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Abstract The idea of using a high-voltage electron beam with substantial current to actively probe
magnetic field line connectivity in space has been discussed since the 1970s. However, its experimental
realization onboard a magnetospheric spacecraft has never been accomplished because the tenuous
magnetospheric plasma cannot provide the return current necessary to keep spacecraft charging under
control. In this work, we perform Particle-In-Cell simulations to investigate the conditions under which
a high-voltage electron beam can be emitted from a spacecraft and explore solutions that can mitigate
spacecraft charging. The electron beam cannot simply be compensated for by an ion beam of equal current,
because the Child-Langmuir space charge limit is violated under conditions of interest. On the other hand,
releasing a high-density neutral contactor plasma prior and during beam emission is critical in aiding beam
emission. We show that after an initial transient controlled by the size of the contactor cloud where the
spacecraft potential rises, the spacecraft potential can settle into conditions that allow for electron beam
emission. A physical explanation of this result in terms of ion emission into spherical geometry from the
surface of the plasma cloud is presented, together with scaling laws of the peak spacecraft potential varying
the ion mass and beam current. These results suggest that a strategy where the contactor plasma and the
electron beam operate simultaneously might offer a pathway to perform beam experiments in
the magnetosphere.

1. Introduction

High-power electron beams (with tens of keV energies and fraction of an Ampere currents) emitted from
spacecraft in space have been used for many experimental purposes: plasma-wave excitation [Raitt et al., 1995;
Huang et al., 1998], spacecraft-charging dynamics [Myers et al., 1990], exploring magnetospheric morphology
[Nemzek et al., 1992], exploring distant electric fields [Wilhelm et al., 1980], studying magnetospheric scattering
processes [Swanson et al., 1986], and atmospheric and ionospheric modification [Neubert and Gilchrist, 2004].
For a general review of uses of beam experiments in space, see Winckler [1992].

Electron beams from spacecraft have been propagated long distances through regions of the magnetosphere
[Hendrickson et al., 1975; Hallinan et al., 1978; Winckler, 1980; Pellat and Sagdeev, 1980; Zhulin et al., 1980;
Nemzek and Winckler, 1991; Lavergnat, 1982; Prech et al., 2002], but all of these beams were launched from
spacecraft that were in the ionosphere, where the plasma is sufficiently dense to provide the return current
needed to avoid the spacecraft charging to levels that prevent further beam emission.

SCATHA (also known as P78-2), on the other hand, was a rather unique experiment involving electron beams
in the magnetosphere (at the geosynchronous orbit). Its objective was to study the plasma environment and
its effect on spacecraft charging and to test techniques to discharge the spacecraft. One of these techniques
was the ejection of an electron beam from an electron gun [Cohen et al., 1980a], which operated in a regime
of relatively low currents (10 𝜇A to ∼ 10 mA) with energies up to 3 keV. Some SCATHA experiments investi-
gated the simultaneous effect of the magnetospheric plasma and beam emission on the spacecraft potential.
Experiments with low beam currents (∼ 10 𝜇A) confirmed that the return current from the plasma was suf-
ficient to maintain the spacecraft potential below the beam energy and the electron beam could safely be
emitted, while for larger beam currents (∼ 100 𝜇A) most of the beam electrons returned to the spacecraft
[Gussenhoven et al., 1980]. On the other hand, an experiment with higher current (6 mA of 3 keV electrons)
caused the permanent failure of three different payloads and the interruption of telemetry for several seconds
[Cohen et al., 1980b].
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There are some scientific drivers that demand the emission of a high-power electron beam from a spacecraft
residing in the magnetosphere: one is to establish the exact magnetic connections between locations in the
magnetosphere and locations in the ionosphere [Borovsky et al., 2000; MacDonald et al., 2012]. What holds
back such experiments is the fear of deleterious spacecraft charging effects from the emission of a high-power
electron beam in the low-density magnetosphere [National Research Council, 2012].

Emitting a high-power electron beam involves the removal of a substantial amount of charge from a space-
craft. For instance, to create an optical beamspot in the ionosphere that is visible from the ground (30 W of
3914-Å emission), an electron beam must have a power on the order of 10 kW. If the beam kinetic energy is
40 keV, then the beam current must be 0.25 A. If the beam fires for a duration of 1 s, then the beam removes
0.25 C of charge from the spacecraft. For reference, 1 C is a lightning-bolt worth of charge [cf. Krehbiel et al.,
1979; Uman, 1987, Table 7.2].

For spacecraft without electron-beam experiments, spacecraft charging in the magnetosphere has often been
controlled with the use of a plasma contactor that emits a high-density cool plasma [e.g., Olsen, 1985; Schmidt
et al., 1995; Comfort et al., 1998; Torkar et al., 2001]. Here the charging is driven by photoelectron currents and
the thermal fluxes of the ambient plasma particles [DeForest, 1972; Whipple, 1981]. These currents onto the
spacecraft are on the order of tens of microampere. Electron beam experiments in the ionosphere have been
successful with the use of plasma contactors [Katz et al., 1994; Prech et al., 1995], where the contactor plasma
is thought to make an electrical connection of the spacecraft to the high-density cross-field-conductive iono-
sphere. For the fraction-of-an-ampere currents considered for beam experiments in the magnetosphere, the
plasma contactor is not a proven concept.

An idea of the spacecraft charging problem for a high-power beam experiment in the magnetosphere can be
obtained by the following estimate. Say a spacecraft emits a 0.25 A electron beam for 1 s, leaving 0.25 C of
charge behind. If the spacecraft has operated a plasma contactor for 5 s before the electron beam was fired,
then a plasma cloud with a diameter of about 5 km will be contacting the spacecraft, assuming the expansion
speed of the cool contactor plasma was 1 km/s. If that 0.25 C of charge is transferred from the small spacecraft
into the bigger plasma cloud, then the charge would be distributed over a spherical region of radius about
2.5 km. Using Coulomb’s law 𝜙 = Q∕4𝜋𝜀0r for the potential 𝜙 of a sphere of radius r containing a charge Q
(𝜀0 is vacuum permittivity) yields a potential of the sphere of 9 × 105 V. For this space experiment to work,
the residual charge from the electron beam must be rapidly moved far from the spacecraft, not just into the
contactor cloud.

In an attempt to resolve the issues just described, in this paper we perform Particle-In-Cell (PIC) simulations to
investigate the multiscale dynamical charging of a spacecraft due to the emission of a high-voltage electron
beam and of a high-density contactor plasma, and to establish the physics principles that would allow beam
experiments to operate in the magnetosphere. In particular, our main result is to highlight the critical role of
the contactor plasma in controlling and mitigating the transient of the spacecraft potential, thus offering a
viable pathway to perform beam experiments in the low-density magnetosphere.

Note that a beam-contactor experiment in the low-density magnetosphere will be operating in a new regime
where computer simulations are needed to explore the physics of spacecraft charging. Experiments with
electron beams and plasma contactors have been performed in the ionosphere, but owing to the high-density
of the ambient plasma and to the substantial conductive nature of the ionospheric environment, these
ionospheric experiments provide little insight as to the operation of an experiment in the magnetosphere
and provide little validation of the simulations in the present paper.

