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Summary. In clinical trials, an intermediate marker measured after randomization can often provide early information
about the treatment effect on the final outcome of interest. We explore the use of recurrence time as an auxiliary variable
for estimating the treatment effect on overall survival in phase three randomized trials of colon cancer. A multi-state model
with an incorporated cured fraction for recurrence is used to jointly model time to recurrence and time to death. We explore
different ways in which the information about recurrence time and the assumptions in the model can lead to improved
efficiency. Estimates of overall survival and disease-free survival can be derived directly from the model with efficiency gains
obtained as compared to Kaplan–Meier estimates. Alternatively, efficiency gains can be achieved by using the model in a
weaker way in a multiple imputation procedure, which imputes death times for censored subjects. By using the joint model,
recurrence is used as an auxiliary variable in predicting survival times. We demonstrate the potential use of the proposed
methods in shortening the length of a trial and reducing sample sizes.
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1. Introduction
There is much interest in intermediate outcome variables as
either surrogate endpoints (Buyse and Molenberghs, 1998;
Wang and Taylor, 2003; Alonso and Molenberghs, 2008) or
auxiliary variables for the true outcome of interest in ran-
domized clinical trials. A surrogate endpoint is one that is
intended to replace the true outcome of interest in evaluating
therapy while an auxiliary variable is one that is intended to
be used to improve the efficiency of the analysis of the true
endpoint. For clinical trials in locally advanced colon cancer,
overall survival has traditionally been considered the defini-
tive endpoint. However, the earlier endpoint of disease-free
survival, defined as the time to the first event of either death
or cancer recurrence, has been determined to be a good sur-
rogate for overall survival (Chen et al. 1998; Sargent et al.
2005). Here, we explore an alternative use of recurrence time
in colon cancer trials, that of an auxiliary variable which can
be used to shorten the length of a trial and improve the effi-
ciency of the analysis of overall survival.

A variety of methods have been explored to utilize interme-
diate variables to improve the efficiency of the analysis of the
final endpoint (Lagakos, 1977; Kosorok and Fleming, 1993;
Finkelstein and Schoenfeld, 1994; Fleming et al., 1994). Cook
and Lawless (2001) used a three-stage model for a time-to-
event intermediate marker and true endpoint and showed that
substantial gains in efficiency are possible with parametric
models that assume a close structural relationship between
the intermediate variable and true endpoint. Li, Taylor, and
Little (2011) used a parametric model formulation to demon-
strate an increase in efficiency in the analysis of the true
endpoint when plausible prior assumptions were placed on

certain model parameters. Broglio and Berry (2009) parti-
tioned overall survival time into two parts, progression-free
survival and survival post-progression and discussed the ben-
efits of considering the treatment effects on each of these end-
points separately. In the scenario of an auxiliary longitudi-
nal variable and a censored event time of interest, Faucett
et al. (2002) developed an approach for using auxiliary vari-
ables to recover information from censored observations in
survival analysis using a joint longitudinal and survival model
and a multiple imputation procedure for the event times of
censored subjects. Conlon et al. (2011) considered the use
of recurrence time as an auxiliary variable for overall sur-
vival by building separate models for time-to-recurrence and
time-to-death. A cure model was used to model time to re-
currence and a proportional hazards model with a Weibull
baseline hazard function that included recurrence as a time-
dependent covariate was used to model death. The model
for time-to-death was then used in a multiple imputation
procedure to impute death times for censored subjects, and
these new data were used in the primary analyses on over-
all survival. Using some of the same data as considered in
the current paper, they showed modest but consistent gains
in efficiency by using the auxiliary information in recurrence
times. Here, we extend this idea by building a joint multi-
state model for recurrence and death with an incorporated
cured fraction for the recurrence event. This model is then
used to impute death times for censored subjects with the
goal of improving the efficiency of the analysis on overall
survival. The model proposed here, while more complex and
more difficult to estimate than the model used by Conlon
et al. (2011), utilizes the full data likelihood rather than a
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Figure 1. Multi-state cure model structure: observable
states are represented by ovals and latent states are repre-
sented by rectangles. Latent states are assumed to be deter-
mined at time 0 as a result of treatment. Arrows represent
transitions that can be made between states.

two-step procedure and offers the potential for larger gains in
efficiency.

The model that we use for the recurrence and death events
is a multi-state model with a latent cured fraction, described
in detail in Conlon, Taylor, and Sargent (2014) and depicted
graphically in Figure 1. This model is motivated by the dis-
ease process in colon cancer clinical trials. In the randomized
trials that we consider there are two outcomes of interest, re-
currence, and death, where death can occur either without
prior recurrence or after a recurrence. Additionally, a pro-
portion of subjects censored for recurrence may be cured of
disease, and will therefore never experience a recurrence. For
subjects censored for recurrence who are not cured of disease,
their recurrence time will occur after their censoring time and
is therefore unobserved. The primary focus of this paper is ex-
ploring the potential for efficiency gains by using the model
in different ways, thus only a brief description of the model
itself will be given here. Full details of the model, including
an assessment of its fit are given in Conlon et al. (2014). The
model includes four hazards for transitioning between the four
disease states which include: alive and cured of disease, alive
and uncured of disease, alive with recurrence and death. Tran-
sitions between these states are described by the multi-state
model. The hazard of each transition is modeled using a pro-
portional hazard model with a Weibull baseline hazard func-
tion. As we are interested in the gap time between recurrence
time and death time, the multi-state model that we used is
a semi-Markov model, which sets the clock back to 0 upon
entry into a new state. The cured fraction is modeled using
the mixture model formulation of the cure model, with the
probability of cure specified by a logistic model.

