS with GMCVS (Page 17 of 41)

6812	77 CONTINUE	
6813	78 FORMAT('O',26X,'PARAMETERS FOR AIRBAG NO.',12, ,	
	4X,5A4//	
6814	<pre>* 16X,'SUPPLY CYLINDER STATIC'/</pre>	
6815	* 4X, 'TIME', 8X, 'PRES.', 4X, 'TEMP.', 4X, 'PRES.	
	',12X,'AIRBAG',	
6816	* 3X,'CENTER',14X,'AIRBAG SEMIAXES',12X,'ORIE	
	NTATION (DEG.)'/	
6817	* 3X,'(MSEC)',7X,'(PSIG) (DEG.R) (PSIG)',8X	
	, 'X', 8X, 'Y', 8X, 'Z',	w21
6818	* 11X, 'A', 8X, 'B', 8X, 'C', 10X, 'YAW', 4X, 'PITCH', 5	10
	X,'ROLL'/)	
6819	79 FORMAT (F9.3,3X,3F9.2,2(3X,3F9.3),3X,3F9.2)	
6820	80 FORMAT('0',26X,'CONTACT FORCES (',A4,') ON AIR	
	BAG NO.', I2, 4X, 5A4//	
6821	* /4X,'TIME',4(A1,11X,'AIRBAG',I2,' VS. ',A4,	
	1X))	
6822	81 FORMAT (F9.3,4(3X,3F9.2))	
6823	82 RETURN	
6824	END	

1

.

END

=

1122

92

=

Table C.5. Comparison of GUCVS with GMCVS (Page 18 of 41)

Unit 0: CVSB(166,1501)

Unit 1: SUSP:CIGS(6527,7862)

SUBROUTINE HINPUT	<pre>************************************</pre>	COMMON/RSAVE/DPMI(3,3,100),LPMI(100)	COMMON/HRNESS/ BAR(15,100),BB(100),BBDDT(100), = PLOSS(2,100), =	<pre>####################################</pre>	er cos, or, reference point (',A4,')',13X,'BELT FORC ES (',A4'')'.	* 9X, 'ENERGY LOSS'/	**************************************	<pre>* 14X,'LINEAR VELOCITY (',A4,'/',A4,')'/ = * ' NO. SEG',2(9X,'X',11X,'Y',11X,'Z',5X) =) = =</pre>	44 FORMAT('O INITIAL ANGULAR ROTATION AND VELOCIT =	Y', TIX, CARDS G 3'// = * ' SEGMENT', 11X, 'ANGULAR ROTATION (DEG)'	. * 14X,'ANGULAR VELOCITY (DEG/',A4,')'/ =	
6527	1 1 nes 6647	6648	6649	l ines 6676	6677	6678	7505	7506 7507	1 ines 7512	7513	7514	7862
SUBROUTINE HINPUT	<pre></pre>	O).NSG(7).MSG(20.7)	COMMON/HRNESS/ BAR(15,100),BB(100),BBDDT(100), PLDSS(2,100),	sammersammersammersammersammersammersammersammersammersammersammersammersammersammersammersammersammersammersam GV 10555555	<pre>* 'REFERENCE POINT (',A4,')',13X,'BELT FORC ES ('A4,')'</pre>	* 9X,'ENERGY LOSS'/	* // SEGMENT', 11X, 'LINEAR POSITION (', A4, ')	<pre>* 14X,'LINEAR VELOCITY ('A4,'/',A4,')'/ * ' ND. SEG' 2(9X,'X',11X,'Y',11X,'Z',5X))</pre>	44 FORMAT('O INITIAL ANGULAR ROTATION AND VELOCIT	*	* 14X,'ANGULAR VELOCITY (DEG/',A4,')'/	
166	286	287	288	315	316	317	1144	1145 1146	1151	1152	1153	1501
11			11 11			a i		11 11	u n a		. 11 . 5	

Table C.5. Comparison of GUCVS with GMCVS (Page 19 of 41)

Unit 0: C	:VSB(1502,1830)	nit 1: SUSP:CIGS(7863,8445)	
= 1502 1503	SUBROUTINE OUTPUT(IJK) C	7863 SUBROUTINE OUTPUT(IJK) 7864 IMPLICIT REAL*8(A - H,O - Z)	II
1504	REV 20 05/18/80 C CONTROLS LABULATED DUTBULT ON EDDIDAN UNITS (ST		:
	ARTING WITH NO. 21)	BAG NVEH. NGRND. / CUNIKE/ IIME, NSEG, NUNI, NPL, I BAG. NVEH. NGRND.	3LI, N
1505	C OF SELECTED OPTIONAL SEGMENT LINEAR AND ANGULA	7866 1 NS, NQ, NSD, NFLX, NHRNSS, NWIND	NUNT
1506	C VELERATIONS, C VELOCITIES AND DISPLACEMENTS, JOINT PARAMETERS	F, NPRI(36) 7867 COMMON /SGMNTS/ D(3.3.100) WMEG(3 100)	WMEGD
	AND SELECTED DATA	(3,100), U1(3,100),	
1507	C FROM ALL ALLOWED CONTACT FORCE COMPUTATIONS BE TWFFN RDDY SFOMENTS	7868 1 U2(3,100), SEGLP(3,100), SEGLV(3	100),
1508	C AND VEHICLE COMPONENTS.	3544A(3,100), 7869 2 NSYM(100)	
		7870 COMMON /DESCRP/ PHI (3, 100), W(100), RW(30), S
		R(3,200), HA(3,200),	
		/8/1 1 1 HB(3,200), RPHI(3,100), HT(3,3,2) RING(5,300)	0), SP
		7872 2 VISC(7,300), JNT(100), IPIN(100)	ISING
		(100), IGLOB(100),	
		7873 3 JOINTF(100) 7874 CDMMON /.IRADT7/ MNPI(100) MNRIT(8) MN	100
), MNBAG(6), DEAKIZ/ MNYE(100), MNELI(8), MN	100
		7875 1 MPL(3,5,100), MBLT(3,5,8), MSEG(5,100
), MBAG(3,10,6), 7676 (), MEAG(3,10,6), MEAG(3, 10,00)	
		7876 2 2 NIPL(5,100), NIBLI(5,8), NTSEG(5 7877 COMMON /TITLES/ DATE(3). COMENT(40). VP:	100) [TL(20
), BDYTTL(5),	
		7878 1 BLTTTL(5,8), PLTTL(5,100), BAGTTI SEG(100)	(2,6),
0/		7879 2 JDINT(100), CGS(100), JS(100)	
		7880 REAL DATE, COMENT, VPSTTL, BDYTTL, BLTT	. РЦТ
		TL, BAGTTL, SEG,	
		7881 1 JULIN 7882 1061CAL*1 CGS JS	
		7883 COMMON /FORCES/ PSF(7,100), BSF(4,20), 9	3F(10,
		20), BAGSF(3,20),	-
		SET	SL, NS
		7885 COMMON /CNSNTS/ PI, RADIAN, G, THIRD, EI	;(24),
		UNTIL, UNTIM, 7866 4 INTIT CRAVIVO	
		7887 COMMON/RSAVE/DPMI(3,3,400) IDMI(400)	
		7888 COMMON /COMAIN/ VAR(800), DER(800), DT,	HM .01
		AX, HMIN, RSTIME,	
		1 ISTEP, NSTEPS, NDINT, NEQ, IRSTN	IRSOU
		7890 COMMON /DAMPER/ APSDM(3,20), APSDN(3,20)	ASD(
		5,20), MSDM(20),	
		7892 COMMON /IOCNTI/ IONWOK KWODIN IOTALK	
		7893 COMMON /HRNESS/ BAR(15,100), BB(100), BE	0T (10
		0), PLOSS(2,100), 7894 1 x1.0NG(20) HTIMF(2) TBAD(5,100)	
		100), NPTSPB(20),	NL (2 ,
		7895 2 NPTPLY(20), NTHRNS(20), NBLTPH(5)	
		7896 COMMON /HLDCON/ LDNARY(3), NRNBAS(246), (241) KASNIIM	FIRST
		7897 1 KATKOL(12), KPRELM(3), KATKAS(3, 1)	.), КА

•`.

Table C.5. Comparison of GUCVS with GMCVS (Page 20 of 41) SKTL(5,241), MAXPTS.

.

.

LINES, KASE, KATG, NRN, LSTEP, LASREC(3

3

7898

 $\widehat{}$

H

95

H

			·		
		N.RSTIME.			
	1532	* ISTEP, NSTEPS, NDINT, NEQ, IRSIN, IRSOU			
	1533				
	1555	0), MSDM(20), MSDN(20)			
	1534	COMMON/HRNESS/ BAR(15,100),BB(100),BBDOT(100),			
	1535	PLOSS(2, 100), * YLONG(20) HTIME(2) IRAD(5, 100) NI			
	1555	(2,100).			
	1536	* NPTSPB(20), NPTPLY(20), NTHRNS(20),			
	1507	NBLTPH(5)			
	1537	(3), T3(3), T4(9)			
	1538	LOGICAL LTAPE8 , LTHIST			
	1539	DATA LINES/O/,LPP/45/			
	1541	IF (IJK.NE.O) GO TO 13			
=	1542	C	7918	C	=
	1544	1 equa	lline =		
-	1544	DQ 11 I=1 1740	7920	C	= DD 20 T = 1 1740
	1546	11 $PSF(I, 1) = 0.0$	7922	20	O PSF(1, 1) = 0.0
	1547	GO TO 66	7923		GO TO 910
			7924	С	
			7925	С	IF REGULATED PRINT INTERVAL, SELECT PROPE
=	1548	С	7926		ME
	1549	C LTHIST = TRUE MEANS PRINT LINE OF TIME HISTORY	7927	30	O IF (NPRT(4) .NE. 0) GO TO 40
		DATA FOR THIS			
9	1550	C TIME POINT ON EACH OUTPUT	7928		IF (TIME .LE. TPRINT - EPS(8)) GO TO 910
6			7929		TPRINT = TPRINT + DT
			7930	40	O CALL ELTIME(1. 8)
			7931		IF (LINES .NE. O) GO TO 680
=	1551	C	7932	С	=
	1552	C LTAPE8 = TRUE MEANS WRITE TIME HISTORY DATA ON TAPE 8	7933	С	INITIALIZATION FOR FIRST TIME RECORDED
=	1553	C	7934	С	· •
	1554	13 NPRT4 = NPRT(4) + 4	7935		IOTALK = NPRT(19)
	1555	IF (NPRT4.LE.O .OR. NPRT4.GT.8) STOP 37	7936		LDNWRK = 8
	1556	GO TO (66,66,66,16,15,14,14,15) , NPRT4	7937		LDNARY(1) = LDNWRK
	1558	14 LIMIST = .FALSE.	7938		LDNARY(2) = 10
	1559	GO TO 17	7939		LDNART(3) = 11 $KWDDIN = 20$
	1560	15 LTHIST = .TRUE.	7941		INCSMI = 1000000000
	1561	LTAPE8 = .TRUE.	7942		INCBIG = 0
	1562	GO TO 17	7943		INCCUR = O
	1563	16 LTHIST = .TRUE.	7944		NRN = O
	1564	LTAPE8 = .FALSE.	7945		NRNVAR = O
	1565	17 GALL ELTIME (1,8)	7946		LBBELT = O
	1567	PRFVT = -999 O	7947		LBBAG = O
	1568	IF (IRSIN.NE.O) GO TO 10	7949		LBSEG = 0
			7950		LBPL = 0
			7951		LLFRST = O
			7952		TIMLAS = 0.DO
			7953		LASREC(1) = 0
			7954		LASREC(2) = 0
=	1569	C	7956	С	LABREU(J) = U
			22.5	, 1 V	-

Table C.5. Comparison of GUCVS with GMCVS (Page 22 of 41)

#

Table C.5. Comparison of GUCVS with GMCVS (Page 23 of 41)

8009 KASKTL(3, KASTRU) = I8010 KASKTL(4, KASTRU) = MSEG(2, J, I)8011 KASKTL(5, KASTRU) = MSEG(3, J, I)8012 90 CONTINUE 8013 100 CONTINUE 8014 IF (KASE .EQ. O) GO TO 110 8015 KATKOL(KATG) = 108016 KATKAS(1,KATG) = KASE 8017 GO TO 120 8018 110 KATKOL(KATG) = 08019 KATKAS(1, KATG) = O8020 120 KASNUM = KASNUM + KASE 8021 С CATEGORY 8---BELT FORCES 8022 KATG = 88023 KASE = O8024 IF (NBLT .LE. 0) GO TO 150 8025 DO 140 I = 1. NBLT 8026 KBL = IABS(MNBLT(I))8027 IF (KBL .EQ. O) GO TO 140 8028 DO 130 J = 1, KBL 8029 KASE = KASE + 1 8030 KASTRU = KASNUM + KASE 8031 KASKTL(1, KASTRU) = KATG + 28032 KASKTL(2, KASTRU) = MBLT(1, J, I)8033 KASKTL(3, KASTRU) = I8034 KASKTL(4, KASTRU) = MBLT(2, J, I)8035 KASKTL(5, KASTRU) = MBLT(3, J, I)8036 130 CONTINUE 8037 140 CONTINUE 8038 KATKOL(KATG) = 48039 KATKAS(1,KATG) = KASE 8040 GO TO 160 8041 150 KATKOL(KATG) = 08042 KATKAS(1, KATG) = 08043 160 KASNUM = KASNUM + KASE 8044 С CATEGORY 9---HARNESS BELT FORCES 8045 KATG = 98046 KASE = OIF (NHRNSS .LE. O) GO TO 190 8047 J1 = 18048 8049 K1 = 18050 DO 180 I = 1, NHRNSS 8051 KBL = NBLTPH(I)8052 IF (KBL .LE. O) GO TO 180 8053 J2 = J1 + KBL - 18054 D0 170 J = J1, J28055 KASE = KASE + 18056 KASTRU = KASNUM + KASE 8057 KN = NPTSPB(J)8058 IF (KN .LE. O) GO TO 170 8059 K2 = K1' + KN - 18060 KASKTL(1, KASTRU) = KATG + 28061 С HARNESS BELT NUMBER 8062 KASKTL(2, KASTRU) = J8063 С HARNESS NUMBER 8064 KASKTL(3, KASTRU) = IС 8065 FIRST AND LAST POINT NUMBERS 8066 KASKTL(4, KASTRU) = K18067 KASKTL(5, KASTRU) = K28068 K1 = K2 + 1

Table C.5. Comparison of GUCVS with GMCVS (Page 24 of 41)

KATKAS(1,KATG) = 0 260 KASNUM = KASNUM + KASE CATEGORY 12---AIRBAG CONTACT FORCES CATEGORY 10---SPRING DAMPER FORCES CATEGORY 11---AIRBAG PARAMETERS KATG = 11 KASE = 0 Q IF (I.EQ.NSD) GD TD 210 KASKTL(4,KASTRU) = MSDM(I KASKTL(5,KASTRU) = MSDN(I 210 CONTINUE KASKTL(1,KASTRU) = KATG + NUMBER OF AIRBAG KASKTL(2,KASTRU) = KB NUMBER OF PARAMETER GROUP KASKTL(3,KASTRU) = KC KASKTL(1,KASTRU) = KATG + KASKTL(2,KASTRU) = MSDM(1) = MSDN(I) IF (NBAG LE. 0) GO TO 250 NUM = NBAG + NBAG DO 240 I = 1, NUM KASE = KASE + 1 KASTRU = KASNUM + KASE IF (NBAG .LE. 0) GD TD 290 IF (NSD .LE. 0) G0 T0 220 D0 210 I = 1, NSD, 2 KASE = KASE + 1 KASTRU = KASNUM + KASE KATKAS(1,KATG) = 0 230 KASNUM = KASNUM + KASE 200 KASNUM = KASNUM + KASE KPT = KPA + MNBAG(I)KATKAS(1,KATG) = KASE KATKOL(KATG) = 4 KATKAS(1,KATG) = KASE KB = (NUM + 1) / 2 KC = 2 - MOD(NUM,2) KATKAS(1,KATG) = KASE + KASKTL(4,KASTRU) = 0 KASKTL(5,KASTRU) = 0 KASKTL(3,KASTRU) KATKAS(1, KATG) = 0NBAG NPANEL(I) GD TD 200 190 KATKDL(KATG) = 0 GD TD 230 220 KATKOL(KATG) = 0 GD TD 260 KATKOL(KATG) = 0 KATKOL(KATG) = 6Ħ J1 = J2 + 1 KATKOL (KATG) DO 280 I = KATG = 12KASE = 0CONT INUE KATG = 10 KASE = 0 240 CONTINUE 180 CONTINUE KPA = 250 170 c c <u>.</u>0 υ c 8087 8087 1 8087 8088 8088 8089 8090 8091 8086 8075 8076 8077 8078 8079 8079 8082 8083 8092 8093 8099 8100 8 102 8 103 8 105 8 106 8 108 8 109 8069 8070 8072 8073 8074 8081 8084 8085 8094 8095 8096 8097 8098 8101 8104 8107 8112 8113 8114 8117 8118 8119 8120 8121 8122 8123 8125 8126 8110 8111 8115 8116 8124 8071

ģ

Table C.5. Comparison of GUCVS with GMCVS (Page 25 of 41)

WRITE (6,350) KASNUM 350 FORMAT ('1', 39X, 'RECORDED CATEGORIES AND CAS 'NUMBER OF CASES = ', I4/5X, 'CASE', 5X 'CATEGORY', 5X, 2 'N', 8X, 'NN', 10X, 'M', 8X, 'MM') DD 510 J = 1, KASNUM KAT = KASKTL(1,J) N = KASKTL(2,J) IF (KATKAS(1,1) .GT. 0) GD TD 310 KATKAS(2,1) = 0 KATKAS(3,1) = 0 .GT. 0) GO TO 330 IF (KPT .LE. 0) GD TD 280 DD 270 J = 1, KPT, 2 J1 = J J2 = MINO(J+1, KPT) J2 = MINO(J+1, KPT) J2 = J2 - J1 + 1 J5 = J5 - J1 + 1 J5 = -J5 J3 = -J1 J4 = -J2 8136 8137 262 IF (J1 .GT. KPA' B138 J3 = -J1 J4 = MBAG(7 J64 J3 = MBA 2 + KASKTL(1,KASTRU) = KATG KASKTL(2,KASTRU) = I KATKAS(2,1) = 1 KATKAS(3,1) = KATKAS(1,1) + KATKAS(1,1) + KASE ال = J5 4 KATKAS(2,I) = LAST + 1KASNUM = KASNUM + KASE DD 320 I = 1, 5 KATKAS(1,KATG) = KASE GD TD 300 KATKOL(KATG) = O KASKTL(3, KASTRU) KASKTL(4, KASTRU) KASKTL(5, KASTRU) KATKAS(3, I) = LASTKASTRU = KASNUM = MBAG(2, J2-KPA KASE = KASE + 1 KATKAS(1,KATG) = 0 NN = KASKTL(3, J) IF (KATKAS(1,1) 0 " 0 = KATKOL(KATG) = 612 KATKAS(2,1) KATKAS(3,1) LAST = LAST D0 340 I = 6G0 T0 320 G0 T0 340 CONTINUE 270 CONTINI 280 CONTINUE 320 CONTINUE LAST = 0340 CONTINUE ES'/20X, 290 300 310 330 266 Comparison of GUCVS with GMCVS (Page 26 of 41) 8149 8152 8160 8161 8147 8150 8153 8154 8155 8155 8156 8157 8158 8159 8164 8 166 8 167 8144 8151 8168 8169 8173 8179 8182 8183 8184 8145 8146 8148 8162 8163 8170 8172 8174 8178 8181 8165 8171 8175 8176 8177 8180 Table C.5.

	8185		M = KASKTI(A, I)
	8186		MM = KASKTI(5.1)
	8187		LI = KAT - 7
	0107		
	9100		1F(00, CT, T) = 0 = 0 = 0
	0109		$\frac{1}{10} \frac{1}{100} \frac{1}{$
	8190		DU 300 I = 1, 7
	0191		KOTF(I) = BLANK
	8192	360	
	8193		GU TU (370, 390, 400, 420, 430, 440, 460), J
		U	
	8194	370	$D0 \ 380 \ I = 1, 5$
	8195		RSIF(1) = PLIIL(1, NN)
	8196	380	CONTINUE
	8197		GU IU 480
•	8198	390	RSIF(4) = SEG(N)
	8199		GO TO 480
	8200	400	DU 410 I = 1, 5
	8201		RSTF(I) = BLTTTL(I,NN)
	8202	410	CONTINUE
	8203		GO TO 480
	8204	420	RSTF(3) = HARN1
	8205		RSTF(4) = HARN2
	8206		GO TO 490
	8207	430	RSTF(2) = SPDAM1
	8208		RSTF(3) = SPDAM2
	8209		RSTF(4) = SPDAM3
	8210		RSTF(5) = SPDAM4
	8211		GO TO 490
	8212	440	DO 450 I = 1, 5
	8213		RSTF(I) = BAGTTL(I,N)
	8214	450	CONTINUE
	8215		RSTF(7) = PARM
	8216		GO TO 490
	8217	460	DO 470 I = 1, 5
	8218		RSTF(I) = BAGTTL(I,N)
	8219	470	CONTINUE
	8220		RSTF(7) = PNTS
	8221		GO TO 490
	8222	480	RSTF(6) = VS
	8223		RSTF(7) = SEG(M)
	8224	490	WRITE (6,500) J, KAT, N, NN, M, MM, (RSTF(I)
		,I=1,7)	
	8225	500	FORMAT (5X, I3, 5X, I7, 3X, I6, 2X, I6, 7X,
		IG, 2X,	IG, 5X, 6A4,
	8226	1	2X, A4)
	8227	510 C	DNTINUE
	8228	W	RITE (G.520) (K.(KATKAS(I.K), I=1.3), KATKOL(K)
		,K=1,12)
	8229	520 F	ORMAT ('O', 40X, ' CASES BY CATEGORY'/5X, 'CA
		TEGORY'	, 5X,
	8230	1	'NUMBER OF CASES', 5X, 'STARTING CASE',
		5X. 'E	NDING CASE'.
	8231	2	5X, 'RECORDED COLUMNS'/(5X.16.10X.16.15
		X, 16. 10	X, I6, 14X, I6))
	8232	I	F (IOTALK .NE. O) WRITE (6.660)
	8233	с	· · · · · · · · · · · · · · · · · · ·
	8234	С	RECORD TIME INVARIANT INFORMATION ON HOLD FIL
		E WITH	1ST TIME
	8235	C	*
	8236	N	RNVAR = 3

1579 1580 DO 20 K=1,7

С

с с INPUT CARDS H. (K). (J) FOR K=1,3

.

Table C.5. Comparison of GUCVS with GMCVS (Page 27 of 41)

101

Ŧ

=

	LAST = NRNVAR	CALL STASH(VPSTTL, 20, LAST)	CALL STASH(COMENT 40. LAST)			LEBELI = LASI	CALL STASH(BLTTTL, 5*NBLT, LAST)	530 IF (NBAG .LE. O) GD TD 540	LBBAG = LAST	CALL STASH(BAGTTL, 5*NBAG, LAST)	540 IF (NJNT F. O) GO TO 550	LBUNT = LAST	CALL STASH, DINI N.INI LAST	SEO LE (NSEG LE O) ON TO EDO		COLORIA CONCOLORIA	CALL STASH SEG, NGRNU, LASI)	CALL SIASH(FLPMI, NSEG, LAST)		DO 570 J = 1, 3	D0 560 I = 1, 3		FDPMI(LK) = DPMI(I, J, K)	560 CONTINUE	570 CONTINUE	580 CONTINUE	CALL STASH(FDPMI, LK, LAST)	590 IF (NPL .LE. 0) GD TO 600	LBPL = LAST	CALL STASH(PLTTL, 5*NPL, LAST)	600 LLFRST = LAST	C COMPLITE LAVOLIT SPACING AND BASE INDICES	A THE PART OF THE PART OF THE THE THE	C FOR INDIVIDUAL CASES					STPMIN = DMIN1(HMAX,HMIN)*1000.DO	IF (NPRT(4) .EQ. 0) STPMIN = DT*1000 D0	RSTF(1) = STPMIN	TIMMAX = NSTEPS * DT * 1000.DO	MAXPTS = -1	IF (STPMIN .GT. O.) MAXPTS = TIMMAX / STPMIN +	I.3 C LIMIT MAYDTS TO MAVIMUM TIME DOINT SABASITY	OF CVSOUT	MAXPTS = MINO(MAXPTS, 6000)	LSTEP = (MAXPTS + 2) / 3 + 1	NRNBAS(1) = 0	LFIRST(1) = -1	UU 610 I = 2, 6 IIAS - I - 4	ILA3 - I - I NRNBAS(I) = NRNBAS(IIAS) + KATKAS(I TIAS) *	LSTEP	LFIRST(I) = -1	IF (KATKAS(1, ILAS) .LE. 0) NRNBAS(ILAS) = 0	610 CONTINUE VASTAD - VASANIM - E	
	8237	8238	8239	8240	++00	1 7 7 0	8242	8243	8244	8245	8246	8247	8248	8249	8250	00000 1000			4070	8255	8256	8257	8258	8259	8260	8261	8262	8263	8264	8265	8266	8268		8269				8270	8271	8272	8273	8274	8275	87.16	8277		8278	8279	8280	8281	2070 2070	8284		8285	00700	8287 8288	
																																IF (K.LE.3) READ (5,18) KSG.(MSG(J.K).(XSG(I.J	,K),I=1,3),J=1,KSG)	IF (K.LE.3) WRITE(G,88) KSG,(MSG(J,K),(XSG(I,J V) I-1 2) -1 260	. N. 11-1, 53, 01-1, N.66) 10-1, 11-1, 53, 11-1, 51, 11-1, 51, 11-1, 51, 11-1,	10 FURMAT(210,3F12.0/(112,3F12.6)) B8 FORMAT(1X,'CARDS H.(K).(U)',/,1X,2I6,3F12.6/(1	X,I12,3F12.6))		C INPUT CARDS H. (K) FOR K=4,7																		
-																															= 1583	1584)2	1585	1505	1587		= 1588	1589																		

H

H

. .

.

.

 $\left(\right)$

Ź

Table C.5. Comparison of GUCVS with GMCVS (Page 28 of 41)

WITTE (6,630) KASTOP 630 FORMAT ('1', 40X, 'TIME VARIANT QUANTITES RECO RDED (NUMBER =', 15, 'QUANTITY ND.', 4X, 'QUANTITY H KATG = KASKTL(1,KAS) WRITE (6,640) I, NRNBAS(I), KATG, NUM, KAS FORMAT (8X, I6, 19X, I6, 19X, I5, 1 'ORD NO.', 4X, 'RECORDING CATEGORY', 5X KPRELM(1) = LAST + (KWDPLN + LFENKT - 1) / KWD NSD, NBAG, NBLT, 1 NHRNSS, MAXPTS, LSTEP, NSTEPS, KASNUM, N WRITE (LDNWRK'1) IZERO, IZERO, IZERO, IZERO, I LBBAG, LBJNT, LBSEG, LBPL, LLFRST WRITE (LDNWRK'3) DATE, BDYTTL, KASTOP, LFENKT, IF (IDTALK .EQ. O) GD TD 680 WRITE (6,670) NVEH, NGRND, NSEG, NPL, NJNT, NS D, NBAG, NBLT, DD 620 I = 7, KASTOP NRNBAS(I) = NRNBAS(I - 1) + LSTEP IF (I .GT. KASNUM) GD TO 620 LFIRST(I) = -1 CALL STASH(FFIRST(1), KASNUM, LAST) Call Stash(Frnbas, Kastop, Last) Call Stash(Fkaskl, 5*kasnum, Last) Lfenkt = 51 CALL STASH(FENKAT, LFENKT, LAST) 3 5X, 'CASE NO.') DD 650 I = 1, KASTOP IF (I .GT. 5) GO TO 633 KATG = I RSTF(7) = UNITM RSTF(8) = DT * 1000.D0 NUM = KATKAS(1,KATG) KAS = 0 RSTF(9) = TIMMAXRSTF(2) = PI RSTF(3) = G RSTF(4) = RADIAN RSTF(5) = UNITL = RADIAN 'NUMBER OF CASES', RSTF(6) = UNITTKPRELM(2) = 1 KPRELM(3) = 1 WRITE (6,660) 660 FDRMAT ('1') NPRT(4) KAS = I - 5(RSTF(I), I=1,9) GO TO 636 NUM = 1 IZERO = 0620 CONTINUE 650 CONTINUE RNVAR, LBBELT, 2 LBE ZERO, IZERO, EADER REC', OX, I6) 640 + NJ4 633 636 8292 8293 8294 8289 8290 8291 8295 8296 8299 8300 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8315 8315 8316 8318 8319 8320 8321 8322 8323 8324 8325 8325 8326 8327 8328 8329 8330 8331 8332 8336 8297 8298 8301 8333 8334 8335 8337 8338

Table C.5. Comparison of GUCVS with GMCVS (Page 29 of 41)
· ,

 1NHRNSS, MAXPTS, LSTEP, NSTEPS, KASNUM, NRNVAR, LBBELT, LBBAG, 2LBUNT, LBSEG, LBPL, LLFRST, DATE, BDYTTL, KAST OP, LFENKT, 670 FORMAT ('0 RN=2 ', 2016/' RN=3 ', 3A4, 5X, 5A 4, 216, 3G20.10/7X, 4, 216, 3G20.10/7X, 620.10, 13) 620.10, 13)	C RECORD TIME VARIANT INFORMATION ON HOLD FILE						C 680 LINES = LINES + 1	IF (LINES .GT. MAXPTS) GD TO 920 USEC = 1000.DO * TIME C RECORD CURRENT TIME		C = MULTPL = USEC / STPMIN + .5	RSTF(1) = USEC KSTF(2) = LINES L)
8339 8341 8341 8343 8343	8344 8345						8346 8347	8348 8349 8350 8351		8352 8353	8354 8355 30 of 41
	C IF (K.GT.3) READ (5,19) KSG,(MSG(J,K),J=1,KSG)	<pre>IF (K.GT.3) WRITE(6,89) KSG,(MSG(J,K),J=1,KSG) 19 FORMAT(1216/(112,1016)) 89 FORMAT(1X,'CARDS H.(K)FOR K =4,7',/,1X,216,3F1 2.6/(1X,112,3F12.6)) IF (K.NE.7 .0R. KSG.EQ.0) GD TD 20 DO 12 J=1,KSG L = MSG(J,K) IF (IABS(IPIN(L)).EQ.4) MSG(J,K) = -L 12 CONTINUE</pre>	<pre>20 NSG(K) = KSG 10 IF (.NDT.LTAPE8) GO TO 21 WRITE (8) NSEG,NJNT.NPL.NBLT.NBAG.NVEH ,NGRND.NPANEL, MNPL.MNBLT.MNSEG.MNBAG.MPL.MBL *</pre>	T, MSEG, MBAG WRITE (8) DATE, COMENT, VPSTTL, BDYTTL, BL TTTL, PLTTL, BAGTTL,	* SEG, JOINT, UNITL, UNITT, UNITT, NS G, MSG, XSG, * NHRNSS, NBLTPH, NPTSPB, NSD, MSDM,	21 LINES = LINES + 1 21 LINES = LINES + 1 IF (MOD(LINES,LPP).EQ.1 .AND. LTHIST) CALL H EDING (LINES,LPP) NT = 20 NT = 20	USEC = 1000.0*TIME C COMPUTE AND PRINT DATA FOR 7 TYPES OF OUTPUT A BOVE	C DO 44 K=1.7 IF (NSG(K).LE.O) GO TO 44 KSG = NSG(K)	<pre>IF (K.Eq.7) J3 = 2 D0 43 J1=1,KSG,J3 J2 = MINO(J1+J3-1,KSG) NT = NT+1 D0 38 J=J1,J2 L = IABS(MSG(J,K)) G0 T0 (22,24,26,29,31,34,35),K</pre>	C C 1. SEGMENT LINEAR ACCELERATIONS IN LOCAL REFER ENCE	<pre>c c c c c c c c c c c c c c c c c c c</pre>
	= 1591 1591	1592 1594 1595 1595 1595 1596 1598	1600 1601 1602 1603	1604	5091 104	1607 1608 1609	1610 = 1611 1612	= 1613 1614 1615 1615 1616	1618 1619 1620 1621 1622 1623	= 1625 1626	1627 1628

,

.