The paper is organized as follows. In section 2 we introduce the collisionless, electrostatic, kinetic plasma
model adopted in this study and describe the simulation parameters and setup for our investigations. In
section 3 we present spacecraft charging simulations in various settings, including (i) the emission of an elec-
tron beam in vacuum, (ii) the emission of an electron beam and a compensating ion beam of equal current
in vacuum, and (iii) the simultaneous emission of the electron beam and the contactor plasma. We show
that emitting an ion beam is not an option for electron beam emission because the Child-Langmuir space
charge limit is easily violated. On the other hand, the presence of the contactor plasma allows for ion emission
on a much larger area and induces a transition from a planar geometry ion emission (strongly space charge
limited) to a quasi-spherical geometry ion emission that is not space charge limited and facilitates beam
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Table 1. Definitions of the Reference Quantities Used in the
Normalization of the Model Equationsa

Quantity Symbol

Plasma density nref

Plasma temperature Tref

Background magnetic field magnitude B0

Plasma Debye length 𝜆ref =
√

𝜀0Tref
e2nref

Electron thermal velocity vth,ref =
√

Tref∕me

Electron plasma frequency 𝜔pe,ref =
√

e2nref
𝜀0me

Electron cyclotron frequency 𝜔ce,ref = eB0∕me

Current density Jref = enrefvth,ref

Current Iref = enrefvth,ref𝜆
2
ref

aOther parameters are elementary charge e = 1.6 × 10−19

C, electron mass me = 9.1 × 10−31 kg, and vacuum permittivity
𝜀0 = 8.85 × 10−12 F/m.

emission. Scaling laws of the spacecraft
potential varying ion mass and beam cur-
rent are also presented. The conclusions of
our study are drawn in section 4.

2. Physics Model and Simulation
Setup

We study the interaction of a collisionless
plasma with a spherical spacecraft of radius
𝜌sp. The plasma is modeled kinetically;
namely, it is described by a distribution
function fs (s labels the plasma species) that
obeys the Vlasov equation

𝜕fs

𝜕t
+ v ⋅ ∇fs +

qs

ms

(
E + v × B0

)
⋅ ∇vfs = 0,

(1)
where qs (ms) is the particle charge (mass)
for species s and∇v is the gradient operator

in velocity space. The plasma moves under the action of the self-induced electric field E, obtained from
Poisson’s equation

∇2𝜙 = −
∑

s qsns

𝜀0
(2)

(𝜙 is the electrostatic potential, E = −∇𝜙, and ns is the plasma density for species s) and of an external
magnetic field B0. We introduce the following normalization: lengths are normalized to a reference Debye

length 𝜆ref =
√

𝜀0Tref

e2nref
(where nref and Tref are a reference density and temperature, e = 1.6 ⋅ 10−19 C is the

elementary charge), x̂ = x∕𝜆ref; velocity to the reference electron thermal velocity vth,ref =
√

Tref∕me,

v̂ = v∕vth,ref; time to the reference electron plasma frequency𝜔pe,ref =
√

e2nref

𝜀0me
, 𝜏 = 𝜔pe,reft; densities to a refer-

ence density, n̂s = ns∕nref; temperatures to a reference temperature, T̂s = Ts∕Tref; the electrostatic potential is
normalized as 𝜓 = e𝜙∕Tref; and the magnitude of the background magnetic field is normalized as B̂0 = 𝜔ce,ref

𝜔pe,ref

with𝜔ce,ref = eB0∕me the electron cyclotron frequency. For ease of the notation, in the following we will drop
hats with the understanding that we will always use normalized units. The normalization is summarized in
Tables 1 and 2.

In this paper we study a system where a neutral plasma consisting of electrons and ions is emitted by the
spacecraft and expands in vacuum. This plasma corresponds to the contactor plasma that is often used to
control spacecraft charging, and in the following we will refer to it as the contactor plasma. After the contactor
plasma has expanded for some time and created a plasma plume near the spacecraft, we emit an electron
beam from the spacecraft and explore parametrically the conditions for which the beam can be emitted or
returns to the spacecraft.

We note that in the present paper we do not consider the presence of a background plasma and its effect
on the current loop on the spacecraft and the contactor. This is treated in [Delzanno et al., 2015]. We also do
not consider backscattered or secondary emission electrons that could follow from the absorption of primary
(beam or contactor) electrons by the spacecraft. These effects are negligible when the spacecraft is positively
charged by more than a few volts [Hastings and Garrett, 1996], which is the regime targeted by this paper. Fur-
thermore, our results are relevant to eclipse conditions since we neglect photoemission. Finally, depending
on the ionization efficiency, charge-exchange processes between contactor ions and neutrals could be impor-
tant near the contactor injection point [Katz et al., 1994]. Since we have neglected these effects, our results
are relevant to a regime of high contactor ionization.

2.1. Simulation Setup
Numerically, the model described by equations (1) and (2) is solved with the PIC methodology [Birdsall and
Langdon, 1985]. Specifically, we use a recently developed PIC code called Curvilinear PIC (CPIC) [Delzanno
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Table 2. Summary of the Normalization Used in the Text Relative to the Quantities Defined in Table 1a

Quantity Symbol Normalization

Density species s ns n̂s =
ns

nref

Temperature species s Ts T̂s =
Ts

Tref

Lengths x x̂ = x
𝜆ref

Spacecraft radius 𝜌sp 𝜌̂sp = 𝜌sp

𝜆ref

Outer domain radius 𝜌2 𝜌̂2 = 𝜌2
𝜆ref

Velocity v v̂ = v
vth,ref

Drift velocity species s Vs V̂s =
Vs

vth,ref

Time t 𝜏 = 𝜔pe,reft

Electrostatic potential 𝜙 𝜓 = e𝜙
Tref

Spacecraft potential 𝜙sp = 𝜙(𝜌sp) 𝜓sp = e𝜙sp

Tref

Magnetic field magnitude B0 B̂0 = 𝜔ce,ref

𝜔pe,ref

Injected current density species s Js Ĵs =
Js

Jref

Injection area A Â = A

𝜆2
ref

Injected current species s Is = AJs Îs =
Is

Iref

Area enclosed by the spacecraft and density contour ns = n̄ for species s (Figure 1b) s, n̄ ̂s, n̄ = s, n̄

𝜆2
ref

aThe simulations are conducted in cylindrical (r, 𝜃, z) geometry (assuming azimuthal symmetry for the electrostatic
field) and 𝜌 =

√
r2 + z2. In section 3 normalized quantities will always be used without hats to ease the notation.

et al., 2013]. CPIC couples the standard PIC algorithm with the ability to conform the computational grid to
complex objects and has been used primarily for plasma-material interaction studies [Delzanno et al., 2013;
Delzanno and Tang, 2014].