The proposed parametric model itself can be used to obtain
efficiency gains relative to Kaplan–Meier estimates in the esti-
mation of quantities of interest such as the difference in 5-year
overall survival or 3-year disease-free survival rates between
treatment arms. Once parameter estimates from the model
are obtained, the estimated 5-year survival and 3-year disease-
free survival can be computed from the model, which we refer
to as the model derived quantities, with the point estimates
and standard errors compared to the respective Kaplan–Meier
estimates. The model derived quantities utilize the paramet-
ric assumptions of the model as well as recurrence information
to achieve efficiency gains.

In an alternative way to gain efficiency in the estimation
of overall survival, the model can be used in a weaker way
by utilizing it in a multiple imputation procedure to impute
death times for censored subjects. Patients who are alive at
the time of their last follow-up are right censored for death,
which we consider as a form of missing data. A patient’s re-
currence status prior to their censoring time is usually known,
and those who experience a recurrence are likely to die sooner
than those who are recurrence free. Therefore, the informa-
tion on a patient’s recurrence time and status may be useful
in predicting their survival time.

The remainder of the paper is organized as follows: Sec-
tion 2 describes the colon cancer clinical trial data that the
proposed methods are applied to, and Section 3 describes the
proposed multi-state cure model. In Section 4, ways in which
efficiency can be gained from the model are explored. Section
5 provides details of the imputation procedure. In Section 6,
we demonstrate the use of the proposed methods is shorten-
ing the length of a trial and simulation results are provided
in Section 7. Section 8 concludes with a discussion.

2. Description of Data from Colon Cancer
Clinical Trials

We consider data from 12 randomized phase III adjuvant tri-
als of locally advanced colon cancer, ten of which are included
in the Sargent et al. (2005) publication. As these 12 trials are
fully described and modeled using the multi-state cure model
in Conlon et al. (2014), we focus on only two of these trials
(Trials 3 and 9) in the current paper. Details of the remain-
ing 10 trials can be found in Web Appendix A. In the first
trial that we consider (Trial 3), subjects were randomized to
the control group of surgery alone or to the treatment group
of surgery plus chemotherapy. In the second trial (Trial 9),
subjects were randomized to receive surgery plus one of two
different types of chemotherapy. Trial 3 (Trial 9) comprised
a total of 926 (2077) subjects, with 457 (1386) subjects ran-
domized to the treatment arm and 469 (691) randomized to
the control arm. Trial 3 (Trial 9) had 377 (605) recurrences
and 422 (724) deaths. The primary goal of both trials was to
compare overall survival between the treatment arms. Addi-
tional covariates measured at baseline include age and cancer
stage. The ages of subjects in Trial 3 (Trial 9) ranged from 18
to 90 years (15–70 years) with a mean of 60 years (57 years).
In Trial 3 (Trial 9), 66% (59%) of the subjects had stage 3
disease. The remaining subjects in both trials had stage 2
disease.

We censored subjects for both death and recurrence at 8
years after the last subject accrual in both trials. As the cure
model is applied to the recurrence event and most recurrences
occur within 5 years, censoring the data 8 years after the last
accrual (after which the original data was less reliable) still
provides long enough follow-up of the recurrence event to al-
low a cure model to be fit to the data. Subjects were followed
with cancer recurrences and deaths recorded as they occurred,
resulting in two, potentially censored, event times of interest.
The censoring times for these events is not always the same,
as while obtaining recurrence status requires active follow-up,
a death status can be obtained through other means. No sub-
jects in Trial 3 were censored for recurrence prior to being
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censored for death, while 8.9% of subjects were censored for
recurrence prior to being censored for death in Trial 9. Most
recurrences happened within a fixed time frame of about 5
years, which is characteristic of data in which there is a cured
group. Of the 538 (1280) subjects at risk for recurrence af-
ter 5 years in Trial 3 (Trial 9), only 23 (29) recurred after
that time. Kaplan–Meier plots of time-to-recurrence (Conlon
et al., 2014) show a clear leveling off, indicating that this is
data for which a cure model is appropriate. Subjects who ex-
perienced a recurrence tended to die soon after. Of the 377
(605) subjects who recurred in Trial 3 (Trial 9), 315 (506)
were observed to die within 3 years.

3. Multi-State Cure Model and MCMC
Estimation

The model we will be utilizing is exactly the same as given
in Conlon et al. (2014), so will only be briefly described here.
The model jointly considers recurrence and death as well as
a latent indicator for cured for recurrence. Deaths can occur
either without a prior recurrence or following a recurrence.
The deaths that occur without a prior recurrence are known
not to be directly due to the regrowth of the cancer, while
deaths following a recurrence may be due to the cancer or
other causes. Cause of death is not available and not consid-
ered in our models. We use the multi-state model to model
four transition intensities between four disease states, as il-
lustrated in Figure 1.

3.1. Notation and Multi-State Cure Model Specifications

For each trial, let Cir and Tir be the censoring and event
times for recurrence and let Cid and Tid be the censoring
and event times for death for the ith subject, i = 1, . . ., n.
Then Yir = min(Cir, Tir) and the event indicator for recurrence,
δir = I(Tir ≤ Cir), and Yid = min(Cid, Tid) and the indicator for
death, δid = I(Tid ≤ Cid), are observed. Let Zi, Si, and Ai rep-
resent the baseline values of treatment group, cancer stage
and age for each subject.

Both the models for the time of entry into each state and
for the probability of cure, p, can depend on covariates. The
multi-state process is characterized through transition intensi-
ties λkj(t), which is the instantaneous hazard of entering State
j, given that the previous state occupied was State k. From
this hazard, we can define the survival distributions for each
transient state and their probability density functions.