750 IF (KASNUM .LE. 0) GD TD 890 DD 880 II = 1, KASNUM KASE = ABSOLUTE CASE NUMBER AMONG ALL TIME D KASE = II KATG = KASKTL(1,II) - 2 KAS = RELATIVE CASE NUMBER WITHIN RECORDING <u>ى</u> + INCCUR = (USEC - TIMLAS) / STPMIN INCSML = MINO(INCSML, INCCUR) KAS = KASE - KATKAS(2,KATG) + 1 IF (USEC .LE. TIMLAS) GD TD 690 = WMEGD(J,I) INCBIG = MAXO(INCBIG,INCCUR) 690 IF (NGRND .LE. 0) GD TD 720 DD 710 I = 1, NGRND DD 700 J = 1, 3 RSTF(J + 3) = SEGLV(J,I) RSTF(J + 6) = SEGLA(J,I) RSTF(J + 9) = WMEG(J,I) IF (LINES .EQ. 1) GO TO 690 RSTF(J + 1B) = D(J, 1, 1) RSTF(J + 21) = D(J, 2, 1) RSTF(J + 24) = D(J, 3, 1)750 = U1(J,I) RSTF(J) = SEGLP(J,I) RSTF(J) = PRJNT(J,I)CALL DUTREC(RSTF(10)) CALL OUTREC(RSTF(19)) 720 IF (NJNT .LE. 0) GD TD CALL DUTREC(RSTF(1)) CALL OUTREC(RSTF(1)) CALL DUTREC(RSTF(1)) CONTINUE KSTF(8) = IPIN(I) DO 740 I = 1, NUNT RSTF(J + 12) = RSTF(J + 15) = RSTF(J + 18) = DO 730 J = 1, 7 KSTF(3) = MULTPLKATG = 3CONTINUE KATG = 4KASE = I KATG = 2KASE = I KASE = n KOPY = 0KOPY = 1710 CONTINUE KATG = 5KATG = 1740 CONTINUE EPENDANT RECS KASE = KASE CATEGORY 700 730 c C Comparison of GUCVS with GMCVS (Page 31 of 41) 8358 8359 8360 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8361 8372 8373 8378 8379 8380 8381 8382 8383 8356 8375 8376 8377 8384 8385 8386 8387 8388 8388 8389 8389 8391 8392 8393 8395 8396 8397 8398 8399 8400 8357 8374 8404 8405 8394 8401 8402 8403 8406 AGC(I,J) = (T4(I)+T3(I)+T2(I))/G
23 T1(I) = ACC(I,J)
IF (LPMI(L).NE.O) CALL D0T31 (DPMI(1,1,L),T1 2. SEGMENT LINEAR VELOCITIES IN VEHICLE REFERE 3. SEGMENT LINEAR DISPLACEMENTS IN VEHICLE REF 4. SEGMENT ANGULAR ACCELERATIONS IN LOCAL REFE 29 D0 30 I=1,3
ACC(I,J) = WMEGD(I,L)/(2.0*PI)
30 T1(I) = ACC(I,J)
IF (LPMI(L).NE.O) CALL D0T31 (DPMI(1,1,L),T1 5. SEGMENT ANGULAR VELOCITIES IN VEHICLE REFER 32 ACC(I, J) = (T2(I)-WMEG(I,NVEH))/(2.0*PI) 33 ACC(4, J) = DSQRT(ACC(1, J)**2+ACC(2, J)**2+ACC(3 6. SEGMENT ANGULAR DISPLACEMENTS IN VEHICLE RE 76 CALL DDT31 (D(1,1,L),XSG(1,J,K),T1) 77 D0 27 I=1,3 27 T3(I) = T1(I) + SEGLP(I,L) - SEGLP(I,NVEH) 28 CALL MAT31 (D(1,1,NVEH),T3,ACC(1,J)) D0 25 I=1,3 25 T3(I) = T2(I) + SEGLV(I,L) - SEGLV(I,NVEH) G0 T0 28 CALL CROSS (WMEG(1,L),T1,T2) CALL CROSS (WMEGD(1,L),XSG(1,J,K),T3) CALL MAT31(D(1,1,L),SEGLA(1,L),T4) 24 CALL CROSS (WMEG(1,L),XSG(1,J,K),T1) CALL D0T31(D(1,1,L),T1,T2) 26 IF (LPMI(L).EQ.O) GD TD 76 CALL DDT33 (DPMI(1,1,L).D(1,1,L),T4) CALL DDT31 (T4,XSG(1,J,K),T1) CALL DOT31 (D(1,1,L),XSG(1,J,K),T1) 34 IF (LPMI(L).EQ.O) GD TO 36 CALL DOT33(DPMI(1,1,L),D(1,1,L),T4) 31 CALL DDT31 (D(1,1,L),WMEG(1,L),T1) CALL MAT31 (D(1,1,NVEH),T1,T2) DD 32 I=1,3 CALL D0TT33(T4,D(1,1,NVEH),T1) DO 23 I=1,3 G0 T0 33 G0 T0 77 GO TO 33 GO TO 33 GO TO 38 Table C.5. ((r'i)))), ((r,1)))Acc(1, J)) FERENCE C ERENCE C , J)**2) RENCE C ENCE NCE c C C υu ပပ c C c C C 1629 1630 1631 1632 1633 1634 1635 1637 1640 1643 1644 1645 1646 1648 1649 1655 1656 1657 1658 1636 1639 1641 1642 1650 1652 1653 1647 1654 1660 1670 1651 1659 1661 1662 1663 1664 1665 1666 1668 1669 1673 1674 1675 1667 1672 1676 1677 1678 1679

3 5	36 CALL DOTT33 (D(1,1,L),D(1,1,NVEH),T1)	8408		
7 71 CML 70 CML 27 CML 29 20 70 17 20 20 20 100				
Transe: of - 0.01 (1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(37 CALL YMKUEGIJI ACCIJ UTJ	B409		
F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) F: (Trade: 1.1.0) </td <td>TRACE = $0.5*(T1(1)+T2(2)+T3(3)-1.0)$</td> <td>8410</td> <td>760</td> <td>00 770 I = 1 KUI</td>	TRACE = $0.5*(T1(1)+T2(2)+T3(3)-1.0)$	8410	760	00 770 I = 1 KUI
<pre>Fi (Trice Trice Tri</pre>	IF (TRACF GT 1 0) TRACF = 1 0	111	2	DCTE(1) - DCE(1 VAC)
<pre>cicit.0] = 'aktrość (racci / hacie, / hacie / hac</pre>	TE (TDACE IT -1 O) TDACE1 O		011	KOLTTHIC - FOF(1, NAS)
7. JULY PRANKTERS 200 2007101 557(1.1.45) 810 200 200 2007104 557(1.1.45) 810 200 200 20070 200 20070 200 100 100 810 200 200 20070 200 20070 200 100 100 810 200 200 20070 200 20070 200 100 100 810 200 200 20070 200 20070 200 100 100 810 200 200 20070 200 100 100 200 100 100 810 200 200 20070 200 100 100 200 100 100 810 200 200 20070 200 20070 200 100 100 200 100 100 810 200 200 200 20070 200 20070 200 20070 200 20070 200 20070 810 200 200 200 20070 200 20070 200 20070 200 20070 200 20070 810 200 200 200 20070 200 20070 200 20070 200 20070 200 20070 810 200 200 200 20070 200 20070 200 20070 200 20070 200 20070 810 200 200 200 200 20070 200 20070 200 20070 200 20070 200 20070 810 200 200 200 200 200 200 200 200 20070 200 20070	ACC(4 .1) = DAD/OS(TDACE)/DADIAN	04 12		
7. JULY PAAMETES 7. JULY PAAMETES 7. JULY PAAMETES 8477 (1) 1 - 557(1.45) 8 ACC(1, 1) - FRANT(1,1)/PADIAM 8417 (1) 0 0 00 00 ACC(1, 2) - FRANT(1,1)/PADIAM 8417 (1) 0 00 00 ACC(1, 2) - FRANT(1,1)/PADIAM 8417 (1) 0 00 00 ACC(1, 2) - FRANT(1,1)/PADIAM 8417 (1) 000 00 ACC(1, 2) - FRANT(1,1)/PADIAM 8417 (1) 000 00 ACC(1, 2) - FRANT(1,1)/PADIAM 8410 000 00 ACC(1, 2) - FRANT(2,1) 8420 000 000 ACC(1, 2) - FRANT(2,1) 8420 00000	GO TO 38		001	
7. JOINT PARMETERS 700 CONTINUE 1 - SATILAND 8.1015 J. FRANT(1,1)/MADINA 81115 STILADD 8.1015 J. FRANT(1,1)/MADINA 8111 STILADD 8.1015 J. FRANT(1,1) 8120 STILADD 8.1015 STILADD 8120 STILADD <td></td> <td>1 1 1 0 C</td> <td>007</td> <td>DU /30 I = 1, KUL</td>		1 1 1 0 C	007	DU /30 I = 1, KUL
2 3 ACC(1, J) = FRANT(1, 1)/ADDIAN ACC(2, J) = FRA	C 3 INTAL BARANETERS	0.4 10		KSIF(I) = SSF(I,KAS)
a Acc(2: J) = FGANT(1:1) Acc(2: J) = FGANT(2:1)/FADIAN Acc(2: J) = FGANT(2: J)/FADIAN Acc(2: J) = FGANT(2: J)/FADIAN Acc(2: GANTANCAC, 2: J)/FADIAN ACC(2: J) = FGANT(2: J)/FADIAN ACC(2: J) = FGANTANCAC(2: J) = FGANTANCAC(2: J) = FGANTANCAC(2: J)/FADIAN ACC(2: J) = FGANTANCAC(2: J) =	C V. UUINI PAKAMETEKS	8416	OR/	CONTINUE
1 1	25 ACC(1 1) - DD WIT(1 1)	8417		
Action of a structure Action of a struc	00 AUU(1,U) = PRUNI(1,L)	8411.5	800	IF (KATKAS(2,8) .LE. 0) GO TO 820
MCGG(1,1) EXEC(1,1) EXEC(1,2) EXEC(1,1) EXEC(1,2)	ACC(2, U) = PRUNI(2, L)/RADIAN	8418		KAS = KAS + KATKAS(2,9) - KATKAS(2,8)
ACCG:) = FSWIT(RAIL) BAD BID FK (ATASG2.9) FK (ATASG2.11) FK (A	ACC(3, U) = PRUNI(3, L)/RADIAN	8419		G0 T0 820
ACCG:.J: BOSKI(FRANT[6:L]) #220.4 KCS + KCS + KATTAS(2.10) - KATTAS(2.11) - KATAS(2.10) - KATTAS(2.11) - KATAS(2.10) - KATTAS(2.11) - KATAS(2.11)	ACC(4, J) = PRJNT(4, L)/RADIAN	8419.5	810	IF (KATKAS(2,8) .LE. 0) GO TO 815
Accid:.0.1 = Description(1,1) BA20.2 G0 10 B20 C0 10 B20 Extracts.10) = Control 0 Accid:.0.1 = Description(1,1) BA20.2 BA30 F. (ANTLAFES) G0 10 40 BA30.1 F. (ANTLAFC) C0 10 B20 Extracts.10) = Control 0 Accid:.0.1 = Description(1,1) BA30.1 F. (ANTLAFES) G0 10 40 BA30.1 F. (ANTLAFC) Extracts.10) = Control 0 Accid:.0.1 = Description(1,1) BA30.1 F. (ANTLAFES) G0 10 40 BA30.1 F. (ANTLAFC) Extracts.11 B12 Accid:.0.1 B430.1 B40.1 B40.1 B40.1 Extracts.11 B12 ACCID.1 B12 ACCID.1 B430.1 B40.1 Extracts.11 Extracts.11 B12 ACCID.1 B12 ACCID.1 B430.1 B40.1 Extracts.11 Extracts.11 B12 ACCID.1 B12	ACC(5, J) = DSQRT(PRJNT(5, L))	8420		KAS = KAS + KATKAS(2,10) - KATKAS(2,8)
a Activiation b Activiation<	ACC(6, J) = DSQRT(PRJNT(6, L))	8420.2		GO TO 820
a Continue #20.6 MAS = MAS + MANAS(2,10) - KATKAS(2,10) a Continue #22.0 B20.6 MAS = MAS + MANAS(2,10) - KATKAS(2,11) a Continue #22.0 B20.0 B21.1 MAS = MAS + MANAS(2,10) - KATKAS(2,11) a Continue B22.5 B20.0 B22.5	ACC(7, J) = DSQRT(PRJNT(7, L))	8420.4	815	IF (KATKAS(2,9) .LE. 0) GU TD 820
IF (.NOT.LIAPEB) GG TO 421 820 D0 830 1 1, (.NOT.LIAPEB) GG TO 8421 857 (1) 455 (1, MAS) 17 (38 CONTINUE	8420.6		KAS = KAS + KATKAS(2,10) - KATKAS(2,9)
With a construct B422 B57(1,M45) With a construct B422 B57(1,M45) With a construct B422 B57(1,M45) With a construct B422 B57(1,1) B57(1,1) With a construct B51 B50 C01106 B51 Natks(2,1) With a construct B51 B50 C01101 B51 B51 B51 With a construct B	IF (.NOT.LTAPE8) GO TO 40	8421	820	DO 830 I = 1, KOL
12 40.70 112 7 17 14 10.000 14 10.000 16 16 14 10.000 14 17 16 16 14 10.000 14 16 16 16 16 16 16 16 17 16 16 16 16 16 16 16 16 16	KK = O	8422		RSTF(I) = BSF(I, KAS)
TF 6.0 0.	12 = 4	8423	830	CONTINUE
D0 39 1=1,122 8425 850 KAS + KAS + KAS + (X1KAS(2,12) - KATKAS(2,11)) 39 TAX1(KK,MT-20) = ACC(1,U) 000 1 = 1, KOL 8427 00 00 1 = 1, KOL 31 TF (ANT-LTHIST) 000 1 = 1, KOL 8425 850 KAS + KAS + KAS + (X1KAS(2,12)) KATKAS(2,12) 31 TF (ANT-LTHIST) 000 1 = 1, KOL 8420 860 CONTINUE 8435 870 CALL OUTREC(RSTF(1)) 843 860 CONTINUE 8435 870 CALL OUTREC(RSTF(1)) 1 = 1, KOL 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	IF $(K.EQ.7)$ I2 = 7	8424		G0 T0 870
D0 39 1-1.12 8426 850 F 4x5 1 30 10 11.12 00 </td <td>DD 39 J=J1,J2</td> <td>8425</td> <td>840</td> <td>KAS = KAS + KATKAS(2.12) - KATKAS(2.11</td>	DD 39 J=J1,J2	8425	840	KAS = KAS + KATKAS(2.12) - KATKAS(2.11
38 Total (KK, MT-20) = ACC(1, U) 8427 D0 860 I = 1, KOL 40 F (A, MT-20) = ACC(1, U) 8430 860 CONTINUE BASSF(1, K) 40 F (A, MT-20) = ACC(1, U) 8430 860 CONTINUE BASSF(1, K) 41 F (A, MT-20) = ACC(1, U) 8430 860 CONTINUE BASSF(1, K) 41 F (A, FG) WRIFE (MT-42) USEC, (ACC(1, U), I=1, K) 8431 880 CONTINUE BASSF(1) 41 F (A, FG) WRIFE (MT-42) USEC, (ACC(1, U), I=1, K) 8431 880 CONTINUE BASSF(1) LUTREC(RSTF(1)) 41 F (A, FG) WRIFE (MT-42) USEC, (ACC(1, U), I=1, K) 8433 WRITE (LONWER' 1) RSTF(1), LINES, LASREC, I 42 F (MAT, ME 0 WRITE (LONWER' 1) RSTF(1), LINES, LASREC, I LACUTAL 43 CONTINUE 8433 WRITE (LONWER' 1) RSTF(1), LINES, LASREC, I 44 CONTINUE 8430 LINERIA, MCSML GOO 10 43 CONTINUE 8431 LINERIA, MCSML GOO 10 MASSML 44 CONTINUE 8433 LINERIA, MCSML LINERIA, MCSML LINERIA, MCSML LINERIA LINERIA LINERIA LINERIA LINERIA LINERIA	DO 39 I=1,I2	8426	850	K = KAS + KAS - 1
30 0 IF (AUDILITHIST) GG (1,4) 0 IF (AUDILITHIST) GG (1,4) 14 FORMAT(FS-T20) = AGT(1,4) 14 FORMAT(FS-3) USEC.((ACC(1,4),1=1, 14)(-4)(-4) 843 860 GNTIMLE 8430 850 GALL UNTREC(RSTF(1)) 41 10 IF (K.EG.7) WRITE (NT.41) USEC.((ACC(1,4),1=1, 1)(-4)(-4)(-2)) 843 880 GNTIMLE 8430 850 GNTIMLE 8430 850 GNTIMLE 8430 850 GNTIMLE 8431 860 GNTIMLE 8431 880 GNTIMLE 8431 860 GNTIMLE 8431 860 GNTIMLE 8431 860 GNTIMLE 8431 860 GNTIMLE 8431 MAREAC MAREAC <td< td=""><td>KK = KK+1</td><td>8427</td><td></td><td>DO $860 I = 1 K0L$</td></td<>	KK = KK+1	8427		DO $860 I = 1 K0L$
40 IF (.WUT.ITHIST) GO TO 43 1, J-U1.20) 412 (.WUT.ITHIST) GO TO 43 1, J-U1.20) 8420 B00 CONTINUE 1F (K.EG.7) WRITE (WT.41) USEC.((ACC(1.J).I=1, 1) (K.EG.7) WRITE (WT.42) USEC.((ACC(1.J).I=1, 1) (K.EG.7) WRITE (WT.42) USEC.((ACC(1.J).I=1, 1) (K.EG.7) WRITE (WT.42) USEC.((ACC(1.J).I=1, 2) (J-U1.20) 8430 B00 CONTINUE 8430 B00 CONTINUE 443 CONTINUE 8430 B00 CONTINUE 8431 B00 RSTF(1) = USEC. 7) (J-U1.20) 11 (K.EG.7) WRITE (WT.42) USEC.((ACC(1.J).I=1, 2) (J-U1.20) 43 CONTINUE 8431 B00 RSTF(1) = USEC. 8431 B00 RSTF(1) = USEC. 43 CONTINUE 8430 CONTINUE 8433 L. INCBIG. INCSML 8433 CONTINUE 8433 CONTINUE 44 CONTINUE 8430 CONTINUE 8433 CONTINUE 8433 CONTINUE 8433 CONTINUE 44 CONTINUE 8430 CONTINUE 8433 CONTINUE 8433 CONTINUE 8433 CONTINUE 6434 CONTINUE 8430 CONTINUE 8433 CONTINUE 8433 CONTINUE 8434 CONTINUE 7) (J-U1.001 8430 CONTINUE 8433 CONTINUE 8433 CONTINUE 8434 CONTINUE 6 FEOLO 870 CONTINUE 8433 CONTINUE 8434 CONTINUE 8434 CONTINUE 7) (J-U1.001 9434 CONTINUE 9434 CONTINUE 9444 CONTINUE 9444 CONTINUE 7) (J-U1.002 10 47 U-11.001 9434 CONTINUE 9444 CONTINUE 9444 CONTINUE 8440 CONTINUE	39 TDATA(KK,NT-20) = ACC(I,J)	8428		RSTF(I) = BAGSF(I,K)
IF (K.E.6) WRITE (NT.41) USEC.((ACC(1.J).I=1, 0430 870 CALL GUTREC(RSTF(1)) 41. TORMAT(FS.3.3(3X.4F3.3)) 8431 880 CONTINUE 41. F(K.E.0.) WRITE (NT.42) USEC.((ACC(1.J).I=1, 043) 8431 880 CONTINUE 42. FORMAT(FS.3.3(3X.4F3.3)) 8431 880 CONTINUE 43. F(K.E.0.) WRITE (NT.42) USEC.((ACC(1.J).I=1, 043) 843 1. INCBIG. INCSM. 42. FORMAT(FS.3.2(FS.0.3F9.3.2X.3F9.3)) 843 1. INCBIG. INCSM. 43. CONTINUE 8433 1. INCBIG. INCSM. 8433 43. CONTINUE 8434 1. INCBIG. INCSM. 8434 43. CONTINUE 8434 1. INCBIG. INCSM. 8435 43. CONTINUE 8434 900 FORMAT ('0 RN-'1 (') '12') 44. CONTINUE 8435 1. INCBIG. INCSM. 1000 INCSM. 45. MRPC (JO 843 900 FORMAT ('0 RN-'1 (') '12') 1100 INLAS = USEC 70. 411 11. INCSM. 8433 900 FORMAT ('0 RN-'1 (') '12') 71. 12 11. INCSM. 8433 900 FORMAT ('0 RN-'1 (') '12') 71. 12 11. INCSM. 8433 900 FORMAT (') REGO, 10' '11') 71. 12 11. INCSM. 8434 900 FORMAT (') REGO, 10' '1''''''''''''''''''''''''''	40 IF (.NOT.LTHIST) GO TO 43	8429	860	CONTINUE
4). J-U1, U2 4). J-U1, U2 8431 800 CONTINUE 1 F (NEAT(FB.3.3(X,4F9.3)) USEC.((ACC(I.J)).1=1, 15) 8432 800 GONTINUE 7). J-U1, U2. 800 RSTF(1) = USEC. MAITE (LOWMRY 1) RSTF(1). LINES. LASREC. N 47 F (IDTALK 10.000 10.000 NETT (LOWMRY 1) RSTF(1). LINES. LASREC. N 43 CONTINUE 8433 U. INCERIG. INCOM. 8433 44 CONTINUE 8434 10.000 NETT (G.900) RSTF(1). 45 CONTINUE 8433 U. INCERIG. INCOM. 8433 45 CONTINUE 8435 NETT (IDTALK NE. O) WRITE (G.900) RSTF(1). 45 CONTINUE 8435 NO NETT (IDTALK NE. O) WRITE (G.900) RSTF(1). 45 CONTINUE 8435 NO NETT (IDTALK NE. O) WRITE (G.900) RSTF(1). 45 CONTINUE 8435 NO NETT (IDTALK NE. O) WRITE (G.900) RSTF(1). 45 CONTINUE 8435 NO NETT (IDTALK NE. O) WRITE (G.900) RSTF(1). 46 CONTINUE METE (IDTALK NE. O) WRITE (G.900) RSTF(1). NO NO 47 (INT PLANE FORCES METE (IDTALK NE. O) WRITE (G.900) RSTF(1). NO NO 46 FORMACIA METE (IDTALK NE. O) WRITE (IDTAL ERORMORE TIME POINTS I NO	IF (K.LE.6) WRITE (NT,41) USEC,((ACC(I,J)).I=1. 8430	870	CALL DUTREC(RSTF(1))
41 FRAMT(FF3.3.G13X,4F9.3) B431 B40 CONTINUE 7).J=J1.J2) EGWAT(F5.3.3(3X,4F9.3)) B431 B402 CONTINUE 42 FORMAT(F8.3.2(F5.0.3F9.3.2X,3F9.3)) B431 B432 B00 RSTF(1). LINES, LASREC, MULTPL. 43 CONTINUE B433 L. INCBIG, INCSML B00) RSTF(1). 43 CONTINUE B434 L. INCBIG, INCSML B00) RSTF(1). 44 CONTINUE B435 L. INCBIG, INCSML B00 RSTF(1). 45 CONTINUE B435 LICOTALX, NE. O) WRITE (6.900) RSTF(1). 6 RINT FLANE FORCES B435 S. IASREC, MULTPL. B435 6 RINT FLANE FORCES B435 S. IASREC, MULTPL. B435 S. IASREC, MULTPL. 7 ACONTINUE B435 S. IASREC, MULTPL. B435 S. IASREC, MULTPL. 6 RINT FLANE FORCES B435 S. IASREC, MULTPL. S. IASREC, MULTPL. 7 RINT FLANE FORCES B435 S. IASREC, MULTPL. S. IASREC, MULTPL. 7 RES = 400 GET TARK, NE. O) B441 STOP TIT S. IASREC, MULTPL. 8 MISE MIS	4), J=J1,J2)			
7).J-J-1/2) FK.EQ.70 WRITE (MT.42) USEC.(AGC(I,J).I=1, B432 B400 RSTF(1) = USEC 42 FORMAT(FB.3.2(FS.0.3F9.3.2X,3F9.3)) B433 WRITE (LDWWRY1) RSTF(1), LINES, LASREC, N 43 CONTINUE B434 NGEG, INCSM. 0) WRITE (G.900) RSTF(1). 43 CONTINUE B434 NGEG, INCSM. 0) WRITE (G.900) RSTF(1). 44 CONTINUE B435 NGEG, INCSM. 0) WRITE (G.900) RSTF(1). 45 CONTINUE B436 NGEG, INCSM. 0) WRITE (G.900) RSTF(1). 46 CONTINUE B435 NGEG, INCSM. 000 NRITE (G.900) RSTF(1). 6 RINT PLANE FORCES B436 NGEG, INCSM. 000 NRITE (G.900) RSTF(1). 7 Continue B436	41 FORMAT(F9.3,3(3X,4F9.3))	8431	880	CONTINUE
433 WRITE (LDNWEK'1) RSTF(1), LINES, LASREC, N.SML 43 CONTINUE 843 44 CONTINUE 843 7 LISREC, MULTPL, N. O.) WRITE (6.900) RSTF(1). 7 LSREC, MULTPL, N. O.) WRITE (6.900) RSTF(1). 7 LSREC, MULTPL, N. O.) WRITE (6.900) RSTF(1). 7 LSREC, MULTPL, GO, O. TI12) 843 SUBSCIPACION 7 LSREC, MULTPL, GO, O. TI12) 843 SUBSCIPACION 844 SUBSCIPACION	IF (K.EQ.7) WRITE (NT,42) USEC,((ACC(I,J)),I=1, 8432	890	RSTF(1) = USEC
43 CONTINUE 43 F. NORMACTI MSTRTID. LINES. LASREL. NUMBER 100 MRTE (6.900) RSTF(1). 43 CONTINUE 8435 L. NORLG, INCSM. 8435 L. NORLG, INCSM. 44 CONTINUE 8435 S. LASREL, NULFL. 0.0 MRTE (6.900) RSTF(1). 67 RINT PLANE FORCES 8435 S. LASREL, NULFL. 0.0 YI12) 67 RINT PLANE FORCES 8435 S. LASREL, NULFL. 0.0 YI12) 67 RINT PLANE FORCES 8435 S. LASREL, NULFL. 0.0 YI12) 68 DO FORMAT (° O RUNH ' CO RUNH ' CO RUNH' CO RUNH. LAST LLFRST 60 DO FORMAT (° O RUNH ' CO RUNH. DO FORMAT (° O RUNH' CO RUNH. LAST 7 ROPE = 'O GO TO 49 8440 DO FORMAT (° O RUNH ' CO RUNH. LAST 16 MPS.F = MONCULTARED 8441 DO FORMAT (° O RUNH ' CO RUNH. LAST LETTREC B442 DO FORMAT (° O RUNH. LAST LETTREC B443 DO FORMAT (° O RUNH. LAST LETTREC B443 DO FORMAT (° O RUNH. LAST LAST LETTREC B443 DO FORMAT (° O RUNH. LAST LAST LETTREC DO FORMAT (° O RUNH.	//,U=U1,U2) 40 EADMAT(EQ 3 2(EE \ 2EQ 3 2\ 2EQ 2))		-	
43 CONTINUE 434 TECLICIALR. NE. 0) WRITE (6.900) RSTF(1). 44 CONTINUE 44 CONTINUE 8435 5. LERGEC MULTPL. 45 CONTINUE 8435 5. LERGEC MULTPL. 8435 5. LERGEC MULTPL. 67 PRINT PLANE FORCES 8436 900 FORMAT (°0 RN=1 ', G20.10, 7112) 8436 67 PRINT PLANE FORCES 8436 900 FORMAT (°0 RN=1 ', G20.10, 7112) 60 PSE = '0 8436 900 FORMAT (°0 RN=1 ', G20.10, 7112) 61 PSE = '0 8436 900 FORMAT (°0 RN=1 ', G20.10, 7112) 61 PSE = '0 8438 900 FORMAT (°0 RN=1 ', G20.10, 7112) 61 PSE = '0 8438 900 FORMAT (°0 RN=1 ', G20.10, 7112) 61 PSE = '0 61 PSE = '0 8443 910 RETURN 61 PSE = 0.01 GG0 TO 49 910 RETURN 910 RETURN 8443 61 PSE = 0.01 GG0 TO 49 910 RETURN 910 RETURN 910 RETURN 61 PSE = 0.01 GG0 TO 49 910 RETURN 910 RETURN 910 RETURN 61 PSE = 0.01 GG0 TO 49 910 RETURN 910 RETURN 910 RETURN 61 PSE = 0.01 GG0 TO 45 910 RETURN 910 RETURN 910 RETURN 61 PSE = 0.01 LETAPEB GO TO 47 910 LETAPEB </td <td>44 TURMAT(LO.0'2(LO.0'0LO.0'2LO.0'))</td> <td>0433</td> <td></td> <td>WKITE (LUNWKK'T) KSTF(T), LINES, LASREC, 216 Tacemi</td>	44 TURMAT(LO.0'2(LO.0'0LO.0'2LO.0'))	0433		WKITE (LUNWKK'T) KSTF(T), LINES, LASREC, 216 Tacemi
44 CONTINUE 5. LASREC, WULFL, TO WAH 1. (20.10, 7112) 7 RINT PLANE FORCES 8435 1.06814, 1.020, 0010, 7112) 7 RINT PLANE FORCES 8436 1.01614, 1.020, 0010, 7112) 8437 500 FORMAT ('0 NEWH, GOLO, 7112) 8437 8438 501 FIRST 8438 1.011, 1.051 8438 501 LERST 8438 1.011, 1.051 843 501 A9 8440 910 FIRST(1), KASNUM, LAST) 8440 910 A7 US 910 A10 910 A10 8440 910 RETURN 910 RETURN 0.011MLAS = USEC 8440 910 RETURN 910 RETURN 0.011MLAS = USEC 910 A7 USE FEO.0) GO TO 49 9442 920 WRITE (6,930) 930 REMAT ('0FATAL ERRORMORE TIME POINTS T 911 IN 1.111 1.111 910 A111 1.111 911 IN 1.111 1.111 1.111 911 IN 1.111 1.	43 CONTINUE	8434		IF (INTALK NF A) WDITE (6 90Å) DETE(1)
44 CONTINUE 8435 1 INCBIG, INCSML RFINT PLANE FORCES 8436 900 FORMAT (* 0 RN=1 *, G20.10, 7112) RF F='0 8438 900 FORMAT (* 0 RN=1 *, G20.10, 7112) MPSF ='0 8438 1 INCBIG, INCSML MPSF ='0 8438 1 EKRST MPSF ='0 8438 1 F(KPUP * NE. 0) TIMLAS = USEC MPSF = 0 841 910 RETURN D0 45 u=1.NPL 8441 910 RETURN D0 47 u=1.NPL 8443 930 FORMAT (*0 RN=1 *, G20.10, 7112) D0 47 u=1.NPL 8443 910 RETURN D0 47 u=1.NPL 8443 930 FORMAT (*0 RN=1 *, G30) D0 47 u=1.NPSF.2 920 NRTTE (6,930) 8443 D0 47 u=1.NPSF.2 920 NRTTE (6,930) D1 47 u=1.NPSF.2 920 FORMAT (*0 FATAL ERRORMORE TIME POINTS 1 D1 47 u=1.NPL 9443 930 FORMAT (*0 FATAL ERRORMORE TIME POINTS 1 D1 47 u=1.NPL 010 41 1111 IF (MPSF E0.0) GO TO 47 1111 IF (NOT.LTAPE8) GO TO 47 1111 IF (NOT.LTAPE8) GO TO 47 1111 IF (NOT.LTAPE8) GO TO 47 1111 IF (ILHIST) WRITE (NIT-80) LSC.((PSF(1,			S I ASI	SEC. MILITPI
C PRINT PLANE FORCES 8436 900 FORMAT ('0 RN=1 ', G20.10, 7112) C MPSF ='0 157 = LLFST = LLFST KASNUM, LAST) IF (NPL.E0.0) G0 T0 49 8439 TL ST = LLFST KASNUM, LAST) IF (NPL.E0.0) G0 T0 49 8439 TL ST = LLFST KASNUM, LAST) D0 45 J=1,NPL 8440 910 RETURN 0 TIMAS = USEC D0 45 J=1,NPL 8440 910 RETURN 910 RETURN D0 47 J=1,MPF(J) 8442 920 WRIFE (6,930) 8442 D0 47 J=1,MPF(2) 8443 930 GRIMET ('0 FATAL ERRORMORE TIME POINTS 1 D1 47 J=1,MPF(2) 910 RETURN 910 RETURN 910 RETURN D2 47 J=1,MPF(2) 910 RETURN 910 RETURN 910 RETURN D1 47 J=1,MPF(2) 910 RETURN 910 RETURN 910 RETURN D1 47 J=1,MPF(2) 920 WRIFE (6,930) 9444 910 RETURN D1 47 JE (.NOT.LTAPE8) G0 TO 47 8444 910 RETURN 910 FILIN J 16 (.NOT.LTAPE8) G0 TO 47 KK = 4K+1 910 FILIN 910 FILIN J K = 0.0 46 JE1,J 8444 810P 1111 9111 J K = 10.1 0.0 10.1 <td>44 CONTINUE</td> <td>8435</td> <td></td> <td>INCBIG, INCSML</td>	44 CONTINUE	8435		INCBIG, INCSML
C PRINT PLANE FORCES 8437 6438 LAST = LLFRST LLFRST MPSF = 0 MPSF = 0 GO TO 49 8439 TF (KPPV NE. 0) TIMLAS = USEC IF (NPL.EQ.0) GO TO 49 8439 TF (KPV NE. 0) TIMLAS = USEC 0 45 NPSF = MPSF + MPL(J) 8441 910 RETURN 1F (NPL.EQ.0) GO TO 49 8443 920 RWITE (G.930) 45 MPSF = MPSF + MPL(J) 8443 920 RWITE (G.930) 1F (MPSF.EQ.0) GO TO 49 8443 920 FORMAT ('OFATAL ERORMORE TIME POINTS 1 0 47 J1=1,MPSF.2 930 FORMAT ('OFATAL ERORMORE TIME POINTS 1 1F (MDT.LTAPE8) GO TO 47 910 47 ('OFATAL ERORMORE TIME POINTS 1 0 47 J1=1,MPSF.2 930 FORMAT ('OFATAL ERORMORE TIME POINTS 1 1F (MDT.LTAPE8) GO TO 47 940 TO 1111 1F (MDT.LTAPE8) GO TO 47 641 = 1,7 1F (MDT.LTAPE8) GO TO 47 941 TIMIM STEP (') 0 46 I=1,7 844 1F (LHIST) WRITE (NI.48) USEC.((PSF(I.J).I) 47 TF (LHIST) WRITE (NI.48) USEC.((PSF(I.J).I) 48 FORMAT(F9.3.2(F9.3.3F9.2.3F8.3))	o	8436	1 006	FDRMAT ('O RN=1 '. G20.10. 7112)
C MSF = 0 IF (NPL.EQ.0) GD TO 49 DD 45 J=1.NPL DD 45 J=1.NPL 45 MPSF = MDSF + MNPL(J) 45 MPSF = MPSF + MNPL(J) 45 MPSF = MPSF + MNPL(J) 1F (MPSF.EQ.0) GD TO 49 B442 920 WRITE (6,930) B443 920 WRITE (6,930) B443 920 PRITURN B443 920 PRITURN B443 920 PRITURN B444 920 PRITURN B444 920 PRITURN B444 920 PRITURN B444 920 PRITURN MIMIUUN STEJ DD 47 J=1,MPSF.2 JD 47 J=1,MPSF.2 DD 47 J=1,MPSF.2 JD 47 J=1,MPSF.2 DD 47 J=1,MPSF.2 JD 47 J=1,MPSF.2 DD 47 J=1,MPSF.2 JD 47 J=1,MPSF.2 DD 47 J=1,MPSF.2 JD 47 J=1,J2 DD 47 J=1,J2 DD 47 J=1,J2 DD 47 J=1,J2 DD 47 J=1,MPSF.2 JD 47 J=1,J2 DD 47 J=1,J2 DD 47 J=1,J2 DD 47 J=1,J2 DD 47 J=1,J2 A6 TDAT(KK.NT-20) = PSF(I,J),I= 1,7),J=J1,J2 A8 FORMAT(FD.3,2(FD.3,3FD.2,3FB.3))	C PRINT PLANE FORCES	8437	-	AST = LLFRST
MPSF = 0 IF (KOPY NE. 0) TIMLAS = USEC IF (NPLEQ.0) GD T0 49 8440 S10 RETURN 00 45 J=1,NPL 8441 910 RETURN 1F (MPSF.EQ.0) GD T0 49 8442 920 WRITE (6,930) 1F (MPSF.EQ.0) GD T0 49 8443 920 WRITE (6,930) 1F (MPSF.EQ.0) GD T0 49 8443 920 WRITE (6,930) 1F (MPSF.EQ.0) GD T0 49 8443 920 WRITE (6,930) 1F (NDT.LTAPE8) GD T0 47 8444 STOP 1111 0 47 J1=1,MPSF.2 8444 STOP 1111 0 47 J1=1,MPSF.2 8444 STOP 1111 1F (NDT.LTAPE8) GD T0 47 NIMIUM STEP ') NIMIUM STEP ') NT E (NDT.LTAPE8) GD T0 47 STOP 1111 STOP 1111 1F (NDT.LTAPE8) GD T0 47 KK = KK+1 STOP 1111 1F (NDT.LTAPE8) GD T0 47 KK = KK+1 STOP 1111 1F (INT.20) = PSF(1,U) KK = KK+1 STOP 1111 46 FDATA(KNT-20) = PSF(1,U) KK = KK+1 KK = KK+1 1,7), J=J1, U2 MRTA(F9.3,2(F9.3,3F9.2,3F8.3)) K 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3)) K K	U	8438	Ŭ	CALL STASH(FFIRST(1), KASNUM, LAST)
<pre>IF (NPL.E0.0) G0 T0 49 D f (NPL.E0.0) G0 T0 49 TF (NPL.E0.0) G0 T0 49 45 MPSF = MPSF + MNPL(J) 16 (MPSF.EQ.0) G0 T0 49 45 MPSF = MPSF + MNPL(J) 17 (MPSF.EQ.0) G0 T0 49 46 MPS = MPSF + MPL(J) 17 (MPSF.2 10 47 J1=1,MPSF, 2 10 47 J1=1,J2 11 1 46 TMM MM STEP ') 48 FORMAT(F9.3,2F9.3) 1 48 FORMAT(F9.3,2F9.2,3F8.3) 1 48 FORMAT(F9.3,2F9.2,3F8.3) 1 48 FORMAT(F9.3,2F9.2,3F8.3) 1 49 FORMAT(F9.3,2F9.2,3F8.3) 1 40 TMM MM STEP ') 41 TMM MM STEP ') 41 TMM MM STEP ') 41 TMM MM STEP ') 42 TMM MM STEP ') 43 TMM MM STEP ') 44 TMM MM STEP ') 44 TMM MM STEP ') 45 TMM MM STEP ') 46 TMM MM STEP ') 47 TMM MM STEP ') 47 TMM MM STEP ') 48 FORMAT(F9.3,2F9.3,5F8.3) 1 48 FORMAT(F9.3,2F9.2,3F8.3) 1 49 FORMAT(F9.3,2F9.2,3F8.3) 1 40 TMM STEP ') 40 TMM STEP ') 40 TMM STEP ') 40 TMM STEP ') 41 TMM STEP ') 41</pre>	MPSF = 0	8439		<pre>If (KOPY .NE. 0) TIMLAS = USEC</pre>
D0 45 J=1,NPL 45 MPSF = MPSF + MNPL(J) 1F (MPSF.EQ.O) GD T0 49 330 FORMAT ('OFATAL ERRORMORE TIME POINTS] 0 47 J1=1,MPSF,2 0 46 J=1,7 KK = 0 0 46 J=1,7 KK = 0 0 46 J=1,7 KK = 0 17 J,J=J1,J2 46 TDATA(KK,NT-20) = PSF(1,J),I= 17 J,J=J1,J2 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3)) 0 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3))	IF (NPL.EQ.O) GO TO 49	8440	J	CALL ELTIME(2, 8)
45 MPSF = MPSF + MNPL(J) 1F (MPSF.EQ.O) GO TO 49 8443 930 FORMAT ('OFATAL ERRORMORE TIME POINTS T 1F (MPSF.20) GO TO 49 8444 STOP 1111 00 47 J1=1,MPSF,2 U2 = MINO(J1+1,MPSF) NT = NT+1 1F (NOT.LTAPE8) GO TO 47 KK = 0 00 46 J=1,7 KK = 0 00 46 J=1,7 KK = 0 00 46 J=1,7 KK = 0 10 46 J=1,7 KK = 1 46 TDATA(KNT-20) = PSF(I,J),1= 47 IF (LTHIST) WRITE (NT,48) USEC.((PSF(I,J),I= 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3)) 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3))	D0 45 J=1,NPL	8441	9101	RETURN
<pre>IF (MPSF.EQ.O) GD TO 49 B443 930 FORMAT ('OFATAL ERRORMORE TIME POINTS T D0 47 J1=1,MPSF.2 D0 47 J1=1,MPSF.2 U2 = MINO(J1+1,MPSF) NT = NT+1 IF (.NOT.LTAPE8) GD TO 47 KK = 0 D0 46 J=J1,U2 D0 46 J=J1,U2 D0 46 J=1,7 KK = 0 D0 46 J=1,7 KK = 0 D0 46 J=1,7 KK = 1=1,7 KK = 1,12 D1 4111 KK = 1,12 KK = 1,12 K</pre>	45 MPSF = MPSF + MNPL(J)	. 8442	920 1	WRITE (6,930)
D0 47 J1=1,MPSF,2 U2 = MINO(J1+1,MPSF) NT = NT+1 NT = NT+1 STOP 1111 F (.NOT.LTAPE8) GO TO 47 KK = 0 D0 46 J=J1,J2 D0 46 J=J1,J2 D0 46 I=1,7 KK = KK+1 46 TDATA(KK.NT-20) = PSF(I,J) 47 IF (LTHIST) WRITE (NT,48) USEC,((PSF(I,J),I= 1,7),J=J1,J2 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3))	IF (MPSF.EQ.O) GD TD 49	8443	930	ORMAT ('OFATAL ERRORMORE TIME POINTS
D0 47 J1=1,MPSF,2 D0 47 J1=1,MPSF,2 NT = NT+1 F (.NOT.LTAPE8) G0 TO 47 KK = 0 D0 46 J=J1,J2 D0 46 J=J1,J2 D0 46 I=1,7 KK = KK+1 46 TDATA(KK.NT-20) = PSF(I,J) 47 IF (LTHIST) WRITE (NT,48) USEC,((PSF(I,J),I= 1,7),J=J1,J2) 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3))			MIMIMUN	A STEP.()
<pre>UZ = MINU(UITI,MPSF) NT = NT+1 IF (.NUT.LTAPE8) GO TO 47 KK = 0 DO 46 J=J1,J2 DO 46 I=1,7 KK = KK+1 46 TDATA(KK.NT-20) = PSF(I,J) 47 IF (LTHIST) WRITE (NT,48) USEC,((PSF(I,J),I= 1,7),J=J1,J2) 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3)) c</pre>	00 47 J1=1,MPSF,2	8444	•••	STOP 1111
<pre>M = NTT IF (.NOT.LTAPE8) GO TO 47 KK = 0 DO 46 J=J1,J2 DO 46 I=1,7 KK = KK+1 46 TDATA(KK.NT-20) = PSF(I,J) 47 IF (LTHIST) WRITE (NT,48) USEC,((PSF(I,J),I= 1,7),J=J1,J2) 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3)) c</pre>	UZ = MINO(U1+1, MP5F)			
<pre>IF (.NULLIAPEB) GU 10 47 KK = 0 D0 46 J=J1,J2 D0 46 I=1,7 KK = KK+1 46 TDATA(KK.NT-20) = PSF(I,J) 47 IF (LTHIST) WRITE (NT.48) USEC,((PSF(I,J),I= 1,7),J=J1,J2) 48 FORMAT(F9.3,2F9.2,3F8.3)) 6</pre>	VI = N + VI (101 (1100) 00 70 1			
DO 46 J=J1,J2 DO 46 I=1,7 KK = KK+1 46 TDATA(KK,NT-20) = PSF(I,J) 47 IF (LTHIST) WRITE (NT.48) USEC,((PSF(I,J),I= 1,7),J=J1,J2) 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3))	1F (.NUI.LIAPE8) GU 10 47 VV - 0			
D0 46 I=1,7 KK = KK+1 46 TDATA(KK.NT-20) = PSF(I,J) 47 IF (LTHIST) WRITE (NT,48) USEC,((PSF(I,J),I= 1,7),J=J1,J2) 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3))				
<pre>KK = KK+1 KK = KK+1 46 TDATA(KK.NT-20) = PSF(I,J) 47 IF (LTHIST) WRITE (NT,48) USEC,((PSF(I,J),I= 1,7),J=J1,J2) 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3)) 6</pre>	DU 45 U=U1,U2 DU 46 1=1 7			
46 TDATA(KK.NT-20) = PSF(I,J) 47 IF (LTHIST) WRITE (NT,48) USEC,((PSF(I,J),I= 1,7),J=J1,J2) 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3)) 6	ро +о I-I, I КК = КК+1	1.15 1.15 1.15		
47 IF (LTHIST) WRITE (NT,48) USEC,((PSF(I,J),I= 1,7),J=J1,J2) 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3)) 6	46 TDATA(KK NT-20) = PSF(I, I)	v		
1,7),J=J1,J2) 48 FORMAT(F9.3,2(F9.3,3F9.2,3F8.3)) C	47 IF (LTHIST) WRITE (NT, 48) USEC, ((PSF(I,	J).I=		
48 FUKMAI(F9.3,2(F9.3,3F9.2,3F8.3)) C	1,7),J=J1,J2)			
	48 FURMAT(F9.3,2(F9.3,3F9.2,3F8.3))			