We note that in the context of spacecraft-plasma interaction, several sophisticated codes have been devel-
oped across the globe: Nascap-2k [Mandell et al., 2006] in the U.S., SPIS [Roussel et al., 2008; Matéo-Vélez et al.,
2012] in Europe, and MUSCAT [Muranaka et al., 2008] in Japan. Nascap-2k and SPIS solve Poisson’s equation
with iterative solvers (conjugate gradient or GMRES method) with some form of preconditiong, while MUSCAT
uses the Fast Fourier Transform. For comparison, CPIC uses the (BlackBox) multigrid algorithm which is the
only truly scalable Poisson solver (i.e., the computational time scales linearly with the number of unknowns).
Nascap-2k uses nonuniform, structured computational meshes with adaptive mesh refinement to improve
resolution where needed. SPIS uses unstructured meshes. Both options require a tracking algorithm to locate
a particle in a cell which implies more computational time to move the particles. MUSCAT uses uniform
(Cartesian) structured meshes, while CPIC uses nonuniform structured meshes. In both cases, particle track-
ing is trivial. Indeed, [Delzanno et al., 2013] shows that the algorithm to move particles used in CPIC is more
computationally efficient than a standard tracking algorithm. Furthermore, Nascap-2k is serial, SPIS features a
parallelized mover, while both MUSCAT and CPIC are fully parallelized. Further details on the CPIC algorithm,
together with some verification tests, can be found in Delzanno et al. [2013].

The simulations are conducted in cylindrical (r, 𝜃, z) geometry, where azimuthal symmetry is assumed for the
fields (𝜕∕𝜕𝜃 = 0), while the particles retain three components of the velocity. The computational domain is
enclosed by two concentric spheres of radius 𝜌sp and 𝜌2 (we define 𝜌 =

√
r2 + z2) and is divided in Nr × Nz

cells as described in Delzanno et al. [2013]. Thus, the spacecraft corresponds to the inner boundary of the
simulation domain.

The external magnetic field is constant and directed along z. The contactor plasma is injected at 𝜌 = 𝜌sp

(r ≃ 0), antiparallel to the magnetic field. It is characterized by the density ns = np, the drift velocity Vp, and the
thermal velocity vth,s =

√
Ts∕ms (with s = e, i labeling electrons and ions, respectively). Contactor electrons

are injected in the system according to a half-width Maxwellian distribution at rest, since vth,e ≫ Vp. Contactor
ions, on the other hand, are cold (vth,i ≪ Vp) and are injected in the contactor plasma as a beam plus a small
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Figure 1. (a) Cartoon of the simulation setup. (b) Schematics of s,n̄. The black thick line represents the density contour
corresponding to ns = n̄. s,n̄ is the area enclosed by the spacecraft and the density contour ns = n̄, and is used for
diagnostic purposes in section 3.

thermal spread. The electron beam (labeled with s = b) is injected at 𝜌 = 𝜌sp (r ≃ 0) parallel to the magnetic
field, with density nb, drift velocity Vb, and no thermal spread. The injection area A on the spacecraft is the
same for both the contactor plasma and the beam, and is expressed in terms of an injection angle 𝜃∗:

A = 2𝜋𝜌2
sp (1 − cos 𝜃∗) . (3)

The number of particles injected from the spacecraft surface per species at each time step of the simulation is
400; self-consistent charging effects will dictate how many leave the vicinity of the spacecraft and how many
return to it. A cartoon of the simulation setup is presented in Figure 1a.

The particles injected in the system move under the action of the self-consistent electric field and external
magnetic field. Particles that hit the spacecraft are removed from the simulation, and their charge is accumu-
lated onto the spacecraft. This translates into a boundary condition on the electric field (via Gauss’ law for a
perfectly conducting body) at the inner boundary of the simulation domain. Particles can also exit the sys-
tem at the outer boundary 𝜌2, implying that the net charge in the simulation domain including the spacecraft
is not necessarily zero. At the outer domain, we use a Dirichlet (i.e., conducting) boundary condition on the
electrostatic potential: 𝜓(𝜌2) = 0.

Our reference simulation parameters are as follows:

1. Background magnetic field magnitude: B0 = 3 × 10−3.
2. Geometrical parameters: 𝜌sp = 1, 𝜌2 = 50, 𝜃∗ = 14◦, A = 0.187.

3. Contactor plasma parameters: np = 100, Vp = 0.01, Te = 0.01, Ti = 0.01,
mi

me
= 1836.

This gives a contactor current density Jp = npVp = 1 and a contactor current Ip = Ii = AJp = 0.187. Ini-
tially, we perform simulations of the expansion of the contactor plasma prior to beam emission to obtain
configurations characterized by a different size of the contactor cloud. Specifically, we consider three contac-
tor configurations obtained at times 𝜏 = 200, 600, and 1000, and label them as 1, 2, and 3, respectively. These
configurations are later used as initial conditions for studies of beam emission (where the contactor plasma
continues to be injected). Our beam reference parameters are listed in Table 3. For cases A1 − A3 and B1 − B3,
the contactor current density is greater than the beam current density Jb = nbVb = 0.5. Note that we also
study cases where we do not actually simulate the electron beam but only account for its effect by remov-
ing the beam charge AJbΔ𝜏 at every time step Δ𝜏 . We label these cases as C1 − C3 in Table 3, and Jb will be
specified separately for each case.

The simulations are conducted on a grid with Nr = 4096 and Nz = 1024 and ran on 256 processors of the
Mapache cluster at the Los Alamos National Laboratory.

We note that the reference parameters just discussed are rescaled (but keeping ratios of relevant quantities in
the right range) relative to realistic values for a contactor plasma/beam system, as normally done to keep the
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Table 3. Electron Beam Parameters for the Simulations of Section 3

Initial Contactor Configuration

Case nb Vb Jb Δ𝜏 at Time

A1 𝜏 = 200

A2 0.5 1 0.5 0.01 𝜏 = 600

A3 𝜏 = 1000

B1 𝜏 = 200

B2 0.25 2 0.5 0.005 𝜏 = 600

B3 𝜏 = 1000

C1 𝜏 = 200

C2 Beam charge AJbΔ𝜏 removed from to be specified 0.02 𝜏 = 600

spacecraft without simulating the beam

C3 𝜏 = 1000

cost of simulations manageable. For instance, assuming nref = 104 cm−3 and Tref = 1 keV (𝜆ref = 2.3 m) gives
a contactor peak density at injection np = 106 cm−3, lower than typical values. This would be consistent with
the inner boundary of our simulation domain (= 𝜆ref = 2.3 m since 𝜌sp = 1) corresponding not to the actual
physical boundary of the spacecraft but rather to the boundary where the contactor density has dropped to
the level considered (one can estimate that this happens a few meters from the spacecraft). Assuming a back-
ground magnetic field of 100 nT (typical of geosynchronous orbit) leads to B0 = 3 × 10−3 considered in this
study. Furthermore, for Tref = 1 keV, the contactor temperature is Te = Ti = 10 eV and its drift velocity is
Vp = 100 km/s with mi∕me = 1836. This choice is reasonable for the electron temperature and drift velocity
relative to a high-voltage contactor that operates with Helium, but typically, the ions are at least one order
of magnitude colder. Also, a more typical Xenon contactor would have drift velocities of the order of ∼10
km/s. Our rescaled choice in this case increases the ion Debye length at injection (which needs to be resolved
in a standard PIC code) but remains in the relevant range Vp ≫ vth,i and Vp ≪ vth,e. Furthermore, while the
majority of the runs is conducted with the proton mass, we will also perform some studies varying the ion
mass in order to identify the relevant scaling laws. The point of the present paper is to demonstrate the
physical principles that will enable beam experiments to operate in the low-density magnetosphere. Simula-
tions with the exact engineering parameters of an actual space experiment are left for the future.