We use a proportional hazards model with a Weibull base-
line hazard function to model the distribution of waiting
times. Specifically, the hazard for subject i transitioning to
state j, conditional on being in state k just prior to time ti and
on their latent cured status and covariate values is given by

λkj(ti;Xi) =
(

ρkj

λkj

)(
ti

λkj

)ρkj−1

exp(Xiβkj) and the probability of

being cured, p, is modeled using a logistic link function given
by pi = exp(Xiγ)

1+exp(Xiγ)
. For transitions 1 → 4 and 2 → 4, ti is a

death time. For transition 2 → 3, ti is a recurrence time and
for transition 3 → 4, ti is the gap time between entry into the
recurred state and death. Xi represents a vector of subject-
specific covariates. For transitions 1 → 4, 2 → 3, and 2 → 4,
and for the probability of cure we include the covariates age,
treatment group and stage. For transition 3 → 4, we include
the recurrence time as an additional covariate. There are six

distinct types of subjects who contribute to the likelihood:
those who recur and are either alive or dead, those who are
censored for recurrence at either their death time or censor-
ing time for death, and those who are censored for recurrence
prior to either their death time or censoring time for death.
The equations for each of these likelihood contributions can
be found in Conlon et al. (2014).

3.2. Details of the MCMC Estimation Procedure of
Multi-State Cure Model Parameters

We use an MCMC technique to estimate the parameters of
the model. There are a total of 25 parameters to estimate for
each of the trials, which includes a shape (ρ) and scale (λ) pa-
rameter from the Weibull model for each of the hazard rates,
covariate effects for each of the hazard models and covariate
effects in the logistic model for the probability of cure. We
place informative Normal(0, 0.252) priors on the treatment
and stage coefficients in transition 1 → 4 as treatment group
and cancer stage are unlikely to have a large effect on the haz-
ard of death in patients who are cured of disease. We place
Normal(0, 22) priors on the log(λ)’s and gamma priors with
mean 1 and standard deviation 0.6 on the ρ’s. Normal(0,1)
priors are placed on all of the remaining covariate coefficients
in the hazard models and in the logistic model. The impact of
these mildly informative priors on the estimation of model pa-
rameters is evaluated in Conlon et al. (2014), where the priors
used in the current paper were found to result in less biased
estimates than those obtained under less informative priors.
A Metropolis–Hastings algorithm is used to obtain parameter
draws from the posterior distribution. Details of the algorithm
can be found in Conlon et al. (2014). For each parameter, we
obtain 5000 draws from the posterior distribution.

A thorough assessment of the goodness-of-fit was under-
taken in Conlon et al. (2014), through the use of Cox–Snell
and deviance residuals, comparisons of predicted versus ob-
served time-to-event distributions, and comparisons of the
DIC value of the proposed model with alternative models.
We demonstrated that the model gives a good fit, as well as
providing parameter estimates which were scientifically plau-
sible, and largely consistent across the 12 trials. Parameter
estimates for each of the 12 trials can be found in Conlon
et al. (2014).

4. Application of the Model for Efficiency Gains:
Model-Based Estimates

Typical analyses of the treatment effect on overall survival
would be log-rank tests, hazard ratio estimates using Cox
models and estimates of differences in survival at specific
times points. Since the multi-state cure model does not re-
sult in the proportional hazards assumption being satisfied
for time-to-death, we focus on estimates of overall survival.
Once parameter estimates have been obtained, the model can
be used to estimate the difference in 5-year overall survival
(OS) between the two treatment arms. The point estimate
can be compared with the Kaplan–Meier estimate to check the
model fit and the posterior standard deviation can be com-
pared with the standard error of the Kaplan–Meier estimate
to assess gains in efficiency through use of the multi-state cure
model.
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Table 1
Illustration of efficiency gains using multistate-cure model-based estimates. Kaplan–Meier treatment effect estimates

(standard errors) and multi-state model estimates (posterior standard deviations) for the difference in 5-year overall survival
(�S(5)) and 3-year disease free survival (�DFS(3)) between treatment arms for the full follow-up and artificially censored

(reduced follow-up) data from 2 colon cancer clinical trials.

�S(5)∗ �DFS(3)∗∗

Full follow-up Reduced follow-up Full follow-up Reduced follow-up

Trial 3 Kaplan–Meier 0.074 (0.031) 0.115 (0.080) 0.110 (0.031) 0.210 (0.086)
Multi-state model 0.072 (0.026) 0.050 (0.028) 0.113 (0.027) 0.121 (0.030)

Trial 9 Kaplan–Meier 0.034 (0.021) 0.050 (0.026) 0.032 (0.021) 0.042 (0.022)
Multi-state model 0.034 (0.018) 0.028 (0.018) 0.039 (0.019) 0.042 (0.020)

∗�S(5) = P(T > 5|Zi = 1) − P(T > 5|Zi = 0), ∗∗�DFS(3) = P(DFS > 3|Zi = 1) − P(DFS > 3|Zi = 0) where T is survival time, DFS is disease
free survival time and Z is a binary treatment indicator.

Let S1(t) = exp
(− ∫ t

0
λ14(u) du

)
and S2(t) =

exp
(− ∫ t

0
λ23(u) du − ∫ t

0
λ24(u) du

)
, which are the sur-

vival distributions for remaining in State 1 or State
2, respectively. For each subject the 5-year OS proba-
bility is P(Ti > 5|Xi, θ) = piS1(5) + (1 − pi)S2(5) + (1 −
pi)

∫ 5

0
S2(u)λ23(u)exp

(
− ∫ 5−u

0
λ34(v) dv

)
du, where θ is the

vector of parameter values. This probability is calculated
separately for subjects in each treatment arm, and then
averaged across the stage and age covariate values for each
subject and across all posterior parameter draws to obtain a
population estimate.

