THREE-DIMENSIONAL OCCUPANT DYNAMICS SOFTWARE BELT MODEL USE

Prepared by:
D. H. Robbins and R. O. Bennett Biosciences Division Transportation Research Institute The University of Michigan Ann Arbor, Michigan 48109

Prepared for:
Engineering Mechanics Department General Motors Research Laboratories
Twelve Mile and Mound Roads
Warren, Michigan 48090

Date:
August 31, 1986

Techaical Report Documentation Page

CONTENTS

LISI' OF TABLES iii
LISI OF FIGURES iv
1.0 INTRODUCTION 1
2.0 BACKGROUND AND BASICS FOR SEAT BELT MODELING 3
2.1 Review of Impact Test Data 3
2.2 Limitations of Existing BELT Code 6
3.0 BELT SLIP AND SUBMARINING MODELS USING EXISTING CODES 9
3.1 Sequence of Seat Belt Model Development 9
3.2 Test Cases Using Various Simple Concepts 11
3.3 Full-Scale Testing of Submarining Model 15
4.0 ANALYSIS OF BELT MATERIAL TRANSFER ACROSS SURFACES 30
4.1 The Belt Slip Model Developed by British Leyland 30
4.2 UMTRI Extensions to the British Leyland Slip Algorithm 33
4.2.1 Definition of Terms for Belt Slip Algorithm 35
4.2.2 Belt Slip in the Presence of Slack 37
4.2.3 Belt Slip Under Load at a Typical Slip Point 37
4.2.4 The Progressive Solution Approach 38
4.2.5 The Simultaneous Solution Based on Change in Unstrained Length for Belt Segment 1 42
4.2.6 The Simultaneous Solution Based on Deflection of Belt Segments 44
4.2.7 The Simultaneous Solution Based on Strain for Belt Segment 2 45
4.2.8 Set Up of the Slip Resistance Direction Factors 46
4.3 Summary of Progress 47
4.4 Recommendations 48
5.0 THE HARNESS ALGORITHM 49
6.0 UMTRI VERSION OF GMCVS 53
7.0 REFERENCES 56
APPENDIX A: Revision Pages to GMCVS Input Description 58
APPENDIX B: Derivation of the Slip Force Equilibrium Equation 63
APPENDIX C: Tape Description and Installation Notes 68

LIST OF TABLES

Page
3.1 Impact data set for full-scale submarining model 17
C. 1 Description of tape BSCO23 69
C. 2 New belt slip algorithm routines 72
C. 3 Comparison of GUCVS with GMCVS 74
C. 4 Completely new or extensive changed code 74
C. 5 Comparison of GUCVS with GMCVS 75
C. 6 Listings of code changes to GUCVS 116
Page
2.1 Schematic of test setup 5
2.2 Restraint belt geometry 7
3.1 Sequence of belt models 10
3.2 Superimposed segments for representation of slip 12
3.3 Attachment of belt to mass which moves relative to primary segment 14
3.4 Simulation of submarining indicator ($t=0 \mathrm{~ms}$) 16
3.5 Simulatior: of submarining indicator ($t=80 \mathrm{~ms}$) 28
4.1 The belt plane in inertial space 31
4.2 Belt layout examples 32
4.3 British Leyland slippage between belts 34
4.4 Modified slippage at fixed point 36
4.5 The typical slip point $k-1$ 39
4.6 A maximum belt loop configuration 40
5.1 Points on sample harness 50
5.2 Air Force harness simulation using HARNESS 52

1.0 INTRODUCTION

The University of Michigan Transportation Research Institute has conducted a study of seat belt modeling for use with three-dimensional crash victim simulation codes. The objective was to examine the capabilities of existing software and to improve the codes insofar as possible.

The restraint belt algorithm of the Calspan CVS, Version 20 (Fleck et al. 1981), defines a restraint belt in terms of two anchor points and a fixed point on the surface of a contact ellipsoid. The belt is presumed to lie entirely within the belt plane defined by these three points in space. The two anchor points are restricted to be attached to any one segment (usually the vehicle) while the contact ellipsoid, and along with it the fixed point, is restricted to be attached to any other segment (usually one of the body segments). Up to eight belts are allowed but each is totally independent of the other.

British Leyland developed a model for slipping between two belts for the case in which one anchor of one of the belts was coincident with one anchor of the other belt (Newman et al. 1981). Butler et al. (1980, 1983) developed a major new sub-program (HARNESS) which allowed both slipping of the belt over the surface of the occupant and penetration of the belt into the body.

General Motors Research Laboratories made modifications to the Version 20 code particularly in the area of problem size. The University of Michigan Transportation Research Institute reorganized the output sections to reduce the amount of storage required and simultaneously installed some of the output features from the updated version of Version 18A (Bennett et al. 1982).

The remainder of the report describes the work conducted during the project:

- Development of experimental basis for seat belt modeling
- Development of belt slip and submarining models using the existing codes
- Development and testing of an analytical basis for the transfer of belt material across body surfaces
- Review of the status of the HARNESS sub-program
- The UMTRI implementation of the CVS

2.0 BACKGROUND AND BASICS FOR SEAT BELT MODELING

2.1 Review of Impact Test Data

In order to understand the physical phenomena which should be incorporated in a model of seat belt interaction with a motor vehicle occupant during a crash, a review was conducted of impact test data. The two questions posed were:

1. Did the belt move or slip over the surface of the test subject; and,
2. Did the belt compress the chest structures during load application?

Two papers by Biomedical Science Department staff at the General Motors Research Laboratories were reviewed in this context. A Part 572 dummy was used in a study of test dummy interactions with a shoulder or lap belt by Viano and Culver (1981). These frontal impact tests were conducted with the thorax skin removed in order to better visualize the geometry of the interactions. The major phases of the dummy's interaction with the restraint system involved: " (1) forward movement of the dummy and take up of belt slack; (2) initial belt slip and adjustment to the thoracic structure; (3) inertial acceleration of the thorax with primarily planar thoracic compression; and, (4) substantial non-symmetric deformation of the thoracic structure as the chest rotates about the belt. . . . " An independent review of these movies revealed some slipping of the belt across the surface of the thorax during the loading phase. This was particularly marked where the lower portion of the shoulder belt interacted with the lower right side of the dummy's rib cage. Also, the stalk where the three-point attachment is routed to vehicle structures is observed to rotate.

Horsch (1980) reported a study of occupant dynamics as a function of impact angle and belt restraint. Tests were conducted at impact angles of $0, \pm 30, \pm 45, \pm 60$, and ± 90 degrees. The test velocities were $35 \mathrm{~km} / \mathrm{hr}$. In "opposite side" impacts, the body escaped from under the
torso belt at 60 and 90 degrees but importantly it was noted that much of the impact energy had already been absorbed.

The observation of belt sliding across the surface of the Part 572 thorax in the frontal impacts caused consternation among the present researchers. The reason was that a foundation of the original Calspan 3-D CVS model was attachment of the belt at a fixed point on the thorax. Because of this a further review of test movies using Hybrid III dummies and cadavers was conducted. The data were obtained from the whole body response study, a major effort at UMTRI funded by General Motors and reported by Alem et al. (1977). The test buck was provided by General Motors and test velocities at 16,22 , and 33 mph were used. A schematic of the test setup is shown in Figure 2.1.

A quick look at the cadaver movies revealed what appears to be considerable slipping of the belt over the torso, perhaps 10 inches or more. In the eight side views of a low-level test (16 mph), there seemed to be some sliding of the torso belt as it penetrated down and into the lower right-hand side of the subject. From the left side, the belt slid over the shoulder. This apparent extensive amount of slipping occurred at the same time the belt appeared to be compressing the center of the torso. This was confirmed in a front view of the test. In this view, the belt appeared to slide a little bit initially as if the belt were using up slack while adjusting to the surface of the body before applying any significant loads. As the load was applied, there was a tremendous compression of the chest, during which time the belt was pocketed by the surrounding tissue. No slipping along the belt line was observed. Side slipping was virtually impossible because of the pocketing. It should be noted that the shoulder complex rotated around the thorax and belt to accentuate this effect. The same pattern of behavior was observed in the higher velocity impacts (22 and 33 mph).

The tests at UMTRI using the Hybrid III were conducted using General Motors equipment (test buck and dummies). Tests were reviewed at three velocities ($16 \mathrm{mph}, 22 \mathrm{mph}, 33 \mathrm{mph}$). With respect to belt slipping, the results were similar to those observed in the cadaver tests. The major difference was the lack of shoulder complex forward

Figure 2.1. Schematic of Test Setup
rotation and the general apparent excessive stiffness of the thoracic structure and spine. Some chest compression was observed.

In conclusion, the following observations can be made in answer to the questions posed at the beginning of this section.

1. Most of the slippage of the belt over the surface of the subject was observed to occur in the initial phase of the test in order to take up slack which may exist in any of the belt segments.
2. Apparent slippage is observed in the upper and lower torso belt segments as body loads are applied. This is primarily the result of thorax compression and, to a lesser extent, belt stretch.
3. During application of a frontal impact load to a subject having a well-positioned belt system, it appears that there is no slippage for one point on the thorax.
4. While the belt interaction with Hybrid III and cadaver test subjects are similar, the Hybrid II response appears to be rather different.

2.2 Limitations of Existing BELT Code

In the BELT subprogram, each of the restraint belts is assumed to lie in a plane defined by two anchor points attached to a segment (usually the vehicle) and by a fixed point on a contact ellipsoid rigidly attached to some other segment (see Figure 2.2). The calculation of the belt length from the fixed point to the two anchor points is done separately. The friction of the contact between the belt and the segment ellipsoid may be assumed to be either zero or infinite. In the zero friction option the total belt length is used to compute the strain and a single force-strain history is used to determine the force which is applied equally at each of the tangent points. In the infinite friction option each of the partial belt lengths (one from the fixed point to anchor point A and the other from the fixed point to anchor point: B) are treated independently. Separate force-strain histories are carried for each part resulting in different forces. It is assumed that the force-strain functions are defined in such a manner as to account for deformation of the contact ellipsoid.

inertial reference

Figure 2.2. Restraint Belt Geometry

Based on the observations put forth in Section 2.1, the BELT code is deficient in three ways:

1. There is no capability to transfer material from one side of the belt segment to the other. The only mechanism is force equalization which, rather than feeding slack material from one side to the other, computes the average of the non-zero force on one side with the zero force on the slack side. Based on the observation of adjustment of the belt to fit the shape of the occupant just discussed in Section 2.1, this assumption is inadequate.
2. It is not possible to model a three-point belt. In other words, it is not possible to connect two belts, such as those defined in Figure 2.2, together in order to represent the torso and lap sections of a seat belt assembly. Even if this were possible, the rotation of the stalk attached to the D-ring could not be represented.
3. It is not possible to allow migration of the fixed point on the segment ellipsoid. Although this assumption appears to be good for frontal impact (in the case where there is little transfer of slack belt material), it is not valid for opposite side lateral or oblique impacts where the occupant can slip completely out of the belt.

3.0 BELT SLIP AND SUBMARINING MODELS USING EXISTING CODES

This section of the report discusses the use of the original BELT software to simulate sliding of the belt over body surfaces and penetration of the belt into body surfaces during dynamic loading. Section 3.1 shows the modeling differences between applications to various conceptual problems. Section 3.2 summarizes various simple restraint models and their effectiveness. Section 3.3 presents a fullscale example of a submarining model which appears to work well and which should be laboratory tested for general use.

3.1 Sequence of Seat Belt Model Development

Figure 3.1 is a schematic which shows a variety of modeling concepts including:

- Current BELT code
- Modifications to the code generated by British Leyland
- Further new modifications by UMTRI, made during the present project, suggested for complete implementation

The two drawings in the upper-left section of the figure represent the current state. The two ends of any belt segment are fixed to the vehicle. The belt itself is constrained to conform to an ellipsoid attached to the occupant. This belt is rigidly attached to a point on the surface of the ellipsoid. The forces in the two separate elements of the belt can either be equalized or totally independent. To model a three-point belt system, two independent sets of belts must be used. Each of the four belt ends is fixed independently to the vehicle and each pair has a fixed attachment to a body ellipsoid. This concept is most relevant to the older four-point belt system.

The modifications made to the BELT code by British Leyland (Newman et al. 1981) have the effect illustrated in the upper right portion of Figure 3.1. This allows the transfer of material between pairs of belts and is intended to represent this effect at the D-ring. However, no slippage across the occupant is allowed as the fixed points on the ellipsoid surfaces are still required.

Figure 3.1. Sequence of Belt Models

The new UMTRI concepts, implemented and tested at the subroutine level, but not yet integrated into the CAL 3-D code, are illustrated in the bottom three drawings in Figure 3.1. In these cases, slipping of material is allowed across slip points which are rigidly attached to the surface of body ellipsoids, as before. Further, slipping can occur at the point where pairs of belts are connected, as is the case with the British Leyland improvements. Because of this general capability to slip, or transfer material, between all the belt segments, the take-up of initial slack discussed in Section 2 of this report is accommodated. The potential application to the three-point belt system is shown in the bottom section of Figure 3.1. It should be noted, however, that mobility of the stalk into which the D-ring is inserted is not accommodated.

More advanced belt modeling concepts are discussed in Section 5 where the HARNESS sub-program is described.

3.2 Test Cases Using Various Simple Concepts

Simple modeling concepts have been used to study various potential methods of simulating belt slip and submarining. The first of these, shown in Figure 3.2, is intended to demonstrate slipping of a belt either over the thorax or lower torso pelvic region. The mass and geometry of the spherical shaped segment is intended to represent the thorax restrained by an upper torso belt, as shown. A contact surface below the sphere represents the interaction of the lower portion of the body with seat structures. The sphere can slide on, and penetrate, the surface.

To represent slipping of the belt over this surface, a second mass (10% of the first mass) was superimposed and pin-jointed at their mutual centers-of-mass. The belt was attached to the second, and smaller, mass. In order to simulate resistance to the slipping, a moment resistance is added at the pin joint as a function of the relative angle between the two masses.

This modeling concept appeared tc function properly. It worked especially well when some resistance to the motion between the two segments was added. Because of the ability to control the slipping over

Figure 3.2. Superimposed Segments for Representation of Slip
a surface in this manner, it was felt that this model concept could be adapted to use as a submarining indicator.

A second series of simple modeling concepts was explored based on the geometry of Figure 3.3. As before, a spherical mass was used to simulate the thorax or lower torso region. The general placement of belt attachments to the vehicle was also as before. In these cases, however, a second mass (small) was located at the point where the belt would pass over the primary body segment. The belt was then attached to a separate ellipsoid on this new small mass.

Three options available with the CAL 3-D were tested as means of attachment of the small mass to the larger primary mass to simulate slippage between the two. These were the fixed distance constraint, the fixed point constraint, and the massless link. The fixed distance constraint is designed to keep a point on one mass a fixed distance from a point on the other. The fixed point constraint is intended to keep a point on one mass at the same point in inertial space as a point on the other mass. These constraints are approximate and use force to maintain the geometry rather than changing the number of degrees of freedom.

The two constraint concepts exhibited problems with instability due to a trading of energy and oscillation from one side of the belt to the other. The only way to damp this behavior was to alter the belt properties. This was considered a poor method because alterations to damp this spurious behavior would also affect the primary properties of the belt which are to stop the forward motion of the primary mass.

The massless link idea does alter the equations of motion. This concept appears to be sound based on the work of Fleck et al. (1975) and Wittenberg (1977). However, in practice, the software did not work.

A final attempt to use the geometric ideas of Figure 3.3 was to employ the traditionally jointed superimposed masses of Figure 3.2. As was the case with the original Figure 3.2 models already described, this concept worked well. It was possible to control the motion of the forward mass. These controls could be based on test data defining the direction and magnitude of forces associated with movement of the belt over the pelvis. These data could be represented as a torque-angle

Figure 3.3. Attachment of Belt to Mass which Moves Relative to Primary Segment
curve. Because of the promise of this technique, the full-scale exercise discussed in Section 3.3 was conducted.

3.3 Full-Scale Testing of Submarining Model

A basic data set provided by General Motors was modified to include a prototype lap belt submarining indicator. Figure 3.4 is a schematic of this data set at the initial time. An overlay of the general shape of the pelvis is included to show the orientation of the lap belts. They are well positioned initially to take crash loading. The pelvic overlay is based on the positions specified in the data set of the joints connecting the pelvis to the spine and the femurs. The point labelled with an " X " on the front of the ellipsoid representing the lower torso is the attachment point for the two elements in the lower torso belt.

The data structure for the submarining indicator is based on the concept described in Section 3.3 where two masses are superimposed at a pinned joint. The small mass, representing a portion of the pelvic mass, is attached to the belt while the primary pelvic mass is attached normally to the remainder of the body linkage. The two masses are connected at a pinned joint which resists relative rotation by the mechanism of a torque-angle resistance.

Table 3.1 is the input data set for the full-scale submarining model using the UMTRI version of the CAL 3-D. Each line in the data file has a number. Those which define changes for the implementation of the submarining indicator are as follows:

Line 24.5. B2 Card. This defines the mass, inertial, and ellipsoid properties of the overlaid mass, named BPEL.

Line 56.1, 56.2. B3 Cards. The attachment of BPEL to the lower torso mass, LT, is defined.

Line 80.1. B4 Card. The torque-angle resistance of the mass to which the belt is attached (BPEL) with respect to the primary mass (LT) is defined. Values have been selected without the aid of experimental information. They are consistent with other properties of the dummy.

TRIAL DATASET FOR SEAT BELT GRAPHICS ALGORITHM
RESTR PASSR,FRONTAL BARRIER IMPACT, NO PITCH
CM. KG.SEC. O.O \qquad $0.0 \quad 980.66$
$6 \quad 150 \quad 0.001000 .00025 \quad 0.0010 .000025$

$\begin{array}{lllllllllllll}\text { LT } 517.331 & 2.479 & 2.479 & 1.468 & 12.00 & 12.50 & 18.50 & 1.70 & 0.000 & -.350\end{array}$
CT $45.760 .3650 .3650 .2790 \quad 11.0011 .0014 .001 .6600 .0000 .000$
$\begin{array}{llllllllllllll}\text { CT } & 4 & 5.760 & .3650 & .3650 & .2790 & 11.00 & 11.00 & 14.00 & 1.660 & 0.000 & 0.000 \\ \text { UT } & 317.227 & 2.504 & 2.504 & 2.170 & 12.75 & 12.75 & 15.00 & 3.610 & 0.000 & 0.000\end{array}$

317.227	2.504	2.504	2.170	12.75	12.75	15.00	3.610	0.000	0.000	
N	2	1.545	0.060	0.060	0.006	4.30	4.30	7.00	1.670	.0000

$\begin{array}{lllllllllllll}\mathrm{N} & 2 & 1.545 & 0.060 & 0.060 & 0.006 & 4.30 & 4.30 & 7.00 & 1.670 & .0000 & 0.000 \\ H & 1 & 4.545 & 2190 & 2060 & 2060 & 7.75 & 7.75 & 11.00 & 1.500 & 0000 & 0.000\end{array}$

| H | 4.545 | .2190 | .2060 | .2060 | 7.75 | 7.75 | 11.00 | 1.500 | .0000 | 0.000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

| LUL | 6.091 | .6860 | .6860 | .1310 | 7.50 | 7.50 | 23.10 | -0.94 | .0000 | .0000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| LLL B | 3.300 | .7650 | .7650 | .0970 | 5.75 | 5.75 | 23.70 | -4.22 | .0000 | .0000 |

LLL B $3.300 \quad .7650 .7650$. 0970 5.75 5.75 23.70 -4.22 .0000 .0000
$\begin{array}{rllllllllllll}\text { LF } & \text { C } & 1.227 & .0550 & .0550 & .0150 & 4.00 & 4.00 & 10.00 & .0000 & .0000 & .0000 \\ \text { RUL } & \text { D } & 6.091 & .6860 & .6860 & .1310 & 7.50 & 7.50 & 23.10 & -.940 & .0000 & .0000\end{array}$
$\begin{array}{llllllllllllll}\text { RUL D } & 6.091 & .6860 & .6860 & .1310 & 7.50 & 7.50 & 23.10 & -.940 & .0000 & .0000 \\ \text { RLL E } & 3.300 & .7650 & .7650 & .0970 & 5.75 & 5.75 & 23.70 & -4.22 & .0000 & .0000\end{array}$
$\begin{array}{ccccccccccccc}\text { RF } & \text { F } & 1.227 & .0550 & .0550 & .0150 & 4.00 & 4.00 & 10.00 & .0000 & .0000 & .0000 \\ \text { LUA } & 6 & 2.000 & .1160 & .1160 & .0250 & 4.50 & 4.50 & 13.00 & 0000 & .000 & .0000\end{array}$

| LLA | 7 | 2.273 | .3600 | .3600 | .0320 | 4.25 | 4.25 | 20.80 | 1.15 | .0000 | .0000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| RUA | 8 | 2.000 | .1160 | .1160 | .0250 | 4.50 | 4.50 | 13.00 | .0000 | 0.00 | .0000 |

| RUA 8 | 2.000 | .1160 | .1160 | .0250 | 4.50 | 4.50 | 13.00 | .0000 | 0.00 | .0000 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| RLA 9 | 2.273 | .3600 | .3600 | .0320 | 4.25 | 4.25 | 20.80 | 1.15 | .0000 | .0000 |