.

i i

51 TDATA(KK,NT-20) = BSF(I,J) 52 IF (LTHIST) WRITE (NT,53) USEC,((BSF(I,J),I= 69 TDATA(KK,NT-20) = BSF(I,J)
70 IF (LTHIST) WRITE (NT,53) USEC,((BSF(I,J),I=
1,4),J=J1,J2) 72 TDATA(KK,NT-20) = BSF(I,J) 73 IF (LTHIST) WRITE (NT,74) USEC,((BSF(I,J),I= PRINT SPRING DAMPER FORCES (STORED IN BSF ARRA Comparison of GUCVS with GMCVS (Page 33 of 41) PRINT HARNESS-BELT ENDPOINT FORCES (STORED IN 53 FORMAT(F9.3,4(F15.6,F12.2,3X)) 74 FORMAT (F9.3,4(F14.3,F12.2,4X)) DO 73 J1=MBSF1,MBSF,2 J2 = MINO(J1+1,MBSF) NT = NT+1 IF (.NOT.LTAPE8) GO TO 73 KK = 0 DO 72 J=J1,J2 DO 72 I=1,4 PRINT SEGMENT CONTACT FORCES (.NOT.LTAPE8) GO TO 52 67 IF (NHRNSS.LE.O) GO TO 71 G0 T0 70 (NBLT.EQ.0) GD TO 67 (MBSF.EQ.0) GO TO 67 (NSD.LE.O) GO TO 54 DO 68 I=1,NHRNSS MBSF = MBSF + NBLTPH(I) DO 70 J1=MBSF1,MBSF,2 J2 = MINO(J1+1,MBSF) MBSF = MBSF + (NSD+1)/2 DO 73 J1=MBSF1,MBSF,2 J2 = MINO(J1+1,MBSF) DO 50 J=1,NBLT MBSF = MBSF + MNBLT(J) = MINO(J1+1, MBSF) = NT+1 D0 52 J1=1,MBSF,2 J2 = MINO(J1+1,MBSF NT = NT+1 IF (.NOT.LTAPE8) KK = 0 (.NOT.LTAPE8) PRINT BELT FORCES MBSF1 = MBSF + 1 MBSF1 = MBSF + 1 51 J=J1,J2 51 I=1,4 69 J=J1,J2 69 I=1,4 KK = KK+1 = NT+1 KK = KK+1 KK = KK+1 MBSF = 0KK = 0 D0 69 D0 69 1,4),J=J1,J2) 1,4), J=J1, J2) C PRINT I BSF ARRAY). C 71 IF UZ NT LF 00 1 Ľ 00 50 49 68 υu C 000 1734 1735 1736 1737 1737 1738 1739 1739 1742 1744 1745 1746 1746 1748 1749 1750 1755 1756 1757 1758 1759 1751 1752 1753 760 1766 1767 1768 1769 1741 1754 1762 1765 1771 1772 1773 1773 1776 1777 1778 1779 1780 1785 1786 1787 1787 1761 1763 764 1775 1782 1783 1784 1781

	7
<pre>54 MSSF = 0 D0 55 J=1.NSEG 15 MSSF FEQ.0) G0 T0 59 17 (NOT:LTAF8) G0 T0 59 17 (NOT:LTAF8) G0 T0 57 17 (NOT:LTAF8) G0 T0 57 17 (NOT:LTAF8) G0 T0 57 17 (NOT:LTAF8) G0 T0 57 56 TDATA(LNT-20) = SSF(LJ) 57 IF (LTHST) WRITE (NT,58) USEC.(SSF(LJ)).I=1 10) 57 IF (LTHST) WRITE (NT,58) USEC.(SSF(LJ)).I=1 10) 58 FORMAT(2F9.3, 3F9.2, 3F8.3, 2X, 3F8.3) 59 IF (NBAG.FQ.0) G0 T0 65 51 F (NBAG.FQ.0) G0 T0 65 51 F (NBAG.J).E0.0) G0 T0 64 52 MINT AIRBAG FORCES 53 J=1.RBAG. 54 J=1.NBAG 50 G3 J=1.RBAG. 51 F (NOT.LTAF8) G0 T0 64 52 MINAG(J).E0.0) G0 T0 64 53 J=1.RBAG.HAA 50 G3 J=1.RBAG.HAA 50 G3 J=1.RBAG.HAA 51 F (NOT.LTAF8) G0 T0 64 52 MINAG.HAA 53 F (NIT.A.20) = BAGSF(L,K) 53 F (J.FC.1) WRITE (NT,75) USEC.((BAGSF(L,K)) 53 F (J.FC.1) WRITE (NT,75) USEC.((BAGSF(L,K))). 53 F (LAFE8) WRITE (NT,75) USEC.((CAGSF(L,K))). 53 F (LAFE8) WRITE (NT,75) USEC.((TDATA(L,J)).I 54 L = 2.11 54 L = 2.11 55 L = 2.11 54 L = 2.11 55 L = 2.1</pre>	
1789 1790 1799 1799 1799 1799 1799 1799 179)

Table C.5. Comparison of GUCVS with GMCVS (Page 34 of 41)

END

11

H

	H	======================================	H(3),T3(3,3 = =		. 19			~~~	Ĺ)		
SUSP:CIGS(9161,9474)	SUBROUTINE PRINT(SUB)	======================================	COMMON/TEMPVS/ YPR(3),T1(3),T2(3),H		D0 20 J=1.3	F(3.J.I)=E1*F(3.J.I)-T1(J)+EB*X(J.I	F(4.J.I)=E1*F(4.J.I)-T2(J)+EC*X(J_I)	Y(3, J, I)=E1*Y(1, J, I)-T3(J)-E2*X(J, I	20 Y(4.J.I)=E1*Y(2.J.I)-T4(J)-F2D*X(J		
Unit 1:	9161	1 ines 9 19 1 9 19 2	9193	lines	9470	9471	9472	9473	9474		
CVSB(2564,287?)	SUBROUTINE PRINT(SUB)	<pre>29 equal</pre>	COMMON/TEMPVS/ YPR(3),T1(3),T2(3),HH(3),T3(3,3	sessessessessessessessessessessessesses	DD 20 J=1,3	F(3, 0, I)=E1*F(3, 0, I)+T1(0)+EB*X(0, I)	F(4, U, I)=E1*F(4, U, I)+T2(U)+EC*X(U, I)	Y(3,U,I)=E1*Y(1,U,I)+T3(U)-E2*X(U,I)	20 Y(4.J,I)=E1*Y(2.J,I)+T4(J)-E2D*X(J,I)	RETURN	END
Unit O:	- 2564	2595	2596		2873	2874	2875	2876	2877	2878	2879
1		n 11	N 11	Ħ	Ħ						

Table C.5. Comparison of GUCVS with GMCVS (Page 35 of 41)

Unit 0: CVSB(2918,4698)

Unit 1: SUSP:CIGS(9544, 11350)

.

SUBROUTINE ROTATE	<pre>####################################</pre>	<pre>NPRT(36) COMMON/RSAVE/DPMI(3,3,100),LPMI(100)</pre>	COMMON/DESCRP/ PHI(3,100),W(100),RW(100),SR(3, = 2),HA(3,200), =	E E E E E E E E E E E E E E E E E E E	H, HPRINT, HS, TPRINT, TSTART, ICNT, IDB	[FLAG NOTE: FF REPLACES F FROM SUBROUTINE DINT =	<pre>21 COMMON/RSAVE/DPMI(3.3.100).LPMI(100)</pre>	DIMENSION RC21(450), IC21(100)		[(1))	DATA C21/ BH*** BHDPMI BHI PMI BH PMI BHI PMI BH BHI PMI BHI P	BH*** / DATA NC21/3,20,3 , 3,3,30 , 30,0,0 , 7,0 = 20,7,0 /	asternennennennennennennennennennennennenne	COMMON /PLOTRS/ ELYPR(3,100), PLPTS(3,3,100),	1 . IELPS, IELPB, IELP, NNELP, NPLSEG(100) REAL*4 PLPTS	CUMMUN/IEMPVS/ PI(3),P2(3),P3(3),UE(3,3) = ===================================	DATA IDYPR/3,2,1/ DO 6 I=1,100 NELSEG(I) = 0 NPLSEG(I) = 0	DD 4 1=1,3 ELYPR(J,I) = 0.DO	DD 2 K=1,3 PLPTS(J,K,I) = O.	CONTINUE CONTINUE	CONTINUE	<pre>i====================================</pre>	PLFTS(1,1,0) = P2(1) PLPTS(2,1,0) = P2(1) PLPTS(3,1,0) = P2(1)	P2(I) = P2(I)-P1(I)	
9544	7 equal lines ====: ; NJNT 9552	MI (10 9553 N	.SR(3, 9554	374 equal lines ====: Y(5,8 9929	J. IDB 9930	. 9931	22 equal lines ==== 9954 (0110 9955	9956 9956		9959 F	<pre>i93 equal lines ==== 10553 C , 8HN 10554</pre>	7,0 10555 *	62 equal lines ==== 11118	11119	11120	1 equal line =====	11124 11125 11126 11127	11128 11129	11130	11132	11134 11135 · C	58 equal lines ===== 11194 11105	11196	11198 38 equal lines =====	
LATE	<pre>statesterst </pre>	<pre><sg(3,20,3),dpmi(3,3,100),lp< pre=""></sg(3,20,3),dpmi(3,3,100),lp<></pre>	/ PHI(3,100),W(100),RW(100),	3,800),FF(5,800),GG(5,800),	HPRINT, HS, TPRINT, TSTART, ICN	AMY(200,25) -ACES F FROM SUBROUTINE DINT	<pre>(SG(3,20,3),DPMI(3,3,100),LP</pre>	1(450), IC21(177) 2024(4), VS6(4,4,4)) / IC24(::::::::::::::::::::::::::::::::::::::	0,3 , 3,3,30 , 30,0,0 ,	:=====================================		, P1(3) P2(3) P3(3) DE(3 3)		. 1/					11 11 11 11 11 11 11 11 11 11 11 11 11		P1(I)	
SUBROUTINE ROT	·····································	F,NPRT(36) COMMON/RSAVE/X O) NSG(7) MSG(20 7)	200), HA(3, 200),		00), 4(3, 800), * H, ! IELAG	C. NOTE: FF REPL	C 21 COMMON/RSAVE/X	0), NSG(7), MSG(20,7) DIMENSION RC21 FOUTVALENCE (D	MI(1))	C 22	======================================	SG , BHMSG / DATA NC21/3,20 ,0 , 20,7,0 /			COMMON/TEMPVS/		DATA IDYPR/3,2				U	D0 26 I =1,3		P2(I) = P2(I)-	
= 2918	= 2926	2927	= 2928	======================================	3304	3305 = 3306	======================================	3331 3333	6 6 9	= 3333	======================================	= 3929	======================================		= 4493		= 4495				4496	- 4555		- 4556 	

110

Table C.5. Comparison of GUCVS with GMCVS (Page 36 of 41)

.

35 IF (NBAG.NE.O) CALL AIRBG1 = 4595

10	11	11 H	1	# #		11	11	8 8 8		11 11 11 11	# <u>.</u>
35 IF (NBAG.NE.O) CALL AIRBG1 NNELP = NSEG IELP = O IELPB = O IELPS = 101	IF (NELP.LE.O) GO TO 51	BD(1+3,M) = P2(1)	ELYPK(I,M) = P3(I) D0 45 J=1,3	45 B0 (K+9, M) = SUM2 0 +0 +	IF (M. LE. NSEG) GU IU BO IELPS = MINO(IELPS, M) IELPB = MAXO(IELPB, M)	IELP = IELP + 1 50 CONTINUE	NNELP = NSEG + IELP C	* 5X,''SEGMENT','9X,''SEGMENT M','16X,'SEGMENT N', 1	5X, * 'SPRING FORCE FUNCTION', 12X, DAMPING FORCE FU	NCLUNY * ND. M N',2(6X,'X',7X,'Y',7X,'Z',2X),7X,' DO',9X,'A1',11X. ===================================	END
11237 11238 11239 11240 11241	11242	11264	11266	11274 11274	11275 11276 11277	11278 11279	11281	1 i nes 11323	11324	11325 11nes	11350
35 IF (NBAG.NE.O) CALL AIRBG1	IF (NELP.LE.O) GO TO 51	BD(I+3,M) = P2(I)	D0 45 J=1,3	45 BD(K+9,M) = SUM2		50 CONTINUE	U	<pre>====================================</pre>	5X, * 'SPRING FORCE FUNCTION'12X,'DAMPING FORCE FUN CTION'/	DO',9X,'A1',11X, DO',9X,'A1',11X, 	END
195	: ق	6	6	27		8	ຣ		2	ю Ш	8
4	459	461	461	462		462	462	467	467	467	469

111

Comparison of GUCVS with GMCVS (Page 37 of 41) Table C.5.

Unit 0: CVSB(5058)

Unit 1: SUSP:CIGS(11649)

= 5058	SUBROUTINE TRIGFS	11649	SUBROUTINE TRIGFS
= 5062	<pre># dual # E(3,800), F(5,800), GG(5,800), Y(5,8</pre>	1 1 1 6 5 3	<pre>====================================</pre>
= 5063	00),U(5,800), H HPPINT HS TPPINT TSIADI ICNI INB *	11061	00),U(5,800),
	L, IFLAG,	+001	L, IFLAG
5064 = 5065	* DMMY(200,25) Beta = 0.0	11655	BETA = 0.0
=======================================	**************************************	11705	* NTPI (5, 100) NTPI (5, 100) NTPI (5, 8) NTSEC (5, 5)
= 5116	,100) CDMMDN/RSAVE/XSG(3,20,3),DPMI(3,3,100),LPMI(10	11706	,100)
= 5117 =	0),NSG(7),MSG(20,7) COMMON/TEMPVS/ XD(3,3,100),XSEGLP(3,100),XPL(1 7,100),XBD(24,110),	11707	COMMON/TEMPVS/ XD(3,3,100),XSEGLP(3,100),XPL(1 = 7.100),XBD(24.110).
======================================	SUBROUTINE VINPUT	1 ines 12335	SUBROUTINE VINPUT
= 5747 =	C REV 20 05/07/80 C PERFORMS CARD INPUT AND COMPUTES DATA AND TABL ES REQUIRED BY	12336	C PERFORMS CARD INPUT AND COMPUTES DATA AND TABL = ES REQUIRED BY =
= 5758	COMMON SGMNTS/ D(3,3,100), WMEG(3,100), WMEGD(3, 100), WMEGC(3, 100), W	1 ines - 12347	COMMON/SGMNTS/ D(3,3,100), WMEG(3,100), WMEGD(3, =
5759	100),U1(3,100), * U2(3,100), SEGLP(3,100),SEGLV(3,100),SEGLA(3, 100),MCVW(100)	12348	100),U1(3,100), * U2(3,100),SEGLP(3,100),SEGLV(3,100),SEGLA(3,
= 5760 =	COMMONDESCRP/ PHI(3,100),W(100),RW(100),SR(3, 200) HA(3,200)	12349	100),NSYM(100) COMMON/DESCRP/PHI(3,100),W(100),RW(100),SR(3, =
5761	*HB(3,200), RPHI(3,100), HT(3,3,200), SPRING(5,300) VISC(7,300)	12350	2001, HA(3, 2001), * HB(3, 200), RPHI(3, 100), HT(3, 3, 200), SPRING(5, 3
5762	(100), ISING(100), IPIN(100), ISING(100), IGLOB	12351	* JNT(100), IPIN(100), ISING(100), IGLOB(100), JUI
= 5763 =	COMMON/VPOSTN/ ZPLT(3),SPLT(3),AXV(3,6),VATAB(6 101 6)	12352	NIF(100) COMMON/VPOSTN/ ZPLT(3),SPLT(3),AXV(3,6),VATAB(=
5764	VIOLE VIOLE VIOLE, VDT(6), TIMEV(6), DMEGV(6), N	12353	•.101.6), * * VT0(6),VDT(6),TIMEV(6),OMEGV(6)
= 5765 =	<pre>viel(), viel(), v</pre>	12354	.NVIAB(6).INDXV(6) COMMON/TEMPVS/ X0(3),XDDTO(3),XCOMP(3),XVCDMP(=
5766	C, MAEC, C, ATAB(15,100), DVEH(3,3), VMEG(3), VM FGD(3)	12355	3), ANGLE(3), ATAB(15,101), DVEH(3,3), VMEG(3),
5767	V2(100 6) TT(100), XACOMP(3), THET(3), AX(3), F(5, 100), X	12356	<pre>vmedu(3),</pre>
5768		12357	.ATECTO2.6), HILTO2), VIPS, VMPH, ATO, ADT, VTIME, DMEG, NA
		12358	
= 5769 =	COMMDN/INTEST/ SGTEST(3,4,100),XTEST(3,400),SE GT(400),REGT(400)	12359	4),40(4),40(4) COMMON/INTEST/ SGTEST(3,4,100),XTEST(3,400),SE = GT(400),REGT(400) =
= 5771 5772 - 5772	COMMON/CNSNTS/ PI,RADIAN,G,THIRD,EPS(24), * COMMON/CNSNTS/ PI,RADIAN,G,THIRD,EPS(24), * COMMON/TTTT,CV/2000000000000000000000000000000000000	line	<pre>:====================================</pre>
5176 = 5774	DYTL(5), DYTL(5), * BITTL(5), BITTL(50)DITTL(50)DATTL(5	12363	COMMON/TITLES/ DATE(3),COMENT(40),VPSTTL(20),B = DYTTL(5),
	(6), SEG(100), BAGITE(3, 8), FLITE(3, 100), BAGITE(3	12304	* BLITIL(5,8),PLTTL(5,100),BAGTTL (5,6),SEG(100),
c//c = 5776 =	* JUINT(100), CGS(100), JS(100) REAL DATE, COMENT, VPSTTL, BDYTTL, BLTTTL, PLTTL, BA GTTL, SEG, JOINT	12365 12366	<pre>* JOINT(100),CGS(100),JS(100) REAL DATE,COMENT,VPSTTL,BDYTTL,BLTTTL,PLTTL,BA = GTTL,SEG,JOINT =</pre>

.

Table C.5. Comparison of GUCVS with GMCVS (Page 38 of 41)

	B3 WRITE (6,15) VPSTTL, ANGLE, VIPS, VTIME, XO, NATAB, ATO, ADT. MSEG	84 15 FORMAT('1 VEHICLE DECELERATION INPUTS',91X,'CA RDS C'//3X 20A4//	85	B6 ; · · · · · · · · · · · · · · · · · ·	B7 ************************************	<pre>es ===================================</pre>	07 ISLUKT / ANALYTICAL HALF-SINE WAVE DECELERATI	08	09 * DEGREES, TIME DURATION = F7.3, 1X, A4/	10 // GD TD 28	es ====================================	-F3) 461 ATAB(J,I+1) = ATAB(J,I-1) + DA1*(F1+4.O*F2	47 22 UNITS = 1.0	52 23 FORMAT('O UNIDIRECTIONAL VEHICLE POSITION TABL	53 E3'// 2(' TIME ACC VELOCITY	POSITION ')/ 54 * 2(' (MSEC) (G) (',A4,'/',A4,')	55 , 5X, (', A4,')', 4X)/) 55 DO 26 J=1,50	30 C READ LINEAR DECELERATION AND ANGULAR ACCELERAT	10N TABLES 31 C FROM CARDS C.4. 32 C	38 ====================================	36 J 36 FORMAT ('O SPLINE FIT TABULAR INPUT'// 37 * 3X,'LTYPE =',IG,' LFIT =',IG,' NPTS	10// (F15.6,3X,3F12.3,3X,3F12.3)) 39 DO 37 I=1,3	XO(I) = XYZ(1,I))1 XDDTO(I) = XYZ(2,I) 2 VMEG(I) = XYZ(2,I+3)	33 37 ANGLE(I) = XYZ(1,1+3) 34 IMJ = 6 IMJ = 6)5 IF(LTYPE.EQ.1)IMJ = 3)6 DO 45 II=1,IMJ)7 CALL SPLINE (TT(LTYPE),XYZ(LTYPE,II).F.NPTS.LF
restationersessessessessessessessessessesses 16 equal 1 in	WRITE (6,15) VPSTTL,ANGLE,VIPS,VTIME,XO,NATAB, 123 ATO,ADT,MSEG	15 FORMAT('1 VEHICLE DECELERATION INPUTS',91X,'CA 123 RDS C'//3X,20A4//	<pre>* 7X,'YAW',9X,'PITCH',7X,'ROLL',8X,'VIPS',8X,' 123 VTIME',7X,'XO(X)'.</pre>	* 7X,'XO(Y)',7X,'XO(Z)',2X,'NATAB',6X,'ATO',9X 123. 'ADT',4X,'MSEG'/	* BF12.3,I5,2X,2F12.6,I5) DA1 = ANGLE(1)*RADIAN 123	<pre>:====================================</pre>	* * * ANALYTICAL HALF-SINE WAVE DECELERATION 124	/ * / VO=',F8.3,1X,A4,'/',A4,', OBLIQUE ANGL 124 ES ='.3F7.2	*	G0 T0 28 124	.=====================================	-r3) 21 ATAB(J,I+1) = ATAB(J,I-1) + DA1*(F1+4.0*F2+F 124 3)	22 UNITS = 1.0		- 2(' TIME ACC VELOCITY P 1245	USITIUN ')/ * 2(' (MSEC) (G) (',A4,'/',A4,')',5 1245 * //' //',S///	<pre>/. (</pre>	C READ LINEAR DECELERATION AND ANGULAR ACCELERAT 1245 TON TABLES	C FROM CARDS C.4. 1246 C FROM CARDS C.4. 1246	WRITE (6,36) LTYPE.LFIT.NPTS. 11 equal 11ne (24) 1245 ************************************	3G FORMAT ('O SPLINE FIT TABULAR INPUT'// 1249 * 3X,'LTYPE =',IG,' LFIT =',IG,' NPTS =' 1249 .IG//	* (F15.6,3X,3F12.3,3X,3F12.3)) 1249 D0 37 I=1,3 1249	X0(I) = XYZ(1,I) 1250 X0(I) = XYZ(1,I) 1250 IF (LTYPE E0 1) 60 T0 37	XDDTO(I) = XYZ(2,I) 1250 VMEG(I) = XYZ(2,I+3) 1250	37 ANGLE(I4) = XYZ(1,I+3) D0 45 II=1,6 1250	1250 1250 1250 1250 1250 1250 1250
	667	194	795	196	797	816	817	818	819	820	355	356	357	362	163	64		90	91 92	05	06	800	2 = 2	6 T 3	10	17

•

.