Similarly, 3-year disease free survival (DFS) can be calcu-
lated from the model and compared to the 3-year Kaplan–
Meier DFS estimate to assess efficiency gains from using the
proposed model at the earlier time point. For each subject, 3-
year DFS is calculated as P(DFSi > 3|Xi, θ) = piS1(3) + (1 −
pi)S2(3). This probability is then averaged across covariate
values for each subject and across all parameter draws. Using
the above model derived quantities, we estimate the treatment
effect for these two separate endpoints of interest. For trials
such as these in locally advanced colon cancer, 5-year OS is
often considered the definitive endpoint. In this setting, 3-
year DFS has been determined to be a valid surrogate marker
for 5-year OS. Therefore, there is interest in the treatment ef-
fect estimate at both of these endpoints. In Table 1, the “Full
Follow-up” column provides the Kaplan–Meier estimates and
standard errors and multi-state model estimates and poste-
rior standard deviations for 5-year OS and 3-year DFS. Both
the 5-year OS estimate and the 3-year DFS estimate from
the multi-state model are similar to the Kaplan–Meier esti-
mates, with moderate gains in efficiency obtained by using the
multi-state model, as seen by the smaller posterior standard
deviations. Five year OS and 3-year DFS estimates obtained
from the multi-state model for the other 10 colon cancer trials
can be found in Web Appendix B.

5. Application of the Model for Efficiency Gains:
Multiple Imputation

An alternative way that the multi-state cure model can be
used to improve efficiency in the estimation of overall sur-
vival is through a multiple imputation strategy that imputes
death times for subjects who are censored for death. Using the

proposed model in a multiple imputation procedure is a less
model-dependent approach than the estimation procedure in
Section 4 because the model is only used to aid in imputation
of the missing data, with the end analysis being of the original
data augmented by the imputed data. The multiple imputa-
tion approach could be used to improve efficiency of the analy-
sis of overall survival or to shorten the length of a clinical trial
while still keeping the primary endpoint of overall survival.

The imputation procedure is performed as follows. For each
set of parameter draws, θ, from the posterior distribution,
we impute a death time from the residual survival distribu-
tion, P(Tid > Yid + ai|Tid > Yid, δid = 0, Yir, δir, Xi, θ), for each
censored subject. Specifically, we set this function equal to
a w ∼ U(0, 1) random variable and solve for ai, the im-
puted time to death after Yid for each censored subject.
For subjects with a recurrence prior to their censoring time

(δir = 1), we solve w = exp
(
− ∫ Yid+ai−Yir

Yid−Yir
λ34(u) du

)
for ai. For

subjects censored for recurrence (δir = 0) we first calculate
their probability of being cured of disease by drawing a
Bernoulli(ci) random variable, where ci is the probability of
being cured of disease, given Yid , Yir, Xi and the current pa-
rameter draws. For subjects censored for recurrence at Yid ,

ci is given by ci = piλ14(Yid)
δid S1(Yid)

piλ14(Yid)
δid S1(Yid)+(1−pi)λ24(Yid)

δid S2(Yid)
and for

those censored for recurrence at Yir prior to Yid , ci is given by

ci = piλ14(Yid)
δid S1(Yid)

piλ14(Yid)
δid S1(Yid)+(1−pi)λ24(Yid)

δid S2(Yid)+(1−pi)B
, where

B = ∫ Yid

Yir
λ23(u)S2(u)λ34(Yid − u)δid exp

(
− ∫ Yid−u

0
λ34(v) dv

)
du.

For those placed in the cured group, we solve

w = exp
(
− ∫ Yid+ai

Yid
λ14(u) du

)
for ai, and for those placed in

the uncured group, we solve w = g(Yid+ai)

g(Yid)
for ai, where:

g(t) = P(Tid > t | δid = 0, Yir, δir = 0, Xi, θ)

= exp

(
−

∫ t

0

λ23(u) du −
∫ t

0

λ24(u) du

)

+
∫ t

Yir

exp

(
−

∫ v

0

λ23(u) du −
∫ v

0

λ24(u) du

)
λ23(v)

× exp

(
−

∫ t−v

0

λ34(u) du

)
dv.
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Table 2
Illustration of efficiency gains using multiple imputation approach. Log-rank test p-values, Cox model log hazard ratios (SE)
and Kaplan–Meier estimates (SE) for the difference in 5-year survival between treatment arms from the original full follow-up

data and the artificially censored reduced follow-up data with and without imputation of censored survival times using the
proposed method. These are compared to the imputation method on the reduced follow-up data of Conlon et al. (2011).

Trial Data Log-rank p-value Cox model log hazard ratio (SE) �S(5)∗ KM estimate (SE)

3 Original 0.002 −0.31 (0.098) 0.074 (0.031)
Reduced follow-up 0.045 −0.27 (0.131) 0.115 (0.080)

Imputed original 0.007 −0.30 (0.098) 0.073 (0.031)
Imputed reduced follow-up 0.036 −0.26 (0.124) 0.076 (0.033)
Conlon et al. (2011) method 0.039 −0.25 (0.118) 0.068 (0.034)

9 Original 0.041 −0.16 (0.077) 0.034 (0.021)
Reduced follow-up 0.105 −0.14 (0.087) 0.050 (0.026)

Imputed original 0.026 −0.17 (0.077) 0.034 (0.021)
Imputed reduced follow-up 0.083 −0.15 (0.086) 0.035 (0.021)
Conlon et al. (2011) method 0.113 −0.14 (0.086) 0.035 (0.021)

∗�S(5) = P(T > 5|Zi = 1) − P(T > 5|Zi = 0), where T is survival time, and Z is a binary treatment indicator.