One more comment is in order with regard to using electrostatic simulations for these studies. For a
space-experiment beam current of the order of 0.1 A, an application of the Biot-Savart law indicates that a per-
pendicular distance of ∼1–2 m from injection the induced magnetic field is already 5–10 times smaller than
the background field and should therefore be negligible. Furthermore, the high contactor density implies that
close to injection the plasma 𝛽 = 2𝜇0npTp∕B2

0 ≫ 1 (𝜇0 is vacuum permeability) with the potential for electro-
magnetic instabilities. Our preliminary simulation results carried out with a two-fluid electromagnetic code
indicate that instabilities do not occur for regimes 𝜔pe,ref∕𝜔ce,ref ≫ 1 as considered here.

Finally, although in this paper we do not focus on the effect of the background plasma, in an attempt to
provide some comparison with actual data, we have performed some simulations relevant to SCATHA exper-
iments (not shown). Specifically, we have reproduced simulation 1 of Table 1 of Rubin et al. [1980], where a
beam with energy 0.3 keV and current 100 𝜇A was emitted by SCATHA with background plasma conditions
typical of 30 March 1979 (single Maxwellian fit). In agreement with the work presented in Rubin et al. [1980],
our simulation shows that the spacecraft potential saturates above the gun energy and most of the beam
returns to the spacecraft (cf. section 3.1). In our simulation the maximum potential on the spacecraft is 326
V, in good agreement with 338 V from Rubin et al. [1980]. Moreover, a complete study of the effects of the
background plasma is presented in Delzanno et al. [2015], where it is shown that the results obtained in this
paper for the vacuum case are a good approximation to the low-density magnetospheric conditions typical
of geosynchronous orbit.

3. Results

In this section we perform PIC simulations to investigate electron beam emission from the spacecraft and the
related problem of spacecraft charging in various settings. These include electron beam emission in vacuum,
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Figure 2. Simulations of electron beam emission
without contactor plasma: spacecraft potential as a
function of time.

the attempted emission of an electron and a com-
pensating ion beam of equal current in vacuum, and
the emission of the electron beam together with the
contactor plasma.

Since our interest is to identify conditions that allow
beam emission for longer times, we monitor the space-
craft potential in all simulations: when the spacecraft
potential is (well) below the beam kinetic energy, the
beam can be emitted. If the opposite is true, the space-
craft charging is too strong and the beam returns to the
spacecraft.

We also define certain diagnostic quantities that are
useful for the interpretation of the data. Specifically, we
define the parameter s, n equal to the area enclosed
by the spacecraft surface plus the density contour level
corresponding to ns = n for each plasma species s (see
Figure 1b). Similarly, for each density contour we define
an equivalent (spherical) radius s, n as

s, n = 𝜋

2

(
s, n

)2
. (4)

3.1. Simulations of Electron Beam Emission Without Plasma Contactor
We have performed some simulations considering only the electron beam emission from the spacecraft,
in order to set the reference for the simulations combining beam emission and the contactor plasma. As
the electron beam is emitted from the spacecraft into vacuum, the spacecraft becomes positively charged
and its potential rises in time. From a steady state point of view, beam emission can occur only until the
spacecraft electrostatic potential is equal to the kinetic energy of a beam electron. In normalized units, this
corresponds to

𝜓sp = 𝜓
(
𝜌sp

)
=

V2
b

2
. (5)

Using the spacecraft charge versus potential relation, Qsp = sp𝜓sp (where sp = 4𝜋𝜌sp is the vacuum
capacitance of a spherical body, and Qsp is the spacecraft charge) and the fact that

Qsp = AJb𝜏, (6)

expression (5) can be used to estimate the critical time when the beam returns to the spacecraft. After some
simple algebra, it follows that

𝜏r =
1

𝜌sp (1 − cos 𝜃∗)
V2

b

Jb
, (7)

where we have used expression (3). Fixing the spacecraft geometry (𝜌sp) and the injection properties (𝜃∗, Jb),
the beam return time scales as 𝜏r ∝ V2

b . Clearly, if one can manage a higher spacecraft potential, a higher beam
velocity is more favorable for beam emission. It also helps in terms of beam focusing, since higher velocities
correspond to lower densities and therefore lower beam space charge.

Figure 2 shows the time dependent spacecraft potential obtained for Vb = 1 and Vb = 2, with Jb = 0.5. As
expected, the spacecraft potential rises linearly in time until 𝜓sp ∼ V2

b∕2 where the curves bend and saturate
at 𝜓sp ≃ 0.65 for Vb = 1 and 𝜓sp ≃ 2.3 for Vb = 2. The observed time corresponding to 𝜓sp = V2

b∕2 is 𝜏r ≃ 73
for Vb = 1 and 𝜏r ≃ 276 for Vb = 2; these simulation times are in reasonable agreement with the predicted
times 𝜏r

(
Vb = 1

)
≃ 67 and 𝜏r

(
Vb = 2

)
≃ 267 from expression (7). Figure 3 shows snapshots of the electron

density at different times for the simulation with Vb = 2: at 𝜏 = 30 (left) the beam is emitted by the spacecraft;
at 𝜏 = 270 (center) the beam slows down and opens up as the spacecraft electrostatic potential is becoming
comparable to the beam energy; at 𝜏 = 333 (right) the beam is electrostatically pulled back to the spacecraft.

For nref = 104 cm−3 and Tref = 1 keV, during 𝜏 = 300 the beam would cover only 1.4 km before returning to
the spacecraft, implying that it would be impossible to map magnetic field lines over vast regions of space
without some strategy that allows beam emission for longer times.
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Figure 3. Simulations of electron beam emission without contactor plasma for Vb = 2: beam density (saturated at
nb = −0.25) at times (left) 𝜏 = 30, (center) 𝜏 = 270, and (right) 𝜏 = 333.