$\begin{array}{llllllllllll}\text { LH N O.800 } & .0115 & .0115 & .0012 & 5.50 & 3.05 & 9.00 & .000 & .000 & .0000 \\ \text { RH M O.80 } & .0115 & .0115 & .0012 & 5.50 & 3.05 & 9.00 & .000 & .0000 & .0000\end{array}$

$\begin{array}{lllllll}P & 0 & 1 & -2 & -4.25 & -4.32 & .0000 \\ 6.53\end{array}$
$\begin{array}{rrrrrrrr}W P & 2 & -2 & -1.60 & & -6.48 & & 0.0000 \\ & & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0\end{array}$
NP Q 3 -2 $\mathbf{3}$-2.54 $\quad-15.59 \quad .0000 .0000$
$\begin{array}{lllllll}H P R & 4 & -2 & 0.000 & -9.59 & .00004 .780\end{array}$
LH W 1 -4 -2.45 -8.85 2.57 0.0 . 0000-23.99
$L K \times \quad 6 \quad 1 \quad 0.00 \quad .0000$ 16.18 $0.0 .0 \quad 4.76 \quad 1027$
$27.0-70.0$
$5.36 \quad 43.0$
90 . 79.0
$\begin{array}{cc}0.00 .0000-23.99 \\ 4.76 & \\ 0.07 .\end{array}$
0.0.0000-16.36 43.0
5.36 . $0000-4.09$
90 . 79.0
0.0 .0000-13.06
-65 .
LA G 7 -4-0.250.0000 22.04
$\begin{array}{lllllll} & & & 90 . & & & \\ \text { RH } & 1 & -4 & -2.45 & 8.85 & 2.57\end{array}$
90. 90.
$\begin{array}{llllllll}\text { RK } & Z & 9 & 1 & 0.0 & .0000 & 16.18\end{array}$
RA H $10 \quad-4-0.250 \quad .0000 \quad 22.04$
$\begin{array}{llrrrrrrrr}\text { LS S } & 3 & -4 & 0.45-18.00-14.59 & 0.0 & .0000-13.06 & 90 . & -55 . & -65 .\end{array}$

$\begin{array}{lllllllll}\text { RE } & V & 14 & -4 & 0.0 & .0000 & 13.07\end{array}$
LW J 131 90.0 0000 10 20
0.0.0000-15.11
90. 70 .
$0.0 .0000-5.11$
$0.0 .0000-5.11$
RWK 15 I 0.0 .000010 .20
-10. 00.0

Table 3.1. Input Data Set for Full-scale Submarining Model (Page 1 of 10)

115.8	0.000	. 2000	0.500	90.000	115.8	. 0000	. 2000	0.500	70.000
115.8	0.000	0.200	0.500	90.000	115.8	. 000	0.200	0.5	70.0
30.0	. 108	. 0000	0.500	60.000	150.	. 108	. 0000	0.500	60.000
30.0	. 108	0000	0.500	60.000	150.	. 108	. 0000	0.500	60.000
6.000	. 2500	. 0000	0.500	10.000	2.972	. 1088	0.000	0.500	100.00
16.0	160.	160.	0.5	60.0	0.	-90.0	00.0		
0.00	10.00	10.0	0.950	45.000	0.000	. 000	0.000	0.950	
1.00	10.00	10.00	0.950	50.000	1.0	10.0	10.	0.350	42.
0.	0.								
6.000	. 2500	. 0000	0.500	10.000	2.972	. 1088	0.000	. 500	100.
16.0	160.	160.0	0.5	60.0	0.0	0.	0.		
	10.00	10.00	0.950	45.000				0.950	0.000
1.00	10.00	10.00	0.950	50.000	1.0	10.0	10.	0.950	42.
0.	0.								
14.	00.0	00.0	0.950	125.00				0.950	60.0
0.	0.								
	20.0	20.0	0.950	45.000				0.950	70.000
0.	0.								
14.	00.0	00.0	0.950	125.00				0.950	60.0
0.	0.	00.0							
	20.0	20.0	0.950	45.000				0.950	70.00
0.	0.								
14.	20.	0.	. 5	60.	14.	20. 0	0.	. 5	60.
14.	20.	0.	. 5	60.	14.	20.0	0.	. 5	60.
50.	10.	10.		30.					
0.0	1000.	200.0	174.5	. 0			0.0	0.0	
0.0	1000.	200.0	105.0	. 0			0.0	0.0	
0.0	20.0	200.0	174.5	. 0			0.0	0.0	
0.0	20.0	200.0	180.9	. 0			0.0	0.0	
0.0	500.0	200.0	180.9	. 0			0.0	0.0	
0.0	500.0	200.0	180.9	. 0			0.0	0.0	
0.0	500.0	200.0	180.9	. 0					
0.0	125.0	10.0	15.4	. 0			0.0	0.0	
0.0	20.0	10.0	30.	. 0			0.0	0.0	
0.0	20.0	10.0	30.	. 0					
0.0	0.0	10.0							
0.0	500.0	200.0	180.9	0.0			0.0	0.0	
0.0	500.0	200.0	180.9	0.0			0.0	0.0	
0.0	500.0	200.0	180.9	0.0					
0.0	125.0	10.0	15.4	. 0			0.0	0.0	
0.0	20.0	10.0	30.	. 0					
0.0	20.0	10.0	30.	. 0					
0.0	0.0	10.0	0.0						
0.0	125.0	400.0	65.0	0.0			0.0	0.0	
0.0	50.0	400.0	65.0						
0.0	0.0	400.0	0.0						
0.0	175.0	100.0	16.3	0.0			0.0	0.0	
0.0	175.0	100.0	16.3						
0.0	0.0	100.0							
0.0	120.0	400.0	65.0	0.0			0.0	0.0	
0.0	50.0	400.0	65.0						
0.0	0.0	400.0	0.0						
0.0	175.0	100.0	16.3	0.0			0.0	0.0	
0.0	175.0	100.0	16.3						
0.0	0.0	100.0							
15	50.	100. 2	25.						
1	50.	100. 2	5. 0						

[^0]| | $\begin{aligned} & 112.1 \\ & 113 \end{aligned}$ | O. 5 | 50.50 | O. 50 . | 0 . | | 00.1 | Co. 10 | 00. | 1000.01 | 00.01 | 00.01 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 114 | | | | | | 00.1 | 00.10 | 00. | | | |
| | 115 | | | | | | 00.1 | 00.10 | 00. | 10 | | |
| | 116 | | | | | | 00.1 | 00.10 | 00. | 10 | | |
| | 117 | | | | | | 00.1 | 00.10 | 00. | | | |
| | 118 | | | | | | 00.1 | 00.10 | 00. | | | |
| | 119 | | | | | | 00.1 | 00.10 | 00. | 10 | | |
| | 120 | | | | | | 00.1 | 00.10 | 00. | 10 | | |
| | 121 | | | | | | 00.1 | 00.10 | 00. | 10 | | |
| | 122 | | | | | | 00.1 | 00.10 | 00. | | | |
| | 123 | | | | | | 00.1 | 00.10 | 00. | | | |
| | 124 | | | | | | 00.1 | 00.10 | 00. | 10 | | |
| | 125 | | | | | | 00.1 | 00.1 | 00. | | | |
| | 126 | | | | | | 00.1 | 00.1 | 00. | | | |
| | 127 | | | | | | 00.1 | 00.1 | 00. | | | |
| | 128 | | | | | | 00.1 | 00.1 | 00. | | | |
| | 129 | | | | | | 00.1 | 00.1 | 00. | | | |
| | 129.1 | | | | | | . 1 | . 1 | . 1 | | | |
| | 130 | FRONT | BARRIER | R PULSE, | PRIMARY | VEHI | cle mat | ION | | | | |
| | 131 | 0.0 | 0.0 | 0.01369 | . 0.000 | 0.0 | 0.0 | 0.0 | | 590.0 | 0.002 | 00 |
| | 132 | 0.0 | 0.0 | 1.07 .0 | 17.0 | 19.0 | 18.0 | 12.5 | 8.5 | 5.0 | 2.0 | 22.5 |
| | 133 | 27.5 | 15.0 | 18.020 .5 | 37.0 | 33.0 | 22.5 | 14.5 | 15.5 | 20.0 | 22.0 | 25.0 |
| | 134 | 23.0 | 25.5 | 26.025 .5 | 22.5 | 21.5 | 21.0 | 25.0 | 24.0 | 23.0 | 22.0 | 20.0 |
| | 135 | 17.0 | 15.0 | 12.510 .5 | 10.0 | 10.0 | 7.5 | 5.0 | 1.0 | 0.0 | -3.0 | -3.0 |
| | 136 | -2.5 | -2.0 | -2.0-1.5 | -1.0 | -0. 5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
| | 137 | 23 | 2 | 0 | 0 | | | | | | | |
| | 138 | 1 | | WINDSHIELD | | | | | | | | |
| 0 | 139 | -224. | | 50.0 | -91.2 | | | | | | | |
| | 140 | -277. | | 50.0 | -121. | . 2 | | | | - | | |
| | 141 | -224. | | -50.0 | -91.2 | | | | | | | |
| | 142 | 2 | | DASHBOARD | 1 | | | | | | | |
| | 143 | -200. | | 50.0 | -36. 4 | | | | | | | |
| | 144 | -209. | | 50.0 | -71.5 | | | | | | | |
| | 145 | -200. | | -50.0 | -36.4 | | | | | | | |
| | 146 | 3 | BOT | TTOM I.P. | | | | | | | | |
| | 147 | -230. | | 50. | -57. 2 | | | | | | | |
| | 148 | -242. | | 50. | -59. | | | | | | | |
| | 149 | -230. | | -50. | -57.2 | | | | | | | |
| | 150 | 4 | LOWE | ER I.P. | | | | | | | | |
| | 151 | -242. | | 50. | -59.5 | | | | | | | |
| | 152 | -246. | | 50. | -75.5 | | | | | | | |
| | 153 | -242. | | -50. | -59.5 | | | | | | | |
| | 154 | 5 | MID | I.P. | | | | | | | | |
| | 155 | -246. | | 50. | -75.5 | | | | | | | |
| | 156 | -242. | | 50. | -93. | | | | | | | |
| | 157 | -246. | | -50. | -75.5 | | | | | | | |
| | 158 | 6 | FR S | SEAT BACK 1 | | | | | | | | |
| | 159 | -323. | | 20.0 | -58.82 | | | | | | | |
| | 160 | -315. | | 20.0 | -41.42 | | | | | | | |
| | 161 | -323. | | -20.0 | -58.82 | | | | | | | |
| | 162 | 7 | FR | SEAT BACK2 | | | | | | | | |
| | 163 | -330. | | 20.0 | -86.72 | | | | | | | |
| | 164 | -323. | | 20.0 | -58.82 | | | | | | | |
| | 165 | -330. | | -20.0 | -86.72 | | | | | | | |
| | 166 | 8 | FR SE | EAT CUSHION | N 1 | | | | | | | |
| | 167 | -316. | | 25.0 | -37.7 | 72 | | | | | | |
| | 168 | -301. | | 25.0 | -37.7 | 72 | | | | | | |

[^1]

[^2]

[^3]$\mathbf{N} \quad \mathbf{N}$ N
๗ ๗カ๓
－
\circ ．
$\stackrel{\circ}{\circ}$

$\stackrel{\circ}{\circ}$

$\stackrel{\oplus}{\square}$

$\dot{\circ}$

ツツロ゙さささセ

$-\stackrel{ }{-1}$

ก
응
の ∞

0000000000000000000000000000

Listing of GMCVS2.B1 at 03:24:15 on JAN 31, 1986 for CCid=SU33

	1029		O	90.			0.			0.						
	1030		0	100.			0.			0.						
	1031		0	110.			0.			0.						
	1032		0	120.			0.			0.						
	1033		-	130.			0.			0.						
	1034		0	140.			0.			0.						
	1035		0	150.			0.			0.						
	1036		0	160.			0.			0.						
	1037		0	170.			0.			0.						
	1037.5		0	180.			0.			0.						
	1038	18	0	10.			0.			0.						
	1039		0	20.			0.			0.						
	1040		0	30.			0.			0.						
	1041		0	40.			0.			0.						
	1042		0	50.			0.			0.						
	1043		0	60.			0.			0.						
	1044		0	70.			0.			0.						
	1045		0	80.			0.			0.						
	1046		0	90.			0.			0.						
	1047		0	100.			0.			0.						
	1048		0	110.			0.			0.						
	1049		0	120.			0.			0.						
	1050		0	130.			0.			0.						
	1051		0	140.			0.			0.						
	1052		0	150.			0.			0.						
	1053		0	160.			0.			0.						
	1054		0	170.			0.			0.						
	1054.5		0	180.			0.			0.						
N	1055	18		1	2	3		4		5	6	7	8	9	10	11
の	1056			12	13	14		15	16		17	18	0	9	10	11
	1057	18		1	2	3		4		5	6	7	8	9	10	11
	1058			12	13	14		15	16		17	18		9	10	11
	1059	18		1	2	3		4	5	5	6	7	8	9	10	11
	1060			12	13	14		15	16		17	18	8	9	10	11
	1061	17		1	2	3		4	5	5	6	7	8	9		
	1062			12	13	14		15	16		17	7	8	9	10	11
	1063	53														
	2001	0111	10	11	0											
	2002	0.	. 15		. 01											
	2003	0	0.		0.											
	2004	1.	0.		0.											
	2005	0.	1.		0.											
	2006	0.	0.		1.											
	2007	1.	0.		0.											
	2008	0.	1.		0.											
	2009	0.	0.		1.											
	2010	. 5	. 5		11.		8.5									
	2011	. 5	. 5		10.											
	2012	-400	-15	50.	250.		175.		. 3							
	2013	GMCVS2.D		X2												

[^4]However, when specific data are obtained which can directly relate pelvic orientation to belt placement and submarining, they should be used.

Line 112.1. B5 Card. The second card describing the torque-angle data.

Line 129.1. B6 Card. The three quantities included are magnitude, absolute error, and relative error tests for angular acceleration of BPEL. The values chosen are the same as for the other variables.

Line 437. $F 2$ Card. This is a variation of the card used in the original data set. The belt attachment for the occupant is shifted from the lower torso (segment 1) to the overlay mass (segment 18).

NOTE: Many lines in the data set use the number of segments included in the model. The segment number representing the vehicle has been changed to 19 with BPEL, the new mass in the occupant linkage, now being assigned to segment 18.

Figure 3.5 is a schematic showing the occupant at 80 milliseconds into simulation. It should be noted that the overlay mass has rotated backward toward the seat back. The original position of the belt attachment to the lower torso is indicated by an "X" with a circle around it. This point has migrated upward, in the direction of submarining, to the point indicated with an "X." Some penetration into the original lower torso mass has also occurred.

A summary of the general results from this simulation are as follows:
-- Velocity: $1369 \mathrm{~cm} / \mathrm{sec}$
-- Deceleration: Peak of 37 g and duration of 90 ms
-- Peak Head Deceleration: 61 g's at 74 ms
-- Peak Thorax Deceleration: 65 g 's at 71 ms
-- Peak Pelvis Deceleration: 64 g 's at 73 ms
-- Upper Torso Belt: 487 kg at 84 ms
-- Lower Torso Belt: 471 kg at 84 ms
-- Lap Belt A: 809 kg at 75 ms
-- Lap Belt B: 808 kg at 78 ms
This simulation has demonstrated the capabilities of the existing BELT subprogram to model submarining without changes to the code. In

order to use it in realistic design studies, impact studies should be conducted to refine the following input quantities:
-- Location of the joint on the overlay mass.
-- Properties of the torque-angle resistance.
-- Shape and location of the overlap ellipsoid.
This will require new kinds of tests and analyses of results which graphically document the position of the belt on the pelvic region as a function of the pelvic structure of the test dummy.

4.0 ANALYSIS OF BELT MATERIAL TRANSFER ACROSS SURFACES

4.1 The Belt Slip Model Developed by British Leyland

As was mentioned in Section 3.1, each belt has a plane called the belt plane which is defined by the positions of two belt anchor points and the fixed point in inertial space. The intersection of the belt plane and the belt contact ellipsoid is the belt ellipse within the belt plane. This situation is pictured in Figure 4.1. From each slip point the belt proceeds as a straight line in the belt plane until it intersects the belt ellipse at a tangent point and then conforms to the belt ellipse to the fixed point. In the case that the belt ellipse is oriented so that there exists line-of-sight between one or both anchors and the fixed point, the belt is assumed to proceed along the line-ofsight and of course no tangent point exists on that side of the fixed point. Figure 4.2 illustrates several such cases. In the original Calspan report, this figure illustrated the algorithm for choosing the belt path from the two tangent lines to an ellipse through any point outside of the ellipse. In the cases where no actual tangent point exists, the term "tangent point" will be defined to mean "fixed point."

A point at which anchors from two belts coincide lies in a plane defined by the common anchor and the near tangent point or fixed point from each of the two belts. We will call this plane the anchor slip plane. In general the anchor slip plane will not coincide with the belt planes of either belt and may or may not contain the fixed points of the two belts. This definition will be used in cases where webbing material passes through a ring. However, in all cases the points at which the belts proceeding from the common anchor first intersect the two belt ellipses will be within the belt slip plane by definition. If the belt is imagined to fasten to the anchor point, then the force vector representing the belt tension's action upon the belt anchor will lie along the belt from the anchor to the nearer tangent point with a magnitude equal to the belt tension. The resultant of both belts upon the common anchor will be the vector sum of the two belt vectors. The

Figure 4.1. The Belt Plane in Inertial Space.

(c)

(d)

Solid Lines Indicate Accepted Solutions

Figure 4.2. Belt Layout Examples.
resultant belt force is broken into "normal" and "tangential" components. The "normal" direction is defined by the unit vector at the common anchor point for which the scalar products with the unit vectors along the two belt force vectors at the same point are equal. The "tangential" direction is defined as an unit vector at the common anchor which is perpendicular. There are two unit vectors which satisfy both the "normal" and "tangential" definitions. In each case the unit vector is chosen for which the component of the resultant force is positive. Figure 4.3 shows the various vectors in the belt slip plane within the belt segment on one side labeled "A" and on the other side labeled "B."

The component of the resultant force in the tangential direction is called the "slip force." The slip force is assumed to be opposed by a "slip friction force" and a "threshold force." The slip friction force is modelled as kinetic friction while the larger effect of static friction is modelled as a threshold force. If slip force exceeds the sum of slip friction force and threshold force then the unstrained belt lengths are modified until slip force is reduced below this sum but not below slip friction force. The satisfaction of this criterion will be referred to as reaching "equilibrium." Note that equilibrium is used relative to the iteration which takes place at each point in time in order to calculate what would physically be seen at that time. Equilibrium is not used in the usual physical sense.

4.2 UMTRI Extensions to the British Leyland Slip Algorithm

Friction-opposed slipping was desired at both fixed points on segments and at vehicle anchors for as many belt segments as were considered to be defined by a single piece of webbing. This was done in order to consider a complete three-point belt system which consists of two lap and shoulder sections with the potential for slipping across the lap, through the ring connecting the lap and shoulder sections, and across the chest. The first extension required was to find corresponding definitions for normal direction, tangential direction, and slip force for the case of the fixed point on a belt ellipse. It is clear that the direction of belt tension at the fixed point itself is

Figure 4.3. British Leyland Slippage Between Belts
irrelevant to the effect of the belt on the contact ellipse and on the tendency of the belt to slip over the contact ellipse. The directions of the force vectors at the fixed point for the purposes of determining slip force were defined as parallel to the directions of the corresponding anchor points as seen from the two tangent points (with the line-of-sight exception raised in the last section). All the other definitions are carried over from the previous section in terms of these two new force vectors and their resultant. Figure 4.4 illustrates the situation at the fixed point and how it corresponds to the situation pictured in Figure 4.3 at the common anchor point.

UMTRI also adapted the "F.9" data cards which were added by British Leyland to input slip algorithm quantities, as well as made other necessary input changes. Appendix A presents the updated Input Description pages covering these changes.
4.2.1 Definition of Terms for Belt Slip Algorithm. It is useful to define four new terms with which to describe the combining of multiple CVS belts.

1. Belt Node is either any belt anchor point or any belt fixed point for which infinite friction is prescribed. There is a maximum of 24 bel.t nodes (two or three per belt). Any belt node is characterized by the number of the belt on which the point is situated together with an indicator designating which point $(A=$ Anchor $A, F=$ Fixed Point, or $B=$ Anchor $B)$.
2. Belt Segment is the portion of any belt which connects any two consecutive belt nodes. There is a maximum of 16 belt segments (one or two per belt). Any belt segment can be characterized by the designation of the belt nodes which it connects; however, usually a belt segment will be characterized by its number in the ordered list of belt segments which comprise a belt loop (see remaining definitions).
3. Slip Point is either a terminating belt node (Anchor B) of one belt segment which is coincident in both location and attachment system with the initial belt node (Anchor A) of another belt segment or a fixed point on any belt segment and in either case for which slipping is prescribed. There is a maximum of 15 slip points for all belts. Slip Points can be characterized by the belt nodes which form them or, as in the case of belt segments, by its number in the ordered list of slip points which connect the ordered list of belt segments, respectively.