For each subject, we solve the appropriate equation using ev-
ery 10th draw from the posterior distribution of the parame-
ters, giving a total of 500 data sets with imputed death times
for censored subjects. The imputed death times are censored
at the longest follow-up time for the study. With death as
the endpoint of interest, these new imputed times are com-
bined with the observed data and compared to analyses of
the original data to assess efficiency gains. Specific estimates
of interest include the treatment effect estimates from a Cox
model (which also includes stage and age as covariates), the
log rank statistics, and the 5-year Kaplan–Meier survival es-
timates. Kaplan–Meier estimates and standard errors and es-
timates and standard errors from the Cox model are obtained
using the rules for multiple imputation established by Rubin
(1987). Log-rank test Chi-Square statistics are combined us-
ing the methods of Li et al. (1991). Rows 1 and 3 for each
trial in Table 2 provide results from the analyses on the orig-
inal data and on the imputed data, respectively. The point
estimates are consistent, suggesting that there was no distor-
tion of the results introduced by the imputation, but there
is no gain in efficiency in these specific trials from using the
imputed data. This is likely due to the fact that both of these
trials had good follow-up, with very few subjects censored for
death soon after recurrence. Results of applying the imputa-
tion procedure to the other 10 colon cancer trials are similar
and can be found in Web Appendix C.

6. Illustration of Potential Efficiency Gains for
Trials with Shorter Follow-Up

The multi-state cure model and imputation procedure could
be used to shorten the length of a clinical trial. To illustrate
this, we reduce the follow-up time in the original data by
censoring observations either 2 years after the last subject ac-
crual (Trial 3) or at the minimum length of time after the
last accrual that provides at least 5.5 years of follow-up time
for at least one subject (Trial 9). This artificial censoring re-
duced the number of recurrence from 377 to 319 in Trial 3
and from 605 to 579 in Trial 9 and reduced the number of
deaths from 422 to 237 in Trial 3 and from 724 to 572 in Trial

9. Estimates of 5-year OS and 3-year DFS can be obtained
using parameter estimates from the multi-state cure model on
the reduced follow-up data. The point estimates and posterior
standard deviations of these quantities can then be compared
to the Kaplan–Meier estimates from the full follow-up data
to assess gains in efficiency from using the multi-state model
and whether these quantities can correctly be estimated using
shorter follow-up data. In Table 1, the column labeled “Re-
duced follow-up” provides the Kaplan–Meier estimates and
standard errors and multi-state model estimates and poste-
rior standard deviations for 5-year OS and 3-year DFS for the
reduced follow-up data. The point estimates from the reduced
follow-up data tend to be near those from the full follow-up
data for both 5-year OS and 3-year DFS, with posterior stan-
dard deviations that are very close to the standard errors of
the Kaplan–Meier estimates from the full follow-up data, in-
dicating that similar conclusions about treatment effects on
these quantities would be drawn using the reduced follow-up
data and the multi-state model estimates as compared to the
full follow-up data Kaplan–Meier estimates. Kaplan–Meier es-
timates and standard errors and multi-state model estimates
and posterior standard deviations for 5-year OS and 3-year
DFS for the full follow-up data and reduced follow-up data
for the other 10 colon cancer trials can be found in Web Ap-
pendix B.

We use the multiple imputation procedure described in
Section 5 on the reduced follow-up data with death as the
endpoint of interest. These analyses are then compared to
analyses of the original, full follow-up data to assess efficiency
gains. Table 2 provides log rank statistics, Cox model log haz-
ard ratios and 5-year Kaplan–Meier survival estimates from
the original, artificially censored, and imputed data. The log
rank tests and Cox models were stratified by cancer stage and
the Cox models also included age as a covariate. The point
estimates from the imputed data tend to lie in between those
of the original data and the reduced follow-up data, indicating
that some of the information lost due to early censoring was
correctly recovered using the imputation procedure. A small
gain in efficiency in the estimation of the log hazard ratio
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was achieved, as indicated by the smaller standard errors.
The standard errors of the Kaplan–Meier estimate from the
imputed data are smaller than those of the artificially cen-
sored data, making this a promising method that could be
used to shorten trial lengths and reduce sample sizes. Similar
results of the imputation procedure are found for all 12 of the
colon cancer trials, as shown in Web Appendix C. Table 2
also provides results using the modeling and imputation pro-
cedure of Conlon et al. (2011). For these two trials, the simpler
method of Conlon et al. (2011) which models overall survival
with recurrence as a time-dependent covariate and bases the
multiple imputation procedure off of this model appears to
perform similarly to the more complex multi-state cure model.

7. Simulation Results

We conduct simulations to examine the performance of the
proposed methods using the multi-state cure model. We com-
pare the performance of the imputation method to that
of Conlon et al. (2011) where the imputation of death times
was based on a survival model with a time-dependent covari-
ate for recurrence.