3.2. Balancing the Electron Beam With an Ion Beam
When trying to emit an electron beam from a spacecraft without encountering the spacecraft charging prob-
lems discussed in section 3.1, an obvious idea is to balance the electron beam with an ion beam of equal
current. While this is reasonable in theory, in practice it is notoriously difficult to draw a large ion current
because of space charge effects, a result that dates back to the pioneering work of Child [Child, 1911]. In
order to see this, we have performed a PIC simulation where at time 𝜏 = 0 an ion beam with current den-
sity Ji = 0.5 (characterized by ni = 50 and Vi = 0.01) and current Ii = 0.093 is injected anti-parallel to the
background magnetic field, in addition to the electron beam (with nb = 0.5 and Vb = 1) discussed in section
3.1. A straightforward application of the planar Child-Langmuir law [Child, 1911; Langmuir and Blodgett, 1924;
Lieberman and Lichtenberg, 2005] gives the maximum ion current Jplanar

CL that can be drawn before space charge
effects become dominant. We solve Poisson’s equation in planar geometry for ions emitted at the boundary

Figure 4. Balancing the electron beam with
an ion beam: electrostatic potential near the
spacecraft at time 𝜏 = 100. The contour
𝜓 = 𝜓sp = 0.62 is plotted with a white line
and encloses the area of the virtual anode.

x = 𝜌sp with velocity Vi = Vp and whose steady state density is
obtained by using the conservation of mass and energy:

d2𝜓

dx2
= −

Ji

Vi

1√
1 + 𝜓sp−𝜓



, (8)

with  = 1
2

mi

me
V2

i and boundary conditions 𝜓(𝜌sp) = 𝜓sp and

𝜓(𝜌2) = 0. The additional constraint d𝜓
dx
|x=𝜌sp

= 0 is used to

obtain Jplanar
CL :

Jplanar
CL = 4

9

Vi(
𝜌2 − 𝜌sp

)2

(√
1 +

𝜓sp


− 1

)(√
1 +

𝜓sp


+ 2

)2

.

(9)
If one assumes 𝜓sp = V2

b∕2 (Vb = 1 and mi∕me = 1836), it is
straightforward to see that Jplanar

CL ≃ 5.4 × 10−6 ≪ Ji and the
ion beam cannot really be emitted. (In practice the situation is
less dramatic since the Child-Langmuir current for a finite-width
beam is larger than that given by equation (9) [Lau, 2001] but
is still not enough to allow ion beam emission.) Essentially, the
ions create a virtual anode in front of the injection aperture
(i.e., the ion front is at higher potential than the spacecraft) that
returns most of the ions to the spacecraft and lets only a small
current escape [Wang and Lai, 1997]. The virtual anode can be
clearly seen in Figure 4 (it corresponds to the area enclosed by
the contour 𝜓 = 𝜓sp = 0.62) showing the electrostatic potential

DELZANNO ET AL. BEAM EXPERIMENTS IN SPACE 3654



Journal of Geophysical Research: Space Physics 10.1002/2014JA020608

Figure 5. Balancing the electron beam with an ion beam:
spacecraft potential as a function of time.

near the spacecraft at time 𝜏 = 100 from the PIC simu-
lation. Thus, it is not surprising that the dynamics of the
spacecraft potential resembles that of Figure 2, as can
be seen in Figure 5, and that the electron beam can no
longer be emitted for 𝜏 ≳ 100.

It is interesting to repeat the same analysis of the
Child-Langmuir law performed above in spherical
geometry [Langmuir and Blodgett, 1924]. This amounts
to solving Poisson’s equation

1
𝜌2

d
d𝜌

(
𝜌2 d𝜓

d𝜌

)
= −

𝜌2
sp

𝜌2

Ji

Vi

1√
1 + 𝜓sp−𝜓



(10)

with the same boundary conditions as before. Unlike
the planar case, the solution cannot be found analyti-
cally. We have solved equation (10) numerically and for
𝜓sp = V2

b∕2 and Vb = 1 we find Jsph
CL = 2.7 × 10−3 and

Isph
CL = 4𝜋𝜌2

spJsph
CL = 0.033. Jsph

CL is almost 3 orders of magnitude larger than Jplanar
CL , implying that it is much easier

to draw an ion current in spherical geometry. In addition, injecting over a larger area allows a bigger current,
as can be seen in Figure 6 (left) where Isph

CL is plotted for different values of 𝜌sp and 𝜓sp (all the other param-
eters are unchanged). A least squares fit of the data of Figure 6 (left) indicates that Isph

CL ∝ 𝜌0.52−0.56
sp . Figure 6

(right) shows the spacecraft potential versus the spacecraft radius obtained by the spherical Child-Langmuir
law where we impose the additional constraint that Isph

CL = 𝛾 Ii with 𝛾 = 0.25, 0.5, 1 and Ii = 0.187 (i.e., the
value of the contactor current used in this study).

While the engineering of a spacecraft into a spherical ion emitter is impractical, the importance of this result
cannot be underestimated: if the ions could somehow be emitted over a larger spherical area, electron beam
emission would be facilitated. In the next section we will show that the contactor plasma could indeed be
used for this purpose.

3.3. Simulations of Beam and Contactor Emission
3.3.1. Characterization of the Contactor Plasma Cloud Prior to Beam Emission
In this section we investigate the expansion of the contactor plasma emitted by the spacecraft before firing
the electron beam. Figure 7 shows the spacecraft potential as a function of time. It also marks (with dashed
lines) the times corresponding to three contactor plasma configurations that will be used in section 3.3.2 as
initial conditions to study beam emission. Since for our parameters the injected contactor electron current is
larger than the contactor ion current, Ie∕Ii ≃ 4, the spacecraft charges slightly positively and creates a sheath

Figure 6. Balancing the electron beam with an ion beam: (left) Child-Langmuir ion current Isph
CL

versus spacecraft radius
for different values of 𝜓sp, obtained in spherical geometry from the calculation discussed in section 3.2. (right) The

spacecraft potential versus radius with the additional constraint that Isph
CL

= 𝛾 Ii (𝛾 = 0.25, 0.5, 1 and Ii = 0.187). The ion
mass ratio is mi

me
= 1836.

DELZANNO ET AL. BEAM EXPERIMENTS IN SPACE 3655



Journal of Geophysical Research: Space Physics 10.1002/2014JA020608

Figure 7. Characterization of the contactor plasma prior
to beam emission: spacecraft potential as a function
of time.

that turns some of the emitted contactor electrons
back onto the spacecraft to reduce the electron current
to Ie ∼ Ii . Initially, the spacecraft potential rises sharply,
peaking at𝜓sp(𝜏 ≃ 70) ≃ 0.078 and then slowly decay-
ing. The contactor electron thermal velocity is much
larger than the drift velocity while the opposite is true
for the contactor ions. Therefore, the electrons outrun
the ions at the beginning of the dynamics and tend to
move quite isotropically due to the electric field near
the spacecraft. For this reason and since the spacecraft
is positively charged, some electrons move around the
spacecraft and some are re-collected: within 𝜏 = 40
the spacecraft is surrounded by a low-density electron
cloud that extends well beyond the ion cloud. This can
be seen in Figures 8a–8c, which shows contours of the
electron density for ne = 102, 10, 1, 10−1, 10−2 corre-
sponding to 𝜏 = 4 (a), 𝜏 = 12 (b) and 𝜏 = 40 (c). We

note that the lowest electron density contour is very diffuse and not well resolved, as one can distinguish the
individual particles. For comparison, the ion density at 𝜏 = 40 is also plotted in Figure 8d. Figure 9 shows the
ion density at time 𝜏 = 200, 𝜏 = 600 and 𝜏 = 1000 and the electron density at 𝜏 = 1000. One can see that
the plasma expansion is mostly quasi-neutral, with density contours overlapping almost perfectly down to

Figure 8. Characterization of the contactor plasma prior to beam emission: electron density at (a) 𝜏 = 4, (b) 𝜏 = 12,
(c) 𝜏 = 40, and ion density at (d) 𝜏 = 40.
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Figure 9. Characterization of the contactor plasma prior to beam emission: ion density at 𝜏 = 200, 𝜏 = 600, and
𝜏 = 1000, and electron density at 𝜏 = 1000.

n ∼ 0.1. This is less true for lower densities, particularly with regard to the low electron density cloud that
forms on top of the spacecraft where there are no ions.