113

Table C.5. Comparison of GUCVS with GMCVS (Page 39 of 41)

		IF(LTYPE.EQ.T) XUUIO(I) = $F(3,T)$	- UNITS = 1.0				IF (LTYPE.LT.3 .AND. II.LE.3) UNITS = -1.0/G =		TTT = ATO + DFIDAT(,)-1)*ADT =			X = C	IF (TTT.LT.F(1.L+1)) GD TO 40				我这是这是你还知道我们还知道我们我们我们我们还是我们没有这些我们的我们是我们是我们没有这些我们是我们的我们能能能能能能能能能能能能能能能能能能能能能能能能能能能能能能能能	DX = TTT - F(1,K)	IF (LTYPE-2) 41,42,43	41 ACC = 2.0*F(4.K) + 6.0*DX*F(5.K)		ISKID = 1	TELLITURE ALE ALCO TO AC	CODE FOR POLITIES CONTENTS ATACK IN TAULO	CUDE FUR UNEGA KUULINE: CUMPULE ALAB(1,U),1=10,11,12	D0 80 I = 1,NPTS	$D0 \ 91 \ K = 1,3$	91 A1(K) = XYZ(I.K+3)	CALL DUAT(A1,W1)				IA = 0.0	18 = 0.0	DO 77 K = 1,4	TA = TA + DABS(01(I.K) - 01(I-1.K))	77 TR = TR + DARS(01(1 K) + 01(1 - 1 K))	IF(TA IF TR)GO TO BO			00 CALL STATE (14 V) SD(4 4 V) NDTE (511)	02 CALE JELINE(II,41(I,N),JE(I,I,N),NEIJ,EFII) D0 00 (I = 1 MATAR	TT = ATO + DELOAT(1)*ADT		DO 83 I = K1 NPTS		IF(TTT.LT.SP(1,L+1,1))G0 T0 84	83 CONTINUE	84 K1 = K	DX = TTT - SP(1, K, 1)	DO 85 L = $1,4$	W1(L) = SP(2,K,L)+DX*(SP(3,K,L)+DX*(SP(4,K,L)	+DX*SP(5,K,L))	QD(L) = 2.0*SP(4,K,L) + 6.0*DX*SP(5,K,L)	85 IF(J.EQ.1)QC(L) = SP(3,K,L) + DX*(2.O*SP(4,K, ι)+3 Ο*SD(F κ ι))	CCC = 2 0/RADIAN	IF(J.GT.1)GO TO BB	1)
	60c21	12510	12511				12512	lines ==	12515	10610		12517	12518			61021	11ne ==	12521	12522	12523	lines ==	12530			79671	12533	12534	12535	12536	12537	10530	65621	12540	12541	12542	12543	12544	12545	12516	14021		12551	10550	12553	12554	12555	12556	12557	12558	12559	12560	12561		12562	12563	12564	12565	40 of 4
l equal			•				.0/G	2 equal					F(1.	•	•		1 equal				6 equal			<u>7</u> .			•																															(Page
	IF (II.GI.3) I = II + 6	IF (LTYPE.NE.1) GO TO 38	IF (II.LE.3) XD0TO(I) = $F(3,1)$	IF (II.GT.3) VMEG(II-3) = F(3,1)	1E (11 GT 3) T = 46-11	O'I = SITO BS	IF (LTYPE.LT.3 .AND. II.LE.3) UNITS = -1		$TTT = \Delta TO + DE \Delta T(.) - 1) * \Delta DT$			IF (K.EQ.NPTS) GO TO 40	IF (DABS(TTT-F(1,K+1)).LT.EPS(8)) TTT =	X+1)	IF (.L .F(,K+1)) GU U 40	39 CONTINUE		DX = TTT - F(1,K)	GO TO (41,42,43),LTYPE	41 ACC = 2.0*F(4_K) + 6.0*DX*F(5.K)		ISKIP = 1														_																			-			Townsrison of GUCVS with GMCVS
	= 5919	5920	5921	5922	5003	97.AC	= 5925		= 5978		2220	5930	5931		2556	EEAC =		= 5935	5936	= 5937		= 50 <i>14</i>																																				

Table C.5. Comparison of GUCVS with GMCVS (Page 40 of

<pre>CALL CROSS(qc(2), w1(2), A1) D0 86 K = 1,3 D0 86 K = 1,3 B6 VMEG(K) = CCC*(W1(1)*QC(K+1)) - QC(1)*W1(K+1) A1(K)) CALL DRCQUA(DVEH, W1) CALL DRCQUA(DVEH, W1) CALL VPRDEG(DVEH, ANGLE) B8 CALL CROSS(QD(2), W1(2), QC(2)) B8 C</pre>	<pre>S ====================================</pre>	<pre></pre>	<pre>s ====================================</pre>	<pre>53 ATAB(1+6, U) = ATAB(1+6, U-1) 53 ATAB(1+1, U)) = ATAB(1+3, U-1)-G*ADT/6.0*(2.0*ATAB(1, U-1)+ATAB(1, U))) = ATAB(1+3, U-1)*4DT/6.0*(2.0*ATAB(1, 54 T1 = (AT0) + DFLOAT(U-1)*ADT)*1000.0 557 FORMAT('1 VEHICLE ANGULAR TIME HISTORY', 3X, 20A = 577 FORMAT('1 VEHICLE ANGULAR TIME HISTORY', 3X, 20A = 4, 3X, 'PAGE NO.', 13// 7X, 'ANGULAR VELOCITIES (DEG 7, , A4, ')' 13// 11X, 'ANGULAR VELOCITIES (DEG 7, , A4, ')' 11X, 'Y', 11X, 'Z', 3 8</pre>	
125667 125687 125687 125687 12577 12577 125737 125737 125737 125737	1 i nes 12582 12583 12583 12583	12585 12586 12587 12588	1 ines 12594 12595 12595	111060 12606 12608 12608 12618 12619 12621 12622 12622 12622 12692 12695 126655 126655 126655 126655 1266555 1266555 1266555 12665555 1266	
46 D0 55 J=1,MATAB	<pre>6 equal 48 FORMAT(11,' VEHICLE LINEAR TIME HISTORY',3X,2 0A4,3X,</pre>)', * 11X,'LINEAR VELDCITIES (',A4,'/ ',A4,')', 11X,'LINEAR DISPLACEMENTS (',A4 ',)' / 3X,'(MSEC)',3(11X,'X',11X,'Y',11X,'Z',3X) /) ISKIP = 1	<pre>====================================</pre>	<pre>9 equal 9 equal 9 equal 9 a TAB(1+6, J) = ATAB(1+6, J-1) 1)+ATAB(1, J) 1)+ATAB(1, J)) 54 T1 = (ATO + DFLOAT(J-1)+ADT)+1000.0 9 equal 57 FORMAT('1 VEHICLE ANGULAR TIME HISTORY', 3X, 20A 4, 3X, 'PAGE NO.', 13// 4, 3X, 'PAGE NO.', 13// 4, 3X, 'TIME', 7X, 'ANGULAR VELOCITIES (DEG/' 4, 3X, 'PAGE NO.', 13// 4, 3X, 'TIME', 7X, 'ANGULAR VELOCITIES (DEG/' 4, 3X, 'TIME', 7X, 'ANGULAR DISPLACEMENTS (DE 6/', 44, '**2)', 11X, 'ANGULAR DISPLACEMENTS (DE 6/', 44, '**2)', 11X, 'ANGULAR DISPLACEMENTS (DE 6/', 44, '**2)', 11X, 'ANGULAR DISPLACEMENTS (DE 7/, 44, ')', 11X, 'ANGULAR DISPLACEMENTS (DE 6)', ' 3X, '(MSEC)', 2(11X, 'X', 11X, 'Y', 11X, 'Z', 3X) 58 IF(J.EQ.1) GO TO GO 70 equal NGRND = NVEH+1 71</pre>	
יי 5 194 ס	= = = = = = = = = = = = = = = = = = =	5955 5956 5957 = 5958	======= = 5964 5965 = 5966	<pre>5978 5977 5983 5983 5993 5993 5993 5993 5993 5993</pre>	

.

.

Listing of SUSP:CIGS(3783,3803) at 10:02:36 on AUG 29, 1985 for CCid=SS53

SUBROUTINE DRCQUA(DC,Q) COMPUTES DIRECTION COSINE MATRIX FROM QUATERNIONS IMPLICIT PEAL *8(A_H_G_Z)		C = O(1) * * 2 + O(2) * * 2 + O(3) * * 2 + O(3) * * 0 + O(3) * * 2 + O(3) * O(3	E = (0(1) + 0(1)) / C = (0(0) + 1 + 0(1)) / C = (0(1) + 0(1)) /			D0 10 J = 1.3	10 DC(I, J) = $2.040(I+1) \times 0(I+1)$	12 DC(1,1) = DC(1,1) + E	$D0 \ 14 \ I = 1.3$	C = 1 + MOD(T = 3)	K = 1 + MOD(1+1 3)	D = E + O(I + 1)	DC(K, J) = DC(K, J) - D	$14 \text{ DC}(J,K) = \frac{1}{2} \text{ C}(J,K) + \frac{1}{2} \text{ C}(J,K)$			18 IF(DABS(DC(T,I)) GT 1 ODO)DC(T,I) - DCTOUCH 200 - 200	RETURN RETURN	END
3783 3784 3785	3786	3787	3788	3789	3790	3791	3792	3793	3794	3795	3796	3797	3798	3799	3800	3801	3802	3802.5	3803

Page

.

-

•

Listing of SUSP:CIGS(8446,8492) at 10:03:18 on AUG 29, 1985 for CCid=SS53

•/

8446 8447		SUBROUTINE OUTREC(ARRAY) Dimension abbav(3)
8778		COMMENSION ARCALLS, DIMINISTRATION, LEDGETCOM, UNCOMMENSION
8449		UNIMMUN / LICUCUV / LUNANI (J.), NRNDAJ (240), LI HUSI (241), NASNUM, Katkol (12), kprfim(3), katkol (j.), kaski (f.) a1), maxdes
8450		2 LINES KASE KATG NRN I STEP LASRE(3)
8451	с	
8452	U	1. FOR KATG = 1 TO 5:
8453	ပ	KASE = 1 TO KATKAS(1,KATG)
8454	ပ	ONLY NRNBAS(KATG) APPLIES
8455	U	•2. FOR KATG = 6 TO 12:
8456	ပ	KASE = KATKAS(2,KATG) TD KATKAS(3,KATG)
8457	ပ	NRNBAS(KASE+5) AND LFIRST(KASE) APPLY
8458	с	3. KASADJ = NRNBAS INDEX FOR ALL CATEGORIES AND CASES
8459	ပ	
8460		LEN = KATKOL(KATG)
8461		IF (KATG .GT. 5) GO TO 10
8462		LINDFF = O
8463		KASADU = KATG
8464		LADJST = KASE * LSTEP - LSTEP
8465		KATABL = KATG
8466		G0 T0 20
8467	10	LINDFF = LFIRST(KASF)
8468)	
8469		
8470		
8474	00	
04/-	N N	
5 1 1 C	C	
84/4	0	RECORD STARTING LINES OFFSET
G/ 19		LINOFF = LINES - 1
8476		LFIRST(KASE) = LINOFF
8477		G0 T0 40
8478	90	CONTINUE
8479		G0 T0 60
8480	40	LINREL = LINES - LINDFF
8481		LMOD = MOD(LINREL.3)
3482		IF (LMOD .EQ. O) LMOD = 3
3483		LDN = LDNARY(LMOD)
3484		LBASE = NRNBÅS(KÅSADJ) + KPREIM(IMOD) + IADJST
3485		LINEC = (LINEC + 2) / 3
3486		IF (LINREC .EQ. 1) WRITE (LDN'LBASE) KATARI KASE LINES LINDEE
3487	50	NRN = LBASE + LINEC
3488)	WRITE (IDN'NRN) (ARRAY(I) I=1 IEN)
3489		I A SEC(I MOD) = MAXO(I ASPEC(I MOD)) NDN)
3490	60	
3491		END
100		SUBDOUTINE DANEL (DOD 70 ID)

Table C.6. Listings of Code Changes to GUCVS (Page 2 of 38)

Page

.

Listing of SUSP:CIGS(8853,9039) at 10:04:07 on AUG 29, 1985 for CCid=S553

~~~~

.

•

| 8853 | SUBROUTINE PLOTR1                                                   |
|------|---------------------------------------------------------------------|
| 8854 | IMPLICIT REAL*8(A-H, O-Z)                                           |
| 8855 | COMMON/CONTRL/ TIME,NSEG,NJNT,NPL,NBLT,NBAG,NVEH,NGRND,             |
| 8856 | * NS, NQ, NSD, NFLX; NHRNSS, NWINDF, NJNTF, NPRT(36)                |
| 8857 | COMMON/CNTSRF/ PL(17,100).BELT(20,8).TPTS(6,8).BD(24,110)           |
| 8858 | COMMON/TITLES/ DATE(3).COMENT(40).VPSTTL(20).BDYTTL(5).             |
| 8859 | * BITTL(5,8) PITL(5,100) BAGTL(5,6) SEG(100)                        |
| 8860 | * JUINT(100) CGS(100) JS(100)                                       |
| 8861 | PEAL DATE COMENT VISTI BUTTI BUTTI BAGTI SEG JOINT                  |
| 8862 |                                                                     |
| 0002 | (OWNON (D) OTS ( E VDD(2 400) D) DTS (2 2 400) NS (SSC(400) (D) DDS |
| 8864 | COMMON /FLUTRS/ ELTPR(3,100), PEPIS(3,3,100), NELSEG(100), EUNPCS   |
| 0000 | 1 , IELPS, IELPB, IELP, NNELP, NPLSEG(100)                          |
| 8865 | $REAL^{+} PLP1S$                                                    |
| 8866 | REAL*4 SOFI(3,100), BOFI(3,6), BBELT(20,8), BBDD(3,100),            |
| 8867 | 1 ELD(9,100), BL                                                    |
| 8868 | COMMON /TEMPVS/ DE(9), SOFT, BOFT, BBELT, BBDD, ELD                 |
| 8869 | DIMENSION IDYPR(3)                                                  |
| 8870 | DATA IDYPR/3,2,1/                                                   |
| 8871 | C ·                                                                 |
| 8872 | C                                                                   |
| 8873 | C                                                                   |
| 8874 | DATA BL/4H /                                                        |
| 8875 | LDNPCS = 9                                                          |
| 8876 | c                                                                   |
| 8877 | C BELT DATA                                                         |
| 8878 | C                                                                   |
| 8879 | DO 4O I = 1.8                                                       |
| 8880 |                                                                     |
| 8881 | BBEIT(J, I) = BEIT(J, I)                                            |
| 8882 |                                                                     |
| 8883 |                                                                     |
| 8884 |                                                                     |
| 0004 | U C AND STATIADLY FOR SENT-MAJOR AVES TO VIELD THE                  |
| 0000 | C AND SIMILARLY FUR SEMI-MAUUR ARES, IU TIELD THE                   |
| 0000 | C PLUTUS ARRAY "BD"                                                 |
| 000/ |                                                                     |
| 0000 |                                                                     |
| 8889 | DU 52 I=1, NSEG                                                     |
| 8890 | D0 49 J = 1.3                                                       |
| 8891 | $BBDD(\mathbf{J},\mathbf{I}) = BD(\mathbf{J},\mathbf{I})$           |
| 8892 | SUF((0,1) = BD(0+3,1)                                               |
| 8893 | IF (NELSEG(I) : EQ. O) NELSEG(I) = I                                |
| 8894 | 49 CONTINUE                                                         |
| 8895 | CALL DRCYPR(DE,ELYPR(1,I),IDYPR)                                    |
| 8896 | DO 50 J=1,9                                                         |
| 8897 | ELD(J,I) = DE(J)                                                    |
| 8898 | 50 CONTINUE                                                         |
| 8899 | 52 CONTINUE                                                         |
| 8900 | IF (IELP .LE. O) GO TO 55                                           |
| 8901 | II = NSEG                                                           |
| 8902 | DO 56 I = IELPS, IELPB                                              |
| 8903 | IF (BD(1,I) .EQ. O.) GO TO 56                                       |
| 8904 | IF (NELSEG(I) .EQ. O) GO TO 56                                      |
| 8905 | II = II + 1                                                         |
| 8906 | NELSEG(II) = NELSEG(I)                                              |
| 8907 | D0 53 J = 1,3                                                       |
| 8908 | BBDD(J,II) = BD(J,I)                                                |
| 8909 | SOFT(J,II) = BD(J+3,I)                                              |
| 8910 | 53 CONTINUE                                                         |
|      |                                                                     |

118

Table C.6. Listings of Code Changes to GUCVS (Page 3 of 38)

1

ł

Listing of SUSP:CIGS(8853,9039) at 10:04:07 on AUG 29, 1985 for CCid=SS53

IMPLIGIT REAL\*8(A-H, D-Z)
IMPLIGIT REAL\*8(A-H, D-Z)
COMMON/CONTRL/ TIME.NSEG.NJNT,NPL.NBLT,NBAG.NVEH.NGRND.
\*
COMMON/SGMNTS/ D(3.3,100),WREG(3,100),WREGD(3,100),USGLP(3,100),
\* U2(3,100),SEGLP(3,100),SEGLV(3,100),SEGLA(3,100),NSYM(100)
\* U2(3,100),SEGLP(3,100),SEGLV(3,100),SEGLA(3,100),NSYM(100)
\* U2(3,100),SEGLP(3,100),SEGLV(3,100),SEGLA(3,100),NSYM(100)
\* U2(3,100),SEGLP(3,100),SEGLY(3,100),SEGLA(3,100),USYM(100)
\* U2(3,100),SEGLP(3,100),SEGLY(3,100),SEGLA(3,100),USYM(100)
\* U2(3,100),SEGLP(3,100),SEGLY(3,100),SEGLA(3,100),USYM(100)
\* U2(3,100),SEGLP(3,100),SEGLY(3,100),SEGLA(3,100),USYM(100)
\* U2(3,100),SEGLP(3,100),SEGLY(3,100),SEGLA(3,100),USYM(5)
\* U2(3,100),SEGLP(3,100),SEGLA(3,100),SEGLA(3,100),USYM(5)
\* U2(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),USYM(5)
\* U2(5,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),USYM(5)
\* U2(5,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),USYM(5)
\* U2(5,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),USYM(5)
\* U2(5,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),USYM(5),SEGLA(3,100),USYM(5),SEGLA(3,100),USYM(5),SEGLA(3,100),SEGLA(3,100),USYM(5),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),USYM(5),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA(3,100),SEGLA( REAL\*4 TTPTS(6,8), DD(3,3,100), SSEGLP(3,100), BBDD(3,8) 1 DATE. COMENT. VESTL. BDYTTL. 2 (SEG(N),N=1,NGRND), (CGS(J),J=1,NSEG) IF (NNELP LE. 0) G0 T0 9110 WRITE (LDNPCS) (BBDD(I,J),SOFT(I,J),ELD(I,J), 9110 IF (NJNT LE. 0) G0 T0 9120 WRITE (LDNPCS) (J0INT(I),I=1,3),NELSEG(J),J=1,NJNT) 9120 IF (NJT LE. 0) G0 T0 9130 WRITE (LDNPCS) (J0INT(I),I=1,3),(BBELT(K,J), 9120 IF (NBLT LE. 0) G0 T0 9130 WRITE (LDNPCS) (BLTTL(I,J),I=1,3),(BBELT(K,J), 9130 IF (NBG LE. 0) G0 T0 9140 WRITE (LDNPCS) (BATTL(I,J),I=1,5),(BOFT(K,J), 9130 IF (NBG LE. 0) G0 T0 9140 WRITE (LDNPCS) (BATTL(I,J),I=1,5),(BOFT(K,J), 1 k=1,3),J=1,NBAG) 9140 IF (NPL LE. 0) G0 T0 9150 WRITE (LDNPCS) NSEG, NJNT, NBLT, NBAG, NPL, NNELP, NGRND COMMON /TEMPVS/ TTPTS, DD, SSEGLP, BBDD, PPLTS WRITE (LDNPCS) ((PLTTL(I,J),I=1,5),J=1,NPL) RECORD TIME INVARIANT PLOTCS VALUES CALL DRCYPR(DE, ELYPR(1, I), IDYPR) C C FINALLY, BOFT -- THE BAG DFFSETS C G0 T0 25 BOFT(J-3, I) = BD(J, II)REAL\*4 PPLTS(4,3,100) REAL\*4 PLPTS. TYME D0 54 J=1,9 ELD(J,II) = DE(J) SUBROUTINE PLOTR2 IF (NBLT .LE. 0) 00 20 I=1, NBLT DD 90 I=1, NBAG = NVEH + I DO 89 J=4, 6 DO 19 J=1, 6  $\Gamma YME = TIME$ CONTINUE CONT INUE CONTINUE CONTINUE 9150 RETURN END 00 88 06 55 54 56  $\circ \circ \circ$ C ပပ်ပ 8912 8913 8914 8916 8917 8918 8919 8920 8911 8922 8923 8924 8925 8926 8927 8928 8928 8930 8931 8932 8933 8933 8933 8935 8937 8933 8933 8933 8933 8933 8933 8941 8942 8943 8944 8945 8945 8947 8948 8949 8950 8951 8915 8921 8952 8953 8954 8955 8956 8957 8959 8960 8961 8962 8963 8963 8966 8967 8958 8965 8968

Listings of Code Changes to GUCVS (Page 4 of 38)

Table C.6.

Page

Listing of SUSP:CIGS(8853,9039) at 10:04:07 on AUG 29, 1985 for CCid=SS53

ო

Page