Figure 4:4 Modified Slippage at Fixed Point
4. Belt Loop is any group of belt segments for which all but exactly two of their constituent belt nodes are slip points connecting belt segments within the group. The two belt nodes which are not slip points within the loop can not be slip points at all and are called loop anchors. There is a maximum of eight belt loops. Belt loops are characterized by the two loop anchors, by the ordered list of belt segments which comprise it, or by the ordered list of slip points which hold it together. Every belt loop is necessarily independent. The typical belt loop in what follpws will consist of N belt segments and $\mathrm{N}-1$ slip points.
4.2.2 Belt Slip in the Presence of Slack. Observations of sled tests appear to reveal the characteristic that belts freely slip until all slack is taken up. At this time the slipping mechanism changes and becomes very restricted. This type of slipping behavior has been added by UMTRI by looking at each belt segment individually and prorating unstrained total belt length for the entire belt loop to the belt segment according to the ratio of the belt segment's strained length to the total strained belt length for the entire belt loop. Expressed in equation form, let l_{k} be the strained belt length for the " k-th" belt segment in the loop. Let L_{k} be the unstrainea belt length for the " k th" belt segment in the loop.

Let I_{T} be the total strained belt length over the entire belt loop. Let $\|_{\mathrm{T}}$ be the total unstrained belt length over the entire belt loop. Then if $L_{T} \geq l_{T}$, the unstrained segment lengths are determined by

$$
L_{k}=\lambda I_{k} \quad \text { for } k=1, \ldots, N
$$

where

$$
\lambda=\frac{L_{T}}{I_{T}}
$$

and all belt forces are defined to be zero. If this free-slipping condition is not met, then the methods of the succeeding subsections are used.
4.2.3 Belt Slip Under Load at a Typical Slip Point. Belt segment $k-1$ will connect to belt segment k at slip point $k-1$ where k can be any of $2, \ldots, N$. Assume that the belt segments are both producing belt
tension. The following equation represents the relationship between the belt segment tension forces at the slip point which is necessary to achieve slip equilibrium. (See Appendix B for the derivation of this expression.) Figure 4.5 shows the typical slip point and pertinent quantities.

$$
\lambda_{A, k-1} \tilde{F}_{k-1}+\lambda_{B, k-1} \tilde{F}_{k}+\lambda_{C, k-1}=0
$$

where the tilde written over any variables signifies "at equilibrium"
$\lambda_{\mathrm{A}, \mathrm{k}-1}=\sin \left(\Omega_{\mathrm{k}-1}\right)+\eta_{\mathrm{k}-1} \mathrm{~h}_{1, \mathrm{k}-1} \cos \left(\Omega_{\mathrm{k}-1}\right)$
$\lambda_{B, k-1}=-\sin \left(\Omega_{k-1}\right)+\eta_{k-1} h_{1, k-1} \cos \left(\Omega_{k-1}\right)$
$\lambda_{C, k-1}=\eta_{k-1} h_{2, k-1}$
$\Omega_{\mathrm{k}-1}=$ one-half of included angle between belt segments
$h_{1, k-1}=\mu_{k-1}+\frac{1}{2} c_{1, k-1}$
$h_{2, k-1}=\frac{1}{2} c_{2, k-1}$
$\eta_{k-1}=$ relative direction indicator for slip resistance
$\mu_{\mathrm{k}-1}=$ coefficient of friction
$C_{1, k-1}=$ coefficient of threshold force
$C_{2, k-1}=$ constant threshold force
This is the characteristic equation of belt slipping equilibrium at each slip point. The computational problem is to adjust the unstrained belt segment lengths throughout the belt loop so that this characteristic equilibrium equation is simultaneously satisfied at all slip points in the belt loop. In what follows, consideration is limited to a maximum of three slip points and four belt segments for each belt loop. Figure 4.6 illustrates one such configuration for a belt loop involving two belt contact ellipsoids.

Figure 4.5. The Typical Slip Point k-1

Figure 4.6. A Maximum Belt Loop Configuration

4.2.4 The Progressive Solution Approach. Belt slipping over a

 whole belt loop can be conceived as a sequence of slips at individual slip points. If this approach were valid, then the computational problem would be reduced to several simpler tasks (searching for the zero of a non-linear equation in one variable).The non-linear equation is simply the equilibrium condition equation for the slip point $k-1$. The force for belt segment $k-1$ is a function of the strained and unstrained belt lengths for belt segment $k-1$, of which only the unstrained belt length is subject, during the iteration process. Likewise, the force for belt segment k is a function of the strained and unstrained belt lengths for belt segment k of which only the unstrained belt length is subject to change in the iteration. By looking at slipping only at slip point $k-1$, it follows that the change in the unstrained belt length for segment $k-1$ must be equal and opposite to the change in the unstrained belt length for segment k. The following can then be written:

$$
\begin{aligned}
& \tilde{L}_{k-1}=L_{k-1}+\Delta L_{k-1} \\
& \tilde{L}_{k}=L_{k}-\Delta L_{k-1}
\end{aligned}
$$

where $\Delta \mathrm{L}_{\mathrm{k}-1}$ is the unstrained belt length added to belt segment $\mathrm{k}-1$ by slipping and is the only unknown.

An effective algorithm for the solution of the non-linear equation was put together from similar work in earlier models and makes use of the methods of Newton, the secant, and halving the interval.

This approach worked very well for single slip point belt loops with all possible belt material properties, but it was very capricious in cases involving more than one slip point. Sometimes the results would converge very quickly and smoothly and other times the results would oscillate chaotically. The apparent flaw in this approach was the selection criterion for determining the order to do the slip points. Although this problem is completely analogous to the selection problem occurring during the relaxation method, no attempt was made to investigate selection from this point of view since the needed partial derivatives are both complex and difficult to obtain accurately when
involving tabular information. It was that there must be some appropriate order of individual slip point adjustments that would converge for any given case since the actual slipping (at least at the quantum level) theoretically occurs this way. It was also felt that some other approaches which seemed to promise a quicker solution should be tried.

4.2.5 The Simultaneous Solution Based on Change in Unstrained

Length for Belt Segment 1. A linear approximation to the belt material properties yields:

$$
F_{k-1}=K_{k-1}\left(\frac{1_{k-1}-L_{k-1}}{L_{k-1}}\right)
$$

and

$$
F_{k}=K_{k}\left(\frac{I_{k}-L_{k}}{L_{k}}\right)
$$

where K_{k-1}, K_{k} are the effective linear coefficients of force versus strain. Note that while there is only one set of material properties over both belt segments, it is likely that the two belt segments will be in different strain ranges and therefore will need separate linear approximation.

For each belt segment k, a variable Δ_{k} can be defined as

$$
\Delta_{\mathrm{k}}=\tilde{\mathrm{L}}_{\mathrm{k}}-\mathrm{L}_{\mathrm{k}}
$$

Δ_{k} is the amount of additional unstrained belt segment length for each belt segment in order to reach equilibrium (may be positive or negative). Since the total unstrained belt length over each loop is invariant during this iteration, therefore it is true that

$$
\sum_{k=1}^{N} \Delta_{k}=0
$$

We can write

$$
\lambda_{A, k-1}\left(\frac{I_{k-1}-L_{k-1}-\Delta_{k-1}}{L_{k-1}+\Delta_{k-1}}\right)+\lambda_{B, k-1}\left(\frac{I_{k}-L_{k}-\Delta_{k}}{L_{k}+\Delta_{k}}\right)+\lambda_{C, k-1}=0
$$

and solving for Δ_{k}, we get

$$
\Delta_{k}=\frac{a_{2, k-1} \Delta_{k-1}+a_{4, k-1}}{a_{1, k-1} \Delta_{k-1}+a_{3, k-1}}
$$

where

$$
\begin{aligned}
& a_{1, k-1}=\lambda_{A, k-1} K_{k-1}+\lambda_{B, k-1} K_{k}-\lambda_{C, k-1} \\
& a_{2, k-1}=a_{A, k-1} L_{k}-\lambda_{B, k-1} K_{k} I_{k} \\
& a_{3, k-1}=-a_{1, k-1} L_{k-1}+\lambda_{A, k-1} K_{k-1} I_{k-1} \\
& a_{4, k-1}=-a_{1, k-1} L_{k-1} L_{k}+\lambda_{A, k-1} K_{k-1} L_{k} I_{k-1}+\lambda_{B, k-1} k_{k} L_{k-1} I_{k}
\end{aligned}
$$

Since this is a forward recursion relationship, it can be used to solve for each Δ_{k} in terms of Δ_{1} and then these can be substituted into $\sum_{k-1}^{N} \Delta_{k}=0$ to get a polynomial in terms of Δ_{1}. For $N=2$, the expression is a quadratic; for $\mathrm{N}=3$, it is a cubic; for $\mathrm{N}=4$, a quartic. For the last case with reasonably typical values of physical quantities the coefficients of the quartic ranged from 10^{44} to 10^{23}. These were big enough to cause exponent overflow using a good real polynomial solver on the University of Michigan Amdahl. When the coefficients were scaled by the leading coefficient, good zeroes were always obtained even through an occasional false "lack of convergence" was indicated. It was possible to demonstrate that there was loss of significance of at least eight, and as much as twelve, places during this calculation; however, since sixteen places were carried, the results were good enough.

It was necessary to devise an algorithm to select the appropriate root. This turned out to be easily done by choosing a real root which yielded a positive unstrained belt length which was not greater than the total unstrained belt length.

For materials which were linear, the results were always correct. For non-linear materials, the results always overshot. This type of behavior was expected since it was anticipated that this linear approximation based on the first derivative would act like Newton's Method. This did not turn out to be the case since when repeated applications of this algorithm were tried, cyclical behavior was noted which after a point did not improve the results further.

4.2.6 The Simultaneous Solution Based on Deflection of Belt

Segments. It was felt that perhaps the numerical properties could be improved if we were to solve for optimal deflection instead of the change in unstrained belt segment length unless the coefficients were driven still larger. While it is true that physically the length of webbing which slips is the variable to be determined, mathematically we could choose any variable in terms of which we could write the unstrained belt length. So force was taken to be

$$
\mathrm{F}_{\mathrm{k}}=\mathrm{K}_{\mathrm{k}}\left(\frac{\delta_{\mathrm{k}}}{\mathrm{I}_{\mathrm{k}}-\delta_{\mathrm{k}}}\right)
$$

and substitute as before to come up with another forward recursion relationship in δ_{k}

$$
\delta_{k}=\frac{a_{1, k-1} \delta_{k-1}+a_{2, k-1}}{a_{3, k-1} \delta_{k-1}+a_{4, k-1}}
$$

where

$$
\begin{aligned}
& a_{1, k-1}=1_{k}\left[\lambda_{C, k-1}-\lambda_{A, k-1} K_{k-1}\right] \\
& a_{2, k-1}=-\lambda_{C, k-1} 1_{k-1} 1_{k} \\
& a_{3, k-1}=-\lambda_{A, k-1} K_{k-1}-\lambda_{B, k-1} K_{k-1}+\lambda_{C, k-1} \\
& a_{4, k-1}=1_{k-1}\left[\lambda_{B, k-1} K_{k}-\lambda_{C, k-1}\right]
\end{aligned}
$$

As before this expression was used to write all δ 's in terms of δ_{1} and then substituted into the equation resulting from the fact that the sum of all deflections over the loop is invariant during the iteration.

This approach caused a small improvement in coefficient size and in loss of significance but no improvement in non-linear behavior. It was realized that the huge coefficients were due to many applications of the recursion relationship and it was decided that the number of applications could be reduced by starting in the middle and working both ways instead of starting at one end and working across. So the forward recursion relationship was solved backwards to obtain:

$$
\delta_{k-1}=\frac{a_{4, k-1} \delta_{k}-a_{2, k-1}}{-a_{3, k-1} \delta_{k}+a_{1, k-1}}
$$

where the a's are the same as before.
This made a dramatic improvement in coefficient size (now ranging 10^{23} to 10^{12} and in loss of significance to only four or five places, but did not completely solve the non-linear convergence problem.

4.2.7 The Simultaneous Solution Based on Strain for Belt Segment

2. It was felt that the lack of convergence for linear approximations of non-linear material properties was probably due to the form of the definition of force since it was force which was being controlled. It was decided to solve directly in terms of strain and then compute unstrained belt length and deflection from the expressions:

$$
L_{k-1}=\frac{l_{k-1}}{1+S_{k-1}}
$$

and

$$
\delta_{k-1}=\frac{S_{k-1} l_{k-1}}{1+S_{k-1}}
$$

wher $\mathrm{S}_{\mathrm{k}-1}$ is strain for belt segment k.

The force equation was greatly simplified as

$$
F_{k-1}=K_{k-1} S_{k-1}
$$

and the recursion relationships became

$$
s_{k}=a_{1, k-1}+a_{2, k-1} s_{k-1}
$$

and

$$
s_{k-1}=\frac{1}{a_{2, k-1}\left(S_{k}-a_{1, k-1}\right)}
$$

where

$$
a_{1, k-1}=\frac{-\lambda_{C, k-1}}{K_{k} \lambda_{B, k-1}}
$$

and

$$
a_{2, k-1}=\frac{-\lambda_{A, k-1} K_{k-1}}{\lambda_{B, k-1} K_{k}}
$$

This leads to easy solution of all strained in terms of S_{2}, but now the invariant takes a more complex form

$$
\sum_{k=1}^{N}\left(\frac{S_{k} 1_{k}}{1+S_{k}}\right)=\delta_{T}
$$

This yields coefficient expressions which are as complex as those from the other approaches but promise to yield smaller sizes for coefficients. Unfortunately, it was not possible to finish and test this approach within the resources of the project and extension. The orig:inal equations were developed. A satisfactory hand case for the $\mathrm{N}=2$ linear case was done. However, a dimensional check and rederivation of the equations were not accomplished.
4.2.8 Set Up of the Slip Resistance Direction Factors. In the proceeding several sections, we have made use of the Y_{k-1} slip resistance direction factors saying only that they must be properly chosen for a valid solution. In this section, the algorithm for determining the proper choice of these factors is discussed.

For the $\mathrm{N}=2$ case, it is clear that the proper choice is to oppose belt slip from the lower tension belt segment to the higher tension belt segment (since slipping would stop before it would overshoot).

Likewise it is clear that any monotonic arrangement of belt segment tensions in a multiple slip point case would remain in that configuration at equilibrium (with reduced tension differences). It is also clear that there are arrangements in which two relatively small belt tensions could be reversed by the presence of a much larger belt tension nearby on the way to equilibrium.

The approach used was to evaluate the given configuration, find the maximum tension belt segment and proceed in both directions from there searching for reversals in monotonicity (which for the $N=4$ case can be a maximum of two). For each of these reversals, the problem is solved with both choices of y_{k} for the affected belt segments (a maximum of four solutions). Finally, the single solution is chosen which minimizes total belt slipping as the correct solution. This approach may be more laborious than necessary, but until an algorithm which would give good results was developed, it was not possible to investigate improvements in this procedure.

4.3 Summary of Progress

While a major portion of the effort in this project was spent investigating a suitable general method for the solution of the slip equilibrium equations at all slip points, several other tasks were necessary to integrate any such algorithm in the Calspan CVS, Version 20 code. A new Slip Input routine along with modifications to other input routines was also necessary. These have been coded and tested both in isolation and within the model.

It was also necessary to modify the belt routines so that they would work along with the new belt slip routines. The belt slip routines determine the situation, handle any slack, set up the problem for solution, do the solution for slipping, compute the quantities to be outputted and records these for later printing. These routines have also been coded and tested in isolation and also with a dummy solution routine within the CVS model. Finally, the output changes necessary to print the output quantities have been coded and tested.

It was necessary to write a separate test program for the various approaches to the equilibrium equation solution routine and determine the numerical characteristics of each approach. The plan was that when the slip solver was satisfactory in isolation, it would be inserted into the CVS code and final testing of the whole package would take place.

4.4 Recommendations

It is recommended that the strain approach discussed in
Section 4.2 .7 be implemented, tested, and the numerical characteristics determined.

If this fails, it is felt that an incremental approach should be tried where controlled steps are taken in the direction determined by a Newton-type or secant-type method. The numerical studies already done give some hope that this approach could be successful.

If both of these approaches fail, it is felt that everything done to this point should be reviewed and carefully reevaluated before anything else is considered.

The reasoning behind these recommendations is that the concept and the algorithms are inherently simpler than those used in the more sophisticated HARNESS routines which are not yet working entirely satisfactorily. It is estimated that these concepts are satisfactory for many standard three-point belt applications, and when completely installed and debugged, should be relatively inexpensive and easy to use.

5.0 THE HARNESS ALGORITHM

An advanced restraint system submodel (HARNESS) has been under development of a number of years by Fleck and associates (Butler et al. 1975, 1980, 1983). The model requires the user to specify a set of potential reference points on ellipsoids which are in contact with the belts comprising the harness (see Figure 5.1). The anchor points do not have to be fixed to the same segment. They can also be attached to another belt. Each belt may pass over more than one ellipsoid. Major aspects of this code are described as follows.

1. The position of the reference points is mobile. That is, they can move over the surface of the ellipsoid to represent belt sliding. This sliding can include frictional effects.
2. The reference points can penetrate the ellipsoid to represent the deformation of the non-rigid body based on its force-deformation characteristics.
3. If the force is removed from the belt at a reference point, the belt can lift off from contact.

This subprogram has potential, not present in the older BELT subprogram, to overcome problems observed (see Section 2) in laboratory tests of belt hardware. These include:

1. Slippage of belt over the surface in non-frontal impacts and release from contact if the occupant slips out of the belt.
2. Modeling of submarining.
3. Modeling of the complete three-point belt system in three dimensions.
4. Modeling of the belt/chest interaction.
5. Attachment of belts to non-rigid anchors.

During the early stages of the project, UMTRI was informed by the sponsor of development (USAF) that the software was essentially non-frictional. By the end of 1984, some modest successes were reported. By the end of 1985, UMTRI was provided with a short report (Obergefell and Kaleps 1984) and a list of code modifications to Version 20 of the CVS software. An example was included for a rather sophisticated Air Force harness (see Figure 5.2). It was indicated that

Figure 5.1. Points on Simple Harness.
most features worked but that great care had to be used in developing data sets. It is clear that a body of user knowledge must be developed before this code is ready for general use.

It is the recommendations of UMTRI that a considerable effort be expended to build a body of user knowledge on real problems, starting with a matrix of simple test cases. Most design problems involving belts can be handled with this code. Because the code was not recommended for use during the formal work on the project without a considerable expenditure of time and money, no effort was made to exercise it.

Figure 5.2. Air Force Harness Simulation Using HARNESS.

6.0 UMTRI VERSION OF GMCVS

The UMTRI version of GMCVS includes a variety of improvements as well as modifications which were required in order for the program to function on MTS. In particular, the program was split into two separate processors. The first one was used to produce output. Most of these improvements and changes had already been developed during a previous contract with NHTSA (Bennett and Robbins 1982).

The Calspan 3-D CVS, Version 20, as it came to UMTRI from GM, made use of well over three megabytes of virtual storage. This large use of storage is considered excessive on the MTS System and usually causes job cancellation. Also, previous versions of the Calspan 3-D CvS made use of a separate logical device number for each output page as a means of sorting information into output pages as the run proceeded. This practice was not permitted on the MTS System. To cope with these problems during previous contracts with NHTSA, UMTRI reorganized the output sections using direct access (or indexed) input/output to achieve the sorting of information into pages. This reorganization was easily achieved in the past.

In recent versions such as CVS18 and CVS19, new output options were added requiring access to output quantities from previous time points in the simulation and so storage arrays were set up to hold this information. The options of printing all pages on one logical device number at the end of the run and of recording the information in an exterior file (sequentially in simulated time) were also added while keeping the ability to output on multiple logical device numbers. The increased complexity of the output sections and the huge amount of information now stored required the alternate use of three direct access hold files (due to file size restrictions) and multiplied the amount of effort required for the reorganization at UMTRI.

While the necessary reorganization was being carried out, UMTRI installed a number of useful output options which had already been developed in our previous work with NHTSA. As well as the two output recording options supported in Version 20 (every integration step or
every evaluation) it is now possible to record in output at equal increments of time. Regardless of which information recording concept is used, it is possible to print output in equal increments of integral multiples of $D T$ or to print all information present.

The kinematics printout controlled by the " H " cards now allow the user several new options including:

- Specification of the coordinate system in which each output quantity is printed with the original conventions being used as a default;
- Optional printout of contact information both as to category of information and individual interaction; and
- Specifications of the order of printing by category of information.

Discrete use of these options enable the user to cheaply determine the important trends in a run and then set up more detailed printout and graphic displays of pertinent information. This is now possible because the output sections of the program are in a separate processor and can be rerun as often as useful as long as the hold files are kept intact.