Figure 10. Characterization of the contactor plasma
prior to beam emission: s, 1 as a function of time.

Figure 10 shows s, 1 as a function of time. By definition
s, 1 encloses the region where ns ≥ 1 and is represen-
tative of the high density part of the contactor cloud
(ns∕np ≥ 1%, where np is the density of the contactor
plasma at the point where it is emitted). After the ini-
tial phase where the electrons outrun the ions (hence
e, 1>i, 1), the two areas become approximately equal,
consistent with quasi-neutrality as discussed above. From
Figure 10 one can see that the initial expansion of the
quasi-neutral plasma is dictated by the ions and is roughly
characterized by the curve Vpt (a least squares fit of i, 1

between 𝜏=100 and 𝜏=300 gives i, 1 ∝ t1.17), consistent
with an expansion that is stretched along the injection
axis.

We have also performed some simulations setting the
background magnetic field to zero in order to investigate
its role in the expansion. For our parameters, the electron
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Figure 11. Simulations of contactor and beam emis-
sion: spacecraft potential for various beam velocities
and initial contactor configurations, following the
classification discussed in Table 3. Other parameters
are Jb = 0.5 and mi

me
= 1836.

gyroradius is re ≃ 32, much larger than the radial charac-
teristic scale of the plasma cloud for the simulations that
we performed. Consistently, we have not found a signif-
icant impact of the background field on the spacecraft
potential (Figure 7) or on the plasma densities.
3.3.2. Simulations of the Contactor Plasma With Beam
Emission
In this section we analyze simulations in which the elec-
tron beam is turned on after the contactor plasma has
been injected for some time and a contactor cloud has
already formed. The contactor plasma continues to be
injected during these simulations. Figure 11 shows the
spacecraft potential for three different initial configura-
tions of the contactor plasma and for different values of
the beam velocity (all with Jb = 0.5), following the classifi-
cation that was introduced in Table 3. Let us consider the
curves for cases A1−C1, where the initial contactor plasma
corresponds to 𝜏 = 200 in Figure 9. For case A1 (Vb = 1)
the spacecraft potential rises to a value that exceeds the
beam kinetic energy and the beam returns to the space-

craft after 𝜏 ∼ 260. Compared to Figure 2 where the beam returns to the spacecraft after 𝜏 ∼ 100, the
contactor allows for longer beam emission but still cannot prevent the beam return. For case B1 (Vb = 2), on
the other hand, the spacecraft potential rises, reaches its maximum𝜓max

sp (𝜏 ≃ 700) ≃ 0.78 and then decreases.
𝜓max

sp is much lower than the beam kinetic energy and the beam never returns to the spacecraft. Case C1

(equivalent to Vb −→ ∞, where we simply remove the beam charge from the spacecraft but do not simulate
the beam) is surprisingly close to B1, indicating that the functional dependence of the spacecraft potential on
the beam velocity saturates for Vb ≳ 2. The larger contactor cloud cases A2, C2 and cases A3, C3 follow similar
trends relative to A1-C1, with the most important differences being: (1) the spacecraft potential peaks at lower
values with larger contactor clouds, and (2) while for A2 the beam returns to the spacecraft after 𝜏 ∼ 750, for
A3 (with the largest contactor cloud) it never does since 𝜓max

sp is always lower than the beam kinetic energy.

When the electron beam is initially turned on, the spacecraft potential has a transient sharp rise (with Qsp ∼ Ib𝜏

for 𝜏 ≲ 4), then the contactor and its currents readjust and the subsequent rise of 𝜓sp (which is more clearly
visible in Figure 11) is more moderate. In fact, an analysis of the contactor currents from the spacecraft for
the cases in Figure 11 reveals that in the initial short transient the contactor electron current Ie readjusts to
Ie ≃ Ii − Ib = Ii∕2 such that Ie + Ib is slightly larger than Ii . The (initial) slope of this subsequent part of the rise
of the spacecraft potential can be estimated by noting that beam emission perturbs the charge over an area
enclosing the spacecraft and the ion contactor cloud. The same capacitance-type argument used in section
3.1 can be used here, leading to

𝜓sp =
Ib


𝜏, (11)

where now the capacitance  is calculated on the area of the spacecraft and the contactor cloud and we have
assumed it at 𝜓 ≃ 𝜓sp. In order to cast things in more concrete terms, we have computed the area i, 10−6 of
the ni = 10−6 contour and its equivalent radius i, 10−6 for the three initial configurations corresponding to
C1-C3 to obtain an equivalent capacitance  = 4𝜋i, 10−6 that could be used to compute Ib∕ . The results of

Table 4. Calculation of the Positive Slope of 𝜓sp in Figure 11,
Jb = 0.5

Simulation i, 10−6 Ib∕
d𝜓sp

d𝜏

||||num

C1 10.6 2.9 × 10−3 3.2 × 10−3

C2 98.1 9.4 × 10−4 1.1 × 10−3

C3 294.2 5.4 × 10−4 6.1 × 10−4

the comparison of this method with a numer-
ical evaluation of d𝜓sp∕d𝜏 are shown in Table
4, indicating good agreement between the
two (the relative error is less than 15%).

In order to gain more insight on the system
dynamics, we look in Figure 12 at the evolu-
tion of the contactor cloud electron density
for simulation B1. Qualitatively the contactor
cloud continues to expand similarly to the
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Figure 12. Simulations of contactor and beam emission: contactor electron density at (left) 𝜏 = 645 and (right) 𝜏 = 1200
for case B1.

case without beam emission discussed in section 3.3.1. It is characterized by a quasi-neutral, high-density
inner portion that reaches a steady state, and a non-neutral, low-density outer portion that keeps expanding.
This can be seen clearly in Figure 12, where the contactor electron density contours (with the same format
of Figure 8) at two different times are compared. We also look at the electrostatic potential in the simulation
domain. Figure 13 shows plots of the electrostatic potential on the negative z axis, 𝜓(r = 0, z < 0), at vari-
ous times. In general one can see that the potential is mostly monotonic, with a moderate gradient near the
spacecraft followed by a vacuum-like (∼ 𝜌−1) solution. In Figure 13 we have superimposed three curves that
correspond to the instantaneous positions z∗ that three electrons injected on the z axis with initial velocity
vz = −vth,e (i.e.,Δ𝜓(𝜏) = 𝜓sp(𝜏)−𝜓(0, z∗, 𝜏) = 1

2

(
vth,e

)2
), vz = −2vth,e and vz = −3vth,e would reach. Given that

the contactor electrons are injected with a Maxwellian distribution, these three velocities are representative
of most the injected electrons, including those in the tail of the distribution. One can see from Figure 13 that
the curve Δ𝜓 = 1