```
COMMON/SGMNTS/ Ď(3,3,100),WMEG(3,100),WMEGD(3,100),U1(3,100),
                                                                                                                                                                                                                                                                                                   PPLTS(4, U, I) = PLPTS(1,U,I)
PPLTS(1, U, I) = PLPTS(3,U,I)
PPLTS(3, U, I) = PLPTS(2,U,I)
PPLTS(2, U, I) = PLPTS(2,U,I) + PLPTS(3,U,I) - PLPTS(1,U,I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                WRITE (LDNPCS)(([PPLTS(I,J,K),I=1,4),J=1,3),K=1,NPL)
IF (NBLT .LE. O) GO TO 100
WRITE (LDNPCS) ((TTPTS(I, J), I=1, 6), J=1, NBLT)
IF (NBAG .LE. O) GO TO 110
WRITE (LDNPCS) ((BBDD(I, J), I=1, 3), J= 1, II)
                                                                                                                                                                                                                                                                                                                                                                                                                                                 RECORD TIME VARIANT PLOTCS VALUES FOR CURRENT TIME
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 2 ((SSEGLP(I, J), I=1, 3), J=1, NGRND),
4 (((DD(K, I, J), K=1, 3), I=1, 3), J=1, NGRND)
IF (NPL .LE. 0) G0 T0 90
                                                                                                                                                                                                                                                                                                                                                                                                      CALL PLOTRA(IJ, PPLTS(1,1,1), NN)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         SUBROUTINE PLOTRA(I, XYZ, N)
IMPLICIT REAL*8(A-H, D-Z)
REAL*4 XYZ
                                                                                                                                                                                                                                                                                                                                                                      IF (NN .LE. O) NN = NVEH
IF (NN .GE. NGRND) GO TO 80
                                                                                                 SSEGLP(J, I) = SEGLP(J, I)
                                                                                                                                              50
TTPTS(J, I) = TPTS(J, I)
19 CONTINUE
20 CONTINUE
                                                                           DD(K, J, I) = D(K, J, I)
CONTINUE
                                                                                                                                                                                                                                                                     85
                                                                                                                                                                                                                       BBDD(J, II) = BD(J+3, I)
                                                                                                                                            IF (NBAG .LE. O) GO TO
                                                                                                                                                                                                                                                                     IF (NPL .LE. 0) GO TO
                                                                                                                                                                                       DO 40 I= IBAGA, IBAGB
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        TYME
                                                                                                                                                                             IBAGB = NVEH + NBAG
                                          DD 30 I=1, NGRND
DD 29 J=1, 3
DD 28 K=1, 3
                                                                                                                                                                IBAGA = NVEH + 1
                                                                                                                                                                                                                                                                                                                                                                                              4
                                                                                                                                                                                                                                                                             DO 80 I=1, NPL
DO 70 J=1, 3
PPLTS(4, J, I)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        WRITE (LDNPCS)
                                                                                                                                                                                                                                                                                                                                                         NN = NPLSEG(I)
                                                                                                                                                                                                DO 39 J=1, 3
                                                                                                                                                                                                                                                                                                                                                                                          00751J = 1,
                                                                                                                                                                                                              + II = II
                                                                                                                                                                                                                                                                                                                                                CONT INUE
                                                                                                            29 CONTINUE
30 CONTINUE
                                                                                                                                                                                                                                   39 CONTINUE
40 CONTINUE
                                                                                                                                                                                                                                    CONTINUE
                                                                                                                                                                                                                                                                                                                                                                                                                 CONT INUE
                                                                                                                                                                                                                                                                                                                                                                                                                             CONTINUE
                                                                                                                                                        0 = 11
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    RETURN
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               END
                                                                                       28
                                                                                                                                                                                                                                                                                                                                                                                                                             80
                                                                                                                                                                                                                                                                                                                                                70
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        с
110
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    100
                                           25
                                                                                                                                                                                                                                                                   50
                                                                                                                                                                                                                                                                                                                                                                                                                 75
                                                                                                                                                                                                                                                                                                                                                                                                                                                                        85
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              90
                                 υ
                                                                                                                                                                                                                                                         ပ
                                                                                                                                   C
                                                                                                                                                                                                                                                                                                                                                                                                                                       000
           8970
                               8972
8973
                                                                 8975
                                                                           8976
                                                                                                8978
8979
                                                                                                                                                                                                                                                                                                                         8971
                                                                                                                       8980
                                                                                                                                                                 8984
                                                                                                                                                                                                                                 8990
                                                                                                                                                                                                                                                        89993
8993
8994
8995
8995
8996
8969
                                                      8974
                                                                                      8977
                                                                                                                                 8981
                                                                                                                                             8982
                                                                                                                                                        8983
                                                                                                                                                                             8985
                                                                                                                                                                                        8986
                                                                                                                                                                                                                        8989
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            9016
9017
9018
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             9019
9020
9021
9022
9023
                                                                                                                                                                                                  8987
                                                                                                                                                                                                               8988
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   9015
                                                                                                                                                                                                                                               8991
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             9025
9026
```

Table C.6. Listings of Code Changes to GUCVS (Page 5 of 38)

Listing of SUSP:CIGS(8853,9039) at 10:04:07 on AUG 29, 1985 for CCid=SS53

| * U2(3,100), SEGLP(3,100),SEGLV(3,100),SEGLA(3,100),NSYM(100) | DIMENSION XYZ(4,3), X(3), T1(3) |      | N = N | X(1) = XYZ(II, 1) | X(2) = XYZ(II,2) | (3) = XYZ(II) | CALL DDT31(D(1,1,NN), X(1), T1(1)) | DD 10 J=1, 3 | XYZ(II, J) = T1(J) + SEGLP(J, NN) | 10 CONTINUE | RETURN | END  |
|---------------------------------------------------------------|---------------------------------|------|-------|-------------------|------------------|---------------|------------------------------------|--------------|-----------------------------------|-------------|--------|------|
| 9027                                                          | 9028                            | 9029 | 9030  | 9031              | 9032             | 8033          | 9034                               | 9035         | 9036                              | 9037        | 9038   | 9039 |

4

•

•

.

Listing of SUSP:CIGS(9477,9505) at 10:04:40 on AUG 29, 1985 for CCid=S553

| 9477 | SUBROUTINE QUAT(ANG,Q)                                       |
|------|--------------------------------------------------------------|
| 9478 | COMPUTES QUATERNIONS FROM YAW, PITCH, ROLL ANGLES IN DEGREES |
| 9479 | IMPLICIT REAL *8(A-H,O-Z)                                    |
| 9480 | DIMENSION ANG(3),Q(4),R(4),T(3)                              |
| 9481 | COMMON/CNSNTS/PI,RADIAN                                      |
| 9482 | A = 0.5 * ANG(1) * RADIAN                                    |
| 9483 | Q(1) = DCOS(A)                                               |
| 9484 | Q(2) = 0.0                                                   |
| 9485 | Q(3) = 0.0                                                   |
| 9486 | Q(4) = DSIN(A)                                               |
| 9487 | K = 3                                                        |
| 9488 | DO 10 I = 2,3                                                |
| 9489 | A = O.5 * ANG(I) * RADIAN                                    |
| 9490 | R(1) = DCOS(A)                                               |
| 9491 | R(2) = 0.0                                                   |
| 9492 | R(3) = 0.0                                                   |
| 9493 | R(4) = 0.0                                                   |
| 9494 | R(K) = DSIN(A)                                               |
| 9495 | DOT = Q(2)*R(2) + Q(3)*R(3) + Q(4)*R(4)                      |
| 9496 | CALL CROSS(Q(2),R(2),T)                                      |
| 9497 | DO 5 J = 2,4                                                 |
| 9498 | 5 Q(J) = Q(1)*R(J) + R(1)*Q(J) + T(J-1)                      |
| 9499 | Q(1) = Q(1) * R(1) - DOT                                     |
| 9500 | 10  K = 2                                                    |
| 9501 | SUM = DSQRT(Q(1)**2 + Q(2)**2 + Q(3)**2 + Q(4)**2)           |
| 9502 | DO 12 I = $1,4$                                              |
| 9503 | 12 Q(I) = Q(I)/SUM                                           |
| 9504 | RETURN                                                       |
| 9505 | END                                                          |

Page

1

.

.

.

.

Listing of SUSP:CIGS(11620,11648) at 10:05:10 on AUG 29, 1985 for CC1d=SS53

ĺ

| LAS,                                                                                                                                                                                                                                |                                                                                                                                                         | (ARRAY(J),                                                                                                                                                       | (ARRAY(J).                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| IN.<br>NI                                                                                                                                                                                                                           |                                                                                                                                                         | IPTB,                                                                                                                                                            | IPTB.                                                                                                                                               |
| SUBROUTINE STASH (ARRAY,NUMWRD,LASNRN)<br>COMMON /IOCNTL/ LDNWRK, KWDPLN, IOTALK<br>DIMENSION ARRAY(2)<br>NLIN = (NUMWRD + KWDPLN - 1) / KWDPLN - 1<br>NLAS = NUMWRD - NLIN * KWDPLN<br>IF (IOTALK .NE. 0) WRITE(6,9998) NUMWRD, NL | 9998 FORMAT (8HOSTASH :, 5110)<br>IPTB = 0<br>NRN = LASNRN<br>IF (NLIN .LE. 0) GO TO 20<br>DO 10 I = 1, NLIN<br>IPTA = IPTB + 1<br>IPTB = IPTB + KWDPLN | NRN = NRN + 1<br>WRITE(LDNWRK'NRN) (ARRAY(J), J=IPTA,IPTB)<br>IF (IOTALK .GT. 1) WRITE(6,9999) NRN, IPTA,<br>1 J=IPTA,IPTB)<br>10 CONTINUE<br>20 IPTA = IPTB + 1 | <pre>IPTB = IPTB + NLAS<br/>NRN = NRN + 1<br/>WRITE(LDNWRK'NRN) (ARRAY(L), L=IPTA,IPTB)<br/>IF (IOTALK .GT. 1) WRITE(6,9999) NRN, IPTA,<br/>1</pre> |
| 11620<br>11621<br>11621<br>11622<br>11623<br>11625                                                                                                                                                                                  | 11627<br>11628<br>11629<br>11630<br>11633<br>11633<br>11633                                                                                             | 11634<br>11635<br>11636<br>11637<br>11638<br>11638                                                                                                               | 11640<br>11641<br>11642<br>11643<br>11644<br>11645<br>11646<br>11648                                                                                |

Table C.6. Listings of Code Changes to GUCVS (Page 8 of 38)

COMMON /PLOTIT/ NYP(20), MX(3,20), MY(3,10,20), NX(20), XO(20), NN(20), XS(20), NY(20), YO(20), VN(20), YL(20), YS(20), XLAB(15,20), NXLAB(20), NYLAB(20), YLAB(15,20), NYPLT, NPLB1(20), PLB1(15,20), NPLSMB(10,20) COMMON /HOLDIT/ BAGTTL(5,6), BDYTTL(5), BLTTTL(5,8), COMENT(40), DATE(3), DT, JOINT(100), INCSML, INCBIG, PLTTL(5,100), SEG(100), VPSTTL(20), LLFRST, KASTOP, NRNTIM, TIMLAS, MULTPL, NPL, NPLT, NRNVAR, LFENKT, NBAG, NBLT, LBBAG, LBBELT, LBJNT, LBPL, LBSEG, KKNTRL(241), NSD, NSEG, ISPSWT, NSTEPS, NVEH, NGRND, NHRNSS, NJNT COMMON /PRESET/ ISYMB(49), KASLIN(3,16), LDNARY(3), LPP, NWGO IKASE(12), NKASE, KASKOL, KASPAG, KASFUL COMMON /FETCHU/ PQUANT(16), KONTLP(6,3), JDTPTS(18), IPIN(3), COMMON /HLDCON/ NRNBAS(246), LFIRST(241), KASNUM, KATKOL(12), KPRELM(3), KATKAS(3,12), KASKTL(5,241), MAXPTS, NRN, LSTEP, LASREC(3) COMMON /FETCHT/ D(3,3,12), DPMI(3,3,100), G, LPMI(100), PI, SEGLA(3,12), SEGLP(3,12), SEGLV(3,12), WMEG(3,12), WMEGD(3,12), UNITL, UNITT, UNITM, RADIAN, TIMMAX, COMMON /IDCNTL/ LDNWRK, KWDPLN, IDTALK COMMON /AVDCON/ RSTF(27), FDPMI(900), XSG(3,50,3), NSG(7), MSG(50,7), MMSG(50,6) CONTLP(6,3), KSTF(27), FKASKL(1205), FFIRST(241), FRNBAS(246), FENKAT(51), FLPMI(100) ENCE (KSTF(1),RSTF(1)), (FFIRST(1),LFIRST(1)), (FRNBAS(1),NRNBAS(1)), (FENKAT(1),KATKOL(1)), (FKASKL(1),KASKTL(1,1)), (FLPMI(1),LPMI(1)), COMMON /ZTTHNG/ TIME(6000), ZTTH(6000,11), LINEQT(6000) DIMENSION IORDER(16), NEEDK(16), NTS(16), KIK(2,7), READ FIRST CONTROL DATA CARD FOR OUT PROCESSOR (CONTLP(1,1),KONTLP(1,1)) INITIALIZATION FOR OUT PROCESSOR KKAS, MSECPT, MTIMPT LŪNWRK = LDNARY(1) 16 C " MAXKAP 0 # D0 10 I = 1, REAL\*4 JOINT NTS(I) = 00 EQUIVALENCE IORDER(I) H NEEDK(I) 1 • CONTINUE KIK(1,1) LBPL = 0CONT INUE KIK(2,I) LBBAG = LBSEG = D0 12 I IOTALK MSECPT LLFRST LBBELT MTIMPT LBJNT 5 5  $\circ \circ \circ$ υu 100400 h യത 0 Ξ 2 513 15 19 20 23 25 5 24 28 31 27 32 33 34 35 36 36 37 38 39 40 43 45 46 48 49 50 4 42 44 47

38)

of

σ

Table C.6. Listings of Code Changes to GUCVS (Page

Page

59 С 60 READ (5,15) BEGT, FINT, TINC, 10TALK 61 15 FORMAT (3E8.0, I5) 62 С 63 С READ TIME INVARIANT INFORMATION FROM HOLD FILE 64 С READ (LDNWRK'1) TIMLAS, LINES, LASREC, MULTPL, INCBIG, INCSML 65 READ (LDNWRK'2) NVEH, NGRND, NSEG, NPL, NJNT, NSD, NBAG, NBLT, 66 NHRNSS. MAXPTS, LSTEP, NSTEPS, KASNUM, NRNVAR, LBBELT, LBBAG, 67 1 68 2 LBJNT, LBSEG, LBPL, LLFRST READ (LDNWRK'3) DATE, BDYTTL, KASTOP, LFENKT, STPMIN, PI, G, 69 70 RADIAN, UNITL, UNITT, UNITM, DT, TIMMAX, ISPSWT 1 71 LAST = NRNVAR72 CALL PICKUP(VPSTTL, 20, LAST) 73 CALL PICKUP(COMENT, 40, LAST) 74 IF (NBLT .LE. O) GO TO 20 75 LAST = LBBELT 76 CALL PICKUP(BLTTTL, 5\*NBLT, LAST) 77 20 IF (NBAG .LE. 0) GO TO 30 78 LAST = LBBAG79 CALL PICKUP(BAGTTL, 5\*NBAG, LAST) 80 30 IF (NJNT .LE. 0) GD TO 40 81 LAST = LBJNT82 CALL PICKUP(JOINT, NJNT, LAST) 40 IF (NSEG .LE. 0) GO TO 50 83 LAST = LBSEG84 CALL PICKUP(SEG, NGRND, LAST) 85 86 CALL PICKUP(FLPMI, NSEG, LAST) LK = 9 \* NSEG 87 CALL PICKUP(DPMI, LK, LAST) 88 COMPLETE SEGMENT REPORTING AXIS ORIENTATIONS 89 С 90 DO 58 I = 1, NGRND 50 IF (I .GT. NSEG) GO TO 52 91 IF (LPMI(I) .NE. O) GO TO 58 92 93 52 DO 56 J = 1, 3 94 DO 54 K = 1, 395 DPMI(K, J, I) = 0.CONTINUE 96 54 97 CONTINUE 56 DPMI(1, 1, I) = 1.98 99 DPMI(2, 2, 1) = 1.100 DPMI(3, 3, I) = 1.101 LPMI(I) = 0102 58 CONTINUE 103 IF (NPL .LE. O) GO TO 60 104 LAST = LBPL105 CALL PICKUP(PLTTL, 5\*NPL, LAST) 106 60 LAST = LLFRST 107 CALL PICKUP(FFIRST, KASNUM, LAST) CALL PICKUP(FRNBAS, KASTOP, LAST) 108 109 CALL PICKUP(FKASKL. 5\*KASNUM. LAST) CALL PICKUP(FENKAT, LFENKT, LAST) 110 111 С С READ USER CONTROL DATA FOR THIS RUN OF THE OUT PROCESSOR 112 113 С 114 KBEG = BEGT / STPMIN + .5115 KINC = TINC / STPMIN + .5116 KFIN = FINT / STPMIN + .5

•

· ·

.

Page

ო

/\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*/), ///, 1X, 20A4, /, 1X, 20A4) FORMAT ('O', 10X, 'PRINT QUANTITIES BEGINNING AT TIME=', F10.3, FORMAT (3(22X,'\*\*\*\*\*\*'73X,'\*\*\*\*\*\*'/), 22X, '\*\*\*\*\*\*' 9X, 'GGGGGGG' 6X, 'UU UU', 6X, 'CCCCCCC' 6X, 'VV VV', 6X, 'SSSSSS' 5X, '\*\*\*\*\*' /, 22X, '\*\*\*\*\*\*' 9X, 'GG G', 6X, 'UU UU', 6X, 'CCCCCC', 6X, 'VV VV', UU', 6X, 'CCCCCCC', 6A, ' \*\*\*\*\*\*' / 22X, '\*\*\*\*\*' 9X, 'III' 6X, 'CC ', 6X, 'V' VV ', (35X, '(POSITIVE INDICATES ALL CASES FOR CATEGORY', ' PRINTED IN ASSIGNED ORDER;'/35X,'NEGATIVE THAT CASES' AND ORDER HAVE BEEN SPECIFIED FOR CATEGORY.)'/ WRITE (6.160) DATE, COMENT FORMAT (3(22X,'\*\*\*\*\*',73X,'\*\*\*\*\*',), 22X, '\*\*\*\*\*', 17X, 'GMR/UMTRI OUT PROCESSOR ', 2X, 3A4, 17X, '\*\*\*\*\*\*',/. 22X, '\*\*\*\*\*', 73X, '\*\*\*\*\*', /, 2(22X, , 9X, VV , 9X. VVV 222 9Х, '1 '. 42X, 'INDIVIDUALLY SPECIFIED CONTACT CASES'/ 10X, 'NUMBER', 10X, 'CASE NO.', 10X, 'CATEGORY NO.' 10X, 'CASE DF CATG', 7X, 'N', 9X, 'NN', 10X, 'M', 9X. ' AT EVERY INCREMENT OF /. 22X, \*\*\*\*\*\*\*, 'CC '. 6X ' /\*\*\*\*\*\*/ /, 22X, /\*\*\*\*\*/ 'ccccccc', sx, SORT SPECIFIED CASES IN PRINT ORDER BY CATEGORIES KEEPING PRESCRIBED ORDER WITHIN CATEGORIES UU', 6X, 'uuuuuu', ex, /\*\*\*\*\*/ THROUGH TIME =', F10.3, IF (TINC .EQ. 0.) GD TD 190 WRITE (6,180) BEGT, FINT, TINC 5x, 5x, 5x, 5x, 0U 5X. WRITE (6,200) BEGT, FINT . , GGGGG G', 6X, , SSSSSSS', GG', 6X, . 6X. , 6X, . 6X 6X, 'SSSSSSS', TINC = KINC \* STPMIN FINT = KFIN \* STPMIN , SSSSSSS , SS ′ 6X, 'SSSSSSS' BEGT = KBEG \* STPMIN 00 000 ( , WW , ' SS • F10.3) WRITE (6,230) 6X. , 6G 6X, , GG , 6G, 9X, , 6X, G0 T0 210 NSAM = 0I = 1FORMAT 459780 140 150 Ċ 1 210 220 e 0400 160 190 180 230 0000 188 190 191 175 192 193 195 195 196 196 199 200 201 201 203 203 205 205 205 206 209 210 180 181 182 83 184 185 186 212 213 214 215 215 215 215 218 219 178 179 187 211 220 222 177 223 224 225 226 228 229 230 231 221 227

Listings of Code Changes to GUCVS (Page 12 to 38)

Table C.6.

Page

Table C.6. Listings of Code Changes to GUCVS (Page 13 to 38) KIK(2. LKIK) = II WRITE (6,320) II, IKAS, IKAT, KNUM, (KASKTL(J,IKAS),J=2,5) FORMAT (8X, IG, 11X, IG, 13X, IG, 17X, IG, 7X, IG, 5X, IG, I 5X, IG, 5X, IG) Listing of SUSP:CUTS(1,584) at 10:06:02 on AUG 29, 1985 for CCid=SS53 IF (LKIK .GT. O .AND. LKIK .LT. 8) GD TO 306 NOW PRINT SPECIFIED CASES AS REORDERED WRITE(6,303) LKIK, II, IKAT, IKAS, IORD FORMAT ('OWARNING---ILLEGAL LKIK=', 516) IF (JPNT .LE. NKNTRL) GD TO 250 IPNT = IPNT + NSAM + 1 IF (IPNT .LT. NKNTRL) GD TD 240 IF (IKAT .EQ. KLAS) GO TO 310 LKIK = IKAT - 7 JKAS = KKNTRL(JPNT) JKAT = KASKTL(1,JKAS) JORD = IABS(NEEDK(JKAT)) IF (IORD - JORD) 300, 270, 260 КОРВ = JPNT - 1 КТОР = КОРА + КОРВ IF (КОРА .GT. КОРВ) GO TO 300 DO 290 JJ = КОРА, КОРВ KKNTRL(KOPA) = JKAS IF (IORD .EQ. JORD) GD TD 300 IKAS = JKAS IKAT = JKAT IORD = JORD KKNTRL(J + 1) = KKNTRL(J)IKAS = KKNTRL(I) IKAT = KASKTL(1,IKAS) IORD = IABS(NEEDK(IKAT)) IKAS = KKNTRL(IPNT) IKAT = KASKTL(1,IKAS) IORD = IABS(NEEDK(IKAT)) DD 330 I = 1, NKNTRL KOPA = IPNT + NSAMKLAS = IKAT KNUM = 0 KNUM = KNUM + 1 = IPNT + 1 NSAM = NSAM + 1 U - KTOP - U 1 + TNUL = TNUL KIK(1, LKIK) = IIWRITE(6,335) 335 FORMAT(1HO) G0 T0 280 NSAM = 0NSAM = 0CONTINUE I = IIKNUM = 0 KLAS = 0CONT INUE NSAM = 0GO TO 330 TNPU -240 250 270 280 290 330 260 300 320 310 303 306 υ 000 234 235 235 235 233 233 233 240 241 241 243 245 246 247 248 233 244 249 250 251 252 253 255 255 255 255 255 258 259 260 260 262 262 263 265 265 265 265 265 265 

Page 5

293 340 DO 370 K = 1, 3 294 IF (NEEDK(K) .EQ. 0) GO TO 370 READ (5.350, ERR=430, END=450) KSG, MMSG(1,K), MSG(1,K), 295 296 (XSG(I, 1, K), I=1, 3)1 297 350 FORMAT (16, 213, 3F12.6) 298 WRITE(6,353) K, KSG 353 FORMAT('OCATEGORY', I3, ' CONTROLS:', I5, ' CASES') 299 IF (KSG .GT. 50) GO TO 410 300 301 NSG(K) = KSGIF (KSG-1) 352, 363, 355 302 303 352 NEEDK(K) = 0304 GO TO 370 READ (5.360, ERR=430, END=450) (MMSG(J,K), MSG(J,K), (XSG(I,J,K), 305 355 306 1 I=1.3).J=2.KSG) 307 FORMAT (6X, 213, 3F12.6) 360 363 WRITE(6,365) (J,MMSG(J,K),MSG(J,K),(XSG(I,J,K),I=1,3),J=1,KSG) 308 309 365 FORMAT (26X, 315, 3G20.10) 310 370 CONTINUE 311 D0 400 K = 4.6IF (NEEDK(K) .EQ. 0) GO TO 400 312 READ (5,380,ERR=430,END=450) KSG, (MMSG(J,K),MSG(J,K),J=1,11) 313 314 380 FORMAT (16, 2213) WRITE(6,353) K, KSG 315 IF (KSG .GT. 50) GO TO 410 316 317 NSG(K) = KSGIF (KSG .GT. O) GO TO 385 318 NEEDK(K) = 0319 GO TO 400 320 321 385 IF (KSG .LT. 12) GO TO 393 READ (5,390,ERR=430,END=450) (MMSG(J,K),MSG(J,K),J=12,KSG) 322 323 390 FORMAT (6X, 2213) 393 WRITE(6,395) (J, MMSG(J,K), MSG(J,K), J = 1, KSG) 324 395 FORMAT (26X, 315) 325 326 400 CONTINUE IF (NEEDK(7) .EQ. 0) GO TO 480 327 READ (5,402,ERR=430,END=450) KSG, (MSG(J,7), J=1, 11) 328 402 FORMAT (1216) 329 330 K = 7 WRITE (6,353) K, KSG 331 332 IF (KSG .GT. 50) GD TO 410 333 NSG(7) = KSG334 IF (KSG .GT. O) GO TO 404 NEEDK(7) = 0335 336 GO TO 480 404 IF (KSG .LT. 12) GO TO 408 337 READ (5,406,ERR=430,END=450) (MSG(J,7),J=12, KSG) 338 406 FORMAT (6X, 1116) 339 340 408 WRITE (6,409) (J, MSG(J,7), J=1, KSG) 341 409 FORMAT (26X, 15, 5X, 15) GO TO 480 342 343 410 WRITE (6,420) FORMAT ('OFATAL ERROR---MORE THAN 50 PRINT REQUESTS SPECIFIED.') 344 420 345 GO TO 470 WRITE (6,440) K, J 346 430 FORMAT ('OFATAL ERROR---READ ERROR FOR K, J=', 216) 347 440

Listing of SUSP:CUTS(1,584) at 10:06:02 on AUG 29, 1985 for CCid=SS53

READ PRINTED OUTPUT CONTROLS (H CARDS)

348 GO TO 470

Table C.6. Listings of Code Changes to GUCVS (Page 14 to 38)

129

291

292

С

С

Page 6

. .

349 450 WRITE (6,460) K, J 350 460 FORMAT ('OFATAL ERROR---EOF FOR K, J=', 216) 351 470 CALL ERROR 352 С 353 С READ INPUT CARD H.8.A TO CONTROL COMPUTATION OF HIC, HSI & CSI. 354 С 355 480 IF (NEEDK(15) .EQ. 0) GO TO 510 356 READ (5,520) JDTPTS 357 WRITE (6,490) JDTPTS 358 490 FORMAT ('OCATEGORY 15 CONTROLS:', 9(214, 2X)) 359 NDPT = 0360 DO 500 KDT = 1, 18361 500 IF (JDTPTS(KDT) .NE. O) NDPT = NDPT + 1 362 IF (NDPT .EQ. O) NEEDK(15) = O363 С 364 С READ INDICES OF VARIABLES TO BE PLOTTED AND 365 С ARGUMENTS TO SUBROUTINE SLPLOT ON CARDS I. 366 С 367 С INPUT CARD I.1 368 С 369 510 IF (NEEDK(16) .EQ. 0) GO TO 560 370 READ (5,520) NPLT, (NYP(K),K=1,NPLT) 371 520 FORMAT (1814) 372 WRITE (6,523) NPLT 373 523 FORMAT ('OCATEGORY 16 CONTROLS:', I5, ' CASES') 374 IF (NPLT .GT. O) GO TO 525 375 NEEDK(16) = 0376 GO TO 560 377 525 DO 550 K = 1, NPLT378 NYPLT = NYP(K)379 WRITE(6,528) K, NYPLT 380 528 FORMAT(10X, 'FOR PLOT NO.', I3, ', NO. OF CURVES = ', I3) 381 С 382 С INPUT CARD I.2.K 383 С 384 READ (5,529) MX(1,K), MX(2,K), MX(3,K), (MY(1,J,K),MY(2,J,K), 385 MY(3,J,K), NPLSMB(J,K), J = 1, NYPLT) 1 386 529 FORMAT (1913/ (9X, 1613)) 387 WRITE (6,529) MX(1,K), MX(2,K), MX(3,K), (MY(1,J,K),MY(2,J,K), 388 1 MY(3,J,K), NPLSMB(J,K), J = 1, NYPLT) 389 С С 390 INPUT CARD I.3.K 391 С 392 READ (5,530) NX(K), XO(K), XN(K), XL(K), XS(K) 393 530 FORMAT (14, 4X, 4F8.0) 394 С 395 С INPUT CARD I.4.K С 396 397 READ (5,530) NY(K), YO(K), YN(K), YL(K), YS(K) 398 С 399 С INPUT CARD I.5.K 400 С 401 READ (5,540) NXLAB(K), (XLAB(I,K), I=1, NW60)402 540 FORMAT (14, 4X, 15A4) С 403 404 С NOTE - ABOVE FORMAT ASSUMES 4 ALPHANUMERIC CHARACTERS FOR SINGLE 405 С PRECISION WORDS ON IBM 360 AND 370 COMPUTERS. THE 15A4 TERM IN THE 406 С FORMAT WILL HAVE TO BE CHANGED ON NON-IBM COMPUTERS TO PRODUCE A

Listing of SUSP:CUTS(1,584) at 10:06:02 on AUG 29, 1985 for CCid=SS53

Table C.6. Listings of Code Changes to GUCVS (Pag 15 to 38)

130

Page

| 407 | C CONTINUOUS STRING OF 60 CHARACTERS IN CORE MEMORY.         |
|-----|--------------------------------------------------------------|
| 408 | C                                                            |
| 409 | C INPUT CARD I.G.K                                           |
| 410 | C                                                            |
| 411 | READ (5,540) NYLAB(K) (YLAB(T,K) T=1 NW60)                   |
| 412 | C C                                                          |
| 413 |                                                              |
| 410 | C INFORCEARD 1.7.K                                           |
| 414 |                                                              |
| 415 | $\frac{1}{10000000000000000000000000000000000$               |
| 416 | 550 CUNTINUE                                                 |
| 417 | 560 IF (LINES LE. 0) GO TO 740                               |
| 418 | C                                                            |
| 419 | C READ IN SELECTED TIMES FOR COMMON REFERENCE                |
| 420 | C                                                            |
| 421 | KATG = 1                                                     |
| 422 | KASE = 1                                                     |
| 423 | KPT = O                                                      |
| 424 | KWANT = KBEG                                                 |
| 425 | $ \Delta STM = -1 $                                          |
| 426 |                                                              |
| 420 | CALL INDEAD(VATC VACE I DETE(4))                             |
| 400 | CALL INREAD(RAIG, RASE, I, RSIF(I))                          |
| 420 | KMUL = KSIF(J)                                               |
| 429 | IF (KINC LE. 0) GO TO 580                                    |
| 430 | IF (RMUL - LASIM) 590, 585, 565                              |
| 431 | 565 IF (KWANT GT. KMUL) GO TO 590                            |
| 432 | IF (KWANT .NE. KMUL) WRITE (6,570) KWANT, KMUL               |
| 433 | 570 FORMAT ('OWARNINGEXPECTED NEXT TIME MISSING=', I6,       |
| 434 | 1 'REPLACED BY ', IG)                                        |
| 435 | 580 KPT = KPT + 1                                            |
| 436 | TIME(KPT) = RSTF(1)                                          |
| 437 | 585 LINEQT(KPT) = KSTF(2)                                    |
| 438 | IF (KWANT EQ. KEIN) GO TO 600                                |
| 439 | LASTM = KMUI                                                 |
| 440 | KWANT = MINO(KWANT + KINC KEIN)                              |
| 441 | 590 CONTINUE                                                 |
| 442 |                                                              |
| 443 |                                                              |
| 443 | C FRINT DESTRED CATEGORIES                                   |
| 444 |                                                              |
| 445 | 600 IF (KAIDU .LE. 0) GO TO 800                              |
| 446 |                                                              |
| 447 | C LOUP OVER DESIRED CATEGORIES                               |
| 448 | C                                                            |
| 449 | DO 780 IA = 1, KATDO                                         |
| 450 | C GET GENERAL CATEGORY CONTROLS                              |
| 451 | NKAT = IORDER(IA)                                            |
| 452 | IF (NEEDK(NKAT) .EQ. O) GO TO 780                            |
| 453 | C ZERO PRINTING CONTROLS FOR THIS CATEGORY TO INITIALIZE.    |
| 454 | DO 604 L = 1, 3                                              |
| 455 | DO 602 M = 1, 6                                              |
| 456 | KONTLP(M,L) = O                                              |
| 457 | 602 CONTINUE                                                 |
| 458 | 604 CONTINUE                                                 |
| 459 | KASKOL = KASLIN(1, NKAT)                                     |
| 460 | KASPAG = KASLIN(2 NKAT)                                      |
| 461 | KASFIII = KASI IN(3, NKAT)                                   |
| 462 | C GET RANGE DE CASE DELVER INDICES EDD CURDENT CATEGORY      |
| 463 | IF (NKAT GT 7) GO TO 610                                     |
| 464 |                                                              |
|     |                                                              |
|     | Table C.6. Listings of Code Changes to GUCVS (Page 16 of 38) |

Page 8

١