Several parts of the general CVS program were not implemented in the UMTRI versions. These included HIC, SI, the variable graphics printer plots, the equilibrium positioning software, the RESTART option, and the VIEW graphics postprocessor. The first four were not implemented since alternatives such as the Validation Command Language Postprocessor (Bennett et al. 1979, Bennett 1983) were available from previous NHTSA work as part of the reorganization of output storage and processing.

The RESTART option was not implemented in GMCVS and so was left out of the UMTRI version. However, it is strongly recommended that this software be implemented as it gives the user the capability to interactively run the program and change the input data structure as simulation proceeds. This can be very useful, particularly in controlling integration time step, during long simulations such as rollovers. Interim graphic output should also be available at local workstations to determine whether to continue, change data and continue, or stop.

The connection to the VIEW postprocessor was also not implemented as the required DISSPLA software package was not installed on at The University of Michigan mainframe. The alternative was the Ellipsoidal Man Plot Postprocessor (Lehman et al. 1983) which was developed under NHTSA contract. It should be noted that the VIEW program cannot include more than one ellipsoid per segment. This limitation has been recently illustrated in attempts to compare graphic results of steering column simulations generated by GMCVS with those generated at UMTRI using the simpler, but more flexible, software.

One code modification was made in the UMTRI version in order to meet the need for a general vehicle motion input vector in simulations of general vehicle rollovers (Robbins 1986).

7.0 REFERENCES

Alem, N.M., Benson, J.B., and Melvin, J.W. (1977) Whole Body Response of the Hybrid III Anthropomorphic Test Device. Report
no. UM-HSRI-77-10. University of Michigan Transportation Research Institute, Ann Arbor. 235p.

Bennett, R.O. (1983) Validation Command Language: Supplement to 1979 Version. Report no. UMTRI-83-28. University of Michigan Transportation Research Institute, Ann Arbor.

Bennett, R.O., and Robbins, D.H. (1982) HSRI Version of the Improved Three-Dimensional Computer Simulation of Vehicle Crash Victims. In three volumes, Volume I: Analysis, Volume II: User's Guide, Volume III: Programmer's Guide. Final Draft. University of Michigan Transportation Research Institute, Ann Arbor.

Bennett, R.O., Becker, J., and Robbins, D.H. (1979) Validation Command Language, 1979 Version. Report no. UM-HSRI-79-6. The University of Michigan, Highway Safety Research Institute, Ann Arbor.

Butler, F.E., and Fleck, J.T. (1975) Development of an Improved Computer Model of the Human Body and Extremity Dynamics. AMRL-TR-75-14. Wright-Patterson AFB, Ohio.

Butler, F.E., and Fleck, J.T. (1980) Advanced Restraint System Modeling. AMRL-TR-80-14. Wright-Patterson AFB, Ohio.

Butler, F.E., Fleck, J.T., and DiFranco, D.A. (1983) Modeling of Whole-Body Response to Windblast. AFAMRL-TR-83-073. WrightPatterson AFB, Ohio.

Fleck, J.T., and Butler, F.E. (1981) Validation of the Crash Victim Simulator, Volume 1, Engineering Manual--Part I: Analytical Formulation. Report no. ZA-5881-V-1. Calspan Corporation, Buffalo, New York. 264p.

Fleck, J.T., Butler, F.E., and Vogel, S. L. (1975) An Improved ThreeDimensional Computer Simulation of Vehicle Crash Victims. In four volumes, Volume 1: Engineering Manual, Volume II: Model Validation, Volume III: User's Manual, Volume IV: Programmer's Manual. Report nos. DOT-HS-801507 through DOT-HS-801510. NTIS order numbers PB-241 692 through PB-241 695.

Horsch, J.D. (1980) "Occupant Dynamics as a Function of Impact Angle and Belt Restraint," Proceedings of the 24th Stapp Car Crash Conference, pp. 417-438. Society of Automotive Engineers, Warrendale, Pa.

Lehman, R.J., Bennett, R.O., and Robbins, D.H. (1983) Ellipsoidal Man Plotting Package for MVMA 2-D and CVS (HSRI Version) Occupation Motion Model.s. Report no. UMTRI-83-27. University of Michigan Transportation Research Institute, Ann Arbor.

Newman, K.F., Grew, N.D., and Dowzall, G. (1981) "Cal 3-D: Its Use in BL Cars Ltd." Proceedings: CAL 3-D Users Conference. Motor Vehicle Manufacturers Association and the National Highway Traffic Safety Administration.

Robbins, D.H. (1986) 3-D Simulation of Occupant Kinematics in Rollovers. Report no. UMTRI-86-44. University of Michigan Transportation Research Institute, Ann Arbor.

Viano, D.C., and Culver, C.C. (1981) "Test Dummy Interaction with a Shoulder or Lap Belt," Proceedings of the 25th Stapp Car Crash Conference, pp. 583-609. Society of Automotive Engineers, Warrendale, Pa.

Wittenburg, J. (1977) Dynamics of Systems of Rigid Bodies. B.G. Teubner, Stuttgart, 222p.

APPENDIX A

REVISION PAGES TO GMCVS INPUT DESCRIPTION

The following pages are replacement pages for the Calspan CVS model, Version 20, Input Description covering the changes made to the input sections of the model in order to provide a structure for the algorithms presented in Part 4 of this report.

IF NBLT IS NONZERO ON CARD D.1, NBLT SETS OF CARDS D. 3 ARE REQUIRED.

```
CARD D.3.A FORMAT (5A4)
BLTITIL(I,J),I=1,5 A 20 CHARACTER DESCRIPTION OF THE JTH
    BELT.
CARD D.3.B
BELT(I,J),I=1,3 POSITION OF ANCHOR POINT A FOR THE JTH
    BELT W.R.T. SEGMENT NSEGA (SPECIFIED ON
    CARD F.2.B IN NS(1) FIELD). X, Y, AND Z
    COORDINATES (IN.)
    BELT(I,J),I=4,6 POSITION OF ANCHOR POINT B FOR THE JTH
        BELT W.R.T. SEGMENT NSEGB (SPECIFIED ON
        CARD F.2.B IN NS(1) FIELD). X, Y, AND Z
        COORDINATES (IN.)
NOTE: THE PROGRAM MUST PASS A PLANE THROUGH THE THREE POINTS, ANCHOR POINT A, ANCHOR POINT B, AND A FIXED POINT ON THE CONTACTED BODY SEGMENT. IF ANCHOR POINTS A AND B COINCIDE, THEY MUST BE SEPARATED SLIGHTLY FOR INPUT SUCH THAT THE DESIRED BELT PLANE WILL be Defined.
```

```
CARD D.3.C FORMAT (5F12.0)
```

$\operatorname{BELT}(I, J), I=7,9 \quad$ POSITION OF BELT FIXED CONTACT POINT WITH RESPECT TO SYSTEM THAT HAS ORIGIN AT ELLIPSOID CENTER AND IS PARALLEL TO LOCAL BODY SEGMENT SYSTEM. (X, Y, AND Z COORDINATES (IN.))

NSLPBL(J) NUMBER OF SLIP POINTS FOR THIS BELT. SLIP POINTS MAY OCCUR AT EITHER BELT ANCHOR IF THERE IS ANOTHER BELT WHICH HAS A COINCIDENT ANCHOR WHICH IS ALSO SPECIFIED AS A SLIP POINT. SLIP POINTS MAY ALSO OCCUR AT FIXED POINTS FOR BELTS. (MAXIMUM VALUE IS 3; ENTER AS REAL NUMBER.)

BELT $(11, J) \quad$ BELT SLACK (IN). THE SLACK IS ADDED TO THE INITIAL GEOMETRIC LENGTH TO OBTAIN THE INITIAL BELT LENGTH. IF NEGATIVE NUMBER IS ENTERED, IT WILL BE INTERPRETED AS INITIAL BELT LENGTH FROM WHICH THE PROGRAM WILL COMPUTE THE SLACK.

NOTE: NSPT IS DEFINED AS THE SUM OF ALL FIXED POINTS PLUS ONE HALF OF ALL ANCHOR POINTS SPECIFIED IN THE NSLPBL FIELDS OF ALL D.3.C CARDS, IN OTHER WORDS, THE TOTAL NUMBER OF INDIVIDUAL SLIP POINTS FOR ALL BELTS.

IF NBLT (THE NUMBER OF BELTS) IS NONZERO ON CARD D.1, CARDS F. 2 ARE REQUIRED.

```
CARD F.2.A FORMAT (8I4)
MNBLT(J),J=1,NBLT
FOR BELT J, THE NUMBER OF SEGMENTS FOR WHICH
SEGMENT-BELT INTERACTION IS ALLOWED (O OR I
ONLY).
```

FOR EACH BELT J, MNBLT(J) CARDS OF THE FOLLOWING MUST BE SUPPLIED.
CARDS F.2.B - F.2.N FORMAT (9I4)
NJ THE BELT NUMBER TO BE CONTACTED, MUST CORRESPOND
TO J ABOVE. THERE MUST BE MNBLT(J) CARDS WITH
THE SAME NJ. IF MNBLT(J) $=0$, NO NJ $=\mathrm{J}$ SHOULD
BE PRESENT.
NS(1) SUPPLY NSEGA + 100 * NSEGB WHERE NSEGA IS THE
SEGMENT NUMBER FOR ANCHOR A AND NSEGB IS THE
SEGMENT NUMBER FOR ANCHOR B. IF NSEGA AND NSEGB
ARE THE SAME, SUPPLY ONLY NSEGA. (NOTE 1
APPLIES TO BOTH NSEGA AND NSEGB)
ns (2) SUPPLY NOBODY WHICH IS THE NUMBER OF THE SEGMENT
TO WHICH THE CONTACT ELLIPSOID IS
ATTACHED. (NOTE 1 APPLIES TO NOBODY).
NS(3) THE NUMBER OF THE CONTACT ELLIPSOID ATTACHED TO
THE SEGMENT NOBODY.
NF (1) THE FUNCTION NUMBER FORM CARD E. 1 TO DEFINE THE
FORCE-DEFLECTION FUNCTION FOR THIS CONTACT. THE
ABSCISSA FOR THIS FUNCTION SHOULD BE STRAIN
(IN/IN).
NF'(I),I=2,4 SAME DEFINITION AS ON CARD F.1.B ABOVE.
NF'(5) IF NON-ZERO, FULL BELT FRICTION IS ASSUMED,
I.E., FORCES ARE COMPUTED FOR EACH HALF OF THE
belt separately. if zero, zero belt friction is
ASSUMED I.E., BELT TENSION IS THE SAME AT BOTH
BELT ANCHOR POINTS. IF THE FIXED POINT FOR BELT
NJ IS SPECIFIED AS A SLIP POINT ON A F. 9 CARD,
THIS FIELD IGNORED.

NOTES:

1. ONE OF THREE OPTIONS IS CHOSEN BY USER:
(A) THE CARD NUMBER I UNDER CARD B.2.A FOR ANY BODY SEGMENT,
(B) NVEH FOR THE PRINCIPAL VEHICLE, OR
(C) NGRND FOR THE INERTIAL FRAME (GROUND).
2. THE USE OF RATE DEPENDENT FUNCTION AS DEFINED UNDER CARDS F.1.B. ARE NOT CURRENTLY OPERATIONAL FOR BELT-SEGMENT CONTACTS.
F. 9 SUBROUTINE SLPINP - CARD INPUT FOR SEAT BELT FEED THROUGH DATA. (NSPT CARDS REQUIRED, SEE NOTE ON CARD D.3.C.)

NOTES: 91. BELT NODES SPECIFIED MUST BE EITHER ONE FIXED POINT OR TWO ANCHOR POINTS WHICH MUST BE COINCIDENT IN BOTH POSITION AND SPECIFICAIIION OF ATTACHMENT SEGMENT. 92. $\operatorname{SFRICT}(1, J)$ AND $\operatorname{SFRICT}(2, J)$ CAN NOT BOTH BE SPECIFIED ZERO.

APPENDIX B

DERIVATION OF THE SLIP FORCE EQUILIBRIUM EQUATION

This appendix refers to an amplifies Section 4.2.3 and Figure 4.5. Slip point $k-1$ is located at $\left(x_{k-1}, y_{k-1}, z_{k-1}\right)$ in inertial space. Belt segment $k-1$ terminates at slip point $k-1$ and begins at slip point $k-2$ or loop anchor A which is located at $\left(\mathbf{x}_{\mathrm{k}-2}, \mathrm{y}_{\mathrm{k}-2}, \mathrm{z}_{\mathrm{k}-2}\right.$) in inertial space. Belt segment k begins at slip point $k-1$ and terminates at slip point k or loop anchor B which is located at ($\mathrm{x}_{\mathrm{k}}, \mathrm{Y}_{\mathrm{k}}, \mathrm{z}_{\mathrm{k}}$) in inertial space. As before let l_{k} be the strained belt length of belt segment k and let L_{k} be the unstrained belt length of belt segment k. The strained belt lengths are determined geometrically. Total unstrained belt length for any loop is determined from the initial conditions supplied by the user. Individual unstrained belt lengths are determined to meet the slip equilibrium requirements and maintain the user-specified total unstrained belt length of the loop.

So

$$
l_{k-1}=\sqrt{\left(x_{k-1}-x_{k-2}\right)^{2}+\left(y_{k-1}-y_{k-2}\right)^{2}+\left(z_{k-1}-z_{k-2}\right)^{2}}
$$

and

$$
I_{k}=\sqrt{\left(x_{k}-x_{k-1}\right)^{2}+\left(y_{k}-y_{k-1}\right)^{2}+\left(z_{k}-z_{k-1}\right)^{2}}
$$

Define

$$
\overline{\mathrm{f}}_{\mathrm{k}-1}=\left(\begin{array}{l}
a_{\mathrm{k}-1} \\
\beta_{\mathrm{k}-1} \\
\gamma_{\mathrm{k}-1}
\end{array}\right) \quad \text { and } \quad \bar{f}_{\mathrm{k}}=\left(\begin{array}{l}
a_{\mathrm{k}} \\
\beta_{\mathrm{k}} \\
\gamma_{\mathrm{k}}
\end{array}\right)
$$

where

$$
\begin{array}{ll}
a_{k-1}=\frac{1}{1_{k-1}}\left(x_{k-2}-x_{k-1}\right) & a_{k}=\frac{1}{1_{k}}\left(x_{k}-x_{k-1}\right) \\
\beta_{k-1}=\frac{1}{1_{k-1}}\left(y_{k-2}-y_{k-1}\right) & \beta_{k}=\frac{1}{1_{k}}\left(y_{k}-y_{k-1}\right) \\
\gamma_{k-1}=\frac{1}{1_{k-1}}\left(z_{k-2}-z_{k-1}\right) & \gamma_{k}=\frac{1}{1_{k}}\left(z_{k}-z_{k-1}\right)
\end{array}
$$

These are the unit vectors along the two belt segments $k-1$ and k, respectively based at the slip point and pointing toward the respective anchors.

Now

$$
\cos \left(2 \Omega_{k-1}\right)=\bar{f}_{k-1} \cdot \bar{f}_{k}=a_{k-1} a_{k}+\beta_{k-1} \beta_{k}+\gamma_{k-1} \gamma_{k}
$$

Define

$$
\bar{F}_{k-1}=F_{k-1} \bar{f}_{k-1} \quad \text { and } \quad \bar{F}_{k}=F_{k} \bar{f}_{k}
$$

These are the belt tension force vectors at the slip point along the two belt segments, respectively. British Leyland defines the normal direction as a unit vector called $f_{n, k-1}$ where

$$
\bar{f}_{n, k-1}=\frac{\bar{f}_{k-1}+\bar{f}_{k}}{\left|\bar{f}_{k-1} \bar{f}_{k}\right|}
$$

and the tangential direction as

$$
\bar{f}_{s, k-1}=\frac{\bar{f}_{k-1}-\bar{f}_{k}}{\left|\bar{f}_{k-1}-\bar{f}_{k}\right|}
$$

Note that

$$
\left|\bar{f}_{k-1}+\bar{f}_{k}\right|= \pm 2 \cos \left(\Omega_{k-1}\right)
$$

and

$$
\left|\bar{f}_{k-1}-\bar{f}_{k}\right|= \pm 2 \sin \left(\Omega_{k-1}\right)
$$

These expressions are determined by substitution of components into the definitions of vector magnitudes and application of trignometric identities. British Leyland defined the normal and tangential force magnitudes as the scalar product of the force resultant vector with the two direction vectors.

$$
F_{n, k-1}=\left(\bar{F}_{k-1}+\bar{F}_{k}\right) \cdot \bar{f}_{n, k-1}
$$

and

$$
F_{s, k-1}=\left(\bar{F}_{k-1}+\bar{F}_{k}\right) \cdot \bar{f}_{s, k-1}
$$

Substituting definitions and simplifying, the normal force magnitude becomes

$$
\begin{aligned}
F_{n, k-1} & =\left(F_{k-1} \bar{f}_{k-1}+F_{k} \bar{f}_{k}\right) \cdot \frac{\bar{f}_{k-1}+\bar{f}_{k}}{\left|\bar{f}_{k-1}+\bar{f}_{k-1}\right|} \\
& =\frac{\left(F_{k-1}+F_{k}\right)\left(1+\cos \left(2 \Omega_{k-1}\right)\right)}{ \pm 2 \cos \left(\Omega_{k-1}\right)} \\
& = \pm\left(F_{k-1}+F_{k} \cos \left(\Omega_{k-1}\right)\right)
\end{aligned}
$$

Likewise for tangential or slip force magnitude,

$$
\begin{aligned}
F_{s, k-1} & =\frac{\left(F_{k-1}-F_{k}\right)\left(1-\cos \left(2 \Omega_{k-1}\right)\right)}{ \pm 2 \sin \left(\Omega_{k-1}\right)} \\
& = \pm\left(F_{k-1}-F_{k}\right) \sin \left(\Omega_{k-1}\right)
\end{aligned}
$$

The slip resistance force vector at the slip point ($\bar{F}_{R, k-1}$) is assumed to be due to friction force at the slip point $\left(\bar{F}_{F, k-1}\right)$ and threshold force at the slip point $\left(F_{T, k-1}\right)$. Threshold force includes the differences between static and kinetic friction while friction force is includes kinetic effects only.

So that

$$
F_{R, k-1}=F_{F, k-1}+F_{T, k-1}
$$

where

$$
F_{F, k-1}=\mu_{k-1} F_{n, k-1}
$$

and.

$$
\begin{gathered}
F_{t, k-1}=C_{1, k-1} F_{n_{1, k}-1}+C_{2, k-1} \\
\mu_{k-1} \text { is the inputted coefficient of friction, } \\
C_{1, k-1} \text { is the inputted coefficient of threshold force, and } \\
C_{2, k-1} \text { is the inputted constant threshold force. }
\end{gathered}
$$

The direction of $\bar{F}_{R, k-1}$ is opposite to that of $\bar{F}_{s, k-1}$.
In the British Leyland algorithm, slipping will occur if

$$
\mathrm{F}_{\mathrm{S}, \mathrm{k}-1}>\mathrm{F}_{\mathrm{F}, \mathrm{k}-1}+\mathrm{F}_{\mathrm{T}, \mathrm{k}-1}
$$

and the iteration to adjust the unstrained lengths in order to reduce $\mathrm{F}_{\mathrm{S}, \mathrm{k}-1}$ until $\mathrm{F}_{\mathrm{F}, \mathrm{k}-1}<\mathrm{F}_{\mathrm{S}, \mathrm{k}-1}<\mathrm{F}_{\mathrm{F}, \mathrm{k}-1}+\mathrm{F}_{\mathrm{T}, \mathrm{k}-1}$. This is the interval of convergence.

We will define a target variable $\mathrm{V}_{\mathrm{k}-1}$ which assumes the value of zero in the center of the interval of convergence as

$$
v_{k-1}=F_{s, k-1}+\eta_{k-1} F_{R, k-1}
$$

where η_{k-1} is assigned the value of +1 or -1 depending on the relative direction of slip resistance forces when equilibrium is reached. Note that slip resistance will always oppose slip force, but if the equation is to predict equilibrium, then it must reflect the direction of slip resistance at equilibrium which may or may not be the same as the direction of slip resistance where the iteration is started.