2

(
vth,e

)2
remains mostly constant at z∗ ∼ −1.9, while the curve Δ𝜓 = 1

2

(
3vth,e

)2
is increas-

ing monotonically and more so at later times. The curve Δ𝜓 = 1
2

(
2vth,e

)2
exhibits an initial phase of growth

but tends to saturate as time progresses. Interestingly, the curve Δ𝜓 = 1
2

(
3vth,e

)2
follows quite well the

transition of the potential to its vacuum solution. From Figures 12 and 13, it is clear that the bulk of the electron

Figure 13. Simulations of contactor and beam emission:
potential 𝜓(r = 0, z) at various times for case B1. The
curves corresponding to Δ𝜓(𝜏) = 𝜓sp(𝜏) − 𝜓(0, z∗, 𝜏) =
1
2

(
vth,e

)2
, Δ𝜓(𝜏) = 1

2

(
2vth,e

)2
and Δ𝜓(𝜏) = 1

2

(
3vth,e

)2

are also superimposed.

population with velocity v ≲ 2vth,e gives rise to the
quasi-neutral part of the contactor plasma, while
the tail of the electron velocity distribution controls
the expansion of the electron contactor cloud and is
responsible for the contactor electron current Ie.

The nonmonotonic behavior in Figure 11 remains to be
discussed. We have already noted that the rise of the
spacecraft potential is due to the fact that Ie + Ib ≳ Ii .
Not surprisingly, the decreasing phase is in the oppo-
site limit, Ie+Ib ≲ Ii . Our interpretation of this result is in
terms of the Child-Langmuir law in spherical geometry
discussed in section 3.2. Initially, the equivalent radius
of the quasi-neutral contactor plasma (i.e., the region
where the net (positive) current is I = Ii − Ie) is below
the radius where the Child-Langmuir current is equal
to Ib = 0.093 (Figure 6 (left), where I plays the role
of Isph

CL and the equivalent radius of the quasi-neutral
cloud plays the role of 𝜌sp). The spacecraft potential
rises since I < Ib, the quasi-neutral contactor expands
and its equivalent radius grows. From Figure 6 (left),
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Figure 14. Simulations of contactor and beam emission: spacecraft potential versus equivalent radii s, n for cases (left)

C1 and (right) C3. The radius obtained by the Child-Langmuir law in spherical geometry when Isph
CL

= Ib = 0.093 (from
Figure 6, right) is plotted with a dashed line.

larger equivalent radii and larger spacecraft potential correspond to larger net ion current I off the cloud sur-
face, namely the imbalance between I and Ib is reduced and the spacecraft potential grows at a slower pace.
When the equivalent radius of the quasi-neutral cloud reaches the conditions such that I = Ib, the spacecraft
potential peaks. If the quasi-neutral expansion continues, then I > Ib and the spacecraft potential decreases
with time. Our interpretation is confirmed in Figure 14, where we plot the spacecraft potential versus the elec-
tron and ion equivalent radii for different values of the density n, from simulations C1 and C3. Let us consider
case C1 (Figure 14, left) first. One can see that the equivalent radii e, 1 and i, 1 of the n = 1 electron and ion
contours overlap almost perfectly throughout the simulation, indicating quasi-neutrality where n = 1. On the
other hand, the curves e, 0.1 and i, 0.1 do not overlap each other for small values of 𝜓sp (i.e., for early times),
and tend to be closer together for s, 0.1 ≳ 4, after 𝜓sp has reached its maximum. The curves for s, 0.25 tend
to be quite close to one another. From Figure 14 (left), one can infer that the quasi-neutral contactor bound-
ary lies between n = 1 and n = 0.1, close to n ≈ 0.25. By comparing s, 0.25 with the radius obtained by the
Child-Langmuir law calculated for Isph

CL = Ib (from Figure 6 (right), plotted in Figure 14 with a dashed line), it is
clear that the spacecraft potential peaks when the two curves cross. The same considerations are valid for case
C3, plotted in Figure 14 (right), where one can see that the edge of the quasi-neutral cloud is now delimited
by n ≈ 0.03.

Finally, in order to investigate the effect of the boundary condition at the outer boundary, we have performed
some simulations with a bigger domain, 𝜌2 = 100 (but keeping the same level of resolution). We recall that our
simulation domain is open and therefore the total charge in the system can vary: the contactor plasma and
the beam expand and at some point leave the system. Figure 15 (left) shows the spacecraft potential for Cases
C1-C3 (solid lines are for 𝜌2 = 100, while the dashed lines are for 𝜌2 = 50). The curves are qualitatively similar:
the spacecraft potential grows in time, peaks, and starts to decrease. The maximum of the spacecraft is larger
for the bigger domain, and, as expected, more so when the initial contactor configuration is bigger. However,
in all cases the spacecraft potential peaks earlier than the time where the ion front meets the boundary (which
occurs at 𝜏 ∼ 2500 for all cases). Figure 15 (right) shows the spacecraft potential versus the electron and ion
equivalent radii for different values of the density n for case C3 (cf. Figure 14). As before, we see that the peak of
the spacecraft potential is reached when the equivalent radius of the quasi-neutral plume (now for n ≈ 0.02)
meets the radius obtained by the Child-Langmuir law calculated for Isph

CL = Ib.

If we compare the results of this section with those in section 3.2 for the ion beam, the role of the contac-
tor in aiding beam emission emerges. In essence, the contactor, through its quasi-neutral cloud, mediates
ion emission and enables a transition from planar geometry (which is strongly space charge limited) to a
quasi-spherical emission over a larger area that is not space charge limited. For this reason the contactor mit-
igates the transient of the spacecraft potential and facilitates beam emission: with a sufficiently large initial
contactor cloud one could ensure that the peak of the spacecraft potential remains under control.
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Figure 15. Simulations of contactor and beam emission: (left) spacecraft potential versus time for cases C1-C3 with
domain outer boundary at 𝜌2 = 100 (solid lines) and 𝜌2 = 50 (dashed lines) and (right) spacecraft potential versus equiv-
alent radii s, n for case C3 and 𝜌2 = 100. The radius obtained by the Child-Langmuir law in spherical geometry when

Isph
CL

= Ib = 0.093 is plotted with a dashed line. Other parameters: Jb = 0.5.

3.3.3. Scaling Laws
We have also performed some parametric studies to identify scaling laws that could be of practical impor-
tance from a mission design point of view. Table 5 shows the dependence of 𝜓max

sp on the contactor ion mass,
all the other parameters unchanged relative to the reference case with Jb = 0.5 discussed in section 2.1. We
have limited this study to cases C1-C3. We note that the initial contactor configuration obtained prior to beam
emission also depends on the ion mass since lighter ions travel faster and determine larger contactor clouds.
For this reason, in Table 5 we also show i, 10−6 at 𝜏 = 0 for each case. While the initial condition for each sim-
ulation is not the same and this is reflected in𝜓max

sp , it is evident from Table 5 that larger ion mass corresponds
to larger 𝜓max

sp . Attempting a least squares fit of the data gives

𝜓max
sp ∝

(
mi

me

)𝛼

, 𝛼 = 0.40, 0.50, 0.57 (12)

for C1, C2, and C3, respectively. The trend in 𝛼 for different cases should be attributed to the fact that the initial
condition depends on the ion mass. One suspects that the scaling 𝛼 = 0.4 obtained for C1 should be closer to
reality, since for the other two cases the difference in the initial condition is bigger.