Listings of Code Changes to GUCVS (Page 17 of 38) NKAT .EQ. 4) MG = IABS(MSG(KK, NKAT)) Listing of SUSP:CUTS(1,584) at 10:06:02 on AUG 29, 1985 for CC1d=SS53 LOOP OVER DESIRED CASES WITHIN CURRENT CATEGORY: ONE PAGE AT A TIME SET UP FETCH CONTROLS FOR CURRENT PAGE KETCHA = IB Ketchb = mino(ib + kaspag - 1, kastop) IF (KATKAS(1,ITS) .LE. O) GD TD 780 KASTAR = KATKAS(2,ITS) KASTDP = KATKAS(3,ITS) DO 770 IB = KASTAR, KASTOP, KASPAG IF (NKAT - 15) 690, 710, 720 IF (NEEDK(NKAT) .GT. 0) GD TD 700 IF (NKAT GT 3) GO TO 670 CONTLP(1,KKAS) = XSG(1, KK, NKAT) CONTLP(2,KKAS) = XSG(2, KK, NKAT) CONTLP(3,KKAS) = XSG(3, KK, NKAT) IF (NKAT - 15) 620, 640, 650 IF (NEEDK(NKAT) .LT. 0) GD TD 630 IF (KASTAR .GT. KASTOP) GO TO 780 KONTLP(5,KKAS) = MG KONTLP(4,KKAS) = MSG(KK, NKAT) KKAS = 0 DD 730 KKI = KETCHA, KETCHB IF (NKAT .EQ. 7) GD TD 668 MG = MMSG(KK, NKAT) IF (MG) 662, 666, 668 IF (MG .EQ. -2) GD TD 664 MG = NGRND IF (NKAT .GT. 7) GD TD 680 (MG) 662, 666, 668 (MG EQ. -2) GO TO 664 = NGRND TO 668 . OR . KONTLP(6,KKAS) = KKI KASTAR = KIK(1, ITS) KASTOP = KIK(2, ITS) KONTLP(1,KKAS) = 0 KONTLP(2,KKAS) = 0 KONTLP(3,KKAS) = 0 KASTOP = NSG(NKAT) G0 T0 660 KKAS = KKAS + 1 IF (NKAT .EQ. 1 ITS = NKAT - 7TS = NKAT - 2KASTAR = 1 KASTOP = NDPT KASTOP = NPLTKASTAR = 1 MG = NVEH GO TO 668 MG = NVEH GO TO 725 GD TO 660 GO TO 660 GO TO 660 G0 T0 725 KK = KKI Table C.6. 0 = g ğ 680 690 668 670 610 620 662 664 666 630 640 650 660 0000000 518 519 520 521 522

Page

თ

CALL SLPLOT(KK, KPT) IF (IOTALK .EQ. O) GO TO 730 WRITE (6,728) NKAT, KETCHA, KK, KKAS, (KONTLP(I,KKAS),I=1,6), I (CONTLP(J,KKAS),J=1,6) FORMAT ('OKONILP:', 10110/ 8X, 6G20.10) INSERT ANY PLOT TERMINATION CODE REQUIRED BY YOUR SYSTEM HERE COMMON /PRESET/ ISYMB(49), KASLIN(3,16), LDNARY(3), LPP, NW6O DATA ISYMB / 1HA, 1HB, 1HC, 1HD, 1HE, 1HF, 1HG, 1HH, 1HI, 1HU, 1HK, 11HL, 1HM, 1HN, 1HD, 1HP, 1HQ, 1HR, 1HS, 1HT, 1HU, 1HV, 1HW, 21HX, 1HY, 1HZ, 1H<, 1H(, 1H+, 1H|, 1H8, 1H5, 1H), 1H; 1H¬, 1H¬, 1H-, 31H/, 1H, 1H%, 1H, 1H>, 1H2, 1H; 1H#, 1H@, 1H', 1H=, 1H", 1H\*/ DATA KASLIN/4, 3, 12,4,3, 12,4,3, 12,4,3, 12,4,3, 12,4,3, 12,7,2,14, IF (NTITL .NE. 0) CALL HEDING(NKAT, NTIM, LINPPG) . MAXKAP COMMON /IOCNTL/ LDNWRK, KWDPLN, IOTALK SET UP TIME LOOP FOR CURRENT PAGE • CALL FETCH(NKAT, II, NTIM, KOLBEG) KK = KKNTRL(KKI) KONTLP(G, KKAS) = KK KONTLP(1,KKAS) = KASKTL(2,KK) KONTLP(2,KKAS) = KASKTL(3,KK) KONTLP(3,KKAS) = KASKTL(4,KK) KONTLP(4,KKAS) = KASKTL(5,KK) KONTLP(5,KKAS) = 0 CALL PRTLIN(NKAT) IF (NTIM .GE. KPT) GD TD 770 IF (LINPPG .LT. LPP) GD TD 740 IF (NKAT GT. 14) GO TO 770 IF (KKAS .LE. 0) GO TO 770 DO 750 II = 1, KKAS Kolbeg = Kolbeg + Kaskol CALL HICCSI(KK, KPT) LINPPG = LINPPG + 1 KOLBEG = 1 - KASKOL DO 745 I = 1, 12 + MIIM = NIIM +IKASE(I) = 0LINPPG = 0GO TO 725 BLOCK DATA GO TO 725 NTITL = 1NKASE = 0 NTITL = 0GO TO 760 NTITL = 1CONT INUE CONTINUE NTIM = 0RETURN CONTINUE CONT INUE CONTINUE END 800 720 730 700 710 740 745 750 770 780 000 000 523 524 525 525 526 528 529 530 531 532 533 534 535 536 537 538 538 538 539 541 542 543 545 546 547 548 549 550 551 544 573 574 575 576 577 572 578 579 580

38)

Table C.6. Listings of Code Changes to GUCVS (Page 18 of

Page 10

.

## Listing of SUSP:CUTS(1,584) at 10:06:02 on AUG 29, 1985 for CCid=SS53

| 581 | 1 7, 2, 14, 10, 1, 10, 4, 2, 8, 4, 2, 8, 4, 2, 8, 6, 2, 12, 6, 2, 12, 0, 1, 0, 0, 1, 0/ |
|-----|-----------------------------------------------------------------------------------------|
| 582 | DATA LPP, NWGO, MAXKAP, KWDPLN / 41, 15, 6000, 20/                                      |
| 583 | DATA LDNARY / 8, 10, 11/                                                                |
| 584 | END                                                                                     |

. .

1

Listing of CVSB(2313,2563) at 10:09:05 on AUG 29, 1985 for CCid=SS53

 $\left( \right)$ 

| SUBRO<br>AND TR<br>AND |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

.

Page

----

Listing of CVSB(2313,2563) at 10:09:05 on AUG 29, 1985 for CCid=SS53

vo(20), vn(20), vs(20), vs(20), vlab(15,20), Plb2(15,20), nvp(20), mx(2,20), my(2,10,20), nv(20), nv(20), nxlab(20), nvlab(20), nplb1(20), nplb2(20), usec(45), zTTH(14,45,2) common /IPLSMB/NpLSMB(100) Table C.6. Listings of Code Changes to GUCVS (Page  $^{21}$  of 38) (5,11) MX(1,K), MX(2,K), (MY(1,J,K), MY(2,J,K),NPLSMB(J) (MY(1, J, K), MY(2, J, K), NPLSMB(J) READ INPUT CARD H.8.A TO CONTROL COMPUTATION OF HIC, HSI & CSI IF (JDTPTS(KDT).NE.O) NDPT = NDPT + 1 IF (.NDT.LPLOT .AND. .NOT.LTABH .AND. NDPT.EQ.O) GO TO 99 CALL ELTIME (1,36) IF (.NOT.LPLOT) GO TO 20 READ (5,12) NX(K), XO(K), XN(K), XL(K), XS(K) FORMAT (14, 4X, 4F8.0) READ (5,12) NY(K), YO(K), YN(K), YL(K), YS(K) READ INDICES OF VARIABLES TO BE PLOTTED AND ARGUMENTS TO SUBROUTINE SLPLOT ON CARDS I. READ (5,11) NPLT , (NYP(K),K=1,NPLT)
WRITE (6,91) NPLT,(NYP(K),K=1,NPLT)
FORMAT (1814) (NPLT\_LE\_O) LPLOT = .FALSE. (.NOT.LPLOT) GO TO 20 15 K=1,NPLT TRUE. = . TRUE LTABH = .TRUE . TRUE WRITE (6,11) MX(1,K),MX(2,K), 1,J=1,NYPLT) DATA LPP/45/ , NZD1/6000/ H LPLOT LTABH LPLOT LTABH = .FALSE. LPLOT = .FALSE. NPRT4 = IABS(NPRT(4)) INPUT CARD I.4.K INPUT CARD I.2.K INPUT CARD I.3.K READ (5,11) JDTPTS WRITE (6,91) JDTPTS LOGICAL LTABH, LPLOT INPUT CARD I.1 (NPRT4.EQ.1) (NPRT4.EQ.3) (NPRT4.EQ.3) (NPRT4.EQ.2) (NPRT4.EQ.3) IF (NPRT4.EQ.3) DD 2 KKK =1,100 FORMAT(1X,1814) DO 4 KDT =1,18 NYPLT = NYP(K) NPL SMB (KKK) =0 DATA NWGO/15/ ( J= 1, NYPLT ) NDPT = 0READ 00 L L ٤ ΞI 11 12 1 3 6 4 000 000 000 000000 000 2422 2423 2425 2426 2392 2393 2396 2397 2400 2402 2403 2404 2405 2405 2408 2409 2413 2414 2415 2416 2418 2419 2420 2421 2424 2427 2371 2372 2373 2375 2376 2377 2377 2378 2378 2381 2382 2383 2384 2385 2386 2387 2388 2389 2389 2395 2410 2412 2417 2380 2394 2398 9999 2407 2411 2428 2374 2391

Page

Listing of CVSB(2313,2563) at 10:09:05 on AUG 29, 1985 for CCid=SS53

NOTE - ABOVE FORMAT ASSUMES 4 ALPHANUMERIC CHARACTERS FOR SINGLE Precision words on IBM 360 and 370 computers. The 15a4 term in The Format Will Have to be changed on Non-IBM computers to produce a \* .... (a, END=29) NSEG, NJNT, NPL, NBLT, NBAG, NVEH, NGRND, NPANEL,
\* MNPL, MNBLT, MNSEG, MNBAG, MPL, MBLT, MSEG, MBAG
READ (B, END=29) DATE, COMENT, VPSTTL, BDYTTL, BLTTL, PLTTL, BAGTTL,
\* SEG, JOINT, UNITTL, UNITT, NSG, MSG, NSG, NSG, NSG, NSG, NSDN
\* NHRNSS, NBLTPH, NPTSPB, NSD, MSDN, MSDN
\* NPTS = NPTS + 1
2(NPTS, 1) = UMSEC
IF (NDPT F^^)
\* Listings of Code Changes to GUCVS (Page 22 of 38) CONTINUOUS STRING OF 60 CHARACTERS IN CORE MEMORY READ (5,13) NPLB1(K), (PLB1(I,K),I=1,NW60) READ (5,13) NXLAB(K), (XLAB(I,K),I=1,NWGO) FORMAT (I4, 4X, 15A4) READ (5,13) NYLAB(K), (YLAB(I,K),I=1,NWGO) READ TIME HISTORY DATA FROM TAPE'8. STORE DATA FOR HIC, HSI AND CSI 6 GO TO (.NOT.LPLOT) GO TO 25 Z(NPTS, JY) = TDATA(JE, JP) Z(NPTS,JJ) = TDATA(JE,JP) 24 K=1,NPLT = IABS(MX(2,K)) (JE.EQ.O) GO TO 23 STORE DATA FOR PLOTTING 61 I=1,18 (JDTPTS(I).EQ.0) = 4\*MOD(JD,3) + 4 INPUT CARD I.6.K INPUT CARD I.7.K INPUT CARD I.5.K • = MX(1,K) - 20 = UDTPTS(I) = NDPT + 1 = 1D/3 + 1 i + λΩ = 1+ PP = NPTS = 0CONTINUE ULLC= UL Table C.6. ----395 ~03"H ٩ ٩ Ξ γŅ 20 22 15 21 61 <del>1</del>3  $\circ \circ \circ$  $\circ \circ \circ$ 0000 000000000 C C C  $\circ \circ \circ$ 2480 2481 2462 2463 2464 2440 2441 2442 2443 2444 2445 2447 2448 2449 2450 2451 2451 2453 2454 2455 2455 2456 2458 2458 2458 2458 2460 2465 2466 2467 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2482 2483 2484 2485 2486 2430 2431 2434 2435 2436 2437 2438 2439 2446 2461 2429 2433 2432

ო

2487 23 NYPLT = NYP(K) 2488 DO 24 J=1,NYPLT 2489 JY = JY + 12490 JP = MY(1, J, K) - 202491 JE = IABS(MY(2, J, K))2492 Z(NPTS, JY) = UMSEC2493 IF (JE.NE.O) Z(NPTS, JY) = TDATA(JE, JP) 24 2494 25 IF (.NOT.LTABH) GO TO 21 С 2495 2496 С STORE DATA TO PRINT TABULAR TIME HISTORIES 2497 С 2498 TEST = DMOD(UMSEC, PRDT) 2499 TEST = DMIN1(TEST, DABS(PRDT-TEST)) 2500 IF (NPRT(26).EQ.O .AND. TEST.GT.EPS(4)) GO TO 21 2501 LINES = LINES + 12502 NTTH = MOD(LINES-1, LPP) + 12503 USEC(NTTH) = UMSEC2504 DO 26 J=1.NT 2505 DO 26 I=1.14 2506 26 ZTTH(I,NTTH,J) = TDATA(I,J)2507 IF (NTTH.EQ.LPP) CALL HEDING (LINES, LPP) 2508 GO TO 21 2509 29 IF (.NOT.LTABH .OR. LINES.EQ.O) GO TO 30 2510 IF (NTTH.NE.LPP) CALL HEDING (LINES.LPP) 2511 30 IF (NDPT.NE.O) CALL HICCSI(NPTS, JHIC) 2512 IF (.NOT.LPLOT) GO TO 98 2513 С 2514 С PLOT DATA VIA SUBROUTINE SLPLOT. 2515 С 2516 С 2517 CALL COMPRS 2518 JZ = NDPT+12519 DO 50 K=1,NPLT 2520 JX = 12521 IF (MX(2,K).EQ.O) GO TO 42 2522 JZ = JZ + 12523 JX = JZ2524 IF (Z(1,JX).EQ.O.O .OR. MX(2,K).GE.O) GO TO 42 2525 DO 41 I=2,NPTS 2526 41 Z(I,JX) = Z(I,JX) - Z(1,JX)2527 Z(1,JX) = 0.02528 42 NYPLT = NYP(K) 2529 DO 44 J=1,NYPLT 2530 JY = JZ + J2531 IF (Z(1, JY).EQ.O.O .OR. MY(2, J, K).GE.O) GO TO 44 2532 DO 43 I=2,NPTS 2533 43 Z(I,JY) = Z(I,JY) - Z(1,JY)2534 Z(1, JY) = 0.02535 CONTINUE 44 2536 NXK = NX(K)2537 NYK = NY(K)2538 XOK = XO(K)2539 YOK = YO(K)2540 XNK = XN(K)2541 YNK = YN(K)2542 XLK = XL(K)2543 YLK = YL(K)2544

XSK = XS(K)

Listing of CVSB(2313,2563) at 10:09:05 on AUG 29, 1985 for CCid=SS53

Table C.6. Listings of Code Changes to GUCVS (Page 23 of 38)

Page
Listing of CVSB(2313,2563) at 10:09:05 on AUG 29, 1985 for CCid=SS53

•

| 45<br>46 | YSK = YS(K)<br>NXLABK = NXLAB(K)                                   |
|----------|--------------------------------------------------------------------|
| 7        | NYLABK = NYLAB(K)                                                  |
| 8        | NPLB1K = NPLB1(K)                                                  |
| 6        | NPLB2K = NPLB2(K)                                                  |
| 0        | CALL SLPLDT(Z(1, JX ). NXK, XOK, XNK, XLK, XSK, XLAB(1,K), NXLABK  |
|          | * Z(1,JZ+1), NYK, YOK, YNK, YLK, YSK, YLAB(1,K), NYLABK.           |
| 2        | * NPTS.NYPLT.NZD1.PLB1(1.K).NPLB1K.PLB2(1.K).NPLB2K.K)             |
| с<br>е   |                                                                    |
| 4<br>C   | INSERT ANY CODE REQUIRED BY YOUR SYSTEM TO ADVANCE PLOT PAGES HERE |
| 5<br>C   |                                                                    |
| 6        | 50 JZ = JZ + NYPLT                                                 |
| 7        | CALL DONEPL                                                        |
| 8<br>C   |                                                                    |
| с<br>6   | INSERT ANY PLOT TERMINATION CODE REQUIRED BY YOUR SYSTEM HERE      |
| ი<br>ი   |                                                                    |
| -        | 98 CALL ELTIME (2,36)                                              |
| 2        | 99 RETURN                                                          |
| e        | END                                                                |

Page

വ

<u>ار:</u>

Table C.6. Listings of Code Changes to GUCVS (Page 24 of 38)

631 SUBROUTINE FETCH(KATG, KASPT, NLIN, KOLB) 632 COMMON /HOLDIT/ BAGTTL(5,6), BDYTTL(5), BLTTTL(5,8), COMENT(40). 633 DATE(3), DT, JOINT(100), INCSML, INCBIG, PLTTL(5,100), 1 634 2 SEG(100), VPSTTL(20), LLFRST, KASTOP, NRNTIM, 635 3 TIMLAS, MULTPL, NPL, NPLT, NRNVAR, LFENKT, 636 Δ NBAG, NBLT, LBBAG, LBBELT, LBJNT, LBPL, 637 5 LBSEG, KKNTRL(241), NSD, NSEG, ISPSWT, 638 6 NSTEPS, NVEH, NGRND, NHRNSS, NJNT 639 COMMON /PRESET/ ISYMB(49), KASLIN(3,16), LDNARY(3), LPP, NW60 640 1 , MAXKAP COMMON /FETCHT/ D(3,3,12), DPMI(3,3,100), G, LPMI(100), PI, 641 642 SEGLA(3,12), SEGLP(3,12), SEGLV(3,12), WMEG(3,12), 1 643 2 WMEGD(3,12), UNITL, UNITT, UNITM, RADIAN, TIMMAX, 644 3 IKASE(12), NKASE, KASKOL, KASPAG, KASFUL 645 COMMON /IOCNTL/ LDNWRK, KWDPLN, IOTALK COMMON /FETCHU/ PQUANT(16), KONTLP(6,3), JDTPTS(18), IPIN(3), 646 647 1 KKAS, MSECPT, MTIMPT 648 COMMON /HLDCON/ NRNBAS(246), LFIRST(241), KASNUM, KATKOL(12), 649 KPRELM(3), KATKAS(3,12), KASKTL(5,241), MAXPTS, 650 NRN, LSTEP, LASREC(3) 2 651 COMMON /ZTTHNG/ TIME(6000), ZTTH(6000,11), LINEQT(6000) 652 DIMENSION CONTLP(6,3), V(3,12), FM(3,3,3), ISWT(2), LSWT(2) 653 . KQUANT(14) 1 654 EQUIVALENCE (CONTLP(1,1), KONTLP(1,1)), (KQUANT(1), PQUANT(1)) 655 DATA TWOPI/6.283185/ 656 LIN = LINEQT(NLIN)657 KPT = KASPT 658 KAT = KATG659 KOL = KOLB660 MSECPT = NLIN 661 MTIMPT = LIN662 KAS = KONTLP(6, KPT)663 IF (KAT .LE. O) GO TO 900 664 IF (KAT - 7) 5, 700, 800 665 5 ITO = KONTLP(5, KPT)666 ISWT(2) = ITO667 IFRM = IABS(KONTLP(4, KPT)) 668 ISWT(1) = IFRM669  $DO \ 9O \ J = 1, 2$ 670 II = J671 LSWT(II) = 0672 DO 10 I = 1, 12 673 IF (IKASE(I) .LE. O) GO TO 20 674 IF (IKASE(I) .NE. ISWT(II)) GO TO 10 675 LSWT(II) = I676 GO TO 90 677 10 CONTINUE 678 20 JJ = NKASE + 1679 IF (NKASE .LT. 12) GO TO 40 680  $DO \ 3O \ I = 1, 12$ 681 IF (IKASE(I) .EQ. NVEH) GO TO 30 682 IF (IKASE(I) .EQ. NGRND) GO TO 30 683 JJ = I684 GO TO 40 685 CONTINUE 30 686 WRITE(6,9999) IKASE, NKASE, ISWT, LSWT, LIN, KPT, KAT, KOL 687 9999 FORMAT('OFATAL ERROR---FETCH CURRENT CASE SPACE ', 688 'FILLED WITH VECH/GRND.'/(5X, 12I10)) 1

Listing of SUSP:CUTS(631,834) at 10:06:51 on AUG 29, 1985 for CCid=SS53

Table C.6. Listings of Code Changes to GUCVS (Page 25 of 38)

140

Page

/~~`~

| 689 |      | STOP 99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 690 | 40   | IF (NKASE .LT. 12) NKASE = JJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 691 |      | IKASE(JJ) = ISWT(II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 692 |      | ISWT(II) = JJ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 693 | C PE | CORDING CATEGORY 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 693 | C KL | CALL TNDEAD(2) ISWT(1) (IN ZTTH(1,1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 694 |      | CALL INREAD(2, 13W1(0), LIN, LINN, $(1,1)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 695 |      | DU 60 M = 1, 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 696 |      | SEGLP(M, JJ) = ZIIH(M, I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 697 |      | SEGLV(M, JJ) = ZTTH(M+3, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 698 |      | SEGLA(M, JJ) = ZTTH(M+6, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 699 | 60   | CONTINUÉ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 700 | C RE | CORDING CATEGORY 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 700 | 0 11 | CALL INPEAD (3 ISWT(1) LIN ZTTH(1,1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 701 |      | $ \begin{array}{c} CALL & INELAD(0, ISU(0), LU(0, ISU(0), LU(0, ISU(0), ISU(0, ISU(0), ISU(0, ISU(0), ISU(0, ISU(0), ISU(0, ISU(0), ISU(0, ISU(0), ISU(0), ISU(0, ISU(0), ISU(0, ISU(0), ISU(0, ISU(0), ISU(0), ISU(0, ISU(0), ISU(0, ISU(0), ISU(0, ISU(0), ISU(0, ISU(0), ISU(0), ISU(0), ISU(0, ISU(0), ISU(0), ISU(0, ISU(0), ISU(0), ISU(0, ISU(0), ISU(0), ISU(0), ISU(0), ISU(0), ISU(0), ISU(0), ISU(0), ISU(0, ISU(0), $ |
| 702 |      | $p_{0}$ $r_{0}$ $m = 1, 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 703 |      | WMEG(M, JJ) = Z(IH(M, I))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 704 |      | $WMEGD(M, JJ) = Z(IH(M^{+3}, I))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 705 | 70   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 706 | C RE | CÖRDING CATREGORY 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 707 |      | CALL INREAD(4. ISWT(J), LIN, $D(1,1,JJ)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 708 | 90   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 700 | 50   | $\int dB dt = \int S dt (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 709 |      | $r_{M} = L_{SWT}(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 710 |      | JIU = LSWI(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 711 |      | IF (IUTALK .EQ. 0) GUTU 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 712 |      | WRITE(6,93) KAT, KPT, LIN, NEIN, KUE, ISWI, LSWI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 713 | 93   | FORMAT ('OFETCH:', 11110)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 714 | 95   | IF (KAT .LT. 4) CALL MAT31(DPMI(1,1,IFRM), CUNILP(1,KPI), V(1,12))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 715 |      | GD TD (100, 200, 300, 400, 500, 600), KAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 716 | С    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 717 | č    | LINEAR ACCELERATION OF POINTS ATTACHED TO SEGMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 710 | č    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 718 | Č    | CALL CDOSS (WMEC(1, JEDM) V(1, 12) V(1, 1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 719 | 100  | CALL CRUSS(WMEG(1, UERM), $V(1, 1), V(1, 2)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 720 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 721 |      | CALL CROSS(WMEGD(1, JFRM), V(1, 12), V(1, 3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 722 |      | CALL VECADD( $V(1,2)$ , $V(1,3)$ , $V(1,4)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 723 |      | CALL DOT31(D(1,1,JFRM), V(1,4), V(1,5))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 724 |      | CALL VECADD(V(1,5), SEGLA(1,JFRM), V(1,6))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 725 |      | IF (KONTLP(4,KPT) .GT. O) GO TO 110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 726 |      | CALL DOT31(D(1,1, JFRM), $V(1, 12), V(1, 11)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 720 |      | CALL VECADD(SEGLP(1, JERM), $V(1, 11), V(1, 10)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 729 |      | CALL VECSUB(V(1,10) SEG(P(1,JTD), V(1,9))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 120 |      | (A = 1 + 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 729 |      | CALL MAIST( $D(1,1,010)$ , $V(1,0)$ , $V(1,2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 730 |      | CALL DUISI( $D(1,1)$ , $U(1,1)$ , $V(1,1)$ , $V(1,2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 731 |      | CALL VECADD( $V(1,3)$ , SEGL $V(1,0,M)$ , $V(1,4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 732 |      | CALL VECSUB( $V(1,4)$ , SEGLV(1,010), $V(1,5)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 733 |      | CALL CROSS(WMEG(1,JTO), V(1,2), V(1,3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 734 |      | CALL VECSUB(V(1,5), V(1,3), V(1,1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 735 |      | CALL VECSUB(V(1,6), SEGLA(1,JTO), V(1.7))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 736 |      | CALL MAT31(D(1,1,JTD), $V(1,7)$ , $V(1,8)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 700 |      | CALL CROSS(WMEG(1 $(1,1), V(1,1), V(1,3)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 700 |      | CALL SCALED(y(1,3) - 5, y(1,1))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 738 |      | CALL VECEND(V(1, $\theta$ ), V(1, $\theta$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 739 |      | CALL VEGJUD(V(1,0), V(1,1), V(1,0))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 740 |      | CALL CRUSS(WMEG(1,JIU), V(1,2), V(1,3))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 741 |      | CALL CROSS(WMEG(1,JTD), V(1,3), V(1,4))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 742 |      | CALL CROSS(WMEGD(1,JTO), $V(1,2)$ , $V(1,1)$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 743 |      | CALL VECADD(V(1,1), V(1,4), V(1,5))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 744 |      | CALL VECSUB(V(1,6), V(1,5), V(1,7))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 745 |      | G0 T0 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 746 | 110  | CALL MAT31(D(1,1,JTD), V(1,6), V(1,7))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| /40 | 110  | CALL MATCH(D(), I)OID/, I()O/, I()//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Listing of SUSP:CUTS(631,834) at 10:06:51 on AUG 29, 1985 for CCid=SS53

Table C.6. Listings of Code Changes to GUCVS (Page 26 of 38)

2

Listing of SUSP:CUTS(631,834) at 10:06:51 on AUG 29, 1985 for CCid=SS53

| CALL DDT31(DPMI(1,1,ITD), V(1,7), V(1,8))<br>Call Scaled(V(1,8), G, Pquant(kol))<br>GD TO 550 | LINEAR VELOCITIES OF POINTS ATTACHED TO SEGMENTS | CALL CROSS(WMEG(i, JFRM), V(1,12), V(1,1))<br>CALL DOT31(D(1,1, JFRM), V(1,1), V(1,2))<br>CALL VECADD(V(1,2), SEGLV(1, JFRM), V(1,3))<br>CALL VECSUB(V(1,3), SEGLV(1, JT0), V(1,4)) | CALL MAT31(D(1,1,JTD), V(1,4), V(1,5))<br>LL = 5 | IF (KONTLP(4,KPT) .GT. 0) GO TO 210<br>CALL DOT31(D(1,1,JFRM), V(1,12), V(1,11)) | CALL VECADD(V(1,11), SEGLP(1,JFRM), V(1,10))<br>CALL VECSUB(V(1,10), SEGLP(1,JTD), V(1,9)) | CALL MAT31(D(1,1,UTD), V(1,9), V(1,8))<br>CALL CROSS(MMEG(1,UTD), V(1,8), V(1,7))<br>CALL VECEUP(V(1,4,7), V(1,5)) | LL = 6<br>CALL DOT31(DPMI(1,1,1TD), V(1,LL), PQUANT(KOL)) | G0 T0 550 | LINEAR DISPLACEMENTS OF POINTS ATTACHED TO SEGMENTS | CALL DOT31(D(1 1 [EDM) V(1 13) V(1 1)) | CALL VCIDI(((1,1), STGLP(1, JZN), V(1,1))<br>CALL VCCADD(V(1,1), STGLP(1, JZRM), V(1,2)) | CALL VECSUB(V(1,2), SEGLP(1,010), V(1,3))<br>IF (KONTLP(4,KPT) GT. 0) GO TO 310 | CALL MAT31(D(1,1,JFRM), V(1,3), V(1,4))<br>CALL SCALED(V(1,4), -1., PQUANT(KOL)) | GO TO 550<br>CALL MAT31(D(1,1,JTO). V(1,3). POUANT(KOL)) | G0 T0 550 | ANGUI AR ACCELERATIONS OF SEGMENTS |     | CALL DDT31(D(1,1,JFRM), WMEGD(1,JFRM), V(1,2)) | CALL WEISI(D(1,1,000), V(1,2), V(1,3))<br>CALL VECSUB(V(1,3), WMEGD(1,0T0), V(1,4)) | CALL DOT31(DPMI(1,1,1T0), V(1,4), V(1,5)) | CALL SCALEU(V(1,5), IWOPI, PQUANI(KUL))<br>GO TO 550 |     | ANGULAR VELUCITIES OF SEGMENIS | CALL DDT31(D(1,1,JFRM), WMEG(1,JFRM), V(1,1))<br>CALL MAT31(D(1,1,1TD) V(1,1) V(1,2)) | CALL VECSUB(V(1,2), WMEG(1,JTO), V(1,3)) | CALL SCALED(V(1,3), IWUP1, V(1,4))<br>CALL DOT31(DPMI(1,1,ITD), V(1,4), POUANT(KOL)) | PQUANT(KOL+3) = SQRT(PQUANT(KOL)**2 + PQUANT(KOL+1)**2 + |            | EULER ANGLE ORIENTATION OF SEGMENTS | CALL DOT33(DPMI(1,1,1FRM), D(1,1,JFRM), FM(1,1,1)) |
|-----------------------------------------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------|-----------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------|-----------|------------------------------------|-----|------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|-----|--------------------------------|---------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------|------------|-------------------------------------|----------------------------------------------------|
| 120                                                                                           | 000                                              | 200                                                                                                                                                                                 |                                                  |                                                                                  |                                                                                            |                                                                                                                    | 210                                                       | C         | ່ວບດ                                                | 300                                    | 005                                                                                      |                                                                                 |                                                                                  | 310                                                      |           | 00                                 | 00  | 400                                            |                                                                                     |                                           |                                                      | с o | ບບ                             | 500                                                                                   |                                          |                                                                                      | 550                                                      | ر          | 000                                 | ,<br>600                                           |
| 747<br>748<br>749<br>750                                                                      | 751                                              | 753<br>754<br>755<br>755                                                                                                                                                            | 757<br>758                                       | 759<br>760                                                                       | 761<br>762                                                                                 | 763<br>764<br>765                                                                                                  | 767<br>767                                                | 768       | 017                                                 | 111                                    | 173                                                                                      | 775                                                                             | 777<br>777                                                                       | 778<br>779                                               | 780       | 781<br>782                         | 783 | 784<br>705                                     | 786                                                                                 | 787                                       | 789                                                  | 790 | 792                            | 793<br>794                                                                            | 795                                      | 797                                                                                  | 798                                                      | 667<br>008 | 803<br>803                          | 804                                                |

Table C.6. Listings of Code Changes to GUCVS (Page 27 of 38)

Page

ო

Listing of SUSP:CUTS(631,834) at 10:06:51 on AUG 29, 1985 for CCid=SS53

| CALL DOTT33(FM(1,1,1),D(1,1,JT0),FM(1,1,2)) | CALL YPRDEG(FM(1,1,3), PQUANT(KDL)) | TRACE = .5*(FM(1.1.3) + FM(2.2.3) + FM(3.3.3) - 1.0 | IF (TRACE .GT. 1.0) TRACE = 1.0 | IF (TRACE .LT1.0) TRACE = -1.0 | PQUANT(KOL+3) = ARCOS(TRACE) / RADIAN | GD TD 900 |        | JOINT PARAMETERS |     | 700 CALL INREAD(5, KAS, LIN, PQUANT(KOL)) | PQUANT(KOL+1) = PQUANT(KOL+1) / RADIAN | PQUANT(KOL+2) = PQUANT(KOL+2) / RADIAN | PQUANT(KOL+3) = PQUANT(KOL+3) / RADIAN | PQUANT(KOL+4) = SQRT(PQUANT(KOL+4)) | PQUANT(KOL+5) = SQRT(PQUANT(KOL+5)) | PQUANT(KOL+6) = SQRT(PQUANT(KOL+6)) | IPIN(JU) = KQUANT(KDL+7) | G0 T0 900 |     | ALL OTHER FORCE PRODUCERS |     | BOO CALL INREAD(KAT,KAS,LIN,PQUANT(KDL)) | 900 IF (IDTALK .EQ. 0) GD TD 1000 | KOLZ = KOL + KASKOL - 1 | WRITE(6,910) (PQUANT(I), I=1, KOLZ) | 910 FDRMAT(7X, 6G20.10) | 1000 RETURN |     |
|---------------------------------------------|-------------------------------------|-----------------------------------------------------|---------------------------------|--------------------------------|---------------------------------------|-----------|--------|------------------|-----|-------------------------------------------|----------------------------------------|----------------------------------------|----------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------|-----------|-----|---------------------------|-----|------------------------------------------|-----------------------------------|-------------------------|-------------------------------------|-------------------------|-------------|-----|
|                                             |                                     |                                                     |                                 |                                |                                       |           | с<br>С | U                | U   |                                           |                                        |                                        |                                        |                                     |                                     |                                     |                          |           | C   | ပ                         | U   | ~                                        |                                   |                         |                                     | •••                     |             |     |
| 805                                         | 807                                 | 808                                                 | 808                             | 810                            | 011                                   | 812       | 813    | 814              | 815 | 816                                       | 817                                    | 818                                    | 819                                    | 820                                 | 821                                 | 822                                 | 823                      | 824       | 825 | 826                       | 827 | 828                                      | 829                               | 830                     | 831                                 | 832                     | 833         | 834 |

Page

4

| 1123 | SUBROUTINE HICCSI(KASE, NUMTIM)                          |
|------|----------------------------------------------------------|
| 1124 | DATA NUM /O/                                             |
| 1125 | C DUMMY HICCSI SUBPROGRAM                                |
| 1126 | C******                                                  |
| 1127 | C ORIGINAL ROUTINE FOUND IN FILE "CVSHICCSI".            |
| 1128 | C THIS ROUTINE NEEDS MODIFICATION BEFORE IT CAN BE USED. |
| 1129 | C******                                                  |
| 1130 | NUM = NUM + 1                                            |
| 1131 | WRITE (6,9999) NUM, KASE, NUMTIM                         |
| 1132 | 9999 FORMAT ('OHICCSI CALL NO. ', I5, '; ARGS=', 2110)   |
| 1133 | RETURN                                                   |
| 1134 | END                                                      |

. •

,

1

Table C.6. Listings of Code Changes to GUCVS (Page 29 of 38)

Listing of CVSB(62,165) at 10:09:19 on AUG 29, 1985 for CCid=SS53

13/06/83 IF JDTPTS(1)=0, HEAD RESULTANT IS NDT AVAILABLE (JH=NULL,JC=2). IF JDTPTS(2)=0, CHEST RESULTANT IS NDT AVAILABLE (JH=2,JC=NULL). HIC, HSI AND CSI FOR ODIACI PROGRAM FOR MULTIPLE OCCUPANTS Z(I,1),I=1,NPTS : TIME POINTS (SECONDS) Z(I,UH),I=1,NPTS : HEAD RESULTANT ACCELERATIONS (G'S) Z(I,UC),I=1,NPTS : CHEST RESULTANT ACCELERATIONS (G'S) COMPUTE HSI - HEAD SEVERITY INDEX - AND AREA TABLE H2 = SQRT(Z(I,JH)) \* Z(I,JH)\*2 DT = 0.5\*(Z(I,1) - Z(I-1,1)) AREA(I) = AREA(I-1) + DT\*(Z(I-1,JH)+Z(I,JH)) HIC, HSI AND CSI RESULTS') COMMON/CDINT/ JDTPTS(18),Z(6000,25) COMPUTE CSI - CHEST SEVERITY INDEX JC = JC-1 = SQRT(Z(I,JC)) \* Z(I,JC)\*\*2
= Z(I,1) - Z(I-1,1)
= CSI + 0.5\*DT\*(H1+H2)
(CMX.GT.Z(I,JC)) GD TO 15
= Z(I,JC) (JDTPTS(JC1).EQ.O) GD TO 16 SQRT(Z(1, JC)) \* Z(1, JC)\*\*2 GO TO 23 = SQRT(Z(1, UH)) \* Z(1, UH)\*\*2 NOTE: FOR THE FIRST OCCUPANT, SUBROUTINE HICCSI (NPTS, JJ) GO TO 25 ASSUMES Z ARRAY CONTAINS (JDTPTS(JH1).EQ.0) (JDTPTS(JH1).EQ.0) HSI = HSI + DT\*(H1+H2)DIMENSION AREA(6000) IF (NPTS.LT.25) GO WRITE (6,14) FORMAT (1H1, ' HIC, DO 30 IND = 1, JJ, 2 15 I=2,NPTS 17 I=2, NPTS = 0.001\*CSI = Z(1, JC) = Z(1, JH) AREA(1) = 0.0= Z(I,1) 1000=0000+1 USET= JJ/2 0.0 = = 0.0 0.0 1+ONI =HD JC= IND+2 JC1= JC-1 1-H0 =1H0 = H2 JOCC= 0 n HIC CSI CMX XWH CSI Ē ISH CMX CMT CSI <u>u</u> <u>.</u> L L Ē Ē ЧI 00 HZ Ы od 4 15 16 υu 000  $\circ \circ \circ$ 67 68 63 65 65 66 69 71 71 71 75 75 75 19

Table C.6. Listings of Code Changes to GUCVS (Page 30 of 38)

Page

Listing of CVSB(62,165) at 10:09:19 on AUG 29, 1985 for CCid=SS53

('S'') COMPUTE HIC - HEAD INJURY CRITERION - AND TIME DURATION HT1, HT2 / WSEC') 1.5.1 ' MSEC' ò • MAX CHEST RESULTANT = ', F9.3, ' G''S AT ', F9.3, , F9.3, F9.3, \* 20X, 'WITH HEAD RESULTANTS = ', F9.3', AND ', |
\*14X,'AVERAGE HEAD RESULTANT FOR TIME DURATION = '
WRITE (6,22) HSI,HMX,HMT WRITE (6.21) HIC,HT1,HT2,HA1,HA2,AVE FORMAT (1HO, ' HEAD INJURY CRITERION'// CHEST SEVERITY INDEX'// ', F8.2// GO TO 17 (HM.LE.HIC) GO TO 18 = Z(L,1) - Z(K-1,1) = AREA(L) - AREA(K-1) = DT\*SQRT(HT)\*HT\*\*2 ((HNX.GT.Z(I,UH)) csi = cK=2,NPTS L=K,NPTS = 0.001\*HSI = Z(K-1,UH) HIC = 0.001 \* HIC= Z(K-1,1) (HC,I)2 (H, JH) = Z(I, 1)FORMAT (1HO, (F, 1) FDRMAT (1HO, (JDTPTS( = DH/DT = H2 ¥ H CONTINUE CONTINUE CONTINUE 19 = 2( AVE =  $H_1$ N # R RETURN WRITE 1 / . ` ISH HT2 HA2 HA1 HT1 XWH HMT HIC ΙF END Ξ ΞI ` \* ΙĿ 000 Н MI Ħ 2 21 23 17 **9**1 30 25 8 0 22 24 000 143

Table C.6. Listings of Code Changes to GUCVS (Page 31 of 38)

Page

N

Listing of SUSP:CUTS(1135,1189) at 10:07:36 on Aug 29, 1985 for CC1d=SS53

|              |             | S        |               |         |             |     |            |         |                    |   |         |       |        |       |             |             |             |       |      |         |       |      |                |             |               |          |        |      |          |        |                |        |          |      |                |    |       |       |      |          |      |                |          |              |            |     | 195         | ()<br>)     |
|--------------|-------------|----------|---------------|---------|-------------|-----|------------|---------|--------------------|---|---------|-------|--------|-------|-------------|-------------|-------------|-------|------|---------|-------|------|----------------|-------------|---------------|----------|--------|------|----------|--------|----------------|--------|----------|------|----------------|----|-------|-------|------|----------|------|----------------|----------|--------------|------------|-----|-------------|-------------|
|              |             | MZ       | (12           |         |             |     |            |         |                    |   |         |       |        |       |             |             |             |       |      |         |       |      |                |             |               |          |        |      |          |        |                |        |          |      |                |    |       |       |      |          |      |                |          |              |            |     | ц<br>С      | 10          |
|              | 1           |          | TKDI          | s.      |             |     | READ       |         |                    |   | •       |       |        |       |             |             | ŝ           |       |      |         |       |      |                |             |               |          |        |      |          |        |                |        |          |      |                |    |       |       |      |          |      |                |          |              |            |     | ιt          | 7.<br>C     |
|              |             | .(E)     | M, KA         | MAXPT   |             |     | IN IN      |         | AND                | • |         |       |        |       |             |             | D CASI      |       |      |         |       |      |                |             |               |          |        |      |          |        |                |        |          |      |                |    |       |       |      |          |      |                |          |              |            |     | Dago        | rage        |
|              |             | LUNAKY   | . KASNU       | , 241), |             |     | GORIES     | GORIES, | TPPFD              |   |         |       |        |       | (ATG-2)     | (<br>,<br>, | KIES AN     |       |      |         |       |      |                |             |               |          |        |      |          |        |                |        |          |      |                |    |       |       |      |          |      | ISPOS-         |          |              |            |     |             | יריט י      |
| ٩٧)          |             | . ( 91   | 241)          | ГL (5   |             |     | CATE       | CATE    |                    | 5 |         |       |        |       | 5(3,1       | APPL'       |             |       |      |         |       |      |                |             |               |          |        |      |          |        |                |        |          |      |                |    |       |       |      |          |      | +              |          |              | <b>a</b>   |     |             | פ<br>רכ     |
| , ARR        |             | INU3.    | IRST(         | KASK    |             |     | FOR        | 5 UNIC  | DNT I              |   |         |       |        |       | <b>ATKA</b> | ASE)        |             |       |      |         |       |      |                |             |               |          |        |      |          |        |                |        |          |      |                |    |       |       |      |          |      | LMUU           |          | -            | , NRN      |     |             | ν<br>Ω<br>Ω |
| LIN          |             | NA5L     |               | 12).    | <u> </u>    |     | ROLE       | ECOR    | TKIN               |   |         | (DTG) | ш<br>С |       | 10          | ST(K        | A<br>X<br>D |       |      |         |       |      |                |             |               | Ē        |        |      |          |        |                |        |          | 0 50 |                |    |       |       |      |          |      | KELM           |          | 1,LEN        | (LMOD)     |     | սեզյ        | CIIau       |