The equilibrium condition then is taken to be $\mathrm{V}_{\mathrm{k}-1}=0$.
When computed during the iteration, convergence is defined as

$$
\left|\mathrm{v}_{\mathrm{k}-1}\right| \leq \frac{1}{2} \mathrm{~F}_{\mathrm{T}, \mathrm{k}-1}
$$

Note that this condition corresponds to the previous interval of convergence. Now substituting the previously developed expressions

$$
v_{k-1}=0=\left(F_{k-1}-F_{k}\right) \sin \left(\Omega_{k-1}\right)+\eta_{k-1}\left[h_{1, k-1}\left(F_{k-1}+F_{k}\right) \cos \left(\Omega_{k-1}\right)+h_{2, k-1}\right]
$$

and collecting on $\mathrm{F}_{\mathrm{k}-1}$ and F_{k},

$$
\lambda_{A, k-1} F_{k-1}+\lambda_{B, k-1} F_{k}+\lambda_{C, k-1}=0
$$

where

$$
\begin{aligned}
& \lambda_{\mathrm{A}, \mathrm{k}-1}=\sin \left(\Omega_{\mathrm{k}-1}\right)+\eta_{\mathrm{k}-1} \mathrm{~h}_{1, k-1} \cos \left(\Omega_{\mathrm{k}-1}\right) \\
& \lambda_{\mathrm{B}, \mathrm{k}-1}=-\sin \left(\Omega_{\mathrm{k}-1}\right)+\eta_{\mathrm{k}-1} \mathrm{~h}_{1, k-1} \cos \left(\Omega_{\mathrm{k}-1}\right) \\
& \lambda_{\mathrm{C}, \mathrm{k}-1}=\eta_{\mathrm{k}-1} \mathrm{~h}_{2, k-1}
\end{aligned}
$$

APPENDIX C

TAPE DESCRIPTION AND INSTALLATION NOTES

C. 1 Introduction

The software produced as part of the CVS belt software project is submitted in the form of magnetic tape number BSC023. The remaining sections of this appendix present a description of the physical layout of tape BSCO23, a description of each piece of software included on the tape, and notes concerning installation of this software at GMR including a summary of changes made in the UMTRI version (GUCVS) of the GMR version (GMCVS) of the Calspan CVS, version 20.

C. 2 Tape Description of Tape BSCO23

Tape BSCO23 is an unlabelled, EBCD, nine-track magnetic tape with eleven files and the following properties: $\operatorname{RECFM}=F B$, BLKSIZE $=2400$, and LRECL $=80$ written at 6250 BPI. Table C.l summarizes the contents by file.

TABLE C.I

DESCRIPTION OF TAPE BSCO23

File No.	Code Name	Description	Seq ID $($ col 73-74)	No. of Records	No. of Blocks
1	ODICl.FORT	GMCVS Part I	num 73-80	6,824	228
2	ODIC3.FORT	GMCVS Part II	num 73-80	6,443	215
3	CIGS	GUCVS Part I	IG	13,080	436
4	CUTS	GUCVS Part II	UT	1,363	46
5	ROBMULTESTS	Deflection 2 Code	ED	830	28
6	ROBEPIMULT	Unstrained Change	EP	792	27
7	ROBDELOMULT	Deflection 1 Code	DZ	811	28
8	RIGS	Slip GUCVS Part I	RI	3,395	114
9	RUTS	Slip GUCVS Part II	RU	353	12
10	ROBPLOTCS.S	Ellip Man Plotter	CS	1,330	45
11	ROBMULTEST.D	Test Data for 5-7	None	168	6

C. 3 Software Descriptions

ODICL.FORT and ODIC3.FORT are duplicates of the GMCVS files from which UMTRI started. They are included to serve as a reference point from which to understand the updates which UMTRI made in creating GUCVS. It may be useful to compare these two old GM files with the corresponding current GM files in order to pinpoint where the changes reported in the next section relative to these two old files fit relative to current GM files.

While ODIC1.FORT and ODIC3.FORT were just the GMCVS divided into two rather equal files for ease of handling, CIGS and CUTS represent a division of the model into two processors to be run usually in succession. This division was made for two reasons: first, it makes recovering printout on an aborted run easier (sometimes automatic if the model is run under procedure control), and secondly, it reduces the total virtual memory needed to run the model without either reducing model features or increasing the cost of a model run. Part 6 of this report gives a short discussion of model improvements incorporated in GuCvs.

ROBMULTESTS, ROBEPIMULT, and ROBDELOMULT are three stand alone packages which consist of a test main, a trial version of the new CVS model subprogram, "BLTSOL" (which has the task of obtaining a solution to the belt slip equilibrium equations, see Section 4.2.3), and needed service routines either pulled from the model intact or dummied. Each of these packages use the same data formats to describe the desired test cases. ROBMULTESTI.D is the data for the standard group of tests which was used to test these three approaches.

ROBEPIMULT is the approach discussed in Section 4.2.5. This package contains one coding error which invalidates the results for the $\mathrm{N}=4$ cases. Since it was clear from the $\mathrm{N}=2$ and $\mathrm{N}=3$ cases that the approach had failed, there was no purpose in finding and correcting this error.

ROBDELOMULT and ROBMULTESTS are the two approaches discussed in Section 4.6 of Part I. There are no known coding errors in these two packages.

RIGS and RUTS contain replacement and new subprograms for GUCVS to implement the new belt slip algorithms. The subprograms in CIGS for which changes were required (and for which changed versions are included in RIGS) are BELTRT, CINPUT, CONTCT, OUTREC, OUTPUT, SINPUT, and UPDATE. Table C. 2 contains a short description of the functions of each of the new subprograms included in RIGS. The subprograms in CUTS for which changes were required (and for which changed versions are included in RUTS) are BLOCK DATA, HEDING, and PRTLIN. All these routines are only partially tested and are subject to further changes.

ROBPLOTCS.S is the source for the Ellipsoid Man Plotting Program which UMTRI used instead of the VIEW Plotting Program. GUCVS will optionally produce the exterior binary hold files required by both/ either/neither of these plotting programs. ROBPLOTCS.S makes use of the regular Calcomp Plotting Routines whereas VIEW makes use of the DISSPLA plotting routines.

NEW BELT SLIP ALGORITHM ROUTINES

$\begin{array}{c}\text { Routine } \\ \text { Name }\end{array}$	$\begin{array}{l}\text { Description of Function }\end{array}$		
BLDERV	$\begin{array}{l}\text { Obtains approximations to belt material derivatives } \\ \text { for one specified belt loop and one specified } \\ \text { unstrained belt length configuration of four } \\ \text { possible unstrained belt length configurations. }\end{array}$		
BLEVL	$\begin{array}{l}\text { Evaluates belt tension, normal forces, and slip } \\ \text { forces for all slip points in all belt loops for } \\ \text { one specified unstrained belt length configuration. }\end{array}$		
	$\begin{array}{l}\text { Is the main control routine for the belt slip } \\ \text { algorithm. It calls the other belt slip routines } \\ \text { as necessary to handle for each belt loop }\end{array}$		
separately the applicable cases of non-slipping			
belts, free-slipping belts under slack, or slipping			
under friction. The last case is handled by		$\}$	setting up and solving up to four belt
:---			
configurations in order to determine the minimum			
amount of belt slip which satisfies the belt slip			
equilibrium equations.			

C. 4 Installation Notes

This section documents the updates necessary to turn the GMCVS presented on tape BSCO23 into the GUCVS also presented on this tape. Table C. 3 is the index of the collected output of several runs of a comparison program on the MTS System of the files CVSA and CVSB (which are MIS line file versions of tape files ODICl.FORT and ODIC3.FORT, respectively) and the files CIGS and CUTS (which are MTS line file versions of tape files CIGS and CUTS, respectively). The collected output is included as Table C.5. In all cases the sequence fields have been stripped off to enable the comparisons to be based solely on program content.

Line files are characterized by line numbers which identify each line of information separately from line contents. This allows sequencing to be maintained without disturbing comparisons of content. Line numbers in the file listings which accompany tape BSCO23 correspond to the number of the record in the tape file in each case. These tape fille listings show the line number for each tape record on the left followed by the 80 characters of contents which includes the sequencing information.

Table C. 3 also shows the line number for each displayed line at the left. The output of the comparison program shows lines from the two files being compared side by side on as many printout lines as required to display the total contents of both lines. Every pair of lines which are the same character by character and which are displayed are designated by "=" on the extreme left and right of each printout line required to display the entire lines. The only equal lines which are displayed are those which begin the interval of comparison, end the interval of comparison, precede an unequal line, or follow an unequal line. The equal lines which are not displayed are counted in a summary of omitted lines which is printed in the place of the omitted equal lines. Every line in either file for which a difference is found or for which no corresponding line is found is displayed without the " $=$ " on the extreme left and right of each printout line.

The output of the several comparison runs are ordered in Table C. 3 on the sequence of the line intervals in CVSA and CVSB. Any line
intervals which are missing in Table C. 3 are either exactly the same, or bear no relationship to the other file. A list of the sections of the code which have been changed are included as Table C.4. The changed listings are included as Table C.б.

TABLE C. 3

COMPARISON OF GUCVS WITH GMCVS

GUCVS Lines	GMCVS Lines
CVSA $(1,249)$	CIGS $(1,246)$
CVSA $(250,856)$	CIGS $(247,856)$
CVSA $(861,1778)$	CIGS(857,1781)
CVSA $(1779,3506)$	CIGS (1782, 3508)
CVSA $(3507,3781)$	CIGS(3509,3782)
CVSA $(5235,6258)$	CIGS $(5257,6304)$
CVSA (6420,6824)	CUTS $(835,1122)$
CVSB $(166,1501)$	CIGS $(6527,7862)$
CVSB $(1502,1830)$	CIGS $(7863,8445)$
CVSB $(2564,2877)$	CIGS(9161,9474)
CVSB $(2918,4698)$	CIGS $(9544,11350)$

TABLE C. 4

COMPLETELY NEW OR EXTENSIVELY CHANGED CODE

```
1. Subroutine DRCQUA
(new code)
2. Subroutine OUTREC
3. Subroutine PLOTR1,PLOTR2, PLOTRA
4. Subroutine QUAT
5. Subroutine STASH
6. Main program for CUTS replaces
        old subroutine POSTPR
    7. Old subroutine POSTPR (CVSB) replaced
        by CUTS Main
    8. Subroutine FETCH (new code)
    9. New dummied subroutine HICCSI
10. Old subroutine HICCSI
11. Subroutine INREAD (new code)
12. Subroutines PICKUP and PRTLIN (new code)
13. New dummied subroutine SLPLOT
14. Old subroutine SLPLOT
15. Subroutines VECADD and VECSUB (new code)
```

Unit 0 : $\operatorname{CVSA}(1,249)$

[^5]Unit O: CVSA 861,1778)

Table C.5. Comparison of GUCVS with GMCVS (Page :5 of 41)

Unit $0: \operatorname{CVSA}(3507,3781)$

Unit 1: SUSP:CIGS $(3509,3782)$

Unit 0: CVSA $5235,6,2)$

 00 0 0 0

> It will be the index to the data array
NLINES WILL be the number of Lines to be

c every lpp lines print headings for 7 types of
output above.

IT $=$ MT -20

$K K=I A B S(K K)$
HEAD $(U)=J O I N T(K K)$ $\begin{aligned} & 1+1 r-r \\ & 1= \\ &=2 r \\ & 2 r\end{aligned}$
$(T 7$

IF（K．LE．3）WRITE（NT，120）（BLANK．（CONTLP（I．J）
1．J＝1，KKAS）
 $\left.J=1, \operatorname{KKAS}^{(\operatorname{WRT}}(\mathrm{K}, \mathrm{U}), \mathrm{K}=1,2\right), \operatorname{KONTLP}(5, J), \operatorname{HEAD}(2, U)$, A4．FORMAT（＇O TIME＇，3（A2．＇SEGMENT NO．＇．13．＇（＇． IF（K．LE．5）WRITTE（NT，140）（BLANK，$J=1$, KKAS） 7X．＇RES＇．1X）（＇）（MSEC）＇．3（A4．5X．＇X＇．8X．＇Y＇．8X．＇Z＇．

 WRITE（NT，18O）（BLANK，（HEADJU（K1，J）． $\mathrm{K} 1=1,8$ ）, $\mathrm{J}=$ （MSEC）＇．2（A1，BA4，4X．，SPRING VISCo 190 WRITE（NT；200）
200 FORMAT（1x） \circ
0
0
0
0
8

10
\sim
0

941 942 943热 DO $35(K 1=1,4)=$ HEDJ（K1，K2）
CONTINUE．3）WRITE（NT．29）（BLANK．（XSG（I．J．K）．I （U）． $\mathrm{U}=\mathrm{IF} 1 . \mathrm{K}, \mathrm{L}$ Le．6）WRITE（NT，30）（BLANK，MSG（U，K）．HEAD IF（K．LE．5）WRITE（NT，31）（BLANK，J＝U1，U2） IF（K．EQ．6）WRITE（NT．32）（BLANK，U＝U1．U2）
IF（K．LT．7）Go to 15 WRITE（NT，З3）（BLANK，MSG（J，K），HEAD（J），J＝J1，J2）
 ．JJ2）WRTIT（NT， 15 WRITE（NT，38）
 IF（K．EQ．7）GO TO 17 J ＝4＊（ $\mathrm{u}^{2-v 1+1)}$ DO $16 \mathrm{I}=1$ ．NLINES
16 WRITE（NT．39）USEC（I）．（ZTTH（J，I，IT）．J＝1．JJ）

＊＇SEGMENT LINEAR VELOCITIES（＇．A4．＇／＇，A4．＇）IN VEHICLE REFRRENCE＇
24 FORMAT（，
$/ 27 X$
＊＇SEGMENT，LINEAR DISPLACEMENTS（
CLAA．＇）IN VEFII
${ }^{5}$＊＇SEGMENT ANGULAR ACCELERATIONS（REV／＇．AA，＇＊＊2） IN LOCAL REFERENCE． 26 FORMAT（ $/ / / 27 \mathrm{X}$ ，
Hicle＊＇segment angular velocities（rev／＇，a4，＇）in ve
27 format（＇，／／／27x．

ธิํํ รัถี่ प̀ to
落 o

$\stackrel{9}{5}$ $\stackrel{\square}{4}$	9
0	
0	
0	

 6518 90
604
0.0 స్ N $\stackrel{\underset{0}{0}}{0}$
 우N Nis 웅 6531
6532

6541 6542
6543 $\stackrel{7}{+}$ 6545 6545
6546 6547 6548
6549
6550 6550

6551
6552
6553 $\begin{array}{ll}11 & 0 \\ 11 & 1 \\ \text {＂1 } & 10 \\ 11 \\ \text {＂} \\ \text {＂1 } \\ \text {＂} & \\ & \end{array}$

 S．ELLIPSOID＇，I3，

IF（KKAS．EQ．2）WRITE（NT，240）
IBLANK，N1，（ PLTTL（I，N1），I＝1，5），M1A，SEG（M1）
2BLANK，N2，PLTTL（I，N2），I＝1，5），M2A，SEG（M2
WRITE（NT，25O）（BLANK，UNITL， $\mathrm{J}=1, \mathrm{KKAS})$
250 FORMAT（， 250 ）（BLANK，UNITL，$J=1$, KKAS）
250 FORMAT $(, 8 X, A 4$, DEFL－NORMAL FRICTION RESU LTANT ${ }^{\text {1ION（＇A A4，＇）＇，A2 }}$＇DEFL－NORMAL CONTACT LOCAT
2 ION（＇A，A4，＇）＇）
WRITE（NT，26O）

WRITE（NT，26O）（BLANK，$J=1$, KKAS）
260 FORMAT（＇TIME＇，2（A4，＇ECTION
FORCE（VEHI E FORCE（VEHI
FORC
WRITE（NT，270）（BLANK，UNITL，UNITM，UNITM，UNITM，
$\dot{j}=\boldsymbol{i}$, KKÁS）

ANGULAR DISPLACEMENTS（DEG）IN VEHIC （ $/$ IN
 EFERENCE＇／
8 FORMAT（＇

32 FORMAT（＇（MSEC）＇， $3(A 4,4 X, ' Y A W ', 5 X, ' P I T C H ', 5 X$
ROLL＇，5X，＇RES ，））
（MSEC）＇，3（A4，5X，＇X＇，8X，＇Y＇，8X，＇Z＇， 7
TIME ，，3（A4，9X，＇SEGMENT NO．＇，I3，＇
／27X，＇JOINT PARAMETERS＇／）
$3(A 4,3 X$, POINT（＇，F6．2．＇，＇F6．2，＇，＇
＇TOTAL TORQUE（＇，2A4，＇）＇）） 37 FORMAT（，（MSEC）＇，2（A1，4A8，4X，＇SPRING VISCOU
RES．＇）（
38 FORMAT（1X）
39 FORMAT（F9．3，3（3X，4F9．3））
40 FORMAT（FS．3，2（F5．0，3F9．3，2X，3F9．3）） 40 FORMAT（F9．3，2（F5．0．3F9．3，2X，3F9．3））
〒～

J2 $=$ MINO $\left(J_{1+1, ~ M P S F)}\right)$

$$
S^{\prime} I W^{\prime}\left(S^{\prime}!=I \cdot\left(I N^{\prime} I\right) 7 I \perp 7 d\right) \cdot I N^{\prime} \times \text { MV }
$$

MT $=$ MT +
NT $=M T$
IF (LNEW) N

$$
\begin{aligned}
& \text { IF (LNEW) N7 } \\
& \text { IT }=\text { MT - } 20 \\
& \text { PAGE }=\text { FLOAT (A }
\end{aligned}
$$

※ ミ ミ N EG（M1）＊，

$$
N 1=N O P L(J 1)
$$

$$
\begin{aligned}
& \text { WRITE (NT,21) } \\
& \text { WRITE (NT,45) } \\
& \text { N1 = NOPL }(\mathrm{d} 1)
\end{aligned}
$$

PAGE＝FLOAT（MT）＋XPAGE
WRITE（NT，21）DATE，PAGE，COMENT，VPSTTL，BDYTTL
WRITE（NT，45）

$$
N 2=N O P L(J 2)
$$

$$
\begin{aligned}
& M 1=M O P L\left(J_{1}\right) \\
& M 2=M O P L\left(J_{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
\text { M2 } \\
\text { IF }
\end{gathered} \text { (JOPL(J2) } \quad \text { (U1.EQ.J2) WRITE (NT,46) }
$$

IF (J1.NE.ل12) WRITE (NT, 46) ＊

$$
\text { BLANK,N1,(PLTTL(I,N1), } 1=1,5), M 1, S
$$

1004
10%
08
0.8
-2
숭

59 FORMAT(', $2 X, 2(A 4,11 X, ' A N C H O R ~ P O I N T ~ A ', 14 X$,
20 FORMAT(4X,'TIME', $2(A 4,5 X, ' S T R A I N ', 7 X, ' F O R C E ', 1$

$\stackrel{ \pm}{\square}$
$\stackrel{1}{2}$
$\stackrel{\varrho}{0}$
1017
$\stackrel{\infty}{\circ} \frac{\square}{-}$

N N

6631 N

0

6 \begin{tabular}{l}
1

\hline

∇

\hline
\end{tabular} 0

9
0
6 $\begin{array}{lll}\wedge & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0\end{array}$

\%ig เジ ถ! \% | N |
| :---: |
| |
| |

 0
0
0
0 6651 N
0
6
6 0
0
0
0
6654 ====== $\begin{array}{llll}\wedge & \infty & 0 & 0 \\ 10 & 10 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ & 0 & 0\end{array}$
 $\overline{0}$
0
0 N
0
0
0 6663 6664 106
06
06
06 $\begin{array}{ll}0 \\ 0 & \hat{0} \\ 0 & 0 \\ 0 & 0 \\ 0 & \end{array}$ 6667
6668
6669
6670
6671
6672

$$
\begin{aligned}
& \text { WRITE (NT. 38) } \\
& \text { IF }(\text { NOT.LNEW) GO TO } 87
\end{aligned}
$$

$J U=4 *(J 2-J 1+1)$
DO $86 \quad I=1$, NLINES
86 WRITE（NT，62）USEC（I），（ZTTH（U，I，IT），J＝1，UJ）
88 FORMAT（＇O＇，26X．＇HARNESS SYSTEM BELT ENDPOINT F

べ
1039

－
\％
$\begin{array}{r}00 \\ 0 . \\ 0 \\ 0 \\ 0 \\ \hline\end{array}$
웅
－
N゙ず

ڤo
．es

$$
\begin{aligned}
& 1 /=M 1+\text { PLOAT }(M T)+\text { XPAGE } \\
& \text { PAGE }= \\
& \text { WRITE (NT, } 21) \text { DATE,PAGE, C }
\end{aligned}
$$

）， $\operatorname{HEAD}(2 *),(N=J 1, J 2)(B L A N K, M S D M(J), \operatorname{HEAD}(2 * J-1) \cdot \operatorname{MSDN}(J$
WRITE（NT，98）（BLANK，UNITL，UNITM，J＝J1，U2）

Nָ
1．J2）
（． $15,6 X)$ ）
1040
1041
1042
哭禺
41）1BLANK，M2，SEG（M2），N2，SEG（N2）

$$
\begin{array}{r}
t+1 W=1 W \\
\left.(\lrcorner S B W^{\prime} \downarrow+\downarrow \Gamma\right) O N I W=2 \Gamma \\
Z^{\prime} \nexists S G W \cdot \downarrow=1 \Gamma \quad \angle 8
\end{array}
$$

 WRITE
WRITE $(N T, 98)$
（NT， 98$)$

possible overflow into nopl array is intention $\operatorname{HEAD}(2 * J-1)=\operatorname{SEG}($ M1）$)$