Recurrence times and death times were first simulated from
the multi-state cure model to give “original” data, mimicking
that in a clinical trial with long follow-up. These times were
then censored at an earlier time to give “censored” data, with
much shorter follow-up. An estimate of 5-year overall survival
from the “censored” data using the model-based strategy is
then obtained and the imputation strategy is performed on
the “censored” data using the multi-state cure model and the
approach of Conlon et al. (2011). Using the imputed data, we
assess the treatment effect on overall survival using the log-
rank test, the estimated relative hazard from a Cox model,
and the 5-year Kaplan–Meier survival estimate. Four differ-
ent trial settings are explored, two with a treatment effect
and two without a treatment effect. For each setting, we gen-
erate 500 data sets, each with 500 subjects per treatment arm,
750 subjects with stage 3 disease, and a 5-year accrual period
with 8 years of additional follow-up to provide the “original
data.” The “censored” data is obtained by censoring these
data sets either 2 years after the last accrual (trials 1 and
3) or 1 year after the last accrual (trials 2 and 4) to provide
a maximum of 7 years or 6 years, respectively, of follow-up
time. The probability of being cured of disease was gener-
ated using pi = exp(γ0+γ1Zi+γ2Si)

1+exp(γ0+γ1Zi+γ2Si)
, where Zi denotes treatment

group and Si denotes stage. Each of these covariates are cen-
tered at 0 so that Zi is equal to −0.5 (0.5) for the control
(treatment) group and Si is equal to −0.75 (0.25) for stage
2 (stage 3) disease. We set (γ0, γ1, γ2) = (0.8, −0.4, −1.0) in
trials 1 and 2 and (γ0, γ1, γ2) = (0.8, 0.0, −1.0) in trials 3
and 4. For those who are cured of disease, we generate a
death time using hazard model for transition 1 → 4 with
log(λ14)= 4, ρ14 = 1.5, and the treatment and stage effects
set to 0. For those who are not cured we generate a re-
currence time using the hazard model for transition 2 → 3
with (log(λ23), ρ23, βst23 , βtrt23) = (1, 1.5, 0.7, −0.3) in trials 1
and 2 and (log(λ23), ρ23, βst23 , βtrt23) = (1, 1.5, 0.7, 0.0) in tri-
als 3 and 4. We generate a death time for those who are
not cured using the hazard model for transition 2 → 4 with
log(λ24)= 4, ρ24 = 1.5 and the treatment and stage effects

set to 0. If the death time for uncured subjects is less than
the recurrence time, then a 2 → 4 transition is made at the
death time and the recurrence is censored at the death time.
If the recurrence time is less than the death time, then a
2 → 3 transition is made at that time. For those who re-
cur, the time between their recurrence and death is gen-
erated using the hazard model for transition 3 → 4 with
(log(λ34), ρ34, βst34 , βtrt34 , βTr) = (1.1, 0.9, 0.3, 0.0, −0.1).

For the analyses using the imputed data, Table 3 provides
the size of the log-rank test, stratified by stage, and the
average of the estimated log hazard ratio, empirical standard
deviation (SD) and average standard error (S̄E) for the treat-
ment coefficient from a Cox model, stratified by stage. The
average Kaplan–Meier estimate, empirical standard deviation
(SD) and average standard error (S̄E) of the difference in
5-year survival between the treatment arms is provided, as
well as a model based estimate of 5-year survival from the
“censored” data. Additionally, for the null cases (trials 3 and
4) coverage rates for the Cox model log hazard ratio estimate,
Kaplan–Meier 5-year survival difference and model based
estimates of 5-year survival are given. For each trial, the first
row provides estimates for the “original” data with a long
follow-up period. The second row provides estimates for the
data where all subjects, from the beginning of the study, could
be followed for the maximum amount of follow-up time given
in the artificially censored data, that is, either 7 or 6 years.
These two rows provide a basis of comparison for the model-
based estimates and imputation based estimates obtained
from the “censored” data. Comparison to the first row an-
swers the question of whether or not the methods performed
on the “censored,” reduced follow-up data result in similar
conclusions to those based on the “original” full follow-up
data, thus resulting in the potential to shorten the length of
the trial. Comparison to the second row answers the statistical
question of the bias in the estimates of the hazard ratio from
the proposed methods. We note that the Cox model estimates
for the treatment effect differ between the first two rows.
This is because the proportional hazards assumption for time
to death is not satisfied and the first row is based on a much
longer follow-up than the second row. The third row for each
trial (“Censored (max 6 (7) year follow-up)” in trials 1 and 3
(2 and 4)) provides estimates from artificially censoring the
first row of “original” data and provides a basis for assessing
gains in efficiency obtained through the proposed methods.

The results show that there is some efficiency gained by us-
ing the imputation procedure and the model based estimate
of 5-year survival, and when there is no treatment effect, both
the imputation procedure and the model based estimates pre-
serve type I error. We note that the size of the log-rank test
is slightly over conservative for the multiple imputed data.
This is likely related to the issue of uncongeniality discussed
by Meng (1994) and Rubin (1996), where the model used in
creating the imputed data sets and the model used for ana-
lyzing the imputed data differ. Here, the model used to cre-
ate the imputations was based on the multi-state cure model
and utilized information on recurrence to obtain the imputed
survival times. The log-rank tests and Cox models were strat-
ified by stage to make the models slightly more congenial. In
these settings where the imputation model and analysis model
differ due to auxiliary information used in the imputation
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Table 3
Simulation results to assess efficiency gains from using model-based and multiple imputation methods.Observations are

simulated from a multistate-cure model, with true parameters values as given in the text, for a clinical trial with 5 years of
accrual and 8 years of additional follow up. Provided are the size of the log-rank test, mean Cox model log hazard ratio (SD)
and mean SE, and mean Kaplan–Meier estimate of the difference in 5-year survival (SD) and mean SE for the treatment

effect for original full follow-up data, and artificially censored reduced follow-up data with and without imputation of censored
survival times using the proposed method. The “Censored, model based” row provides a model based estimate of the difference
in 5 year survival (SD) and mean SE from the censored reduced follow-up data. These are also compared to the imputation

method on the reduced follow-up data of Conlon et al. (2011). Results from 500 data sets, each with n = 500 subjects.