| KAS.         |             |          | ( 346 )       | AS(3,   | REC (3      |     |            |         | A K C              |   |         | (1.KA | Inddy  |       | [G-2)       | LFIR        | JEX<br>T    |       | 60   | 09 0    |       |      | <u>0</u>       | 60          |               | - LST    |        |      |          |        |                |        | 08 0.    | 60 1 |                |    |       |       |      | <b>m</b> | 2    | + ,<br>+ ,     | ŋ        | = I ' (      | REC (      |     | с<br>Р<br>С | כרע         |
| KAT.         | ,           |          | NBAS          | KATK    | LASI        |     | ע ו<br>א ו |         | 0 - 14<br>A T F G( | 5 | 05:     | TKAS  | TG)    | 0 14  | 2, KA       | AND         | ŽI<br>n     |       | 0 10 | G0 T(   |       |      | 010            | 010         |               | TEP .    |        |      | SE)      |        |                | L)     | 9        | NES) |                |    |       | INDFF | (E   | = OOM    | 2    |                | `<br>``` | <b>ΖΑΥ(Ι</b> | D(LAS      |     | с<br>Ч      |             |
| EAD(         | ر (2)<br>زر | <u>-</u> | I/ NR         | 3),     | TEP.        |     | XIST       | IES     | IFR C              |   | 1<br>T  | O KA  | S(KA   | 8 T   | KAS(        | E+5)        | KNBA        |       | 1) G | 14)     |       |      | 0<br>()<br>()  | ອ<br>ດີ     |               | rs.<br>* |        |      | T (KA    | ი<br>+ | 2              | ATAB   | 6        | Ξ.   |                |    |       |       | REL, | п<br>(о  |      |                |          | (ARI         | MAX(       |     |             | دي<br>۱۱    |
| INR          | ARRA        |          | DCOL          | SELM(   | с, LS       |     |            |         |                    |   | TG =    |       | ARNBA  | TG =  | - KAT       | S(KAS       | 2           |       | LT.  | GT.     |       | z    | GT.            |             | ATG           | ASE      | ATG    |      | FIRS     | ASE    | ATG            | or (k  |          | 5    |                | 5  |       | INES  | (LIN | EQ.      | RY(L |                | Υ<br>    | NRN)         | = (0       |     | +<br>U      | רד          |
| <b>JTINE</b> | NOIS        |          | H<br>H<br>- 7 | KP      | <b>N</b> RN |     | Ξ.         |         | ALL                |   | DR K    | ASE = | ά i γ  | DR KA | ASE =       | SNBAS       | NADL        | " KA1 | VTG. | VTG .   | " KAS | =    |                | י כ<br>יי כ | צע<br>ווו<br> | <u> </u> | ж<br>и | 20   |          |        | צ כ<br>וו ו    | KATK   | NOFF     | NOFF |                | 11 | 90    | "     | MOD  | 00       |      |                | LBAS     | LDN          | (LMO       | _   | -           | Ì           |
| UBROI        | IMEN        |          | IOMMO         |         |             |     |            |         |                    |   | 1.<br>F | Ŷ     | ā      | 2. FC | ¥           | Ż           | 2           | ATG - | F (K | ۳<br>(K | ASE = | INES | 33             |             |               |          | ATABL  | 01 0 | INDFF    |        |                | ۳<br>۲ | <u> </u> | 3    | 0 40<br>20 4 0 |    | 0 I O | INREL | 40D  |          |      | NDFO           |          | AD (         | SREC       |     | ں ک         | ;<br>;      |
| S            | à           | 5 -      | Ö             | -       | 0           |     | -          |         |                    |   |         |       |        | ••    |             | •           |             | X     | I    | i       | ¥     | Ξ    |                | = _         | Z             | 2 3      | ¥      | 5    | ] :<br>2 | Ž 1    | Ϋ́             | -      | 1        |      |                |    |       | 1 O   | 2    | -        |      | 9 -            | 1 H      | RE           | DE<br>DE   |     |             | ) T C       |
|              |             |          |               |         |             | U I | 50         | ່ວເ     | 0 0                | 0 | с<br>U  | U     | U      | υ     | ပ           | 00          | ) ()        | ŀ     |      |         |       |      |                |             |               |          |        |      | -        |        |                | 20     |          | 6    | On<br>D        | 40 | 2     | CD.   |      |          |      |                |          |              | u          | ,   | 1 e T       | 101         |
| 5            | 91          | - 69     | 5             | 0       | -           | 00  |            | 4 U     |                    | - | . 80    | ი     | 0      | -     | 2           | თ.          | 1 L         | 9     | 7    | 8       | n ·   | 0    | <del>~</del> ( | אמ          | 04            | n n      | 9      | 7    | œ (      | n (    | ) <del>-</del> | 5      | ю ·      | 4 1  | ۵ «            |    | . ന   | 6     | 0    | -        | 0    | ŋ <del>(</del> | 0        | (0           | <b>۲</b> « | המ  |             |             |
| -            | 2           |          |               | 4       | 4           | 4   | 4          | 4 5     | 7                  | 4 | 4       | 4     | 5      | 15    | 15          | 5 4         | 2 5         | 5     | 15   | 15      | 5     | 16   | 9, 6           | 9 4<br>9    | 9 9           | 9 9      | 16     | 16   | 16       | 95     | 11             | 17     | 1        | 2    | 25             |    | 1     | 17    | 8    | 18       | φġ   |                | 2 00     | 18           | 8 8        | o œ |             |             |

Page

Listing of SUSP:CUTS(1212,1306) at 10:07:58 on AUG 29, 1985 for CCid=SS53

COMMON /HOLDIT/ BAGTTL(5,6), BDYTTL(5), BLTTTL(5,8), COMENT(40), DATE(3), DT, JOINT(100), INCSML, INCBIG, PLTTL(5,100), SEG(100), VPSTTL(20), LLFRST, KASTOP, NRNTIM, IIMLAS, MULTPL, NPL, NPLT, NRNVAR, LFENKT, NBAG, NBLT, LBBAG, LBBELT, LBJNT, LBPL, LBSEG, KKNTRL(241), NSD, NSEG, ISPSWT, NSTEPS, NVEH, NGRND, NHRNSS, NJNT COMMON /PRESET/ ISYMB(49), KASLIN(3,16), LDNARY(3), LPP, NWGO MAXKAP
 MAXKAP
 MAXKAP
 COMMON /FETCHT/ D(3,3,12), DPMI(3,3,100), G, LPMI(100), PI,
 SEGLA(3,12), SEGLP(3,12), SEGLV(3,12), WMEG(3,12),
 WMEGD(3,12), UNITL, UNITT, UNITM, RADIAN, TIMMAX,
 MMEGD(3,12), NKASE, KASKOL, KASPAG, KASFUL
 IKASE(12), NKASE, KASKOL, KASPAG, KASFUL
 IKASE(12), NKASE, KASKOL, KASPAG, KASFUL
 IKASE(12), NKASE, KASKOL, KASPAG, KASFUL
 MMEGD(3,12), KASKTL(5,241), MAXPTS,
 NRN, LSTEP, LASREC(3) COMMON /FETCHU/ PQUANT(16), KONTLP(6,3), JDTPTS(18), IPIN(3), READ(LDNWRK'NRN) (ARRAY(L), L=IPTA,IPTB) If (IOTALK .GT 1) WRITE(6,9999) NRN, IPTA, IPTB, (ARRAY(J), READ(LDNWRK'NRN) (ARRAY(J), J=IPTA,IPTB) IF (IOTALK .GT. 1) WRITE(6,9999) NRN, IPTA, IPTB, (ARRAY(J), COMMON /ZTTHNG/ TIME(6000), ZTTH(6000,11), LINEQT(6000) NLIN, NLAS. ÷. WRITE (NT,20) TIME(MSECPT), (PQUANT(J),J=1,JJ) 30 WRITE (NT,40) TIME(MSECPT), (PQUANT(J),J=1,JJ) NLAS = NUMWRD - NLIN \* KWDPLN IF (IDTALK .NE. O) WRITE(6,9998) NUMWRD, NLIN = (NUMWRD + KWDPLN - 1) / KWDPLN -COMMON /IOCNTL/ LDNWRK, KWDPLN, IOTALK SUBROUTINE PICKUP(ARRAY, NUMWRD, LASNRN) FORMAT (1H0,315/ (5X,6220)) KKAS, MSECPT, MTIMPT FURMAT (F9.3, 3(3X,4F9.3)) IF (NLIN .LE. 0) GD TD 20 DD 10 I = 1, NLIN 9998 FORMAT (BHOPICKUP:, 5110) IF (KAT .GT. 7) GO TO 50 IF (KAT .EQ. 7) GO TO 30 SUBROUTINE PRTLIN(NKAT) IPTB = IPTB + KWDPLN LASNRN, KWDPLN DIMENSION ARRAY(2) IPTB = IPTB + NLAS JJ = KKAS \* KASKOL J=IPTA, IPTB) J=IPTA, IPTB) IPTA = IPTB + 1IPTA = IPTB + 1NRN = NRN + 1 NRN = NRN + 1 NRN = LASNRN LASNRN = NRN KAT = NKAT190 IPTB = 0CONT INUE RETURN 9 " G0 T0 END Ľ 9999 20 20 20 1213 1215 1216 1218 1219 1212 1217 1220 1221 1225 1229 224 1223 1227 1228 1232 235 236 1237 1240 1241 1243 1245 1245 1245 1245 1246 1248 1248 1248 1251 1252 1253 1254 1255 1255 1231 234 1239 1250 1257 1258 1259 1260 264 265 266 268 269 261 262 263 267

Table C.6. Listings of Code Changes to GUCVS (Page 33 of 38)

Page

Listing of SUSP:CUTS(1212,1306) at 10:07:58 on AUG 29, 1985 for CCid=SS53

| 1270 | 40  | FORMAT (F9.3, 2(F5.0,3F9.3,2X,3F9.3))              |
|------|-----|----------------------------------------------------|
| 1271 |     | GO TO 190                                          |
| 1272 | 50  | NGO = KAT - 7                                      |
| 1273 |     | IF (NGO .LT. 1 .OR. NGO .GT. 7) GO TO 190          |
| 1274 |     | GO TO (60, 130, 80, 100, 110, 150, 170), NGO       |
| 1275 | 60  | WRITE (NT,70) TIME(MSECPT), (PQUANT(J),J=1,JJ)     |
| 1276 | 70  | FORMAT (F9.3, 2(F9.3,3F9.2,3F8.3))                 |
| 1277 |     | GO TO 190                                          |
| 1278 | 80  | WRITE (NT,90) TIME(MSECPT), (PQUANT(J),J=1,JJ)     |
| 1279 | 90  | FORMAT (F9.3, 4(F15.6,F12.2,3X))                   |
| 1280 |     | GO TO 190                                          |
| 1281 | 100 | WRITE (NT,90) TIME(MSECPT), (PQUANT(J),J=1,JJ)     |
| 1282 |     | GO TO 190                                          |
| 1283 | 110 | JJ = 2                                             |
| 1284 |     | IF (KONTLP(3,1) .NE. O) $JJ = 4$                   |
| 1285 |     | IF $(KONTLP(1,2) .NE. O) JJ = 6$                   |
| 1286 |     | IF $(KONTLP(3,2) .NE. O) JJ = 8$                   |
| 1287 |     | WRITE (NT, 120) TIME(MSECPT), (PQUANT(J), J=1, JJ) |
| 1288 | 120 | FORMAT (F9.3, 4(F14.3,F12.2,4X))                   |
| 1289 |     | GO TO 190                                          |
| 1290 | 130 | WRITE (NT, 140) TIME(MSECPT), (PQUANT(J), J=1, 10) |
| 1291 | 140 | FORMAT (2F9.3, 3F9.2, 3F8.3, 2X, 3F8.3)            |
| 1292 |     | GO TO 190                                          |
| 1293 | 150 | WRITE (NT, 160) TIME(MSECPT), (PQUANT(J), J=1, 12) |
| 1294 | 160 | FORMAT (F9.3, 3X, 3F9.2, 2(3X, 3F9.3), 3X, 3F9.2)  |
| 1295 |     | GO TO 190                                          |
| 1296 | 170 | WRITE (NT, 180) TIME(MSECPT), (PQUANT(J), J=1, JJ) |
| 1297 | 180 | FORMAT (F9.3, 4(3X,3F9.2))                         |
| 1298 | 190 | RETURN                                             |
| 1299 |     | END                                                |
| 1300 |     | SUBROUTINE SCALED(VA,D,VB)                         |
| 1301 |     | DIMENSION VA(3), VB(3)                             |
| 1302 |     | DO 10 I = 1, 3                                     |
| 1303 |     | $VB(I) = VA(I) \neq D$                             |
| 1304 | 10  | CONTINUE                                           |
| 1305 |     | RETURN                                             |
| 1306 |     | END                                                |

1

149

## Table C.6. Listings of Code Changes to GUCVS (Page 34 of 38)

.

Page 2.

.

•

 $\mathcal{C}_{\mathcal{G}}^{\mathcal{L}}$ 

Listing of SUSP:CUTS(1307,1318) at 10:08:21 on AUG 29, 1985 for CCid=SS53

| SUBROUTINE SLPLOT(KASE, NUMTIM) | DATA NUM /0/ | C DUMMY SLPLOT SUBPROGRAM | C****** | C ORIGINAL ROUTINE FOUND IN FILE "CVSSLPLOT". | C THIS ROUTINE NEEDS MODIFICATION BEFORE IT CAN BE USED | C****** | NUM = NUM + 1 | WRITE (6,9999) NUM, KASE, NUMTIM | 9999 FORMAT ('OSLPLOT CALL NO. '. I5. ': ARGS=' 2110) | RETURN | END  |  |
|---------------------------------|--------------|---------------------------|---------|-----------------------------------------------|---------------------------------------------------------|---------|---------------|----------------------------------|-------------------------------------------------------|--------|------|--|
| 1307                            | 1308         | 1309                      | 1310    | 1311                                          | 1312                                                    | 1313    | 1314          | 1315                             | 1316                                                  | 1317   | 1318 |  |

.

,

.

## Listing of CVSB(4699,4788) at 10:09:37 on AUG 29, 1985 for CCid=SS53

| 4700         *         Y, NY, YO, YN, YL, YSIZE, YLAB, NYLB.           4701         *         NPTS, NY, NOY, PLABI, NPLBI, PLAB2, NPLB, NPLB, NPLB2, NPLT)           4703         C         06/02/83           4704         C         ARGUMENTS:           4705         C         X(NPTS)           4706         C         Y(NDY, NYY)           4706         C         Y(NDY, NYY)           4707         C         ARGUMENTS:           4708         C         Y(NDY, NYY)           4709         C         Y(NDY, NYY)           4709         C         Y(NDY, NYY)           4709         C         Y(NDY, NYY)           4700         C         Y(NDY, NYY)           4701         C         X(NY)           4703         C         Y(NDY, NYY)           4710         C         XD, YA           4711         C         XLAB, YLAB           4712         C         XLAB, YLAB           4713         C         XLB, YLAB           4714         C         XLB, YLAB           4715         C         N/LB, YLAB           4716         C         XLAB, YLAB           4717                                                                                                                                                                                                                                           | 4699 |     | SUBROUTINE SLPLOT(X, NX, XO, XN, XL, XSIZE, XLAB, NXLB,                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|--------------------------------------------------------------------------|
| 4701         *         NPTS, NYY, NGY, PLABI, NPLBI, PLAB2, NPLB2, RPLT)         06/02/83           4703         C         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         .         . <td>4700</td> <td></td> <td>* Y, NY, YO, YN, YL, YSIZE, YLAB, NYLB,</td>                                                                                                                       | 4700 |     | * Y, NY, YO, YN, YL, YSIZE, YLAB, NYLB,                                  |
| 4702         C         OG/02/83           4703         C         ARGUMENTS:         4704         C         ARGUMENTS:           4705         C         X(NPTS)         - ARRAY DF NPTS*NYY ORDINATES TO BE PLOTTED.           4705         C         Y(NDY,NYY)         - ARRAY DF NPTS*NYY ORDINATES TO BE PLOTTED.           4706         C         Y(NDY,NYY)         - O OR POSITIVE - LINEAR PLOTS ON POSITIVE AXIS           4708         C         NX,NY ARE GRID DIVISIONS ALONG X- AND Y-AXES.           4710         C         XO,YO         - MINM VALUES OF X AND Y.           4711         C         XL,YL         - LEAGTH (INCHES) IN X,Y DIRECTIONS.           4711         C         XLB,YLE         - PAPER SIZE (INCHES) IN X,Y DIRECTIONS.           4711         C         XLB,YLE         - PAPER SIZE (INCHES) IN X,Y DIRECTIONS.           4711         C         XLB,YLE         - NO. OF CHARACTERS IN X,D ARRAY AND EACH Y ARRAY.           4711         C         NDY         - FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.           4711         C         NDY         - FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.           4712         C         NPTS         - NO. OF CHARACTERS IN PLOT ID LABELS           4712         C         NPLSINPUES         NO CH                      | 4701 |     | * NPTS, NYY, NDY, PLAB1, NPLB1, PLAB2, NPLB2,KPLT)                       |
| 4703       C         4704       C       ARGUMENTS:         4705       C       X(NPTS)       - ARRAY OF NPTS ABSCISSAS TO BE PLOTTED.         4706       C       Y(NDY,NY)       - ARRAY OF NPTS ABSCISSAS TO BE PLOTTED.         4707       C       NX,NY       - O OR POSITIVE - LINEAR PLOTS ON POSITIVE AXIS.         4708       C       NEGATIVE - LOGANITHME - DLOT ON NEGATIVE AXIS.         4709       C       MIMM VALUES OF X AND Y.         4711       C       X.NY       - MIAM VALUES OF X AND Y.         4711       C       X.JEL, YSIZE       - PAPER SIZE (INCHES) IN X,Y DIRCTIONS.         4714       C       X.LE, VILB       - NO. OF CHARACTERS IN X,Y LABELS.         4715       C       NZ.E, NYLE       - NO. OF CHARACTERS IN X,Y LABELS.         4716       C       ND. OF CHARACTERS IN X,Y LABELS.       X RRAY.         4717       C       NZ.E, NYLE       - NO. OF CHARACTERS IN PLOT IN CALLING ROUTINE.         4718       C       NDY       - INST DIMBSTON OF GE ROTTED VS. X ARRAY.         4721       C       NDY       - DIT NUMBER       IN CALLING ROUTINE.         4722       C       KPLET.       - NO. OF CHARACTERS IN PLOT ID LABELS.         4723       C       NDY       -                                                                                                    | 4702 | С   | 06/02/83                                                                 |
| 4705       C       ARQUMENTS;         4705       C       Y(NPTS)       - ARRAY OF NPTS ABSCISSAS TO BE PLOTTED.         4705       C       Y(NPY,NYY)       - ARRAY OF NPTS ABSCISSAS TO BE PLOTTED.         4706       C       Y(NPY,NYY)       - ARRAY OF NPTS ABSCISSAS TO BE PLOTTED.         4707       C       NX,NY       - O OR POSITIVE - LINEAR PLOTS ON POSITIVE AXIS.         4708       C       NX,NY ARE GRID DIVISIONS ALONG X- AND Y-AXES.         4710       C       XO,YO       - MIMW VALUES OF X AND Y.         4711       C       XL,YL       - LENGTH (INCHES) IN X,Y DIRECTIONS.         4711       C       XLAB,YLAB       - X,Y AXES LABELS (ALPHANUMERIC ARRAYS).         4716       C       NUE,NYLE       - NO. OF CHARACTERS IN X,Y LABELS.         4717       C       NLAB,YLAB       - NO. OF CHARACTERS IN X,Y LABELS.         4718       C       NDY       - FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.         4717       C       NPTS       - NO. OF CHARACTERS IN PLOT ID LABELS.         4720       C       PLABI,PLAB2       - NO. OF CHARACTERS IN PLOT ID LABELS.         4721       C       NPLSI,NPLES       - NO. OF CHARACTERS IN PLOT ID LABELS.         4722       C       KPLT       - PLOT NUMERE                                                                       | 4703 | С   |                                                                          |
| 4706       C       X(MPTS)       - ARRAY OF NPTS ABSCISSAS TO BE PLOTTED.         4706       C       Y(NDY,NY)       - ARRAY OF NPTS'NYY ORDINATES TO BE PLOTTED.         4707       C       NX,NY       - O OR POSITIVE - LINEAR PLOTS ON POSITIVE AXIS.         4708       NEGATIVE - LOGARITHMIC PLOT ON NEGATIVE AXIS.         4709       C       NX,NY ARE GRID DIVISIONS ALONG X- AND Y-AXES.         4711       C       X0,YO       - MINM VALUES OF X AND Y.         4711       C       XSIZE,YSIZE - PAPER SIZE (INCHES) IN X,Y DIRECTIONS.         4713       C       XSIZE,YSIZE - PAPER SIZE (INCHES) IN X,Y DIRECTIONS.         4714       C       XLB,YLAB - X,Y AXES LABELS (ALPHANMERIC ARRAYS).         4715       C       NXLB, NYLB - NO. OF CHARACTERS IN X,Y LABELS.         4716       NYLB, NYLB - NO. OF CHARACTERS IN XARAY AND EACH Y ARRAY.         4718       C       NYT - NRED JUBANE OF PLOT ID LABELS.         4719       C       NYLB, NPLB2 - NO. OF CHARACTERS IN PLOT ID LABELS.         4721       C       NPLB1,NPLB2 - NO. OF CHARACTERS IN PLOT ID LABELS.         4722       C       NPLB1,NPLB2 - NO. OF CHARACTERS IN PLOT ID LABELS.         4723       C       NPLB1,NPLB2 - NO. OF CHARACTERS IN PLOT ID LABELS.         4724       C       NPLSTME - SYMBOL NO. TO BE USED F | 4704 | С   | ARGUMENTS:                                                               |
| 4706       C       Y(NDY, NYY)       - ARRAY OF NPTS-NYY ORDINATES TO BE 'PLOTTED.         4707       C       NX, NY       - O OR POSITIVE - LINEAR PLOTS ON POSITIVE AXIS.         4708       C       NX, NY       - O CARATIVE - LINEAR PLOTS ON POSITIVE AXIS.         4709       C       NX, NY       - ARRAY OF NETS-INVE ORDINISTON ALONG X- AND Y-AXES.         4710       C       XO, YO       - MINM VALUES OF X AND Y.         4711       C       XL, YL       - LENGTH (INCHES) OF X, Y AXES.         4713       C       XLE, YLZ       - PAPER SIZE (INCHES) IN X, Y DIFECTIONS.         4714       C       XLAB, YLAB       - X, Y AXES LABELS (ALPHANUMERIC ARRAYS).         4716       NPTS       - NO. OF CHARACTERS IN X, Y LABELS.         4717       NYY       - NO. OF CHARACTERS IN X, Y LABELS.         4718       NOY       - FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.         4718       NOY       - FIRST DIMENSION OF PLOTID LABELS (ALPHANUMERIC).         4722       C       NPLB1.NPLB2 - NO. OF CHARACTERS IN PLOT ID LABELS.         4723       NOT       - SYMBOL NO. TO BE USED FOR EACH CURVE         4724       C       NT,NY POSITIVE - XO,YO LE. X,Y LE. XN,YN         4725       C       NX,NY NEGATIVE - XO,YO LE. X,Y LE. XN,YN         4                                     | 4705 | С   | X(NPTS) - ARRAY OF NPTS ABSCISSAS TO BE PLOTTED.                         |
| 4707       C       NX,NY       - O OR 'POSITIVE'- LINEAR PLOTS ON POSITIVE AXIS         4708       NEGARITHWIC PLOT ON NEGATIVE AXIS         4709       C       NX,NY APE GRID DIVISIONS ALONG X- AND Y-AXES.         4710       C       XO,YO       MINM VALUES OF X AND Y.         4711       C       XN,YN       - MEMW VALUES OF X AND Y.         4711       C       XN,YN       - MINM VALUES OF X AND Y.         4713       C       XSIZE,YSIZE - PAPER SIZE (INCHES) IN X,Y AKES         4714       C       XAB,YLAB       - NO. OF POINTS IN X ARRAY AND EACH Y ARRAY.         4715       C       NXLB,NYLB       - NO. OF POINTS IN X ARRAY AND EACH Y ARRAY.         4716       NYLE,NYLB       - NO. OF POINTS IN X ARRAY AND EACH Y ARRAY.         4718       C       NYT       - NO. OF POINTS IN X ARRAY AND EACH Y ARRAY.         4718       C       NYT       - NO. OF CHARACTERS IN PLOT ID LABELS. (ALPHANUMERIC).         4720       C       PLAB,PLAB2 - NO. OF CHARACTERS IN PLOT ID LABELS. (ALPHANUMERIC).         4721       C       NPLB1,NPLB2 - NO. OF CHARACTERS IN PLOT ID LABELS.         4722       C       NFLSM       - SVMBOL NO. TO BE USED FOR EACH CURVE         4723       C       NPLSMB       - SVMBOL NO. TO BE USED FOR EACH CURVE                                                | 4706 | С   | Y(NDY.NYY) - ARRAY OF NPTS*NYY ORDINATES TO BE PLOTTED                   |
| 4708       C       NEGATIVE - IOGARITHMIC PLOTION REGATIVE AAGS.         4709       C       NX, NY ARE GRID DIVISIONS ALONG X- AND Y-AXES.         4710       C       XO, YO       MINM VALUES OF X AND Y.         4711       C       XL, YL       LENGTH (INCHES) OF X, YA XES.         4713       C       XL, YL       LENGTH (INCHES) OF X, YA XES.         4714       C       XL, ZE       YA ZES CALONERS.         4715       C       XLZE YSTE - PAPER SIZE (INCHES) IN X, Y DIRECTIONS.         4714       C       XLAB, YLAB       X. Y AXES LABELS (ALPHANUMERIC ARRAYS).         4715       NVHES       NO. OF CHARACTENS IN X, ARRAY AND EACH Y ARRAY.         4716       NYN       HO. OF CHARACTENS IN X, ARRAY AND EACH Y ARRAY.         4717       NYN       HO. OF CHARACTENS IN X, ARRAY AND EACH Y ARRAY.         4718       NYN       HO. OF CHARACTENS IN YLABELS.         4719       C       HLB1,PLAB2 - INO. OF CHARACTENS IN PLOT ID LABELS.         4721       NYN       PLOT NUMBER         4722       C       NPLB1,NPLB2 - NO. OF CHARACTENS IN PLOT ID LABELS.         4723       C       NTELS WILL BE TRUNCATED AS FOLLOWS:         4724       NT, NY POSITIVE - XO, YO .LE. X,Y .LE. XN, YN         4725       C       NT, NY                                                               | 4707 | č   | NX NY $-0.0R$ POSITIVE - LINEAR PLOTS ON POSITIVE AXIS                   |
| 4709         NX, NY ARE GRID DIVISIONS ALONG X- AND Y-AXES.           4710         C         XO, YO         MINM VALUES OF X AND Y.           4711         C         XL, YL         LENGTH (INCHES) OF X, Y AXES.           4712         C         XL, YL         LENGTH (INCHES) IN X, Y DIRECTIONS.           4713         C         XL, YL         LENGTH (INCHES) IN X, Y DIRECTIONS.           4714         C         XLB, YLAB         - X, Y AXES LABELS (ALPHANUMERIC) ARRAYS).           4714         C         XLB, YLAB         - X, Y AXES LABELS (ALPHANUMERIC) ARRAYS).           4716         C         NPTS         - NO. OF CHARACTERS IN X, Y LABELS.           4717         C         NYY         - NO. OF CHARACTERS IN X, Y LABELS.           4718         C         NDY         - FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.           4719         C         NDY         - FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.           4712         C         PLAB1, PLAB2         - NO. OF CHARACTERS IN PLOT ID LABELS.           4721         C         NPLSMB         - SVMBOL NO. TO BE USED FOR EACH CURVE           4722         C         NZ, NY PROSITIVE - XO, YO . LE. X, Y . LE. XN, YN           4723         C         NX, NY PROSITIVE - XO, YO . LE. X, Y . LE. XN, YN              | 4708 | č   | NEGATIVE - LOGARITHMIC PLOT ON NEGATIVE AXIS                             |
| 4700         C         NO. YO         HIMM VALUES OF X AND Y.           4711         C         XN,YN         HAXM VALUES OF X AND Y.           4711         C         XN,YN         HAXM VALUES OF X AND Y.           4712         C         XL,YL         LENGTH (INCHES) OF X,Y AXES.           4713         C         XSIZE,YSIZE - PAPER SIZE (INCHES) IN X,Y AXES.           4714         C         XLAB,YLAB         - N.Y. AYES LABELS (ALPHANUMERIC ARRAYS).           4715         C         NZLB,YYLB         - NO. OF CHARACTERS IN X,Y LABELS.           4717         C         NYY         - NO. OF PARRAYS TO BE PLOTTED VS. X ARRAY.           4718         C         NYY         - NO. OF CHARACTERS IN PLOT ID LABELS.           4719         C         (NDY         - FIRST DIMENSION OF YARRAY AND EACH YARRAY.           4712         C         NPLB1,PLB22         - NO. OF CHARACTERS IN PLOT ID LABELS.           4721         C         NPLSMB         - SYMBOL NO. TO BE USED FOR EACH CURVE           4722         C         NY,N NEGATIVE - XO,YO .LE. X,Y .LE. XN,YN           4723         C         NX,NY NOSTIVE - XO,YO .LE. X,Y .LE. XN,YN           4724         C         NX,NY NEGATIVE - XO,YO .LE. X,Y .LE. XN,YN           4725         C         NAX,N                              | 4709 | č   | NY NY APE GPID DIVISIONS ALONG Y- AND Y-AYES                             |
| 111       C       XX,YX       MIXM VALUES OF X AND Y;         112       C       XL,YL       EANGT VALUES OF X AXES;         112       C       XL,YL       EANGT VALUES OF X AXES;         113       C       XLE,YIZE       PAPER SIZE (INCHES) IN X,Y DIRECTIONS;         114       C       XLB,YILB       NO. OF CHARACTERS IN X,Y LABELS;         115       C       XLE,YILB       NO. OF CHARACTERS IN X,Y LABELS;         116       C       NPTS       NO. OF CHARACTERS IN X,Y LABELS;         116       C       NPTS       NO. OF Y ARRAY TO BE PLOTTED VS;         117       C       PLABI,PLAB2       NO. OF CHARACTERS IN PLOT ID LABELS;         117       C       PLABI,PLAB2       NO. OF CHARACTERS IN PLOT ID LABELS;         1172       C       PLABI,PLAB2       NO. OF CHARACTERS IN PLOT ID LABELS;         1172       C       NPLSMB       SVMBOL NO. TO BE USED FOR EACH CURVE         1172       C       NY,NY POSITIVE - XO,YO .LE: X,Y .LE: XN,YN         1172       C       NX,NY PROSITIVE - XO,YO .LE: X,Y .LE: XN,YN         1173       DIMENSION X(NPTS),Y(NOY,NYY),XLAB(1),YLAB(1),PLAB1(1),PLAB2(1)         1173       C       CAMMAJ(1X,'NDY ',16,5X,' NPY ',16,5X,' NPTS ',16,/,(1X,6E15.5))         1173       CAL                                                                         | 4710 | č   | XO YO - MININ VALUES DE Y AND Y                                          |
| 111       C       AN. III       FRAME VALUES         1712       C       XL,YL       LENGTH (INCHES) OF X,Y AXES.         1713       C       XSIZZ,YSIZE       PAPER SIZE (INCHES) IN X,Y DIRECTIONS.         1714       C       XLAB,YLAB       - X,Y AXES LABELS (ALPHANUMERIC ARRAYS).         1715       C       NZLB,NYLB       - NO. OF CHARACTERS IN X,Y LABLES.         1716       C       NYT       - NO. OF YARRAYS TO BE PLOTID VS. X ARRAY.         1717       C       NYY       - NO. OF YARRAYS TO BE PLOTID LABELS.         1718       C       NYY       - NO. OF CHARACTERS IN PLOT LABELS.         1719       C       PLABI,PLAB2       - IST & 2ND LINES OF PLOT ID LABELS.         1720       C       PLABI,PLAB2       - NO. OF CHARACTERS IN PLOT ID LABELS.         1721       C       NPLESME       - SYMBOL NO. TO BE USED FOR EACH CURVE         1722       C       NPLSME       - SYMBOL NO. TO BE USED FOR EACH CURVE         1723       C       NN POSTIVE - XO, YO LE X,Y .LE. XN,YN         1724       C       NX,NV NEGATIVE - XO,YO .LE X,Y .LE. XN,YN         1725       C       NX,NV NEGATIVE - XO,YO .LE X,Y .LE. XN,YN         1726       C       NX,NV NEGATIVE - XO,YO .LE X,Y .LE. XN,YN         1727                                                                                | 4710 | č   |                                                                          |
| 112CAL, ILElement (IRCHES) OF A, IT ALS.113CXSIZE, YSIZE - PAPER SIZE (IRCHES) OF A, IT ALS.114CXLAB, YLAB- X, Y AXES LABELS (ALPHANUMERIC ARRAYS).115CNZLE, NYLE- NO. OF CHARACTERS IN X, Y LABELS.116CNPTS- NO. OF POINTS IN X ARRAY AND EACH Y ARRAY.117CNYY- NO. OF POINTS IN X ARRAY AND EACH Y ARRAY.118CNOY- FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.119(NDY MUST BE .GE. NPTS)- FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.119CNPLB1, PLAB2 - IST & 2ND LINES OF PLOT ID LABELS (ALPHANUMERIC).119- NPLB1, PLAB2 - NO. OF CHARACTERS IN PLOT ID LABELS (ALPHANUMERIC).112CNPLSMB112CNPLSMB112CNPLSMB112CNPLSMB112CNPLSMB112CNPLSMB112CNNY POSITIVE - XO, YO .LE. X, Y .LE. XN, YN112CNX, NY NEGATIVE - XO, YO .LE. X, Y .LE. XN, YN113CDIMENSION XPL(SOCO), YPL(SOCO)114CC115CA FORMAT(IX,' NOY ', IG, 5X,' NYY ', IG, 5X,' NPTS ', IG, /, (1X, GE15.5))114CCHECK TYPE OF PLOT AXIS115CALL BOHPL(KPLT)116CCHECK TYPE OF PLOT AXIS117CCHECK TYPE OF PLOT AXIS118CCHECK TYPE OF PLOT AXIS119CC129CALL MORDR                                                                                                                                                                                                                                                                                                  | 4712 | č   | A AND $A$ AND $A$ AND $A$                                                |
| 1713CXALE_FIGLEFAREN SIZE(INCLES) IN X, I DIRECTIONS.4714CXLAB_YLAB- N/ AXES LABELS(ALPHANUMERIC ARRAYS).4715CNZLE_NYLB- NO. OF CHARACTERS IN X, Y LABELS.4716CNPTS- NO. OF YARRAYS TO BE PLOTIED VS. X ARRAY.4717CNYY- NO. OF YARRAYS TO BE PLOTIED VS. X ARRAY.4718CNOY- FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.4719C(NDY MUST BE .GE. NPTS)4720CPLABI.PLAB2- IST & 2ND LINES OF PLOT ID LABELS.4721CNPLB1.NPLB2- NO. OF CHARACTERS IN PLOT ID LABELS.4722CNPLSMB- SYMBOL NO. TO BE USED FOR EACH CURVE4724CNOTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:4725CNOTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:4726CNX.NY NEGATIVE - XO.YO. LE. X.Y. LE. XN.YN4728C4730DIMENSION X/INFS), Y(NDY, NYY), XLAB(1), YLAB(1), PLAB1(1), PLAB2(1)4731DIMENSION XPL(5000), YPL(5000)4732C4733C4734C4735C4736C4737CALL BAPPL(KPLT)4738C4740C4741C4741C47424743CALL NORCHEK4744CALL NOCHEK4745C4746CALL HEIGHT(0.18)4747YMESS=YL-0.254748XMESS=YL-0.254749CALL HEIGHT(0                                                                                                                                                                                                                                                                                                                                                                 | 4712 | Č   | AL,TE - LENGIA (INGRES) UF A,T AXES.                                     |
| 1114       C       ALB, YLAB       - X, Y AKES LABELS (ALPHANMERIC ARKAYS).         1715       C       NXLE, NYLB       - NO. OF FOINTS IN X ARRAY AND EACH Y ARRAY.         1716       C       NPTS       - NO. OF Y ARRAYS TO BE PLOTTED VS. X ARRAY.         1717       C       NYY       - NO. OF Y ARRAYS TO BE PLOTTED VS. X ARRAY.         1718       C       NUY       - FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.         1719       C       PLAB1, PLAB2 - 1ST & 2ND LINES OF PLOT ID LABELS (ALPHANUMERIC).         1721       C       NPLB1, NPLB2 - NO. OF CHARACTERS IN PLOT ID LABELS (ALPHANUMERIC).         1721       C       NPLB1, NPLB2 - NO. OF CHARACTERS IN PLOT ID LABELS.         1722       C       KPLT       - PLOT NUMBER         1723       C       NDTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:         1724       C       NX.NY NEGATIVE - XO, YO .LE. X,Y .LE. XN, YN         1728       C       NX.NY NEGATIVE - XO, YO .LE. X,Y .LE. XN, YN         1729       COMMON/IPLSMB/NPLSMB(100)       DIMENSION XPL(5000), YPL(5000)         1730       C       4       FORMAT(1X,' NOY ', IG, 5X, ' NYY ', IG, 5X, ' NPTS ', IG, /, (1X, GE15.5))         1731       DIMENSION XPL(SOUD), YPL(5000)       CALL BGNPL(KPLT)         1735       C       4 FORMAT(1X, ' NOY ', IG, 5X, ' NYY   | 4713 | C C | ASIZE, VSIZE - PAPER SIZE (INCHES) IN X, Y DIRECTIONS.                   |
| 4716       C       NALE,NYLB       - NU. UP CHARACLERS IN X,Y LABELS.         4716       C       NPTS       - NU. OF FOINTS IN X ARRAY AND EACH Y ARRAY.         4717       C       NYY       - NU. OF Y ARRAY S TO BE PLOITED VS. X ARRAY.         4718       C       NDY       - FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.         4719       C       (NDY MUST BE GE. NPTS)         4720       C       PLAB1,PLAB2       - NO. OF FOHAT ID LABELS (ALPHANUMERIC).         4721       C       NPLB1,NPLB2       - NO. OF CHARACTERS IN PLOT ID LABELS (ALPHANUMERIC).         4722       C       NPLSMB       - SYMBOL NO. TO BE USED FOR EACH CURVE         4723       C       NOTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:         4724       C       NX,NY POSITIVE - XO,YO .LE. X,Y .LE. XN,YN         4725       C       NX,NY NEGATIVE - XO,YO .LE. X,Y .LE. XN,YN         4728       C       COMMON/IPLSMB/NPLSMB(100)         4730       DIMENSION X(NPTS),Y(MDY,NYY),XLAB(1),YLAB(1),PLAB1(1),PLAB1(1),PLAB2(1)         4733       C       WRITE (6,4) NDY,NYY,NPTS,Y         4734       C       WRITE (6,4) NDY,NYY,NPTS,Y         4735       C 4 FORMAT(1X,' NDY ',16,5X,' NYY ',16,5X,' NPTS ',16,/,(1X,6E15.5))         4736       CALL BORP       CALL BORDR                                              | 4714 | C   | ALAB, YLAB - X, Y AXES LABELS (ALPHANUMERIC ARRAYS).                     |
| 4716       C       NP1S       - N0. OF POINTS IN X ARRAY AND EACH Y ARRAY.         4717       C       NYY       - N0. OF Y ARRAY TO BE PLOTTED VS. X ARRAY.         4718       C       NDY       - FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.         4719       C       PLAB1,PLAB2 - 1ST & 2ND LINES OF PLOT ID LABELS.         4720       C       PLAB1,PLAB2 - 1ST & 2ND LINES OF PLOT ID LABELS.         4721       C       NPLB1,NPL82 - NO. OF CHARACTERS IN PLOT ID LABELS.         4722       C       NPLB1,NPL82 - NO. OF CHARACTERS IN PLOT ID LABELS.         4721       C       NPLB1,NPL82 - NO. OF CHARACTERS IN PLOT ID LABELS.         4722       C       NPL5MB       - SYMBOL NO. TO BE USED FOR EACH CURVE         4724       C       NTE,NY POSITIVE - XO.YO. LE. X,Y .LE. XN,YN         4725       C       NX,NY POSITIVE - XO.YO. LE. X,Y .LE. XN,YN         4728       C       C         4729       COMMON/IPLSMB/NPLSMB(100)       DIMENSION X(NPTS),Y(NDY,NY),XLAB(1),YLAB(1),PLAB1(1),PLAB2(1)         4730       DIMENSION X(NPTS),Y(NDY,NYY,NES,Y       4736         4733       C       WRITE (6,4) NDY,NY,NPTS,Y         4734       WRITE (6,4) NDY,NY,NPTS,Y       ALL PAGE(XSIZE,YSIZE)         4738       CALL PAGE(XSIZE,YSIZE)       ALL ANGHER                                      | 4/15 | C   | NZLB, NYLB - NO. OF CHARACTERS IN X, Y LABELS.                           |
| 4117       C       NYY       - NO. OF Y ARRAYS TO BE PLOTTED VS. X ARRAY.         4718       C       NDY       - FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.         4719       C       (NDY MUST BE GE. NPTS)         4720       C       PLAB1,PLAB2 - ST & 2 DD LINES OF PLOT ID LABELS.         4721       C       NPLB1,NPLB2 - NO. OF CHARACTERS IN PLOT ID LABELS.         4722       C       NPLSMB       - SYMBOL NO. TO BE USED FOR EACH CURVE         4724       C       NOTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:         4725       C       NX,NY NEGATIVE - XO,YO .LE. X,Y .LE. XN,YN         4728       C       NX,NY NEGATIVE - XO,YO .LE. X,Y .LE. XN,YN         4729       COMMON/IPLSMB/NPLSMB(100)       DIMENSION X(NPTS),Y(NDY,NY),XLAB(1),YLAB(1),PLAB1(1),PLAB2(1)         4731       DIMENSION XPL(5000),YPL(5000)       YIG,SX,' NPTS ',IG,/.(1X,GE15.5))         4733       C       4 FORMAT(1X,' NDY ',IG,5X,' NYY ',IG,5X,' NPTS ',IG,/.(1X,GE15.5))         4734       CALL PAGE (XSIZE,YSIZE)       CALL NORRDR         4739       CALL NORRDR       CALL NORRDR         4740       C       CHECK TYPE OF PLOT AXIS         4744       CALL NORRDR       CALL FAGE (SSIZE,YSIZE)         4744       CALL NORRDR       CALL FAGE (SSIZE,YSIZE)         4                                    | 4716 | C   | NPIS - NO. OF POINTS IN X ARRAY AND EACH Y ARRAY.                        |