－A4．＇GO＇）TO 409

$$
\begin{aligned}
& \text { 1, J2) WRITE (NT,89) (BLANK,NOPL(2*J-1).NOPL(2*J), } \mathrm{J}=\mathrm{J}
\end{aligned}
$$

1094
ine
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
哭 L！し！ －ロの ®oํ

$I T=M T-20(M T)+X P A G E$
WRITE（NT，21）DATE，PAGE，COMENT，VPSTTL，BDYTTL
WRITE（NT，8O）UNITM，U，（BAGTTL（I，U），I $=1,5),(B L A N$
$K, U, H E A D(K), K=J 1, J 2)$
WRITE（NT，51）（BLANK，K＝U1，U2）
WRITE（NT，51）（BLANK，K＝U1，U2）
WRITE（NT，38）

－S．O OTqEL
ヨONIINOS 9L
6761
${ }_{0}^{-}$
 6768
6769
6770 O
＂
＂
＂
＂
＂
＂
＂
＂
 6791 $\begin{array}{ll}\text { N } & 0 \\ 0 & 0 \\ 0 & 0\end{array}$ 6794
6795 6796

$\begin{array}{lll}\text { n } & \varphi & \wedge \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}$ a）
C）
α
α
0
0
0

6812

77 CONTINUE

78 FORMAT('O',26X,'PARAMETERS FOR AIRBAG NO.', 12,
4X,5A4/
16X,'SUPPLY CYLINDER STATIC' 4X,'TIME', 8X,'PRES.',4X,'TEMP.',4X,'PRES , 12X. 'AIRBAG', 3X,'CENTER',14X,'AIRBAG SEMIAXES',12X.'ORIE ${ }^{*} \quad 3 X,(M S E C), 7 X,{ }^{\prime}(P S I G) \quad(D E G . R) \quad(P S I G), 8 X$, 'X', 8X,'Y', 8X,'Z'.
(11X, A, $8 X, B^{\prime}, 8 X, C^{\prime}, 10 X, ' Y A W ', 4 X, ' P I T C H ', 5$
ROLL
79 FORMAT (F9.3,3X,3F9.2,2(3X, 3F9.3), 3X, 3F9.2) 80 FORMAT('O', 26X,'CONTACT FORCES (',A4,') ON AIR BAG NO.', $12,4 \mathrm{X}, 544 / /$ (4X.'TIME',4(A1,11X.'AIRBAG'.I2,' VS.'.A4, 81 FORMAT (F9.3.4(3X,3F9.2))
82 RETURN
END
1122
END
Unit 0: $\operatorname{CVSB}(166,1501)$

	$\begin{aligned} & 1502 \\ & 1503 \end{aligned}$	c subroutine output(iuk)	7863 7864	SUBROUTINE OUTPUT(IUK)
		REV 20 05/18/80		IMPLICIT REAL*B(A - H.O-z)
	1504	C Controls tabulated output on fortran units (st	7865	COMMON /CONTRL/ time, nseg, nunt, npl, nblt,
	1505	C of selectid optional segment linear and angula	7866	
	1506		7867	F. NPRT(3G) COMMON /SGMNTS/ d(3,3.100). WMEG(3,100). WMEGD
		and selected data din		(3,100), U1(3,100),
	1507		7868	SEGLA ${ }^{1}$, U2 (3,100). SEGLP(3,100). SEGLV(3,100).
	1508	c and vehicle components.	7869	2 NOMMON NYM(100)
				R(3.200), HA(3,200).
			7871	1, HB(3,200), RPHI(3,100), HT(3,3,200), SP
			7872	(100), IGLOB(100) visc(7,300). UNT(100). IPIN(100). ISING
			7873	3 JOINTF(100)
			7874	COMMON /JBARTZ/ MNPL(100). MNBLT(8). MNSEG(100
			7875	MPL(3.5,100), MBLT(3.5,8), MSEG(3.5,100
			7876	NTPL(5,100), NTBLT(5,8), NTSEG(5,100) COMMON /TITLES/ DATE(3), COMENT(4O), VPSTTL(
			7878), BDYTTL(5). SEG(100). BLTTTL(5.8). PLTTL(5,100). BAGTTL(5,6).
$\stackrel{\square}{\ddagger}$			$\begin{aligned} & 7879 \\ & 7880 \end{aligned}$	${ }^{2}$, JOINT(100), CGS(100), US(100) real date, coment, vpsttl, bdyttl, bltttl, plt
				TL. BAGTTL. SEG;
			7882 7883	LOGICAL* $\mathbf{C G S}$ CJS COMMON/FORCES/
				20). BAGSF $(3,20)$.
			88	SF, NBGSF PRUNT(7,100), NPANEL(5), NPSF, NBSF, NS
			7885	COMMON /CNSNTS/ PI, RADIAN, G, THIRD, EPS(24). UNITL, UNITM.
			7886 7887	UNitt, GRAVTY(3)
			7888	COMMON /COMAIN/ VAR(BOO), DER(8OO), DT, HO, HM
			7889	IME. istep. NSteps, ndint, Neq, irsin, irsou
			7890	COMMON /Damper/ APSDM (3,20), $\operatorname{APSDN}(3,20), \operatorname{ASD}($
			7891	5,20); $\operatorname{MSDM}_{\text {(20) }}^{\operatorname{MSDN}(20)}$
			7892 7893	COMMON /IOCNTL/ LDNWRK, KWDPLN, IOTALK
				o). PLoss $(2,100)$.
			7894	100). ${ }^{1}$ NPTSPB(20),
			7895	2 NPPLY(20). NTHRNS (20), NBLTPH(5)
			7896	COMMON /HLDCON/ LDNARY(3). NRNBAS(246), LFIRST
			7897	Katkol(12), Kprelm(3), Katkas $(3,12)$.

 ก COMMON／TEMPVS／RSTF（27），FDPMI（900）
DIMENSION KSTF（27） 1 IWdO
1

ST（1）），EQUIVALENCE（KSTF（1），RSTF（1）），（FFIRST（1），LFIR
KATKOL（1）），（FRNBAS（1），NRNBAS（1）），（FENKAT（1）． （FKASKL（1），KASKTL（1，1）），（FLPMI（1）
 $\frac{m}{2}$
$\frac{m}{4}$
0
0
0 SPDAM4，PARM，PNTS
DATA INZ，VS，BLANK，HARN1，HARN2，SPDAM1，SPD
 SS＇，＇SPRI＇PARM，PNTS／O，VS 10, ，＇，＇HARN＇．＇E C $2{ }^{\text {SPRI＇：AMPE＇，＇R＇，＇PARM＇，＇PNTS＇／}}$ C IF（INZ ．NE．O）GO TO 10 IF $I N Z=1$

LINES $=0$ KOPY＝ 1 TPRINT $=0$. DO 10 IF（IJK ．NE．O）GO TO 30
领
嵩
10
O
م Q
Ö
－ 7907
7908 7909 우ำの 7914 7915 $\stackrel{0}{9}$ N
－

IMPLICIT REAL＊8（A－H，O－Z）
COMMON／CONTRL／TIME，NSEG，NJNT，NPL，NBLT，NBAG，NV $*$
F，NPRT（36）NS，NQ，NSD，NFLX，NHRNSS，NWINDF，NJNT COMMON／SGMNTS／D（3，3，100），WMEG（3，100），WMEGD（3，
 COMMON／DESCRP／PHI（3，100），W（100），RW（100），SR（3， ${ }_{*}$ HB（3，200），RPHI（3，100），HT（3，3，200），SPRING（5，300 ，UNT（100），IPIN（100），ISING（100），I GLOB
 ，MNBAG（ 6），MPL（3，5，100），MBLT（3，5，8），MSEG（3，5 ，100），MBAG（3，10，6），NTPL（5，100），NTBLT（ 5，8），NTSEG（ 5 ，（100）COMMON／TITLES／DATE（3），COMENT（40），VPSTTL（20），B

＊JOINT（100），CGS（100），US（100）
REAL DATE，COMENT，VPSTTL，BDYTTL，BLTTTL，PLTTL，BA GTTL，SEG，JOINT ，COMENT，VPSTTL，BDYTTL，BLTTTL，PLTTL，BA
 ，BAGSF（3，20），PRUNT（7，100），NPANEL（5），NPSF，NBSF， NSSF，NBGSF ＊COMMON／CNSNTS／PI，RADIAN，G，THIRD，EPS（24）．
 IWH＇XVWH＇OH‘1G＇（OO8）\＆ヨa＇（OO8）\＆VA／NI VWOJ／NOWWOD Table C．5．Comparison of GUCVS with GMCVS（Page
 1512 $\stackrel{2}{5}$ 1514 1515 1516 $\frac{N}{5}$ $\frac{\infty}{18}$ $\frac{\pi}{10}$ 1519 1520 N
N N $\underset{N}{N}$
 N
 \bar{n}

layout recording categories and cases
CATEGORY 3---SEGMENT ANGULAR VELOCITIES, ETC.
KATKOL $(3)=9$
KATKAS $(1,3)=$ NGRND
CATEGORY 4---SEGMENT DIRECTION COSINE MATRICE
$\operatorname{KATKOL}(4)=9$
KATKAS $(1,4)=$ NGRND
CATEGORY 5--VOINT
CATEGORY 5---UOINT FORCES
KATKOL 5 (5) $=8$
KATKAS $(15)=$ NUNT
$\operatorname{KATKAS}(1,5)=$ NUNT
CATEGORY 6---PLANE-SEGMENT CONTACT FORCES
KATG $=6$
$0=3 S \forall X$

IF (KPL.EQ. O) GO TO 60
$\operatorname{KASE}=\operatorname{KASE}+1$
$\operatorname{KASKTL}(1, K A S E)=\operatorname{KATG}+2$
$\operatorname{KASKTL}(2, K A S E)=\operatorname{MPL}(1, U, I)$
$\operatorname{KASKTL}(3, K A S E)=I$
$\operatorname{KASKTL}(4, K A S E)=\operatorname{MPL}(2, U, I)$
$\operatorname{KASKTL}(5, K A S E)=\operatorname{MPL}(3, U, I)$
$\begin{array}{l}\text { KASKTL } \\ \operatorname{CONTINUE}\end{array} 5$, KASE $)=\operatorname{MPL}(3, J, I)$
50 CONTINUE
KATKOL $($ KATG $)=7$
KATKAS $(1, K A T G)=$ KASE
108
KATKOL (KATG) $=0$
80 KASNUM $=$ KASNUM + KASE
CATEGORY
KATG $=7$
(NSEG .LE. O) GO TO 110
$100 I=1$. NSEG
KSG = IABS(MNSEG(I))
IF (KSG. EQ. O) GO TO 100
DO 90 J $=1$ KSG
KASE $=$ KASE +1
KASTRU $=$ KASNUNA + KASE
IF (KSG .EQ. O) GO TO 100
DO 90 J $=1$, KSG
KASE $=$ KASE +1
KASTRU $=$ KASNUSM + KASE
KASKTL (1,KASTRU) $=$ KATG

000
0
\cup
ひい
U
0

둗

 8179 $\begin{array}{llll}0 & \cdots & \sim \\ \infty & \infty \\ \infty & \infty \\ \infty & \infty & \infty \\ \infty & \infty & \infty\end{array}$

C IF (K.LE.3) READ (5,18) KSG, (MSG(J.K). (XSG(I, U

0
$\underset{\sim}{0}$
$\underset{\infty}{\infty}$ N
N
N
∞ รัว $\stackrel{\circ}{9}$

$8-$
0_{0}
0

- N

No

 $\stackrel{\circ}{9}$

$\stackrel{\infty}{\infty}$
の
으N NNN
${ }_{\sim}^{N}$
N్ల్ల్N No
 ${ }_{\sim}^{\sim}$
 $\underset{\sim}{\bar{N}} \underset{\infty}{N}$ 8333 8334
8335 8336
8337
8338

0

8354
8355
8355
30 of

IF (K.GT.3) READ $(5,19) K S G,(M S G(U, K), J=1, K S G)$ IF (K.GT.3) WRITE (6,89)
19 FORMAT(12I6/(I12,10I6))

19 FORMAT(12I6/(I 12, 10I6))
89 FORMAT(1X,'CARDS H.(K)FOR $K=4,7, /, 1 X, 2 I 6,3 F 1$
$2.6 /(1 X, I 12,3 F 12.6))$
IF (K.NE.7.OR. KSG.EQ.O) GO TO 20 DO $12 J=1, K S G$
$L=M S G(U, K)$
$L=\operatorname{MSG}(J, K)$
12 IF (IABS(IPIN(L)).EQ.4) MSG(U,K) $=-L$
12 CONTINUE
20 NSG(K) $=$ KSG
10 IF (.NOT.LTAPE8)
WRITE (8)
WRITE (8)
, NGRND, NPANEL,
*
T, MSEG, MBAG

 G,MSG, NHRNSS,NBLTPH,NPTSPB,NSD,MSDM, TTTL, PLTTL, BAGTTL, G,MSG ${ }^{*} \times$.

MSDN
21 LINES = LINES + 1
IF (MOD(LINES,LPP).EQ. 1 .AND. LTHIST) CALL H EDING (LINES,LPP)

NT $=20$
USEC $=1000.0 * T I M E$
C COMPUTE AND PRINT DATA FOR 7 TYPES OF OUTPUT A
BOVE

$$
(K . E Q .7) \text { J3 }=2
$$

$$
\begin{array}{r}
2 C_{1}+1+1 N=1 N E O \\
I+1 N=1 N
\end{array}
$$ ' \hat{N}

0
0
0 608

カt $0100(0, \mathcal{L}$

$$
\begin{aligned}
& J 2=\text { MINO(} \\
& \text { NT }=\text { NT+1 } \\
& \text { DO } 38 \quad J=J 1
\end{aligned}
$$

 0 0 岂

22 CALL CROSS (WMEG(1,L),XSG(1,J,K),T1) (x) OSN $=$ OS X

GO TO $(22,24,26,29,31,34,35), K$ \qquad Table C.5. Comparison of GUCVS with GMCVS (Page

8
8

$\stackrel{\rightharpoonup}{C}$
$\stackrel{6}{6}$

完 KASE $=1$
CALL OUTR こ

[^6] $1+\left(⿹ \perp \forall x^{\prime} \tau\right) S \forall X I \forall x-\exists S \forall x=S \forall x$

 ฉี่ ：is $\begin{array}{ll}0 \\ 0 \\ 0 & 0 \\ \infty & 0 \\ \infty & \infty \\ & 0\end{array}$

 O 8391
8392 8394

궁
No
 0
0
0
0
0

 \begin{tabular}{l}
90

0.0

0

0

\hline

N

$\underset{\sim}{0}$

$\stackrel{0}{0}$

\hline
\end{tabular}

 $\stackrel{\sim}{\sim}$ 6591

8791 | 0 |
| :--- |
| 08 |
| 0 |
| -9 |

的 へ～ カロー～ッ \begin{tabular}{l}
$0-1$

0

0

0

0

\hline 100

\hline 10

©

0

0

\hline

 $\begin{array}{r}+0 \\ 6 \\ 0 \\ 0 \\ \hline\end{array}$

0

0

0

\hline

$\hat{6}$

6

\hline

∞

0

0

0

0

\hline
\end{tabular}

 $\stackrel{9}{6}$ $\stackrel{\rightharpoonup}{6} \stackrel{n}{6}$


```KOL = KATKOL(KATG) K = KATG - 5 GO TO (760, 780, 820, 800, 810, 850, 840),```	
760	DO 770 I $=1$ ，KOL
770	CONTINUE
770 GO TO 870	
780	Do $790 \mathrm{I}=1$ ，KOL
RSTF（I）$=$ SSF（I，KAS）	
790	
GO TO 870	
800	IF（KATKAS（2，8）．LE．O）GO TO 820
KAS $=$ KAS＋KATKAS $(2,9)-\operatorname{KATKAS}(2,8)$	
GO TO 820 （	
KAS $=\operatorname{KAS}+\operatorname{KATKAS}(2,10)-\operatorname{KATKAS}(2,8)$	
815 IF（KATKAS（2，9）．LE．O）GO TO 820	
KAS $=\operatorname{KAS}+\operatorname{KATKAS}(2,10)-\operatorname{KATKAS}(2,9)$	
820 DO $830 \mathrm{I}=1$ ，KOL	
RSTF（I）$=$ BSF（I，KAS）	
830 CONTINUE	
840	KAS $=$ KAS＋KATKAS（2，12）－KATKAS（2，11）
850 K＝KAS＋KAS－ 1	
850 DO $860 \mathrm{I}=1$ ，KOL	
RSTF（I）＝BAGSF（I．K）	
860 CONTINUE	
870 CALL OUTREC（RSTF（1））	
880 CONTINUE	
890 RSTF（1）＝USEC	
WRITE（LDNWRK＇1）RSTF（1）．LINES，LASREC，MULTP   L，INCBIG，INCSML   IF（IOTALK ．NE．O）WRITE（6．900）RSTf（1）．LINE	
S，LASREC，MULTPL，	
INCBIG．INCSML	
900 FORMAT（＇O RN＝${ }^{\text {a }}$＇，G20．10，7I12）	
LAST＝LLFRST ，G20．10，112）	
CALL STASH（FFIRST（1），KASNUM，LAST）	
IF（KOPY ．NE．O）TIMLAS＝USEC	
CALL ELTIME（2，8）	
910 RETURN	
920 WRITE（6，930）	
g3o format（＇OFATAL ERROR－－－MORE time points than	
MIMIMUM STEP．＇）	
	Stop 1111



๗゚べ


OOO


$(\exists S d W \cdot 1+1 n) O N I W=2 n$

$\begin{array}{lll}K K & =O & \\ D O & 46 & J=J 1, J 2 \\ D O & 46 & I=1,7\end{array}$
DO $46 \quad J=J 1,{ }^{4} 2$
DO $46 \quad I=1,7$
$K K=K K+1$


C，7） 48 FORMAT（F9．3．2（F9．3．3F9．2，3F8．3））

 ©
C PRINT BELT FORCES
C

C
C PRINT HARNESS-bELT ENDPOINT FORCES (StORED IN
BSF ARRAY).
C


$$
\begin{aligned}
& 72 \text { TDATA(KK,NT-20) }=\operatorname{BSF}(I, J) \\
& 73 \text { IF (LTHIST) WRITE }(N T, 74) \text { USEC, ((BSF(I,U). I = } \\
& 1,4), U=J 1, J 2) \\
& \text { c } 74 \text { FORMAT (F9.3,4(F14.3,F12.2,4X)) } \\
& \text { c PRINT SEGMENT CONTACT FORCES } \\
& \mathrm{c}
\end{aligned}
$$

[^7]동NNN
オ

웃ํ


$\sum_{u}^{0}$
$\stackrel{n}{\dot{\infty}}$
$\stackrel{9}{9}$
 $\stackrel{\text { 웅 }}{\infty}$

$\underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\infty} \underset{\sim}{\sim} \underset{\sim}{\infty}$
Unit 0: $\operatorname{CVSB}(2564,2879)$

Unit $0: \operatorname{CVSB}(2918,4698)$


Unit 0: $\operatorname{CVSB}(5058)$





考 $\begin{array}{ll}1 \text { equal } \begin{array}{l}\text { line } \\ 12509\end{array} \\ & 12510\end{array}$

[^8]12519
1 ine
12521
12522
12523
1 ines
12530
12531
12532

E9Gて1
z9sて1
12564
12565



|  |
| :--- | :--- |

## Page

3783	SUBROUTINE DRCQUA(DC, Q)
3784	COMPUTES DIRECTION COSINE MATRIX FROM QUATERNIONS
3785	IMPLICIT REAL*8(A-H,O-Z)
3786	DIMENSION DC(3,3), Q(4)
3787	$C=Q(1) * * 2+Q(2) * * 2+Q(3) * * 2+Q(4) * * 2$
3788	$E=(Q(1)+Q(1)) / C$
3789 3790	$F=Q(1) * E-1 . D O$
3790 3791	DO $12 \mathrm{I}=1,3$ DO $10 \mathrm{~J}=1,3$
3792	$10 \mathrm{DC}(\mathrm{I}, \mathrm{U})=2.0 * Q(I+1) * Q(\mathrm{l}+1) \mathrm{l}$
3793	$12 \mathrm{DC}(\mathrm{I}, \mathrm{I})=\mathrm{DC}(\mathrm{I}, \mathrm{I})+\mathrm{F}$
3794	Do $14 \mathrm{I}=1.3$
3795	$J=1+\operatorname{MOD}(1,3)$
3796	$K=1+\operatorname{MOD}(1+1,3)$
3797	$\mathrm{D}=\mathrm{E} * \mathrm{Q}(\mathrm{I}+1)$
3798	$D C(K, J)=D C(k, J)-D$
3799	$14 \mathrm{DC}(\mathrm{J}, \mathrm{K})=\mathrm{DC}(\mathrm{J}, \mathrm{K})+\mathrm{D}$
3800	DO $18 \mathrm{I}=1.3$
3801	DO $18 \mathrm{~J}=1.3$
3802.5	
3803	END

Listing of SUSP:CIGS(8446,8492) at 10:03:18 on AUG 29. 1985 for CCid=SS53

Listing of SUSP:CIGS(8853,9039) at 10:04:07 on AUG 29, 1985 for cCid=SS53

[^9]


[^10]