Table 6 shows 𝜓max
sp varying the beam current, all the other parameters unchanged relative to our reference

case. Unlike the case of Table 5, for each row in Table 6 the initial contactor configuration is the same. It is
worth noting that the case Jb = 0.25 is qualitatively similar to Jb = 0.5 discussed above, while Jb = 1 involves
some differences. In particular, for the Jb = 1 cases the spacecraft potential tends to an asymptotic equilibrium

Table 5. Maximum of the Spacecraft Potential 𝜓max
sp and Area i, 10−6 at Time 𝜏 = 0

Varying the Ion Massa

mi
me

= 918 mi
me

= 1836 mi
me

= 3672 Best fit Simulation

𝜓max
sp 0.58 0.78 1.01 ∝

(
mi
me

)0.40
C1

𝜓max
sp 0.40 0.59 0.80 ∝

(
mi
me

)0.50
C2

𝜓max
sp 0.30 0.46 0.66 ∝

(
mi
me

)0.57
C3

i, 10−6 (𝜏 = 0) 17.2 10.6 6.7 C1

i, 10−6 (𝜏 = 0) 172.1 98.1 53.3 C2

i, 10−6 (𝜏 = 0) 515.2 294.2 155.3 C3

aAll the other parameters are unchanged relative to the reference case discussed in
section 2.1.
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Table 6. Maximum of the Spacecraft Potential 𝜓max
sp Varying the Beam Cur-

rent, All the Other Parameters Are Unchanged Relative to the Reference Case
Discussed in Section 2.1 as in Table 5

Jb = 0.25 Jb = 0.5 Jb = 1 Best Fit Simulation

𝜓max
sp 0.37 0.78 1.97 ∝ J1.20

b
C1

𝜓max
sp 0.27 0.59 1.37 ∝ J1.17

b
C2

𝜓max
sp 0.21 0.46 1.09 ∝ J1.19

b
C3

(cf. Figure 11) where Ii = Ib and there is no electron tail current from the contactor. The least squares fit of the
data in Table 6 gives

𝜓max
sp ∝ J1.2

b (13)

essentially independent of the initial condition.
3.3.4. A Rough Estimate of𝝍max

sp
It would be useful to derive a simple estimate for 𝜓max

sp . Following the discussion above, in order to do this
one needs to estimate the expansion of the quasi-neutral contactor and evaluate when its equivalent radius
matches the radius where the Child-Langmuir current Isph

CL = Ib (Figure 6, right). We label this radius as RCL and
emphasize its dependence on𝜓sp, Ib and mi∕me. If we assume that the result in Figure 10 is ’universally’ valid,
that is di,QN∕dt = Vp (where the subscript QN labels the density contour corresponding to the edge of the
quasi-neutral contactor), it is easy to obtain the evolution of the equivalent radius

i,QN =

√(
i0,QN

)2 +
Vp

𝜋
𝜏, (14)

where i0,QN = i,QN(𝜏 = 0). Equation (14) can be expressed in terms of 𝜓sp by using equation (11) for 𝜏 .
Finally the maximum of the spacecraft potential can be estimated by solving the following nonlinear equation√(

i0,QN

)2 +
4i0, 10−6 Vp

Ib
𝜓∗

sp = RCL

(
𝜓∗

sp, Ib,
mi

me

)
(15)

where i0, 10−6 = i, 10−6 (𝜏 = 0). Obviously one must know the properties of the contactor prior to beam
emission to use equation (15). We have applied expression (15) to cases C1 and C3 of Table 6. For C1, i0,
10−6 =2.6 (Table 4) and i0,QN =i0, 0.25 =1.7 (Figure 14), leading to𝜓∗

sp =0.53, 0.92, 1.57 for Jb =0.25, 0.5, 1.
For C3, i0, 10−6 = 13.7 and i0,QN = i0, 0.03 = 6.0, leading to 𝜓∗

sp = 0.33, 0.59, 1.02 for Jb = 0.25, 0.5, 1.
In both cases the relative error between the prediction of equation (15) and the PIC simulations is at most
∼ 50%.

4. Conclusions

In this paper we have performed PIC simulations to investigate the conditions for which a high-voltage elec-
tron beam can be emitted by a spacecraft without incurring dramatic spacecraft charging problems. We have
investigated several settings, including the idea of balancing the electron beam with an ion beam of equal
current, and explored the role of a (neutral) contactor plasma injected prior and with the electron beam. While
the ion beam strategy cannot work because of space charge problems that effectively prevent the ion beam
from leaving the spacecraft, we have shown that the contactor is critical in enabling electron beam emission.
In particular, our most important result is that the contactor regulates ion emission by spreading it over a
larger area and effectively inducing a transition from a planar geometry emission (cf. the ion beam, strongly
space charge limited) to a quasi-spherical geometry emission (not space charge limited).

We have shown that the contactor controls the transient of the spacecraft potential induced by beam emis-
sion. Specifically, for Ib < Ii the spacecraft potential initially grows and later decays in time. We have explained
this nonmonotonic behavior in terms of the expansion of the quasi-neutral part of the contactor towards con-
ditions that do not violate the Child-Langmuir law. Moreover, we have shown that larger contactor areas prior
to beam emission mitigate the transient and result in lower peaks of the spacecraft potential. This is consis-
tent with a simple picture where the combined capacitance of the spacecraft plus the contactor plasma cloud
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increases, and implies that a sufficiently large contactor cloud area can ensure that the peak of the spacecraft
potential remains within acceptable bounds.

We have also presented the scaling laws of the maximum of the spacecraft potential varying the contactor

ion mass,𝜓max
sp ∝

(
mi

me

)0.4
, and the electron beam current,𝜓max

sp ∝ I1.2
b , which are of practical importance from

a mission design point of view.

The results presented in this paper might also help shed some light on past experimental results. For instance,
Katz et al. [1994] discuss experiments performed during the ST-45 Atlas-1 mission where keV electron beams
with currents up to 0.8 A operated in conjunction with a plasma contactor unit that generated 2 A of Xenon
ions. These experiments were conducted in the ionosphere, at 300 km altitude, where the return current from
the plasma can be significant and is influenced by the cross-field conductivity. Katz et al. [1994] report that the
data showed no evidence of spacecraft charging or beam return, but it was unclear whether the contactor
current was carried by electrons flowing in from the ionosphere or by ions flowing from the contactor out to
the ionosphere. Although it is not possible to make a direct comparison, our results suggest that is the latter
scenario that maintains spacecraft charging under control when the background return current is not enough.

In light of the renewed interest for beam experiments in space [cf. National Research Council, 2012], for instance
to actively probe magnetic field line connectivity over vast regions of near-Earth space, our results indicate
that operating the contactor and the electron beam simultaneously (in a regime of higher contactor current)
offers a possible pathway to substantially mitigate spacecraft charging problems even in a tenuous, realistic
magnetosphere.
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