| 4718       C       NOY       - FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.         4719       C       PLAB1,PLAB2 - 1ST & 2ND LINES OF PLOT ID LABELS (ALPHANUMERIC).         4721       C       NPLB1,PLAB2 - 1ST & 2ND LINES OF PLOT ID LABELS (ALPHANUMERIC).         4722       C       NPLB1,PLAB2 - NO. OF CHARACTERS IN PLOT ID LABELS.         4723       C       NPLB1,PLAB2 - NO. OF CHARACTERS IN PLOT ID LABELS.         4724       C       NOTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:         4725       C       NX,NY POSITIVE - XO,YO. LE. X,Y .LE. XN,YN         4728       C         6       OMMON/IPLSME/NPLSM8(100)         7130       DIMENSION X(NPTS),Y(NDY,NY),XLAB(1),YLAB(1),PLAB1(1),PLAB2(1)         7731       DIMENSION XPL(5000),YPL(5000)         4732       C         4733       C         4734       WRITE (6,4) NDY,NY,NPTS,Y         4735       C 4 FORMAT(1X,' NDY ',16,5X,' NYY ',16,5X,' NPTS ',16,/.(1X,6E15.5))         4736       CALL PAGE(XSIZE,YSIZE)         4738       CALL NOBRDR         641       NOLBEN         7736       CALL PAGE(XSIZE,YSIZE)         7737       CALL PAGE(XSIZE,YSIZE)         7738       CALL NOBRDR         7744       C         7745                                                                                                            | 4717 | C   | NYY - NO. OF Y ARRAYS TO BE PLOTTED VS. X ARRAY.                         |
| 4719       C       (NDY MUST BE .GE NPTS)         4720       C       PLAB1,PLAB2 - NO. OF CHARACTERS IN PLOT ID LABELS (ALPHANUMERIC).         4721       C       NPLB1,NPLB2 - NO. OF CHARACTERS IN PLOT ID LABELS.         4722       C       KPLT       PLOT NUMBER         4723       C       NPLSMB       - SYMBOL NO. TO BE USED FOR EACH CURVE         4724       C       NOTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:         4726       C       NX,NY NOSITIVE - X0,YO. LE. X,Y .LE. XN,YN         4727       C       NX,NY NEGATIVE - X0,YO. LE. X,Y .LE. XN,YN         4728       C       COMMON/IPLSME/NPLSMB(100)         4730       DIMENSION X(NPTS),Y(NDY,NYY),XLAB(1),YLAB(1),PLAB1(1),PLAB2(1)         4731       DIMENSION XPL(5000),YPL(5000)         4732       C         4733       C         4734       WRITE (6,4) NDY,NYY,NPTS,Y         4735       C       4 FORMAT(1X,' NDY ',I6,5X,' NYY ',I6,5X,' NPTS ',I6,/,(1X,6E15.5))         4734       CALL NOBRDR         4739       CALL NORCK         4740       C         4744       CALL NORCK         4745       CALL NORCK         4744       CALL NORCK         4745       CALL NOCHEK         4746                                                                                                                                                | 4718 | C   | NDY - FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE.                     |
| 4720       C       PLAB1,PLAB2 - 1ST & 2ND LINES OF PLOT ID LABELS (ALPHANUMERIC).         4721       C       NPLEB1,NPLB2 - NO. OF CHARACTERS IN PLOT ID LABELS.         4722       C       KPLT       - PLOT NUMBER         4723       C       NPLSMB       - SYMBOL NO. TO BE USED FOR EACH CURVE         4724       C         4725       C       NOTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:         4726       C       NX,NY POSITIVE - XO,YO .LE. X,Y .LE. XN,YN         4727       C       NX,NY NEGATIVE - XO,YO .LE. X,Y .LE. XN,YN         4728       C       COMMON/IPLSMB/NPLSMB(100)         0       DIMENSION X(NPTS),Y(NDY,NYY),XLAB(1),YLAB(1),PLAB1(1),PLAB2(1)         4730       DIMENSION XPL(5000),YPL(5000)         4733       C         4734       C         4735       C         4736       CALL BAGE(XSIZE,YSIZE)         4737       CALL PAGE(XSIZE,YSIZE)         4738       CALL NOCHEK         4744       CALL NOCHEK         4745       CALL NOCHEK         4744       CALL HEIGHT(0.18)         4745       CALL HEIGHT(0.18)         4746       CALL FRAME         4747       YMESS=VL=0.25         4748       XMESS=VL=0.                                                                                                                                                                     | 4719 | С   | (NDY MUST BE .GE. NPTS)                                                  |
| 4721       C       NPLB1,NPLB2 - NO. OF CHARACTERS IN PLOT ID LABELS.         4722       C       KPLT - PLOT NUMBER         4723       C       NPLSMB - SYMBOL NO. TO BE USED FOR EACH CURVE         4724       C         4725       C       NOTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:         4726       C       NX,NY POSITIVE - XO,YO .LE. X,Y .LE. XN,YN         4727       C       NX,NY NEGATIVE - XO,YO .LE. X,Y .LE. XN,YN         4728       C       COMMON/IPLSMB/NPLSMB(100)         4730       DIMENSION X(NPTS),Y(NUY),XLAB(1),YLAB(1),PLAB1(1),PLAB2(1)         4731       DIMENSION XPL(5000),YPL(5000)         4733       C         4734       WRITE (6,4) NDY,NYY,NPTS,Y         4735       C         4736       CALL BGNPL(KPLT)         4737       CALL BGNPL(KPLT)         4738       CALL NOBRDR         4740       C         4741       C         CALL NOCHEK         4744       CALL INTAXS         4745       CALL HEIGHT(0.18)         4744       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL FRAME         4747       YMESS                                                                                                                                                                    | 4720 | C   | PLAB1, PLAB2 - 1ST & 2ND LINES OF PLOT ID LABELS (ALPHANUMERIC).         |
| 4722       C       KPLT       - PLDT NUMBER         4723       C       NPLSMB       - SYMBOL NO. TO BE USED FOR EACH CURVE         4724       C         4725       C       NOTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:         4726       C       NX,NY POSITIVE - XO,YO .LE. X,Y .LE. XN,YN         4727       C       NX,NY NEGATIVE - XO,YO .LE. X,Y .LE. XN,YN         4728       C         4730       DIMENSION X(NPTS),Y(NDY,NYY),XLAB(1),YLAB(1),PLAB1(1),PLAB2(1)         4731       DIMENSION XPL(SOOO),YPL(SOOO)         4732       C         4733       C         4734       C WRITE (6,4) NDY,NYY,NPTS,Y         4735       C         4736       CALL BGNPL(KPLT)         7737       CALL PAGE(XSIZE,YSIZE)         7738       CALL NOBRDR         7740       C         7741       C         7742       C         7744       CALL NOCHEK         7745       CALL NOBRDR         7746       CALL NOCHEK         7747       CALL HEIGHT(0.18)         7748       CALL INTAXS         7744       CALL HEIGHT(0.16)         7745       IF (NX.LT.O.) XCYCL=ALOG10(XN/XO)                                                                                                                                                                                                                                              | 4721 | С   | NPLB1,NPLB2 - NO. OF CHARACTERS IN PLOT ID LABELS.                       |
| 4723       C       NPLSMB       - SYMBOL NO. TO BE USED FOR EACH CURVE         4724       C         4725       C       NOTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:         4726       C       NX,NY POSITIVE - XO,YO .LE. X,Y .LE. XN,YN         4727       C       NX,NY NEGATIVE - XO,YO .LE. X,Y .LE. XN,YN         4728       C       COMMON/IPLSMB/NPLSM6(100)         4730       DIMENSION X(NPTS),Y(NDY,NYY),XLAB(1),YLAB(1),PLAB1(1),PLAB2(1)         4731       DIMENSION XPL(5000),YPL(5000)         4732       C         4733       C         4734       C WRITE (6,4) NDY,NYY,NPTS,Y         4735       C         4736       CALL BGNPL(KPLT)         4737       CALL BGNPL(KPLT)         4738       CALL NOBRDR         4744       CALL NOBRDR         4745       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL HEIGHT(0.18)         4746       CALL FRAME         4747       YMESS=YL-0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.0) XCYCL=ALOG10(XN/X0)         4751       IF (NX.GT.0) XSTEP=(XN-X0)/XL         4752                                                                                                                                                                                                    | 4722 | C   | KPLT – PLOT NUMBER                                                       |
| 4724       C         4725       C       NOTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:         4726       C       NX,NY POSITIVE - X0,YO .LE. X,Y .LE. XN,YN         4727       C       NX,NY NEGATIVE - X0,YO .LE. X,Y .LE. XN,YN         4728       C         4729       COMMON/IPLSMB/NPLSMB(100)         4730       DIMENSION X(NPTS),Y(NDY,NYY),XLAB(1),YLAB(1),PLAB1(1),PLAB2(1)         4731       DIMENSION XPL(5000)         4732       C         4733       C         4734       C WRITE (6,4) NDY,NYY,NPTS,Y         4735       C         4736       CALL BAPL(PLT)         4737       CALL NOBRDR         6738       CALL NOBCHR         4740       C         4744       C         4745       CALL HEIGHT(0.18)         4744       CALL HEIGHT(0.18)         4745       CALL HEIGHT(0.16)         4746       CALL FRAME         4747       YMESS=XL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NY.LT.0) YCYCL=ALOG10(YN/YO)         4751       IF (NY.LT.0) YCYCL=ALOG10(YN/YO)         4751       IF (NY.GI.0) YSIEP=(YN-YO)/YL                                                                                                                                                                                                                               | 4723 | С   | NPLSMB – SYMBOL NO. TO BE USED FOR EACH CURVE                            |
| 4725       C       NOTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:         4726       C       NX,NY POSITIVE - X0,Y0 .LE. X,Y .LE. XN,YN         4727       C       NX,NY NEGATIVE - X0,Y0 .LE. X,Y .LE. XN,YN         4728       C         4729       COMMON/IPLSME/NPLSMB(100)         4730       DIMENSION X(NPTS),Y(NDY,NYY),XLAB(1),YLAB(1),PLAB1(1),PLAB2(1)         4731       DIMENSION XPL(5000)         4732       C         4733       C         4734       C         4735       C         4736       CALL BGNPL(KPLT)         4737       CALL BGNPL(KPLT)         4738       CALL NOBRDR         4744       C         4743       CALL NOCHEK         4744       C         4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL HEIGHT(0.16)         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NY.LT.O) YCYCL=ALOG10(YN/YO)         4751       IF (NY.LT.O) YSTEP=(YN-YO)/YL         4753       IF (NY.LT.O) YSTEP=(YN-YO)/YL                                                                                                                                                                                                                                                  | 4724 | С   |                                                                          |
| 4726       C       NX,NY POSITIVE - X0,Y0 .LE. X,Y .LE. XN,YN         4727       C       NX,NY NEGATIVE - X0,Y0 .LE. X,Y .LE. XN,YN         4728       C         4729       COMMON/IPLSMB/NPLSMB(100)         4730       DIMENSION X(NDY,NYY),XLAB(1),YLAB(1),PLAB1(1),PLAB2(1)         4731       DIMENSION XPL(5000),YPL(5000)         4732       C         4733       C         4734       C         4735       C         4736       WRITE (6,4) NDY,NYY,NPTS,Y         4737       CALL BGNPL(KPLT)         4738       CALL DAGE(XSIZE,YSIZE)         4739       CALL NOBRDR         4739       CALL NOCHEK         4740       C         4741       C         4742       C         4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL HEIGHT(0.16)         4746       CALL HEIGHT(0.16)         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.0) XCYCL=ALDG10(YN/X0)         4751       IF (NX.GT.0) XSTEP=(XN-X0)/XL         4752       IF (NX.GT.0) XSTEP=(XN-X0                                                                                                                                                                                                                                         | 4725 | С   | NOTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:                                |
| 4727       C       NX,NY NEGATIVE - X0,Y0 .LE. X,Y .LE. XN,YN         4728       C         4729       COMMON/IPLSMB/NPLSMB(100)         4730       DIMENSION X(NPTS),Y(NDY,NYY),XLAB(1),YLAB(1),PLAB1(1),PLAB2(1)         4731       DIMENSION XPL(5000),YPL(5000)         4732       C         4733       C         4734       C         4735       C         4736       WRITE (6,4) NDY,NYY,NPTS,Y         4737       CALL BGNPL(KPLT)         6       CALL PAGE(XSIZE,YSIZE)         6       CALL NOBRDR         4739       CALL NOBCHEK         4740       C         4741       C         4742       C         4744       CALL NOCHEK         4745       CALL HEIGHT(0.18)         4744       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         1750       IF (NX.LT.0) XCYCL=ALDG10(XN/X0)         4751       IF (NX.CT.0) XSTEP=(XN-X0)/YL <tr< td=""><td>4726</td><td>С</td><td>NX,NY POSITIVE - XO,YO .LE. X,Y .LE. XN,YN /</td></tr<>                                                                                                                      | 4726 | С   | NX,NY POSITIVE - XO,YO .LE. X,Y .LE. XN,YN /                             |
| 4728       C         4729       COMMON/IPLSMB/NPLSMB(100)         4730       DIMENSION X(NPTS), Y(NDY,NYY), XLAB(1), YLAB(1), PLAB1(1), PLAB2(1)         4731       DIMENSION XPL(5000), YPL(5000)         4732       C         4733       C         4734       C         4735       C         4736       VRITE (6,4) NDY, NYY, NPTS, Y         4737       C         4738       C         4739       CALL BGNPL(KPLT)         4738       CALL NOBRDR         4739       CALL NOBCHEK         4740       C         4744       CALL NOBCHEK         4742       C         4744       CALL HEIGHT(0.18)         4745       CALL INTAXS         4746       CALL FRAME         4747       YMESS=VL+0.25         4748       XMESS=VL-2.5         4749       CALL HEIGHT(0.16)         4751       IF (NX.LT.0) XCYCL=ALDG10(XN/X0)         4752       IF (NX.LT.0) YCYCL=ALDG10(XN/X0)         4753       IF (NY.GE.0 AND.NX.GE.0) CALL GRAF(X0, 'SCALE', XN,Y0, 'SCALE', YN)         4754       IF (NY.GE.0 AND.NX.GE.0) CALL LOGLOG(X0,XCYCL, Y0,YCYCL)         4755       IF (NX.GE.0 AND.NY.LT.0) CALL LO                                                                                                                                                                                                                       | 4727 | С   | NX,NY NEGATIVE - XO,YO .LE. X,Y .LE. XN,YN                               |
| 4729       COMMON/IPLSMB/NPLSMB(100)         4730       DIMENSION X(NPTS),Y(NDY,NYY),XLAB(1),PLAB(1),PLAB1(1),PLAB2(1)         4731       DIMENSION XPL(5000),YPL(5000)         4732       C         4733       C         4734       C         4735       C         4736       CALL BGNPL(KPLT)         4737       CALL PAGE(XSIZE,YSIZE)         4738       CALL NOERDR         4739       CALL NOCHEK         4741       C         4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,VLAB,NYLB,XL,YL)         4744       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,VLAB,NYLB,XL,YL)         4745       CALL HEIGHT(0.16)         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.0) XCYCL=ALDG10(XN/X0)         4751       IF (NX.CT.0) XSTEP=(XN-Y0)/YL         4753       IF (NX.GT.0) YSTEP=(XN-Y0)/YL         4754       IF (NY.GT.0) YSTEP=(XN-Y0)/YL         4755       IF (NX.LT.0 AND.NX.GE.0) CALL LOGLOG(X0,XCYCL,Y0,YCCL)         4756       IF (NX.GE.0 AND.                                                                                                                                                                                    | 4728 | С   |                                                                          |
| 4730       DIMENSION X(NPTS), Y(NDY,NYY), XLAB(1), YLAB(1), PLAB1(1), PLAB2(1)         4731       DIMENSION XPL(5000)         4732       C         4733       C         4734       C         4735       C         4736       WRITE (6,4) NDY,NYY,NPTS,Y         4737       C         4738       C         4739       CALL BGNPL(KPLT)         4730       CALL NOBRDR         4739       CALL NOBRDR         4739       CALL NOCHEK         4740       C         4742       C         4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL FRAME         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.0) XCYCL=ALOG10(XN/X0)         4751       IF (NY.LT.0) YCYCL=ALOG10(XN/X0)         4752       IF (NX.GT.0) XSTEP=(XN-X0)/XL         4753       IF (NY.GT.0) YSTEP=(YN-Y0)/YL         4754       IF (NY.GT.0) YSTEP=(YN-Y0)/YL         4755       IF (NX.LT.0 AND.NY.LT.0) CALL UGGLOG(X0,XCYCL,Y0,YCYCL)         4756                                                                                                                                                                                                                                                       | 4729 |     | COMMON/IPLSMB/NPLSMB(100)                                                |
| 4731       DIMENSION XPL(5000), YPL(5000)         4732       C         4733       C         4734       C       WRITE (6,4) NDY,NYY,NPTS,Y         4735       C       4 FORMAJ(1X,' NDY ',16,5X,' NYY ',16,5X,' NPTS ',16,/,(1X,6E15.5))         4736       CALL BGNPL(KPLT)         4737       CALL BGNPL(KPLT)         4738       CALL NOERDR         4739       CALL NOERDR         4730       CALL NOEHEK         4740       C         4741       C         4742       C         4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=YL+0.25         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.0) XCYCL=ALOG10(XN/X0)         4751       IF (NX.LT.0) XCYCL=ALOG10(XN/X0)         4752       IF (NX.GT.0) XSTEP=(YN-Y0)/YL         4753       IF (NY.GT.0) YSTEP=(YN-Y0)/YL         4754       IF (NY.GT.0) YSTEP=(YN-Y0)/YL         4755       IF (NX.LT.0 AND. NY.LT.0) CALL QGLOG(X0,XSTEP,Y0,YCL)         4756       IF (NX.GE.0 AND.NY.LT.0) CALL LOGLOG(X0,XSTEP,Y0,YCCL)                                                                                                                                                                                                                          | 4730 |     | DIMENSION X(NPTS),Y(NDY,NYY),XLAB(1),YLAB(1),PLAB1(1),PLAB2(1)           |
| 4732       C         4733       C         4734       C       WRITE (6,4) NDY,NYY,NPTS,Y         4735       C       4 FORMA,T(1X,' NDY ',16,5X,' NYY ',16,5X,' NPTS ',16,/,(1X,6E15.5))         4736       CALL BGNPL(KPLT)         737       CALL PAGE(XSIZE,YSIZE)         4738       CALL NOBRDR         4739       CALL NOCHEK         4740       C         4741       C         4742       C         4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL FRAME         4747       YMESS=XL+2.5         4748       XMESS=XL+2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.0) XCYCL=ALOG10(XN/X0)         4751       IF (NX.LT.0) XCYCL=ALOG10(YN/Y0)         4752       IF (NY.GT.0) YSTEP=(YN-Y0)/YL         4753       IF (NY.GT.0) YSTEP=(YN-Y0)/YL         4754       IF (NY.GT.0) YSTEP=(YN-Y0)/YL         4755       IF (NX.LT.0 AND. NY.LT.0) CALL LOGLOG(X0,XCYCL,Y0,YCL)         4756       IF (NX.GT.0 AND. NY.LT.0) CALL LOGLOG(X0,XSTEP,Y0,YCL)                                                                                                                                                                                                                                 | 4731 |     | DIMENSION XPL(5000),YPL(5000)                                            |
| 4733       C         4734       C       WRITE (6,4) NDY,NYY,NPTS,Y         4735       C       4 FORMAT(1x,' NDY ',I6,5x,' NYY ',I6,5x,' NPTS ',I6,/,(1x,6E15.5))         4736       CALL BGNPL(KPLT)         4737       CALL PAGE(XSIZE,YSIZE)         4738       CALL NOBRDR         4739       CALL NOBRDR         4730       CALL NOCHEK         4740       C         4741       C         4742       C         4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.0) XCYCL=ALOG10(XN/XO)         4751       IF (NY.LT.0) YCYCL=ALOG10(YN/YO)         4752       IF (NX.GT.0) XSTEP=(XN-XO)/XL         4753       IF (NY.GT.0) YSTEP=(YN-YO)/YL         4754       IF (NY.GT.0) AND.NX.GE.0) CALL GRAF(XO, 'SCALE',XN,YO, 'SCALE',YN)         4755       IF (NX.GE.0 AND.NY.LT.0) CALL LOGLOG(XO,XCYCL,YO,YCYCL)         4756       IF (NX.GE.0 AND.NY.LT.0) CALL YLOG(XO,XSTEP,YO,YCYCL)                                                                                                                                                                                 | 4732 | С   |                                                                          |
| 4734       C       WRITE (6,4) NDY, NYY, NPTS, Y         4735       C       4 FORMAT(1X, ' NDY ', I6,5X, ' NYY ', I6,5X, ' NPTS ', I6,/,(1X,6E15.5))         CALL BGNPL(KPLT)       CALL BGNPL(KPLT)         4737       CALL PAGE(XSIZE, YSIZE)         4738       CALL NOBRDR         4739       CALL NOCHEK         4740       C         4741       C         4742       C         4743       CALL HEIGHT(0.1B)         4744       CALL INTAXS         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.O) YCYCL=ALDG10(XN/XO)         4751       IF (NY.LT.O) YCYCL=ALDG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(YN-YO)/XL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GT.O) AND.NY.LT.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4756       IF (NX.GE.O AND.NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)                                                                                                                                                                                                                                                                                  | 4733 | С   |                                                                          |
| 4735       C       4 FORMAT(1X, ' NDY ', IG, 5X, ' NYY ', IG, 5X, ' NPTS ', IG, /, (1X, GE 15.5))         4736       CALL BONPL(KPLT)         4737       CALL PAGE(XSIZE, YSIZE)         4738       CALL NOBRDR         4739       CALL NOCHEK         4740       C         4741       C         4742       C         4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL FRAME         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4752       IF (NX.LT.0) XCYCL=ALDG10(XN/X0)         4753       IF (NY.LT.0) YCYCL=ALDG10(YN/Y0)         4754       IF (NY.GT.0) YSTEP=(YN-Y0)/YL         4755       IF (NY.GT.0) AND.NY.LT.0) CALL GRAF(X0, 'SCALE', XN, Y0, 'SCALE', YN)         4756       IF (NX.GE.0 .AND. NY.LT.0) CALL LOGLDG(X0, XCYCL, Y0, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4734 | С   | WRITE (6,4) NDY,NYY,NPTS,Y                                               |
| 4736       CALL BGNPL(KPLT)         4737       CALL PAGE(XSIZE,YSIZE)         4738       CALL NOBRDR         4739       CALL NOCHEK         4740       C         4741       C         4742       C         4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.O) XCYCL=ALOG10(XN/XO)         4751       IF (NY.LT.O) YCYCL=ALOG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(XN-XO)/XL         4753       IF (NY.GT.O) YSTEP=(XN-XO)/XL         4754       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4755       IF (NX.GT.O. AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.GE.O. AND.NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GE.O. AND. NY.LT.O) CALL LOGLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                          | 4735 | С   | 4 FORMAT(1X, ' NDY ', I6,5X, ' NYY ', I6,5X, ' NPTS ', I6,/,(1X,6E15.5)) |
| 4737       CALL PAGE(XSIZE,YSIZE)         4738       CALL NOBRDR         4739       CALL NOCHEK         4740       C         4741       C         4742       C         4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.O) XCYCL=ALOG10(XN/XO)         4751       IF (NY.LT.O) YCYCL=ALOG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(XN-XO)/XL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GT.O) AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.GE.O .AND.NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GE.O .AND. NY.LT.O) CALL LOGLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                               | 4736 |     | CALL BGNPL(KPLT)                                                         |
| 4738       CALL NOBRDR         4739       CALL NOCHEK         4740       C         4741       C         4742       C         4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.O) XCYCL=ALDG10(XN/XO)         4751       IF (NX.LT.O) YCYCL=ALDG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(YN-YO)/XL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GT.O) AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.LT.O AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GE.O AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4737 |     | CALL PAGE(XSIZE,YSIZE)                                                   |
| 4739       CALL NOCHEK         4740       C         4741       C         4742       C         4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.0) XCYCL=ALOG10(XN/X0)         4751       IF (NY.LT.0) YCYCL=ALOG10(YN/YO)         4752       IF (NX.GT.0) XSTEP=(XN-X0)/XL         4753       IF (NY.GT.0) YSTEP=(YN-YO)/YL         4754       IF (NY.GT.0 AND.NX.GE.0) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.LT.0 AND. NY.LT.0) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GE.0 AND. NY.LT.0) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4738 |     | CALL NOBRDR                                                              |
| 4740       C         4741       C       CHECK TYPE OF PLOT AXIS         4742       C         4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.O) XCYCL=ALOG10(XN/XO)         4751       IF (NY.LT.O) YCYCL=ALOG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(YN-YO)/YL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GT.O) AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.LT.O AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GT.O) AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4739 |     | CALL NOCHEK                                                              |
| 4741       C       CHECK TYPE OF PLOT AXIS         4742       C         4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.O) XCYCL=ALOG10(XN/XO)         4751       IF (NY.LT.O) YCYCL=ALOG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(XN-XO)/XL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GT.O) AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.LT.O AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GT.O AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4740 | С   |                                                                          |
| 4742       C         4743       CALL HEIGHT(O.18)         4744       CALL INTAXS         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(O.16)         4750       IF (NX.LT.O) XCYCL=ALOG10(XN/XO)         4751       IF (NY.LT.O) YCYCL=ALOG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(XN-XO)/XL         4753       IF (NY.GE.O .AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.LT.O .AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GE.O .AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4741 | С   | CHECK TYPE OF PLOT AXIS                                                  |
| 4743       CALL HEIGHT(0.18)         4744       CALL INTAXS         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.O) XCYCL=ALOG10(XN/XO)         4751       IF (NY.LT.O) YCYCL=ALOG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(YN-XO)/XL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GE.O .AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.LT.O .AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GE.O .AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4742 | С   |                                                                          |
| 4744       CALL INTAXS         4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.O) XCYCL=ALDG10(XN/XO)         4751       IF (NY.LT.O) YCYCL=ALOG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(XN-XO)/XL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GE.O .AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.LT.O .AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GE.O .AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4743 |     | CALL HEIGHT(0.18)                                                        |
| 4745       CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)         4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.O) XCYCL=ALOG10(XN/XO)         4751       IF (NY.LT.O) YCYCL=ALOG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(XN-XO)/XL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GE.O AND.NX.GE.O) CALL GRAF(XO, 'SCALE',XN,YO, 'SCALE',YN)         4755       IF (NX.LT.O AND. NY.LT.O) CALL LOGLOG(XO,XCYCL,YO,YCYCL)         4756       IF (NX.GE.O AND. NY.LT.O) CALL YLOG(XO,XSTEP,YO,YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4744 |     | CALL INTAXS                                                              |
| 4746       CALL FRAME         4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.O) XCYCL=ALOG10(XN/XO)         4751       IF (NY.LT.O) YCYCL=ALOG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(XN-XO)/XL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GE.O AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.LT.O AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GE.O AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4745 |     | CALL TITLE(PLAB1,NPLB1,XLAB,NXLB,YLAB,NYLB,XL,YL)                        |
| 4747       YMESS=YL+0.25         4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.O) XCYCL=ALOG10(XN/XO)         4751       IF (NY.LT.O) YCYCL=ALOG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(XN-XO)/XL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GE.O AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.LT.O AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GE.O AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4746 |     | CALL FRAME                                                               |
| 4748       XMESS=XL-2.5         4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.O) XCYCL=ALDG10(XN/XO)         4751       IF (NY.LT.O) YCYCL=ALDG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(XN-XO)/XL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GE.O AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.LT.O AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GE.O AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4747 |     | YMESS=YL+O.25                                                            |
| 4749       CALL HEIGHT(0.16)         4750       IF (NX.LT.O) XCYCL=ALDG10(XN/XO)         4751       IF (NY.LT.O) YCYCL=ALDG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(XN-XO)/XL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GE.O .AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.LT.O .AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GE.O .AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4748 |     | XMESS=XL-2.5                                                             |
| 4750       IF (NX.LT.O) XCYCL=ALOG10(XN/XO)         4751       IF (NY.LT.O) YCYCL=ALOG10(YN/YO)         4752       IF (NX.GT.O) XSTEP=(XN-XO)/XL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GE.O .AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.LT.O .AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GE.O .AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4749 |     | CALL HEIGHT(0.16)                                                        |
| 4751       IF (NY.LT.O) YCYCL=ALOGIO(YN/YO)         4752       IF (NX.GT.O) XSTEP=(XN-XO)/XL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GE.O .AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.LT.O .AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GE.O .AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4750 |     | IF (NX.LT.O) XCYCL=ALDG10(XN/XO)                                         |
| 4752       IF (NX.GT.O) XSTEP=(XN-XO)/XL         4753       IF (NY.GT.O) YSTEP=(YN-YO)/YL         4754       IF (NY.GE.O .AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)         4755       IF (NX.LT.O .AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)         4756       IF (NX.GE.O .AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4751 |     | IF (NY.LT.O) YCYCL=ALDG10(YN/YO)                                         |
| 4753IF (NY.GT.O) YSTEP=(YN-YO)/YL4754IF (NY.GE.O .AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)4755IF (NX.LT.O .AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)4756IF (NX.GE.O .AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4752 |     | IF (NX.GT.O) XSTEP=(XN-XO)/XL                                            |
| 4754IF (NY.GE.O .AND.NX.GE.O) CALL GRAF(XO, 'SCALE', XN, YO, 'SCALE', YN)4755IF (NX.LT.O .AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)4756IF (NX.GE.O .AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4753 |     | IF (NY.GT.O) YSTEP=(YN-YO)/YL                                            |
| 4755IF (NX.LT.O .AND. NY.LT.O) CALL LOGLOG(XO, XCYCL, YO, YCYCL)4756IF (NX.GE.O .AND. NY.LT.O) CALL YLOG(XO, XSTEP, YO, YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4754 |     | IF (NY.GE.O , AND.NX.GE.O) CALL GRAF(XO, (SCALE) XN YO (SCALE) VN)       |
| 4756 IF (NX.GE.O .AND. NY.LT.O) CALL YLOG(XO,XSTEP,YO,YCYCL)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4755 |     | IF (NX.LT.O , AND, NY.LT.O) CALL LOGING(XO XCYCL YO YCYCL)               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4756 |     | IF (NX.GE.O .AND. NY.LT.O) CALL YLOG(XO,XSTEP,YO,YCYCL)                  |

Page 1

.

.

Table ( 6 - listings of Code Changes to CUCUS (Page 36 of 38)

/

Listing of CVSB(4699,4788) at 10:09:37 on AUG 29, 1985 for CCid=SS53

| 4757 | IF (NX.LT.O .AND. NY.GE.O) CALL XLOG(XO,XCYCL,YO,YSTEP)              |
|------|----------------------------------------------------------------------|
| 4758 | IF (NX.GT.O) IGRX=NX                                                 |
| 4759 | IF (NX.LT.O) IGRX=-NX                                                |
| 4760 | IF (NY.GT.O) IGRY=NY                                                 |
| 4761 | IF (NY.LT.O) IGRY=-NY                                                |
| 4762 | IF (NX.EQ.O) IGRX=1                                                  |
| 4763 | IF (NY.EQ.O) IGRY=1                                                  |
| 4764 | CALL GRID(IGRX,IGRY)                                                 |
| 4765 | DO 40 J=1,NYY                                                        |
| 4766 | JJP=NPLSMB(J)                                                        |
| 4767 | C WRITE (6,52) XO,YO,XN,YN,XL,YL,JJP,XSTEP,YSTEP,J,NYY               |
| 4768 | 52 FORMAT(1X,' XO, YO ',2F15.5,5X,' XN, YN ',2F15.5,/,1X,' XL, YL ', |
| 4769 | 12F15.5,5X,' NPLSMB ',I5,/,1X,' XSTEP, YSTEP ',2F15.5,               |
| 4770 | 25X, 'J', I4, 5X, 'NYY', I4)                                         |
| 4771 | DO 39 I=1,NPTS                                                       |
| 4772 | XPL(I)=X(I)                                                          |
| 4773 | YPL(I)=Y(I,J)                                                        |
| 4774 | 39 CONTINUE                                                          |
| 4775 | IF (JJP.LT.O) CALL DASH                                              |
| 4776 | IF (JJP.LT.O) JJP1=JJP+1                                             |
| 4777 | IF (JJP.GE.O) JJP1=JJP                                               |
| 4778 | CALL CURVE(XPL,YPL,NPTS,JJP1)                                        |
| 4779 | IF (JJP.LT.O) CALL RESET('DASH')                                     |
| 4780 | 40 CONTINUE                                                          |
| 4781 | CALL HEIGHT(0.15)                                                    |
| 4782 | CALL MESSAG('ODIAC1 / GMR', 12, XMESS, YMESS)                        |
| 4783 | YMS1=YMESS-O.15                                                      |
| 4784 | XMS1=XMESS-0.05                                                      |
| 4785 | CALL MESSAG('\$', 100,XMS1,YMS1)                                     |
| 4786 | CALL ENDPL(KPLT)                                                     |
| 4787 | RETURN                                                               |
| 4788 | END                                                                  |

Table C.6. Listings of Code Changes to GUCVS (Page 37 of 38)

Page 2

.

4

.

## Listing of SUSP:CUTS(1319,1332) at 10:08:43 on AUG 29, 1985 for CC1d=SS53

| 1319 |    | SUBROUTINE VECADD(VA,VB,VC)   |
|------|----|-------------------------------|
| 1320 |    | DIMENSION VA(3), VB(3), VC(3) |
| 1321 |    | DO 10 I = 1, 3                |
| 1322 |    | VC(I) = VA(I) + VB(I)         |
| 1323 | 10 | CONTINUE                      |
| 1324 |    | RETURN                        |
| 1325 |    | END                           |
| 1326 |    | SUBROUTINE VECSUB(VA, VB, VC) |
| 1327 |    | DIMENSION VA(3), VB(3), VC(3) |
| 1328 |    | DO 10 I = 1, 3                |
| 1329 |    | VC(I) = VA(I) - VB(I)         |
| 1330 | 10 | CONTINUE                      |
| 1331 |    | RETURN                        |
| 1332 |    | END                           |

Table C.6. Listings of Code Changes to GUCVS (Page 38 of 38)

•

.

.