```
9478
9479
9480
9 4 8 1
9482
9483
944
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
503
504
9505
COMPUTES QUATERNIONS FROM YAW, PITCH, ROLL ANGLES IN DEGREES
 IMPLICIT REAL *B(A-H,O-Z)
 DIMENSION ANG(3),Q(4),R(4),T(3)
 COMMON/CNSNTS/PI,RADIAN
 A =0.5*ANG(1)*RADIAN
 Q(i)= \COS(íA)
 Q(2)=0.0
 Q(4)=\operatorname{DSIN}(A)
 K=3
 DO 10 I = 2,3
 A = 0.5*ANG(I)*RADIAN
 R(1)=DCOS(A)
 R(2) = 0.0
 R(3) =0.0
 R(4)=0.0
 R(K)= DSIN(A)
 DOT = Q(2)*R(2) +Q(3)*R(3) +Q(4)*R(4)
 CALL CROSS(Q(
 DO 5 J=2,4
 5Q(u)=Q(1)*R(u)+R(1)*Q(u) +T(u-1)
 Q(1)=Q(1)*R(1)-DOT
 10 K=2
 SUM = DSQRT(Q(1)**2 +Q(2)**2 +Q(3)**2 +Q(4)**2)
 DO 12 I = 1,4
 2 Q(I) = Q(Ij/SUM
 RETURN
 END
```

Listing of SUSP:CIGS(11620,11648) at 10:05:10 on AUG 29, 1985 for CCid=SS53

11620	subroutine stash (array, nummrd, lasnrn)					
1621	COMMON /IOCNTL/ LDNWRK, KWDPLN, IOTALK					
11622						
11623	NLIN $=$ NUMWRRD + KWDPLN - 1) $/$ KWDPLN - 1					
11624						
11625	If (IOTALK . NE, O) WRITE (6,9998) NUMWRD. NLIN, NLAS.					
11825						
11627	9998 FORMAT (8HOSTASH : , 5I10)					
11628	IPTB $=0$					
11629						
11630						
11631						
11632						
11633	IPTB $=$ IPTB + KWDPLN					
11634	WRRITE (LDNWRK' ${ }^{+}$NRN) (ARRAY $\left.(J), j=I P T A . I P T B\right)$					
11635						
11636						
11637						
11638	- Continue					
11639	$20 \begin{aligned} & \text { IPTA }\end{aligned}$					
11640						
11641	IPTB $=$ IPRTB + NRN +1 NLAS					
11642	WRITE(LDNWRK'NRN) ( ${ }^{\text {arRAY ( }}$ ( $)$, L=IPTA.IPTB)					
11643 11644		$\mathrm{J}=\mathrm{IPTA}, \mathrm{IPTB}$ )   ${ }_{1}{ }^{\text {IF }}($ IOTALK .GT. 1) WRITE(6,9999) NRN. IPTA. IPTB, (ARRAY( $J$ ).				
11645						
11646						
11647		RETURN				
11648						



```
READ (5,15) BEGT, FINT, TINC, IOTALK
 15 FORMAT (3E8.O, I5)
```

    C
    C
C
READ TIME INVARIANT INFORMATION FROM HOLD FILE
READ (LDNWRK'i) TIMLAS, iINES, LASREC, MULTPL, iNCBİG, INCSML
READ (LDNWRK'2) NVEH, NGRND, NSEG, NPL, NJNT, NSD, NBAG, NBLT
1 NHRNSS, MAXPTS, LSTEP, NSTEPS. KASNUM, NRNVAR. LBBELT, LBBAG
2 LBJNT, LBSEG, LBPL, LLFRS
READ (LDNWRK'3) DATE, BDYTTL, KASTOP, LFENKT, STPMIN, PI, G
1 RADIAN, UNITL, UNITT, UNITM, DT, TIMMAX, ISPSWT
LAST = NRNVAR
CALL PICKUP (VPSTTL, 20, LAST)
CALL PICKUP (COMENT, 40, LAST)
if (NBLT.LE. O) GÓ TO' 20
LAST = LBBELT
CALL PICKUP(BLTTTL. 5*NBLT, LAST)
20 IF (NBAG.LE. O) GÓ TO 30
LAST = LBBAG
CALL PICKUP (BAGTTL, 5*NBAG, LAST)
30 IF (NUNT.LE. O) GÓ TO 40
LAST = LBJNT.
CALL PICKUP (JOINT, NUNT, LAST)
40 IF (NSEG.LE. O) GO TO 50
LAST = LBSEG
CALL PICKUP(SEG, NGRND, LAST)
CALL PICKUP (FLPMI. NSEG, LAST)
LK $=9^{*}$ NSEG
CALL PICKUP(DPMI, LK, LAST)
COMPLETE SEGMENT REPORTING AXIS ORIENTATIONS
DO $58 \mathrm{I}=1$. NGRND
IF (I GT. NSEG) GO TO 52
IF (LPMI(I).NE. O) GO TO 58
DO $56 J=1,3$
DO $54 \mathrm{~K}=1$, 3
$\operatorname{DPMI}(K, J, i)^{3}=0$.
54
CONTINUE
CONTINUE
$\operatorname{DPMI}(1,1, I)=1$
$\operatorname{DPMI}(2,2,1)=1$
$\operatorname{DPMI}(3,3,1)=1$
$\operatorname{LPMI}(I)=0$
58
CONTINUE
IF (NPL.LE. O) GO TO 60
LAST $=$ LBPL
CALL PICKUP (PLTTL, 5*NPL, LAST)
60 LAST $=$ LLFRST
CALL PICKUP(FFIRST, KASNUM, LAST)
CALL PICKUP (FRNBAS, KASTOP, LAST)
CALL PICKUP (FKASKL, 5*KASNUM, LAST)
CALL PICKUP(FENKAT, LFENKT, LAST)
C
C
C
C
READ USER CONTROL DATA FOR THIS RUN OF THE OUT PROCESSOR
KBEG $=$ BEGT / STPMIN + . 5
KINC $=$ TINC / STPMIN +.5
KINC $=$ TINC STPMIN +.5
KFIN $=$ FINT/ STPMIN +.5
Table C.6. Listings of Code Changes to GUCVS (Page 10 of 38)
SUSP：CUTS（1．584）at 10：06：02 on AUG 29，1985 for CCid＝SS53
$K S T P=D T /$ STPMIN +.5
KSADJ $=$ MAXO（KSTP－ 1.0$)$
GET ALL POINTS IF TINC $<$ DT
IF（KINC．LT．KSTP）KINC
ヨAIIISOd 38 ISNW $15 \exists 8$

+ INIX）$*$ dIS $=$ JNIX
BEGT MUST BE POSITIVE
IF（KBEG ．LT．O）KBEG
KBEG $=$ KSTP $*$（KBEG $+K$
BEG $=$ KSTP $*((K B E G+K S A D U) / K S T P)$
IF FINT TOO SMALL，SET FOR END OF ALL POINTS
IF（KFIN ．LE．O）KFIN＝
KMINSP $=$ MAXO（KINC，KSTP）
IF（KFIN ．LE．KBEG）KFIN
IF（KFIN ．GT．MULTPL）KF
IF（KFIN LE．KBEG）KFIN＝KBEG＋KMINSP
IF（KFIN．GT．MULTPL）KFIN $=$ MULTPL
NOW REDEFINE KFIN TO BE A MULTIPLE OF KMINSP
C NOW REDEFINE KFIN TO BE A MULTIPLE OF KMINSP $\quad$ KFIN $=$ KBEG＋（（KFIN－KBEG＋MAXO（KMINSP－1，O）／KMINSP）＊KMINSP yヨaヌ0


$$
\begin{gathered}
\text { (I) } 4 \exists 0801=N \\
91 \\
01010 \\
0=001
\end{gathered}
$$

$$
\begin{aligned}
& N=\text { IORDER(I) } \\
& \text { IF (N.EQ. O) GO TO } 102 \\
& \text { IF (N.LT. O) GO TO } 100
\end{aligned}
$$

$$
\begin{aligned}
& \text { NEEDK(N) } \\
& \text { 100 CONTINUE } \\
& 102 \text { IF (KATDO } \\
& \text { IFO 1O4 I } \\
& \text { DORDER(I) } \\
& \text { IORDDK(I) } \\
& 104 \text { CONTINUE } \\
& \text { KATDO = }
\end{aligned}
$$

104 KATDO＝ 16
READ CASE CONTROLS FOR PRINT CATEGORIES 8 TO 14
these are all contact force related

1 10 READ $(5,120)$ NTS
120 FORMAT $(1614)$
NKNTRL $=0$
0000

$$
\begin{aligned}
& \text { IF (N GT 16) GO } \\
& \text { KATDO KATDO }+1 \\
& \operatorname{NEEDK}(N)=I
\end{aligned}
$$


Listing of SUSP:CUTS(1,584) at 10:06:02 on AUG 29, 1985 for CCid=SS53

isting of SUSP:CUTS (1.584) at 10:06:02 on AUG 29, 1985 for CCid=SS53


291		READ PRINTED OUTPUT CONTROLS (H CARDS)
292	C	
293	340	Do $370 \mathrm{~K}=1,3$
294		IF (NEEDK(K) .EQ. O) GO TO 370
295		REÁ' ( $5,350, E R R=430, E N D=450) K S G, ~ M M S G(1, K), ~ M S G(1, K), ~$
296	1	( XSG(I, 1, K) , I = 1, 3)
297	350	FORMAT (i6, 2I3, उFi2.6)
298		WRITE $(6,353)$ K, KSG
299	353	FORMAT('OCATEGORY', I3. ' CONTROLS:', I5, ' CASES')
300		IF (KSG .GT. 50) GO TO 410
301		NSG(K) $=$ KSG
302		IF (KSG-1) 352, 363, 355
303	352	NEEDK $(K)=0$
304		GO TO 370
305	355	READ (5,360, ERR=430, END=450) (MMSG(J,K), MSG(J,K). (XSG(I,J,K).
306	1	$I=1,3), J=2, \mathrm{KSG})$
307	360	FORMAT (6X, 2I3, 3F12.6)
308	363	WRITE (6, 365) (U,MMSG(U,K), MSG(U,K), (XSG(I, J,K), I= 1, 3) , J = 1,KSG)
309	365	FORMAT (26X, 315, 3G20.10)
310	370	CONTINUE
311		DO $400 \mathrm{~K}=4,6$
312		IF (NEEDK(K) . EQ. O) GO TO 400
313		READ (5,380, ERR=430, END=450) KSG, (MMSG(U,K), MSG(U,K), J=1,11)
314	380	FORMAT (16, 22I3)
315		WRITE(6.353) K. KSG
316		IF (KSG .GT. 50) GO TO 410
317		NSG(K) = KSG
318		IF (KSG.GT. O) GO TO 385
319		NEEDK(K) $=0$
320		GO TO 400
321	385	IF (KSG .LT. 12) GO TO 393
322		READ (5,390, ERR=430, END=450) (MMSG(J,K), MSG(J,K), J=12,KSG)
323	390	FORMAT (6x, 22I3)
324	393	WRITE (6, 395) (J, MMSG(J,K), MSG(J,K), J = 1, KSG)
325	395	FORMAT (26X, 315)
326	400	CONTINUE
327		IF (NEEDK(7) .EQ. O) GO TO 480
328		READ ( $5,402, E R R=430, E N D=450) \mathrm{KSG},(\operatorname{MSG}(\mathrm{J}, 7), J=1,11)$
329	402	FORMAT (1216)
330		$K=7$
331		WRITE (6,353) K, KSG
332		IF (KSG.GT. 50) GO TO 410
333		NSG(7) = KSG
334		IF (KSG.GT. O) GO TO 404
335		NEEDK(7) $=0$
336		GO TO 480
337	404	IF (KSG .LT. 12) GO TO 408
338		READ ( $5,406, E R R=430, E N D=450)(M S G(J, 7), J=12, K S G)$
339	406	FORMAT (6x, 1116)
340	408	WRITE (6,409) (J, MSG(U,7), J=1, KSG)
341	409	FORMAT (26X, 15, 5X, 15)
342		GO TO 480
343	410	WRITE (6.420)
344	420	FORMAT ('OFATAL ERROR---MORE THAN 50 PRINT REQUESTS SPECIFIED.')
345		GO TO 470
346	430	WRITE (6,440) K, j
347	440	FORMAT ('OFATAL ERROR---READ ERROR FOR $K$, $\mathrm{J}=$ ', 2I6)
348		GO TO 470
	Table	C.6. Listings of Code Changes to GUCVS (Page 14 to 38)


349	450	WRITE (6,460) K, J
350	460	FORMAT ('OFATAL ERROR---EOF FOR K, J=', 216)
351	470	CALL ERROR
352	C	
353	c	READ INPUT CARD H.B.A TO CONTROL COMPUTATION OF HIC, HSI \& CSI.
354	C	
355	480	IF (NEEDK(15) . EQ. O) GO TO 510
356		READ (5,520) JDTPTS
357		WRITE $(6,490)$ JDTPTS
358	490	FORMAT ('OCATEGORY 15 CONTROLS:', 9(2I4, 2X))
359		NDPT $=0$
360		DO $500 \mathrm{KDT}=1,18$
361	500	IF (JDTPTS(KDT) . NE. O) NDPT = NDPT + 1
362		IF (NDPT . EQ. O) NEEDK(15) = 0
363	C	
364	C	READ INDICES OF VARIABLES TO BE PLOTTED AND
365	C	ARGUMENTS TO SUBROUTINE SLPLOT ON CARDS I.
366	C	
367	C	INPUT CARD I. 1
368	C	
369	510	IF (NEEDK(16) . EQ. O) GO TO 560
370		READ (5,520) NPLT, (NYP(K),K=1,NPLT)
371	520	FORMAT (1814)
372		WRITE (6,523) NPLT
373	523	FORMAT ('OCATEGORY 16 CONTROLS:', I5, ' CASES')
374		IF (NPLT. GT. O) GO TO 525
375		$\operatorname{NEEDK}(16)=0$
376		GO TO 560
377	525	DO $550 \mathrm{~K}=1$, NPLT
378		NYPLT $=$ NYP(K)
379		WRITE (6,528) K, NYPLT
380	528	FORMAT (10X, 'FOR PLOT NO.', 13, ${ }^{\text {, }}$, NO. OF CURVES $=$ ', I3)
381	C	
382	C	INPUT CARD I.2.K
383	C	
384		READ (5,529) MX(1,K), MX(2,K), MX(3,K), (MY(1, J,K), MY(2,J,K),
385		1 MY(3,J,K), NPLSMB(J,K), J = 1, NYPLT)
386	529	FORMAT (1913/ (9X, 1613))
387		WRITE (6,529) MX(1,K). MX(2,K), MX(3,K), (MY(1,J,K), MY(2,J,K),
388		$1 \mathrm{MY}(3, J, K), \operatorname{NPLSMB}(J, K), J=1 . N Y P L T)$
389	C	
390	C	INPUT CARD I.3.K
391	C	
392		READ (5,530) NX(K), XO(K), XN(K), XL(K), XS(K)
393	530	FORMAT (I4, 4X, 4F8.O)
394	C	
395	C	INPUT CARD I.4.K
396	C	
397		READ (5.530) $\mathrm{NY}(\mathrm{K}), \mathrm{YO}(\mathrm{K}), \mathrm{YN}(\mathrm{K}), \mathrm{YL}(\mathrm{K}), \mathrm{YS}(\mathrm{K})$
398	C	
399	C	INPUT CARD I.5.K
400	C	
401		READ (5,540) NXLAB (K), (XLAB ( $1, K$ ), $\mathrm{I}=1, \mathrm{NW} 60$ )
402	540	FORMAT (I4, 4X, 15A4)
403	C	
404	C	NOTE - ABOVE FORMAT ASSUMES 4 ALPHANUMERIC CHARACTERS FOR SINGLE
405	C	PRECISION WORDS ON IBM 360 AND 370 COMPUTERS. THE 15A4 TERM IN THE
406	C	FORMAT WILL HAVE TO BE CHANGED ON NON-IBM COMPUTERS TO PRODUCE A
	Tabl	e C.6. Listings of Code Changes to GUCVS (Pag 15 to 38)




$\begin{array}{ll}581 & 1 \\ 582 & \text { DATA LPP } 14,10,1,10,4,2,8,4,2,8,4,2,8,6,2,12,6,2,12,0,1,0,0,1,0 / \\ 583 & \text { DATA LDNARY/ } / 8,10,11 / K W D L N / 41,15,6000,20 / 1\end{array}$ END
Listing of CVSB(2313.2563) at 10:09:05 on AUG 29, 1985 for CCid=SS53

Listing of CVSB(2313.2563) at 10:09:05 on AUG 29, 1985 for CCid=SS53

Listing of CVSB(2313.2563) at 10:09:05 on AUG 29, 1985 for CCid=sS53

[^11]2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520

23 NYPLT $=$ NYP(K)
DO $24 J=1$,NYPLT
$J Y=J Y+1$
$J P=M Y(1, J, K)-20$
$J E=\operatorname{IABS}(M Y(2, J, K)$
Z(NPTS,JY) = UMSEC
24 IF (JE.NE.O) Z(NPTS.JY) = TDATA(JE,JP)
25 IF (.NOT.LTABH) GO TO 21
C

## STORE DATA TO PRINT TABULAR TIME HISTORIES

TEST = DMOD(UMSEC,PRDT)
TEST = DMIN1(TEST, DABS(PRDT-TEST))
IF (NPRT(26).EQ.O .AND. TEST.GT.EPS(4)) GO TO 21
LINES $=$ LINES + 1
NTTH $=$ MOD(LINES-1,LPP) +1
USEC(NTTH) = UMSEC
DO $26 \mathrm{~J}=1$, NT
DO $26 \quad I=1.14$
26 ZTTH(I,NTTH,U) = TDATA(I,U)
IF (NTTH.EQ.LPP) CALL HEDING (LINES,LPP)
GO TO 21
29 IF (.NOT.LTABH .OR. LINES.EQ.O) GO TO 30
IF (NTTH.NE.LPP) CALL HEDING (LINES,LPP)
30 IF (NDPT.NE.O) CALL HICCSI (NPTS.JHIC)
IF (.NOT.LPLOT) GO TO 98
C
C
C
C
PLOT DATA VIA SUBROUTINE SLPLOT.

CALL COMPRS
$J Z=N D P T+1$
DO $50 \quad K=1$,NPLT
$J X=1$
IF (MX(2,K).EQ.O) GO TO 42
$J Z=J Z+1$
$J X=J Z$
IF (Z(1.JX).EQ.O.O .OR. MX(2,K).GE.O) GO TO 42
DO $41 \quad I=2$, NPTS
$41 Z(1, J X)=Z(I, J X)-Z(1, J X)$
$Z(1 . J X)=0.0$
42 NYPLT = NYP(K)
DO $44 \quad J=1$.NYPLT
$J Y=J Z+J$
IF (Z(1,JY).EQ.O.O .OR. MY(2,J,K).GE.O) GO TO 44
DO $43 \quad I=2$,NPTS
$43 \mathrm{Z}(\mathrm{I}, \mathrm{JY})=\mathrm{Z}(\mathrm{I}, \mathrm{JY})-\mathrm{Z}(1, \mathrm{JY})$
$Z(1, J Y)=0.0$
44 CONTINUE
NXK $=$ NX(K)
NYK $=$ NY(K)
XOK $=X O(K)$
YOK $=$ YO(K)
XNK $=X N(K)$
YNK $=$ YN(K)
XLK $=X L(K)$
YLK $=Y L(K)$
XSK $=X S(K)$

2545		YSK $=$ YS(K)
2546		NXLABK $=$ NXLAB(K)
2547		NYLABK $=$ NYLAB(K)
2548		NPLB1K = NPLB1(K)
2549		NPLB2K $=$ NPLB2 $(\mathrm{K})$
2550		CALL SLPLOT(Z $1, J X$ ) , NXK, XOK, XNK, XLK, XSK, XLAB(1,K), NXLABK,
2551		* $\quad 2(1, J Z+1)$, NYK, YOK, YNK, YLK, YSK, YLAB $(1, K)$, NYLABK.
2552		* NPTS,NYPLT,NZD1,PLB1(1,K),NPLB1K, PLB2(1,K),NPLB2K,K)
2553	c	
2554		INSERT ANY CODE REQUIRED BY Your system to advance plot pages here
2555	c	
2556	50	$J Z=J Z+N Y P L T$
2557		CALL DONEPL
2558	c	
2559	C	INSERT ANY PLOT TERMINATION CODE REQUIRED By your system here.
2560	C	
2561	98	CALL ELTIME (2,36)
2562	99	RETURN
2563		END

SUBROUTINE FETCH(KATG, KASPT, NLIN, KOLB)
COMMON /HOLDIT/ BAGTTL(5,6), BDYTTL(5), BLTTTL(5,8), COMENT(40). DATE(3). DT, JOINT(100). INCSML, INCBIG, PLTTL(5,100)
SEG(100). VPSTTL(20), LLFRST, KASTOP, NRNTIM
TIMLAS, MULTPL, NPL. NPLT. NRNVAR, LFENKT,
NBAG, NBLT, LBBAG, LBBELT, LBUNT, LBPL
LBSEG. KKNTRL(241). NSD, NSEG, ISPSWT.
NSTEPS, NVEH, NGRND, NHRNSS, NUNT
COMMON /PRESET/ ISYMB(49). KASLIN(3,16). LDNARY(3). LPP. NW6O . MAXKAP
COMMON /FETCHT/ D(3,3,12), DPMI(3,3,100), G, LPMI(100), PI, SEGLA(3,12), SEGLP(3,12), SEGLV(3,12). WMEG(3,12)
1
2 WMEGD (3,12) UNITL, UNITT UNITM, RADIAN TIMMAX,
3 IKASE(12), NKASE, KASKOL, KASPAG, KASFUL
COMMON /IOCNTL/ LDNWRK, KWDPLN, IOTALK
COMMON /FETCHU/ PQUANT(16), KONTLP(6,3), JDTPTS(18). IPIN(3),
KKAS, MSECPT, MTIMPT
COMMON /HLDCON/ NRNBAS(246), LFIRST(241), KASNUM, KATKOL(12).
1
2 KPRELM(3), KATKAS(3.12). KASKTL(5,241), MAXPTS
NRN, LSTEP, LASREC(3)
DIMENSION CONTLP(6,3), V(3,12), FM(3,3,3), ISWT(2), LSWT(2)
1 , KQUANT(14)
EQUIVALENCE (CONTLP(1,1), KONTLP(1,1)), (KQUANT(1),PQUANT(1))
DATA TWOPI/6.283185/
LIN $=$ LINEQT(NLIN)
KPT $=$ KASPT
$\begin{aligned} \text { KAT } & =\text { KATG } \\ \text { KOL } & =\text { KOLB }\end{aligned}$
MSECPT = NLIN
MTIMPT $=$ LIN
KAS = KONTLP ( 6 . KPT)
IF (KAT .LE. O) GO TO 900
IF (KAT-7) 5, 700. 800
ITO = KONTLP(5. KPT)
ISWT(2) = ITO
FFRM = IABS(KONTLP(4. KPT))
ISWT(1) = IFRM
DO $90 \mathrm{~J}=1.2$
II = J
$\operatorname{LSWT}(\mathrm{II})=0$
DO 10 I $=1$, 12
If (IKASE(I) .LE. O) go to 20
IF (IKASE(I) .NE. ISWT(II)) GO TO 10
LSWT(II) = I
Go to 90
CONTINUE
JJ = NKASE + 1
If (NKASE .LT. 12) GO TO 40
DO 30 I $=1$, 12
IF (IKASE(I) .EQ. NVEH) GO TO 30
IF (IKASE(I).EQ. NGRND) Go to 30
J J = 1
GO TO 40
WRITE (6.9999) IKASE, NKASE, ISWT, LSWT, LIN, KPT, KAT, KOL
9999 FORMAT('OFATAL ERROR---FETCH CURRENT CASE SPACE'.
1 'FILLED WITH VECH/GRND.'/(5X, 12I10))