Trial 1: Treatment effect, 2 year censored

Size of Cox model Log hazard ratio �S(5)∗ �S(5)∗

Data log-rank Log hazard ratio (SD) S̄E Estimate (SD) S̄E

Original (max 13 year follow-up) 0.772 −0.30 (0.110) 0.111 0.064 (0.025) 0.025
7 year follow-up for all subjects 0.778 −0.35 (0.126) 0.126 0.064 (0.025) 0.025
Censored (max 7 year follow-up) 0.731 −0.39 (0.155) 0.154 0.064 (0.028) 0.029

Censored, model based 0.063 (0.023) 0.024
Imputed censored 0.754 −0.37 (0.130) 0.142 0.063 (0.024) 0.026
Conlon et al. (2011) method 0.792 −0.38 (0.133) 0.137 0.065 (0.025) 0.026

Trial 2: Treatment effect, 1 year censored

Original (max 13 year follow-up) 0.772 −0.30 (0.110) 0.111 0.064 (0.025) 0.025
6 year follow-up for all subjects 0.762 −0.36 (0.134) 0.134 0.064 (0.025) 0.025
Censored (max 6 year follow-up) 0.632 −0.41 (0.182) 0.176 0.067 (0.034) 0.033

Censored, model based 0.064 (0.026) 0.026
Imputed censored 0.678 −0.39 (0.152) 0.163 0.060 (0.025) 0.026
Conlon et al. (2011) method 0.714 −0.40 (0.153) 0.156 0.060 (0.024) 0.025

Trial 3: No treatment effect, 2 year censored

Coverage Coverage
Original (max 13 year follow-up) 0.068 0.00 (0.117) 0.111 0.93 0.000 (0.026) 0.025 0.94
7 year follow-up for all subjects 0.066 0.00 (0.131) 0.125 0.94 0.000 (0.026) 0.025 0.94
Censored (max 7 year follow-up) 0.052 0.00 (0.155) 0.152 0.95 0.000 (0.030) 0.029 0.93

Censored, model based 0.000 (0.024) 0.024 0.95
Imputed censored 0.040 0.00 (0.132) 0.140 0.96 0.000 (0.025) 0.026 0.96
Conlon et al. (2011) method 0.062 0.00 (0.143) 0.136 0.93 0.000 (0.026) 0.026 0.94

Trial 4: No treatment effect, 1 year censored

Original (max 13 year follow-up) 0.068 0.00 (0.117) 0.111 0.93 0.000 (0.026) 0.025 0.94
6 year follow-up for all subjects 0.064 0.00 (0.142) 0.133 0.93 0.000 (0.026) 0.025 0.94
Censored (max 6 year follow-up) 0.046 0.00 (0.171) 0.174 0.93 0.000 (0.034) 0.033 0.96

Censored, model based 0.000 (0.025) 0.026 0.96
Imputed censored 0.018 −0.01 (0.143) 0.158 0.98 0.000 (0.023) 0.026 0.97
Conlon et al. (2011) method 0.036 −0.01 (0.147) 0.154 0.96 0.001 (0.023) 0.025 0.93

∗�S(5) = P(T > 5|Zi = 1) − P(T > 5|Zi = 0), where T is survival time, and Z is a binary treatment indicator.

procedure, the inference with multiple imputation tends to
be conservative, but more efficient than inference done with-
out multiple imputation (Meng, 1994). This uncongeniality
between the imputation and analysis model is also likely the
cause of the slight discrepancy between the empirical standard
deviations and average standard errors, where the standard
errors tend to be overly conservative.

The simulations demonstrate that some of the information
lost due to early censoring can be correctly recovered through
the imputation procedure. In the settings where there is a
treatment effect on overall survival (trials 1 and 2), the Cox
model log hazard ratio estimates from the imputed data

are in between that from the “censored” data and from the
“original” data, and very close to the estimates from the “7
year follow-up data” (trial 1) and the “6 year follow-up” data
(trial 2). The Kaplan–Meier estimates of the difference in 5-
year survival rates are estimated with minimal bias in all four
trials, with some small gains in efficiency obtained through
the imputation procedure, as seen in the smaller standard
deviations and smaller average standard errors as compared
to the reduced follow-up data. The method of Conlon et al.
(2011) has slightly smaller average standard errors for the
log hazard ratio estimate than those from the multi-state
cure models, but has larger empirical standard deviations,
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Table 4
Simulation results on efficiency gain: assessing the impact of different values of βTr

. Observations are simulated as described
in Table 3. Provided are the size of the log-rank test, mean Cox model log hazard ratio (SD) and mean SE, and mean

Kaplan–Meier estimate of the difference in 5-year survival (SD) and mean SE for the treatment effect for the original full
follow-up data, and artificially censored reduced follow-up data with and without imputation of censored survival times using

the proposed method. Results from 500 data sets, each with n = 500 subjects.

Size of Cox model Log hazard ratio �S(5)∗ �S(5)∗

data log-rank Log hazard ratio (SD) S̄E Estimate (SD) S̄E

β34Tr
= 0

Original (max 13 year follow-up) 0.752 −0.29 (0.109) 0.111 0.062 (0.025) 0.025
7 year follow-up for all subjects 0.764 −0.33 (0.125) 0.126 0.062 (0.025) 0.025
Censored (max 7 year follow-up) 0.678 −0.37 (0.158) 0.155 0.062 (0.029) 0.029

Imputed censored 0.708 −0.36 (0.139) 0.147 0.061 (0.024) 0.026

β34Tr
= −0.1

Original (max 13 year follow-up) 0.772 −0.30 (0.110) 0.111 0.064 (0.025) 0.025
7 year follow-up for all subjects 0.778 −0.35 (0.126) 0.126 0.064 (0.025) 0.025
Censored (max 7 year follow-up) 0.731 −0.39 (0.155) 0.154 0.064 (0.028) 0.029