```
IF (NKASE .LT. 12) NKASE = JJ
IKASE(JJ) = ISWT(II)
LSWT(II) = JJ
C RECORDING CATEGORY }
 CALL INREAD(2, ISWT(J), LIN, ZTTH(1,1))
 DO 6O M = 1,
 SEGLP(M, JJ) = ZTTH(M,1)
 SEGLV(M, JU) = ZTTH(M+3,1)
 SEGLV(M, JU) = 2TTH(M+3,1)
 60
 CONTINUE
 CALL INREAD(3,ISWT(J),LIN,ZTTH(1,1))
 DO 70 M = 1.3
 WMEG(M, JJ) = ZTTH(M,1)
 WMEGD(M, JJ) =2TTH(M+3,1)
 WMEGD (M,
 c
 CƠRDING CATREGORY 4
 CALL INREAD(4, ISWT(J), LIN, D(1,1,JJ))
 9O CONT INUE
 JFRM = LSWT(1)
 JFRM = LSWT(1)
 IF (IOTALK.EQ. O) GO TO 95
 WRITE(6,93) KAT, KPT, LIN, NLIN, KOL, ISWT, LSWT
 FORMAT ('OFETCH:', 11110)
 95 IF (KAT .LT. 4) CALL MAT31(DPMI(1,1,IFRM), CONTLP(1,KPT), V(1,12))
 GO TO (100, 200, 300, 400. 500, 600), KAT
 C
 LINEAR ACCELERATION OF POINTS ATTACHED TO SEGMENTS
 C
 CALL CROSS(WMEG(1,JFRM),V(1,12), V(1,1))
 CALL CROSS(WMEG(1,JFRM), V(1,1),V(1,2))
 CALL CROSS(WMEGD(1,JFRM).V(1,12), V(1,3))
 CALL VECADD(V(1,2), V(1,3), V(1,4))
 CALL DOT31(D(1,1,UFRM), V(1,4), V(1,5))
 CALL VECADD(V(1,5), SEGLA(1,JFRM), V(1,6))
 IF (KONTLP(4.KPT) .GT. O) GO TO 110
 CALL DOT31(D(1.1,JFRM), V(1,12), V(1,11))
 CALL VECADD(SEGLP(1,JFRM), V(1,11),V(1,10))
 CALL VECSUB(V(1,10), SEGLP(1,JTO), V(1.9))
 CALL MAT31(D(1,1,JTO), V(1,9), V(1,2))
 CALL DOT31(D(1,1,JFRM), V(1,1),V(1,3))
 CALL VECADD(V(1,3), SEGLV(1,JFRM), V(1,4))
 CALL VECSUB(V(1,4), SEGLV(1,JTO), V(1,5))
 CALL CROSS(WMEG(1, UTO), V(1,2),V(1,3))
 CALL VECSUB(V(1,5),V(1,3),V(1,1))
 CALL VECSUB(V(1,6), SEGLA(1,JTO), V(1,7))
 CALL MAT31(D(1,1,UTO), V(1,7), V(1,8))
 CALL CROSS(WMEG(i,JTO).V(1,1), V(i,3))
 CALL SCALED(V(1,3), .5, V(1,1)j
 CALL VECSUB(V(1,8), V(1,1),V(1,6))
 CALL CROSS(WMEG(1, UTO),V V(1,2),V(1,3))
 CALL CROSS(WMEG(1,JTO), V(1,3), V(1,4))
 CALL CROSS(WMEGD(i, JTO),V(1,2),V(1,1))
 CALL VECADD(V(1,1),V(1,4),V(1,5))
 CALL VECSUB(V(1,6), V(1,5): V(1,7))
 GO TO 12O
110
 CALL MAT31(D(1,1,UTO),V(1,6),V(1,7))
```

    Table C.6. Listings of Code Changes to GUCVS (Page 26 of 38)
    120 CALL DOT31(DPMI (1, 1, ITO), V(1,7), V(1,8))
LINEAR VELOCITIES OF POINTS ATTACHED TO SEGMENTS
 uou ì
C LINEAR DISPLACEMENTS OF POINTS ATTACHED TO SEGMENTS
C
C $300 \quad$ CALL DOT31(D(1, 1, JFRM) $V(1,12), V(1,1))$
 IF (KONTLP (4,KPT),GT, O) GO TO 310
CALL MAT31(D(1, 1, JFRM), V(1,3), V(1,4))
CALL MAT31(D(1, 1, JFRM), V(1,3), V(1,4))
CALL SCALED(V(1,4),-1.. PQUANT (KOL))
310 GALL MAT31(D(1,1, JTO), V(1,3), PQUANT(KOL))
GO TO 550 GO TO 550
ANGULAR ACCELERATIONS OF SEGMENTS
400 CALL DOT31(D(1,1,JFRM), WMEGD(1,JFRM), V(1,2)) CALL MAT31(D(1, 1, JTO), V(1,2), V(1, 3))
CALL VECSUB(V(1,3), WMEGD(i, UTO), V(1,4))
CALL DOT31(DPMI (1, 1,1 TO), V(1,4), V(1,5)) CALL DOTA1(DPMI(1, 1, ITO), V(1,4), V(1,5))
CALL SCALED(V( 1,5$)$, TWOPI, PQUANT (KOLi)) GO TO 550
GO TO 550
LINEAR VEI
ANGULAR
$\begin{array}{ll}\text { C } \\ C & \text { ANGULAR VELOCITIES OF SEGMENTS }\end{array}$
C 500 CALL DOT31(D(1,1,JFRM), WMEG(1, JF́RM), V(1,1)) CALL MAT31(D( $1,1, J T O), V(1,1), V(1,2))$
CALL $V E C S U B(V(1,2), ~ W M E G(1, J T O), V(1,3))$
CALL SCALED(V(1,3), TWOPI, V(1,4))
CALL DOT31(DPMI $1,1, I T O), V(1,4), \operatorname{PQUANT}(K O L))$
PQUANT $(K O L+3)=\operatorname{SQRT}(\operatorname{PQUANT}(K O L) * * 2+\operatorname{PQUANT}(K O L+1) * * 2+$
1 PQUANT $(K O L+2) * * 2)$ 1 PQUANT $(\mathrm{KOL}+2) * * 2)$
GO TO 900
C
C EULER ANGLE ORIENTATION OF SEGMENTS
600 CALL DOT33(DPMI (1,1,IFRM), D(1,1,JFRM), FM(1,1,1))


Table C.6. Listings of Code Changes to GUCVS (Pag'e 27 of 38)

# 1123 <br> SUBROUTINE HICCSI(KASE NUMTIM) 

1124
1124
1125
1125
1126
1126
1127
1128
1129
1123
1130
1130
1131
1131
1132
1134
DATA NUM /O/
C DUMMY HICCSI SUBPROGRAM
C********* ORIGINAL ROUTINE FOUND IN FILE "CVSHICCSI"
C THIS ROUTINE NEEDS MODIFICATION BEFORE IT CAN BE USED.
*********
NUM $=\mathrm{NUM}+1$
WRITE (6,9999) NUM, KASE, NUMTIM
9999 FORMAT ('OHICCSI CALL NO., I5., ARGS=, 2110 ) RETURN END


[^12]Listing of CVSB(62,165) at 10:09:19 on AUG 29. 1985 for CCid=SS53


[^13]


[^14]1270
1271
1272
1273
1274
1274
1275
1275
1276
1276
1277
1278
1278
1279
1280
1281
1282
1283
1284
1284
1285
1286
1287
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298

40 FORMAT (F9.3, 2(F5.0.3F9.3, 2X, 3F9.3)) GO TO 190
50 NGO $=$ KAT -7 IF (NGO.LT. 1 .OR. NGO .GT. 7) GO TO 190 GO TO (60, 130, 80, 100, 110, 150, 170), NGO
60 WRITE (NT, 7O) TIME (MSECPT), (PQUANT (U), $\mathbf{~}=1, \mathrm{~J}=1$ )
70 FORMAT (F9.3, 2(F9.3,3F9.2,3F8.3)) GO TO 190
80 WRITE (NT, 90) TIME (MSECPT), (PQUANT ( $J$ ), $J=1, J J$ )
90 FORMAT (F9.3, 4 (F15.6.F12.2.3X)) GO TO 190
100 WRITE (NT, 90) TIME (MSECPT), (PQUANT ( $U$ ), $J=1, J J$ ) GO TO 190
$110 \mathrm{JJ}=2$ IF (KONTLP(3,1) .NE. O) $J J=4$ IF (KONTLP(1,2) .NE O) UU $=\mathbf{C}$ WRITE (NT 12O) TIME (MSECPT), (PQ
WRITE (NT, 20 ) TME MSECPT), (PQUANT ( $u$ ), $J=1, J J)$
20 FORMAT (F9.3. 4(F14.3.F12.2.4X)) GO TO 190
130 WRITE (NT, 140) TIME (MSECPT), (PQUANT ( $J$ ), $J=1,10$ )
40 FORMAT (2F9.3, 3F9.2, 3F8.3, 2X, 3F8.3) GO TO 190
150 WRITE (NT, 160) TIME(MSECPT), (PQUANT(U), $J=1,12$ )
60 FORMAT (F9.3. 3X, 3F9.2, 2(3X, 3F9.3), 3X, 3F9.2) GO TO 190
70 WRITE (NT, 180) TIME(MSECPT), (PQUANT ( $\downarrow$ ), $J=1, J J)$
180 FORMAT (F9.3. 4(3X.3F9.2))
90 RETURN
END
SUBROUTINE SCALED(VA,D,VB)
DIMENSION VA(3), VB(3)
$\operatorname{VB}(I)=V A(I)^{3}$
10 CONTINUE
RETURN
END


SUBROUTINE

* SLPLOT $(X, N X, X O, ~ X N, ~ X L, ~ X S I Z E, ~ X L A B, ~ N X L B, ~$
$Y$$\quad$ NY, YO, YN, YL, YSIZE, YLAB, NYLB, NPTS, NYY, NDY, PLAB 1, NPLB1, PLAB2. NPLB2,KPLT) 06/02/83

ARGUMENTS:
X(NPTS) - ARRAY Of inpts ábscissas tu be piotted
(NDY, NYY) - ARRAY OF NPTS*NYY ORDINATES TO BE PLOTTED

- O OR POSITIVE - LINEAR PLOTS ON POSITIVE AXIS NE NY NX,NY ARE GRID DIVISIONS
XO.YO - MINM VALUES OF $X$ AND $Y$
XL,YL - MAXM VALUES (INCHES) OF $X, Y$ AXES
XSIZE,YSIZE - PAPER SIZE (INCHES) IN X,Y DIRECTIONS
XLÁB.YiAAB - X,Y AXES LÁBELS (ÁLPHANNUMERIC ARRÁYS)
NPTS NYLB OF CHARACTERS IN X,Y LABELS
NPTS - NO. OF POINTS IN X ARRAY AND EACH Y ARRAY
NYY - NO. OF Y ARRAYS TO BE PLOTTED VS. X ARRAY.
- FIRST DIMENSION OF Y ARRAY IN CALLING ROUTINE (NDY MUST BE .GE. NPTS)
PLAB1, PLAB2 - 15 S
TERS IN PLOT ID LABELS
KPL
- SYMBOL NO. TO BE USED FOR EACH CURVE

NOTE: PLOTS WILL BE TRUNCATED AS FOLLOWS:
NX,NY POSITIVE - XO,YO .LE. X,Y .LE. XN, YN
NX,NY NEGATIVE - XO,YO .LE. X,Y LE. XN, YN
COMMON/IPLSMB/NPLSMB(100)
DIMENSION X(NPTS), Y(NDY, NYY), XLAB(1), YLAB(1), PLAB1(1), PLAB2 (1)
DIMENSION XPL(500O), YPL(5000)

WRITE (6,4) NDY, NYY, NPTS, Y

ALL BAGE(XSI
XSIZE,YSIZE)
AGE (X
OBRDR
CALL NOCHEK
C
C
C
CHECK TYPE OF PLOT AXIS
CALL HEIGHT (0, 18)
CALL INTAXS
CALL TITLE (PLAB1, NPLB1, XLAB, NXLB, YLAB, NYLB, XL, YL)
CALL FRAME
YMESS = YL+0. 25
MMESS XL 2.5
CALE HEIGHT (0.16)
IF (NX.LT.O) XCYCL=ALOG $10(X N / X O)$
IF (NY.LT.O) YCYCL=ALOG1O(YN/YO)
IF (NX.GT.O) XSTEP $=(X N-X O) / X L$
IF (NY.GT.O) YSTEP=(YN-YO)/YL
IF (NY.GE.O AND .NX.GE.O) CALL GRAf(XO, SCALE: XiN, YO, 'SCALE', YiN)
IF (NX.LT.O .AND. NY.LT.O) CALL LOGLOG(XO,XCYCL,YO,YCYCL)
IF (NX.GE.O .AND. NY.LT.O) CALL YLOG(XO,XSTEP,YO,YCYCL)

## 4757

4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788

IF (NX.LT.O AND. NY.GE.O) CALL XLOG(XO,XCYCL,YO,YSTEP)
IF (NX.GT.O) IGRX $=$ NX
IF (NX.LT.O) IGRX $=-N X$
IF (NY.GT.O) IGRY=NY
IF (NY.LT.O) IGRY $=-N Y$
IF (NX.EQ.O) IGRX=1
IF (NY.EQ.O) IGRY=1
CALL GRID(IGRX. IGRY)
DO $40 \quad J=1$, NYY
JJP = NPLSMB( $ل$ )
WRITE (6,52) XO, YO, XN. YN,XL,YL, JJP, XSTEP, YSTEP, J, NYY
52 FORMAT (1X.' XO, YO, $2 F 15.5,5 X, X N$, YN ; $2 F 15.5, /, 1 X, X L, Y L$. 12F15.5.5X:' NPLSMB ', I5,/, 1X.' XSTEP, YSTEP , 2F 15.5 .
25X.' J ', I4,5X.' NYY',I4)
DO $39 \quad I=1$, NPTS
$X P L(I)=X(I)$
39
CONTINUE
IF (JJP.LT.O) CALL DASH
IF (JUP.LT.O) JUP1=JJP+1
IF (JJP.GE.O) JJP $1=J J P$
CALL CURVE (XPL, YPL, NPTS, JJP 1)
40
CONTINUE
CALL HEIGHT(O.15)
CALL MESSAG('ODIAC
YMS $1=$ YMESS -0.15
XMS $1=$ XMESS -0.0
CALL MESSAG('................. 100, XMS 1, YMS 1)
CALL ENDPL (KPLT)
RETURN
END

1319
1320
1321
1322
1323
1324
1324
1325 1326
1327
1327
1328 1328
1329
1329
1330
1330
1331 1331
1332 1332

SUBROUTINE VECADD(VA,VB,VC)
DIMENSION VA(3), VB(3), VC(3)
Do $10 I=1,3$
$V C(I)=V A(I)+V B(I)$
CONTINU
RETU
SUBROUTINE VECSUB(VA, VB, VC) DIMENSION VA(3). VB(3). VC(3)

CONTINUE
CONTIN
RET
END


[^0]:    $\stackrel{N}{ }$
    

[^1]:    

[^2]:    

[^3]:    Table 3.1. Input Data Set for Full-scale Submarining Mode1 (Page 8 of 10)

[^4]:    \$EMP GUC7
    File "GUC7" has been emptied

[^5]:    Table C.5. Comparison of GUCVS with GMCVS (Page 3 of 41)

[^6]:    

[^7]:    
    

[^8]:    

[^9]:    $$
    \begin{aligned}
    & \text { RECORD TIME INVARIANT PLOTCS VALUES } \\
    & \begin{array}{l}
    \text { DO } 89 \mathrm{~J}=4,6 \\
    \text { BOFT }(J-3, I)=B D(J, I I) \\
    \text { CONTINUE } \\
    90 \text { CONTINUE } \\
    \text { RECORD TIME INVARIANT PLOT }
    \end{array} \\
    & 000
    \end{aligned}
    $$

    
    
    9140 IF (NPL LLE. O) GO TO 9150
    WRITE (LDNPCS) ( $($ PLTTL $(I, J), I=1,5), J=1, N P L)$
    9150 RETURN
    SND
    SUBROUTINE PLOTR2
    IMPLICIT REAL*8(A-H
    COMMON/CONTRL
    IMMMON/CONTRL/ TIME,NSEG,NUNT, NPL, NBLT, NBAG, NVEH, NGRND,
     COMMON/VPOSTN/ ZPLT(3), SPLT(3), AXV(3,6),VATABí6,101,6). COMMON/CNTSRFTO(6), VDT(6),TIMEV(6), OMEGV(6), NVTAB(6), INDXV (6) COMMON/CNTSRF/ PL(17,100), BELT(20,8),TPTS(6,8), BD(24,110)
    COMMON /PLOTRS/ ELYPR(3,100), PLPTS(3,3,100), NELSEG(100), LDNPCS
    1 IELPS, IELPB, IELP, NNELP. NPLSEG(100)
    REAL*4 PLPTS TYME REAL*4 PLPTS, TYME ,

    REAL*4 TTPTS $(6,8), \operatorname{DD}(3,3,100), \operatorname{SSEGLP}(3,100), \operatorname{BBDD}(3,8)$
    
    TYME = TIME
    
    $9: 1=n 61$ oo
    
    

[^10]:    

[^11]:    
    
    
    $\mathrm{JE}=4 * \mathrm{MOD}(\mathrm{DD}, 3)+4$
    $\mathrm{JP}=\mathrm{JD} / 3+1$
    $\left.61 \begin{array}{l}\text { Z(NPTS.JJ) } \\ \text { CONTINUE }\end{array}\right)=$ TDATA(JE,UP)
    $22 \mathrm{IFIC=}$ (.NJT.LPLOT) Go to 25
    store data for plotting
    $\mathrm{JY}=$ NDP
    DO
    24
    
    
    

    が

[^12]:    

[^13]:    

[^14]:    
    