Imputed censored 0.754 −0.37 (0.130) 0.142 0.063 (0.024) 0.026

β34Tr
= −0.5

Original (max 13 year follow-up) 0.820 −0.33 (0.114) 0.114 0.073 (0.025) 0.025
7 year follow-up for all subjects 0.838 −0.38 (0.127) 0.127 0.073 (0.025) 0.025
Censored (max 7 year follow-up) 0.794 −0.42 (0.148) 0.149 0.074 (0.028) 0.029

Imputed censored 0.812 −0.39 (0.134) 0.143 0.072 (0.025) 0.026

∗�S(5) = P(T > 5|Zi = 1) − P(T > 5|Zi = 0), where T is survival time, and Z is a binary treatment indicator.

indicating that there is a small amount of efficiency gained
through the use of the multi-state cure model. Additional
simulations explore how the efficiency changes as the effect
of time to recurrence on the gap time between recurrence
and death changes. Data are simulated under the same
parameter values as trial 1 above, except with the value of
βTr changed to 0, −0.1, or −0.5. The results, shown in Table
4, demonstrate that similar gains in efficiency are achieved
as the effect of recurrence time on the hazard of death after
recurrence increases.

Two additional simulations were performed to assess the
robustness of the model and proposed methods to model mis-
specification. Specifically, data for each simulation was gen-
erated assuming a multi-state cure model with a lognormal
distribution for each of the four transition times. In the first
simulation there was a treatment effect on overall survival
and in the second simulation there was no treatment effect on
overall survival. The data was fit using the multi-state cure
model with a Weibull baseline hazard function for each transi-
tion and model-based and imputation-based estimates of over-
all survival were obtained. Details of these results, shown in
Web Appendix D demonstrate that smaller efficiency gains
are obtained when the model is misspecified, but the Type I
error rate is still maintained.

8. Discussion

In this article, we propose a modeling and imputation pro-
cedure to assess the use of cancer recurrence as an auxiliary
variable that can be used to improve efficiency in the analysis
of overall survival. We have considered different ways in which

the multi-state cure model can be used to improve efficiency
in the analysis of overall survival.

While the specific model used was motivated by the 12 clin-
ical trials in locally advanced colon cancer that were explored,
the idea of combining a cure model and multi-state model is
generalizable to other data structures as are the imputation
methods and the idea of utilizing these methods to shorten
the length of a trial. We presented approaches in which both
model-based estimates and multiple imputation based esti-
mates could be used to improve efficiency in the estimation of
the final endpoint of interest. While these two methods result
in similar efficiency gains in the scenario that we consider,
the imputation based method is more broadly useful and re-
lies on weaker assumptions. Additionally, other analyses of
the final endpoint of interest could be easily facilitated using
this method.

Despite simulation results showing the significance level re-
sulting from the imputation procedure to be conservative, the
results still show modest but consistent gains in efficiency, as
measured by smaller standard errors, by using the informa-
tion from recurrence time. This is the most useful finding
as it allows the methods presented to be used in shortening
the planned length of a trial and in reducing sample sizes.
Although the changes in the width of the uncertainty inter-
vals are only modest, sample size requirements are driven by
the square of the standard deviation. Hence, if the proposed
methodology were adopted, the size of trials could be reduced
by 10–20%. The most practically useful finding from this re-
search is that the methods allow the length of the trial to be
reduced. These methods could also be useful in aiding data
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safety and monitoring boards in deciding whether or not to
end a trial at the time of an interim analysis.

Mildly informative prior distributions were used in the data
analyses. Sensitivity of the proposed methods to these distri-
butions was explored for the two trials considered. Imputation
based estimates and model based estimates of overall survival
using less informative Normal(0, 52) priors on the log(λ)’s,
gamma priors with mean 1 and standard deviation 1.6 on the
ρ’s, and Normal(0,22) on all of the covariate coefficients in
the hazard models and in the logistic model can be found in
Web Appendix E. There is some sensitivity to the priors in
the point estimates, but similar efficiency gains are obtained
from both the model based estimates and the imputation
procedure.

We have focused on the situation of colon cancer, where
there is a strong relationship between recurrence time and
death. Cook and Lawless (2001) and Li et al. (2011) have
noted that gains in efficiency for the estimation of survival
distributions are often small when the intermediate variable
and survival time are not highly correlated. When the inter-
mediate variable and true endpoint are closely related, the use
of parametric models and reasonable assumptions about the
effect of covariates on individual processes of the disease may
contribute to further gains in efficiency. For example, there
may be settings in which all of the treatment effect is on
the probability of being cured, or where all of the treatment
effect is on the hazard of recurrence for those who are un-
cured. In these settings, adding restrictions to the treatment
effect coefficients through the use of tighter prior distributions
or by forcing these coefficients to be zero may contribute to
additional gains in efficiency in the analysis of overall sur-
vival. We tried placing these restrictions on the colon cancer
data sets, however it did not increase the efficiency gains by
very much. These results can be found in Web Appendix F.
An additional potential way to improve efficiency when data
are available from multiple trials is by borrowing informa-
tion across trials by the use of a hierarchical model. However,
in the setting that we consider of 12 randomized colon can-
cer trials, a hierarchical model which borrows information for
the stage and age covariates does not, in general, result in
efficiency gains for the estimate of the treatment effect since
these covariates are likely to be at most weakly correlated with
that estimate. Hierarchical model results can be found in Web
Appendix G.

9. Supplementary Materials

Web Appendices and Tables referenced in Sections 2, 4, 5,
6, 7 and 8 and R code for fitting the multi-state cure model
and for performing the simulations presented in this paper are
available with this paper at the Biometrics website on Wiley
Online Library.
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